xref: /linux/fs/btrfs/ordered-data.c (revision b83deaa741558babf4b8d51d34f6637ccfff1b26)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/slab.h>
7 #include <linux/blkdev.h>
8 #include <linux/writeback.h>
9 #include <linux/sched/mm.h>
10 #include "misc.h"
11 #include "ctree.h"
12 #include "transaction.h"
13 #include "btrfs_inode.h"
14 #include "extent_io.h"
15 #include "disk-io.h"
16 #include "compression.h"
17 #include "delalloc-space.h"
18 #include "qgroup.h"
19 #include "subpage.h"
20 
21 static struct kmem_cache *btrfs_ordered_extent_cache;
22 
23 static u64 entry_end(struct btrfs_ordered_extent *entry)
24 {
25 	if (entry->file_offset + entry->num_bytes < entry->file_offset)
26 		return (u64)-1;
27 	return entry->file_offset + entry->num_bytes;
28 }
29 
30 /* returns NULL if the insertion worked, or it returns the node it did find
31  * in the tree
32  */
33 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
34 				   struct rb_node *node)
35 {
36 	struct rb_node **p = &root->rb_node;
37 	struct rb_node *parent = NULL;
38 	struct btrfs_ordered_extent *entry;
39 
40 	while (*p) {
41 		parent = *p;
42 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
43 
44 		if (file_offset < entry->file_offset)
45 			p = &(*p)->rb_left;
46 		else if (file_offset >= entry_end(entry))
47 			p = &(*p)->rb_right;
48 		else
49 			return parent;
50 	}
51 
52 	rb_link_node(node, parent, p);
53 	rb_insert_color(node, root);
54 	return NULL;
55 }
56 
57 /*
58  * look for a given offset in the tree, and if it can't be found return the
59  * first lesser offset
60  */
61 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
62 				     struct rb_node **prev_ret)
63 {
64 	struct rb_node *n = root->rb_node;
65 	struct rb_node *prev = NULL;
66 	struct rb_node *test;
67 	struct btrfs_ordered_extent *entry;
68 	struct btrfs_ordered_extent *prev_entry = NULL;
69 
70 	while (n) {
71 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
72 		prev = n;
73 		prev_entry = entry;
74 
75 		if (file_offset < entry->file_offset)
76 			n = n->rb_left;
77 		else if (file_offset >= entry_end(entry))
78 			n = n->rb_right;
79 		else
80 			return n;
81 	}
82 	if (!prev_ret)
83 		return NULL;
84 
85 	while (prev && file_offset >= entry_end(prev_entry)) {
86 		test = rb_next(prev);
87 		if (!test)
88 			break;
89 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
90 				      rb_node);
91 		if (file_offset < entry_end(prev_entry))
92 			break;
93 
94 		prev = test;
95 	}
96 	if (prev)
97 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
98 				      rb_node);
99 	while (prev && file_offset < entry_end(prev_entry)) {
100 		test = rb_prev(prev);
101 		if (!test)
102 			break;
103 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
104 				      rb_node);
105 		prev = test;
106 	}
107 	*prev_ret = prev;
108 	return NULL;
109 }
110 
111 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
112 			  u64 len)
113 {
114 	if (file_offset + len <= entry->file_offset ||
115 	    entry->file_offset + entry->num_bytes <= file_offset)
116 		return 0;
117 	return 1;
118 }
119 
120 /*
121  * look find the first ordered struct that has this offset, otherwise
122  * the first one less than this offset
123  */
124 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
125 					  u64 file_offset)
126 {
127 	struct rb_root *root = &tree->tree;
128 	struct rb_node *prev = NULL;
129 	struct rb_node *ret;
130 	struct btrfs_ordered_extent *entry;
131 
132 	if (tree->last) {
133 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
134 				 rb_node);
135 		if (in_range(file_offset, entry->file_offset, entry->num_bytes))
136 			return tree->last;
137 	}
138 	ret = __tree_search(root, file_offset, &prev);
139 	if (!ret)
140 		ret = prev;
141 	if (ret)
142 		tree->last = ret;
143 	return ret;
144 }
145 
146 /**
147  * Add an ordered extent to the per-inode tree.
148  *
149  * @inode:           Inode that this extent is for.
150  * @file_offset:     Logical offset in file where the extent starts.
151  * @num_bytes:       Logical length of extent in file.
152  * @ram_bytes:       Full length of unencoded data.
153  * @disk_bytenr:     Offset of extent on disk.
154  * @disk_num_bytes:  Size of extent on disk.
155  * @offset:          Offset into unencoded data where file data starts.
156  * @flags:           Flags specifying type of extent (1 << BTRFS_ORDERED_*).
157  * @compress_type:   Compression algorithm used for data.
158  *
159  * Most of these parameters correspond to &struct btrfs_file_extent_item. The
160  * tree is given a single reference on the ordered extent that was inserted.
161  *
162  * Return: 0 or -ENOMEM.
163  */
164 int btrfs_add_ordered_extent(struct btrfs_inode *inode, u64 file_offset,
165 			     u64 num_bytes, u64 ram_bytes, u64 disk_bytenr,
166 			     u64 disk_num_bytes, u64 offset, unsigned flags,
167 			     int compress_type)
168 {
169 	struct btrfs_root *root = inode->root;
170 	struct btrfs_fs_info *fs_info = root->fs_info;
171 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
172 	struct rb_node *node;
173 	struct btrfs_ordered_extent *entry;
174 	int ret;
175 
176 	if (flags &
177 	    ((1 << BTRFS_ORDERED_NOCOW) | (1 << BTRFS_ORDERED_PREALLOC))) {
178 		/* For nocow write, we can release the qgroup rsv right now */
179 		ret = btrfs_qgroup_free_data(inode, NULL, file_offset, num_bytes);
180 		if (ret < 0)
181 			return ret;
182 		ret = 0;
183 	} else {
184 		/*
185 		 * The ordered extent has reserved qgroup space, release now
186 		 * and pass the reserved number for qgroup_record to free.
187 		 */
188 		ret = btrfs_qgroup_release_data(inode, file_offset, num_bytes);
189 		if (ret < 0)
190 			return ret;
191 	}
192 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
193 	if (!entry)
194 		return -ENOMEM;
195 
196 	entry->file_offset = file_offset;
197 	entry->num_bytes = num_bytes;
198 	entry->ram_bytes = ram_bytes;
199 	entry->disk_bytenr = disk_bytenr;
200 	entry->disk_num_bytes = disk_num_bytes;
201 	entry->offset = offset;
202 	entry->bytes_left = num_bytes;
203 	entry->inode = igrab(&inode->vfs_inode);
204 	entry->compress_type = compress_type;
205 	entry->truncated_len = (u64)-1;
206 	entry->qgroup_rsv = ret;
207 	entry->physical = (u64)-1;
208 
209 	ASSERT((flags & ~BTRFS_ORDERED_TYPE_FLAGS) == 0);
210 	entry->flags = flags;
211 
212 	percpu_counter_add_batch(&fs_info->ordered_bytes, num_bytes,
213 				 fs_info->delalloc_batch);
214 
215 	/* one ref for the tree */
216 	refcount_set(&entry->refs, 1);
217 	init_waitqueue_head(&entry->wait);
218 	INIT_LIST_HEAD(&entry->list);
219 	INIT_LIST_HEAD(&entry->log_list);
220 	INIT_LIST_HEAD(&entry->root_extent_list);
221 	INIT_LIST_HEAD(&entry->work_list);
222 	init_completion(&entry->completion);
223 
224 	trace_btrfs_ordered_extent_add(inode, entry);
225 
226 	spin_lock_irq(&tree->lock);
227 	node = tree_insert(&tree->tree, file_offset,
228 			   &entry->rb_node);
229 	if (node)
230 		btrfs_panic(fs_info, -EEXIST,
231 				"inconsistency in ordered tree at offset %llu",
232 				file_offset);
233 	spin_unlock_irq(&tree->lock);
234 
235 	spin_lock(&root->ordered_extent_lock);
236 	list_add_tail(&entry->root_extent_list,
237 		      &root->ordered_extents);
238 	root->nr_ordered_extents++;
239 	if (root->nr_ordered_extents == 1) {
240 		spin_lock(&fs_info->ordered_root_lock);
241 		BUG_ON(!list_empty(&root->ordered_root));
242 		list_add_tail(&root->ordered_root, &fs_info->ordered_roots);
243 		spin_unlock(&fs_info->ordered_root_lock);
244 	}
245 	spin_unlock(&root->ordered_extent_lock);
246 
247 	/*
248 	 * We don't need the count_max_extents here, we can assume that all of
249 	 * that work has been done at higher layers, so this is truly the
250 	 * smallest the extent is going to get.
251 	 */
252 	spin_lock(&inode->lock);
253 	btrfs_mod_outstanding_extents(inode, 1);
254 	spin_unlock(&inode->lock);
255 
256 	return 0;
257 }
258 
259 /*
260  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
261  * when an ordered extent is finished.  If the list covers more than one
262  * ordered extent, it is split across multiples.
263  */
264 void btrfs_add_ordered_sum(struct btrfs_ordered_extent *entry,
265 			   struct btrfs_ordered_sum *sum)
266 {
267 	struct btrfs_ordered_inode_tree *tree;
268 
269 	tree = &BTRFS_I(entry->inode)->ordered_tree;
270 	spin_lock_irq(&tree->lock);
271 	list_add_tail(&sum->list, &entry->list);
272 	spin_unlock_irq(&tree->lock);
273 }
274 
275 /*
276  * Mark all ordered extents io inside the specified range finished.
277  *
278  * @page:	 The invovled page for the opeartion.
279  *		 For uncompressed buffered IO, the page status also needs to be
280  *		 updated to indicate whether the pending ordered io is finished.
281  *		 Can be NULL for direct IO and compressed write.
282  *		 For these cases, callers are ensured they won't execute the
283  *		 endio function twice.
284  * @finish_func: The function to be executed when all the IO of an ordered
285  *		 extent are finished.
286  *
287  * This function is called for endio, thus the range must have ordered
288  * extent(s) coveri it.
289  */
290 void btrfs_mark_ordered_io_finished(struct btrfs_inode *inode,
291 				struct page *page, u64 file_offset,
292 				u64 num_bytes, btrfs_func_t finish_func,
293 				bool uptodate)
294 {
295 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
296 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
297 	struct btrfs_workqueue *wq;
298 	struct rb_node *node;
299 	struct btrfs_ordered_extent *entry = NULL;
300 	unsigned long flags;
301 	u64 cur = file_offset;
302 
303 	if (btrfs_is_free_space_inode(inode))
304 		wq = fs_info->endio_freespace_worker;
305 	else
306 		wq = fs_info->endio_write_workers;
307 
308 	if (page)
309 		ASSERT(page->mapping && page_offset(page) <= file_offset &&
310 		       file_offset + num_bytes <= page_offset(page) + PAGE_SIZE);
311 
312 	spin_lock_irqsave(&tree->lock, flags);
313 	while (cur < file_offset + num_bytes) {
314 		u64 entry_end;
315 		u64 end;
316 		u32 len;
317 
318 		node = tree_search(tree, cur);
319 		/* No ordered extents at all */
320 		if (!node)
321 			break;
322 
323 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
324 		entry_end = entry->file_offset + entry->num_bytes;
325 		/*
326 		 * |<-- OE --->|  |
327 		 *		  cur
328 		 * Go to next OE.
329 		 */
330 		if (cur >= entry_end) {
331 			node = rb_next(node);
332 			/* No more ordered extents, exit */
333 			if (!node)
334 				break;
335 			entry = rb_entry(node, struct btrfs_ordered_extent,
336 					 rb_node);
337 
338 			/* Go to next ordered extent and continue */
339 			cur = entry->file_offset;
340 			continue;
341 		}
342 		/*
343 		 * |	|<--- OE --->|
344 		 * cur
345 		 * Go to the start of OE.
346 		 */
347 		if (cur < entry->file_offset) {
348 			cur = entry->file_offset;
349 			continue;
350 		}
351 
352 		/*
353 		 * Now we are definitely inside one ordered extent.
354 		 *
355 		 * |<--- OE --->|
356 		 *	|
357 		 *	cur
358 		 */
359 		end = min(entry->file_offset + entry->num_bytes,
360 			  file_offset + num_bytes) - 1;
361 		ASSERT(end + 1 - cur < U32_MAX);
362 		len = end + 1 - cur;
363 
364 		if (page) {
365 			/*
366 			 * Ordered (Private2) bit indicates whether we still
367 			 * have pending io unfinished for the ordered extent.
368 			 *
369 			 * If there's no such bit, we need to skip to next range.
370 			 */
371 			if (!btrfs_page_test_ordered(fs_info, page, cur, len)) {
372 				cur += len;
373 				continue;
374 			}
375 			btrfs_page_clear_ordered(fs_info, page, cur, len);
376 		}
377 
378 		/* Now we're fine to update the accounting */
379 		if (unlikely(len > entry->bytes_left)) {
380 			WARN_ON(1);
381 			btrfs_crit(fs_info,
382 "bad ordered extent accounting, root=%llu ino=%llu OE offset=%llu OE len=%llu to_dec=%u left=%llu",
383 				   inode->root->root_key.objectid,
384 				   btrfs_ino(inode),
385 				   entry->file_offset,
386 				   entry->num_bytes,
387 				   len, entry->bytes_left);
388 			entry->bytes_left = 0;
389 		} else {
390 			entry->bytes_left -= len;
391 		}
392 
393 		if (!uptodate)
394 			set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
395 
396 		/*
397 		 * All the IO of the ordered extent is finished, we need to queue
398 		 * the finish_func to be executed.
399 		 */
400 		if (entry->bytes_left == 0) {
401 			set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
402 			cond_wake_up(&entry->wait);
403 			refcount_inc(&entry->refs);
404 			spin_unlock_irqrestore(&tree->lock, flags);
405 			btrfs_init_work(&entry->work, finish_func, NULL, NULL);
406 			btrfs_queue_work(wq, &entry->work);
407 			spin_lock_irqsave(&tree->lock, flags);
408 		}
409 		cur += len;
410 	}
411 	spin_unlock_irqrestore(&tree->lock, flags);
412 }
413 
414 /*
415  * Finish IO for one ordered extent across a given range.  The range can only
416  * contain one ordered extent.
417  *
418  * @cached:	 The cached ordered extent. If not NULL, we can skip the tree
419  *               search and use the ordered extent directly.
420  * 		 Will be also used to store the finished ordered extent.
421  * @file_offset: File offset for the finished IO
422  * @io_size:	 Length of the finish IO range
423  *
424  * Return true if the ordered extent is finished in the range, and update
425  * @cached.
426  * Return false otherwise.
427  *
428  * NOTE: The range can NOT cross multiple ordered extents.
429  * Thus caller should ensure the range doesn't cross ordered extents.
430  */
431 bool btrfs_dec_test_ordered_pending(struct btrfs_inode *inode,
432 				    struct btrfs_ordered_extent **cached,
433 				    u64 file_offset, u64 io_size)
434 {
435 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
436 	struct rb_node *node;
437 	struct btrfs_ordered_extent *entry = NULL;
438 	unsigned long flags;
439 	bool finished = false;
440 
441 	spin_lock_irqsave(&tree->lock, flags);
442 	if (cached && *cached) {
443 		entry = *cached;
444 		goto have_entry;
445 	}
446 
447 	node = tree_search(tree, file_offset);
448 	if (!node)
449 		goto out;
450 
451 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
452 have_entry:
453 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
454 		goto out;
455 
456 	if (io_size > entry->bytes_left)
457 		btrfs_crit(inode->root->fs_info,
458 			   "bad ordered accounting left %llu size %llu",
459 		       entry->bytes_left, io_size);
460 
461 	entry->bytes_left -= io_size;
462 
463 	if (entry->bytes_left == 0) {
464 		/*
465 		 * Ensure only one caller can set the flag and finished_ret
466 		 * accordingly
467 		 */
468 		finished = !test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
469 		/* test_and_set_bit implies a barrier */
470 		cond_wake_up_nomb(&entry->wait);
471 	}
472 out:
473 	if (finished && cached && entry) {
474 		*cached = entry;
475 		refcount_inc(&entry->refs);
476 	}
477 	spin_unlock_irqrestore(&tree->lock, flags);
478 	return finished;
479 }
480 
481 /*
482  * used to drop a reference on an ordered extent.  This will free
483  * the extent if the last reference is dropped
484  */
485 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
486 {
487 	struct list_head *cur;
488 	struct btrfs_ordered_sum *sum;
489 
490 	trace_btrfs_ordered_extent_put(BTRFS_I(entry->inode), entry);
491 
492 	if (refcount_dec_and_test(&entry->refs)) {
493 		ASSERT(list_empty(&entry->root_extent_list));
494 		ASSERT(list_empty(&entry->log_list));
495 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
496 		if (entry->inode)
497 			btrfs_add_delayed_iput(entry->inode);
498 		while (!list_empty(&entry->list)) {
499 			cur = entry->list.next;
500 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
501 			list_del(&sum->list);
502 			kvfree(sum);
503 		}
504 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
505 	}
506 }
507 
508 /*
509  * remove an ordered extent from the tree.  No references are dropped
510  * and waiters are woken up.
511  */
512 void btrfs_remove_ordered_extent(struct btrfs_inode *btrfs_inode,
513 				 struct btrfs_ordered_extent *entry)
514 {
515 	struct btrfs_ordered_inode_tree *tree;
516 	struct btrfs_root *root = btrfs_inode->root;
517 	struct btrfs_fs_info *fs_info = root->fs_info;
518 	struct rb_node *node;
519 	bool pending;
520 
521 	/* This is paired with btrfs_add_ordered_extent. */
522 	spin_lock(&btrfs_inode->lock);
523 	btrfs_mod_outstanding_extents(btrfs_inode, -1);
524 	spin_unlock(&btrfs_inode->lock);
525 	if (root != fs_info->tree_root) {
526 		u64 release;
527 
528 		if (test_bit(BTRFS_ORDERED_ENCODED, &entry->flags))
529 			release = entry->disk_num_bytes;
530 		else
531 			release = entry->num_bytes;
532 		btrfs_delalloc_release_metadata(btrfs_inode, release, false);
533 	}
534 
535 	percpu_counter_add_batch(&fs_info->ordered_bytes, -entry->num_bytes,
536 				 fs_info->delalloc_batch);
537 
538 	tree = &btrfs_inode->ordered_tree;
539 	spin_lock_irq(&tree->lock);
540 	node = &entry->rb_node;
541 	rb_erase(node, &tree->tree);
542 	RB_CLEAR_NODE(node);
543 	if (tree->last == node)
544 		tree->last = NULL;
545 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
546 	pending = test_and_clear_bit(BTRFS_ORDERED_PENDING, &entry->flags);
547 	spin_unlock_irq(&tree->lock);
548 
549 	/*
550 	 * The current running transaction is waiting on us, we need to let it
551 	 * know that we're complete and wake it up.
552 	 */
553 	if (pending) {
554 		struct btrfs_transaction *trans;
555 
556 		/*
557 		 * The checks for trans are just a formality, it should be set,
558 		 * but if it isn't we don't want to deref/assert under the spin
559 		 * lock, so be nice and check if trans is set, but ASSERT() so
560 		 * if it isn't set a developer will notice.
561 		 */
562 		spin_lock(&fs_info->trans_lock);
563 		trans = fs_info->running_transaction;
564 		if (trans)
565 			refcount_inc(&trans->use_count);
566 		spin_unlock(&fs_info->trans_lock);
567 
568 		ASSERT(trans);
569 		if (trans) {
570 			if (atomic_dec_and_test(&trans->pending_ordered))
571 				wake_up(&trans->pending_wait);
572 			btrfs_put_transaction(trans);
573 		}
574 	}
575 
576 	spin_lock(&root->ordered_extent_lock);
577 	list_del_init(&entry->root_extent_list);
578 	root->nr_ordered_extents--;
579 
580 	trace_btrfs_ordered_extent_remove(btrfs_inode, entry);
581 
582 	if (!root->nr_ordered_extents) {
583 		spin_lock(&fs_info->ordered_root_lock);
584 		BUG_ON(list_empty(&root->ordered_root));
585 		list_del_init(&root->ordered_root);
586 		spin_unlock(&fs_info->ordered_root_lock);
587 	}
588 	spin_unlock(&root->ordered_extent_lock);
589 	wake_up(&entry->wait);
590 }
591 
592 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
593 {
594 	struct btrfs_ordered_extent *ordered;
595 
596 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
597 	btrfs_start_ordered_extent(ordered, 1);
598 	complete(&ordered->completion);
599 }
600 
601 /*
602  * wait for all the ordered extents in a root.  This is done when balancing
603  * space between drives.
604  */
605 u64 btrfs_wait_ordered_extents(struct btrfs_root *root, u64 nr,
606 			       const u64 range_start, const u64 range_len)
607 {
608 	struct btrfs_fs_info *fs_info = root->fs_info;
609 	LIST_HEAD(splice);
610 	LIST_HEAD(skipped);
611 	LIST_HEAD(works);
612 	struct btrfs_ordered_extent *ordered, *next;
613 	u64 count = 0;
614 	const u64 range_end = range_start + range_len;
615 
616 	mutex_lock(&root->ordered_extent_mutex);
617 	spin_lock(&root->ordered_extent_lock);
618 	list_splice_init(&root->ordered_extents, &splice);
619 	while (!list_empty(&splice) && nr) {
620 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
621 					   root_extent_list);
622 
623 		if (range_end <= ordered->disk_bytenr ||
624 		    ordered->disk_bytenr + ordered->disk_num_bytes <= range_start) {
625 			list_move_tail(&ordered->root_extent_list, &skipped);
626 			cond_resched_lock(&root->ordered_extent_lock);
627 			continue;
628 		}
629 
630 		list_move_tail(&ordered->root_extent_list,
631 			       &root->ordered_extents);
632 		refcount_inc(&ordered->refs);
633 		spin_unlock(&root->ordered_extent_lock);
634 
635 		btrfs_init_work(&ordered->flush_work,
636 				btrfs_run_ordered_extent_work, NULL, NULL);
637 		list_add_tail(&ordered->work_list, &works);
638 		btrfs_queue_work(fs_info->flush_workers, &ordered->flush_work);
639 
640 		cond_resched();
641 		spin_lock(&root->ordered_extent_lock);
642 		if (nr != U64_MAX)
643 			nr--;
644 		count++;
645 	}
646 	list_splice_tail(&skipped, &root->ordered_extents);
647 	list_splice_tail(&splice, &root->ordered_extents);
648 	spin_unlock(&root->ordered_extent_lock);
649 
650 	list_for_each_entry_safe(ordered, next, &works, work_list) {
651 		list_del_init(&ordered->work_list);
652 		wait_for_completion(&ordered->completion);
653 		btrfs_put_ordered_extent(ordered);
654 		cond_resched();
655 	}
656 	mutex_unlock(&root->ordered_extent_mutex);
657 
658 	return count;
659 }
660 
661 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, u64 nr,
662 			     const u64 range_start, const u64 range_len)
663 {
664 	struct btrfs_root *root;
665 	struct list_head splice;
666 	u64 done;
667 
668 	INIT_LIST_HEAD(&splice);
669 
670 	mutex_lock(&fs_info->ordered_operations_mutex);
671 	spin_lock(&fs_info->ordered_root_lock);
672 	list_splice_init(&fs_info->ordered_roots, &splice);
673 	while (!list_empty(&splice) && nr) {
674 		root = list_first_entry(&splice, struct btrfs_root,
675 					ordered_root);
676 		root = btrfs_grab_root(root);
677 		BUG_ON(!root);
678 		list_move_tail(&root->ordered_root,
679 			       &fs_info->ordered_roots);
680 		spin_unlock(&fs_info->ordered_root_lock);
681 
682 		done = btrfs_wait_ordered_extents(root, nr,
683 						  range_start, range_len);
684 		btrfs_put_root(root);
685 
686 		spin_lock(&fs_info->ordered_root_lock);
687 		if (nr != U64_MAX) {
688 			nr -= done;
689 		}
690 	}
691 	list_splice_tail(&splice, &fs_info->ordered_roots);
692 	spin_unlock(&fs_info->ordered_root_lock);
693 	mutex_unlock(&fs_info->ordered_operations_mutex);
694 }
695 
696 /*
697  * Used to start IO or wait for a given ordered extent to finish.
698  *
699  * If wait is one, this effectively waits on page writeback for all the pages
700  * in the extent, and it waits on the io completion code to insert
701  * metadata into the btree corresponding to the extent
702  */
703 void btrfs_start_ordered_extent(struct btrfs_ordered_extent *entry, int wait)
704 {
705 	u64 start = entry->file_offset;
706 	u64 end = start + entry->num_bytes - 1;
707 	struct btrfs_inode *inode = BTRFS_I(entry->inode);
708 
709 	trace_btrfs_ordered_extent_start(inode, entry);
710 
711 	/*
712 	 * pages in the range can be dirty, clean or writeback.  We
713 	 * start IO on any dirty ones so the wait doesn't stall waiting
714 	 * for the flusher thread to find them
715 	 */
716 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
717 		filemap_fdatawrite_range(inode->vfs_inode.i_mapping, start, end);
718 	if (wait) {
719 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
720 						 &entry->flags));
721 	}
722 }
723 
724 /*
725  * Used to wait on ordered extents across a large range of bytes.
726  */
727 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
728 {
729 	int ret = 0;
730 	int ret_wb = 0;
731 	u64 end;
732 	u64 orig_end;
733 	struct btrfs_ordered_extent *ordered;
734 
735 	if (start + len < start) {
736 		orig_end = INT_LIMIT(loff_t);
737 	} else {
738 		orig_end = start + len - 1;
739 		if (orig_end > INT_LIMIT(loff_t))
740 			orig_end = INT_LIMIT(loff_t);
741 	}
742 
743 	/* start IO across the range first to instantiate any delalloc
744 	 * extents
745 	 */
746 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
747 	if (ret)
748 		return ret;
749 
750 	/*
751 	 * If we have a writeback error don't return immediately. Wait first
752 	 * for any ordered extents that haven't completed yet. This is to make
753 	 * sure no one can dirty the same page ranges and call writepages()
754 	 * before the ordered extents complete - to avoid failures (-EEXIST)
755 	 * when adding the new ordered extents to the ordered tree.
756 	 */
757 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
758 
759 	end = orig_end;
760 	while (1) {
761 		ordered = btrfs_lookup_first_ordered_extent(BTRFS_I(inode), end);
762 		if (!ordered)
763 			break;
764 		if (ordered->file_offset > orig_end) {
765 			btrfs_put_ordered_extent(ordered);
766 			break;
767 		}
768 		if (ordered->file_offset + ordered->num_bytes <= start) {
769 			btrfs_put_ordered_extent(ordered);
770 			break;
771 		}
772 		btrfs_start_ordered_extent(ordered, 1);
773 		end = ordered->file_offset;
774 		/*
775 		 * If the ordered extent had an error save the error but don't
776 		 * exit without waiting first for all other ordered extents in
777 		 * the range to complete.
778 		 */
779 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
780 			ret = -EIO;
781 		btrfs_put_ordered_extent(ordered);
782 		if (end == 0 || end == start)
783 			break;
784 		end--;
785 	}
786 	return ret_wb ? ret_wb : ret;
787 }
788 
789 /*
790  * find an ordered extent corresponding to file_offset.  return NULL if
791  * nothing is found, otherwise take a reference on the extent and return it
792  */
793 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct btrfs_inode *inode,
794 							 u64 file_offset)
795 {
796 	struct btrfs_ordered_inode_tree *tree;
797 	struct rb_node *node;
798 	struct btrfs_ordered_extent *entry = NULL;
799 	unsigned long flags;
800 
801 	tree = &inode->ordered_tree;
802 	spin_lock_irqsave(&tree->lock, flags);
803 	node = tree_search(tree, file_offset);
804 	if (!node)
805 		goto out;
806 
807 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
808 	if (!in_range(file_offset, entry->file_offset, entry->num_bytes))
809 		entry = NULL;
810 	if (entry)
811 		refcount_inc(&entry->refs);
812 out:
813 	spin_unlock_irqrestore(&tree->lock, flags);
814 	return entry;
815 }
816 
817 /* Since the DIO code tries to lock a wide area we need to look for any ordered
818  * extents that exist in the range, rather than just the start of the range.
819  */
820 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(
821 		struct btrfs_inode *inode, u64 file_offset, u64 len)
822 {
823 	struct btrfs_ordered_inode_tree *tree;
824 	struct rb_node *node;
825 	struct btrfs_ordered_extent *entry = NULL;
826 
827 	tree = &inode->ordered_tree;
828 	spin_lock_irq(&tree->lock);
829 	node = tree_search(tree, file_offset);
830 	if (!node) {
831 		node = tree_search(tree, file_offset + len);
832 		if (!node)
833 			goto out;
834 	}
835 
836 	while (1) {
837 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
838 		if (range_overlaps(entry, file_offset, len))
839 			break;
840 
841 		if (entry->file_offset >= file_offset + len) {
842 			entry = NULL;
843 			break;
844 		}
845 		entry = NULL;
846 		node = rb_next(node);
847 		if (!node)
848 			break;
849 	}
850 out:
851 	if (entry)
852 		refcount_inc(&entry->refs);
853 	spin_unlock_irq(&tree->lock);
854 	return entry;
855 }
856 
857 /*
858  * Adds all ordered extents to the given list. The list ends up sorted by the
859  * file_offset of the ordered extents.
860  */
861 void btrfs_get_ordered_extents_for_logging(struct btrfs_inode *inode,
862 					   struct list_head *list)
863 {
864 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
865 	struct rb_node *n;
866 
867 	ASSERT(inode_is_locked(&inode->vfs_inode));
868 
869 	spin_lock_irq(&tree->lock);
870 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
871 		struct btrfs_ordered_extent *ordered;
872 
873 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
874 
875 		if (test_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
876 			continue;
877 
878 		ASSERT(list_empty(&ordered->log_list));
879 		list_add_tail(&ordered->log_list, list);
880 		refcount_inc(&ordered->refs);
881 	}
882 	spin_unlock_irq(&tree->lock);
883 }
884 
885 /*
886  * lookup and return any extent before 'file_offset'.  NULL is returned
887  * if none is found
888  */
889 struct btrfs_ordered_extent *
890 btrfs_lookup_first_ordered_extent(struct btrfs_inode *inode, u64 file_offset)
891 {
892 	struct btrfs_ordered_inode_tree *tree;
893 	struct rb_node *node;
894 	struct btrfs_ordered_extent *entry = NULL;
895 
896 	tree = &inode->ordered_tree;
897 	spin_lock_irq(&tree->lock);
898 	node = tree_search(tree, file_offset);
899 	if (!node)
900 		goto out;
901 
902 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
903 	refcount_inc(&entry->refs);
904 out:
905 	spin_unlock_irq(&tree->lock);
906 	return entry;
907 }
908 
909 /*
910  * Lookup the first ordered extent that overlaps the range
911  * [@file_offset, @file_offset + @len).
912  *
913  * The difference between this and btrfs_lookup_first_ordered_extent() is
914  * that this one won't return any ordered extent that does not overlap the range.
915  * And the difference against btrfs_lookup_ordered_extent() is, this function
916  * ensures the first ordered extent gets returned.
917  */
918 struct btrfs_ordered_extent *btrfs_lookup_first_ordered_range(
919 			struct btrfs_inode *inode, u64 file_offset, u64 len)
920 {
921 	struct btrfs_ordered_inode_tree *tree = &inode->ordered_tree;
922 	struct rb_node *node;
923 	struct rb_node *cur;
924 	struct rb_node *prev;
925 	struct rb_node *next;
926 	struct btrfs_ordered_extent *entry = NULL;
927 
928 	spin_lock_irq(&tree->lock);
929 	node = tree->tree.rb_node;
930 	/*
931 	 * Here we don't want to use tree_search() which will use tree->last
932 	 * and screw up the search order.
933 	 * And __tree_search() can't return the adjacent ordered extents
934 	 * either, thus here we do our own search.
935 	 */
936 	while (node) {
937 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
938 
939 		if (file_offset < entry->file_offset) {
940 			node = node->rb_left;
941 		} else if (file_offset >= entry_end(entry)) {
942 			node = node->rb_right;
943 		} else {
944 			/*
945 			 * Direct hit, got an ordered extent that starts at
946 			 * @file_offset
947 			 */
948 			goto out;
949 		}
950 	}
951 	if (!entry) {
952 		/* Empty tree */
953 		goto out;
954 	}
955 
956 	cur = &entry->rb_node;
957 	/* We got an entry around @file_offset, check adjacent entries */
958 	if (entry->file_offset < file_offset) {
959 		prev = cur;
960 		next = rb_next(cur);
961 	} else {
962 		prev = rb_prev(cur);
963 		next = cur;
964 	}
965 	if (prev) {
966 		entry = rb_entry(prev, struct btrfs_ordered_extent, rb_node);
967 		if (range_overlaps(entry, file_offset, len))
968 			goto out;
969 	}
970 	if (next) {
971 		entry = rb_entry(next, struct btrfs_ordered_extent, rb_node);
972 		if (range_overlaps(entry, file_offset, len))
973 			goto out;
974 	}
975 	/* No ordered extent in the range */
976 	entry = NULL;
977 out:
978 	if (entry)
979 		refcount_inc(&entry->refs);
980 	spin_unlock_irq(&tree->lock);
981 	return entry;
982 }
983 
984 /*
985  * btrfs_flush_ordered_range - Lock the passed range and ensures all pending
986  * ordered extents in it are run to completion.
987  *
988  * @inode:        Inode whose ordered tree is to be searched
989  * @start:        Beginning of range to flush
990  * @end:          Last byte of range to lock
991  * @cached_state: If passed, will return the extent state responsible for the
992  * locked range. It's the caller's responsibility to free the cached state.
993  *
994  * This function always returns with the given range locked, ensuring after it's
995  * called no order extent can be pending.
996  */
997 void btrfs_lock_and_flush_ordered_range(struct btrfs_inode *inode, u64 start,
998 					u64 end,
999 					struct extent_state **cached_state)
1000 {
1001 	struct btrfs_ordered_extent *ordered;
1002 	struct extent_state *cache = NULL;
1003 	struct extent_state **cachedp = &cache;
1004 
1005 	if (cached_state)
1006 		cachedp = cached_state;
1007 
1008 	while (1) {
1009 		lock_extent_bits(&inode->io_tree, start, end, cachedp);
1010 		ordered = btrfs_lookup_ordered_range(inode, start,
1011 						     end - start + 1);
1012 		if (!ordered) {
1013 			/*
1014 			 * If no external cached_state has been passed then
1015 			 * decrement the extra ref taken for cachedp since we
1016 			 * aren't exposing it outside of this function
1017 			 */
1018 			if (!cached_state)
1019 				refcount_dec(&cache->refs);
1020 			break;
1021 		}
1022 		unlock_extent_cached(&inode->io_tree, start, end, cachedp);
1023 		btrfs_start_ordered_extent(ordered, 1);
1024 		btrfs_put_ordered_extent(ordered);
1025 	}
1026 }
1027 
1028 static int clone_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pos,
1029 				u64 len)
1030 {
1031 	struct inode *inode = ordered->inode;
1032 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
1033 	u64 file_offset = ordered->file_offset + pos;
1034 	u64 disk_bytenr = ordered->disk_bytenr + pos;
1035 	unsigned long flags = ordered->flags & BTRFS_ORDERED_TYPE_FLAGS;
1036 
1037 	/*
1038 	 * The splitting extent is already counted and will be added again in
1039 	 * btrfs_add_ordered_extent_*(). Subtract len to avoid double counting.
1040 	 */
1041 	percpu_counter_add_batch(&fs_info->ordered_bytes, -len,
1042 				 fs_info->delalloc_batch);
1043 	WARN_ON_ONCE(flags & (1 << BTRFS_ORDERED_COMPRESSED));
1044 	return btrfs_add_ordered_extent(BTRFS_I(inode), file_offset, len, len,
1045 					disk_bytenr, len, 0, flags,
1046 					ordered->compress_type);
1047 }
1048 
1049 int btrfs_split_ordered_extent(struct btrfs_ordered_extent *ordered, u64 pre,
1050 				u64 post)
1051 {
1052 	struct inode *inode = ordered->inode;
1053 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1054 	struct rb_node *node;
1055 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1056 	int ret = 0;
1057 
1058 	spin_lock_irq(&tree->lock);
1059 	/* Remove from tree once */
1060 	node = &ordered->rb_node;
1061 	rb_erase(node, &tree->tree);
1062 	RB_CLEAR_NODE(node);
1063 	if (tree->last == node)
1064 		tree->last = NULL;
1065 
1066 	ordered->file_offset += pre;
1067 	ordered->disk_bytenr += pre;
1068 	ordered->num_bytes -= (pre + post);
1069 	ordered->disk_num_bytes -= (pre + post);
1070 	ordered->bytes_left -= (pre + post);
1071 
1072 	/* Re-insert the node */
1073 	node = tree_insert(&tree->tree, ordered->file_offset, &ordered->rb_node);
1074 	if (node)
1075 		btrfs_panic(fs_info, -EEXIST,
1076 			"zoned: inconsistency in ordered tree at offset %llu",
1077 			    ordered->file_offset);
1078 
1079 	spin_unlock_irq(&tree->lock);
1080 
1081 	if (pre)
1082 		ret = clone_ordered_extent(ordered, 0, pre);
1083 	if (ret == 0 && post)
1084 		ret = clone_ordered_extent(ordered, pre + ordered->disk_num_bytes,
1085 					   post);
1086 
1087 	return ret;
1088 }
1089 
1090 int __init ordered_data_init(void)
1091 {
1092 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1093 				     sizeof(struct btrfs_ordered_extent), 0,
1094 				     SLAB_MEM_SPREAD,
1095 				     NULL);
1096 	if (!btrfs_ordered_extent_cache)
1097 		return -ENOMEM;
1098 
1099 	return 0;
1100 }
1101 
1102 void __cold ordered_data_exit(void)
1103 {
1104 	kmem_cache_destroy(btrfs_ordered_extent_cache);
1105 }
1106