xref: /linux/fs/btrfs/ioctl.c (revision a4cdb556cae05cd3e7b602b3a44c01420c4e2258)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 
63 #ifdef CONFIG_64BIT
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65  * structures are incorrect, as the timespec structure from userspace
66  * is 4 bytes too small. We define these alternatives here to teach
67  * the kernel about the 32-bit struct packing.
68  */
69 struct btrfs_ioctl_timespec_32 {
70 	__u64 sec;
71 	__u32 nsec;
72 } __attribute__ ((__packed__));
73 
74 struct btrfs_ioctl_received_subvol_args_32 {
75 	char	uuid[BTRFS_UUID_SIZE];	/* in */
76 	__u64	stransid;		/* in */
77 	__u64	rtransid;		/* out */
78 	struct btrfs_ioctl_timespec_32 stime; /* in */
79 	struct btrfs_ioctl_timespec_32 rtime; /* out */
80 	__u64	flags;			/* in */
81 	__u64	reserved[16];		/* in */
82 } __attribute__ ((__packed__));
83 
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 				struct btrfs_ioctl_received_subvol_args_32)
86 #endif
87 
88 
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff,
91 		       int no_time_update);
92 
93 /* Mask out flags that are inappropriate for the given type of inode. */
94 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
95 {
96 	if (S_ISDIR(mode))
97 		return flags;
98 	else if (S_ISREG(mode))
99 		return flags & ~FS_DIRSYNC_FL;
100 	else
101 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
102 }
103 
104 /*
105  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
106  */
107 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
108 {
109 	unsigned int iflags = 0;
110 
111 	if (flags & BTRFS_INODE_SYNC)
112 		iflags |= FS_SYNC_FL;
113 	if (flags & BTRFS_INODE_IMMUTABLE)
114 		iflags |= FS_IMMUTABLE_FL;
115 	if (flags & BTRFS_INODE_APPEND)
116 		iflags |= FS_APPEND_FL;
117 	if (flags & BTRFS_INODE_NODUMP)
118 		iflags |= FS_NODUMP_FL;
119 	if (flags & BTRFS_INODE_NOATIME)
120 		iflags |= FS_NOATIME_FL;
121 	if (flags & BTRFS_INODE_DIRSYNC)
122 		iflags |= FS_DIRSYNC_FL;
123 	if (flags & BTRFS_INODE_NODATACOW)
124 		iflags |= FS_NOCOW_FL;
125 
126 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
127 		iflags |= FS_COMPR_FL;
128 	else if (flags & BTRFS_INODE_NOCOMPRESS)
129 		iflags |= FS_NOCOMP_FL;
130 
131 	return iflags;
132 }
133 
134 /*
135  * Update inode->i_flags based on the btrfs internal flags.
136  */
137 void btrfs_update_iflags(struct inode *inode)
138 {
139 	struct btrfs_inode *ip = BTRFS_I(inode);
140 	unsigned int new_fl = 0;
141 
142 	if (ip->flags & BTRFS_INODE_SYNC)
143 		new_fl |= S_SYNC;
144 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
145 		new_fl |= S_IMMUTABLE;
146 	if (ip->flags & BTRFS_INODE_APPEND)
147 		new_fl |= S_APPEND;
148 	if (ip->flags & BTRFS_INODE_NOATIME)
149 		new_fl |= S_NOATIME;
150 	if (ip->flags & BTRFS_INODE_DIRSYNC)
151 		new_fl |= S_DIRSYNC;
152 
153 	set_mask_bits(&inode->i_flags,
154 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
155 		      new_fl);
156 }
157 
158 /*
159  * Inherit flags from the parent inode.
160  *
161  * Currently only the compression flags and the cow flags are inherited.
162  */
163 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
164 {
165 	unsigned int flags;
166 
167 	if (!dir)
168 		return;
169 
170 	flags = BTRFS_I(dir)->flags;
171 
172 	if (flags & BTRFS_INODE_NOCOMPRESS) {
173 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
174 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
175 	} else if (flags & BTRFS_INODE_COMPRESS) {
176 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
177 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
178 	}
179 
180 	if (flags & BTRFS_INODE_NODATACOW) {
181 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
182 		if (S_ISREG(inode->i_mode))
183 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
184 	}
185 
186 	btrfs_update_iflags(inode);
187 }
188 
189 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
190 {
191 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
192 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
193 
194 	if (copy_to_user(arg, &flags, sizeof(flags)))
195 		return -EFAULT;
196 	return 0;
197 }
198 
199 static int check_flags(unsigned int flags)
200 {
201 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
202 		      FS_NOATIME_FL | FS_NODUMP_FL | \
203 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
204 		      FS_NOCOMP_FL | FS_COMPR_FL |
205 		      FS_NOCOW_FL))
206 		return -EOPNOTSUPP;
207 
208 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
209 		return -EINVAL;
210 
211 	return 0;
212 }
213 
214 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
215 {
216 	struct inode *inode = file_inode(file);
217 	struct btrfs_inode *ip = BTRFS_I(inode);
218 	struct btrfs_root *root = ip->root;
219 	struct btrfs_trans_handle *trans;
220 	unsigned int flags, oldflags;
221 	int ret;
222 	u64 ip_oldflags;
223 	unsigned int i_oldflags;
224 	umode_t mode;
225 
226 	if (!inode_owner_or_capable(inode))
227 		return -EPERM;
228 
229 	if (btrfs_root_readonly(root))
230 		return -EROFS;
231 
232 	if (copy_from_user(&flags, arg, sizeof(flags)))
233 		return -EFAULT;
234 
235 	ret = check_flags(flags);
236 	if (ret)
237 		return ret;
238 
239 	ret = mnt_want_write_file(file);
240 	if (ret)
241 		return ret;
242 
243 	mutex_lock(&inode->i_mutex);
244 
245 	ip_oldflags = ip->flags;
246 	i_oldflags = inode->i_flags;
247 	mode = inode->i_mode;
248 
249 	flags = btrfs_mask_flags(inode->i_mode, flags);
250 	oldflags = btrfs_flags_to_ioctl(ip->flags);
251 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
252 		if (!capable(CAP_LINUX_IMMUTABLE)) {
253 			ret = -EPERM;
254 			goto out_unlock;
255 		}
256 	}
257 
258 	if (flags & FS_SYNC_FL)
259 		ip->flags |= BTRFS_INODE_SYNC;
260 	else
261 		ip->flags &= ~BTRFS_INODE_SYNC;
262 	if (flags & FS_IMMUTABLE_FL)
263 		ip->flags |= BTRFS_INODE_IMMUTABLE;
264 	else
265 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
266 	if (flags & FS_APPEND_FL)
267 		ip->flags |= BTRFS_INODE_APPEND;
268 	else
269 		ip->flags &= ~BTRFS_INODE_APPEND;
270 	if (flags & FS_NODUMP_FL)
271 		ip->flags |= BTRFS_INODE_NODUMP;
272 	else
273 		ip->flags &= ~BTRFS_INODE_NODUMP;
274 	if (flags & FS_NOATIME_FL)
275 		ip->flags |= BTRFS_INODE_NOATIME;
276 	else
277 		ip->flags &= ~BTRFS_INODE_NOATIME;
278 	if (flags & FS_DIRSYNC_FL)
279 		ip->flags |= BTRFS_INODE_DIRSYNC;
280 	else
281 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
282 	if (flags & FS_NOCOW_FL) {
283 		if (S_ISREG(mode)) {
284 			/*
285 			 * It's safe to turn csums off here, no extents exist.
286 			 * Otherwise we want the flag to reflect the real COW
287 			 * status of the file and will not set it.
288 			 */
289 			if (inode->i_size == 0)
290 				ip->flags |= BTRFS_INODE_NODATACOW
291 					   | BTRFS_INODE_NODATASUM;
292 		} else {
293 			ip->flags |= BTRFS_INODE_NODATACOW;
294 		}
295 	} else {
296 		/*
297 		 * Revert back under same assuptions as above
298 		 */
299 		if (S_ISREG(mode)) {
300 			if (inode->i_size == 0)
301 				ip->flags &= ~(BTRFS_INODE_NODATACOW
302 				             | BTRFS_INODE_NODATASUM);
303 		} else {
304 			ip->flags &= ~BTRFS_INODE_NODATACOW;
305 		}
306 	}
307 
308 	/*
309 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
310 	 * flag may be changed automatically if compression code won't make
311 	 * things smaller.
312 	 */
313 	if (flags & FS_NOCOMP_FL) {
314 		ip->flags &= ~BTRFS_INODE_COMPRESS;
315 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
316 
317 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
318 		if (ret && ret != -ENODATA)
319 			goto out_drop;
320 	} else if (flags & FS_COMPR_FL) {
321 		const char *comp;
322 
323 		ip->flags |= BTRFS_INODE_COMPRESS;
324 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
325 
326 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
327 			comp = "lzo";
328 		else
329 			comp = "zlib";
330 		ret = btrfs_set_prop(inode, "btrfs.compression",
331 				     comp, strlen(comp), 0);
332 		if (ret)
333 			goto out_drop;
334 
335 	} else {
336 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
337 		if (ret && ret != -ENODATA)
338 			goto out_drop;
339 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
340 	}
341 
342 	trans = btrfs_start_transaction(root, 1);
343 	if (IS_ERR(trans)) {
344 		ret = PTR_ERR(trans);
345 		goto out_drop;
346 	}
347 
348 	btrfs_update_iflags(inode);
349 	inode_inc_iversion(inode);
350 	inode->i_ctime = CURRENT_TIME;
351 	ret = btrfs_update_inode(trans, root, inode);
352 
353 	btrfs_end_transaction(trans, root);
354  out_drop:
355 	if (ret) {
356 		ip->flags = ip_oldflags;
357 		inode->i_flags = i_oldflags;
358 	}
359 
360  out_unlock:
361 	mutex_unlock(&inode->i_mutex);
362 	mnt_drop_write_file(file);
363 	return ret;
364 }
365 
366 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
367 {
368 	struct inode *inode = file_inode(file);
369 
370 	return put_user(inode->i_generation, arg);
371 }
372 
373 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
374 {
375 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
376 	struct btrfs_device *device;
377 	struct request_queue *q;
378 	struct fstrim_range range;
379 	u64 minlen = ULLONG_MAX;
380 	u64 num_devices = 0;
381 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
382 	int ret;
383 
384 	if (!capable(CAP_SYS_ADMIN))
385 		return -EPERM;
386 
387 	rcu_read_lock();
388 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
389 				dev_list) {
390 		if (!device->bdev)
391 			continue;
392 		q = bdev_get_queue(device->bdev);
393 		if (blk_queue_discard(q)) {
394 			num_devices++;
395 			minlen = min((u64)q->limits.discard_granularity,
396 				     minlen);
397 		}
398 	}
399 	rcu_read_unlock();
400 
401 	if (!num_devices)
402 		return -EOPNOTSUPP;
403 	if (copy_from_user(&range, arg, sizeof(range)))
404 		return -EFAULT;
405 	if (range.start > total_bytes ||
406 	    range.len < fs_info->sb->s_blocksize)
407 		return -EINVAL;
408 
409 	range.len = min(range.len, total_bytes - range.start);
410 	range.minlen = max(range.minlen, minlen);
411 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
412 	if (ret < 0)
413 		return ret;
414 
415 	if (copy_to_user(arg, &range, sizeof(range)))
416 		return -EFAULT;
417 
418 	return 0;
419 }
420 
421 int btrfs_is_empty_uuid(u8 *uuid)
422 {
423 	int i;
424 
425 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
426 		if (uuid[i])
427 			return 0;
428 	}
429 	return 1;
430 }
431 
432 static noinline int create_subvol(struct inode *dir,
433 				  struct dentry *dentry,
434 				  char *name, int namelen,
435 				  u64 *async_transid,
436 				  struct btrfs_qgroup_inherit *inherit)
437 {
438 	struct btrfs_trans_handle *trans;
439 	struct btrfs_key key;
440 	struct btrfs_root_item root_item;
441 	struct btrfs_inode_item *inode_item;
442 	struct extent_buffer *leaf;
443 	struct btrfs_root *root = BTRFS_I(dir)->root;
444 	struct btrfs_root *new_root;
445 	struct btrfs_block_rsv block_rsv;
446 	struct timespec cur_time = CURRENT_TIME;
447 	struct inode *inode;
448 	int ret;
449 	int err;
450 	u64 objectid;
451 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
452 	u64 index = 0;
453 	u64 qgroup_reserved;
454 	uuid_le new_uuid;
455 
456 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
457 	if (ret)
458 		return ret;
459 
460 	/*
461 	 * Don't create subvolume whose level is not zero. Or qgroup will be
462 	 * screwed up since it assume subvolme qgroup's level to be 0.
463 	 */
464 	if (btrfs_qgroup_level(objectid))
465 		return -ENOSPC;
466 
467 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
468 	/*
469 	 * The same as the snapshot creation, please see the comment
470 	 * of create_snapshot().
471 	 */
472 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
473 					       8, &qgroup_reserved, false);
474 	if (ret)
475 		return ret;
476 
477 	trans = btrfs_start_transaction(root, 0);
478 	if (IS_ERR(trans)) {
479 		ret = PTR_ERR(trans);
480 		btrfs_subvolume_release_metadata(root, &block_rsv,
481 						 qgroup_reserved);
482 		return ret;
483 	}
484 	trans->block_rsv = &block_rsv;
485 	trans->bytes_reserved = block_rsv.size;
486 
487 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
488 	if (ret)
489 		goto fail;
490 
491 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0);
492 	if (IS_ERR(leaf)) {
493 		ret = PTR_ERR(leaf);
494 		goto fail;
495 	}
496 
497 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
498 	btrfs_set_header_bytenr(leaf, leaf->start);
499 	btrfs_set_header_generation(leaf, trans->transid);
500 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
501 	btrfs_set_header_owner(leaf, objectid);
502 
503 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
504 			    BTRFS_FSID_SIZE);
505 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
506 			    btrfs_header_chunk_tree_uuid(leaf),
507 			    BTRFS_UUID_SIZE);
508 	btrfs_mark_buffer_dirty(leaf);
509 
510 	memset(&root_item, 0, sizeof(root_item));
511 
512 	inode_item = &root_item.inode;
513 	btrfs_set_stack_inode_generation(inode_item, 1);
514 	btrfs_set_stack_inode_size(inode_item, 3);
515 	btrfs_set_stack_inode_nlink(inode_item, 1);
516 	btrfs_set_stack_inode_nbytes(inode_item, root->nodesize);
517 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
518 
519 	btrfs_set_root_flags(&root_item, 0);
520 	btrfs_set_root_limit(&root_item, 0);
521 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
522 
523 	btrfs_set_root_bytenr(&root_item, leaf->start);
524 	btrfs_set_root_generation(&root_item, trans->transid);
525 	btrfs_set_root_level(&root_item, 0);
526 	btrfs_set_root_refs(&root_item, 1);
527 	btrfs_set_root_used(&root_item, leaf->len);
528 	btrfs_set_root_last_snapshot(&root_item, 0);
529 
530 	btrfs_set_root_generation_v2(&root_item,
531 			btrfs_root_generation(&root_item));
532 	uuid_le_gen(&new_uuid);
533 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
534 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
535 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
536 	root_item.ctime = root_item.otime;
537 	btrfs_set_root_ctransid(&root_item, trans->transid);
538 	btrfs_set_root_otransid(&root_item, trans->transid);
539 
540 	btrfs_tree_unlock(leaf);
541 	free_extent_buffer(leaf);
542 	leaf = NULL;
543 
544 	btrfs_set_root_dirid(&root_item, new_dirid);
545 
546 	key.objectid = objectid;
547 	key.offset = 0;
548 	key.type = BTRFS_ROOT_ITEM_KEY;
549 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
550 				&root_item);
551 	if (ret)
552 		goto fail;
553 
554 	key.offset = (u64)-1;
555 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
556 	if (IS_ERR(new_root)) {
557 		ret = PTR_ERR(new_root);
558 		btrfs_abort_transaction(trans, root, ret);
559 		goto fail;
560 	}
561 
562 	btrfs_record_root_in_trans(trans, new_root);
563 
564 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
565 	if (ret) {
566 		/* We potentially lose an unused inode item here */
567 		btrfs_abort_transaction(trans, root, ret);
568 		goto fail;
569 	}
570 
571 	/*
572 	 * insert the directory item
573 	 */
574 	ret = btrfs_set_inode_index(dir, &index);
575 	if (ret) {
576 		btrfs_abort_transaction(trans, root, ret);
577 		goto fail;
578 	}
579 
580 	ret = btrfs_insert_dir_item(trans, root,
581 				    name, namelen, dir, &key,
582 				    BTRFS_FT_DIR, index);
583 	if (ret) {
584 		btrfs_abort_transaction(trans, root, ret);
585 		goto fail;
586 	}
587 
588 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
589 	ret = btrfs_update_inode(trans, root, dir);
590 	BUG_ON(ret);
591 
592 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
593 				 objectid, root->root_key.objectid,
594 				 btrfs_ino(dir), index, name, namelen);
595 	BUG_ON(ret);
596 
597 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
598 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
599 				  objectid);
600 	if (ret)
601 		btrfs_abort_transaction(trans, root, ret);
602 
603 fail:
604 	trans->block_rsv = NULL;
605 	trans->bytes_reserved = 0;
606 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
607 
608 	if (async_transid) {
609 		*async_transid = trans->transid;
610 		err = btrfs_commit_transaction_async(trans, root, 1);
611 		if (err)
612 			err = btrfs_commit_transaction(trans, root);
613 	} else {
614 		err = btrfs_commit_transaction(trans, root);
615 	}
616 	if (err && !ret)
617 		ret = err;
618 
619 	if (!ret) {
620 		inode = btrfs_lookup_dentry(dir, dentry);
621 		if (IS_ERR(inode))
622 			return PTR_ERR(inode);
623 		d_instantiate(dentry, inode);
624 	}
625 	return ret;
626 }
627 
628 static void btrfs_wait_for_no_snapshoting_writes(struct btrfs_root *root)
629 {
630 	s64 writers;
631 	DEFINE_WAIT(wait);
632 
633 	do {
634 		prepare_to_wait(&root->subv_writers->wait, &wait,
635 				TASK_UNINTERRUPTIBLE);
636 
637 		writers = percpu_counter_sum(&root->subv_writers->counter);
638 		if (writers)
639 			schedule();
640 
641 		finish_wait(&root->subv_writers->wait, &wait);
642 	} while (writers);
643 }
644 
645 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
646 			   struct dentry *dentry, char *name, int namelen,
647 			   u64 *async_transid, bool readonly,
648 			   struct btrfs_qgroup_inherit *inherit)
649 {
650 	struct inode *inode;
651 	struct btrfs_pending_snapshot *pending_snapshot;
652 	struct btrfs_trans_handle *trans;
653 	int ret;
654 
655 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
656 		return -EINVAL;
657 
658 	atomic_inc(&root->will_be_snapshoted);
659 	smp_mb__after_atomic();
660 	btrfs_wait_for_no_snapshoting_writes(root);
661 
662 	ret = btrfs_start_delalloc_inodes(root, 0);
663 	if (ret)
664 		goto out;
665 
666 	btrfs_wait_ordered_extents(root, -1);
667 
668 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
669 	if (!pending_snapshot) {
670 		ret = -ENOMEM;
671 		goto out;
672 	}
673 
674 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
675 			     BTRFS_BLOCK_RSV_TEMP);
676 	/*
677 	 * 1 - parent dir inode
678 	 * 2 - dir entries
679 	 * 1 - root item
680 	 * 2 - root ref/backref
681 	 * 1 - root of snapshot
682 	 * 1 - UUID item
683 	 */
684 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
685 					&pending_snapshot->block_rsv, 8,
686 					&pending_snapshot->qgroup_reserved,
687 					false);
688 	if (ret)
689 		goto free;
690 
691 	pending_snapshot->dentry = dentry;
692 	pending_snapshot->root = root;
693 	pending_snapshot->readonly = readonly;
694 	pending_snapshot->dir = dir;
695 	pending_snapshot->inherit = inherit;
696 
697 	trans = btrfs_start_transaction(root, 0);
698 	if (IS_ERR(trans)) {
699 		ret = PTR_ERR(trans);
700 		goto fail;
701 	}
702 
703 	spin_lock(&root->fs_info->trans_lock);
704 	list_add(&pending_snapshot->list,
705 		 &trans->transaction->pending_snapshots);
706 	spin_unlock(&root->fs_info->trans_lock);
707 	if (async_transid) {
708 		*async_transid = trans->transid;
709 		ret = btrfs_commit_transaction_async(trans,
710 				     root->fs_info->extent_root, 1);
711 		if (ret)
712 			ret = btrfs_commit_transaction(trans, root);
713 	} else {
714 		ret = btrfs_commit_transaction(trans,
715 					       root->fs_info->extent_root);
716 	}
717 	if (ret)
718 		goto fail;
719 
720 	ret = pending_snapshot->error;
721 	if (ret)
722 		goto fail;
723 
724 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
725 	if (ret)
726 		goto fail;
727 
728 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
729 	if (IS_ERR(inode)) {
730 		ret = PTR_ERR(inode);
731 		goto fail;
732 	}
733 
734 	d_instantiate(dentry, inode);
735 	ret = 0;
736 fail:
737 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
738 					 &pending_snapshot->block_rsv,
739 					 pending_snapshot->qgroup_reserved);
740 free:
741 	kfree(pending_snapshot);
742 out:
743 	if (atomic_dec_and_test(&root->will_be_snapshoted))
744 		wake_up_atomic_t(&root->will_be_snapshoted);
745 	return ret;
746 }
747 
748 /*  copy of may_delete in fs/namei.c()
749  *	Check whether we can remove a link victim from directory dir, check
750  *  whether the type of victim is right.
751  *  1. We can't do it if dir is read-only (done in permission())
752  *  2. We should have write and exec permissions on dir
753  *  3. We can't remove anything from append-only dir
754  *  4. We can't do anything with immutable dir (done in permission())
755  *  5. If the sticky bit on dir is set we should either
756  *	a. be owner of dir, or
757  *	b. be owner of victim, or
758  *	c. have CAP_FOWNER capability
759  *  6. If the victim is append-only or immutable we can't do antyhing with
760  *     links pointing to it.
761  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
762  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
763  *  9. We can't remove a root or mountpoint.
764  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
765  *     nfs_async_unlink().
766  */
767 
768 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
769 {
770 	int error;
771 
772 	if (d_really_is_negative(victim))
773 		return -ENOENT;
774 
775 	BUG_ON(d_inode(victim->d_parent) != dir);
776 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
777 
778 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
779 	if (error)
780 		return error;
781 	if (IS_APPEND(dir))
782 		return -EPERM;
783 	if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) ||
784 	    IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim)))
785 		return -EPERM;
786 	if (isdir) {
787 		if (!d_is_dir(victim))
788 			return -ENOTDIR;
789 		if (IS_ROOT(victim))
790 			return -EBUSY;
791 	} else if (d_is_dir(victim))
792 		return -EISDIR;
793 	if (IS_DEADDIR(dir))
794 		return -ENOENT;
795 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
796 		return -EBUSY;
797 	return 0;
798 }
799 
800 /* copy of may_create in fs/namei.c() */
801 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
802 {
803 	if (d_really_is_positive(child))
804 		return -EEXIST;
805 	if (IS_DEADDIR(dir))
806 		return -ENOENT;
807 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
808 }
809 
810 /*
811  * Create a new subvolume below @parent.  This is largely modeled after
812  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
813  * inside this filesystem so it's quite a bit simpler.
814  */
815 static noinline int btrfs_mksubvol(struct path *parent,
816 				   char *name, int namelen,
817 				   struct btrfs_root *snap_src,
818 				   u64 *async_transid, bool readonly,
819 				   struct btrfs_qgroup_inherit *inherit)
820 {
821 	struct inode *dir  = d_inode(parent->dentry);
822 	struct dentry *dentry;
823 	int error;
824 
825 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
826 	if (error == -EINTR)
827 		return error;
828 
829 	dentry = lookup_one_len(name, parent->dentry, namelen);
830 	error = PTR_ERR(dentry);
831 	if (IS_ERR(dentry))
832 		goto out_unlock;
833 
834 	error = -EEXIST;
835 	if (d_really_is_positive(dentry))
836 		goto out_dput;
837 
838 	error = btrfs_may_create(dir, dentry);
839 	if (error)
840 		goto out_dput;
841 
842 	/*
843 	 * even if this name doesn't exist, we may get hash collisions.
844 	 * check for them now when we can safely fail
845 	 */
846 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
847 					       dir->i_ino, name,
848 					       namelen);
849 	if (error)
850 		goto out_dput;
851 
852 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
853 
854 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
855 		goto out_up_read;
856 
857 	if (snap_src) {
858 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
859 					async_transid, readonly, inherit);
860 	} else {
861 		error = create_subvol(dir, dentry, name, namelen,
862 				      async_transid, inherit);
863 	}
864 	if (!error)
865 		fsnotify_mkdir(dir, dentry);
866 out_up_read:
867 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
868 out_dput:
869 	dput(dentry);
870 out_unlock:
871 	mutex_unlock(&dir->i_mutex);
872 	return error;
873 }
874 
875 /*
876  * When we're defragging a range, we don't want to kick it off again
877  * if it is really just waiting for delalloc to send it down.
878  * If we find a nice big extent or delalloc range for the bytes in the
879  * file you want to defrag, we return 0 to let you know to skip this
880  * part of the file
881  */
882 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
883 {
884 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
885 	struct extent_map *em = NULL;
886 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
887 	u64 end;
888 
889 	read_lock(&em_tree->lock);
890 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
891 	read_unlock(&em_tree->lock);
892 
893 	if (em) {
894 		end = extent_map_end(em);
895 		free_extent_map(em);
896 		if (end - offset > thresh)
897 			return 0;
898 	}
899 	/* if we already have a nice delalloc here, just stop */
900 	thresh /= 2;
901 	end = count_range_bits(io_tree, &offset, offset + thresh,
902 			       thresh, EXTENT_DELALLOC, 1);
903 	if (end >= thresh)
904 		return 0;
905 	return 1;
906 }
907 
908 /*
909  * helper function to walk through a file and find extents
910  * newer than a specific transid, and smaller than thresh.
911  *
912  * This is used by the defragging code to find new and small
913  * extents
914  */
915 static int find_new_extents(struct btrfs_root *root,
916 			    struct inode *inode, u64 newer_than,
917 			    u64 *off, u32 thresh)
918 {
919 	struct btrfs_path *path;
920 	struct btrfs_key min_key;
921 	struct extent_buffer *leaf;
922 	struct btrfs_file_extent_item *extent;
923 	int type;
924 	int ret;
925 	u64 ino = btrfs_ino(inode);
926 
927 	path = btrfs_alloc_path();
928 	if (!path)
929 		return -ENOMEM;
930 
931 	min_key.objectid = ino;
932 	min_key.type = BTRFS_EXTENT_DATA_KEY;
933 	min_key.offset = *off;
934 
935 	while (1) {
936 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
937 		if (ret != 0)
938 			goto none;
939 process_slot:
940 		if (min_key.objectid != ino)
941 			goto none;
942 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
943 			goto none;
944 
945 		leaf = path->nodes[0];
946 		extent = btrfs_item_ptr(leaf, path->slots[0],
947 					struct btrfs_file_extent_item);
948 
949 		type = btrfs_file_extent_type(leaf, extent);
950 		if (type == BTRFS_FILE_EXTENT_REG &&
951 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
952 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
953 			*off = min_key.offset;
954 			btrfs_free_path(path);
955 			return 0;
956 		}
957 
958 		path->slots[0]++;
959 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
960 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
961 			goto process_slot;
962 		}
963 
964 		if (min_key.offset == (u64)-1)
965 			goto none;
966 
967 		min_key.offset++;
968 		btrfs_release_path(path);
969 	}
970 none:
971 	btrfs_free_path(path);
972 	return -ENOENT;
973 }
974 
975 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
976 {
977 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
978 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
979 	struct extent_map *em;
980 	u64 len = PAGE_CACHE_SIZE;
981 
982 	/*
983 	 * hopefully we have this extent in the tree already, try without
984 	 * the full extent lock
985 	 */
986 	read_lock(&em_tree->lock);
987 	em = lookup_extent_mapping(em_tree, start, len);
988 	read_unlock(&em_tree->lock);
989 
990 	if (!em) {
991 		struct extent_state *cached = NULL;
992 		u64 end = start + len - 1;
993 
994 		/* get the big lock and read metadata off disk */
995 		lock_extent_bits(io_tree, start, end, 0, &cached);
996 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
997 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
998 
999 		if (IS_ERR(em))
1000 			return NULL;
1001 	}
1002 
1003 	return em;
1004 }
1005 
1006 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1007 {
1008 	struct extent_map *next;
1009 	bool ret = true;
1010 
1011 	/* this is the last extent */
1012 	if (em->start + em->len >= i_size_read(inode))
1013 		return false;
1014 
1015 	next = defrag_lookup_extent(inode, em->start + em->len);
1016 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1017 		ret = false;
1018 	else if ((em->block_start + em->block_len == next->block_start) &&
1019 		 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024))
1020 		ret = false;
1021 
1022 	free_extent_map(next);
1023 	return ret;
1024 }
1025 
1026 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1027 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1028 			       int compress)
1029 {
1030 	struct extent_map *em;
1031 	int ret = 1;
1032 	bool next_mergeable = true;
1033 	bool prev_mergeable = true;
1034 
1035 	/*
1036 	 * make sure that once we start defragging an extent, we keep on
1037 	 * defragging it
1038 	 */
1039 	if (start < *defrag_end)
1040 		return 1;
1041 
1042 	*skip = 0;
1043 
1044 	em = defrag_lookup_extent(inode, start);
1045 	if (!em)
1046 		return 0;
1047 
1048 	/* this will cover holes, and inline extents */
1049 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1050 		ret = 0;
1051 		goto out;
1052 	}
1053 
1054 	if (!*defrag_end)
1055 		prev_mergeable = false;
1056 
1057 	next_mergeable = defrag_check_next_extent(inode, em);
1058 	/*
1059 	 * we hit a real extent, if it is big or the next extent is not a
1060 	 * real extent, don't bother defragging it
1061 	 */
1062 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1063 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1064 		ret = 0;
1065 out:
1066 	/*
1067 	 * last_len ends up being a counter of how many bytes we've defragged.
1068 	 * every time we choose not to defrag an extent, we reset *last_len
1069 	 * so that the next tiny extent will force a defrag.
1070 	 *
1071 	 * The end result of this is that tiny extents before a single big
1072 	 * extent will force at least part of that big extent to be defragged.
1073 	 */
1074 	if (ret) {
1075 		*defrag_end = extent_map_end(em);
1076 	} else {
1077 		*last_len = 0;
1078 		*skip = extent_map_end(em);
1079 		*defrag_end = 0;
1080 	}
1081 
1082 	free_extent_map(em);
1083 	return ret;
1084 }
1085 
1086 /*
1087  * it doesn't do much good to defrag one or two pages
1088  * at a time.  This pulls in a nice chunk of pages
1089  * to COW and defrag.
1090  *
1091  * It also makes sure the delalloc code has enough
1092  * dirty data to avoid making new small extents as part
1093  * of the defrag
1094  *
1095  * It's a good idea to start RA on this range
1096  * before calling this.
1097  */
1098 static int cluster_pages_for_defrag(struct inode *inode,
1099 				    struct page **pages,
1100 				    unsigned long start_index,
1101 				    unsigned long num_pages)
1102 {
1103 	unsigned long file_end;
1104 	u64 isize = i_size_read(inode);
1105 	u64 page_start;
1106 	u64 page_end;
1107 	u64 page_cnt;
1108 	int ret;
1109 	int i;
1110 	int i_done;
1111 	struct btrfs_ordered_extent *ordered;
1112 	struct extent_state *cached_state = NULL;
1113 	struct extent_io_tree *tree;
1114 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1115 
1116 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1117 	if (!isize || start_index > file_end)
1118 		return 0;
1119 
1120 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1121 
1122 	ret = btrfs_delalloc_reserve_space(inode,
1123 			start_index << PAGE_CACHE_SHIFT,
1124 			page_cnt << PAGE_CACHE_SHIFT);
1125 	if (ret)
1126 		return ret;
1127 	i_done = 0;
1128 	tree = &BTRFS_I(inode)->io_tree;
1129 
1130 	/* step one, lock all the pages */
1131 	for (i = 0; i < page_cnt; i++) {
1132 		struct page *page;
1133 again:
1134 		page = find_or_create_page(inode->i_mapping,
1135 					   start_index + i, mask);
1136 		if (!page)
1137 			break;
1138 
1139 		page_start = page_offset(page);
1140 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1141 		while (1) {
1142 			lock_extent_bits(tree, page_start, page_end,
1143 					 0, &cached_state);
1144 			ordered = btrfs_lookup_ordered_extent(inode,
1145 							      page_start);
1146 			unlock_extent_cached(tree, page_start, page_end,
1147 					     &cached_state, GFP_NOFS);
1148 			if (!ordered)
1149 				break;
1150 
1151 			unlock_page(page);
1152 			btrfs_start_ordered_extent(inode, ordered, 1);
1153 			btrfs_put_ordered_extent(ordered);
1154 			lock_page(page);
1155 			/*
1156 			 * we unlocked the page above, so we need check if
1157 			 * it was released or not.
1158 			 */
1159 			if (page->mapping != inode->i_mapping) {
1160 				unlock_page(page);
1161 				page_cache_release(page);
1162 				goto again;
1163 			}
1164 		}
1165 
1166 		if (!PageUptodate(page)) {
1167 			btrfs_readpage(NULL, page);
1168 			lock_page(page);
1169 			if (!PageUptodate(page)) {
1170 				unlock_page(page);
1171 				page_cache_release(page);
1172 				ret = -EIO;
1173 				break;
1174 			}
1175 		}
1176 
1177 		if (page->mapping != inode->i_mapping) {
1178 			unlock_page(page);
1179 			page_cache_release(page);
1180 			goto again;
1181 		}
1182 
1183 		pages[i] = page;
1184 		i_done++;
1185 	}
1186 	if (!i_done || ret)
1187 		goto out;
1188 
1189 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1190 		goto out;
1191 
1192 	/*
1193 	 * so now we have a nice long stream of locked
1194 	 * and up to date pages, lets wait on them
1195 	 */
1196 	for (i = 0; i < i_done; i++)
1197 		wait_on_page_writeback(pages[i]);
1198 
1199 	page_start = page_offset(pages[0]);
1200 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1201 
1202 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1203 			 page_start, page_end - 1, 0, &cached_state);
1204 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1205 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1206 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1207 			  &cached_state, GFP_NOFS);
1208 
1209 	if (i_done != page_cnt) {
1210 		spin_lock(&BTRFS_I(inode)->lock);
1211 		BTRFS_I(inode)->outstanding_extents++;
1212 		spin_unlock(&BTRFS_I(inode)->lock);
1213 		btrfs_delalloc_release_space(inode,
1214 				start_index << PAGE_CACHE_SHIFT,
1215 				(page_cnt - i_done) << PAGE_CACHE_SHIFT);
1216 	}
1217 
1218 
1219 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1220 			  &cached_state, GFP_NOFS);
1221 
1222 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1223 			     page_start, page_end - 1, &cached_state,
1224 			     GFP_NOFS);
1225 
1226 	for (i = 0; i < i_done; i++) {
1227 		clear_page_dirty_for_io(pages[i]);
1228 		ClearPageChecked(pages[i]);
1229 		set_page_extent_mapped(pages[i]);
1230 		set_page_dirty(pages[i]);
1231 		unlock_page(pages[i]);
1232 		page_cache_release(pages[i]);
1233 	}
1234 	return i_done;
1235 out:
1236 	for (i = 0; i < i_done; i++) {
1237 		unlock_page(pages[i]);
1238 		page_cache_release(pages[i]);
1239 	}
1240 	btrfs_delalloc_release_space(inode,
1241 			start_index << PAGE_CACHE_SHIFT,
1242 			page_cnt << PAGE_CACHE_SHIFT);
1243 	return ret;
1244 
1245 }
1246 
1247 int btrfs_defrag_file(struct inode *inode, struct file *file,
1248 		      struct btrfs_ioctl_defrag_range_args *range,
1249 		      u64 newer_than, unsigned long max_to_defrag)
1250 {
1251 	struct btrfs_root *root = BTRFS_I(inode)->root;
1252 	struct file_ra_state *ra = NULL;
1253 	unsigned long last_index;
1254 	u64 isize = i_size_read(inode);
1255 	u64 last_len = 0;
1256 	u64 skip = 0;
1257 	u64 defrag_end = 0;
1258 	u64 newer_off = range->start;
1259 	unsigned long i;
1260 	unsigned long ra_index = 0;
1261 	int ret;
1262 	int defrag_count = 0;
1263 	int compress_type = BTRFS_COMPRESS_ZLIB;
1264 	u32 extent_thresh = range->extent_thresh;
1265 	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1266 	unsigned long cluster = max_cluster;
1267 	u64 new_align = ~((u64)128 * 1024 - 1);
1268 	struct page **pages = NULL;
1269 
1270 	if (isize == 0)
1271 		return 0;
1272 
1273 	if (range->start >= isize)
1274 		return -EINVAL;
1275 
1276 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1277 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1278 			return -EINVAL;
1279 		if (range->compress_type)
1280 			compress_type = range->compress_type;
1281 	}
1282 
1283 	if (extent_thresh == 0)
1284 		extent_thresh = 256 * 1024;
1285 
1286 	/*
1287 	 * if we were not given a file, allocate a readahead
1288 	 * context
1289 	 */
1290 	if (!file) {
1291 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1292 		if (!ra)
1293 			return -ENOMEM;
1294 		file_ra_state_init(ra, inode->i_mapping);
1295 	} else {
1296 		ra = &file->f_ra;
1297 	}
1298 
1299 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1300 			GFP_NOFS);
1301 	if (!pages) {
1302 		ret = -ENOMEM;
1303 		goto out_ra;
1304 	}
1305 
1306 	/* find the last page to defrag */
1307 	if (range->start + range->len > range->start) {
1308 		last_index = min_t(u64, isize - 1,
1309 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1310 	} else {
1311 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1312 	}
1313 
1314 	if (newer_than) {
1315 		ret = find_new_extents(root, inode, newer_than,
1316 				       &newer_off, 64 * 1024);
1317 		if (!ret) {
1318 			range->start = newer_off;
1319 			/*
1320 			 * we always align our defrag to help keep
1321 			 * the extents in the file evenly spaced
1322 			 */
1323 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1324 		} else
1325 			goto out_ra;
1326 	} else {
1327 		i = range->start >> PAGE_CACHE_SHIFT;
1328 	}
1329 	if (!max_to_defrag)
1330 		max_to_defrag = last_index - i + 1;
1331 
1332 	/*
1333 	 * make writeback starts from i, so the defrag range can be
1334 	 * written sequentially.
1335 	 */
1336 	if (i < inode->i_mapping->writeback_index)
1337 		inode->i_mapping->writeback_index = i;
1338 
1339 	while (i <= last_index && defrag_count < max_to_defrag &&
1340 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_CACHE_SIZE))) {
1341 		/*
1342 		 * make sure we stop running if someone unmounts
1343 		 * the FS
1344 		 */
1345 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1346 			break;
1347 
1348 		if (btrfs_defrag_cancelled(root->fs_info)) {
1349 			btrfs_debug(root->fs_info, "defrag_file cancelled");
1350 			ret = -EAGAIN;
1351 			break;
1352 		}
1353 
1354 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1355 					 extent_thresh, &last_len, &skip,
1356 					 &defrag_end, range->flags &
1357 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1358 			unsigned long next;
1359 			/*
1360 			 * the should_defrag function tells us how much to skip
1361 			 * bump our counter by the suggested amount
1362 			 */
1363 			next = DIV_ROUND_UP(skip, PAGE_CACHE_SIZE);
1364 			i = max(i + 1, next);
1365 			continue;
1366 		}
1367 
1368 		if (!newer_than) {
1369 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1370 				   PAGE_CACHE_SHIFT) - i;
1371 			cluster = min(cluster, max_cluster);
1372 		} else {
1373 			cluster = max_cluster;
1374 		}
1375 
1376 		if (i + cluster > ra_index) {
1377 			ra_index = max(i, ra_index);
1378 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1379 				       cluster);
1380 			ra_index += cluster;
1381 		}
1382 
1383 		mutex_lock(&inode->i_mutex);
1384 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1385 			BTRFS_I(inode)->force_compress = compress_type;
1386 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1387 		if (ret < 0) {
1388 			mutex_unlock(&inode->i_mutex);
1389 			goto out_ra;
1390 		}
1391 
1392 		defrag_count += ret;
1393 		balance_dirty_pages_ratelimited(inode->i_mapping);
1394 		mutex_unlock(&inode->i_mutex);
1395 
1396 		if (newer_than) {
1397 			if (newer_off == (u64)-1)
1398 				break;
1399 
1400 			if (ret > 0)
1401 				i += ret;
1402 
1403 			newer_off = max(newer_off + 1,
1404 					(u64)i << PAGE_CACHE_SHIFT);
1405 
1406 			ret = find_new_extents(root, inode,
1407 					       newer_than, &newer_off,
1408 					       64 * 1024);
1409 			if (!ret) {
1410 				range->start = newer_off;
1411 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1412 			} else {
1413 				break;
1414 			}
1415 		} else {
1416 			if (ret > 0) {
1417 				i += ret;
1418 				last_len += ret << PAGE_CACHE_SHIFT;
1419 			} else {
1420 				i++;
1421 				last_len = 0;
1422 			}
1423 		}
1424 	}
1425 
1426 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1427 		filemap_flush(inode->i_mapping);
1428 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1429 			     &BTRFS_I(inode)->runtime_flags))
1430 			filemap_flush(inode->i_mapping);
1431 	}
1432 
1433 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1434 		/* the filemap_flush will queue IO into the worker threads, but
1435 		 * we have to make sure the IO is actually started and that
1436 		 * ordered extents get created before we return
1437 		 */
1438 		atomic_inc(&root->fs_info->async_submit_draining);
1439 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1440 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1441 			wait_event(root->fs_info->async_submit_wait,
1442 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1443 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1444 		}
1445 		atomic_dec(&root->fs_info->async_submit_draining);
1446 	}
1447 
1448 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1449 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1450 	}
1451 
1452 	ret = defrag_count;
1453 
1454 out_ra:
1455 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1456 		mutex_lock(&inode->i_mutex);
1457 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1458 		mutex_unlock(&inode->i_mutex);
1459 	}
1460 	if (!file)
1461 		kfree(ra);
1462 	kfree(pages);
1463 	return ret;
1464 }
1465 
1466 static noinline int btrfs_ioctl_resize(struct file *file,
1467 					void __user *arg)
1468 {
1469 	u64 new_size;
1470 	u64 old_size;
1471 	u64 devid = 1;
1472 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1473 	struct btrfs_ioctl_vol_args *vol_args;
1474 	struct btrfs_trans_handle *trans;
1475 	struct btrfs_device *device = NULL;
1476 	char *sizestr;
1477 	char *retptr;
1478 	char *devstr = NULL;
1479 	int ret = 0;
1480 	int mod = 0;
1481 
1482 	if (!capable(CAP_SYS_ADMIN))
1483 		return -EPERM;
1484 
1485 	ret = mnt_want_write_file(file);
1486 	if (ret)
1487 		return ret;
1488 
1489 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1490 			1)) {
1491 		mnt_drop_write_file(file);
1492 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1493 	}
1494 
1495 	mutex_lock(&root->fs_info->volume_mutex);
1496 	vol_args = memdup_user(arg, sizeof(*vol_args));
1497 	if (IS_ERR(vol_args)) {
1498 		ret = PTR_ERR(vol_args);
1499 		goto out;
1500 	}
1501 
1502 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1503 
1504 	sizestr = vol_args->name;
1505 	devstr = strchr(sizestr, ':');
1506 	if (devstr) {
1507 		sizestr = devstr + 1;
1508 		*devstr = '\0';
1509 		devstr = vol_args->name;
1510 		ret = kstrtoull(devstr, 10, &devid);
1511 		if (ret)
1512 			goto out_free;
1513 		if (!devid) {
1514 			ret = -EINVAL;
1515 			goto out_free;
1516 		}
1517 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1518 	}
1519 
1520 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1521 	if (!device) {
1522 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1523 		       devid);
1524 		ret = -ENODEV;
1525 		goto out_free;
1526 	}
1527 
1528 	if (!device->writeable) {
1529 		btrfs_info(root->fs_info,
1530 			   "resizer unable to apply on readonly device %llu",
1531 		       devid);
1532 		ret = -EPERM;
1533 		goto out_free;
1534 	}
1535 
1536 	if (!strcmp(sizestr, "max"))
1537 		new_size = device->bdev->bd_inode->i_size;
1538 	else {
1539 		if (sizestr[0] == '-') {
1540 			mod = -1;
1541 			sizestr++;
1542 		} else if (sizestr[0] == '+') {
1543 			mod = 1;
1544 			sizestr++;
1545 		}
1546 		new_size = memparse(sizestr, &retptr);
1547 		if (*retptr != '\0' || new_size == 0) {
1548 			ret = -EINVAL;
1549 			goto out_free;
1550 		}
1551 	}
1552 
1553 	if (device->is_tgtdev_for_dev_replace) {
1554 		ret = -EPERM;
1555 		goto out_free;
1556 	}
1557 
1558 	old_size = btrfs_device_get_total_bytes(device);
1559 
1560 	if (mod < 0) {
1561 		if (new_size > old_size) {
1562 			ret = -EINVAL;
1563 			goto out_free;
1564 		}
1565 		new_size = old_size - new_size;
1566 	} else if (mod > 0) {
1567 		if (new_size > ULLONG_MAX - old_size) {
1568 			ret = -ERANGE;
1569 			goto out_free;
1570 		}
1571 		new_size = old_size + new_size;
1572 	}
1573 
1574 	if (new_size < 256 * 1024 * 1024) {
1575 		ret = -EINVAL;
1576 		goto out_free;
1577 	}
1578 	if (new_size > device->bdev->bd_inode->i_size) {
1579 		ret = -EFBIG;
1580 		goto out_free;
1581 	}
1582 
1583 	new_size = div_u64(new_size, root->sectorsize);
1584 	new_size *= root->sectorsize;
1585 
1586 	btrfs_info_in_rcu(root->fs_info, "new size for %s is %llu",
1587 		      rcu_str_deref(device->name), new_size);
1588 
1589 	if (new_size > old_size) {
1590 		trans = btrfs_start_transaction(root, 0);
1591 		if (IS_ERR(trans)) {
1592 			ret = PTR_ERR(trans);
1593 			goto out_free;
1594 		}
1595 		ret = btrfs_grow_device(trans, device, new_size);
1596 		btrfs_commit_transaction(trans, root);
1597 	} else if (new_size < old_size) {
1598 		ret = btrfs_shrink_device(device, new_size);
1599 	} /* equal, nothing need to do */
1600 
1601 out_free:
1602 	kfree(vol_args);
1603 out:
1604 	mutex_unlock(&root->fs_info->volume_mutex);
1605 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1606 	mnt_drop_write_file(file);
1607 	return ret;
1608 }
1609 
1610 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1611 				char *name, unsigned long fd, int subvol,
1612 				u64 *transid, bool readonly,
1613 				struct btrfs_qgroup_inherit *inherit)
1614 {
1615 	int namelen;
1616 	int ret = 0;
1617 
1618 	ret = mnt_want_write_file(file);
1619 	if (ret)
1620 		goto out;
1621 
1622 	namelen = strlen(name);
1623 	if (strchr(name, '/')) {
1624 		ret = -EINVAL;
1625 		goto out_drop_write;
1626 	}
1627 
1628 	if (name[0] == '.' &&
1629 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1630 		ret = -EEXIST;
1631 		goto out_drop_write;
1632 	}
1633 
1634 	if (subvol) {
1635 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1636 				     NULL, transid, readonly, inherit);
1637 	} else {
1638 		struct fd src = fdget(fd);
1639 		struct inode *src_inode;
1640 		if (!src.file) {
1641 			ret = -EINVAL;
1642 			goto out_drop_write;
1643 		}
1644 
1645 		src_inode = file_inode(src.file);
1646 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1647 			btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1648 				   "Snapshot src from another FS");
1649 			ret = -EXDEV;
1650 		} else if (!inode_owner_or_capable(src_inode)) {
1651 			/*
1652 			 * Subvolume creation is not restricted, but snapshots
1653 			 * are limited to own subvolumes only
1654 			 */
1655 			ret = -EPERM;
1656 		} else {
1657 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1658 					     BTRFS_I(src_inode)->root,
1659 					     transid, readonly, inherit);
1660 		}
1661 		fdput(src);
1662 	}
1663 out_drop_write:
1664 	mnt_drop_write_file(file);
1665 out:
1666 	return ret;
1667 }
1668 
1669 static noinline int btrfs_ioctl_snap_create(struct file *file,
1670 					    void __user *arg, int subvol)
1671 {
1672 	struct btrfs_ioctl_vol_args *vol_args;
1673 	int ret;
1674 
1675 	vol_args = memdup_user(arg, sizeof(*vol_args));
1676 	if (IS_ERR(vol_args))
1677 		return PTR_ERR(vol_args);
1678 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1679 
1680 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1681 					      vol_args->fd, subvol,
1682 					      NULL, false, NULL);
1683 
1684 	kfree(vol_args);
1685 	return ret;
1686 }
1687 
1688 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1689 					       void __user *arg, int subvol)
1690 {
1691 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1692 	int ret;
1693 	u64 transid = 0;
1694 	u64 *ptr = NULL;
1695 	bool readonly = false;
1696 	struct btrfs_qgroup_inherit *inherit = NULL;
1697 
1698 	vol_args = memdup_user(arg, sizeof(*vol_args));
1699 	if (IS_ERR(vol_args))
1700 		return PTR_ERR(vol_args);
1701 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1702 
1703 	if (vol_args->flags &
1704 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1705 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1706 		ret = -EOPNOTSUPP;
1707 		goto free_args;
1708 	}
1709 
1710 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1711 		ptr = &transid;
1712 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1713 		readonly = true;
1714 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1715 		if (vol_args->size > PAGE_CACHE_SIZE) {
1716 			ret = -EINVAL;
1717 			goto free_args;
1718 		}
1719 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1720 		if (IS_ERR(inherit)) {
1721 			ret = PTR_ERR(inherit);
1722 			goto free_args;
1723 		}
1724 	}
1725 
1726 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1727 					      vol_args->fd, subvol, ptr,
1728 					      readonly, inherit);
1729 	if (ret)
1730 		goto free_inherit;
1731 
1732 	if (ptr && copy_to_user(arg +
1733 				offsetof(struct btrfs_ioctl_vol_args_v2,
1734 					transid),
1735 				ptr, sizeof(*ptr)))
1736 		ret = -EFAULT;
1737 
1738 free_inherit:
1739 	kfree(inherit);
1740 free_args:
1741 	kfree(vol_args);
1742 	return ret;
1743 }
1744 
1745 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1746 						void __user *arg)
1747 {
1748 	struct inode *inode = file_inode(file);
1749 	struct btrfs_root *root = BTRFS_I(inode)->root;
1750 	int ret = 0;
1751 	u64 flags = 0;
1752 
1753 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1754 		return -EINVAL;
1755 
1756 	down_read(&root->fs_info->subvol_sem);
1757 	if (btrfs_root_readonly(root))
1758 		flags |= BTRFS_SUBVOL_RDONLY;
1759 	up_read(&root->fs_info->subvol_sem);
1760 
1761 	if (copy_to_user(arg, &flags, sizeof(flags)))
1762 		ret = -EFAULT;
1763 
1764 	return ret;
1765 }
1766 
1767 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1768 					      void __user *arg)
1769 {
1770 	struct inode *inode = file_inode(file);
1771 	struct btrfs_root *root = BTRFS_I(inode)->root;
1772 	struct btrfs_trans_handle *trans;
1773 	u64 root_flags;
1774 	u64 flags;
1775 	int ret = 0;
1776 
1777 	if (!inode_owner_or_capable(inode))
1778 		return -EPERM;
1779 
1780 	ret = mnt_want_write_file(file);
1781 	if (ret)
1782 		goto out;
1783 
1784 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1785 		ret = -EINVAL;
1786 		goto out_drop_write;
1787 	}
1788 
1789 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1790 		ret = -EFAULT;
1791 		goto out_drop_write;
1792 	}
1793 
1794 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1795 		ret = -EINVAL;
1796 		goto out_drop_write;
1797 	}
1798 
1799 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1800 		ret = -EOPNOTSUPP;
1801 		goto out_drop_write;
1802 	}
1803 
1804 	down_write(&root->fs_info->subvol_sem);
1805 
1806 	/* nothing to do */
1807 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1808 		goto out_drop_sem;
1809 
1810 	root_flags = btrfs_root_flags(&root->root_item);
1811 	if (flags & BTRFS_SUBVOL_RDONLY) {
1812 		btrfs_set_root_flags(&root->root_item,
1813 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1814 	} else {
1815 		/*
1816 		 * Block RO -> RW transition if this subvolume is involved in
1817 		 * send
1818 		 */
1819 		spin_lock(&root->root_item_lock);
1820 		if (root->send_in_progress == 0) {
1821 			btrfs_set_root_flags(&root->root_item,
1822 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1823 			spin_unlock(&root->root_item_lock);
1824 		} else {
1825 			spin_unlock(&root->root_item_lock);
1826 			btrfs_warn(root->fs_info,
1827 			"Attempt to set subvolume %llu read-write during send",
1828 					root->root_key.objectid);
1829 			ret = -EPERM;
1830 			goto out_drop_sem;
1831 		}
1832 	}
1833 
1834 	trans = btrfs_start_transaction(root, 1);
1835 	if (IS_ERR(trans)) {
1836 		ret = PTR_ERR(trans);
1837 		goto out_reset;
1838 	}
1839 
1840 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1841 				&root->root_key, &root->root_item);
1842 
1843 	btrfs_commit_transaction(trans, root);
1844 out_reset:
1845 	if (ret)
1846 		btrfs_set_root_flags(&root->root_item, root_flags);
1847 out_drop_sem:
1848 	up_write(&root->fs_info->subvol_sem);
1849 out_drop_write:
1850 	mnt_drop_write_file(file);
1851 out:
1852 	return ret;
1853 }
1854 
1855 /*
1856  * helper to check if the subvolume references other subvolumes
1857  */
1858 static noinline int may_destroy_subvol(struct btrfs_root *root)
1859 {
1860 	struct btrfs_path *path;
1861 	struct btrfs_dir_item *di;
1862 	struct btrfs_key key;
1863 	u64 dir_id;
1864 	int ret;
1865 
1866 	path = btrfs_alloc_path();
1867 	if (!path)
1868 		return -ENOMEM;
1869 
1870 	/* Make sure this root isn't set as the default subvol */
1871 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1872 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1873 				   dir_id, "default", 7, 0);
1874 	if (di && !IS_ERR(di)) {
1875 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1876 		if (key.objectid == root->root_key.objectid) {
1877 			ret = -EPERM;
1878 			btrfs_err(root->fs_info, "deleting default subvolume "
1879 				  "%llu is not allowed", key.objectid);
1880 			goto out;
1881 		}
1882 		btrfs_release_path(path);
1883 	}
1884 
1885 	key.objectid = root->root_key.objectid;
1886 	key.type = BTRFS_ROOT_REF_KEY;
1887 	key.offset = (u64)-1;
1888 
1889 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1890 				&key, path, 0, 0);
1891 	if (ret < 0)
1892 		goto out;
1893 	BUG_ON(ret == 0);
1894 
1895 	ret = 0;
1896 	if (path->slots[0] > 0) {
1897 		path->slots[0]--;
1898 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1899 		if (key.objectid == root->root_key.objectid &&
1900 		    key.type == BTRFS_ROOT_REF_KEY)
1901 			ret = -ENOTEMPTY;
1902 	}
1903 out:
1904 	btrfs_free_path(path);
1905 	return ret;
1906 }
1907 
1908 static noinline int key_in_sk(struct btrfs_key *key,
1909 			      struct btrfs_ioctl_search_key *sk)
1910 {
1911 	struct btrfs_key test;
1912 	int ret;
1913 
1914 	test.objectid = sk->min_objectid;
1915 	test.type = sk->min_type;
1916 	test.offset = sk->min_offset;
1917 
1918 	ret = btrfs_comp_cpu_keys(key, &test);
1919 	if (ret < 0)
1920 		return 0;
1921 
1922 	test.objectid = sk->max_objectid;
1923 	test.type = sk->max_type;
1924 	test.offset = sk->max_offset;
1925 
1926 	ret = btrfs_comp_cpu_keys(key, &test);
1927 	if (ret > 0)
1928 		return 0;
1929 	return 1;
1930 }
1931 
1932 static noinline int copy_to_sk(struct btrfs_root *root,
1933 			       struct btrfs_path *path,
1934 			       struct btrfs_key *key,
1935 			       struct btrfs_ioctl_search_key *sk,
1936 			       size_t *buf_size,
1937 			       char __user *ubuf,
1938 			       unsigned long *sk_offset,
1939 			       int *num_found)
1940 {
1941 	u64 found_transid;
1942 	struct extent_buffer *leaf;
1943 	struct btrfs_ioctl_search_header sh;
1944 	struct btrfs_key test;
1945 	unsigned long item_off;
1946 	unsigned long item_len;
1947 	int nritems;
1948 	int i;
1949 	int slot;
1950 	int ret = 0;
1951 
1952 	leaf = path->nodes[0];
1953 	slot = path->slots[0];
1954 	nritems = btrfs_header_nritems(leaf);
1955 
1956 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1957 		i = nritems;
1958 		goto advance_key;
1959 	}
1960 	found_transid = btrfs_header_generation(leaf);
1961 
1962 	for (i = slot; i < nritems; i++) {
1963 		item_off = btrfs_item_ptr_offset(leaf, i);
1964 		item_len = btrfs_item_size_nr(leaf, i);
1965 
1966 		btrfs_item_key_to_cpu(leaf, key, i);
1967 		if (!key_in_sk(key, sk))
1968 			continue;
1969 
1970 		if (sizeof(sh) + item_len > *buf_size) {
1971 			if (*num_found) {
1972 				ret = 1;
1973 				goto out;
1974 			}
1975 
1976 			/*
1977 			 * return one empty item back for v1, which does not
1978 			 * handle -EOVERFLOW
1979 			 */
1980 
1981 			*buf_size = sizeof(sh) + item_len;
1982 			item_len = 0;
1983 			ret = -EOVERFLOW;
1984 		}
1985 
1986 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1987 			ret = 1;
1988 			goto out;
1989 		}
1990 
1991 		sh.objectid = key->objectid;
1992 		sh.offset = key->offset;
1993 		sh.type = key->type;
1994 		sh.len = item_len;
1995 		sh.transid = found_transid;
1996 
1997 		/* copy search result header */
1998 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1999 			ret = -EFAULT;
2000 			goto out;
2001 		}
2002 
2003 		*sk_offset += sizeof(sh);
2004 
2005 		if (item_len) {
2006 			char __user *up = ubuf + *sk_offset;
2007 			/* copy the item */
2008 			if (read_extent_buffer_to_user(leaf, up,
2009 						       item_off, item_len)) {
2010 				ret = -EFAULT;
2011 				goto out;
2012 			}
2013 
2014 			*sk_offset += item_len;
2015 		}
2016 		(*num_found)++;
2017 
2018 		if (ret) /* -EOVERFLOW from above */
2019 			goto out;
2020 
2021 		if (*num_found >= sk->nr_items) {
2022 			ret = 1;
2023 			goto out;
2024 		}
2025 	}
2026 advance_key:
2027 	ret = 0;
2028 	test.objectid = sk->max_objectid;
2029 	test.type = sk->max_type;
2030 	test.offset = sk->max_offset;
2031 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2032 		ret = 1;
2033 	else if (key->offset < (u64)-1)
2034 		key->offset++;
2035 	else if (key->type < (u8)-1) {
2036 		key->offset = 0;
2037 		key->type++;
2038 	} else if (key->objectid < (u64)-1) {
2039 		key->offset = 0;
2040 		key->type = 0;
2041 		key->objectid++;
2042 	} else
2043 		ret = 1;
2044 out:
2045 	/*
2046 	 *  0: all items from this leaf copied, continue with next
2047 	 *  1: * more items can be copied, but unused buffer is too small
2048 	 *     * all items were found
2049 	 *     Either way, it will stops the loop which iterates to the next
2050 	 *     leaf
2051 	 *  -EOVERFLOW: item was to large for buffer
2052 	 *  -EFAULT: could not copy extent buffer back to userspace
2053 	 */
2054 	return ret;
2055 }
2056 
2057 static noinline int search_ioctl(struct inode *inode,
2058 				 struct btrfs_ioctl_search_key *sk,
2059 				 size_t *buf_size,
2060 				 char __user *ubuf)
2061 {
2062 	struct btrfs_root *root;
2063 	struct btrfs_key key;
2064 	struct btrfs_path *path;
2065 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2066 	int ret;
2067 	int num_found = 0;
2068 	unsigned long sk_offset = 0;
2069 
2070 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2071 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2072 		return -EOVERFLOW;
2073 	}
2074 
2075 	path = btrfs_alloc_path();
2076 	if (!path)
2077 		return -ENOMEM;
2078 
2079 	if (sk->tree_id == 0) {
2080 		/* search the root of the inode that was passed */
2081 		root = BTRFS_I(inode)->root;
2082 	} else {
2083 		key.objectid = sk->tree_id;
2084 		key.type = BTRFS_ROOT_ITEM_KEY;
2085 		key.offset = (u64)-1;
2086 		root = btrfs_read_fs_root_no_name(info, &key);
2087 		if (IS_ERR(root)) {
2088 			btrfs_err(info, "could not find root %llu",
2089 			       sk->tree_id);
2090 			btrfs_free_path(path);
2091 			return -ENOENT;
2092 		}
2093 	}
2094 
2095 	key.objectid = sk->min_objectid;
2096 	key.type = sk->min_type;
2097 	key.offset = sk->min_offset;
2098 
2099 	while (1) {
2100 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2101 		if (ret != 0) {
2102 			if (ret > 0)
2103 				ret = 0;
2104 			goto err;
2105 		}
2106 		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2107 				 &sk_offset, &num_found);
2108 		btrfs_release_path(path);
2109 		if (ret)
2110 			break;
2111 
2112 	}
2113 	if (ret > 0)
2114 		ret = 0;
2115 err:
2116 	sk->nr_items = num_found;
2117 	btrfs_free_path(path);
2118 	return ret;
2119 }
2120 
2121 static noinline int btrfs_ioctl_tree_search(struct file *file,
2122 					   void __user *argp)
2123 {
2124 	struct btrfs_ioctl_search_args __user *uargs;
2125 	struct btrfs_ioctl_search_key sk;
2126 	struct inode *inode;
2127 	int ret;
2128 	size_t buf_size;
2129 
2130 	if (!capable(CAP_SYS_ADMIN))
2131 		return -EPERM;
2132 
2133 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2134 
2135 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2136 		return -EFAULT;
2137 
2138 	buf_size = sizeof(uargs->buf);
2139 
2140 	inode = file_inode(file);
2141 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2142 
2143 	/*
2144 	 * In the origin implementation an overflow is handled by returning a
2145 	 * search header with a len of zero, so reset ret.
2146 	 */
2147 	if (ret == -EOVERFLOW)
2148 		ret = 0;
2149 
2150 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2151 		ret = -EFAULT;
2152 	return ret;
2153 }
2154 
2155 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2156 					       void __user *argp)
2157 {
2158 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2159 	struct btrfs_ioctl_search_args_v2 args;
2160 	struct inode *inode;
2161 	int ret;
2162 	size_t buf_size;
2163 	const size_t buf_limit = 16 * 1024 * 1024;
2164 
2165 	if (!capable(CAP_SYS_ADMIN))
2166 		return -EPERM;
2167 
2168 	/* copy search header and buffer size */
2169 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2170 	if (copy_from_user(&args, uarg, sizeof(args)))
2171 		return -EFAULT;
2172 
2173 	buf_size = args.buf_size;
2174 
2175 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2176 		return -EOVERFLOW;
2177 
2178 	/* limit result size to 16MB */
2179 	if (buf_size > buf_limit)
2180 		buf_size = buf_limit;
2181 
2182 	inode = file_inode(file);
2183 	ret = search_ioctl(inode, &args.key, &buf_size,
2184 			   (char *)(&uarg->buf[0]));
2185 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2186 		ret = -EFAULT;
2187 	else if (ret == -EOVERFLOW &&
2188 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2189 		ret = -EFAULT;
2190 
2191 	return ret;
2192 }
2193 
2194 /*
2195  * Search INODE_REFs to identify path name of 'dirid' directory
2196  * in a 'tree_id' tree. and sets path name to 'name'.
2197  */
2198 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2199 				u64 tree_id, u64 dirid, char *name)
2200 {
2201 	struct btrfs_root *root;
2202 	struct btrfs_key key;
2203 	char *ptr;
2204 	int ret = -1;
2205 	int slot;
2206 	int len;
2207 	int total_len = 0;
2208 	struct btrfs_inode_ref *iref;
2209 	struct extent_buffer *l;
2210 	struct btrfs_path *path;
2211 
2212 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2213 		name[0]='\0';
2214 		return 0;
2215 	}
2216 
2217 	path = btrfs_alloc_path();
2218 	if (!path)
2219 		return -ENOMEM;
2220 
2221 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2222 
2223 	key.objectid = tree_id;
2224 	key.type = BTRFS_ROOT_ITEM_KEY;
2225 	key.offset = (u64)-1;
2226 	root = btrfs_read_fs_root_no_name(info, &key);
2227 	if (IS_ERR(root)) {
2228 		btrfs_err(info, "could not find root %llu", tree_id);
2229 		ret = -ENOENT;
2230 		goto out;
2231 	}
2232 
2233 	key.objectid = dirid;
2234 	key.type = BTRFS_INODE_REF_KEY;
2235 	key.offset = (u64)-1;
2236 
2237 	while (1) {
2238 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2239 		if (ret < 0)
2240 			goto out;
2241 		else if (ret > 0) {
2242 			ret = btrfs_previous_item(root, path, dirid,
2243 						  BTRFS_INODE_REF_KEY);
2244 			if (ret < 0)
2245 				goto out;
2246 			else if (ret > 0) {
2247 				ret = -ENOENT;
2248 				goto out;
2249 			}
2250 		}
2251 
2252 		l = path->nodes[0];
2253 		slot = path->slots[0];
2254 		btrfs_item_key_to_cpu(l, &key, slot);
2255 
2256 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2257 		len = btrfs_inode_ref_name_len(l, iref);
2258 		ptr -= len + 1;
2259 		total_len += len + 1;
2260 		if (ptr < name) {
2261 			ret = -ENAMETOOLONG;
2262 			goto out;
2263 		}
2264 
2265 		*(ptr + len) = '/';
2266 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2267 
2268 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2269 			break;
2270 
2271 		btrfs_release_path(path);
2272 		key.objectid = key.offset;
2273 		key.offset = (u64)-1;
2274 		dirid = key.objectid;
2275 	}
2276 	memmove(name, ptr, total_len);
2277 	name[total_len] = '\0';
2278 	ret = 0;
2279 out:
2280 	btrfs_free_path(path);
2281 	return ret;
2282 }
2283 
2284 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2285 					   void __user *argp)
2286 {
2287 	 struct btrfs_ioctl_ino_lookup_args *args;
2288 	 struct inode *inode;
2289 	int ret = 0;
2290 
2291 	args = memdup_user(argp, sizeof(*args));
2292 	if (IS_ERR(args))
2293 		return PTR_ERR(args);
2294 
2295 	inode = file_inode(file);
2296 
2297 	/*
2298 	 * Unprivileged query to obtain the containing subvolume root id. The
2299 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2300 	 */
2301 	if (args->treeid == 0)
2302 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2303 
2304 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2305 		args->name[0] = 0;
2306 		goto out;
2307 	}
2308 
2309 	if (!capable(CAP_SYS_ADMIN)) {
2310 		ret = -EPERM;
2311 		goto out;
2312 	}
2313 
2314 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2315 					args->treeid, args->objectid,
2316 					args->name);
2317 
2318 out:
2319 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2320 		ret = -EFAULT;
2321 
2322 	kfree(args);
2323 	return ret;
2324 }
2325 
2326 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2327 					     void __user *arg)
2328 {
2329 	struct dentry *parent = file->f_path.dentry;
2330 	struct dentry *dentry;
2331 	struct inode *dir = d_inode(parent);
2332 	struct inode *inode;
2333 	struct btrfs_root *root = BTRFS_I(dir)->root;
2334 	struct btrfs_root *dest = NULL;
2335 	struct btrfs_ioctl_vol_args *vol_args;
2336 	struct btrfs_trans_handle *trans;
2337 	struct btrfs_block_rsv block_rsv;
2338 	u64 root_flags;
2339 	u64 qgroup_reserved;
2340 	int namelen;
2341 	int ret;
2342 	int err = 0;
2343 
2344 	vol_args = memdup_user(arg, sizeof(*vol_args));
2345 	if (IS_ERR(vol_args))
2346 		return PTR_ERR(vol_args);
2347 
2348 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2349 	namelen = strlen(vol_args->name);
2350 	if (strchr(vol_args->name, '/') ||
2351 	    strncmp(vol_args->name, "..", namelen) == 0) {
2352 		err = -EINVAL;
2353 		goto out;
2354 	}
2355 
2356 	err = mnt_want_write_file(file);
2357 	if (err)
2358 		goto out;
2359 
2360 
2361 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2362 	if (err == -EINTR)
2363 		goto out_drop_write;
2364 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2365 	if (IS_ERR(dentry)) {
2366 		err = PTR_ERR(dentry);
2367 		goto out_unlock_dir;
2368 	}
2369 
2370 	if (d_really_is_negative(dentry)) {
2371 		err = -ENOENT;
2372 		goto out_dput;
2373 	}
2374 
2375 	inode = d_inode(dentry);
2376 	dest = BTRFS_I(inode)->root;
2377 	if (!capable(CAP_SYS_ADMIN)) {
2378 		/*
2379 		 * Regular user.  Only allow this with a special mount
2380 		 * option, when the user has write+exec access to the
2381 		 * subvol root, and when rmdir(2) would have been
2382 		 * allowed.
2383 		 *
2384 		 * Note that this is _not_ check that the subvol is
2385 		 * empty or doesn't contain data that we wouldn't
2386 		 * otherwise be able to delete.
2387 		 *
2388 		 * Users who want to delete empty subvols should try
2389 		 * rmdir(2).
2390 		 */
2391 		err = -EPERM;
2392 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2393 			goto out_dput;
2394 
2395 		/*
2396 		 * Do not allow deletion if the parent dir is the same
2397 		 * as the dir to be deleted.  That means the ioctl
2398 		 * must be called on the dentry referencing the root
2399 		 * of the subvol, not a random directory contained
2400 		 * within it.
2401 		 */
2402 		err = -EINVAL;
2403 		if (root == dest)
2404 			goto out_dput;
2405 
2406 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2407 		if (err)
2408 			goto out_dput;
2409 	}
2410 
2411 	/* check if subvolume may be deleted by a user */
2412 	err = btrfs_may_delete(dir, dentry, 1);
2413 	if (err)
2414 		goto out_dput;
2415 
2416 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2417 		err = -EINVAL;
2418 		goto out_dput;
2419 	}
2420 
2421 	mutex_lock(&inode->i_mutex);
2422 
2423 	/*
2424 	 * Don't allow to delete a subvolume with send in progress. This is
2425 	 * inside the i_mutex so the error handling that has to drop the bit
2426 	 * again is not run concurrently.
2427 	 */
2428 	spin_lock(&dest->root_item_lock);
2429 	root_flags = btrfs_root_flags(&dest->root_item);
2430 	if (dest->send_in_progress == 0) {
2431 		btrfs_set_root_flags(&dest->root_item,
2432 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2433 		spin_unlock(&dest->root_item_lock);
2434 	} else {
2435 		spin_unlock(&dest->root_item_lock);
2436 		btrfs_warn(root->fs_info,
2437 			"Attempt to delete subvolume %llu during send",
2438 			dest->root_key.objectid);
2439 		err = -EPERM;
2440 		goto out_unlock_inode;
2441 	}
2442 
2443 	down_write(&root->fs_info->subvol_sem);
2444 
2445 	err = may_destroy_subvol(dest);
2446 	if (err)
2447 		goto out_up_write;
2448 
2449 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2450 	/*
2451 	 * One for dir inode, two for dir entries, two for root
2452 	 * ref/backref.
2453 	 */
2454 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2455 					       5, &qgroup_reserved, true);
2456 	if (err)
2457 		goto out_up_write;
2458 
2459 	trans = btrfs_start_transaction(root, 0);
2460 	if (IS_ERR(trans)) {
2461 		err = PTR_ERR(trans);
2462 		goto out_release;
2463 	}
2464 	trans->block_rsv = &block_rsv;
2465 	trans->bytes_reserved = block_rsv.size;
2466 
2467 	ret = btrfs_unlink_subvol(trans, root, dir,
2468 				dest->root_key.objectid,
2469 				dentry->d_name.name,
2470 				dentry->d_name.len);
2471 	if (ret) {
2472 		err = ret;
2473 		btrfs_abort_transaction(trans, root, ret);
2474 		goto out_end_trans;
2475 	}
2476 
2477 	btrfs_record_root_in_trans(trans, dest);
2478 
2479 	memset(&dest->root_item.drop_progress, 0,
2480 		sizeof(dest->root_item.drop_progress));
2481 	dest->root_item.drop_level = 0;
2482 	btrfs_set_root_refs(&dest->root_item, 0);
2483 
2484 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2485 		ret = btrfs_insert_orphan_item(trans,
2486 					root->fs_info->tree_root,
2487 					dest->root_key.objectid);
2488 		if (ret) {
2489 			btrfs_abort_transaction(trans, root, ret);
2490 			err = ret;
2491 			goto out_end_trans;
2492 		}
2493 	}
2494 
2495 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2496 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2497 				  dest->root_key.objectid);
2498 	if (ret && ret != -ENOENT) {
2499 		btrfs_abort_transaction(trans, root, ret);
2500 		err = ret;
2501 		goto out_end_trans;
2502 	}
2503 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2504 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2505 					  dest->root_item.received_uuid,
2506 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2507 					  dest->root_key.objectid);
2508 		if (ret && ret != -ENOENT) {
2509 			btrfs_abort_transaction(trans, root, ret);
2510 			err = ret;
2511 			goto out_end_trans;
2512 		}
2513 	}
2514 
2515 out_end_trans:
2516 	trans->block_rsv = NULL;
2517 	trans->bytes_reserved = 0;
2518 	ret = btrfs_end_transaction(trans, root);
2519 	if (ret && !err)
2520 		err = ret;
2521 	inode->i_flags |= S_DEAD;
2522 out_release:
2523 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2524 out_up_write:
2525 	up_write(&root->fs_info->subvol_sem);
2526 	if (err) {
2527 		spin_lock(&dest->root_item_lock);
2528 		root_flags = btrfs_root_flags(&dest->root_item);
2529 		btrfs_set_root_flags(&dest->root_item,
2530 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2531 		spin_unlock(&dest->root_item_lock);
2532 	}
2533 out_unlock_inode:
2534 	mutex_unlock(&inode->i_mutex);
2535 	if (!err) {
2536 		d_invalidate(dentry);
2537 		btrfs_invalidate_inodes(dest);
2538 		d_delete(dentry);
2539 		ASSERT(dest->send_in_progress == 0);
2540 
2541 		/* the last ref */
2542 		if (dest->ino_cache_inode) {
2543 			iput(dest->ino_cache_inode);
2544 			dest->ino_cache_inode = NULL;
2545 		}
2546 	}
2547 out_dput:
2548 	dput(dentry);
2549 out_unlock_dir:
2550 	mutex_unlock(&dir->i_mutex);
2551 out_drop_write:
2552 	mnt_drop_write_file(file);
2553 out:
2554 	kfree(vol_args);
2555 	return err;
2556 }
2557 
2558 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2559 {
2560 	struct inode *inode = file_inode(file);
2561 	struct btrfs_root *root = BTRFS_I(inode)->root;
2562 	struct btrfs_ioctl_defrag_range_args *range;
2563 	int ret;
2564 
2565 	ret = mnt_want_write_file(file);
2566 	if (ret)
2567 		return ret;
2568 
2569 	if (btrfs_root_readonly(root)) {
2570 		ret = -EROFS;
2571 		goto out;
2572 	}
2573 
2574 	switch (inode->i_mode & S_IFMT) {
2575 	case S_IFDIR:
2576 		if (!capable(CAP_SYS_ADMIN)) {
2577 			ret = -EPERM;
2578 			goto out;
2579 		}
2580 		ret = btrfs_defrag_root(root);
2581 		if (ret)
2582 			goto out;
2583 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2584 		break;
2585 	case S_IFREG:
2586 		if (!(file->f_mode & FMODE_WRITE)) {
2587 			ret = -EINVAL;
2588 			goto out;
2589 		}
2590 
2591 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2592 		if (!range) {
2593 			ret = -ENOMEM;
2594 			goto out;
2595 		}
2596 
2597 		if (argp) {
2598 			if (copy_from_user(range, argp,
2599 					   sizeof(*range))) {
2600 				ret = -EFAULT;
2601 				kfree(range);
2602 				goto out;
2603 			}
2604 			/* compression requires us to start the IO */
2605 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2606 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2607 				range->extent_thresh = (u32)-1;
2608 			}
2609 		} else {
2610 			/* the rest are all set to zero by kzalloc */
2611 			range->len = (u64)-1;
2612 		}
2613 		ret = btrfs_defrag_file(file_inode(file), file,
2614 					range, 0, 0);
2615 		if (ret > 0)
2616 			ret = 0;
2617 		kfree(range);
2618 		break;
2619 	default:
2620 		ret = -EINVAL;
2621 	}
2622 out:
2623 	mnt_drop_write_file(file);
2624 	return ret;
2625 }
2626 
2627 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2628 {
2629 	struct btrfs_ioctl_vol_args *vol_args;
2630 	int ret;
2631 
2632 	if (!capable(CAP_SYS_ADMIN))
2633 		return -EPERM;
2634 
2635 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2636 			1)) {
2637 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2638 	}
2639 
2640 	mutex_lock(&root->fs_info->volume_mutex);
2641 	vol_args = memdup_user(arg, sizeof(*vol_args));
2642 	if (IS_ERR(vol_args)) {
2643 		ret = PTR_ERR(vol_args);
2644 		goto out;
2645 	}
2646 
2647 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2648 	ret = btrfs_init_new_device(root, vol_args->name);
2649 
2650 	if (!ret)
2651 		btrfs_info(root->fs_info, "disk added %s",vol_args->name);
2652 
2653 	kfree(vol_args);
2654 out:
2655 	mutex_unlock(&root->fs_info->volume_mutex);
2656 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2657 	return ret;
2658 }
2659 
2660 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2661 {
2662 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2663 	struct btrfs_ioctl_vol_args *vol_args;
2664 	int ret;
2665 
2666 	if (!capable(CAP_SYS_ADMIN))
2667 		return -EPERM;
2668 
2669 	ret = mnt_want_write_file(file);
2670 	if (ret)
2671 		return ret;
2672 
2673 	vol_args = memdup_user(arg, sizeof(*vol_args));
2674 	if (IS_ERR(vol_args)) {
2675 		ret = PTR_ERR(vol_args);
2676 		goto err_drop;
2677 	}
2678 
2679 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2680 
2681 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2682 			1)) {
2683 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2684 		goto out;
2685 	}
2686 
2687 	mutex_lock(&root->fs_info->volume_mutex);
2688 	ret = btrfs_rm_device(root, vol_args->name);
2689 	mutex_unlock(&root->fs_info->volume_mutex);
2690 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2691 
2692 	if (!ret)
2693 		btrfs_info(root->fs_info, "disk deleted %s",vol_args->name);
2694 
2695 out:
2696 	kfree(vol_args);
2697 err_drop:
2698 	mnt_drop_write_file(file);
2699 	return ret;
2700 }
2701 
2702 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2703 {
2704 	struct btrfs_ioctl_fs_info_args *fi_args;
2705 	struct btrfs_device *device;
2706 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2707 	int ret = 0;
2708 
2709 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2710 	if (!fi_args)
2711 		return -ENOMEM;
2712 
2713 	mutex_lock(&fs_devices->device_list_mutex);
2714 	fi_args->num_devices = fs_devices->num_devices;
2715 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2716 
2717 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
2718 		if (device->devid > fi_args->max_id)
2719 			fi_args->max_id = device->devid;
2720 	}
2721 	mutex_unlock(&fs_devices->device_list_mutex);
2722 
2723 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2724 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2725 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2726 
2727 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2728 		ret = -EFAULT;
2729 
2730 	kfree(fi_args);
2731 	return ret;
2732 }
2733 
2734 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2735 {
2736 	struct btrfs_ioctl_dev_info_args *di_args;
2737 	struct btrfs_device *dev;
2738 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2739 	int ret = 0;
2740 	char *s_uuid = NULL;
2741 
2742 	di_args = memdup_user(arg, sizeof(*di_args));
2743 	if (IS_ERR(di_args))
2744 		return PTR_ERR(di_args);
2745 
2746 	if (!btrfs_is_empty_uuid(di_args->uuid))
2747 		s_uuid = di_args->uuid;
2748 
2749 	mutex_lock(&fs_devices->device_list_mutex);
2750 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2751 
2752 	if (!dev) {
2753 		ret = -ENODEV;
2754 		goto out;
2755 	}
2756 
2757 	di_args->devid = dev->devid;
2758 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
2759 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
2760 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2761 	if (dev->name) {
2762 		struct rcu_string *name;
2763 
2764 		rcu_read_lock();
2765 		name = rcu_dereference(dev->name);
2766 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2767 		rcu_read_unlock();
2768 		di_args->path[sizeof(di_args->path) - 1] = 0;
2769 	} else {
2770 		di_args->path[0] = '\0';
2771 	}
2772 
2773 out:
2774 	mutex_unlock(&fs_devices->device_list_mutex);
2775 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2776 		ret = -EFAULT;
2777 
2778 	kfree(di_args);
2779 	return ret;
2780 }
2781 
2782 static struct page *extent_same_get_page(struct inode *inode, pgoff_t index)
2783 {
2784 	struct page *page;
2785 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2786 
2787 	page = grab_cache_page(inode->i_mapping, index);
2788 	if (!page)
2789 		return NULL;
2790 
2791 	if (!PageUptodate(page)) {
2792 		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2793 						 0))
2794 			return NULL;
2795 		lock_page(page);
2796 		if (!PageUptodate(page)) {
2797 			unlock_page(page);
2798 			page_cache_release(page);
2799 			return NULL;
2800 		}
2801 	}
2802 	unlock_page(page);
2803 
2804 	return page;
2805 }
2806 
2807 static int gather_extent_pages(struct inode *inode, struct page **pages,
2808 			       int num_pages, u64 off)
2809 {
2810 	int i;
2811 	pgoff_t index = off >> PAGE_CACHE_SHIFT;
2812 
2813 	for (i = 0; i < num_pages; i++) {
2814 		pages[i] = extent_same_get_page(inode, index + i);
2815 		if (!pages[i])
2816 			return -ENOMEM;
2817 	}
2818 	return 0;
2819 }
2820 
2821 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2822 {
2823 	/* do any pending delalloc/csum calc on src, one way or
2824 	   another, and lock file content */
2825 	while (1) {
2826 		struct btrfs_ordered_extent *ordered;
2827 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2828 		ordered = btrfs_lookup_first_ordered_extent(inode,
2829 							    off + len - 1);
2830 		if ((!ordered ||
2831 		     ordered->file_offset + ordered->len <= off ||
2832 		     ordered->file_offset >= off + len) &&
2833 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2834 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2835 			if (ordered)
2836 				btrfs_put_ordered_extent(ordered);
2837 			break;
2838 		}
2839 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2840 		if (ordered)
2841 			btrfs_put_ordered_extent(ordered);
2842 		btrfs_wait_ordered_range(inode, off, len);
2843 	}
2844 }
2845 
2846 static void btrfs_double_inode_unlock(struct inode *inode1, struct inode *inode2)
2847 {
2848 	mutex_unlock(&inode1->i_mutex);
2849 	mutex_unlock(&inode2->i_mutex);
2850 }
2851 
2852 static void btrfs_double_inode_lock(struct inode *inode1, struct inode *inode2)
2853 {
2854 	if (inode1 < inode2)
2855 		swap(inode1, inode2);
2856 
2857 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2858 	mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2859 }
2860 
2861 static void btrfs_double_extent_unlock(struct inode *inode1, u64 loff1,
2862 				      struct inode *inode2, u64 loff2, u64 len)
2863 {
2864 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2865 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2866 }
2867 
2868 static void btrfs_double_extent_lock(struct inode *inode1, u64 loff1,
2869 				     struct inode *inode2, u64 loff2, u64 len)
2870 {
2871 	if (inode1 < inode2) {
2872 		swap(inode1, inode2);
2873 		swap(loff1, loff2);
2874 	}
2875 	lock_extent_range(inode1, loff1, len);
2876 	lock_extent_range(inode2, loff2, len);
2877 }
2878 
2879 struct cmp_pages {
2880 	int		num_pages;
2881 	struct page	**src_pages;
2882 	struct page	**dst_pages;
2883 };
2884 
2885 static void btrfs_cmp_data_free(struct cmp_pages *cmp)
2886 {
2887 	int i;
2888 	struct page *pg;
2889 
2890 	for (i = 0; i < cmp->num_pages; i++) {
2891 		pg = cmp->src_pages[i];
2892 		if (pg)
2893 			page_cache_release(pg);
2894 		pg = cmp->dst_pages[i];
2895 		if (pg)
2896 			page_cache_release(pg);
2897 	}
2898 	kfree(cmp->src_pages);
2899 	kfree(cmp->dst_pages);
2900 }
2901 
2902 static int btrfs_cmp_data_prepare(struct inode *src, u64 loff,
2903 				  struct inode *dst, u64 dst_loff,
2904 				  u64 len, struct cmp_pages *cmp)
2905 {
2906 	int ret;
2907 	int num_pages = PAGE_CACHE_ALIGN(len) >> PAGE_CACHE_SHIFT;
2908 	struct page **src_pgarr, **dst_pgarr;
2909 
2910 	/*
2911 	 * We must gather up all the pages before we initiate our
2912 	 * extent locking. We use an array for the page pointers. Size
2913 	 * of the array is bounded by len, which is in turn bounded by
2914 	 * BTRFS_MAX_DEDUPE_LEN.
2915 	 */
2916 	src_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS);
2917 	dst_pgarr = kzalloc(num_pages * sizeof(struct page *), GFP_NOFS);
2918 	if (!src_pgarr || !dst_pgarr) {
2919 		kfree(src_pgarr);
2920 		kfree(dst_pgarr);
2921 		return -ENOMEM;
2922 	}
2923 	cmp->num_pages = num_pages;
2924 	cmp->src_pages = src_pgarr;
2925 	cmp->dst_pages = dst_pgarr;
2926 
2927 	ret = gather_extent_pages(src, cmp->src_pages, cmp->num_pages, loff);
2928 	if (ret)
2929 		goto out;
2930 
2931 	ret = gather_extent_pages(dst, cmp->dst_pages, cmp->num_pages, dst_loff);
2932 
2933 out:
2934 	if (ret)
2935 		btrfs_cmp_data_free(cmp);
2936 	return 0;
2937 }
2938 
2939 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2940 			  u64 dst_loff, u64 len, struct cmp_pages *cmp)
2941 {
2942 	int ret = 0;
2943 	int i;
2944 	struct page *src_page, *dst_page;
2945 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2946 	void *addr, *dst_addr;
2947 
2948 	i = 0;
2949 	while (len) {
2950 		if (len < PAGE_CACHE_SIZE)
2951 			cmp_len = len;
2952 
2953 		BUG_ON(i >= cmp->num_pages);
2954 
2955 		src_page = cmp->src_pages[i];
2956 		dst_page = cmp->dst_pages[i];
2957 
2958 		addr = kmap_atomic(src_page);
2959 		dst_addr = kmap_atomic(dst_page);
2960 
2961 		flush_dcache_page(src_page);
2962 		flush_dcache_page(dst_page);
2963 
2964 		if (memcmp(addr, dst_addr, cmp_len))
2965 			ret = BTRFS_SAME_DATA_DIFFERS;
2966 
2967 		kunmap_atomic(addr);
2968 		kunmap_atomic(dst_addr);
2969 
2970 		if (ret)
2971 			break;
2972 
2973 		len -= cmp_len;
2974 		i++;
2975 	}
2976 
2977 	return ret;
2978 }
2979 
2980 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 *plen,
2981 				     u64 olen)
2982 {
2983 	u64 len = *plen;
2984 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2985 
2986 	if (off + olen > inode->i_size || off + olen < off)
2987 		return -EINVAL;
2988 
2989 	/* if we extend to eof, continue to block boundary */
2990 	if (off + len == inode->i_size)
2991 		*plen = len = ALIGN(inode->i_size, bs) - off;
2992 
2993 	/* Check that we are block aligned - btrfs_clone() requires this */
2994 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2995 		return -EINVAL;
2996 
2997 	return 0;
2998 }
2999 
3000 static int btrfs_extent_same(struct inode *src, u64 loff, u64 olen,
3001 			     struct inode *dst, u64 dst_loff)
3002 {
3003 	int ret;
3004 	u64 len = olen;
3005 	struct cmp_pages cmp;
3006 	int same_inode = 0;
3007 	u64 same_lock_start = 0;
3008 	u64 same_lock_len = 0;
3009 
3010 	if (src == dst)
3011 		same_inode = 1;
3012 
3013 	if (len == 0)
3014 		return 0;
3015 
3016 	if (same_inode) {
3017 		mutex_lock(&src->i_mutex);
3018 
3019 		ret = extent_same_check_offsets(src, loff, &len, olen);
3020 		if (ret)
3021 			goto out_unlock;
3022 
3023 		/*
3024 		 * Single inode case wants the same checks, except we
3025 		 * don't want our length pushed out past i_size as
3026 		 * comparing that data range makes no sense.
3027 		 *
3028 		 * extent_same_check_offsets() will do this for an
3029 		 * unaligned length at i_size, so catch it here and
3030 		 * reject the request.
3031 		 *
3032 		 * This effectively means we require aligned extents
3033 		 * for the single-inode case, whereas the other cases
3034 		 * allow an unaligned length so long as it ends at
3035 		 * i_size.
3036 		 */
3037 		if (len != olen) {
3038 			ret = -EINVAL;
3039 			goto out_unlock;
3040 		}
3041 
3042 		/* Check for overlapping ranges */
3043 		if (dst_loff + len > loff && dst_loff < loff + len) {
3044 			ret = -EINVAL;
3045 			goto out_unlock;
3046 		}
3047 
3048 		same_lock_start = min_t(u64, loff, dst_loff);
3049 		same_lock_len = max_t(u64, loff, dst_loff) + len - same_lock_start;
3050 	} else {
3051 		btrfs_double_inode_lock(src, dst);
3052 
3053 		ret = extent_same_check_offsets(src, loff, &len, olen);
3054 		if (ret)
3055 			goto out_unlock;
3056 
3057 		ret = extent_same_check_offsets(dst, dst_loff, &len, olen);
3058 		if (ret)
3059 			goto out_unlock;
3060 	}
3061 
3062 	/* don't make the dst file partly checksummed */
3063 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3064 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
3065 		ret = -EINVAL;
3066 		goto out_unlock;
3067 	}
3068 
3069 	ret = btrfs_cmp_data_prepare(src, loff, dst, dst_loff, olen, &cmp);
3070 	if (ret)
3071 		goto out_unlock;
3072 
3073 	if (same_inode)
3074 		lock_extent_range(src, same_lock_start, same_lock_len);
3075 	else
3076 		btrfs_double_extent_lock(src, loff, dst, dst_loff, len);
3077 
3078 	/* pass original length for comparison so we stay within i_size */
3079 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, olen, &cmp);
3080 	if (ret == 0)
3081 		ret = btrfs_clone(src, dst, loff, olen, len, dst_loff, 1);
3082 
3083 	if (same_inode)
3084 		unlock_extent(&BTRFS_I(src)->io_tree, same_lock_start,
3085 			      same_lock_start + same_lock_len - 1);
3086 	else
3087 		btrfs_double_extent_unlock(src, loff, dst, dst_loff, len);
3088 
3089 	btrfs_cmp_data_free(&cmp);
3090 out_unlock:
3091 	if (same_inode)
3092 		mutex_unlock(&src->i_mutex);
3093 	else
3094 		btrfs_double_inode_unlock(src, dst);
3095 
3096 	return ret;
3097 }
3098 
3099 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
3100 
3101 static long btrfs_ioctl_file_extent_same(struct file *file,
3102 			struct btrfs_ioctl_same_args __user *argp)
3103 {
3104 	struct btrfs_ioctl_same_args *same = NULL;
3105 	struct btrfs_ioctl_same_extent_info *info;
3106 	struct inode *src = file_inode(file);
3107 	u64 off;
3108 	u64 len;
3109 	int i;
3110 	int ret;
3111 	unsigned long size;
3112 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
3113 	bool is_admin = capable(CAP_SYS_ADMIN);
3114 	u16 count;
3115 
3116 	if (!(file->f_mode & FMODE_READ))
3117 		return -EINVAL;
3118 
3119 	ret = mnt_want_write_file(file);
3120 	if (ret)
3121 		return ret;
3122 
3123 	if (get_user(count, &argp->dest_count)) {
3124 		ret = -EFAULT;
3125 		goto out;
3126 	}
3127 
3128 	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
3129 
3130 	same = memdup_user(argp, size);
3131 
3132 	if (IS_ERR(same)) {
3133 		ret = PTR_ERR(same);
3134 		same = NULL;
3135 		goto out;
3136 	}
3137 
3138 	off = same->logical_offset;
3139 	len = same->length;
3140 
3141 	/*
3142 	 * Limit the total length we will dedupe for each operation.
3143 	 * This is intended to bound the total time spent in this
3144 	 * ioctl to something sane.
3145 	 */
3146 	if (len > BTRFS_MAX_DEDUPE_LEN)
3147 		len = BTRFS_MAX_DEDUPE_LEN;
3148 
3149 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
3150 		/*
3151 		 * Btrfs does not support blocksize < page_size. As a
3152 		 * result, btrfs_cmp_data() won't correctly handle
3153 		 * this situation without an update.
3154 		 */
3155 		ret = -EINVAL;
3156 		goto out;
3157 	}
3158 
3159 	ret = -EISDIR;
3160 	if (S_ISDIR(src->i_mode))
3161 		goto out;
3162 
3163 	ret = -EACCES;
3164 	if (!S_ISREG(src->i_mode))
3165 		goto out;
3166 
3167 	/* pre-format output fields to sane values */
3168 	for (i = 0; i < count; i++) {
3169 		same->info[i].bytes_deduped = 0ULL;
3170 		same->info[i].status = 0;
3171 	}
3172 
3173 	for (i = 0, info = same->info; i < count; i++, info++) {
3174 		struct inode *dst;
3175 		struct fd dst_file = fdget(info->fd);
3176 		if (!dst_file.file) {
3177 			info->status = -EBADF;
3178 			continue;
3179 		}
3180 		dst = file_inode(dst_file.file);
3181 
3182 		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
3183 			info->status = -EINVAL;
3184 		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
3185 			info->status = -EXDEV;
3186 		} else if (S_ISDIR(dst->i_mode)) {
3187 			info->status = -EISDIR;
3188 		} else if (!S_ISREG(dst->i_mode)) {
3189 			info->status = -EACCES;
3190 		} else {
3191 			info->status = btrfs_extent_same(src, off, len, dst,
3192 							info->logical_offset);
3193 			if (info->status == 0)
3194 				info->bytes_deduped += len;
3195 		}
3196 		fdput(dst_file);
3197 	}
3198 
3199 	ret = copy_to_user(argp, same, size);
3200 	if (ret)
3201 		ret = -EFAULT;
3202 
3203 out:
3204 	mnt_drop_write_file(file);
3205 	kfree(same);
3206 	return ret;
3207 }
3208 
3209 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3210 				     struct inode *inode,
3211 				     u64 endoff,
3212 				     const u64 destoff,
3213 				     const u64 olen,
3214 				     int no_time_update)
3215 {
3216 	struct btrfs_root *root = BTRFS_I(inode)->root;
3217 	int ret;
3218 
3219 	inode_inc_iversion(inode);
3220 	if (!no_time_update)
3221 		inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3222 	/*
3223 	 * We round up to the block size at eof when determining which
3224 	 * extents to clone above, but shouldn't round up the file size.
3225 	 */
3226 	if (endoff > destoff + olen)
3227 		endoff = destoff + olen;
3228 	if (endoff > inode->i_size)
3229 		btrfs_i_size_write(inode, endoff);
3230 
3231 	ret = btrfs_update_inode(trans, root, inode);
3232 	if (ret) {
3233 		btrfs_abort_transaction(trans, root, ret);
3234 		btrfs_end_transaction(trans, root);
3235 		goto out;
3236 	}
3237 	ret = btrfs_end_transaction(trans, root);
3238 out:
3239 	return ret;
3240 }
3241 
3242 static void clone_update_extent_map(struct inode *inode,
3243 				    const struct btrfs_trans_handle *trans,
3244 				    const struct btrfs_path *path,
3245 				    const u64 hole_offset,
3246 				    const u64 hole_len)
3247 {
3248 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3249 	struct extent_map *em;
3250 	int ret;
3251 
3252 	em = alloc_extent_map();
3253 	if (!em) {
3254 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3255 			&BTRFS_I(inode)->runtime_flags);
3256 		return;
3257 	}
3258 
3259 	if (path) {
3260 		struct btrfs_file_extent_item *fi;
3261 
3262 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3263 				    struct btrfs_file_extent_item);
3264 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3265 		em->generation = -1;
3266 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3267 		    BTRFS_FILE_EXTENT_INLINE)
3268 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3269 				&BTRFS_I(inode)->runtime_flags);
3270 	} else {
3271 		em->start = hole_offset;
3272 		em->len = hole_len;
3273 		em->ram_bytes = em->len;
3274 		em->orig_start = hole_offset;
3275 		em->block_start = EXTENT_MAP_HOLE;
3276 		em->block_len = 0;
3277 		em->orig_block_len = 0;
3278 		em->compress_type = BTRFS_COMPRESS_NONE;
3279 		em->generation = trans->transid;
3280 	}
3281 
3282 	while (1) {
3283 		write_lock(&em_tree->lock);
3284 		ret = add_extent_mapping(em_tree, em, 1);
3285 		write_unlock(&em_tree->lock);
3286 		if (ret != -EEXIST) {
3287 			free_extent_map(em);
3288 			break;
3289 		}
3290 		btrfs_drop_extent_cache(inode, em->start,
3291 					em->start + em->len - 1, 0);
3292 	}
3293 
3294 	if (ret)
3295 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3296 			&BTRFS_I(inode)->runtime_flags);
3297 }
3298 
3299 /*
3300  * Make sure we do not end up inserting an inline extent into a file that has
3301  * already other (non-inline) extents. If a file has an inline extent it can
3302  * not have any other extents and the (single) inline extent must start at the
3303  * file offset 0. Failing to respect these rules will lead to file corruption,
3304  * resulting in EIO errors on read/write operations, hitting BUG_ON's in mm, etc
3305  *
3306  * We can have extents that have been already written to disk or we can have
3307  * dirty ranges still in delalloc, in which case the extent maps and items are
3308  * created only when we run delalloc, and the delalloc ranges might fall outside
3309  * the range we are currently locking in the inode's io tree. So we check the
3310  * inode's i_size because of that (i_size updates are done while holding the
3311  * i_mutex, which we are holding here).
3312  * We also check to see if the inode has a size not greater than "datal" but has
3313  * extents beyond it, due to an fallocate with FALLOC_FL_KEEP_SIZE (and we are
3314  * protected against such concurrent fallocate calls by the i_mutex).
3315  *
3316  * If the file has no extents but a size greater than datal, do not allow the
3317  * copy because we would need turn the inline extent into a non-inline one (even
3318  * with NO_HOLES enabled). If we find our destination inode only has one inline
3319  * extent, just overwrite it with the source inline extent if its size is less
3320  * than the source extent's size, or we could copy the source inline extent's
3321  * data into the destination inode's inline extent if the later is greater then
3322  * the former.
3323  */
3324 static int clone_copy_inline_extent(struct inode *src,
3325 				    struct inode *dst,
3326 				    struct btrfs_trans_handle *trans,
3327 				    struct btrfs_path *path,
3328 				    struct btrfs_key *new_key,
3329 				    const u64 drop_start,
3330 				    const u64 datal,
3331 				    const u64 skip,
3332 				    const u64 size,
3333 				    char *inline_data)
3334 {
3335 	struct btrfs_root *root = BTRFS_I(dst)->root;
3336 	const u64 aligned_end = ALIGN(new_key->offset + datal,
3337 				      root->sectorsize);
3338 	int ret;
3339 	struct btrfs_key key;
3340 
3341 	if (new_key->offset > 0)
3342 		return -EOPNOTSUPP;
3343 
3344 	key.objectid = btrfs_ino(dst);
3345 	key.type = BTRFS_EXTENT_DATA_KEY;
3346 	key.offset = 0;
3347 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3348 	if (ret < 0) {
3349 		return ret;
3350 	} else if (ret > 0) {
3351 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3352 			ret = btrfs_next_leaf(root, path);
3353 			if (ret < 0)
3354 				return ret;
3355 			else if (ret > 0)
3356 				goto copy_inline_extent;
3357 		}
3358 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3359 		if (key.objectid == btrfs_ino(dst) &&
3360 		    key.type == BTRFS_EXTENT_DATA_KEY) {
3361 			ASSERT(key.offset > 0);
3362 			return -EOPNOTSUPP;
3363 		}
3364 	} else if (i_size_read(dst) <= datal) {
3365 		struct btrfs_file_extent_item *ei;
3366 		u64 ext_len;
3367 
3368 		/*
3369 		 * If the file size is <= datal, make sure there are no other
3370 		 * extents following (can happen do to an fallocate call with
3371 		 * the flag FALLOC_FL_KEEP_SIZE).
3372 		 */
3373 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3374 				    struct btrfs_file_extent_item);
3375 		/*
3376 		 * If it's an inline extent, it can not have other extents
3377 		 * following it.
3378 		 */
3379 		if (btrfs_file_extent_type(path->nodes[0], ei) ==
3380 		    BTRFS_FILE_EXTENT_INLINE)
3381 			goto copy_inline_extent;
3382 
3383 		ext_len = btrfs_file_extent_num_bytes(path->nodes[0], ei);
3384 		if (ext_len > aligned_end)
3385 			return -EOPNOTSUPP;
3386 
3387 		ret = btrfs_next_item(root, path);
3388 		if (ret < 0) {
3389 			return ret;
3390 		} else if (ret == 0) {
3391 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3392 					      path->slots[0]);
3393 			if (key.objectid == btrfs_ino(dst) &&
3394 			    key.type == BTRFS_EXTENT_DATA_KEY)
3395 				return -EOPNOTSUPP;
3396 		}
3397 	}
3398 
3399 copy_inline_extent:
3400 	/*
3401 	 * We have no extent items, or we have an extent at offset 0 which may
3402 	 * or may not be inlined. All these cases are dealt the same way.
3403 	 */
3404 	if (i_size_read(dst) > datal) {
3405 		/*
3406 		 * If the destination inode has an inline extent...
3407 		 * This would require copying the data from the source inline
3408 		 * extent into the beginning of the destination's inline extent.
3409 		 * But this is really complex, both extents can be compressed
3410 		 * or just one of them, which would require decompressing and
3411 		 * re-compressing data (which could increase the new compressed
3412 		 * size, not allowing the compressed data to fit anymore in an
3413 		 * inline extent).
3414 		 * So just don't support this case for now (it should be rare,
3415 		 * we are not really saving space when cloning inline extents).
3416 		 */
3417 		return -EOPNOTSUPP;
3418 	}
3419 
3420 	btrfs_release_path(path);
3421 	ret = btrfs_drop_extents(trans, root, dst, drop_start, aligned_end, 1);
3422 	if (ret)
3423 		return ret;
3424 	ret = btrfs_insert_empty_item(trans, root, path, new_key, size);
3425 	if (ret)
3426 		return ret;
3427 
3428 	if (skip) {
3429 		const u32 start = btrfs_file_extent_calc_inline_size(0);
3430 
3431 		memmove(inline_data + start, inline_data + start + skip, datal);
3432 	}
3433 
3434 	write_extent_buffer(path->nodes[0], inline_data,
3435 			    btrfs_item_ptr_offset(path->nodes[0],
3436 						  path->slots[0]),
3437 			    size);
3438 	inode_add_bytes(dst, datal);
3439 
3440 	return 0;
3441 }
3442 
3443 /**
3444  * btrfs_clone() - clone a range from inode file to another
3445  *
3446  * @src: Inode to clone from
3447  * @inode: Inode to clone to
3448  * @off: Offset within source to start clone from
3449  * @olen: Original length, passed by user, of range to clone
3450  * @olen_aligned: Block-aligned value of olen
3451  * @destoff: Offset within @inode to start clone
3452  * @no_time_update: Whether to update mtime/ctime on the target inode
3453  */
3454 static int btrfs_clone(struct inode *src, struct inode *inode,
3455 		       const u64 off, const u64 olen, const u64 olen_aligned,
3456 		       const u64 destoff, int no_time_update)
3457 {
3458 	struct btrfs_root *root = BTRFS_I(inode)->root;
3459 	struct btrfs_path *path = NULL;
3460 	struct extent_buffer *leaf;
3461 	struct btrfs_trans_handle *trans;
3462 	char *buf = NULL;
3463 	struct btrfs_key key;
3464 	u32 nritems;
3465 	int slot;
3466 	int ret;
3467 	const u64 len = olen_aligned;
3468 	u64 last_dest_end = destoff;
3469 
3470 	ret = -ENOMEM;
3471 	buf = vmalloc(root->nodesize);
3472 	if (!buf)
3473 		return ret;
3474 
3475 	path = btrfs_alloc_path();
3476 	if (!path) {
3477 		vfree(buf);
3478 		return ret;
3479 	}
3480 
3481 	path->reada = 2;
3482 	/* clone data */
3483 	key.objectid = btrfs_ino(src);
3484 	key.type = BTRFS_EXTENT_DATA_KEY;
3485 	key.offset = off;
3486 
3487 	while (1) {
3488 		u64 next_key_min_offset = key.offset + 1;
3489 
3490 		/*
3491 		 * note the key will change type as we walk through the
3492 		 * tree.
3493 		 */
3494 		path->leave_spinning = 1;
3495 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3496 				0, 0);
3497 		if (ret < 0)
3498 			goto out;
3499 		/*
3500 		 * First search, if no extent item that starts at offset off was
3501 		 * found but the previous item is an extent item, it's possible
3502 		 * it might overlap our target range, therefore process it.
3503 		 */
3504 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3505 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3506 					      path->slots[0] - 1);
3507 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3508 				path->slots[0]--;
3509 		}
3510 
3511 		nritems = btrfs_header_nritems(path->nodes[0]);
3512 process_slot:
3513 		if (path->slots[0] >= nritems) {
3514 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3515 			if (ret < 0)
3516 				goto out;
3517 			if (ret > 0)
3518 				break;
3519 			nritems = btrfs_header_nritems(path->nodes[0]);
3520 		}
3521 		leaf = path->nodes[0];
3522 		slot = path->slots[0];
3523 
3524 		btrfs_item_key_to_cpu(leaf, &key, slot);
3525 		if (key.type > BTRFS_EXTENT_DATA_KEY ||
3526 		    key.objectid != btrfs_ino(src))
3527 			break;
3528 
3529 		if (key.type == BTRFS_EXTENT_DATA_KEY) {
3530 			struct btrfs_file_extent_item *extent;
3531 			int type;
3532 			u32 size;
3533 			struct btrfs_key new_key;
3534 			u64 disko = 0, diskl = 0;
3535 			u64 datao = 0, datal = 0;
3536 			u8 comp;
3537 			u64 drop_start;
3538 
3539 			extent = btrfs_item_ptr(leaf, slot,
3540 						struct btrfs_file_extent_item);
3541 			comp = btrfs_file_extent_compression(leaf, extent);
3542 			type = btrfs_file_extent_type(leaf, extent);
3543 			if (type == BTRFS_FILE_EXTENT_REG ||
3544 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3545 				disko = btrfs_file_extent_disk_bytenr(leaf,
3546 								      extent);
3547 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3548 								 extent);
3549 				datao = btrfs_file_extent_offset(leaf, extent);
3550 				datal = btrfs_file_extent_num_bytes(leaf,
3551 								    extent);
3552 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3553 				/* take upper bound, may be compressed */
3554 				datal = btrfs_file_extent_ram_bytes(leaf,
3555 								    extent);
3556 			}
3557 
3558 			/*
3559 			 * The first search might have left us at an extent
3560 			 * item that ends before our target range's start, can
3561 			 * happen if we have holes and NO_HOLES feature enabled.
3562 			 */
3563 			if (key.offset + datal <= off) {
3564 				path->slots[0]++;
3565 				goto process_slot;
3566 			} else if (key.offset >= off + len) {
3567 				break;
3568 			}
3569 			next_key_min_offset = key.offset + datal;
3570 			size = btrfs_item_size_nr(leaf, slot);
3571 			read_extent_buffer(leaf, buf,
3572 					   btrfs_item_ptr_offset(leaf, slot),
3573 					   size);
3574 
3575 			btrfs_release_path(path);
3576 			path->leave_spinning = 0;
3577 
3578 			memcpy(&new_key, &key, sizeof(new_key));
3579 			new_key.objectid = btrfs_ino(inode);
3580 			if (off <= key.offset)
3581 				new_key.offset = key.offset + destoff - off;
3582 			else
3583 				new_key.offset = destoff;
3584 
3585 			/*
3586 			 * Deal with a hole that doesn't have an extent item
3587 			 * that represents it (NO_HOLES feature enabled).
3588 			 * This hole is either in the middle of the cloning
3589 			 * range or at the beginning (fully overlaps it or
3590 			 * partially overlaps it).
3591 			 */
3592 			if (new_key.offset != last_dest_end)
3593 				drop_start = last_dest_end;
3594 			else
3595 				drop_start = new_key.offset;
3596 
3597 			/*
3598 			 * 1 - adjusting old extent (we may have to split it)
3599 			 * 1 - add new extent
3600 			 * 1 - inode update
3601 			 */
3602 			trans = btrfs_start_transaction(root, 3);
3603 			if (IS_ERR(trans)) {
3604 				ret = PTR_ERR(trans);
3605 				goto out;
3606 			}
3607 
3608 			if (type == BTRFS_FILE_EXTENT_REG ||
3609 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3610 				/*
3611 				 *    a  | --- range to clone ---|  b
3612 				 * | ------------- extent ------------- |
3613 				 */
3614 
3615 				/* subtract range b */
3616 				if (key.offset + datal > off + len)
3617 					datal = off + len - key.offset;
3618 
3619 				/* subtract range a */
3620 				if (off > key.offset) {
3621 					datao += off - key.offset;
3622 					datal -= off - key.offset;
3623 				}
3624 
3625 				ret = btrfs_drop_extents(trans, root, inode,
3626 							 drop_start,
3627 							 new_key.offset + datal,
3628 							 1);
3629 				if (ret) {
3630 					if (ret != -EOPNOTSUPP)
3631 						btrfs_abort_transaction(trans,
3632 								root, ret);
3633 					btrfs_end_transaction(trans, root);
3634 					goto out;
3635 				}
3636 
3637 				ret = btrfs_insert_empty_item(trans, root, path,
3638 							      &new_key, size);
3639 				if (ret) {
3640 					btrfs_abort_transaction(trans, root,
3641 								ret);
3642 					btrfs_end_transaction(trans, root);
3643 					goto out;
3644 				}
3645 
3646 				leaf = path->nodes[0];
3647 				slot = path->slots[0];
3648 				write_extent_buffer(leaf, buf,
3649 					    btrfs_item_ptr_offset(leaf, slot),
3650 					    size);
3651 
3652 				extent = btrfs_item_ptr(leaf, slot,
3653 						struct btrfs_file_extent_item);
3654 
3655 				/* disko == 0 means it's a hole */
3656 				if (!disko)
3657 					datao = 0;
3658 
3659 				btrfs_set_file_extent_offset(leaf, extent,
3660 							     datao);
3661 				btrfs_set_file_extent_num_bytes(leaf, extent,
3662 								datal);
3663 
3664 				if (disko) {
3665 					inode_add_bytes(inode, datal);
3666 					ret = btrfs_inc_extent_ref(trans, root,
3667 							disko, diskl, 0,
3668 							root->root_key.objectid,
3669 							btrfs_ino(inode),
3670 							new_key.offset - datao);
3671 					if (ret) {
3672 						btrfs_abort_transaction(trans,
3673 									root,
3674 									ret);
3675 						btrfs_end_transaction(trans,
3676 								      root);
3677 						goto out;
3678 
3679 					}
3680 				}
3681 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3682 				u64 skip = 0;
3683 				u64 trim = 0;
3684 
3685 				if (off > key.offset) {
3686 					skip = off - key.offset;
3687 					new_key.offset += skip;
3688 				}
3689 
3690 				if (key.offset + datal > off + len)
3691 					trim = key.offset + datal - (off + len);
3692 
3693 				if (comp && (skip || trim)) {
3694 					ret = -EINVAL;
3695 					btrfs_end_transaction(trans, root);
3696 					goto out;
3697 				}
3698 				size -= skip + trim;
3699 				datal -= skip + trim;
3700 
3701 				ret = clone_copy_inline_extent(src, inode,
3702 							       trans, path,
3703 							       &new_key,
3704 							       drop_start,
3705 							       datal,
3706 							       skip, size, buf);
3707 				if (ret) {
3708 					if (ret != -EOPNOTSUPP)
3709 						btrfs_abort_transaction(trans,
3710 									root,
3711 									ret);
3712 					btrfs_end_transaction(trans, root);
3713 					goto out;
3714 				}
3715 				leaf = path->nodes[0];
3716 				slot = path->slots[0];
3717 			}
3718 
3719 			/* If we have an implicit hole (NO_HOLES feature). */
3720 			if (drop_start < new_key.offset)
3721 				clone_update_extent_map(inode, trans,
3722 						NULL, drop_start,
3723 						new_key.offset - drop_start);
3724 
3725 			clone_update_extent_map(inode, trans, path, 0, 0);
3726 
3727 			btrfs_mark_buffer_dirty(leaf);
3728 			btrfs_release_path(path);
3729 
3730 			last_dest_end = ALIGN(new_key.offset + datal,
3731 					      root->sectorsize);
3732 			ret = clone_finish_inode_update(trans, inode,
3733 							last_dest_end,
3734 							destoff, olen,
3735 							no_time_update);
3736 			if (ret)
3737 				goto out;
3738 			if (new_key.offset + datal >= destoff + len)
3739 				break;
3740 		}
3741 		btrfs_release_path(path);
3742 		key.offset = next_key_min_offset;
3743 	}
3744 	ret = 0;
3745 
3746 	if (last_dest_end < destoff + len) {
3747 		/*
3748 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3749 		 * fully or partially overlaps our cloning range at its end.
3750 		 */
3751 		btrfs_release_path(path);
3752 
3753 		/*
3754 		 * 1 - remove extent(s)
3755 		 * 1 - inode update
3756 		 */
3757 		trans = btrfs_start_transaction(root, 2);
3758 		if (IS_ERR(trans)) {
3759 			ret = PTR_ERR(trans);
3760 			goto out;
3761 		}
3762 		ret = btrfs_drop_extents(trans, root, inode,
3763 					 last_dest_end, destoff + len, 1);
3764 		if (ret) {
3765 			if (ret != -EOPNOTSUPP)
3766 				btrfs_abort_transaction(trans, root, ret);
3767 			btrfs_end_transaction(trans, root);
3768 			goto out;
3769 		}
3770 		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3771 					destoff + len - last_dest_end);
3772 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3773 						destoff, olen, no_time_update);
3774 	}
3775 
3776 out:
3777 	btrfs_free_path(path);
3778 	vfree(buf);
3779 	return ret;
3780 }
3781 
3782 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3783 				       u64 off, u64 olen, u64 destoff)
3784 {
3785 	struct inode *inode = file_inode(file);
3786 	struct btrfs_root *root = BTRFS_I(inode)->root;
3787 	struct fd src_file;
3788 	struct inode *src;
3789 	int ret;
3790 	u64 len = olen;
3791 	u64 bs = root->fs_info->sb->s_blocksize;
3792 	int same_inode = 0;
3793 
3794 	/*
3795 	 * TODO:
3796 	 * - split compressed inline extents.  annoying: we need to
3797 	 *   decompress into destination's address_space (the file offset
3798 	 *   may change, so source mapping won't do), then recompress (or
3799 	 *   otherwise reinsert) a subrange.
3800 	 *
3801 	 * - split destination inode's inline extents.  The inline extents can
3802 	 *   be either compressed or non-compressed.
3803 	 */
3804 
3805 	/* the destination must be opened for writing */
3806 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3807 		return -EINVAL;
3808 
3809 	if (btrfs_root_readonly(root))
3810 		return -EROFS;
3811 
3812 	ret = mnt_want_write_file(file);
3813 	if (ret)
3814 		return ret;
3815 
3816 	src_file = fdget(srcfd);
3817 	if (!src_file.file) {
3818 		ret = -EBADF;
3819 		goto out_drop_write;
3820 	}
3821 
3822 	ret = -EXDEV;
3823 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3824 		goto out_fput;
3825 
3826 	src = file_inode(src_file.file);
3827 
3828 	ret = -EINVAL;
3829 	if (src == inode)
3830 		same_inode = 1;
3831 
3832 	/* the src must be open for reading */
3833 	if (!(src_file.file->f_mode & FMODE_READ))
3834 		goto out_fput;
3835 
3836 	/* don't make the dst file partly checksummed */
3837 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3838 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3839 		goto out_fput;
3840 
3841 	ret = -EISDIR;
3842 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3843 		goto out_fput;
3844 
3845 	ret = -EXDEV;
3846 	if (src->i_sb != inode->i_sb)
3847 		goto out_fput;
3848 
3849 	if (!same_inode) {
3850 		btrfs_double_inode_lock(src, inode);
3851 	} else {
3852 		mutex_lock(&src->i_mutex);
3853 	}
3854 
3855 	/* determine range to clone */
3856 	ret = -EINVAL;
3857 	if (off + len > src->i_size || off + len < off)
3858 		goto out_unlock;
3859 	if (len == 0)
3860 		olen = len = src->i_size - off;
3861 	/* if we extend to eof, continue to block boundary */
3862 	if (off + len == src->i_size)
3863 		len = ALIGN(src->i_size, bs) - off;
3864 
3865 	if (len == 0) {
3866 		ret = 0;
3867 		goto out_unlock;
3868 	}
3869 
3870 	/* verify the end result is block aligned */
3871 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3872 	    !IS_ALIGNED(destoff, bs))
3873 		goto out_unlock;
3874 
3875 	/* verify if ranges are overlapped within the same file */
3876 	if (same_inode) {
3877 		if (destoff + len > off && destoff < off + len)
3878 			goto out_unlock;
3879 	}
3880 
3881 	if (destoff > inode->i_size) {
3882 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3883 		if (ret)
3884 			goto out_unlock;
3885 	}
3886 
3887 	/*
3888 	 * Lock the target range too. Right after we replace the file extent
3889 	 * items in the fs tree (which now point to the cloned data), we might
3890 	 * have a worker replace them with extent items relative to a write
3891 	 * operation that was issued before this clone operation (i.e. confront
3892 	 * with inode.c:btrfs_finish_ordered_io).
3893 	 */
3894 	if (same_inode) {
3895 		u64 lock_start = min_t(u64, off, destoff);
3896 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3897 
3898 		lock_extent_range(src, lock_start, lock_len);
3899 	} else {
3900 		btrfs_double_extent_lock(src, off, inode, destoff, len);
3901 	}
3902 
3903 	ret = btrfs_clone(src, inode, off, olen, len, destoff, 0);
3904 
3905 	if (same_inode) {
3906 		u64 lock_start = min_t(u64, off, destoff);
3907 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3908 
3909 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3910 	} else {
3911 		btrfs_double_extent_unlock(src, off, inode, destoff, len);
3912 	}
3913 	/*
3914 	 * Truncate page cache pages so that future reads will see the cloned
3915 	 * data immediately and not the previous data.
3916 	 */
3917 	truncate_inode_pages_range(&inode->i_data, destoff,
3918 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3919 out_unlock:
3920 	if (!same_inode)
3921 		btrfs_double_inode_unlock(src, inode);
3922 	else
3923 		mutex_unlock(&src->i_mutex);
3924 out_fput:
3925 	fdput(src_file);
3926 out_drop_write:
3927 	mnt_drop_write_file(file);
3928 	return ret;
3929 }
3930 
3931 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3932 {
3933 	struct btrfs_ioctl_clone_range_args args;
3934 
3935 	if (copy_from_user(&args, argp, sizeof(args)))
3936 		return -EFAULT;
3937 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3938 				 args.src_length, args.dest_offset);
3939 }
3940 
3941 /*
3942  * there are many ways the trans_start and trans_end ioctls can lead
3943  * to deadlocks.  They should only be used by applications that
3944  * basically own the machine, and have a very in depth understanding
3945  * of all the possible deadlocks and enospc problems.
3946  */
3947 static long btrfs_ioctl_trans_start(struct file *file)
3948 {
3949 	struct inode *inode = file_inode(file);
3950 	struct btrfs_root *root = BTRFS_I(inode)->root;
3951 	struct btrfs_trans_handle *trans;
3952 	int ret;
3953 
3954 	ret = -EPERM;
3955 	if (!capable(CAP_SYS_ADMIN))
3956 		goto out;
3957 
3958 	ret = -EINPROGRESS;
3959 	if (file->private_data)
3960 		goto out;
3961 
3962 	ret = -EROFS;
3963 	if (btrfs_root_readonly(root))
3964 		goto out;
3965 
3966 	ret = mnt_want_write_file(file);
3967 	if (ret)
3968 		goto out;
3969 
3970 	atomic_inc(&root->fs_info->open_ioctl_trans);
3971 
3972 	ret = -ENOMEM;
3973 	trans = btrfs_start_ioctl_transaction(root);
3974 	if (IS_ERR(trans))
3975 		goto out_drop;
3976 
3977 	file->private_data = trans;
3978 	return 0;
3979 
3980 out_drop:
3981 	atomic_dec(&root->fs_info->open_ioctl_trans);
3982 	mnt_drop_write_file(file);
3983 out:
3984 	return ret;
3985 }
3986 
3987 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3988 {
3989 	struct inode *inode = file_inode(file);
3990 	struct btrfs_root *root = BTRFS_I(inode)->root;
3991 	struct btrfs_root *new_root;
3992 	struct btrfs_dir_item *di;
3993 	struct btrfs_trans_handle *trans;
3994 	struct btrfs_path *path;
3995 	struct btrfs_key location;
3996 	struct btrfs_disk_key disk_key;
3997 	u64 objectid = 0;
3998 	u64 dir_id;
3999 	int ret;
4000 
4001 	if (!capable(CAP_SYS_ADMIN))
4002 		return -EPERM;
4003 
4004 	ret = mnt_want_write_file(file);
4005 	if (ret)
4006 		return ret;
4007 
4008 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
4009 		ret = -EFAULT;
4010 		goto out;
4011 	}
4012 
4013 	if (!objectid)
4014 		objectid = BTRFS_FS_TREE_OBJECTID;
4015 
4016 	location.objectid = objectid;
4017 	location.type = BTRFS_ROOT_ITEM_KEY;
4018 	location.offset = (u64)-1;
4019 
4020 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
4021 	if (IS_ERR(new_root)) {
4022 		ret = PTR_ERR(new_root);
4023 		goto out;
4024 	}
4025 
4026 	path = btrfs_alloc_path();
4027 	if (!path) {
4028 		ret = -ENOMEM;
4029 		goto out;
4030 	}
4031 	path->leave_spinning = 1;
4032 
4033 	trans = btrfs_start_transaction(root, 1);
4034 	if (IS_ERR(trans)) {
4035 		btrfs_free_path(path);
4036 		ret = PTR_ERR(trans);
4037 		goto out;
4038 	}
4039 
4040 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
4041 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
4042 				   dir_id, "default", 7, 1);
4043 	if (IS_ERR_OR_NULL(di)) {
4044 		btrfs_free_path(path);
4045 		btrfs_end_transaction(trans, root);
4046 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
4047 			   "item, this isn't going to work");
4048 		ret = -ENOENT;
4049 		goto out;
4050 	}
4051 
4052 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
4053 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
4054 	btrfs_mark_buffer_dirty(path->nodes[0]);
4055 	btrfs_free_path(path);
4056 
4057 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
4058 	btrfs_end_transaction(trans, root);
4059 out:
4060 	mnt_drop_write_file(file);
4061 	return ret;
4062 }
4063 
4064 void btrfs_get_block_group_info(struct list_head *groups_list,
4065 				struct btrfs_ioctl_space_info *space)
4066 {
4067 	struct btrfs_block_group_cache *block_group;
4068 
4069 	space->total_bytes = 0;
4070 	space->used_bytes = 0;
4071 	space->flags = 0;
4072 	list_for_each_entry(block_group, groups_list, list) {
4073 		space->flags = block_group->flags;
4074 		space->total_bytes += block_group->key.offset;
4075 		space->used_bytes +=
4076 			btrfs_block_group_used(&block_group->item);
4077 	}
4078 }
4079 
4080 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
4081 {
4082 	struct btrfs_ioctl_space_args space_args;
4083 	struct btrfs_ioctl_space_info space;
4084 	struct btrfs_ioctl_space_info *dest;
4085 	struct btrfs_ioctl_space_info *dest_orig;
4086 	struct btrfs_ioctl_space_info __user *user_dest;
4087 	struct btrfs_space_info *info;
4088 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
4089 		       BTRFS_BLOCK_GROUP_SYSTEM,
4090 		       BTRFS_BLOCK_GROUP_METADATA,
4091 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
4092 	int num_types = 4;
4093 	int alloc_size;
4094 	int ret = 0;
4095 	u64 slot_count = 0;
4096 	int i, c;
4097 
4098 	if (copy_from_user(&space_args,
4099 			   (struct btrfs_ioctl_space_args __user *)arg,
4100 			   sizeof(space_args)))
4101 		return -EFAULT;
4102 
4103 	for (i = 0; i < num_types; i++) {
4104 		struct btrfs_space_info *tmp;
4105 
4106 		info = NULL;
4107 		rcu_read_lock();
4108 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4109 					list) {
4110 			if (tmp->flags == types[i]) {
4111 				info = tmp;
4112 				break;
4113 			}
4114 		}
4115 		rcu_read_unlock();
4116 
4117 		if (!info)
4118 			continue;
4119 
4120 		down_read(&info->groups_sem);
4121 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4122 			if (!list_empty(&info->block_groups[c]))
4123 				slot_count++;
4124 		}
4125 		up_read(&info->groups_sem);
4126 	}
4127 
4128 	/*
4129 	 * Global block reserve, exported as a space_info
4130 	 */
4131 	slot_count++;
4132 
4133 	/* space_slots == 0 means they are asking for a count */
4134 	if (space_args.space_slots == 0) {
4135 		space_args.total_spaces = slot_count;
4136 		goto out;
4137 	}
4138 
4139 	slot_count = min_t(u64, space_args.space_slots, slot_count);
4140 
4141 	alloc_size = sizeof(*dest) * slot_count;
4142 
4143 	/* we generally have at most 6 or so space infos, one for each raid
4144 	 * level.  So, a whole page should be more than enough for everyone
4145 	 */
4146 	if (alloc_size > PAGE_CACHE_SIZE)
4147 		return -ENOMEM;
4148 
4149 	space_args.total_spaces = 0;
4150 	dest = kmalloc(alloc_size, GFP_NOFS);
4151 	if (!dest)
4152 		return -ENOMEM;
4153 	dest_orig = dest;
4154 
4155 	/* now we have a buffer to copy into */
4156 	for (i = 0; i < num_types; i++) {
4157 		struct btrfs_space_info *tmp;
4158 
4159 		if (!slot_count)
4160 			break;
4161 
4162 		info = NULL;
4163 		rcu_read_lock();
4164 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
4165 					list) {
4166 			if (tmp->flags == types[i]) {
4167 				info = tmp;
4168 				break;
4169 			}
4170 		}
4171 		rcu_read_unlock();
4172 
4173 		if (!info)
4174 			continue;
4175 		down_read(&info->groups_sem);
4176 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
4177 			if (!list_empty(&info->block_groups[c])) {
4178 				btrfs_get_block_group_info(
4179 					&info->block_groups[c], &space);
4180 				memcpy(dest, &space, sizeof(space));
4181 				dest++;
4182 				space_args.total_spaces++;
4183 				slot_count--;
4184 			}
4185 			if (!slot_count)
4186 				break;
4187 		}
4188 		up_read(&info->groups_sem);
4189 	}
4190 
4191 	/*
4192 	 * Add global block reserve
4193 	 */
4194 	if (slot_count) {
4195 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
4196 
4197 		spin_lock(&block_rsv->lock);
4198 		space.total_bytes = block_rsv->size;
4199 		space.used_bytes = block_rsv->size - block_rsv->reserved;
4200 		spin_unlock(&block_rsv->lock);
4201 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
4202 		memcpy(dest, &space, sizeof(space));
4203 		space_args.total_spaces++;
4204 	}
4205 
4206 	user_dest = (struct btrfs_ioctl_space_info __user *)
4207 		(arg + sizeof(struct btrfs_ioctl_space_args));
4208 
4209 	if (copy_to_user(user_dest, dest_orig, alloc_size))
4210 		ret = -EFAULT;
4211 
4212 	kfree(dest_orig);
4213 out:
4214 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
4215 		ret = -EFAULT;
4216 
4217 	return ret;
4218 }
4219 
4220 /*
4221  * there are many ways the trans_start and trans_end ioctls can lead
4222  * to deadlocks.  They should only be used by applications that
4223  * basically own the machine, and have a very in depth understanding
4224  * of all the possible deadlocks and enospc problems.
4225  */
4226 long btrfs_ioctl_trans_end(struct file *file)
4227 {
4228 	struct inode *inode = file_inode(file);
4229 	struct btrfs_root *root = BTRFS_I(inode)->root;
4230 	struct btrfs_trans_handle *trans;
4231 
4232 	trans = file->private_data;
4233 	if (!trans)
4234 		return -EINVAL;
4235 	file->private_data = NULL;
4236 
4237 	btrfs_end_transaction(trans, root);
4238 
4239 	atomic_dec(&root->fs_info->open_ioctl_trans);
4240 
4241 	mnt_drop_write_file(file);
4242 	return 0;
4243 }
4244 
4245 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4246 					    void __user *argp)
4247 {
4248 	struct btrfs_trans_handle *trans;
4249 	u64 transid;
4250 	int ret;
4251 
4252 	trans = btrfs_attach_transaction_barrier(root);
4253 	if (IS_ERR(trans)) {
4254 		if (PTR_ERR(trans) != -ENOENT)
4255 			return PTR_ERR(trans);
4256 
4257 		/* No running transaction, don't bother */
4258 		transid = root->fs_info->last_trans_committed;
4259 		goto out;
4260 	}
4261 	transid = trans->transid;
4262 	ret = btrfs_commit_transaction_async(trans, root, 0);
4263 	if (ret) {
4264 		btrfs_end_transaction(trans, root);
4265 		return ret;
4266 	}
4267 out:
4268 	if (argp)
4269 		if (copy_to_user(argp, &transid, sizeof(transid)))
4270 			return -EFAULT;
4271 	return 0;
4272 }
4273 
4274 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4275 					   void __user *argp)
4276 {
4277 	u64 transid;
4278 
4279 	if (argp) {
4280 		if (copy_from_user(&transid, argp, sizeof(transid)))
4281 			return -EFAULT;
4282 	} else {
4283 		transid = 0;  /* current trans */
4284 	}
4285 	return btrfs_wait_for_commit(root, transid);
4286 }
4287 
4288 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4289 {
4290 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4291 	struct btrfs_ioctl_scrub_args *sa;
4292 	int ret;
4293 
4294 	if (!capable(CAP_SYS_ADMIN))
4295 		return -EPERM;
4296 
4297 	sa = memdup_user(arg, sizeof(*sa));
4298 	if (IS_ERR(sa))
4299 		return PTR_ERR(sa);
4300 
4301 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4302 		ret = mnt_want_write_file(file);
4303 		if (ret)
4304 			goto out;
4305 	}
4306 
4307 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4308 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4309 			      0);
4310 
4311 	if (copy_to_user(arg, sa, sizeof(*sa)))
4312 		ret = -EFAULT;
4313 
4314 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4315 		mnt_drop_write_file(file);
4316 out:
4317 	kfree(sa);
4318 	return ret;
4319 }
4320 
4321 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4322 {
4323 	if (!capable(CAP_SYS_ADMIN))
4324 		return -EPERM;
4325 
4326 	return btrfs_scrub_cancel(root->fs_info);
4327 }
4328 
4329 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4330 				       void __user *arg)
4331 {
4332 	struct btrfs_ioctl_scrub_args *sa;
4333 	int ret;
4334 
4335 	if (!capable(CAP_SYS_ADMIN))
4336 		return -EPERM;
4337 
4338 	sa = memdup_user(arg, sizeof(*sa));
4339 	if (IS_ERR(sa))
4340 		return PTR_ERR(sa);
4341 
4342 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4343 
4344 	if (copy_to_user(arg, sa, sizeof(*sa)))
4345 		ret = -EFAULT;
4346 
4347 	kfree(sa);
4348 	return ret;
4349 }
4350 
4351 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4352 				      void __user *arg)
4353 {
4354 	struct btrfs_ioctl_get_dev_stats *sa;
4355 	int ret;
4356 
4357 	sa = memdup_user(arg, sizeof(*sa));
4358 	if (IS_ERR(sa))
4359 		return PTR_ERR(sa);
4360 
4361 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4362 		kfree(sa);
4363 		return -EPERM;
4364 	}
4365 
4366 	ret = btrfs_get_dev_stats(root, sa);
4367 
4368 	if (copy_to_user(arg, sa, sizeof(*sa)))
4369 		ret = -EFAULT;
4370 
4371 	kfree(sa);
4372 	return ret;
4373 }
4374 
4375 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4376 {
4377 	struct btrfs_ioctl_dev_replace_args *p;
4378 	int ret;
4379 
4380 	if (!capable(CAP_SYS_ADMIN))
4381 		return -EPERM;
4382 
4383 	p = memdup_user(arg, sizeof(*p));
4384 	if (IS_ERR(p))
4385 		return PTR_ERR(p);
4386 
4387 	switch (p->cmd) {
4388 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4389 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4390 			ret = -EROFS;
4391 			goto out;
4392 		}
4393 		if (atomic_xchg(
4394 			&root->fs_info->mutually_exclusive_operation_running,
4395 			1)) {
4396 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4397 		} else {
4398 			ret = btrfs_dev_replace_start(root, p);
4399 			atomic_set(
4400 			 &root->fs_info->mutually_exclusive_operation_running,
4401 			 0);
4402 		}
4403 		break;
4404 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4405 		btrfs_dev_replace_status(root->fs_info, p);
4406 		ret = 0;
4407 		break;
4408 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4409 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4410 		break;
4411 	default:
4412 		ret = -EINVAL;
4413 		break;
4414 	}
4415 
4416 	if (copy_to_user(arg, p, sizeof(*p)))
4417 		ret = -EFAULT;
4418 out:
4419 	kfree(p);
4420 	return ret;
4421 }
4422 
4423 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4424 {
4425 	int ret = 0;
4426 	int i;
4427 	u64 rel_ptr;
4428 	int size;
4429 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4430 	struct inode_fs_paths *ipath = NULL;
4431 	struct btrfs_path *path;
4432 
4433 	if (!capable(CAP_DAC_READ_SEARCH))
4434 		return -EPERM;
4435 
4436 	path = btrfs_alloc_path();
4437 	if (!path) {
4438 		ret = -ENOMEM;
4439 		goto out;
4440 	}
4441 
4442 	ipa = memdup_user(arg, sizeof(*ipa));
4443 	if (IS_ERR(ipa)) {
4444 		ret = PTR_ERR(ipa);
4445 		ipa = NULL;
4446 		goto out;
4447 	}
4448 
4449 	size = min_t(u32, ipa->size, 4096);
4450 	ipath = init_ipath(size, root, path);
4451 	if (IS_ERR(ipath)) {
4452 		ret = PTR_ERR(ipath);
4453 		ipath = NULL;
4454 		goto out;
4455 	}
4456 
4457 	ret = paths_from_inode(ipa->inum, ipath);
4458 	if (ret < 0)
4459 		goto out;
4460 
4461 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4462 		rel_ptr = ipath->fspath->val[i] -
4463 			  (u64)(unsigned long)ipath->fspath->val;
4464 		ipath->fspath->val[i] = rel_ptr;
4465 	}
4466 
4467 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4468 			   (void *)(unsigned long)ipath->fspath, size);
4469 	if (ret) {
4470 		ret = -EFAULT;
4471 		goto out;
4472 	}
4473 
4474 out:
4475 	btrfs_free_path(path);
4476 	free_ipath(ipath);
4477 	kfree(ipa);
4478 
4479 	return ret;
4480 }
4481 
4482 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4483 {
4484 	struct btrfs_data_container *inodes = ctx;
4485 	const size_t c = 3 * sizeof(u64);
4486 
4487 	if (inodes->bytes_left >= c) {
4488 		inodes->bytes_left -= c;
4489 		inodes->val[inodes->elem_cnt] = inum;
4490 		inodes->val[inodes->elem_cnt + 1] = offset;
4491 		inodes->val[inodes->elem_cnt + 2] = root;
4492 		inodes->elem_cnt += 3;
4493 	} else {
4494 		inodes->bytes_missing += c - inodes->bytes_left;
4495 		inodes->bytes_left = 0;
4496 		inodes->elem_missed += 3;
4497 	}
4498 
4499 	return 0;
4500 }
4501 
4502 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4503 					void __user *arg)
4504 {
4505 	int ret = 0;
4506 	int size;
4507 	struct btrfs_ioctl_logical_ino_args *loi;
4508 	struct btrfs_data_container *inodes = NULL;
4509 	struct btrfs_path *path = NULL;
4510 
4511 	if (!capable(CAP_SYS_ADMIN))
4512 		return -EPERM;
4513 
4514 	loi = memdup_user(arg, sizeof(*loi));
4515 	if (IS_ERR(loi)) {
4516 		ret = PTR_ERR(loi);
4517 		loi = NULL;
4518 		goto out;
4519 	}
4520 
4521 	path = btrfs_alloc_path();
4522 	if (!path) {
4523 		ret = -ENOMEM;
4524 		goto out;
4525 	}
4526 
4527 	size = min_t(u32, loi->size, 64 * 1024);
4528 	inodes = init_data_container(size);
4529 	if (IS_ERR(inodes)) {
4530 		ret = PTR_ERR(inodes);
4531 		inodes = NULL;
4532 		goto out;
4533 	}
4534 
4535 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4536 					  build_ino_list, inodes);
4537 	if (ret == -EINVAL)
4538 		ret = -ENOENT;
4539 	if (ret < 0)
4540 		goto out;
4541 
4542 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4543 			   (void *)(unsigned long)inodes, size);
4544 	if (ret)
4545 		ret = -EFAULT;
4546 
4547 out:
4548 	btrfs_free_path(path);
4549 	vfree(inodes);
4550 	kfree(loi);
4551 
4552 	return ret;
4553 }
4554 
4555 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4556 			       struct btrfs_ioctl_balance_args *bargs)
4557 {
4558 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4559 
4560 	bargs->flags = bctl->flags;
4561 
4562 	if (atomic_read(&fs_info->balance_running))
4563 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4564 	if (atomic_read(&fs_info->balance_pause_req))
4565 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4566 	if (atomic_read(&fs_info->balance_cancel_req))
4567 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4568 
4569 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4570 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4571 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4572 
4573 	if (lock) {
4574 		spin_lock(&fs_info->balance_lock);
4575 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4576 		spin_unlock(&fs_info->balance_lock);
4577 	} else {
4578 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4579 	}
4580 }
4581 
4582 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4583 {
4584 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4585 	struct btrfs_fs_info *fs_info = root->fs_info;
4586 	struct btrfs_ioctl_balance_args *bargs;
4587 	struct btrfs_balance_control *bctl;
4588 	bool need_unlock; /* for mut. excl. ops lock */
4589 	int ret;
4590 
4591 	if (!capable(CAP_SYS_ADMIN))
4592 		return -EPERM;
4593 
4594 	ret = mnt_want_write_file(file);
4595 	if (ret)
4596 		return ret;
4597 
4598 again:
4599 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4600 		mutex_lock(&fs_info->volume_mutex);
4601 		mutex_lock(&fs_info->balance_mutex);
4602 		need_unlock = true;
4603 		goto locked;
4604 	}
4605 
4606 	/*
4607 	 * mut. excl. ops lock is locked.  Three possibilites:
4608 	 *   (1) some other op is running
4609 	 *   (2) balance is running
4610 	 *   (3) balance is paused -- special case (think resume)
4611 	 */
4612 	mutex_lock(&fs_info->balance_mutex);
4613 	if (fs_info->balance_ctl) {
4614 		/* this is either (2) or (3) */
4615 		if (!atomic_read(&fs_info->balance_running)) {
4616 			mutex_unlock(&fs_info->balance_mutex);
4617 			if (!mutex_trylock(&fs_info->volume_mutex))
4618 				goto again;
4619 			mutex_lock(&fs_info->balance_mutex);
4620 
4621 			if (fs_info->balance_ctl &&
4622 			    !atomic_read(&fs_info->balance_running)) {
4623 				/* this is (3) */
4624 				need_unlock = false;
4625 				goto locked;
4626 			}
4627 
4628 			mutex_unlock(&fs_info->balance_mutex);
4629 			mutex_unlock(&fs_info->volume_mutex);
4630 			goto again;
4631 		} else {
4632 			/* this is (2) */
4633 			mutex_unlock(&fs_info->balance_mutex);
4634 			ret = -EINPROGRESS;
4635 			goto out;
4636 		}
4637 	} else {
4638 		/* this is (1) */
4639 		mutex_unlock(&fs_info->balance_mutex);
4640 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4641 		goto out;
4642 	}
4643 
4644 locked:
4645 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4646 
4647 	if (arg) {
4648 		bargs = memdup_user(arg, sizeof(*bargs));
4649 		if (IS_ERR(bargs)) {
4650 			ret = PTR_ERR(bargs);
4651 			goto out_unlock;
4652 		}
4653 
4654 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4655 			if (!fs_info->balance_ctl) {
4656 				ret = -ENOTCONN;
4657 				goto out_bargs;
4658 			}
4659 
4660 			bctl = fs_info->balance_ctl;
4661 			spin_lock(&fs_info->balance_lock);
4662 			bctl->flags |= BTRFS_BALANCE_RESUME;
4663 			spin_unlock(&fs_info->balance_lock);
4664 
4665 			goto do_balance;
4666 		}
4667 	} else {
4668 		bargs = NULL;
4669 	}
4670 
4671 	if (fs_info->balance_ctl) {
4672 		ret = -EINPROGRESS;
4673 		goto out_bargs;
4674 	}
4675 
4676 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4677 	if (!bctl) {
4678 		ret = -ENOMEM;
4679 		goto out_bargs;
4680 	}
4681 
4682 	bctl->fs_info = fs_info;
4683 	if (arg) {
4684 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4685 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4686 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4687 
4688 		bctl->flags = bargs->flags;
4689 	} else {
4690 		/* balance everything - no filters */
4691 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4692 	}
4693 
4694 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4695 		ret = -EINVAL;
4696 		goto out_bctl;
4697 	}
4698 
4699 do_balance:
4700 	/*
4701 	 * Ownership of bctl and mutually_exclusive_operation_running
4702 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4703 	 * or, if restriper was paused all the way until unmount, in
4704 	 * free_fs_info.  mutually_exclusive_operation_running is
4705 	 * cleared in __cancel_balance.
4706 	 */
4707 	need_unlock = false;
4708 
4709 	ret = btrfs_balance(bctl, bargs);
4710 	bctl = NULL;
4711 
4712 	if (arg) {
4713 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4714 			ret = -EFAULT;
4715 	}
4716 
4717 out_bctl:
4718 	kfree(bctl);
4719 out_bargs:
4720 	kfree(bargs);
4721 out_unlock:
4722 	mutex_unlock(&fs_info->balance_mutex);
4723 	mutex_unlock(&fs_info->volume_mutex);
4724 	if (need_unlock)
4725 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4726 out:
4727 	mnt_drop_write_file(file);
4728 	return ret;
4729 }
4730 
4731 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4732 {
4733 	if (!capable(CAP_SYS_ADMIN))
4734 		return -EPERM;
4735 
4736 	switch (cmd) {
4737 	case BTRFS_BALANCE_CTL_PAUSE:
4738 		return btrfs_pause_balance(root->fs_info);
4739 	case BTRFS_BALANCE_CTL_CANCEL:
4740 		return btrfs_cancel_balance(root->fs_info);
4741 	}
4742 
4743 	return -EINVAL;
4744 }
4745 
4746 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4747 					 void __user *arg)
4748 {
4749 	struct btrfs_fs_info *fs_info = root->fs_info;
4750 	struct btrfs_ioctl_balance_args *bargs;
4751 	int ret = 0;
4752 
4753 	if (!capable(CAP_SYS_ADMIN))
4754 		return -EPERM;
4755 
4756 	mutex_lock(&fs_info->balance_mutex);
4757 	if (!fs_info->balance_ctl) {
4758 		ret = -ENOTCONN;
4759 		goto out;
4760 	}
4761 
4762 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4763 	if (!bargs) {
4764 		ret = -ENOMEM;
4765 		goto out;
4766 	}
4767 
4768 	update_ioctl_balance_args(fs_info, 1, bargs);
4769 
4770 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4771 		ret = -EFAULT;
4772 
4773 	kfree(bargs);
4774 out:
4775 	mutex_unlock(&fs_info->balance_mutex);
4776 	return ret;
4777 }
4778 
4779 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4780 {
4781 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4782 	struct btrfs_ioctl_quota_ctl_args *sa;
4783 	struct btrfs_trans_handle *trans = NULL;
4784 	int ret;
4785 	int err;
4786 
4787 	if (!capable(CAP_SYS_ADMIN))
4788 		return -EPERM;
4789 
4790 	ret = mnt_want_write_file(file);
4791 	if (ret)
4792 		return ret;
4793 
4794 	sa = memdup_user(arg, sizeof(*sa));
4795 	if (IS_ERR(sa)) {
4796 		ret = PTR_ERR(sa);
4797 		goto drop_write;
4798 	}
4799 
4800 	down_write(&root->fs_info->subvol_sem);
4801 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4802 	if (IS_ERR(trans)) {
4803 		ret = PTR_ERR(trans);
4804 		goto out;
4805 	}
4806 
4807 	switch (sa->cmd) {
4808 	case BTRFS_QUOTA_CTL_ENABLE:
4809 		ret = btrfs_quota_enable(trans, root->fs_info);
4810 		break;
4811 	case BTRFS_QUOTA_CTL_DISABLE:
4812 		ret = btrfs_quota_disable(trans, root->fs_info);
4813 		break;
4814 	default:
4815 		ret = -EINVAL;
4816 		break;
4817 	}
4818 
4819 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4820 	if (err && !ret)
4821 		ret = err;
4822 out:
4823 	kfree(sa);
4824 	up_write(&root->fs_info->subvol_sem);
4825 drop_write:
4826 	mnt_drop_write_file(file);
4827 	return ret;
4828 }
4829 
4830 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4831 {
4832 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4833 	struct btrfs_ioctl_qgroup_assign_args *sa;
4834 	struct btrfs_trans_handle *trans;
4835 	int ret;
4836 	int err;
4837 
4838 	if (!capable(CAP_SYS_ADMIN))
4839 		return -EPERM;
4840 
4841 	ret = mnt_want_write_file(file);
4842 	if (ret)
4843 		return ret;
4844 
4845 	sa = memdup_user(arg, sizeof(*sa));
4846 	if (IS_ERR(sa)) {
4847 		ret = PTR_ERR(sa);
4848 		goto drop_write;
4849 	}
4850 
4851 	trans = btrfs_join_transaction(root);
4852 	if (IS_ERR(trans)) {
4853 		ret = PTR_ERR(trans);
4854 		goto out;
4855 	}
4856 
4857 	/* FIXME: check if the IDs really exist */
4858 	if (sa->assign) {
4859 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4860 						sa->src, sa->dst);
4861 	} else {
4862 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4863 						sa->src, sa->dst);
4864 	}
4865 
4866 	/* update qgroup status and info */
4867 	err = btrfs_run_qgroups(trans, root->fs_info);
4868 	if (err < 0)
4869 		btrfs_std_error(root->fs_info, ret,
4870 			    "failed to update qgroup status and info\n");
4871 	err = btrfs_end_transaction(trans, root);
4872 	if (err && !ret)
4873 		ret = err;
4874 
4875 out:
4876 	kfree(sa);
4877 drop_write:
4878 	mnt_drop_write_file(file);
4879 	return ret;
4880 }
4881 
4882 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4883 {
4884 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4885 	struct btrfs_ioctl_qgroup_create_args *sa;
4886 	struct btrfs_trans_handle *trans;
4887 	int ret;
4888 	int err;
4889 
4890 	if (!capable(CAP_SYS_ADMIN))
4891 		return -EPERM;
4892 
4893 	ret = mnt_want_write_file(file);
4894 	if (ret)
4895 		return ret;
4896 
4897 	sa = memdup_user(arg, sizeof(*sa));
4898 	if (IS_ERR(sa)) {
4899 		ret = PTR_ERR(sa);
4900 		goto drop_write;
4901 	}
4902 
4903 	if (!sa->qgroupid) {
4904 		ret = -EINVAL;
4905 		goto out;
4906 	}
4907 
4908 	trans = btrfs_join_transaction(root);
4909 	if (IS_ERR(trans)) {
4910 		ret = PTR_ERR(trans);
4911 		goto out;
4912 	}
4913 
4914 	/* FIXME: check if the IDs really exist */
4915 	if (sa->create) {
4916 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid);
4917 	} else {
4918 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4919 	}
4920 
4921 	err = btrfs_end_transaction(trans, root);
4922 	if (err && !ret)
4923 		ret = err;
4924 
4925 out:
4926 	kfree(sa);
4927 drop_write:
4928 	mnt_drop_write_file(file);
4929 	return ret;
4930 }
4931 
4932 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4933 {
4934 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4935 	struct btrfs_ioctl_qgroup_limit_args *sa;
4936 	struct btrfs_trans_handle *trans;
4937 	int ret;
4938 	int err;
4939 	u64 qgroupid;
4940 
4941 	if (!capable(CAP_SYS_ADMIN))
4942 		return -EPERM;
4943 
4944 	ret = mnt_want_write_file(file);
4945 	if (ret)
4946 		return ret;
4947 
4948 	sa = memdup_user(arg, sizeof(*sa));
4949 	if (IS_ERR(sa)) {
4950 		ret = PTR_ERR(sa);
4951 		goto drop_write;
4952 	}
4953 
4954 	trans = btrfs_join_transaction(root);
4955 	if (IS_ERR(trans)) {
4956 		ret = PTR_ERR(trans);
4957 		goto out;
4958 	}
4959 
4960 	qgroupid = sa->qgroupid;
4961 	if (!qgroupid) {
4962 		/* take the current subvol as qgroup */
4963 		qgroupid = root->root_key.objectid;
4964 	}
4965 
4966 	/* FIXME: check if the IDs really exist */
4967 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4968 
4969 	err = btrfs_end_transaction(trans, root);
4970 	if (err && !ret)
4971 		ret = err;
4972 
4973 out:
4974 	kfree(sa);
4975 drop_write:
4976 	mnt_drop_write_file(file);
4977 	return ret;
4978 }
4979 
4980 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4981 {
4982 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4983 	struct btrfs_ioctl_quota_rescan_args *qsa;
4984 	int ret;
4985 
4986 	if (!capable(CAP_SYS_ADMIN))
4987 		return -EPERM;
4988 
4989 	ret = mnt_want_write_file(file);
4990 	if (ret)
4991 		return ret;
4992 
4993 	qsa = memdup_user(arg, sizeof(*qsa));
4994 	if (IS_ERR(qsa)) {
4995 		ret = PTR_ERR(qsa);
4996 		goto drop_write;
4997 	}
4998 
4999 	if (qsa->flags) {
5000 		ret = -EINVAL;
5001 		goto out;
5002 	}
5003 
5004 	ret = btrfs_qgroup_rescan(root->fs_info);
5005 
5006 out:
5007 	kfree(qsa);
5008 drop_write:
5009 	mnt_drop_write_file(file);
5010 	return ret;
5011 }
5012 
5013 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
5014 {
5015 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5016 	struct btrfs_ioctl_quota_rescan_args *qsa;
5017 	int ret = 0;
5018 
5019 	if (!capable(CAP_SYS_ADMIN))
5020 		return -EPERM;
5021 
5022 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
5023 	if (!qsa)
5024 		return -ENOMEM;
5025 
5026 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
5027 		qsa->flags = 1;
5028 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
5029 	}
5030 
5031 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
5032 		ret = -EFAULT;
5033 
5034 	kfree(qsa);
5035 	return ret;
5036 }
5037 
5038 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
5039 {
5040 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5041 
5042 	if (!capable(CAP_SYS_ADMIN))
5043 		return -EPERM;
5044 
5045 	return btrfs_qgroup_wait_for_completion(root->fs_info);
5046 }
5047 
5048 static long _btrfs_ioctl_set_received_subvol(struct file *file,
5049 					    struct btrfs_ioctl_received_subvol_args *sa)
5050 {
5051 	struct inode *inode = file_inode(file);
5052 	struct btrfs_root *root = BTRFS_I(inode)->root;
5053 	struct btrfs_root_item *root_item = &root->root_item;
5054 	struct btrfs_trans_handle *trans;
5055 	struct timespec ct = CURRENT_TIME;
5056 	int ret = 0;
5057 	int received_uuid_changed;
5058 
5059 	if (!inode_owner_or_capable(inode))
5060 		return -EPERM;
5061 
5062 	ret = mnt_want_write_file(file);
5063 	if (ret < 0)
5064 		return ret;
5065 
5066 	down_write(&root->fs_info->subvol_sem);
5067 
5068 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
5069 		ret = -EINVAL;
5070 		goto out;
5071 	}
5072 
5073 	if (btrfs_root_readonly(root)) {
5074 		ret = -EROFS;
5075 		goto out;
5076 	}
5077 
5078 	/*
5079 	 * 1 - root item
5080 	 * 2 - uuid items (received uuid + subvol uuid)
5081 	 */
5082 	trans = btrfs_start_transaction(root, 3);
5083 	if (IS_ERR(trans)) {
5084 		ret = PTR_ERR(trans);
5085 		trans = NULL;
5086 		goto out;
5087 	}
5088 
5089 	sa->rtransid = trans->transid;
5090 	sa->rtime.sec = ct.tv_sec;
5091 	sa->rtime.nsec = ct.tv_nsec;
5092 
5093 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
5094 				       BTRFS_UUID_SIZE);
5095 	if (received_uuid_changed &&
5096 	    !btrfs_is_empty_uuid(root_item->received_uuid))
5097 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
5098 				    root_item->received_uuid,
5099 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5100 				    root->root_key.objectid);
5101 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
5102 	btrfs_set_root_stransid(root_item, sa->stransid);
5103 	btrfs_set_root_rtransid(root_item, sa->rtransid);
5104 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
5105 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
5106 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
5107 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
5108 
5109 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
5110 				&root->root_key, &root->root_item);
5111 	if (ret < 0) {
5112 		btrfs_end_transaction(trans, root);
5113 		goto out;
5114 	}
5115 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
5116 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
5117 					  sa->uuid,
5118 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
5119 					  root->root_key.objectid);
5120 		if (ret < 0 && ret != -EEXIST) {
5121 			btrfs_abort_transaction(trans, root, ret);
5122 			goto out;
5123 		}
5124 	}
5125 	ret = btrfs_commit_transaction(trans, root);
5126 	if (ret < 0) {
5127 		btrfs_abort_transaction(trans, root, ret);
5128 		goto out;
5129 	}
5130 
5131 out:
5132 	up_write(&root->fs_info->subvol_sem);
5133 	mnt_drop_write_file(file);
5134 	return ret;
5135 }
5136 
5137 #ifdef CONFIG_64BIT
5138 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
5139 						void __user *arg)
5140 {
5141 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
5142 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
5143 	int ret = 0;
5144 
5145 	args32 = memdup_user(arg, sizeof(*args32));
5146 	if (IS_ERR(args32)) {
5147 		ret = PTR_ERR(args32);
5148 		args32 = NULL;
5149 		goto out;
5150 	}
5151 
5152 	args64 = kmalloc(sizeof(*args64), GFP_NOFS);
5153 	if (!args64) {
5154 		ret = -ENOMEM;
5155 		goto out;
5156 	}
5157 
5158 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
5159 	args64->stransid = args32->stransid;
5160 	args64->rtransid = args32->rtransid;
5161 	args64->stime.sec = args32->stime.sec;
5162 	args64->stime.nsec = args32->stime.nsec;
5163 	args64->rtime.sec = args32->rtime.sec;
5164 	args64->rtime.nsec = args32->rtime.nsec;
5165 	args64->flags = args32->flags;
5166 
5167 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
5168 	if (ret)
5169 		goto out;
5170 
5171 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
5172 	args32->stransid = args64->stransid;
5173 	args32->rtransid = args64->rtransid;
5174 	args32->stime.sec = args64->stime.sec;
5175 	args32->stime.nsec = args64->stime.nsec;
5176 	args32->rtime.sec = args64->rtime.sec;
5177 	args32->rtime.nsec = args64->rtime.nsec;
5178 	args32->flags = args64->flags;
5179 
5180 	ret = copy_to_user(arg, args32, sizeof(*args32));
5181 	if (ret)
5182 		ret = -EFAULT;
5183 
5184 out:
5185 	kfree(args32);
5186 	kfree(args64);
5187 	return ret;
5188 }
5189 #endif
5190 
5191 static long btrfs_ioctl_set_received_subvol(struct file *file,
5192 					    void __user *arg)
5193 {
5194 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
5195 	int ret = 0;
5196 
5197 	sa = memdup_user(arg, sizeof(*sa));
5198 	if (IS_ERR(sa)) {
5199 		ret = PTR_ERR(sa);
5200 		sa = NULL;
5201 		goto out;
5202 	}
5203 
5204 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
5205 
5206 	if (ret)
5207 		goto out;
5208 
5209 	ret = copy_to_user(arg, sa, sizeof(*sa));
5210 	if (ret)
5211 		ret = -EFAULT;
5212 
5213 out:
5214 	kfree(sa);
5215 	return ret;
5216 }
5217 
5218 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
5219 {
5220 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5221 	size_t len;
5222 	int ret;
5223 	char label[BTRFS_LABEL_SIZE];
5224 
5225 	spin_lock(&root->fs_info->super_lock);
5226 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
5227 	spin_unlock(&root->fs_info->super_lock);
5228 
5229 	len = strnlen(label, BTRFS_LABEL_SIZE);
5230 
5231 	if (len == BTRFS_LABEL_SIZE) {
5232 		btrfs_warn(root->fs_info,
5233 			"label is too long, return the first %zu bytes", --len);
5234 	}
5235 
5236 	ret = copy_to_user(arg, label, len);
5237 
5238 	return ret ? -EFAULT : 0;
5239 }
5240 
5241 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5242 {
5243 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5244 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5245 	struct btrfs_trans_handle *trans;
5246 	char label[BTRFS_LABEL_SIZE];
5247 	int ret;
5248 
5249 	if (!capable(CAP_SYS_ADMIN))
5250 		return -EPERM;
5251 
5252 	if (copy_from_user(label, arg, sizeof(label)))
5253 		return -EFAULT;
5254 
5255 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5256 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5257 		       BTRFS_LABEL_SIZE - 1);
5258 		return -EINVAL;
5259 	}
5260 
5261 	ret = mnt_want_write_file(file);
5262 	if (ret)
5263 		return ret;
5264 
5265 	trans = btrfs_start_transaction(root, 0);
5266 	if (IS_ERR(trans)) {
5267 		ret = PTR_ERR(trans);
5268 		goto out_unlock;
5269 	}
5270 
5271 	spin_lock(&root->fs_info->super_lock);
5272 	strcpy(super_block->label, label);
5273 	spin_unlock(&root->fs_info->super_lock);
5274 	ret = btrfs_commit_transaction(trans, root);
5275 
5276 out_unlock:
5277 	mnt_drop_write_file(file);
5278 	return ret;
5279 }
5280 
5281 #define INIT_FEATURE_FLAGS(suffix) \
5282 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5283 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5284 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5285 
5286 static int btrfs_ioctl_get_supported_features(struct file *file,
5287 					      void __user *arg)
5288 {
5289 	static struct btrfs_ioctl_feature_flags features[3] = {
5290 		INIT_FEATURE_FLAGS(SUPP),
5291 		INIT_FEATURE_FLAGS(SAFE_SET),
5292 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5293 	};
5294 
5295 	if (copy_to_user(arg, &features, sizeof(features)))
5296 		return -EFAULT;
5297 
5298 	return 0;
5299 }
5300 
5301 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5302 {
5303 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5304 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5305 	struct btrfs_ioctl_feature_flags features;
5306 
5307 	features.compat_flags = btrfs_super_compat_flags(super_block);
5308 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5309 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5310 
5311 	if (copy_to_user(arg, &features, sizeof(features)))
5312 		return -EFAULT;
5313 
5314 	return 0;
5315 }
5316 
5317 static int check_feature_bits(struct btrfs_root *root,
5318 			      enum btrfs_feature_set set,
5319 			      u64 change_mask, u64 flags, u64 supported_flags,
5320 			      u64 safe_set, u64 safe_clear)
5321 {
5322 	const char *type = btrfs_feature_set_names[set];
5323 	char *names;
5324 	u64 disallowed, unsupported;
5325 	u64 set_mask = flags & change_mask;
5326 	u64 clear_mask = ~flags & change_mask;
5327 
5328 	unsupported = set_mask & ~supported_flags;
5329 	if (unsupported) {
5330 		names = btrfs_printable_features(set, unsupported);
5331 		if (names) {
5332 			btrfs_warn(root->fs_info,
5333 			   "this kernel does not support the %s feature bit%s",
5334 			   names, strchr(names, ',') ? "s" : "");
5335 			kfree(names);
5336 		} else
5337 			btrfs_warn(root->fs_info,
5338 			   "this kernel does not support %s bits 0x%llx",
5339 			   type, unsupported);
5340 		return -EOPNOTSUPP;
5341 	}
5342 
5343 	disallowed = set_mask & ~safe_set;
5344 	if (disallowed) {
5345 		names = btrfs_printable_features(set, disallowed);
5346 		if (names) {
5347 			btrfs_warn(root->fs_info,
5348 			   "can't set the %s feature bit%s while mounted",
5349 			   names, strchr(names, ',') ? "s" : "");
5350 			kfree(names);
5351 		} else
5352 			btrfs_warn(root->fs_info,
5353 			   "can't set %s bits 0x%llx while mounted",
5354 			   type, disallowed);
5355 		return -EPERM;
5356 	}
5357 
5358 	disallowed = clear_mask & ~safe_clear;
5359 	if (disallowed) {
5360 		names = btrfs_printable_features(set, disallowed);
5361 		if (names) {
5362 			btrfs_warn(root->fs_info,
5363 			   "can't clear the %s feature bit%s while mounted",
5364 			   names, strchr(names, ',') ? "s" : "");
5365 			kfree(names);
5366 		} else
5367 			btrfs_warn(root->fs_info,
5368 			   "can't clear %s bits 0x%llx while mounted",
5369 			   type, disallowed);
5370 		return -EPERM;
5371 	}
5372 
5373 	return 0;
5374 }
5375 
5376 #define check_feature(root, change_mask, flags, mask_base)	\
5377 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5378 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5379 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5380 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5381 
5382 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5383 {
5384 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5385 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5386 	struct btrfs_ioctl_feature_flags flags[2];
5387 	struct btrfs_trans_handle *trans;
5388 	u64 newflags;
5389 	int ret;
5390 
5391 	if (!capable(CAP_SYS_ADMIN))
5392 		return -EPERM;
5393 
5394 	if (copy_from_user(flags, arg, sizeof(flags)))
5395 		return -EFAULT;
5396 
5397 	/* Nothing to do */
5398 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5399 	    !flags[0].incompat_flags)
5400 		return 0;
5401 
5402 	ret = check_feature(root, flags[0].compat_flags,
5403 			    flags[1].compat_flags, COMPAT);
5404 	if (ret)
5405 		return ret;
5406 
5407 	ret = check_feature(root, flags[0].compat_ro_flags,
5408 			    flags[1].compat_ro_flags, COMPAT_RO);
5409 	if (ret)
5410 		return ret;
5411 
5412 	ret = check_feature(root, flags[0].incompat_flags,
5413 			    flags[1].incompat_flags, INCOMPAT);
5414 	if (ret)
5415 		return ret;
5416 
5417 	trans = btrfs_start_transaction(root, 0);
5418 	if (IS_ERR(trans))
5419 		return PTR_ERR(trans);
5420 
5421 	spin_lock(&root->fs_info->super_lock);
5422 	newflags = btrfs_super_compat_flags(super_block);
5423 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5424 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5425 	btrfs_set_super_compat_flags(super_block, newflags);
5426 
5427 	newflags = btrfs_super_compat_ro_flags(super_block);
5428 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5429 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5430 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5431 
5432 	newflags = btrfs_super_incompat_flags(super_block);
5433 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5434 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5435 	btrfs_set_super_incompat_flags(super_block, newflags);
5436 	spin_unlock(&root->fs_info->super_lock);
5437 
5438 	return btrfs_commit_transaction(trans, root);
5439 }
5440 
5441 long btrfs_ioctl(struct file *file, unsigned int
5442 		cmd, unsigned long arg)
5443 {
5444 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5445 	void __user *argp = (void __user *)arg;
5446 
5447 	switch (cmd) {
5448 	case FS_IOC_GETFLAGS:
5449 		return btrfs_ioctl_getflags(file, argp);
5450 	case FS_IOC_SETFLAGS:
5451 		return btrfs_ioctl_setflags(file, argp);
5452 	case FS_IOC_GETVERSION:
5453 		return btrfs_ioctl_getversion(file, argp);
5454 	case FITRIM:
5455 		return btrfs_ioctl_fitrim(file, argp);
5456 	case BTRFS_IOC_SNAP_CREATE:
5457 		return btrfs_ioctl_snap_create(file, argp, 0);
5458 	case BTRFS_IOC_SNAP_CREATE_V2:
5459 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5460 	case BTRFS_IOC_SUBVOL_CREATE:
5461 		return btrfs_ioctl_snap_create(file, argp, 1);
5462 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5463 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5464 	case BTRFS_IOC_SNAP_DESTROY:
5465 		return btrfs_ioctl_snap_destroy(file, argp);
5466 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5467 		return btrfs_ioctl_subvol_getflags(file, argp);
5468 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5469 		return btrfs_ioctl_subvol_setflags(file, argp);
5470 	case BTRFS_IOC_DEFAULT_SUBVOL:
5471 		return btrfs_ioctl_default_subvol(file, argp);
5472 	case BTRFS_IOC_DEFRAG:
5473 		return btrfs_ioctl_defrag(file, NULL);
5474 	case BTRFS_IOC_DEFRAG_RANGE:
5475 		return btrfs_ioctl_defrag(file, argp);
5476 	case BTRFS_IOC_RESIZE:
5477 		return btrfs_ioctl_resize(file, argp);
5478 	case BTRFS_IOC_ADD_DEV:
5479 		return btrfs_ioctl_add_dev(root, argp);
5480 	case BTRFS_IOC_RM_DEV:
5481 		return btrfs_ioctl_rm_dev(file, argp);
5482 	case BTRFS_IOC_FS_INFO:
5483 		return btrfs_ioctl_fs_info(root, argp);
5484 	case BTRFS_IOC_DEV_INFO:
5485 		return btrfs_ioctl_dev_info(root, argp);
5486 	case BTRFS_IOC_BALANCE:
5487 		return btrfs_ioctl_balance(file, NULL);
5488 	case BTRFS_IOC_CLONE:
5489 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
5490 	case BTRFS_IOC_CLONE_RANGE:
5491 		return btrfs_ioctl_clone_range(file, argp);
5492 	case BTRFS_IOC_TRANS_START:
5493 		return btrfs_ioctl_trans_start(file);
5494 	case BTRFS_IOC_TRANS_END:
5495 		return btrfs_ioctl_trans_end(file);
5496 	case BTRFS_IOC_TREE_SEARCH:
5497 		return btrfs_ioctl_tree_search(file, argp);
5498 	case BTRFS_IOC_TREE_SEARCH_V2:
5499 		return btrfs_ioctl_tree_search_v2(file, argp);
5500 	case BTRFS_IOC_INO_LOOKUP:
5501 		return btrfs_ioctl_ino_lookup(file, argp);
5502 	case BTRFS_IOC_INO_PATHS:
5503 		return btrfs_ioctl_ino_to_path(root, argp);
5504 	case BTRFS_IOC_LOGICAL_INO:
5505 		return btrfs_ioctl_logical_to_ino(root, argp);
5506 	case BTRFS_IOC_SPACE_INFO:
5507 		return btrfs_ioctl_space_info(root, argp);
5508 	case BTRFS_IOC_SYNC: {
5509 		int ret;
5510 
5511 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5512 		if (ret)
5513 			return ret;
5514 		ret = btrfs_sync_fs(file_inode(file)->i_sb, 1);
5515 		/*
5516 		 * The transaction thread may want to do more work,
5517 		 * namely it pokes the cleaner ktread that will start
5518 		 * processing uncleaned subvols.
5519 		 */
5520 		wake_up_process(root->fs_info->transaction_kthread);
5521 		return ret;
5522 	}
5523 	case BTRFS_IOC_START_SYNC:
5524 		return btrfs_ioctl_start_sync(root, argp);
5525 	case BTRFS_IOC_WAIT_SYNC:
5526 		return btrfs_ioctl_wait_sync(root, argp);
5527 	case BTRFS_IOC_SCRUB:
5528 		return btrfs_ioctl_scrub(file, argp);
5529 	case BTRFS_IOC_SCRUB_CANCEL:
5530 		return btrfs_ioctl_scrub_cancel(root, argp);
5531 	case BTRFS_IOC_SCRUB_PROGRESS:
5532 		return btrfs_ioctl_scrub_progress(root, argp);
5533 	case BTRFS_IOC_BALANCE_V2:
5534 		return btrfs_ioctl_balance(file, argp);
5535 	case BTRFS_IOC_BALANCE_CTL:
5536 		return btrfs_ioctl_balance_ctl(root, arg);
5537 	case BTRFS_IOC_BALANCE_PROGRESS:
5538 		return btrfs_ioctl_balance_progress(root, argp);
5539 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5540 		return btrfs_ioctl_set_received_subvol(file, argp);
5541 #ifdef CONFIG_64BIT
5542 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5543 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5544 #endif
5545 	case BTRFS_IOC_SEND:
5546 		return btrfs_ioctl_send(file, argp);
5547 	case BTRFS_IOC_GET_DEV_STATS:
5548 		return btrfs_ioctl_get_dev_stats(root, argp);
5549 	case BTRFS_IOC_QUOTA_CTL:
5550 		return btrfs_ioctl_quota_ctl(file, argp);
5551 	case BTRFS_IOC_QGROUP_ASSIGN:
5552 		return btrfs_ioctl_qgroup_assign(file, argp);
5553 	case BTRFS_IOC_QGROUP_CREATE:
5554 		return btrfs_ioctl_qgroup_create(file, argp);
5555 	case BTRFS_IOC_QGROUP_LIMIT:
5556 		return btrfs_ioctl_qgroup_limit(file, argp);
5557 	case BTRFS_IOC_QUOTA_RESCAN:
5558 		return btrfs_ioctl_quota_rescan(file, argp);
5559 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5560 		return btrfs_ioctl_quota_rescan_status(file, argp);
5561 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5562 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5563 	case BTRFS_IOC_DEV_REPLACE:
5564 		return btrfs_ioctl_dev_replace(root, argp);
5565 	case BTRFS_IOC_GET_FSLABEL:
5566 		return btrfs_ioctl_get_fslabel(file, argp);
5567 	case BTRFS_IOC_SET_FSLABEL:
5568 		return btrfs_ioctl_set_fslabel(file, argp);
5569 	case BTRFS_IOC_FILE_EXTENT_SAME:
5570 		return btrfs_ioctl_file_extent_same(file, argp);
5571 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5572 		return btrfs_ioctl_get_supported_features(file, argp);
5573 	case BTRFS_IOC_GET_FEATURES:
5574 		return btrfs_ioctl_get_features(file, argp);
5575 	case BTRFS_IOC_SET_FEATURES:
5576 		return btrfs_ioctl_set_features(file, argp);
5577 	}
5578 
5579 	return -ENOTTY;
5580 }
5581