xref: /linux/fs/btrfs/free-space-cache.c (revision a460513ed4b6994bfeb7bd86f72853140bc1ac12)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2008 Red Hat.  All rights reserved.
4  */
5 
6 #include <linux/pagemap.h>
7 #include <linux/sched.h>
8 #include <linux/sched/signal.h>
9 #include <linux/slab.h>
10 #include <linux/math64.h>
11 #include <linux/ratelimit.h>
12 #include <linux/error-injection.h>
13 #include <linux/sched/mm.h>
14 #include "ctree.h"
15 #include "free-space-cache.h"
16 #include "transaction.h"
17 #include "disk-io.h"
18 #include "extent_io.h"
19 #include "volumes.h"
20 #include "space-info.h"
21 #include "delalloc-space.h"
22 #include "block-group.h"
23 #include "discard.h"
24 
25 #define BITS_PER_BITMAP		(PAGE_SIZE * 8UL)
26 #define MAX_CACHE_BYTES_PER_GIG	SZ_64K
27 #define FORCE_EXTENT_THRESHOLD	SZ_1M
28 
29 struct btrfs_trim_range {
30 	u64 start;
31 	u64 bytes;
32 	struct list_head list;
33 };
34 
35 static int link_free_space(struct btrfs_free_space_ctl *ctl,
36 			   struct btrfs_free_space *info);
37 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
38 			      struct btrfs_free_space *info);
39 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
40 			 struct btrfs_free_space *bitmap_info, u64 *offset,
41 			 u64 *bytes, bool for_alloc);
42 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
43 			struct btrfs_free_space *bitmap_info);
44 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
45 			      struct btrfs_free_space *info, u64 offset,
46 			      u64 bytes);
47 
48 static struct inode *__lookup_free_space_inode(struct btrfs_root *root,
49 					       struct btrfs_path *path,
50 					       u64 offset)
51 {
52 	struct btrfs_fs_info *fs_info = root->fs_info;
53 	struct btrfs_key key;
54 	struct btrfs_key location;
55 	struct btrfs_disk_key disk_key;
56 	struct btrfs_free_space_header *header;
57 	struct extent_buffer *leaf;
58 	struct inode *inode = NULL;
59 	unsigned nofs_flag;
60 	int ret;
61 
62 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
63 	key.offset = offset;
64 	key.type = 0;
65 
66 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
67 	if (ret < 0)
68 		return ERR_PTR(ret);
69 	if (ret > 0) {
70 		btrfs_release_path(path);
71 		return ERR_PTR(-ENOENT);
72 	}
73 
74 	leaf = path->nodes[0];
75 	header = btrfs_item_ptr(leaf, path->slots[0],
76 				struct btrfs_free_space_header);
77 	btrfs_free_space_key(leaf, header, &disk_key);
78 	btrfs_disk_key_to_cpu(&location, &disk_key);
79 	btrfs_release_path(path);
80 
81 	/*
82 	 * We are often under a trans handle at this point, so we need to make
83 	 * sure NOFS is set to keep us from deadlocking.
84 	 */
85 	nofs_flag = memalloc_nofs_save();
86 	inode = btrfs_iget_path(fs_info->sb, location.objectid, root, path);
87 	btrfs_release_path(path);
88 	memalloc_nofs_restore(nofs_flag);
89 	if (IS_ERR(inode))
90 		return inode;
91 
92 	mapping_set_gfp_mask(inode->i_mapping,
93 			mapping_gfp_constraint(inode->i_mapping,
94 			~(__GFP_FS | __GFP_HIGHMEM)));
95 
96 	return inode;
97 }
98 
99 struct inode *lookup_free_space_inode(struct btrfs_block_group *block_group,
100 		struct btrfs_path *path)
101 {
102 	struct btrfs_fs_info *fs_info = block_group->fs_info;
103 	struct inode *inode = NULL;
104 	u32 flags = BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
105 
106 	spin_lock(&block_group->lock);
107 	if (block_group->inode)
108 		inode = igrab(block_group->inode);
109 	spin_unlock(&block_group->lock);
110 	if (inode)
111 		return inode;
112 
113 	inode = __lookup_free_space_inode(fs_info->tree_root, path,
114 					  block_group->start);
115 	if (IS_ERR(inode))
116 		return inode;
117 
118 	spin_lock(&block_group->lock);
119 	if (!((BTRFS_I(inode)->flags & flags) == flags)) {
120 		btrfs_info(fs_info, "Old style space inode found, converting.");
121 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM |
122 			BTRFS_INODE_NODATACOW;
123 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
124 	}
125 
126 	if (!block_group->iref) {
127 		block_group->inode = igrab(inode);
128 		block_group->iref = 1;
129 	}
130 	spin_unlock(&block_group->lock);
131 
132 	return inode;
133 }
134 
135 static int __create_free_space_inode(struct btrfs_root *root,
136 				     struct btrfs_trans_handle *trans,
137 				     struct btrfs_path *path,
138 				     u64 ino, u64 offset)
139 {
140 	struct btrfs_key key;
141 	struct btrfs_disk_key disk_key;
142 	struct btrfs_free_space_header *header;
143 	struct btrfs_inode_item *inode_item;
144 	struct extent_buffer *leaf;
145 	/* We inline CRCs for the free disk space cache */
146 	const u64 flags = BTRFS_INODE_NOCOMPRESS | BTRFS_INODE_PREALLOC |
147 			  BTRFS_INODE_NODATASUM | BTRFS_INODE_NODATACOW;
148 	int ret;
149 
150 	ret = btrfs_insert_empty_inode(trans, root, path, ino);
151 	if (ret)
152 		return ret;
153 
154 	leaf = path->nodes[0];
155 	inode_item = btrfs_item_ptr(leaf, path->slots[0],
156 				    struct btrfs_inode_item);
157 	btrfs_item_key(leaf, &disk_key, path->slots[0]);
158 	memzero_extent_buffer(leaf, (unsigned long)inode_item,
159 			     sizeof(*inode_item));
160 	btrfs_set_inode_generation(leaf, inode_item, trans->transid);
161 	btrfs_set_inode_size(leaf, inode_item, 0);
162 	btrfs_set_inode_nbytes(leaf, inode_item, 0);
163 	btrfs_set_inode_uid(leaf, inode_item, 0);
164 	btrfs_set_inode_gid(leaf, inode_item, 0);
165 	btrfs_set_inode_mode(leaf, inode_item, S_IFREG | 0600);
166 	btrfs_set_inode_flags(leaf, inode_item, flags);
167 	btrfs_set_inode_nlink(leaf, inode_item, 1);
168 	btrfs_set_inode_transid(leaf, inode_item, trans->transid);
169 	btrfs_set_inode_block_group(leaf, inode_item, offset);
170 	btrfs_mark_buffer_dirty(leaf);
171 	btrfs_release_path(path);
172 
173 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
174 	key.offset = offset;
175 	key.type = 0;
176 	ret = btrfs_insert_empty_item(trans, root, path, &key,
177 				      sizeof(struct btrfs_free_space_header));
178 	if (ret < 0) {
179 		btrfs_release_path(path);
180 		return ret;
181 	}
182 
183 	leaf = path->nodes[0];
184 	header = btrfs_item_ptr(leaf, path->slots[0],
185 				struct btrfs_free_space_header);
186 	memzero_extent_buffer(leaf, (unsigned long)header, sizeof(*header));
187 	btrfs_set_free_space_key(leaf, header, &disk_key);
188 	btrfs_mark_buffer_dirty(leaf);
189 	btrfs_release_path(path);
190 
191 	return 0;
192 }
193 
194 int create_free_space_inode(struct btrfs_trans_handle *trans,
195 			    struct btrfs_block_group *block_group,
196 			    struct btrfs_path *path)
197 {
198 	int ret;
199 	u64 ino;
200 
201 	ret = btrfs_get_free_objectid(trans->fs_info->tree_root, &ino);
202 	if (ret < 0)
203 		return ret;
204 
205 	return __create_free_space_inode(trans->fs_info->tree_root, trans, path,
206 					 ino, block_group->start);
207 }
208 
209 /*
210  * inode is an optional sink: if it is NULL, btrfs_remove_free_space_inode
211  * handles lookup, otherwise it takes ownership and iputs the inode.
212  * Don't reuse an inode pointer after passing it into this function.
213  */
214 int btrfs_remove_free_space_inode(struct btrfs_trans_handle *trans,
215 				  struct inode *inode,
216 				  struct btrfs_block_group *block_group)
217 {
218 	struct btrfs_path *path;
219 	struct btrfs_key key;
220 	int ret = 0;
221 
222 	path = btrfs_alloc_path();
223 	if (!path)
224 		return -ENOMEM;
225 
226 	if (!inode)
227 		inode = lookup_free_space_inode(block_group, path);
228 	if (IS_ERR(inode)) {
229 		if (PTR_ERR(inode) != -ENOENT)
230 			ret = PTR_ERR(inode);
231 		goto out;
232 	}
233 	ret = btrfs_orphan_add(trans, BTRFS_I(inode));
234 	if (ret) {
235 		btrfs_add_delayed_iput(inode);
236 		goto out;
237 	}
238 	clear_nlink(inode);
239 	/* One for the block groups ref */
240 	spin_lock(&block_group->lock);
241 	if (block_group->iref) {
242 		block_group->iref = 0;
243 		block_group->inode = NULL;
244 		spin_unlock(&block_group->lock);
245 		iput(inode);
246 	} else {
247 		spin_unlock(&block_group->lock);
248 	}
249 	/* One for the lookup ref */
250 	btrfs_add_delayed_iput(inode);
251 
252 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
253 	key.type = 0;
254 	key.offset = block_group->start;
255 	ret = btrfs_search_slot(trans, trans->fs_info->tree_root, &key, path,
256 				-1, 1);
257 	if (ret) {
258 		if (ret > 0)
259 			ret = 0;
260 		goto out;
261 	}
262 	ret = btrfs_del_item(trans, trans->fs_info->tree_root, path);
263 out:
264 	btrfs_free_path(path);
265 	return ret;
266 }
267 
268 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info *fs_info,
269 				       struct btrfs_block_rsv *rsv)
270 {
271 	u64 needed_bytes;
272 	int ret;
273 
274 	/* 1 for slack space, 1 for updating the inode */
275 	needed_bytes = btrfs_calc_insert_metadata_size(fs_info, 1) +
276 		btrfs_calc_metadata_size(fs_info, 1);
277 
278 	spin_lock(&rsv->lock);
279 	if (rsv->reserved < needed_bytes)
280 		ret = -ENOSPC;
281 	else
282 		ret = 0;
283 	spin_unlock(&rsv->lock);
284 	return ret;
285 }
286 
287 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle *trans,
288 				    struct btrfs_block_group *block_group,
289 				    struct inode *inode)
290 {
291 	struct btrfs_root *root = BTRFS_I(inode)->root;
292 	int ret = 0;
293 	bool locked = false;
294 
295 	if (block_group) {
296 		struct btrfs_path *path = btrfs_alloc_path();
297 
298 		if (!path) {
299 			ret = -ENOMEM;
300 			goto fail;
301 		}
302 		locked = true;
303 		mutex_lock(&trans->transaction->cache_write_mutex);
304 		if (!list_empty(&block_group->io_list)) {
305 			list_del_init(&block_group->io_list);
306 
307 			btrfs_wait_cache_io(trans, block_group, path);
308 			btrfs_put_block_group(block_group);
309 		}
310 
311 		/*
312 		 * now that we've truncated the cache away, its no longer
313 		 * setup or written
314 		 */
315 		spin_lock(&block_group->lock);
316 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
317 		spin_unlock(&block_group->lock);
318 		btrfs_free_path(path);
319 	}
320 
321 	btrfs_i_size_write(BTRFS_I(inode), 0);
322 	truncate_pagecache(inode, 0);
323 
324 	/*
325 	 * We skip the throttling logic for free space cache inodes, so we don't
326 	 * need to check for -EAGAIN.
327 	 */
328 	ret = btrfs_truncate_inode_items(trans, root, BTRFS_I(inode),
329 					 0, BTRFS_EXTENT_DATA_KEY);
330 	if (ret)
331 		goto fail;
332 
333 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
334 
335 fail:
336 	if (locked)
337 		mutex_unlock(&trans->transaction->cache_write_mutex);
338 	if (ret)
339 		btrfs_abort_transaction(trans, ret);
340 
341 	return ret;
342 }
343 
344 static void readahead_cache(struct inode *inode)
345 {
346 	struct file_ra_state *ra;
347 	unsigned long last_index;
348 
349 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
350 	if (!ra)
351 		return;
352 
353 	file_ra_state_init(ra, inode->i_mapping);
354 	last_index = (i_size_read(inode) - 1) >> PAGE_SHIFT;
355 
356 	page_cache_sync_readahead(inode->i_mapping, ra, NULL, 0, last_index);
357 
358 	kfree(ra);
359 }
360 
361 static int io_ctl_init(struct btrfs_io_ctl *io_ctl, struct inode *inode,
362 		       int write)
363 {
364 	int num_pages;
365 
366 	num_pages = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
367 
368 	/* Make sure we can fit our crcs and generation into the first page */
369 	if (write && (num_pages * sizeof(u32) + sizeof(u64)) > PAGE_SIZE)
370 		return -ENOSPC;
371 
372 	memset(io_ctl, 0, sizeof(struct btrfs_io_ctl));
373 
374 	io_ctl->pages = kcalloc(num_pages, sizeof(struct page *), GFP_NOFS);
375 	if (!io_ctl->pages)
376 		return -ENOMEM;
377 
378 	io_ctl->num_pages = num_pages;
379 	io_ctl->fs_info = btrfs_sb(inode->i_sb);
380 	io_ctl->inode = inode;
381 
382 	return 0;
383 }
384 ALLOW_ERROR_INJECTION(io_ctl_init, ERRNO);
385 
386 static void io_ctl_free(struct btrfs_io_ctl *io_ctl)
387 {
388 	kfree(io_ctl->pages);
389 	io_ctl->pages = NULL;
390 }
391 
392 static void io_ctl_unmap_page(struct btrfs_io_ctl *io_ctl)
393 {
394 	if (io_ctl->cur) {
395 		io_ctl->cur = NULL;
396 		io_ctl->orig = NULL;
397 	}
398 }
399 
400 static void io_ctl_map_page(struct btrfs_io_ctl *io_ctl, int clear)
401 {
402 	ASSERT(io_ctl->index < io_ctl->num_pages);
403 	io_ctl->page = io_ctl->pages[io_ctl->index++];
404 	io_ctl->cur = page_address(io_ctl->page);
405 	io_ctl->orig = io_ctl->cur;
406 	io_ctl->size = PAGE_SIZE;
407 	if (clear)
408 		clear_page(io_ctl->cur);
409 }
410 
411 static void io_ctl_drop_pages(struct btrfs_io_ctl *io_ctl)
412 {
413 	int i;
414 
415 	io_ctl_unmap_page(io_ctl);
416 
417 	for (i = 0; i < io_ctl->num_pages; i++) {
418 		if (io_ctl->pages[i]) {
419 			ClearPageChecked(io_ctl->pages[i]);
420 			unlock_page(io_ctl->pages[i]);
421 			put_page(io_ctl->pages[i]);
422 		}
423 	}
424 }
425 
426 static int io_ctl_prepare_pages(struct btrfs_io_ctl *io_ctl, bool uptodate)
427 {
428 	struct page *page;
429 	struct inode *inode = io_ctl->inode;
430 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
431 	int i;
432 
433 	for (i = 0; i < io_ctl->num_pages; i++) {
434 		int ret;
435 
436 		page = find_or_create_page(inode->i_mapping, i, mask);
437 		if (!page) {
438 			io_ctl_drop_pages(io_ctl);
439 			return -ENOMEM;
440 		}
441 
442 		ret = set_page_extent_mapped(page);
443 		if (ret < 0) {
444 			unlock_page(page);
445 			put_page(page);
446 			io_ctl_drop_pages(io_ctl);
447 			return ret;
448 		}
449 
450 		io_ctl->pages[i] = page;
451 		if (uptodate && !PageUptodate(page)) {
452 			btrfs_readpage(NULL, page);
453 			lock_page(page);
454 			if (page->mapping != inode->i_mapping) {
455 				btrfs_err(BTRFS_I(inode)->root->fs_info,
456 					  "free space cache page truncated");
457 				io_ctl_drop_pages(io_ctl);
458 				return -EIO;
459 			}
460 			if (!PageUptodate(page)) {
461 				btrfs_err(BTRFS_I(inode)->root->fs_info,
462 					   "error reading free space cache");
463 				io_ctl_drop_pages(io_ctl);
464 				return -EIO;
465 			}
466 		}
467 	}
468 
469 	for (i = 0; i < io_ctl->num_pages; i++)
470 		clear_page_dirty_for_io(io_ctl->pages[i]);
471 
472 	return 0;
473 }
474 
475 static void io_ctl_set_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
476 {
477 	io_ctl_map_page(io_ctl, 1);
478 
479 	/*
480 	 * Skip the csum areas.  If we don't check crcs then we just have a
481 	 * 64bit chunk at the front of the first page.
482 	 */
483 	io_ctl->cur += (sizeof(u32) * io_ctl->num_pages);
484 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
485 
486 	put_unaligned_le64(generation, io_ctl->cur);
487 	io_ctl->cur += sizeof(u64);
488 }
489 
490 static int io_ctl_check_generation(struct btrfs_io_ctl *io_ctl, u64 generation)
491 {
492 	u64 cache_gen;
493 
494 	/*
495 	 * Skip the crc area.  If we don't check crcs then we just have a 64bit
496 	 * chunk at the front of the first page.
497 	 */
498 	io_ctl->cur += sizeof(u32) * io_ctl->num_pages;
499 	io_ctl->size -= sizeof(u64) + (sizeof(u32) * io_ctl->num_pages);
500 
501 	cache_gen = get_unaligned_le64(io_ctl->cur);
502 	if (cache_gen != generation) {
503 		btrfs_err_rl(io_ctl->fs_info,
504 			"space cache generation (%llu) does not match inode (%llu)",
505 				cache_gen, generation);
506 		io_ctl_unmap_page(io_ctl);
507 		return -EIO;
508 	}
509 	io_ctl->cur += sizeof(u64);
510 	return 0;
511 }
512 
513 static void io_ctl_set_crc(struct btrfs_io_ctl *io_ctl, int index)
514 {
515 	u32 *tmp;
516 	u32 crc = ~(u32)0;
517 	unsigned offset = 0;
518 
519 	if (index == 0)
520 		offset = sizeof(u32) * io_ctl->num_pages;
521 
522 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
523 	btrfs_crc32c_final(crc, (u8 *)&crc);
524 	io_ctl_unmap_page(io_ctl);
525 	tmp = page_address(io_ctl->pages[0]);
526 	tmp += index;
527 	*tmp = crc;
528 }
529 
530 static int io_ctl_check_crc(struct btrfs_io_ctl *io_ctl, int index)
531 {
532 	u32 *tmp, val;
533 	u32 crc = ~(u32)0;
534 	unsigned offset = 0;
535 
536 	if (index == 0)
537 		offset = sizeof(u32) * io_ctl->num_pages;
538 
539 	tmp = page_address(io_ctl->pages[0]);
540 	tmp += index;
541 	val = *tmp;
542 
543 	io_ctl_map_page(io_ctl, 0);
544 	crc = btrfs_crc32c(crc, io_ctl->orig + offset, PAGE_SIZE - offset);
545 	btrfs_crc32c_final(crc, (u8 *)&crc);
546 	if (val != crc) {
547 		btrfs_err_rl(io_ctl->fs_info,
548 			"csum mismatch on free space cache");
549 		io_ctl_unmap_page(io_ctl);
550 		return -EIO;
551 	}
552 
553 	return 0;
554 }
555 
556 static int io_ctl_add_entry(struct btrfs_io_ctl *io_ctl, u64 offset, u64 bytes,
557 			    void *bitmap)
558 {
559 	struct btrfs_free_space_entry *entry;
560 
561 	if (!io_ctl->cur)
562 		return -ENOSPC;
563 
564 	entry = io_ctl->cur;
565 	put_unaligned_le64(offset, &entry->offset);
566 	put_unaligned_le64(bytes, &entry->bytes);
567 	entry->type = (bitmap) ? BTRFS_FREE_SPACE_BITMAP :
568 		BTRFS_FREE_SPACE_EXTENT;
569 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
570 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
571 
572 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
573 		return 0;
574 
575 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
576 
577 	/* No more pages to map */
578 	if (io_ctl->index >= io_ctl->num_pages)
579 		return 0;
580 
581 	/* map the next page */
582 	io_ctl_map_page(io_ctl, 1);
583 	return 0;
584 }
585 
586 static int io_ctl_add_bitmap(struct btrfs_io_ctl *io_ctl, void *bitmap)
587 {
588 	if (!io_ctl->cur)
589 		return -ENOSPC;
590 
591 	/*
592 	 * If we aren't at the start of the current page, unmap this one and
593 	 * map the next one if there is any left.
594 	 */
595 	if (io_ctl->cur != io_ctl->orig) {
596 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
597 		if (io_ctl->index >= io_ctl->num_pages)
598 			return -ENOSPC;
599 		io_ctl_map_page(io_ctl, 0);
600 	}
601 
602 	copy_page(io_ctl->cur, bitmap);
603 	io_ctl_set_crc(io_ctl, io_ctl->index - 1);
604 	if (io_ctl->index < io_ctl->num_pages)
605 		io_ctl_map_page(io_ctl, 0);
606 	return 0;
607 }
608 
609 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl *io_ctl)
610 {
611 	/*
612 	 * If we're not on the boundary we know we've modified the page and we
613 	 * need to crc the page.
614 	 */
615 	if (io_ctl->cur != io_ctl->orig)
616 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
617 	else
618 		io_ctl_unmap_page(io_ctl);
619 
620 	while (io_ctl->index < io_ctl->num_pages) {
621 		io_ctl_map_page(io_ctl, 1);
622 		io_ctl_set_crc(io_ctl, io_ctl->index - 1);
623 	}
624 }
625 
626 static int io_ctl_read_entry(struct btrfs_io_ctl *io_ctl,
627 			    struct btrfs_free_space *entry, u8 *type)
628 {
629 	struct btrfs_free_space_entry *e;
630 	int ret;
631 
632 	if (!io_ctl->cur) {
633 		ret = io_ctl_check_crc(io_ctl, io_ctl->index);
634 		if (ret)
635 			return ret;
636 	}
637 
638 	e = io_ctl->cur;
639 	entry->offset = get_unaligned_le64(&e->offset);
640 	entry->bytes = get_unaligned_le64(&e->bytes);
641 	*type = e->type;
642 	io_ctl->cur += sizeof(struct btrfs_free_space_entry);
643 	io_ctl->size -= sizeof(struct btrfs_free_space_entry);
644 
645 	if (io_ctl->size >= sizeof(struct btrfs_free_space_entry))
646 		return 0;
647 
648 	io_ctl_unmap_page(io_ctl);
649 
650 	return 0;
651 }
652 
653 static int io_ctl_read_bitmap(struct btrfs_io_ctl *io_ctl,
654 			      struct btrfs_free_space *entry)
655 {
656 	int ret;
657 
658 	ret = io_ctl_check_crc(io_ctl, io_ctl->index);
659 	if (ret)
660 		return ret;
661 
662 	copy_page(entry->bitmap, io_ctl->cur);
663 	io_ctl_unmap_page(io_ctl);
664 
665 	return 0;
666 }
667 
668 static void recalculate_thresholds(struct btrfs_free_space_ctl *ctl)
669 {
670 	struct btrfs_block_group *block_group = ctl->private;
671 	u64 max_bytes;
672 	u64 bitmap_bytes;
673 	u64 extent_bytes;
674 	u64 size = block_group->length;
675 	u64 bytes_per_bg = BITS_PER_BITMAP * ctl->unit;
676 	u64 max_bitmaps = div64_u64(size + bytes_per_bg - 1, bytes_per_bg);
677 
678 	max_bitmaps = max_t(u64, max_bitmaps, 1);
679 
680 	ASSERT(ctl->total_bitmaps <= max_bitmaps);
681 
682 	/*
683 	 * We are trying to keep the total amount of memory used per 1GiB of
684 	 * space to be MAX_CACHE_BYTES_PER_GIG.  However, with a reclamation
685 	 * mechanism of pulling extents >= FORCE_EXTENT_THRESHOLD out of
686 	 * bitmaps, we may end up using more memory than this.
687 	 */
688 	if (size < SZ_1G)
689 		max_bytes = MAX_CACHE_BYTES_PER_GIG;
690 	else
691 		max_bytes = MAX_CACHE_BYTES_PER_GIG * div_u64(size, SZ_1G);
692 
693 	bitmap_bytes = ctl->total_bitmaps * ctl->unit;
694 
695 	/*
696 	 * we want the extent entry threshold to always be at most 1/2 the max
697 	 * bytes we can have, or whatever is less than that.
698 	 */
699 	extent_bytes = max_bytes - bitmap_bytes;
700 	extent_bytes = min_t(u64, extent_bytes, max_bytes >> 1);
701 
702 	ctl->extents_thresh =
703 		div_u64(extent_bytes, sizeof(struct btrfs_free_space));
704 }
705 
706 static int __load_free_space_cache(struct btrfs_root *root, struct inode *inode,
707 				   struct btrfs_free_space_ctl *ctl,
708 				   struct btrfs_path *path, u64 offset)
709 {
710 	struct btrfs_fs_info *fs_info = root->fs_info;
711 	struct btrfs_free_space_header *header;
712 	struct extent_buffer *leaf;
713 	struct btrfs_io_ctl io_ctl;
714 	struct btrfs_key key;
715 	struct btrfs_free_space *e, *n;
716 	LIST_HEAD(bitmaps);
717 	u64 num_entries;
718 	u64 num_bitmaps;
719 	u64 generation;
720 	u8 type;
721 	int ret = 0;
722 
723 	/* Nothing in the space cache, goodbye */
724 	if (!i_size_read(inode))
725 		return 0;
726 
727 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
728 	key.offset = offset;
729 	key.type = 0;
730 
731 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
732 	if (ret < 0)
733 		return 0;
734 	else if (ret > 0) {
735 		btrfs_release_path(path);
736 		return 0;
737 	}
738 
739 	ret = -1;
740 
741 	leaf = path->nodes[0];
742 	header = btrfs_item_ptr(leaf, path->slots[0],
743 				struct btrfs_free_space_header);
744 	num_entries = btrfs_free_space_entries(leaf, header);
745 	num_bitmaps = btrfs_free_space_bitmaps(leaf, header);
746 	generation = btrfs_free_space_generation(leaf, header);
747 	btrfs_release_path(path);
748 
749 	if (!BTRFS_I(inode)->generation) {
750 		btrfs_info(fs_info,
751 			   "the free space cache file (%llu) is invalid, skip it",
752 			   offset);
753 		return 0;
754 	}
755 
756 	if (BTRFS_I(inode)->generation != generation) {
757 		btrfs_err(fs_info,
758 			  "free space inode generation (%llu) did not match free space cache generation (%llu)",
759 			  BTRFS_I(inode)->generation, generation);
760 		return 0;
761 	}
762 
763 	if (!num_entries)
764 		return 0;
765 
766 	ret = io_ctl_init(&io_ctl, inode, 0);
767 	if (ret)
768 		return ret;
769 
770 	readahead_cache(inode);
771 
772 	ret = io_ctl_prepare_pages(&io_ctl, true);
773 	if (ret)
774 		goto out;
775 
776 	ret = io_ctl_check_crc(&io_ctl, 0);
777 	if (ret)
778 		goto free_cache;
779 
780 	ret = io_ctl_check_generation(&io_ctl, generation);
781 	if (ret)
782 		goto free_cache;
783 
784 	while (num_entries) {
785 		e = kmem_cache_zalloc(btrfs_free_space_cachep,
786 				      GFP_NOFS);
787 		if (!e) {
788 			ret = -ENOMEM;
789 			goto free_cache;
790 		}
791 
792 		ret = io_ctl_read_entry(&io_ctl, e, &type);
793 		if (ret) {
794 			kmem_cache_free(btrfs_free_space_cachep, e);
795 			goto free_cache;
796 		}
797 
798 		if (!e->bytes) {
799 			ret = -1;
800 			kmem_cache_free(btrfs_free_space_cachep, e);
801 			goto free_cache;
802 		}
803 
804 		if (type == BTRFS_FREE_SPACE_EXTENT) {
805 			spin_lock(&ctl->tree_lock);
806 			ret = link_free_space(ctl, e);
807 			spin_unlock(&ctl->tree_lock);
808 			if (ret) {
809 				btrfs_err(fs_info,
810 					"Duplicate entries in free space cache, dumping");
811 				kmem_cache_free(btrfs_free_space_cachep, e);
812 				goto free_cache;
813 			}
814 		} else {
815 			ASSERT(num_bitmaps);
816 			num_bitmaps--;
817 			e->bitmap = kmem_cache_zalloc(
818 					btrfs_free_space_bitmap_cachep, GFP_NOFS);
819 			if (!e->bitmap) {
820 				ret = -ENOMEM;
821 				kmem_cache_free(
822 					btrfs_free_space_cachep, e);
823 				goto free_cache;
824 			}
825 			spin_lock(&ctl->tree_lock);
826 			ret = link_free_space(ctl, e);
827 			ctl->total_bitmaps++;
828 			recalculate_thresholds(ctl);
829 			spin_unlock(&ctl->tree_lock);
830 			if (ret) {
831 				btrfs_err(fs_info,
832 					"Duplicate entries in free space cache, dumping");
833 				kmem_cache_free(btrfs_free_space_cachep, e);
834 				goto free_cache;
835 			}
836 			list_add_tail(&e->list, &bitmaps);
837 		}
838 
839 		num_entries--;
840 	}
841 
842 	io_ctl_unmap_page(&io_ctl);
843 
844 	/*
845 	 * We add the bitmaps at the end of the entries in order that
846 	 * the bitmap entries are added to the cache.
847 	 */
848 	list_for_each_entry_safe(e, n, &bitmaps, list) {
849 		list_del_init(&e->list);
850 		ret = io_ctl_read_bitmap(&io_ctl, e);
851 		if (ret)
852 			goto free_cache;
853 	}
854 
855 	io_ctl_drop_pages(&io_ctl);
856 	ret = 1;
857 out:
858 	io_ctl_free(&io_ctl);
859 	return ret;
860 free_cache:
861 	io_ctl_drop_pages(&io_ctl);
862 	__btrfs_remove_free_space_cache(ctl);
863 	goto out;
864 }
865 
866 static int copy_free_space_cache(struct btrfs_block_group *block_group,
867 				 struct btrfs_free_space_ctl *ctl)
868 {
869 	struct btrfs_free_space *info;
870 	struct rb_node *n;
871 	int ret = 0;
872 
873 	while (!ret && (n = rb_first(&ctl->free_space_offset)) != NULL) {
874 		info = rb_entry(n, struct btrfs_free_space, offset_index);
875 		if (!info->bitmap) {
876 			unlink_free_space(ctl, info);
877 			ret = btrfs_add_free_space(block_group, info->offset,
878 						   info->bytes);
879 			kmem_cache_free(btrfs_free_space_cachep, info);
880 		} else {
881 			u64 offset = info->offset;
882 			u64 bytes = ctl->unit;
883 
884 			while (search_bitmap(ctl, info, &offset, &bytes,
885 					     false) == 0) {
886 				ret = btrfs_add_free_space(block_group, offset,
887 							   bytes);
888 				if (ret)
889 					break;
890 				bitmap_clear_bits(ctl, info, offset, bytes);
891 				offset = info->offset;
892 				bytes = ctl->unit;
893 			}
894 			free_bitmap(ctl, info);
895 		}
896 		cond_resched();
897 	}
898 	return ret;
899 }
900 
901 int load_free_space_cache(struct btrfs_block_group *block_group)
902 {
903 	struct btrfs_fs_info *fs_info = block_group->fs_info;
904 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
905 	struct btrfs_free_space_ctl tmp_ctl = {};
906 	struct inode *inode;
907 	struct btrfs_path *path;
908 	int ret = 0;
909 	bool matched;
910 	u64 used = block_group->used;
911 
912 	/*
913 	 * Because we could potentially discard our loaded free space, we want
914 	 * to load everything into a temporary structure first, and then if it's
915 	 * valid copy it all into the actual free space ctl.
916 	 */
917 	btrfs_init_free_space_ctl(block_group, &tmp_ctl);
918 
919 	/*
920 	 * If this block group has been marked to be cleared for one reason or
921 	 * another then we can't trust the on disk cache, so just return.
922 	 */
923 	spin_lock(&block_group->lock);
924 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
925 		spin_unlock(&block_group->lock);
926 		return 0;
927 	}
928 	spin_unlock(&block_group->lock);
929 
930 	path = btrfs_alloc_path();
931 	if (!path)
932 		return 0;
933 	path->search_commit_root = 1;
934 	path->skip_locking = 1;
935 
936 	/*
937 	 * We must pass a path with search_commit_root set to btrfs_iget in
938 	 * order to avoid a deadlock when allocating extents for the tree root.
939 	 *
940 	 * When we are COWing an extent buffer from the tree root, when looking
941 	 * for a free extent, at extent-tree.c:find_free_extent(), we can find
942 	 * block group without its free space cache loaded. When we find one
943 	 * we must load its space cache which requires reading its free space
944 	 * cache's inode item from the root tree. If this inode item is located
945 	 * in the same leaf that we started COWing before, then we end up in
946 	 * deadlock on the extent buffer (trying to read lock it when we
947 	 * previously write locked it).
948 	 *
949 	 * It's safe to read the inode item using the commit root because
950 	 * block groups, once loaded, stay in memory forever (until they are
951 	 * removed) as well as their space caches once loaded. New block groups
952 	 * once created get their ->cached field set to BTRFS_CACHE_FINISHED so
953 	 * we will never try to read their inode item while the fs is mounted.
954 	 */
955 	inode = lookup_free_space_inode(block_group, path);
956 	if (IS_ERR(inode)) {
957 		btrfs_free_path(path);
958 		return 0;
959 	}
960 
961 	/* We may have converted the inode and made the cache invalid. */
962 	spin_lock(&block_group->lock);
963 	if (block_group->disk_cache_state != BTRFS_DC_WRITTEN) {
964 		spin_unlock(&block_group->lock);
965 		btrfs_free_path(path);
966 		goto out;
967 	}
968 	spin_unlock(&block_group->lock);
969 
970 	ret = __load_free_space_cache(fs_info->tree_root, inode, &tmp_ctl,
971 				      path, block_group->start);
972 	btrfs_free_path(path);
973 	if (ret <= 0)
974 		goto out;
975 
976 	matched = (tmp_ctl.free_space == (block_group->length - used -
977 					  block_group->bytes_super));
978 
979 	if (matched) {
980 		ret = copy_free_space_cache(block_group, &tmp_ctl);
981 		/*
982 		 * ret == 1 means we successfully loaded the free space cache,
983 		 * so we need to re-set it here.
984 		 */
985 		if (ret == 0)
986 			ret = 1;
987 	} else {
988 		__btrfs_remove_free_space_cache(&tmp_ctl);
989 		btrfs_warn(fs_info,
990 			   "block group %llu has wrong amount of free space",
991 			   block_group->start);
992 		ret = -1;
993 	}
994 out:
995 	if (ret < 0) {
996 		/* This cache is bogus, make sure it gets cleared */
997 		spin_lock(&block_group->lock);
998 		block_group->disk_cache_state = BTRFS_DC_CLEAR;
999 		spin_unlock(&block_group->lock);
1000 		ret = 0;
1001 
1002 		btrfs_warn(fs_info,
1003 			   "failed to load free space cache for block group %llu, rebuilding it now",
1004 			   block_group->start);
1005 	}
1006 
1007 	spin_lock(&ctl->tree_lock);
1008 	btrfs_discard_update_discardable(block_group);
1009 	spin_unlock(&ctl->tree_lock);
1010 	iput(inode);
1011 	return ret;
1012 }
1013 
1014 static noinline_for_stack
1015 int write_cache_extent_entries(struct btrfs_io_ctl *io_ctl,
1016 			      struct btrfs_free_space_ctl *ctl,
1017 			      struct btrfs_block_group *block_group,
1018 			      int *entries, int *bitmaps,
1019 			      struct list_head *bitmap_list)
1020 {
1021 	int ret;
1022 	struct btrfs_free_cluster *cluster = NULL;
1023 	struct btrfs_free_cluster *cluster_locked = NULL;
1024 	struct rb_node *node = rb_first(&ctl->free_space_offset);
1025 	struct btrfs_trim_range *trim_entry;
1026 
1027 	/* Get the cluster for this block_group if it exists */
1028 	if (block_group && !list_empty(&block_group->cluster_list)) {
1029 		cluster = list_entry(block_group->cluster_list.next,
1030 				     struct btrfs_free_cluster,
1031 				     block_group_list);
1032 	}
1033 
1034 	if (!node && cluster) {
1035 		cluster_locked = cluster;
1036 		spin_lock(&cluster_locked->lock);
1037 		node = rb_first(&cluster->root);
1038 		cluster = NULL;
1039 	}
1040 
1041 	/* Write out the extent entries */
1042 	while (node) {
1043 		struct btrfs_free_space *e;
1044 
1045 		e = rb_entry(node, struct btrfs_free_space, offset_index);
1046 		*entries += 1;
1047 
1048 		ret = io_ctl_add_entry(io_ctl, e->offset, e->bytes,
1049 				       e->bitmap);
1050 		if (ret)
1051 			goto fail;
1052 
1053 		if (e->bitmap) {
1054 			list_add_tail(&e->list, bitmap_list);
1055 			*bitmaps += 1;
1056 		}
1057 		node = rb_next(node);
1058 		if (!node && cluster) {
1059 			node = rb_first(&cluster->root);
1060 			cluster_locked = cluster;
1061 			spin_lock(&cluster_locked->lock);
1062 			cluster = NULL;
1063 		}
1064 	}
1065 	if (cluster_locked) {
1066 		spin_unlock(&cluster_locked->lock);
1067 		cluster_locked = NULL;
1068 	}
1069 
1070 	/*
1071 	 * Make sure we don't miss any range that was removed from our rbtree
1072 	 * because trimming is running. Otherwise after a umount+mount (or crash
1073 	 * after committing the transaction) we would leak free space and get
1074 	 * an inconsistent free space cache report from fsck.
1075 	 */
1076 	list_for_each_entry(trim_entry, &ctl->trimming_ranges, list) {
1077 		ret = io_ctl_add_entry(io_ctl, trim_entry->start,
1078 				       trim_entry->bytes, NULL);
1079 		if (ret)
1080 			goto fail;
1081 		*entries += 1;
1082 	}
1083 
1084 	return 0;
1085 fail:
1086 	if (cluster_locked)
1087 		spin_unlock(&cluster_locked->lock);
1088 	return -ENOSPC;
1089 }
1090 
1091 static noinline_for_stack int
1092 update_cache_item(struct btrfs_trans_handle *trans,
1093 		  struct btrfs_root *root,
1094 		  struct inode *inode,
1095 		  struct btrfs_path *path, u64 offset,
1096 		  int entries, int bitmaps)
1097 {
1098 	struct btrfs_key key;
1099 	struct btrfs_free_space_header *header;
1100 	struct extent_buffer *leaf;
1101 	int ret;
1102 
1103 	key.objectid = BTRFS_FREE_SPACE_OBJECTID;
1104 	key.offset = offset;
1105 	key.type = 0;
1106 
1107 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1108 	if (ret < 0) {
1109 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1110 				 EXTENT_DELALLOC, 0, 0, NULL);
1111 		goto fail;
1112 	}
1113 	leaf = path->nodes[0];
1114 	if (ret > 0) {
1115 		struct btrfs_key found_key;
1116 		ASSERT(path->slots[0]);
1117 		path->slots[0]--;
1118 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1119 		if (found_key.objectid != BTRFS_FREE_SPACE_OBJECTID ||
1120 		    found_key.offset != offset) {
1121 			clear_extent_bit(&BTRFS_I(inode)->io_tree, 0,
1122 					 inode->i_size - 1, EXTENT_DELALLOC, 0,
1123 					 0, NULL);
1124 			btrfs_release_path(path);
1125 			goto fail;
1126 		}
1127 	}
1128 
1129 	BTRFS_I(inode)->generation = trans->transid;
1130 	header = btrfs_item_ptr(leaf, path->slots[0],
1131 				struct btrfs_free_space_header);
1132 	btrfs_set_free_space_entries(leaf, header, entries);
1133 	btrfs_set_free_space_bitmaps(leaf, header, bitmaps);
1134 	btrfs_set_free_space_generation(leaf, header, trans->transid);
1135 	btrfs_mark_buffer_dirty(leaf);
1136 	btrfs_release_path(path);
1137 
1138 	return 0;
1139 
1140 fail:
1141 	return -1;
1142 }
1143 
1144 static noinline_for_stack int write_pinned_extent_entries(
1145 			    struct btrfs_trans_handle *trans,
1146 			    struct btrfs_block_group *block_group,
1147 			    struct btrfs_io_ctl *io_ctl,
1148 			    int *entries)
1149 {
1150 	u64 start, extent_start, extent_end, len;
1151 	struct extent_io_tree *unpin = NULL;
1152 	int ret;
1153 
1154 	if (!block_group)
1155 		return 0;
1156 
1157 	/*
1158 	 * We want to add any pinned extents to our free space cache
1159 	 * so we don't leak the space
1160 	 *
1161 	 * We shouldn't have switched the pinned extents yet so this is the
1162 	 * right one
1163 	 */
1164 	unpin = &trans->transaction->pinned_extents;
1165 
1166 	start = block_group->start;
1167 
1168 	while (start < block_group->start + block_group->length) {
1169 		ret = find_first_extent_bit(unpin, start,
1170 					    &extent_start, &extent_end,
1171 					    EXTENT_DIRTY, NULL);
1172 		if (ret)
1173 			return 0;
1174 
1175 		/* This pinned extent is out of our range */
1176 		if (extent_start >= block_group->start + block_group->length)
1177 			return 0;
1178 
1179 		extent_start = max(extent_start, start);
1180 		extent_end = min(block_group->start + block_group->length,
1181 				 extent_end + 1);
1182 		len = extent_end - extent_start;
1183 
1184 		*entries += 1;
1185 		ret = io_ctl_add_entry(io_ctl, extent_start, len, NULL);
1186 		if (ret)
1187 			return -ENOSPC;
1188 
1189 		start = extent_end;
1190 	}
1191 
1192 	return 0;
1193 }
1194 
1195 static noinline_for_stack int
1196 write_bitmap_entries(struct btrfs_io_ctl *io_ctl, struct list_head *bitmap_list)
1197 {
1198 	struct btrfs_free_space *entry, *next;
1199 	int ret;
1200 
1201 	/* Write out the bitmaps */
1202 	list_for_each_entry_safe(entry, next, bitmap_list, list) {
1203 		ret = io_ctl_add_bitmap(io_ctl, entry->bitmap);
1204 		if (ret)
1205 			return -ENOSPC;
1206 		list_del_init(&entry->list);
1207 	}
1208 
1209 	return 0;
1210 }
1211 
1212 static int flush_dirty_cache(struct inode *inode)
1213 {
1214 	int ret;
1215 
1216 	ret = btrfs_wait_ordered_range(inode, 0, (u64)-1);
1217 	if (ret)
1218 		clear_extent_bit(&BTRFS_I(inode)->io_tree, 0, inode->i_size - 1,
1219 				 EXTENT_DELALLOC, 0, 0, NULL);
1220 
1221 	return ret;
1222 }
1223 
1224 static void noinline_for_stack
1225 cleanup_bitmap_list(struct list_head *bitmap_list)
1226 {
1227 	struct btrfs_free_space *entry, *next;
1228 
1229 	list_for_each_entry_safe(entry, next, bitmap_list, list)
1230 		list_del_init(&entry->list);
1231 }
1232 
1233 static void noinline_for_stack
1234 cleanup_write_cache_enospc(struct inode *inode,
1235 			   struct btrfs_io_ctl *io_ctl,
1236 			   struct extent_state **cached_state)
1237 {
1238 	io_ctl_drop_pages(io_ctl);
1239 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1240 			     i_size_read(inode) - 1, cached_state);
1241 }
1242 
1243 static int __btrfs_wait_cache_io(struct btrfs_root *root,
1244 				 struct btrfs_trans_handle *trans,
1245 				 struct btrfs_block_group *block_group,
1246 				 struct btrfs_io_ctl *io_ctl,
1247 				 struct btrfs_path *path, u64 offset)
1248 {
1249 	int ret;
1250 	struct inode *inode = io_ctl->inode;
1251 
1252 	if (!inode)
1253 		return 0;
1254 
1255 	/* Flush the dirty pages in the cache file. */
1256 	ret = flush_dirty_cache(inode);
1257 	if (ret)
1258 		goto out;
1259 
1260 	/* Update the cache item to tell everyone this cache file is valid. */
1261 	ret = update_cache_item(trans, root, inode, path, offset,
1262 				io_ctl->entries, io_ctl->bitmaps);
1263 out:
1264 	if (ret) {
1265 		invalidate_inode_pages2(inode->i_mapping);
1266 		BTRFS_I(inode)->generation = 0;
1267 		if (block_group)
1268 			btrfs_debug(root->fs_info,
1269 	  "failed to write free space cache for block group %llu error %d",
1270 				  block_group->start, ret);
1271 	}
1272 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1273 
1274 	if (block_group) {
1275 		/* the dirty list is protected by the dirty_bgs_lock */
1276 		spin_lock(&trans->transaction->dirty_bgs_lock);
1277 
1278 		/* the disk_cache_state is protected by the block group lock */
1279 		spin_lock(&block_group->lock);
1280 
1281 		/*
1282 		 * only mark this as written if we didn't get put back on
1283 		 * the dirty list while waiting for IO.   Otherwise our
1284 		 * cache state won't be right, and we won't get written again
1285 		 */
1286 		if (!ret && list_empty(&block_group->dirty_list))
1287 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1288 		else if (ret)
1289 			block_group->disk_cache_state = BTRFS_DC_ERROR;
1290 
1291 		spin_unlock(&block_group->lock);
1292 		spin_unlock(&trans->transaction->dirty_bgs_lock);
1293 		io_ctl->inode = NULL;
1294 		iput(inode);
1295 	}
1296 
1297 	return ret;
1298 
1299 }
1300 
1301 int btrfs_wait_cache_io(struct btrfs_trans_handle *trans,
1302 			struct btrfs_block_group *block_group,
1303 			struct btrfs_path *path)
1304 {
1305 	return __btrfs_wait_cache_io(block_group->fs_info->tree_root, trans,
1306 				     block_group, &block_group->io_ctl,
1307 				     path, block_group->start);
1308 }
1309 
1310 /**
1311  * Write out cached info to an inode
1312  *
1313  * @root:        root the inode belongs to
1314  * @inode:       freespace inode we are writing out
1315  * @ctl:         free space cache we are going to write out
1316  * @block_group: block_group for this cache if it belongs to a block_group
1317  * @io_ctl:      holds context for the io
1318  * @trans:       the trans handle
1319  *
1320  * This function writes out a free space cache struct to disk for quick recovery
1321  * on mount.  This will return 0 if it was successful in writing the cache out,
1322  * or an errno if it was not.
1323  */
1324 static int __btrfs_write_out_cache(struct btrfs_root *root, struct inode *inode,
1325 				   struct btrfs_free_space_ctl *ctl,
1326 				   struct btrfs_block_group *block_group,
1327 				   struct btrfs_io_ctl *io_ctl,
1328 				   struct btrfs_trans_handle *trans)
1329 {
1330 	struct extent_state *cached_state = NULL;
1331 	LIST_HEAD(bitmap_list);
1332 	int entries = 0;
1333 	int bitmaps = 0;
1334 	int ret;
1335 	int must_iput = 0;
1336 
1337 	if (!i_size_read(inode))
1338 		return -EIO;
1339 
1340 	WARN_ON(io_ctl->pages);
1341 	ret = io_ctl_init(io_ctl, inode, 1);
1342 	if (ret)
1343 		return ret;
1344 
1345 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA)) {
1346 		down_write(&block_group->data_rwsem);
1347 		spin_lock(&block_group->lock);
1348 		if (block_group->delalloc_bytes) {
1349 			block_group->disk_cache_state = BTRFS_DC_WRITTEN;
1350 			spin_unlock(&block_group->lock);
1351 			up_write(&block_group->data_rwsem);
1352 			BTRFS_I(inode)->generation = 0;
1353 			ret = 0;
1354 			must_iput = 1;
1355 			goto out;
1356 		}
1357 		spin_unlock(&block_group->lock);
1358 	}
1359 
1360 	/* Lock all pages first so we can lock the extent safely. */
1361 	ret = io_ctl_prepare_pages(io_ctl, false);
1362 	if (ret)
1363 		goto out_unlock;
1364 
1365 	lock_extent_bits(&BTRFS_I(inode)->io_tree, 0, i_size_read(inode) - 1,
1366 			 &cached_state);
1367 
1368 	io_ctl_set_generation(io_ctl, trans->transid);
1369 
1370 	mutex_lock(&ctl->cache_writeout_mutex);
1371 	/* Write out the extent entries in the free space cache */
1372 	spin_lock(&ctl->tree_lock);
1373 	ret = write_cache_extent_entries(io_ctl, ctl,
1374 					 block_group, &entries, &bitmaps,
1375 					 &bitmap_list);
1376 	if (ret)
1377 		goto out_nospc_locked;
1378 
1379 	/*
1380 	 * Some spaces that are freed in the current transaction are pinned,
1381 	 * they will be added into free space cache after the transaction is
1382 	 * committed, we shouldn't lose them.
1383 	 *
1384 	 * If this changes while we are working we'll get added back to
1385 	 * the dirty list and redo it.  No locking needed
1386 	 */
1387 	ret = write_pinned_extent_entries(trans, block_group, io_ctl, &entries);
1388 	if (ret)
1389 		goto out_nospc_locked;
1390 
1391 	/*
1392 	 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1393 	 * locked while doing it because a concurrent trim can be manipulating
1394 	 * or freeing the bitmap.
1395 	 */
1396 	ret = write_bitmap_entries(io_ctl, &bitmap_list);
1397 	spin_unlock(&ctl->tree_lock);
1398 	mutex_unlock(&ctl->cache_writeout_mutex);
1399 	if (ret)
1400 		goto out_nospc;
1401 
1402 	/* Zero out the rest of the pages just to make sure */
1403 	io_ctl_zero_remaining_pages(io_ctl);
1404 
1405 	/* Everything is written out, now we dirty the pages in the file. */
1406 	ret = btrfs_dirty_pages(BTRFS_I(inode), io_ctl->pages,
1407 				io_ctl->num_pages, 0, i_size_read(inode),
1408 				&cached_state, false);
1409 	if (ret)
1410 		goto out_nospc;
1411 
1412 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1413 		up_write(&block_group->data_rwsem);
1414 	/*
1415 	 * Release the pages and unlock the extent, we will flush
1416 	 * them out later
1417 	 */
1418 	io_ctl_drop_pages(io_ctl);
1419 	io_ctl_free(io_ctl);
1420 
1421 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, 0,
1422 			     i_size_read(inode) - 1, &cached_state);
1423 
1424 	/*
1425 	 * at this point the pages are under IO and we're happy,
1426 	 * The caller is responsible for waiting on them and updating
1427 	 * the cache and the inode
1428 	 */
1429 	io_ctl->entries = entries;
1430 	io_ctl->bitmaps = bitmaps;
1431 
1432 	ret = btrfs_fdatawrite_range(inode, 0, (u64)-1);
1433 	if (ret)
1434 		goto out;
1435 
1436 	return 0;
1437 
1438 out_nospc_locked:
1439 	cleanup_bitmap_list(&bitmap_list);
1440 	spin_unlock(&ctl->tree_lock);
1441 	mutex_unlock(&ctl->cache_writeout_mutex);
1442 
1443 out_nospc:
1444 	cleanup_write_cache_enospc(inode, io_ctl, &cached_state);
1445 
1446 out_unlock:
1447 	if (block_group && (block_group->flags & BTRFS_BLOCK_GROUP_DATA))
1448 		up_write(&block_group->data_rwsem);
1449 
1450 out:
1451 	io_ctl->inode = NULL;
1452 	io_ctl_free(io_ctl);
1453 	if (ret) {
1454 		invalidate_inode_pages2(inode->i_mapping);
1455 		BTRFS_I(inode)->generation = 0;
1456 	}
1457 	btrfs_update_inode(trans, root, BTRFS_I(inode));
1458 	if (must_iput)
1459 		iput(inode);
1460 	return ret;
1461 }
1462 
1463 int btrfs_write_out_cache(struct btrfs_trans_handle *trans,
1464 			  struct btrfs_block_group *block_group,
1465 			  struct btrfs_path *path)
1466 {
1467 	struct btrfs_fs_info *fs_info = trans->fs_info;
1468 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
1469 	struct inode *inode;
1470 	int ret = 0;
1471 
1472 	spin_lock(&block_group->lock);
1473 	if (block_group->disk_cache_state < BTRFS_DC_SETUP) {
1474 		spin_unlock(&block_group->lock);
1475 		return 0;
1476 	}
1477 	spin_unlock(&block_group->lock);
1478 
1479 	inode = lookup_free_space_inode(block_group, path);
1480 	if (IS_ERR(inode))
1481 		return 0;
1482 
1483 	ret = __btrfs_write_out_cache(fs_info->tree_root, inode, ctl,
1484 				block_group, &block_group->io_ctl, trans);
1485 	if (ret) {
1486 		btrfs_debug(fs_info,
1487 	  "failed to write free space cache for block group %llu error %d",
1488 			  block_group->start, ret);
1489 		spin_lock(&block_group->lock);
1490 		block_group->disk_cache_state = BTRFS_DC_ERROR;
1491 		spin_unlock(&block_group->lock);
1492 
1493 		block_group->io_ctl.inode = NULL;
1494 		iput(inode);
1495 	}
1496 
1497 	/*
1498 	 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1499 	 * to wait for IO and put the inode
1500 	 */
1501 
1502 	return ret;
1503 }
1504 
1505 static inline unsigned long offset_to_bit(u64 bitmap_start, u32 unit,
1506 					  u64 offset)
1507 {
1508 	ASSERT(offset >= bitmap_start);
1509 	offset -= bitmap_start;
1510 	return (unsigned long)(div_u64(offset, unit));
1511 }
1512 
1513 static inline unsigned long bytes_to_bits(u64 bytes, u32 unit)
1514 {
1515 	return (unsigned long)(div_u64(bytes, unit));
1516 }
1517 
1518 static inline u64 offset_to_bitmap(struct btrfs_free_space_ctl *ctl,
1519 				   u64 offset)
1520 {
1521 	u64 bitmap_start;
1522 	u64 bytes_per_bitmap;
1523 
1524 	bytes_per_bitmap = BITS_PER_BITMAP * ctl->unit;
1525 	bitmap_start = offset - ctl->start;
1526 	bitmap_start = div64_u64(bitmap_start, bytes_per_bitmap);
1527 	bitmap_start *= bytes_per_bitmap;
1528 	bitmap_start += ctl->start;
1529 
1530 	return bitmap_start;
1531 }
1532 
1533 static int tree_insert_offset(struct rb_root *root, u64 offset,
1534 			      struct rb_node *node, int bitmap)
1535 {
1536 	struct rb_node **p = &root->rb_node;
1537 	struct rb_node *parent = NULL;
1538 	struct btrfs_free_space *info;
1539 
1540 	while (*p) {
1541 		parent = *p;
1542 		info = rb_entry(parent, struct btrfs_free_space, offset_index);
1543 
1544 		if (offset < info->offset) {
1545 			p = &(*p)->rb_left;
1546 		} else if (offset > info->offset) {
1547 			p = &(*p)->rb_right;
1548 		} else {
1549 			/*
1550 			 * we could have a bitmap entry and an extent entry
1551 			 * share the same offset.  If this is the case, we want
1552 			 * the extent entry to always be found first if we do a
1553 			 * linear search through the tree, since we want to have
1554 			 * the quickest allocation time, and allocating from an
1555 			 * extent is faster than allocating from a bitmap.  So
1556 			 * if we're inserting a bitmap and we find an entry at
1557 			 * this offset, we want to go right, or after this entry
1558 			 * logically.  If we are inserting an extent and we've
1559 			 * found a bitmap, we want to go left, or before
1560 			 * logically.
1561 			 */
1562 			if (bitmap) {
1563 				if (info->bitmap) {
1564 					WARN_ON_ONCE(1);
1565 					return -EEXIST;
1566 				}
1567 				p = &(*p)->rb_right;
1568 			} else {
1569 				if (!info->bitmap) {
1570 					WARN_ON_ONCE(1);
1571 					return -EEXIST;
1572 				}
1573 				p = &(*p)->rb_left;
1574 			}
1575 		}
1576 	}
1577 
1578 	rb_link_node(node, parent, p);
1579 	rb_insert_color(node, root);
1580 
1581 	return 0;
1582 }
1583 
1584 /*
1585  * searches the tree for the given offset.
1586  *
1587  * fuzzy - If this is set, then we are trying to make an allocation, and we just
1588  * want a section that has at least bytes size and comes at or after the given
1589  * offset.
1590  */
1591 static struct btrfs_free_space *
1592 tree_search_offset(struct btrfs_free_space_ctl *ctl,
1593 		   u64 offset, int bitmap_only, int fuzzy)
1594 {
1595 	struct rb_node *n = ctl->free_space_offset.rb_node;
1596 	struct btrfs_free_space *entry, *prev = NULL;
1597 
1598 	/* find entry that is closest to the 'offset' */
1599 	while (1) {
1600 		if (!n) {
1601 			entry = NULL;
1602 			break;
1603 		}
1604 
1605 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1606 		prev = entry;
1607 
1608 		if (offset < entry->offset)
1609 			n = n->rb_left;
1610 		else if (offset > entry->offset)
1611 			n = n->rb_right;
1612 		else
1613 			break;
1614 	}
1615 
1616 	if (bitmap_only) {
1617 		if (!entry)
1618 			return NULL;
1619 		if (entry->bitmap)
1620 			return entry;
1621 
1622 		/*
1623 		 * bitmap entry and extent entry may share same offset,
1624 		 * in that case, bitmap entry comes after extent entry.
1625 		 */
1626 		n = rb_next(n);
1627 		if (!n)
1628 			return NULL;
1629 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1630 		if (entry->offset != offset)
1631 			return NULL;
1632 
1633 		WARN_ON(!entry->bitmap);
1634 		return entry;
1635 	} else if (entry) {
1636 		if (entry->bitmap) {
1637 			/*
1638 			 * if previous extent entry covers the offset,
1639 			 * we should return it instead of the bitmap entry
1640 			 */
1641 			n = rb_prev(&entry->offset_index);
1642 			if (n) {
1643 				prev = rb_entry(n, struct btrfs_free_space,
1644 						offset_index);
1645 				if (!prev->bitmap &&
1646 				    prev->offset + prev->bytes > offset)
1647 					entry = prev;
1648 			}
1649 		}
1650 		return entry;
1651 	}
1652 
1653 	if (!prev)
1654 		return NULL;
1655 
1656 	/* find last entry before the 'offset' */
1657 	entry = prev;
1658 	if (entry->offset > offset) {
1659 		n = rb_prev(&entry->offset_index);
1660 		if (n) {
1661 			entry = rb_entry(n, struct btrfs_free_space,
1662 					offset_index);
1663 			ASSERT(entry->offset <= offset);
1664 		} else {
1665 			if (fuzzy)
1666 				return entry;
1667 			else
1668 				return NULL;
1669 		}
1670 	}
1671 
1672 	if (entry->bitmap) {
1673 		n = rb_prev(&entry->offset_index);
1674 		if (n) {
1675 			prev = rb_entry(n, struct btrfs_free_space,
1676 					offset_index);
1677 			if (!prev->bitmap &&
1678 			    prev->offset + prev->bytes > offset)
1679 				return prev;
1680 		}
1681 		if (entry->offset + BITS_PER_BITMAP * ctl->unit > offset)
1682 			return entry;
1683 	} else if (entry->offset + entry->bytes > offset)
1684 		return entry;
1685 
1686 	if (!fuzzy)
1687 		return NULL;
1688 
1689 	while (1) {
1690 		if (entry->bitmap) {
1691 			if (entry->offset + BITS_PER_BITMAP *
1692 			    ctl->unit > offset)
1693 				break;
1694 		} else {
1695 			if (entry->offset + entry->bytes > offset)
1696 				break;
1697 		}
1698 
1699 		n = rb_next(&entry->offset_index);
1700 		if (!n)
1701 			return NULL;
1702 		entry = rb_entry(n, struct btrfs_free_space, offset_index);
1703 	}
1704 	return entry;
1705 }
1706 
1707 static inline void
1708 __unlink_free_space(struct btrfs_free_space_ctl *ctl,
1709 		    struct btrfs_free_space *info)
1710 {
1711 	rb_erase(&info->offset_index, &ctl->free_space_offset);
1712 	ctl->free_extents--;
1713 
1714 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1715 		ctl->discardable_extents[BTRFS_STAT_CURR]--;
1716 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= info->bytes;
1717 	}
1718 }
1719 
1720 static void unlink_free_space(struct btrfs_free_space_ctl *ctl,
1721 			      struct btrfs_free_space *info)
1722 {
1723 	__unlink_free_space(ctl, info);
1724 	ctl->free_space -= info->bytes;
1725 }
1726 
1727 static int link_free_space(struct btrfs_free_space_ctl *ctl,
1728 			   struct btrfs_free_space *info)
1729 {
1730 	int ret = 0;
1731 
1732 	ASSERT(info->bytes || info->bitmap);
1733 	ret = tree_insert_offset(&ctl->free_space_offset, info->offset,
1734 				 &info->offset_index, (info->bitmap != NULL));
1735 	if (ret)
1736 		return ret;
1737 
1738 	if (!info->bitmap && !btrfs_free_space_trimmed(info)) {
1739 		ctl->discardable_extents[BTRFS_STAT_CURR]++;
1740 		ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
1741 	}
1742 
1743 	ctl->free_space += info->bytes;
1744 	ctl->free_extents++;
1745 	return ret;
1746 }
1747 
1748 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1749 				       struct btrfs_free_space *info,
1750 				       u64 offset, u64 bytes)
1751 {
1752 	unsigned long start, count, end;
1753 	int extent_delta = -1;
1754 
1755 	start = offset_to_bit(info->offset, ctl->unit, offset);
1756 	count = bytes_to_bits(bytes, ctl->unit);
1757 	end = start + count;
1758 	ASSERT(end <= BITS_PER_BITMAP);
1759 
1760 	bitmap_clear(info->bitmap, start, count);
1761 
1762 	info->bytes -= bytes;
1763 	if (info->max_extent_size > ctl->unit)
1764 		info->max_extent_size = 0;
1765 
1766 	if (start && test_bit(start - 1, info->bitmap))
1767 		extent_delta++;
1768 
1769 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1770 		extent_delta++;
1771 
1772 	info->bitmap_extents += extent_delta;
1773 	if (!btrfs_free_space_trimmed(info)) {
1774 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1775 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
1776 	}
1777 }
1778 
1779 static void bitmap_clear_bits(struct btrfs_free_space_ctl *ctl,
1780 			      struct btrfs_free_space *info, u64 offset,
1781 			      u64 bytes)
1782 {
1783 	__bitmap_clear_bits(ctl, info, offset, bytes);
1784 	ctl->free_space -= bytes;
1785 }
1786 
1787 static void bitmap_set_bits(struct btrfs_free_space_ctl *ctl,
1788 			    struct btrfs_free_space *info, u64 offset,
1789 			    u64 bytes)
1790 {
1791 	unsigned long start, count, end;
1792 	int extent_delta = 1;
1793 
1794 	start = offset_to_bit(info->offset, ctl->unit, offset);
1795 	count = bytes_to_bits(bytes, ctl->unit);
1796 	end = start + count;
1797 	ASSERT(end <= BITS_PER_BITMAP);
1798 
1799 	bitmap_set(info->bitmap, start, count);
1800 
1801 	info->bytes += bytes;
1802 	ctl->free_space += bytes;
1803 
1804 	if (start && test_bit(start - 1, info->bitmap))
1805 		extent_delta--;
1806 
1807 	if (end < BITS_PER_BITMAP && test_bit(end, info->bitmap))
1808 		extent_delta--;
1809 
1810 	info->bitmap_extents += extent_delta;
1811 	if (!btrfs_free_space_trimmed(info)) {
1812 		ctl->discardable_extents[BTRFS_STAT_CURR] += extent_delta;
1813 		ctl->discardable_bytes[BTRFS_STAT_CURR] += bytes;
1814 	}
1815 }
1816 
1817 /*
1818  * If we can not find suitable extent, we will use bytes to record
1819  * the size of the max extent.
1820  */
1821 static int search_bitmap(struct btrfs_free_space_ctl *ctl,
1822 			 struct btrfs_free_space *bitmap_info, u64 *offset,
1823 			 u64 *bytes, bool for_alloc)
1824 {
1825 	unsigned long found_bits = 0;
1826 	unsigned long max_bits = 0;
1827 	unsigned long bits, i;
1828 	unsigned long next_zero;
1829 	unsigned long extent_bits;
1830 
1831 	/*
1832 	 * Skip searching the bitmap if we don't have a contiguous section that
1833 	 * is large enough for this allocation.
1834 	 */
1835 	if (for_alloc &&
1836 	    bitmap_info->max_extent_size &&
1837 	    bitmap_info->max_extent_size < *bytes) {
1838 		*bytes = bitmap_info->max_extent_size;
1839 		return -1;
1840 	}
1841 
1842 	i = offset_to_bit(bitmap_info->offset, ctl->unit,
1843 			  max_t(u64, *offset, bitmap_info->offset));
1844 	bits = bytes_to_bits(*bytes, ctl->unit);
1845 
1846 	for_each_set_bit_from(i, bitmap_info->bitmap, BITS_PER_BITMAP) {
1847 		if (for_alloc && bits == 1) {
1848 			found_bits = 1;
1849 			break;
1850 		}
1851 		next_zero = find_next_zero_bit(bitmap_info->bitmap,
1852 					       BITS_PER_BITMAP, i);
1853 		extent_bits = next_zero - i;
1854 		if (extent_bits >= bits) {
1855 			found_bits = extent_bits;
1856 			break;
1857 		} else if (extent_bits > max_bits) {
1858 			max_bits = extent_bits;
1859 		}
1860 		i = next_zero;
1861 	}
1862 
1863 	if (found_bits) {
1864 		*offset = (u64)(i * ctl->unit) + bitmap_info->offset;
1865 		*bytes = (u64)(found_bits) * ctl->unit;
1866 		return 0;
1867 	}
1868 
1869 	*bytes = (u64)(max_bits) * ctl->unit;
1870 	bitmap_info->max_extent_size = *bytes;
1871 	return -1;
1872 }
1873 
1874 static inline u64 get_max_extent_size(struct btrfs_free_space *entry)
1875 {
1876 	if (entry->bitmap)
1877 		return entry->max_extent_size;
1878 	return entry->bytes;
1879 }
1880 
1881 /* Cache the size of the max extent in bytes */
1882 static struct btrfs_free_space *
1883 find_free_space(struct btrfs_free_space_ctl *ctl, u64 *offset, u64 *bytes,
1884 		unsigned long align, u64 *max_extent_size)
1885 {
1886 	struct btrfs_free_space *entry;
1887 	struct rb_node *node;
1888 	u64 tmp;
1889 	u64 align_off;
1890 	int ret;
1891 
1892 	if (!ctl->free_space_offset.rb_node)
1893 		goto out;
1894 
1895 	entry = tree_search_offset(ctl, offset_to_bitmap(ctl, *offset), 0, 1);
1896 	if (!entry)
1897 		goto out;
1898 
1899 	for (node = &entry->offset_index; node; node = rb_next(node)) {
1900 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
1901 		if (entry->bytes < *bytes) {
1902 			*max_extent_size = max(get_max_extent_size(entry),
1903 					       *max_extent_size);
1904 			continue;
1905 		}
1906 
1907 		/* make sure the space returned is big enough
1908 		 * to match our requested alignment
1909 		 */
1910 		if (*bytes >= align) {
1911 			tmp = entry->offset - ctl->start + align - 1;
1912 			tmp = div64_u64(tmp, align);
1913 			tmp = tmp * align + ctl->start;
1914 			align_off = tmp - entry->offset;
1915 		} else {
1916 			align_off = 0;
1917 			tmp = entry->offset;
1918 		}
1919 
1920 		if (entry->bytes < *bytes + align_off) {
1921 			*max_extent_size = max(get_max_extent_size(entry),
1922 					       *max_extent_size);
1923 			continue;
1924 		}
1925 
1926 		if (entry->bitmap) {
1927 			u64 size = *bytes;
1928 
1929 			ret = search_bitmap(ctl, entry, &tmp, &size, true);
1930 			if (!ret) {
1931 				*offset = tmp;
1932 				*bytes = size;
1933 				return entry;
1934 			} else {
1935 				*max_extent_size =
1936 					max(get_max_extent_size(entry),
1937 					    *max_extent_size);
1938 			}
1939 			continue;
1940 		}
1941 
1942 		*offset = tmp;
1943 		*bytes = entry->bytes - align_off;
1944 		return entry;
1945 	}
1946 out:
1947 	return NULL;
1948 }
1949 
1950 static void add_new_bitmap(struct btrfs_free_space_ctl *ctl,
1951 			   struct btrfs_free_space *info, u64 offset)
1952 {
1953 	info->offset = offset_to_bitmap(ctl, offset);
1954 	info->bytes = 0;
1955 	info->bitmap_extents = 0;
1956 	INIT_LIST_HEAD(&info->list);
1957 	link_free_space(ctl, info);
1958 	ctl->total_bitmaps++;
1959 	recalculate_thresholds(ctl);
1960 }
1961 
1962 static void free_bitmap(struct btrfs_free_space_ctl *ctl,
1963 			struct btrfs_free_space *bitmap_info)
1964 {
1965 	/*
1966 	 * Normally when this is called, the bitmap is completely empty. However,
1967 	 * if we are blowing up the free space cache for one reason or another
1968 	 * via __btrfs_remove_free_space_cache(), then it may not be freed and
1969 	 * we may leave stats on the table.
1970 	 */
1971 	if (bitmap_info->bytes && !btrfs_free_space_trimmed(bitmap_info)) {
1972 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
1973 			bitmap_info->bitmap_extents;
1974 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bitmap_info->bytes;
1975 
1976 	}
1977 	unlink_free_space(ctl, bitmap_info);
1978 	kmem_cache_free(btrfs_free_space_bitmap_cachep, bitmap_info->bitmap);
1979 	kmem_cache_free(btrfs_free_space_cachep, bitmap_info);
1980 	ctl->total_bitmaps--;
1981 	recalculate_thresholds(ctl);
1982 }
1983 
1984 static noinline int remove_from_bitmap(struct btrfs_free_space_ctl *ctl,
1985 			      struct btrfs_free_space *bitmap_info,
1986 			      u64 *offset, u64 *bytes)
1987 {
1988 	u64 end;
1989 	u64 search_start, search_bytes;
1990 	int ret;
1991 
1992 again:
1993 	end = bitmap_info->offset + (u64)(BITS_PER_BITMAP * ctl->unit) - 1;
1994 
1995 	/*
1996 	 * We need to search for bits in this bitmap.  We could only cover some
1997 	 * of the extent in this bitmap thanks to how we add space, so we need
1998 	 * to search for as much as it as we can and clear that amount, and then
1999 	 * go searching for the next bit.
2000 	 */
2001 	search_start = *offset;
2002 	search_bytes = ctl->unit;
2003 	search_bytes = min(search_bytes, end - search_start + 1);
2004 	ret = search_bitmap(ctl, bitmap_info, &search_start, &search_bytes,
2005 			    false);
2006 	if (ret < 0 || search_start != *offset)
2007 		return -EINVAL;
2008 
2009 	/* We may have found more bits than what we need */
2010 	search_bytes = min(search_bytes, *bytes);
2011 
2012 	/* Cannot clear past the end of the bitmap */
2013 	search_bytes = min(search_bytes, end - search_start + 1);
2014 
2015 	bitmap_clear_bits(ctl, bitmap_info, search_start, search_bytes);
2016 	*offset += search_bytes;
2017 	*bytes -= search_bytes;
2018 
2019 	if (*bytes) {
2020 		struct rb_node *next = rb_next(&bitmap_info->offset_index);
2021 		if (!bitmap_info->bytes)
2022 			free_bitmap(ctl, bitmap_info);
2023 
2024 		/*
2025 		 * no entry after this bitmap, but we still have bytes to
2026 		 * remove, so something has gone wrong.
2027 		 */
2028 		if (!next)
2029 			return -EINVAL;
2030 
2031 		bitmap_info = rb_entry(next, struct btrfs_free_space,
2032 				       offset_index);
2033 
2034 		/*
2035 		 * if the next entry isn't a bitmap we need to return to let the
2036 		 * extent stuff do its work.
2037 		 */
2038 		if (!bitmap_info->bitmap)
2039 			return -EAGAIN;
2040 
2041 		/*
2042 		 * Ok the next item is a bitmap, but it may not actually hold
2043 		 * the information for the rest of this free space stuff, so
2044 		 * look for it, and if we don't find it return so we can try
2045 		 * everything over again.
2046 		 */
2047 		search_start = *offset;
2048 		search_bytes = ctl->unit;
2049 		ret = search_bitmap(ctl, bitmap_info, &search_start,
2050 				    &search_bytes, false);
2051 		if (ret < 0 || search_start != *offset)
2052 			return -EAGAIN;
2053 
2054 		goto again;
2055 	} else if (!bitmap_info->bytes)
2056 		free_bitmap(ctl, bitmap_info);
2057 
2058 	return 0;
2059 }
2060 
2061 static u64 add_bytes_to_bitmap(struct btrfs_free_space_ctl *ctl,
2062 			       struct btrfs_free_space *info, u64 offset,
2063 			       u64 bytes, enum btrfs_trim_state trim_state)
2064 {
2065 	u64 bytes_to_set = 0;
2066 	u64 end;
2067 
2068 	/*
2069 	 * This is a tradeoff to make bitmap trim state minimal.  We mark the
2070 	 * whole bitmap untrimmed if at any point we add untrimmed regions.
2071 	 */
2072 	if (trim_state == BTRFS_TRIM_STATE_UNTRIMMED) {
2073 		if (btrfs_free_space_trimmed(info)) {
2074 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
2075 				info->bitmap_extents;
2076 			ctl->discardable_bytes[BTRFS_STAT_CURR] += info->bytes;
2077 		}
2078 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2079 	}
2080 
2081 	end = info->offset + (u64)(BITS_PER_BITMAP * ctl->unit);
2082 
2083 	bytes_to_set = min(end - offset, bytes);
2084 
2085 	bitmap_set_bits(ctl, info, offset, bytes_to_set);
2086 
2087 	/*
2088 	 * We set some bytes, we have no idea what the max extent size is
2089 	 * anymore.
2090 	 */
2091 	info->max_extent_size = 0;
2092 
2093 	return bytes_to_set;
2094 
2095 }
2096 
2097 static bool use_bitmap(struct btrfs_free_space_ctl *ctl,
2098 		      struct btrfs_free_space *info)
2099 {
2100 	struct btrfs_block_group *block_group = ctl->private;
2101 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2102 	bool forced = false;
2103 
2104 #ifdef CONFIG_BTRFS_DEBUG
2105 	if (btrfs_should_fragment_free_space(block_group))
2106 		forced = true;
2107 #endif
2108 
2109 	/* This is a way to reclaim large regions from the bitmaps. */
2110 	if (!forced && info->bytes >= FORCE_EXTENT_THRESHOLD)
2111 		return false;
2112 
2113 	/*
2114 	 * If we are below the extents threshold then we can add this as an
2115 	 * extent, and don't have to deal with the bitmap
2116 	 */
2117 	if (!forced && ctl->free_extents < ctl->extents_thresh) {
2118 		/*
2119 		 * If this block group has some small extents we don't want to
2120 		 * use up all of our free slots in the cache with them, we want
2121 		 * to reserve them to larger extents, however if we have plenty
2122 		 * of cache left then go ahead an dadd them, no sense in adding
2123 		 * the overhead of a bitmap if we don't have to.
2124 		 */
2125 		if (info->bytes <= fs_info->sectorsize * 8) {
2126 			if (ctl->free_extents * 3 <= ctl->extents_thresh)
2127 				return false;
2128 		} else {
2129 			return false;
2130 		}
2131 	}
2132 
2133 	/*
2134 	 * The original block groups from mkfs can be really small, like 8
2135 	 * megabytes, so don't bother with a bitmap for those entries.  However
2136 	 * some block groups can be smaller than what a bitmap would cover but
2137 	 * are still large enough that they could overflow the 32k memory limit,
2138 	 * so allow those block groups to still be allowed to have a bitmap
2139 	 * entry.
2140 	 */
2141 	if (((BITS_PER_BITMAP * ctl->unit) >> 1) > block_group->length)
2142 		return false;
2143 
2144 	return true;
2145 }
2146 
2147 static const struct btrfs_free_space_op free_space_op = {
2148 	.use_bitmap		= use_bitmap,
2149 };
2150 
2151 static int insert_into_bitmap(struct btrfs_free_space_ctl *ctl,
2152 			      struct btrfs_free_space *info)
2153 {
2154 	struct btrfs_free_space *bitmap_info;
2155 	struct btrfs_block_group *block_group = NULL;
2156 	int added = 0;
2157 	u64 bytes, offset, bytes_added;
2158 	enum btrfs_trim_state trim_state;
2159 	int ret;
2160 
2161 	bytes = info->bytes;
2162 	offset = info->offset;
2163 	trim_state = info->trim_state;
2164 
2165 	if (!ctl->op->use_bitmap(ctl, info))
2166 		return 0;
2167 
2168 	if (ctl->op == &free_space_op)
2169 		block_group = ctl->private;
2170 again:
2171 	/*
2172 	 * Since we link bitmaps right into the cluster we need to see if we
2173 	 * have a cluster here, and if so and it has our bitmap we need to add
2174 	 * the free space to that bitmap.
2175 	 */
2176 	if (block_group && !list_empty(&block_group->cluster_list)) {
2177 		struct btrfs_free_cluster *cluster;
2178 		struct rb_node *node;
2179 		struct btrfs_free_space *entry;
2180 
2181 		cluster = list_entry(block_group->cluster_list.next,
2182 				     struct btrfs_free_cluster,
2183 				     block_group_list);
2184 		spin_lock(&cluster->lock);
2185 		node = rb_first(&cluster->root);
2186 		if (!node) {
2187 			spin_unlock(&cluster->lock);
2188 			goto no_cluster_bitmap;
2189 		}
2190 
2191 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2192 		if (!entry->bitmap) {
2193 			spin_unlock(&cluster->lock);
2194 			goto no_cluster_bitmap;
2195 		}
2196 
2197 		if (entry->offset == offset_to_bitmap(ctl, offset)) {
2198 			bytes_added = add_bytes_to_bitmap(ctl, entry, offset,
2199 							  bytes, trim_state);
2200 			bytes -= bytes_added;
2201 			offset += bytes_added;
2202 		}
2203 		spin_unlock(&cluster->lock);
2204 		if (!bytes) {
2205 			ret = 1;
2206 			goto out;
2207 		}
2208 	}
2209 
2210 no_cluster_bitmap:
2211 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2212 					 1, 0);
2213 	if (!bitmap_info) {
2214 		ASSERT(added == 0);
2215 		goto new_bitmap;
2216 	}
2217 
2218 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
2219 					  trim_state);
2220 	bytes -= bytes_added;
2221 	offset += bytes_added;
2222 	added = 0;
2223 
2224 	if (!bytes) {
2225 		ret = 1;
2226 		goto out;
2227 	} else
2228 		goto again;
2229 
2230 new_bitmap:
2231 	if (info && info->bitmap) {
2232 		add_new_bitmap(ctl, info, offset);
2233 		added = 1;
2234 		info = NULL;
2235 		goto again;
2236 	} else {
2237 		spin_unlock(&ctl->tree_lock);
2238 
2239 		/* no pre-allocated info, allocate a new one */
2240 		if (!info) {
2241 			info = kmem_cache_zalloc(btrfs_free_space_cachep,
2242 						 GFP_NOFS);
2243 			if (!info) {
2244 				spin_lock(&ctl->tree_lock);
2245 				ret = -ENOMEM;
2246 				goto out;
2247 			}
2248 		}
2249 
2250 		/* allocate the bitmap */
2251 		info->bitmap = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep,
2252 						 GFP_NOFS);
2253 		info->trim_state = BTRFS_TRIM_STATE_TRIMMED;
2254 		spin_lock(&ctl->tree_lock);
2255 		if (!info->bitmap) {
2256 			ret = -ENOMEM;
2257 			goto out;
2258 		}
2259 		goto again;
2260 	}
2261 
2262 out:
2263 	if (info) {
2264 		if (info->bitmap)
2265 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
2266 					info->bitmap);
2267 		kmem_cache_free(btrfs_free_space_cachep, info);
2268 	}
2269 
2270 	return ret;
2271 }
2272 
2273 /*
2274  * Free space merging rules:
2275  *  1) Merge trimmed areas together
2276  *  2) Let untrimmed areas coalesce with trimmed areas
2277  *  3) Always pull neighboring regions from bitmaps
2278  *
2279  * The above rules are for when we merge free space based on btrfs_trim_state.
2280  * Rules 2 and 3 are subtle because they are suboptimal, but are done for the
2281  * same reason: to promote larger extent regions which makes life easier for
2282  * find_free_extent().  Rule 2 enables coalescing based on the common path
2283  * being returning free space from btrfs_finish_extent_commit().  So when free
2284  * space is trimmed, it will prevent aggregating trimmed new region and
2285  * untrimmed regions in the rb_tree.  Rule 3 is purely to obtain larger extents
2286  * and provide find_free_extent() with the largest extents possible hoping for
2287  * the reuse path.
2288  */
2289 static bool try_merge_free_space(struct btrfs_free_space_ctl *ctl,
2290 			  struct btrfs_free_space *info, bool update_stat)
2291 {
2292 	struct btrfs_free_space *left_info = NULL;
2293 	struct btrfs_free_space *right_info;
2294 	bool merged = false;
2295 	u64 offset = info->offset;
2296 	u64 bytes = info->bytes;
2297 	const bool is_trimmed = btrfs_free_space_trimmed(info);
2298 
2299 	/*
2300 	 * first we want to see if there is free space adjacent to the range we
2301 	 * are adding, if there is remove that struct and add a new one to
2302 	 * cover the entire range
2303 	 */
2304 	right_info = tree_search_offset(ctl, offset + bytes, 0, 0);
2305 	if (right_info && rb_prev(&right_info->offset_index))
2306 		left_info = rb_entry(rb_prev(&right_info->offset_index),
2307 				     struct btrfs_free_space, offset_index);
2308 	else if (!right_info)
2309 		left_info = tree_search_offset(ctl, offset - 1, 0, 0);
2310 
2311 	/* See try_merge_free_space() comment. */
2312 	if (right_info && !right_info->bitmap &&
2313 	    (!is_trimmed || btrfs_free_space_trimmed(right_info))) {
2314 		if (update_stat)
2315 			unlink_free_space(ctl, right_info);
2316 		else
2317 			__unlink_free_space(ctl, right_info);
2318 		info->bytes += right_info->bytes;
2319 		kmem_cache_free(btrfs_free_space_cachep, right_info);
2320 		merged = true;
2321 	}
2322 
2323 	/* See try_merge_free_space() comment. */
2324 	if (left_info && !left_info->bitmap &&
2325 	    left_info->offset + left_info->bytes == offset &&
2326 	    (!is_trimmed || btrfs_free_space_trimmed(left_info))) {
2327 		if (update_stat)
2328 			unlink_free_space(ctl, left_info);
2329 		else
2330 			__unlink_free_space(ctl, left_info);
2331 		info->offset = left_info->offset;
2332 		info->bytes += left_info->bytes;
2333 		kmem_cache_free(btrfs_free_space_cachep, left_info);
2334 		merged = true;
2335 	}
2336 
2337 	return merged;
2338 }
2339 
2340 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl *ctl,
2341 				     struct btrfs_free_space *info,
2342 				     bool update_stat)
2343 {
2344 	struct btrfs_free_space *bitmap;
2345 	unsigned long i;
2346 	unsigned long j;
2347 	const u64 end = info->offset + info->bytes;
2348 	const u64 bitmap_offset = offset_to_bitmap(ctl, end);
2349 	u64 bytes;
2350 
2351 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2352 	if (!bitmap)
2353 		return false;
2354 
2355 	i = offset_to_bit(bitmap->offset, ctl->unit, end);
2356 	j = find_next_zero_bit(bitmap->bitmap, BITS_PER_BITMAP, i);
2357 	if (j == i)
2358 		return false;
2359 	bytes = (j - i) * ctl->unit;
2360 	info->bytes += bytes;
2361 
2362 	/* See try_merge_free_space() comment. */
2363 	if (!btrfs_free_space_trimmed(bitmap))
2364 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2365 
2366 	if (update_stat)
2367 		bitmap_clear_bits(ctl, bitmap, end, bytes);
2368 	else
2369 		__bitmap_clear_bits(ctl, bitmap, end, bytes);
2370 
2371 	if (!bitmap->bytes)
2372 		free_bitmap(ctl, bitmap);
2373 
2374 	return true;
2375 }
2376 
2377 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl *ctl,
2378 				       struct btrfs_free_space *info,
2379 				       bool update_stat)
2380 {
2381 	struct btrfs_free_space *bitmap;
2382 	u64 bitmap_offset;
2383 	unsigned long i;
2384 	unsigned long j;
2385 	unsigned long prev_j;
2386 	u64 bytes;
2387 
2388 	bitmap_offset = offset_to_bitmap(ctl, info->offset);
2389 	/* If we're on a boundary, try the previous logical bitmap. */
2390 	if (bitmap_offset == info->offset) {
2391 		if (info->offset == 0)
2392 			return false;
2393 		bitmap_offset = offset_to_bitmap(ctl, info->offset - 1);
2394 	}
2395 
2396 	bitmap = tree_search_offset(ctl, bitmap_offset, 1, 0);
2397 	if (!bitmap)
2398 		return false;
2399 
2400 	i = offset_to_bit(bitmap->offset, ctl->unit, info->offset) - 1;
2401 	j = 0;
2402 	prev_j = (unsigned long)-1;
2403 	for_each_clear_bit_from(j, bitmap->bitmap, BITS_PER_BITMAP) {
2404 		if (j > i)
2405 			break;
2406 		prev_j = j;
2407 	}
2408 	if (prev_j == i)
2409 		return false;
2410 
2411 	if (prev_j == (unsigned long)-1)
2412 		bytes = (i + 1) * ctl->unit;
2413 	else
2414 		bytes = (i - prev_j) * ctl->unit;
2415 
2416 	info->offset -= bytes;
2417 	info->bytes += bytes;
2418 
2419 	/* See try_merge_free_space() comment. */
2420 	if (!btrfs_free_space_trimmed(bitmap))
2421 		info->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2422 
2423 	if (update_stat)
2424 		bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2425 	else
2426 		__bitmap_clear_bits(ctl, bitmap, info->offset, bytes);
2427 
2428 	if (!bitmap->bytes)
2429 		free_bitmap(ctl, bitmap);
2430 
2431 	return true;
2432 }
2433 
2434 /*
2435  * We prefer always to allocate from extent entries, both for clustered and
2436  * non-clustered allocation requests. So when attempting to add a new extent
2437  * entry, try to see if there's adjacent free space in bitmap entries, and if
2438  * there is, migrate that space from the bitmaps to the extent.
2439  * Like this we get better chances of satisfying space allocation requests
2440  * because we attempt to satisfy them based on a single cache entry, and never
2441  * on 2 or more entries - even if the entries represent a contiguous free space
2442  * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2443  * ends).
2444  */
2445 static void steal_from_bitmap(struct btrfs_free_space_ctl *ctl,
2446 			      struct btrfs_free_space *info,
2447 			      bool update_stat)
2448 {
2449 	/*
2450 	 * Only work with disconnected entries, as we can change their offset,
2451 	 * and must be extent entries.
2452 	 */
2453 	ASSERT(!info->bitmap);
2454 	ASSERT(RB_EMPTY_NODE(&info->offset_index));
2455 
2456 	if (ctl->total_bitmaps > 0) {
2457 		bool stole_end;
2458 		bool stole_front = false;
2459 
2460 		stole_end = steal_from_bitmap_to_end(ctl, info, update_stat);
2461 		if (ctl->total_bitmaps > 0)
2462 			stole_front = steal_from_bitmap_to_front(ctl, info,
2463 								 update_stat);
2464 
2465 		if (stole_end || stole_front)
2466 			try_merge_free_space(ctl, info, update_stat);
2467 	}
2468 }
2469 
2470 int __btrfs_add_free_space(struct btrfs_fs_info *fs_info,
2471 			   struct btrfs_free_space_ctl *ctl,
2472 			   u64 offset, u64 bytes,
2473 			   enum btrfs_trim_state trim_state)
2474 {
2475 	struct btrfs_block_group *block_group = ctl->private;
2476 	struct btrfs_free_space *info;
2477 	int ret = 0;
2478 	u64 filter_bytes = bytes;
2479 
2480 	ASSERT(!btrfs_is_zoned(fs_info));
2481 
2482 	info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
2483 	if (!info)
2484 		return -ENOMEM;
2485 
2486 	info->offset = offset;
2487 	info->bytes = bytes;
2488 	info->trim_state = trim_state;
2489 	RB_CLEAR_NODE(&info->offset_index);
2490 
2491 	spin_lock(&ctl->tree_lock);
2492 
2493 	if (try_merge_free_space(ctl, info, true))
2494 		goto link;
2495 
2496 	/*
2497 	 * There was no extent directly to the left or right of this new
2498 	 * extent then we know we're going to have to allocate a new extent, so
2499 	 * before we do that see if we need to drop this into a bitmap
2500 	 */
2501 	ret = insert_into_bitmap(ctl, info);
2502 	if (ret < 0) {
2503 		goto out;
2504 	} else if (ret) {
2505 		ret = 0;
2506 		goto out;
2507 	}
2508 link:
2509 	/*
2510 	 * Only steal free space from adjacent bitmaps if we're sure we're not
2511 	 * going to add the new free space to existing bitmap entries - because
2512 	 * that would mean unnecessary work that would be reverted. Therefore
2513 	 * attempt to steal space from bitmaps if we're adding an extent entry.
2514 	 */
2515 	steal_from_bitmap(ctl, info, true);
2516 
2517 	filter_bytes = max(filter_bytes, info->bytes);
2518 
2519 	ret = link_free_space(ctl, info);
2520 	if (ret)
2521 		kmem_cache_free(btrfs_free_space_cachep, info);
2522 out:
2523 	btrfs_discard_update_discardable(block_group);
2524 	spin_unlock(&ctl->tree_lock);
2525 
2526 	if (ret) {
2527 		btrfs_crit(fs_info, "unable to add free space :%d", ret);
2528 		ASSERT(ret != -EEXIST);
2529 	}
2530 
2531 	if (trim_state != BTRFS_TRIM_STATE_TRIMMED) {
2532 		btrfs_discard_check_filter(block_group, filter_bytes);
2533 		btrfs_discard_queue_work(&fs_info->discard_ctl, block_group);
2534 	}
2535 
2536 	return ret;
2537 }
2538 
2539 static int __btrfs_add_free_space_zoned(struct btrfs_block_group *block_group,
2540 					u64 bytenr, u64 size, bool used)
2541 {
2542 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2543 	u64 offset = bytenr - block_group->start;
2544 	u64 to_free, to_unusable;
2545 
2546 	spin_lock(&ctl->tree_lock);
2547 	if (!used)
2548 		to_free = size;
2549 	else if (offset >= block_group->alloc_offset)
2550 		to_free = size;
2551 	else if (offset + size <= block_group->alloc_offset)
2552 		to_free = 0;
2553 	else
2554 		to_free = offset + size - block_group->alloc_offset;
2555 	to_unusable = size - to_free;
2556 
2557 	ctl->free_space += to_free;
2558 	/*
2559 	 * If the block group is read-only, we should account freed space into
2560 	 * bytes_readonly.
2561 	 */
2562 	if (!block_group->ro)
2563 		block_group->zone_unusable += to_unusable;
2564 	spin_unlock(&ctl->tree_lock);
2565 	if (!used) {
2566 		spin_lock(&block_group->lock);
2567 		block_group->alloc_offset -= size;
2568 		spin_unlock(&block_group->lock);
2569 	}
2570 
2571 	/* All the region is now unusable. Mark it as unused and reclaim */
2572 	if (block_group->zone_unusable == block_group->length)
2573 		btrfs_mark_bg_unused(block_group);
2574 
2575 	return 0;
2576 }
2577 
2578 int btrfs_add_free_space(struct btrfs_block_group *block_group,
2579 			 u64 bytenr, u64 size)
2580 {
2581 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2582 
2583 	if (btrfs_is_zoned(block_group->fs_info))
2584 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2585 						    true);
2586 
2587 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC))
2588 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2589 
2590 	return __btrfs_add_free_space(block_group->fs_info,
2591 				      block_group->free_space_ctl,
2592 				      bytenr, size, trim_state);
2593 }
2594 
2595 int btrfs_add_free_space_unused(struct btrfs_block_group *block_group,
2596 				u64 bytenr, u64 size)
2597 {
2598 	if (btrfs_is_zoned(block_group->fs_info))
2599 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2600 						    false);
2601 
2602 	return btrfs_add_free_space(block_group, bytenr, size);
2603 }
2604 
2605 /*
2606  * This is a subtle distinction because when adding free space back in general,
2607  * we want it to be added as untrimmed for async. But in the case where we add
2608  * it on loading of a block group, we want to consider it trimmed.
2609  */
2610 int btrfs_add_free_space_async_trimmed(struct btrfs_block_group *block_group,
2611 				       u64 bytenr, u64 size)
2612 {
2613 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2614 
2615 	if (btrfs_is_zoned(block_group->fs_info))
2616 		return __btrfs_add_free_space_zoned(block_group, bytenr, size,
2617 						    true);
2618 
2619 	if (btrfs_test_opt(block_group->fs_info, DISCARD_SYNC) ||
2620 	    btrfs_test_opt(block_group->fs_info, DISCARD_ASYNC))
2621 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
2622 
2623 	return __btrfs_add_free_space(block_group->fs_info,
2624 				      block_group->free_space_ctl,
2625 				      bytenr, size, trim_state);
2626 }
2627 
2628 int btrfs_remove_free_space(struct btrfs_block_group *block_group,
2629 			    u64 offset, u64 bytes)
2630 {
2631 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2632 	struct btrfs_free_space *info;
2633 	int ret;
2634 	bool re_search = false;
2635 
2636 	if (btrfs_is_zoned(block_group->fs_info)) {
2637 		/*
2638 		 * This can happen with conventional zones when replaying log.
2639 		 * Since the allocation info of tree-log nodes are not recorded
2640 		 * to the extent-tree, calculate_alloc_pointer() failed to
2641 		 * advance the allocation pointer after last allocated tree log
2642 		 * node blocks.
2643 		 *
2644 		 * This function is called from
2645 		 * btrfs_pin_extent_for_log_replay() when replaying the log.
2646 		 * Advance the pointer not to overwrite the tree-log nodes.
2647 		 */
2648 		if (block_group->alloc_offset < offset + bytes)
2649 			block_group->alloc_offset = offset + bytes;
2650 		return 0;
2651 	}
2652 
2653 	spin_lock(&ctl->tree_lock);
2654 
2655 again:
2656 	ret = 0;
2657 	if (!bytes)
2658 		goto out_lock;
2659 
2660 	info = tree_search_offset(ctl, offset, 0, 0);
2661 	if (!info) {
2662 		/*
2663 		 * oops didn't find an extent that matched the space we wanted
2664 		 * to remove, look for a bitmap instead
2665 		 */
2666 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
2667 					  1, 0);
2668 		if (!info) {
2669 			/*
2670 			 * If we found a partial bit of our free space in a
2671 			 * bitmap but then couldn't find the other part this may
2672 			 * be a problem, so WARN about it.
2673 			 */
2674 			WARN_ON(re_search);
2675 			goto out_lock;
2676 		}
2677 	}
2678 
2679 	re_search = false;
2680 	if (!info->bitmap) {
2681 		unlink_free_space(ctl, info);
2682 		if (offset == info->offset) {
2683 			u64 to_free = min(bytes, info->bytes);
2684 
2685 			info->bytes -= to_free;
2686 			info->offset += to_free;
2687 			if (info->bytes) {
2688 				ret = link_free_space(ctl, info);
2689 				WARN_ON(ret);
2690 			} else {
2691 				kmem_cache_free(btrfs_free_space_cachep, info);
2692 			}
2693 
2694 			offset += to_free;
2695 			bytes -= to_free;
2696 			goto again;
2697 		} else {
2698 			u64 old_end = info->bytes + info->offset;
2699 
2700 			info->bytes = offset - info->offset;
2701 			ret = link_free_space(ctl, info);
2702 			WARN_ON(ret);
2703 			if (ret)
2704 				goto out_lock;
2705 
2706 			/* Not enough bytes in this entry to satisfy us */
2707 			if (old_end < offset + bytes) {
2708 				bytes -= old_end - offset;
2709 				offset = old_end;
2710 				goto again;
2711 			} else if (old_end == offset + bytes) {
2712 				/* all done */
2713 				goto out_lock;
2714 			}
2715 			spin_unlock(&ctl->tree_lock);
2716 
2717 			ret = __btrfs_add_free_space(block_group->fs_info, ctl,
2718 						     offset + bytes,
2719 						     old_end - (offset + bytes),
2720 						     info->trim_state);
2721 			WARN_ON(ret);
2722 			goto out;
2723 		}
2724 	}
2725 
2726 	ret = remove_from_bitmap(ctl, info, &offset, &bytes);
2727 	if (ret == -EAGAIN) {
2728 		re_search = true;
2729 		goto again;
2730 	}
2731 out_lock:
2732 	btrfs_discard_update_discardable(block_group);
2733 	spin_unlock(&ctl->tree_lock);
2734 out:
2735 	return ret;
2736 }
2737 
2738 void btrfs_dump_free_space(struct btrfs_block_group *block_group,
2739 			   u64 bytes)
2740 {
2741 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2742 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2743 	struct btrfs_free_space *info;
2744 	struct rb_node *n;
2745 	int count = 0;
2746 
2747 	/*
2748 	 * Zoned btrfs does not use free space tree and cluster. Just print
2749 	 * out the free space after the allocation offset.
2750 	 */
2751 	if (btrfs_is_zoned(fs_info)) {
2752 		btrfs_info(fs_info, "free space %llu",
2753 			   block_group->length - block_group->alloc_offset);
2754 		return;
2755 	}
2756 
2757 	spin_lock(&ctl->tree_lock);
2758 	for (n = rb_first(&ctl->free_space_offset); n; n = rb_next(n)) {
2759 		info = rb_entry(n, struct btrfs_free_space, offset_index);
2760 		if (info->bytes >= bytes && !block_group->ro)
2761 			count++;
2762 		btrfs_crit(fs_info, "entry offset %llu, bytes %llu, bitmap %s",
2763 			   info->offset, info->bytes,
2764 		       (info->bitmap) ? "yes" : "no");
2765 	}
2766 	spin_unlock(&ctl->tree_lock);
2767 	btrfs_info(fs_info, "block group has cluster?: %s",
2768 	       list_empty(&block_group->cluster_list) ? "no" : "yes");
2769 	btrfs_info(fs_info,
2770 		   "%d blocks of free space at or bigger than bytes is", count);
2771 }
2772 
2773 void btrfs_init_free_space_ctl(struct btrfs_block_group *block_group,
2774 			       struct btrfs_free_space_ctl *ctl)
2775 {
2776 	struct btrfs_fs_info *fs_info = block_group->fs_info;
2777 
2778 	spin_lock_init(&ctl->tree_lock);
2779 	ctl->unit = fs_info->sectorsize;
2780 	ctl->start = block_group->start;
2781 	ctl->private = block_group;
2782 	ctl->op = &free_space_op;
2783 	INIT_LIST_HEAD(&ctl->trimming_ranges);
2784 	mutex_init(&ctl->cache_writeout_mutex);
2785 
2786 	/*
2787 	 * we only want to have 32k of ram per block group for keeping
2788 	 * track of free space, and if we pass 1/2 of that we want to
2789 	 * start converting things over to using bitmaps
2790 	 */
2791 	ctl->extents_thresh = (SZ_32K / 2) / sizeof(struct btrfs_free_space);
2792 }
2793 
2794 /*
2795  * for a given cluster, put all of its extents back into the free
2796  * space cache.  If the block group passed doesn't match the block group
2797  * pointed to by the cluster, someone else raced in and freed the
2798  * cluster already.  In that case, we just return without changing anything
2799  */
2800 static void __btrfs_return_cluster_to_free_space(
2801 			     struct btrfs_block_group *block_group,
2802 			     struct btrfs_free_cluster *cluster)
2803 {
2804 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2805 	struct btrfs_free_space *entry;
2806 	struct rb_node *node;
2807 
2808 	spin_lock(&cluster->lock);
2809 	if (cluster->block_group != block_group) {
2810 		spin_unlock(&cluster->lock);
2811 		return;
2812 	}
2813 
2814 	cluster->block_group = NULL;
2815 	cluster->window_start = 0;
2816 	list_del_init(&cluster->block_group_list);
2817 
2818 	node = rb_first(&cluster->root);
2819 	while (node) {
2820 		bool bitmap;
2821 
2822 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
2823 		node = rb_next(&entry->offset_index);
2824 		rb_erase(&entry->offset_index, &cluster->root);
2825 		RB_CLEAR_NODE(&entry->offset_index);
2826 
2827 		bitmap = (entry->bitmap != NULL);
2828 		if (!bitmap) {
2829 			/* Merging treats extents as if they were new */
2830 			if (!btrfs_free_space_trimmed(entry)) {
2831 				ctl->discardable_extents[BTRFS_STAT_CURR]--;
2832 				ctl->discardable_bytes[BTRFS_STAT_CURR] -=
2833 					entry->bytes;
2834 			}
2835 
2836 			try_merge_free_space(ctl, entry, false);
2837 			steal_from_bitmap(ctl, entry, false);
2838 
2839 			/* As we insert directly, update these statistics */
2840 			if (!btrfs_free_space_trimmed(entry)) {
2841 				ctl->discardable_extents[BTRFS_STAT_CURR]++;
2842 				ctl->discardable_bytes[BTRFS_STAT_CURR] +=
2843 					entry->bytes;
2844 			}
2845 		}
2846 		tree_insert_offset(&ctl->free_space_offset,
2847 				   entry->offset, &entry->offset_index, bitmap);
2848 	}
2849 	cluster->root = RB_ROOT;
2850 	spin_unlock(&cluster->lock);
2851 	btrfs_put_block_group(block_group);
2852 }
2853 
2854 static void __btrfs_remove_free_space_cache_locked(
2855 				struct btrfs_free_space_ctl *ctl)
2856 {
2857 	struct btrfs_free_space *info;
2858 	struct rb_node *node;
2859 
2860 	while ((node = rb_last(&ctl->free_space_offset)) != NULL) {
2861 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2862 		if (!info->bitmap) {
2863 			unlink_free_space(ctl, info);
2864 			kmem_cache_free(btrfs_free_space_cachep, info);
2865 		} else {
2866 			free_bitmap(ctl, info);
2867 		}
2868 
2869 		cond_resched_lock(&ctl->tree_lock);
2870 	}
2871 }
2872 
2873 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl *ctl)
2874 {
2875 	spin_lock(&ctl->tree_lock);
2876 	__btrfs_remove_free_space_cache_locked(ctl);
2877 	if (ctl->private)
2878 		btrfs_discard_update_discardable(ctl->private);
2879 	spin_unlock(&ctl->tree_lock);
2880 }
2881 
2882 void btrfs_remove_free_space_cache(struct btrfs_block_group *block_group)
2883 {
2884 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2885 	struct btrfs_free_cluster *cluster;
2886 	struct list_head *head;
2887 
2888 	spin_lock(&ctl->tree_lock);
2889 	while ((head = block_group->cluster_list.next) !=
2890 	       &block_group->cluster_list) {
2891 		cluster = list_entry(head, struct btrfs_free_cluster,
2892 				     block_group_list);
2893 
2894 		WARN_ON(cluster->block_group != block_group);
2895 		__btrfs_return_cluster_to_free_space(block_group, cluster);
2896 
2897 		cond_resched_lock(&ctl->tree_lock);
2898 	}
2899 	__btrfs_remove_free_space_cache_locked(ctl);
2900 	btrfs_discard_update_discardable(block_group);
2901 	spin_unlock(&ctl->tree_lock);
2902 
2903 }
2904 
2905 /**
2906  * btrfs_is_free_space_trimmed - see if everything is trimmed
2907  * @block_group: block_group of interest
2908  *
2909  * Walk @block_group's free space rb_tree to determine if everything is trimmed.
2910  */
2911 bool btrfs_is_free_space_trimmed(struct btrfs_block_group *block_group)
2912 {
2913 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2914 	struct btrfs_free_space *info;
2915 	struct rb_node *node;
2916 	bool ret = true;
2917 
2918 	spin_lock(&ctl->tree_lock);
2919 	node = rb_first(&ctl->free_space_offset);
2920 
2921 	while (node) {
2922 		info = rb_entry(node, struct btrfs_free_space, offset_index);
2923 
2924 		if (!btrfs_free_space_trimmed(info)) {
2925 			ret = false;
2926 			break;
2927 		}
2928 
2929 		node = rb_next(node);
2930 	}
2931 
2932 	spin_unlock(&ctl->tree_lock);
2933 	return ret;
2934 }
2935 
2936 u64 btrfs_find_space_for_alloc(struct btrfs_block_group *block_group,
2937 			       u64 offset, u64 bytes, u64 empty_size,
2938 			       u64 *max_extent_size)
2939 {
2940 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
2941 	struct btrfs_discard_ctl *discard_ctl =
2942 					&block_group->fs_info->discard_ctl;
2943 	struct btrfs_free_space *entry = NULL;
2944 	u64 bytes_search = bytes + empty_size;
2945 	u64 ret = 0;
2946 	u64 align_gap = 0;
2947 	u64 align_gap_len = 0;
2948 	enum btrfs_trim_state align_gap_trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
2949 
2950 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
2951 
2952 	spin_lock(&ctl->tree_lock);
2953 	entry = find_free_space(ctl, &offset, &bytes_search,
2954 				block_group->full_stripe_len, max_extent_size);
2955 	if (!entry)
2956 		goto out;
2957 
2958 	ret = offset;
2959 	if (entry->bitmap) {
2960 		bitmap_clear_bits(ctl, entry, offset, bytes);
2961 
2962 		if (!btrfs_free_space_trimmed(entry))
2963 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2964 
2965 		if (!entry->bytes)
2966 			free_bitmap(ctl, entry);
2967 	} else {
2968 		unlink_free_space(ctl, entry);
2969 		align_gap_len = offset - entry->offset;
2970 		align_gap = entry->offset;
2971 		align_gap_trim_state = entry->trim_state;
2972 
2973 		if (!btrfs_free_space_trimmed(entry))
2974 			atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
2975 
2976 		entry->offset = offset + bytes;
2977 		WARN_ON(entry->bytes < bytes + align_gap_len);
2978 
2979 		entry->bytes -= bytes + align_gap_len;
2980 		if (!entry->bytes)
2981 			kmem_cache_free(btrfs_free_space_cachep, entry);
2982 		else
2983 			link_free_space(ctl, entry);
2984 	}
2985 out:
2986 	btrfs_discard_update_discardable(block_group);
2987 	spin_unlock(&ctl->tree_lock);
2988 
2989 	if (align_gap_len)
2990 		__btrfs_add_free_space(block_group->fs_info, ctl,
2991 				       align_gap, align_gap_len,
2992 				       align_gap_trim_state);
2993 	return ret;
2994 }
2995 
2996 /*
2997  * given a cluster, put all of its extents back into the free space
2998  * cache.  If a block group is passed, this function will only free
2999  * a cluster that belongs to the passed block group.
3000  *
3001  * Otherwise, it'll get a reference on the block group pointed to by the
3002  * cluster and remove the cluster from it.
3003  */
3004 void btrfs_return_cluster_to_free_space(
3005 			       struct btrfs_block_group *block_group,
3006 			       struct btrfs_free_cluster *cluster)
3007 {
3008 	struct btrfs_free_space_ctl *ctl;
3009 
3010 	/* first, get a safe pointer to the block group */
3011 	spin_lock(&cluster->lock);
3012 	if (!block_group) {
3013 		block_group = cluster->block_group;
3014 		if (!block_group) {
3015 			spin_unlock(&cluster->lock);
3016 			return;
3017 		}
3018 	} else if (cluster->block_group != block_group) {
3019 		/* someone else has already freed it don't redo their work */
3020 		spin_unlock(&cluster->lock);
3021 		return;
3022 	}
3023 	btrfs_get_block_group(block_group);
3024 	spin_unlock(&cluster->lock);
3025 
3026 	ctl = block_group->free_space_ctl;
3027 
3028 	/* now return any extents the cluster had on it */
3029 	spin_lock(&ctl->tree_lock);
3030 	__btrfs_return_cluster_to_free_space(block_group, cluster);
3031 	spin_unlock(&ctl->tree_lock);
3032 
3033 	btrfs_discard_queue_work(&block_group->fs_info->discard_ctl, block_group);
3034 
3035 	/* finally drop our ref */
3036 	btrfs_put_block_group(block_group);
3037 }
3038 
3039 static u64 btrfs_alloc_from_bitmap(struct btrfs_block_group *block_group,
3040 				   struct btrfs_free_cluster *cluster,
3041 				   struct btrfs_free_space *entry,
3042 				   u64 bytes, u64 min_start,
3043 				   u64 *max_extent_size)
3044 {
3045 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3046 	int err;
3047 	u64 search_start = cluster->window_start;
3048 	u64 search_bytes = bytes;
3049 	u64 ret = 0;
3050 
3051 	search_start = min_start;
3052 	search_bytes = bytes;
3053 
3054 	err = search_bitmap(ctl, entry, &search_start, &search_bytes, true);
3055 	if (err) {
3056 		*max_extent_size = max(get_max_extent_size(entry),
3057 				       *max_extent_size);
3058 		return 0;
3059 	}
3060 
3061 	ret = search_start;
3062 	__bitmap_clear_bits(ctl, entry, ret, bytes);
3063 
3064 	return ret;
3065 }
3066 
3067 /*
3068  * given a cluster, try to allocate 'bytes' from it, returns 0
3069  * if it couldn't find anything suitably large, or a logical disk offset
3070  * if things worked out
3071  */
3072 u64 btrfs_alloc_from_cluster(struct btrfs_block_group *block_group,
3073 			     struct btrfs_free_cluster *cluster, u64 bytes,
3074 			     u64 min_start, u64 *max_extent_size)
3075 {
3076 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3077 	struct btrfs_discard_ctl *discard_ctl =
3078 					&block_group->fs_info->discard_ctl;
3079 	struct btrfs_free_space *entry = NULL;
3080 	struct rb_node *node;
3081 	u64 ret = 0;
3082 
3083 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3084 
3085 	spin_lock(&cluster->lock);
3086 	if (bytes > cluster->max_size)
3087 		goto out;
3088 
3089 	if (cluster->block_group != block_group)
3090 		goto out;
3091 
3092 	node = rb_first(&cluster->root);
3093 	if (!node)
3094 		goto out;
3095 
3096 	entry = rb_entry(node, struct btrfs_free_space, offset_index);
3097 	while (1) {
3098 		if (entry->bytes < bytes)
3099 			*max_extent_size = max(get_max_extent_size(entry),
3100 					       *max_extent_size);
3101 
3102 		if (entry->bytes < bytes ||
3103 		    (!entry->bitmap && entry->offset < min_start)) {
3104 			node = rb_next(&entry->offset_index);
3105 			if (!node)
3106 				break;
3107 			entry = rb_entry(node, struct btrfs_free_space,
3108 					 offset_index);
3109 			continue;
3110 		}
3111 
3112 		if (entry->bitmap) {
3113 			ret = btrfs_alloc_from_bitmap(block_group,
3114 						      cluster, entry, bytes,
3115 						      cluster->window_start,
3116 						      max_extent_size);
3117 			if (ret == 0) {
3118 				node = rb_next(&entry->offset_index);
3119 				if (!node)
3120 					break;
3121 				entry = rb_entry(node, struct btrfs_free_space,
3122 						 offset_index);
3123 				continue;
3124 			}
3125 			cluster->window_start += bytes;
3126 		} else {
3127 			ret = entry->offset;
3128 
3129 			entry->offset += bytes;
3130 			entry->bytes -= bytes;
3131 		}
3132 
3133 		break;
3134 	}
3135 out:
3136 	spin_unlock(&cluster->lock);
3137 
3138 	if (!ret)
3139 		return 0;
3140 
3141 	spin_lock(&ctl->tree_lock);
3142 
3143 	if (!btrfs_free_space_trimmed(entry))
3144 		atomic64_add(bytes, &discard_ctl->discard_bytes_saved);
3145 
3146 	ctl->free_space -= bytes;
3147 	if (!entry->bitmap && !btrfs_free_space_trimmed(entry))
3148 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= bytes;
3149 
3150 	spin_lock(&cluster->lock);
3151 	if (entry->bytes == 0) {
3152 		rb_erase(&entry->offset_index, &cluster->root);
3153 		ctl->free_extents--;
3154 		if (entry->bitmap) {
3155 			kmem_cache_free(btrfs_free_space_bitmap_cachep,
3156 					entry->bitmap);
3157 			ctl->total_bitmaps--;
3158 			recalculate_thresholds(ctl);
3159 		} else if (!btrfs_free_space_trimmed(entry)) {
3160 			ctl->discardable_extents[BTRFS_STAT_CURR]--;
3161 		}
3162 		kmem_cache_free(btrfs_free_space_cachep, entry);
3163 	}
3164 
3165 	spin_unlock(&cluster->lock);
3166 	spin_unlock(&ctl->tree_lock);
3167 
3168 	return ret;
3169 }
3170 
3171 static int btrfs_bitmap_cluster(struct btrfs_block_group *block_group,
3172 				struct btrfs_free_space *entry,
3173 				struct btrfs_free_cluster *cluster,
3174 				u64 offset, u64 bytes,
3175 				u64 cont1_bytes, u64 min_bytes)
3176 {
3177 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3178 	unsigned long next_zero;
3179 	unsigned long i;
3180 	unsigned long want_bits;
3181 	unsigned long min_bits;
3182 	unsigned long found_bits;
3183 	unsigned long max_bits = 0;
3184 	unsigned long start = 0;
3185 	unsigned long total_found = 0;
3186 	int ret;
3187 
3188 	i = offset_to_bit(entry->offset, ctl->unit,
3189 			  max_t(u64, offset, entry->offset));
3190 	want_bits = bytes_to_bits(bytes, ctl->unit);
3191 	min_bits = bytes_to_bits(min_bytes, ctl->unit);
3192 
3193 	/*
3194 	 * Don't bother looking for a cluster in this bitmap if it's heavily
3195 	 * fragmented.
3196 	 */
3197 	if (entry->max_extent_size &&
3198 	    entry->max_extent_size < cont1_bytes)
3199 		return -ENOSPC;
3200 again:
3201 	found_bits = 0;
3202 	for_each_set_bit_from(i, entry->bitmap, BITS_PER_BITMAP) {
3203 		next_zero = find_next_zero_bit(entry->bitmap,
3204 					       BITS_PER_BITMAP, i);
3205 		if (next_zero - i >= min_bits) {
3206 			found_bits = next_zero - i;
3207 			if (found_bits > max_bits)
3208 				max_bits = found_bits;
3209 			break;
3210 		}
3211 		if (next_zero - i > max_bits)
3212 			max_bits = next_zero - i;
3213 		i = next_zero;
3214 	}
3215 
3216 	if (!found_bits) {
3217 		entry->max_extent_size = (u64)max_bits * ctl->unit;
3218 		return -ENOSPC;
3219 	}
3220 
3221 	if (!total_found) {
3222 		start = i;
3223 		cluster->max_size = 0;
3224 	}
3225 
3226 	total_found += found_bits;
3227 
3228 	if (cluster->max_size < found_bits * ctl->unit)
3229 		cluster->max_size = found_bits * ctl->unit;
3230 
3231 	if (total_found < want_bits || cluster->max_size < cont1_bytes) {
3232 		i = next_zero + 1;
3233 		goto again;
3234 	}
3235 
3236 	cluster->window_start = start * ctl->unit + entry->offset;
3237 	rb_erase(&entry->offset_index, &ctl->free_space_offset);
3238 	ret = tree_insert_offset(&cluster->root, entry->offset,
3239 				 &entry->offset_index, 1);
3240 	ASSERT(!ret); /* -EEXIST; Logic error */
3241 
3242 	trace_btrfs_setup_cluster(block_group, cluster,
3243 				  total_found * ctl->unit, 1);
3244 	return 0;
3245 }
3246 
3247 /*
3248  * This searches the block group for just extents to fill the cluster with.
3249  * Try to find a cluster with at least bytes total bytes, at least one
3250  * extent of cont1_bytes, and other clusters of at least min_bytes.
3251  */
3252 static noinline int
3253 setup_cluster_no_bitmap(struct btrfs_block_group *block_group,
3254 			struct btrfs_free_cluster *cluster,
3255 			struct list_head *bitmaps, u64 offset, u64 bytes,
3256 			u64 cont1_bytes, u64 min_bytes)
3257 {
3258 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3259 	struct btrfs_free_space *first = NULL;
3260 	struct btrfs_free_space *entry = NULL;
3261 	struct btrfs_free_space *last;
3262 	struct rb_node *node;
3263 	u64 window_free;
3264 	u64 max_extent;
3265 	u64 total_size = 0;
3266 
3267 	entry = tree_search_offset(ctl, offset, 0, 1);
3268 	if (!entry)
3269 		return -ENOSPC;
3270 
3271 	/*
3272 	 * We don't want bitmaps, so just move along until we find a normal
3273 	 * extent entry.
3274 	 */
3275 	while (entry->bitmap || entry->bytes < min_bytes) {
3276 		if (entry->bitmap && list_empty(&entry->list))
3277 			list_add_tail(&entry->list, bitmaps);
3278 		node = rb_next(&entry->offset_index);
3279 		if (!node)
3280 			return -ENOSPC;
3281 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3282 	}
3283 
3284 	window_free = entry->bytes;
3285 	max_extent = entry->bytes;
3286 	first = entry;
3287 	last = entry;
3288 
3289 	for (node = rb_next(&entry->offset_index); node;
3290 	     node = rb_next(&entry->offset_index)) {
3291 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3292 
3293 		if (entry->bitmap) {
3294 			if (list_empty(&entry->list))
3295 				list_add_tail(&entry->list, bitmaps);
3296 			continue;
3297 		}
3298 
3299 		if (entry->bytes < min_bytes)
3300 			continue;
3301 
3302 		last = entry;
3303 		window_free += entry->bytes;
3304 		if (entry->bytes > max_extent)
3305 			max_extent = entry->bytes;
3306 	}
3307 
3308 	if (window_free < bytes || max_extent < cont1_bytes)
3309 		return -ENOSPC;
3310 
3311 	cluster->window_start = first->offset;
3312 
3313 	node = &first->offset_index;
3314 
3315 	/*
3316 	 * now we've found our entries, pull them out of the free space
3317 	 * cache and put them into the cluster rbtree
3318 	 */
3319 	do {
3320 		int ret;
3321 
3322 		entry = rb_entry(node, struct btrfs_free_space, offset_index);
3323 		node = rb_next(&entry->offset_index);
3324 		if (entry->bitmap || entry->bytes < min_bytes)
3325 			continue;
3326 
3327 		rb_erase(&entry->offset_index, &ctl->free_space_offset);
3328 		ret = tree_insert_offset(&cluster->root, entry->offset,
3329 					 &entry->offset_index, 0);
3330 		total_size += entry->bytes;
3331 		ASSERT(!ret); /* -EEXIST; Logic error */
3332 	} while (node && entry != last);
3333 
3334 	cluster->max_size = max_extent;
3335 	trace_btrfs_setup_cluster(block_group, cluster, total_size, 0);
3336 	return 0;
3337 }
3338 
3339 /*
3340  * This specifically looks for bitmaps that may work in the cluster, we assume
3341  * that we have already failed to find extents that will work.
3342  */
3343 static noinline int
3344 setup_cluster_bitmap(struct btrfs_block_group *block_group,
3345 		     struct btrfs_free_cluster *cluster,
3346 		     struct list_head *bitmaps, u64 offset, u64 bytes,
3347 		     u64 cont1_bytes, u64 min_bytes)
3348 {
3349 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3350 	struct btrfs_free_space *entry = NULL;
3351 	int ret = -ENOSPC;
3352 	u64 bitmap_offset = offset_to_bitmap(ctl, offset);
3353 
3354 	if (ctl->total_bitmaps == 0)
3355 		return -ENOSPC;
3356 
3357 	/*
3358 	 * The bitmap that covers offset won't be in the list unless offset
3359 	 * is just its start offset.
3360 	 */
3361 	if (!list_empty(bitmaps))
3362 		entry = list_first_entry(bitmaps, struct btrfs_free_space, list);
3363 
3364 	if (!entry || entry->offset != bitmap_offset) {
3365 		entry = tree_search_offset(ctl, bitmap_offset, 1, 0);
3366 		if (entry && list_empty(&entry->list))
3367 			list_add(&entry->list, bitmaps);
3368 	}
3369 
3370 	list_for_each_entry(entry, bitmaps, list) {
3371 		if (entry->bytes < bytes)
3372 			continue;
3373 		ret = btrfs_bitmap_cluster(block_group, entry, cluster, offset,
3374 					   bytes, cont1_bytes, min_bytes);
3375 		if (!ret)
3376 			return 0;
3377 	}
3378 
3379 	/*
3380 	 * The bitmaps list has all the bitmaps that record free space
3381 	 * starting after offset, so no more search is required.
3382 	 */
3383 	return -ENOSPC;
3384 }
3385 
3386 /*
3387  * here we try to find a cluster of blocks in a block group.  The goal
3388  * is to find at least bytes+empty_size.
3389  * We might not find them all in one contiguous area.
3390  *
3391  * returns zero and sets up cluster if things worked out, otherwise
3392  * it returns -enospc
3393  */
3394 int btrfs_find_space_cluster(struct btrfs_block_group *block_group,
3395 			     struct btrfs_free_cluster *cluster,
3396 			     u64 offset, u64 bytes, u64 empty_size)
3397 {
3398 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3399 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3400 	struct btrfs_free_space *entry, *tmp;
3401 	LIST_HEAD(bitmaps);
3402 	u64 min_bytes;
3403 	u64 cont1_bytes;
3404 	int ret;
3405 
3406 	/*
3407 	 * Choose the minimum extent size we'll require for this
3408 	 * cluster.  For SSD_SPREAD, don't allow any fragmentation.
3409 	 * For metadata, allow allocates with smaller extents.  For
3410 	 * data, keep it dense.
3411 	 */
3412 	if (btrfs_test_opt(fs_info, SSD_SPREAD)) {
3413 		cont1_bytes = min_bytes = bytes + empty_size;
3414 	} else if (block_group->flags & BTRFS_BLOCK_GROUP_METADATA) {
3415 		cont1_bytes = bytes;
3416 		min_bytes = fs_info->sectorsize;
3417 	} else {
3418 		cont1_bytes = max(bytes, (bytes + empty_size) >> 2);
3419 		min_bytes = fs_info->sectorsize;
3420 	}
3421 
3422 	spin_lock(&ctl->tree_lock);
3423 
3424 	/*
3425 	 * If we know we don't have enough space to make a cluster don't even
3426 	 * bother doing all the work to try and find one.
3427 	 */
3428 	if (ctl->free_space < bytes) {
3429 		spin_unlock(&ctl->tree_lock);
3430 		return -ENOSPC;
3431 	}
3432 
3433 	spin_lock(&cluster->lock);
3434 
3435 	/* someone already found a cluster, hooray */
3436 	if (cluster->block_group) {
3437 		ret = 0;
3438 		goto out;
3439 	}
3440 
3441 	trace_btrfs_find_cluster(block_group, offset, bytes, empty_size,
3442 				 min_bytes);
3443 
3444 	ret = setup_cluster_no_bitmap(block_group, cluster, &bitmaps, offset,
3445 				      bytes + empty_size,
3446 				      cont1_bytes, min_bytes);
3447 	if (ret)
3448 		ret = setup_cluster_bitmap(block_group, cluster, &bitmaps,
3449 					   offset, bytes + empty_size,
3450 					   cont1_bytes, min_bytes);
3451 
3452 	/* Clear our temporary list */
3453 	list_for_each_entry_safe(entry, tmp, &bitmaps, list)
3454 		list_del_init(&entry->list);
3455 
3456 	if (!ret) {
3457 		btrfs_get_block_group(block_group);
3458 		list_add_tail(&cluster->block_group_list,
3459 			      &block_group->cluster_list);
3460 		cluster->block_group = block_group;
3461 	} else {
3462 		trace_btrfs_failed_cluster_setup(block_group);
3463 	}
3464 out:
3465 	spin_unlock(&cluster->lock);
3466 	spin_unlock(&ctl->tree_lock);
3467 
3468 	return ret;
3469 }
3470 
3471 /*
3472  * simple code to zero out a cluster
3473  */
3474 void btrfs_init_free_cluster(struct btrfs_free_cluster *cluster)
3475 {
3476 	spin_lock_init(&cluster->lock);
3477 	spin_lock_init(&cluster->refill_lock);
3478 	cluster->root = RB_ROOT;
3479 	cluster->max_size = 0;
3480 	cluster->fragmented = false;
3481 	INIT_LIST_HEAD(&cluster->block_group_list);
3482 	cluster->block_group = NULL;
3483 }
3484 
3485 static int do_trimming(struct btrfs_block_group *block_group,
3486 		       u64 *total_trimmed, u64 start, u64 bytes,
3487 		       u64 reserved_start, u64 reserved_bytes,
3488 		       enum btrfs_trim_state reserved_trim_state,
3489 		       struct btrfs_trim_range *trim_entry)
3490 {
3491 	struct btrfs_space_info *space_info = block_group->space_info;
3492 	struct btrfs_fs_info *fs_info = block_group->fs_info;
3493 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3494 	int ret;
3495 	int update = 0;
3496 	const u64 end = start + bytes;
3497 	const u64 reserved_end = reserved_start + reserved_bytes;
3498 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3499 	u64 trimmed = 0;
3500 
3501 	spin_lock(&space_info->lock);
3502 	spin_lock(&block_group->lock);
3503 	if (!block_group->ro) {
3504 		block_group->reserved += reserved_bytes;
3505 		space_info->bytes_reserved += reserved_bytes;
3506 		update = 1;
3507 	}
3508 	spin_unlock(&block_group->lock);
3509 	spin_unlock(&space_info->lock);
3510 
3511 	ret = btrfs_discard_extent(fs_info, start, bytes, &trimmed);
3512 	if (!ret) {
3513 		*total_trimmed += trimmed;
3514 		trim_state = BTRFS_TRIM_STATE_TRIMMED;
3515 	}
3516 
3517 	mutex_lock(&ctl->cache_writeout_mutex);
3518 	if (reserved_start < start)
3519 		__btrfs_add_free_space(fs_info, ctl, reserved_start,
3520 				       start - reserved_start,
3521 				       reserved_trim_state);
3522 	if (start + bytes < reserved_start + reserved_bytes)
3523 		__btrfs_add_free_space(fs_info, ctl, end, reserved_end - end,
3524 				       reserved_trim_state);
3525 	__btrfs_add_free_space(fs_info, ctl, start, bytes, trim_state);
3526 	list_del(&trim_entry->list);
3527 	mutex_unlock(&ctl->cache_writeout_mutex);
3528 
3529 	if (update) {
3530 		spin_lock(&space_info->lock);
3531 		spin_lock(&block_group->lock);
3532 		if (block_group->ro)
3533 			space_info->bytes_readonly += reserved_bytes;
3534 		block_group->reserved -= reserved_bytes;
3535 		space_info->bytes_reserved -= reserved_bytes;
3536 		spin_unlock(&block_group->lock);
3537 		spin_unlock(&space_info->lock);
3538 	}
3539 
3540 	return ret;
3541 }
3542 
3543 /*
3544  * If @async is set, then we will trim 1 region and return.
3545  */
3546 static int trim_no_bitmap(struct btrfs_block_group *block_group,
3547 			  u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3548 			  bool async)
3549 {
3550 	struct btrfs_discard_ctl *discard_ctl =
3551 					&block_group->fs_info->discard_ctl;
3552 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3553 	struct btrfs_free_space *entry;
3554 	struct rb_node *node;
3555 	int ret = 0;
3556 	u64 extent_start;
3557 	u64 extent_bytes;
3558 	enum btrfs_trim_state extent_trim_state;
3559 	u64 bytes;
3560 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3561 
3562 	while (start < end) {
3563 		struct btrfs_trim_range trim_entry;
3564 
3565 		mutex_lock(&ctl->cache_writeout_mutex);
3566 		spin_lock(&ctl->tree_lock);
3567 
3568 		if (ctl->free_space < minlen)
3569 			goto out_unlock;
3570 
3571 		entry = tree_search_offset(ctl, start, 0, 1);
3572 		if (!entry)
3573 			goto out_unlock;
3574 
3575 		/* Skip bitmaps and if async, already trimmed entries */
3576 		while (entry->bitmap ||
3577 		       (async && btrfs_free_space_trimmed(entry))) {
3578 			node = rb_next(&entry->offset_index);
3579 			if (!node)
3580 				goto out_unlock;
3581 			entry = rb_entry(node, struct btrfs_free_space,
3582 					 offset_index);
3583 		}
3584 
3585 		if (entry->offset >= end)
3586 			goto out_unlock;
3587 
3588 		extent_start = entry->offset;
3589 		extent_bytes = entry->bytes;
3590 		extent_trim_state = entry->trim_state;
3591 		if (async) {
3592 			start = entry->offset;
3593 			bytes = entry->bytes;
3594 			if (bytes < minlen) {
3595 				spin_unlock(&ctl->tree_lock);
3596 				mutex_unlock(&ctl->cache_writeout_mutex);
3597 				goto next;
3598 			}
3599 			unlink_free_space(ctl, entry);
3600 			/*
3601 			 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3602 			 * If X < BTRFS_ASYNC_DISCARD_MIN_FILTER, we won't trim
3603 			 * X when we come back around.  So trim it now.
3604 			 */
3605 			if (max_discard_size &&
3606 			    bytes >= (max_discard_size +
3607 				      BTRFS_ASYNC_DISCARD_MIN_FILTER)) {
3608 				bytes = max_discard_size;
3609 				extent_bytes = max_discard_size;
3610 				entry->offset += max_discard_size;
3611 				entry->bytes -= max_discard_size;
3612 				link_free_space(ctl, entry);
3613 			} else {
3614 				kmem_cache_free(btrfs_free_space_cachep, entry);
3615 			}
3616 		} else {
3617 			start = max(start, extent_start);
3618 			bytes = min(extent_start + extent_bytes, end) - start;
3619 			if (bytes < minlen) {
3620 				spin_unlock(&ctl->tree_lock);
3621 				mutex_unlock(&ctl->cache_writeout_mutex);
3622 				goto next;
3623 			}
3624 
3625 			unlink_free_space(ctl, entry);
3626 			kmem_cache_free(btrfs_free_space_cachep, entry);
3627 		}
3628 
3629 		spin_unlock(&ctl->tree_lock);
3630 		trim_entry.start = extent_start;
3631 		trim_entry.bytes = extent_bytes;
3632 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3633 		mutex_unlock(&ctl->cache_writeout_mutex);
3634 
3635 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3636 				  extent_start, extent_bytes, extent_trim_state,
3637 				  &trim_entry);
3638 		if (ret) {
3639 			block_group->discard_cursor = start + bytes;
3640 			break;
3641 		}
3642 next:
3643 		start += bytes;
3644 		block_group->discard_cursor = start;
3645 		if (async && *total_trimmed)
3646 			break;
3647 
3648 		if (fatal_signal_pending(current)) {
3649 			ret = -ERESTARTSYS;
3650 			break;
3651 		}
3652 
3653 		cond_resched();
3654 	}
3655 
3656 	return ret;
3657 
3658 out_unlock:
3659 	block_group->discard_cursor = btrfs_block_group_end(block_group);
3660 	spin_unlock(&ctl->tree_lock);
3661 	mutex_unlock(&ctl->cache_writeout_mutex);
3662 
3663 	return ret;
3664 }
3665 
3666 /*
3667  * If we break out of trimming a bitmap prematurely, we should reset the
3668  * trimming bit.  In a rather contrieved case, it's possible to race here so
3669  * reset the state to BTRFS_TRIM_STATE_UNTRIMMED.
3670  *
3671  * start = start of bitmap
3672  * end = near end of bitmap
3673  *
3674  * Thread 1:			Thread 2:
3675  * trim_bitmaps(start)
3676  *				trim_bitmaps(end)
3677  *				end_trimming_bitmap()
3678  * reset_trimming_bitmap()
3679  */
3680 static void reset_trimming_bitmap(struct btrfs_free_space_ctl *ctl, u64 offset)
3681 {
3682 	struct btrfs_free_space *entry;
3683 
3684 	spin_lock(&ctl->tree_lock);
3685 	entry = tree_search_offset(ctl, offset, 1, 0);
3686 	if (entry) {
3687 		if (btrfs_free_space_trimmed(entry)) {
3688 			ctl->discardable_extents[BTRFS_STAT_CURR] +=
3689 				entry->bitmap_extents;
3690 			ctl->discardable_bytes[BTRFS_STAT_CURR] += entry->bytes;
3691 		}
3692 		entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3693 	}
3694 
3695 	spin_unlock(&ctl->tree_lock);
3696 }
3697 
3698 static void end_trimming_bitmap(struct btrfs_free_space_ctl *ctl,
3699 				struct btrfs_free_space *entry)
3700 {
3701 	if (btrfs_free_space_trimming_bitmap(entry)) {
3702 		entry->trim_state = BTRFS_TRIM_STATE_TRIMMED;
3703 		ctl->discardable_extents[BTRFS_STAT_CURR] -=
3704 			entry->bitmap_extents;
3705 		ctl->discardable_bytes[BTRFS_STAT_CURR] -= entry->bytes;
3706 	}
3707 }
3708 
3709 /*
3710  * If @async is set, then we will trim 1 region and return.
3711  */
3712 static int trim_bitmaps(struct btrfs_block_group *block_group,
3713 			u64 *total_trimmed, u64 start, u64 end, u64 minlen,
3714 			u64 maxlen, bool async)
3715 {
3716 	struct btrfs_discard_ctl *discard_ctl =
3717 					&block_group->fs_info->discard_ctl;
3718 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3719 	struct btrfs_free_space *entry;
3720 	int ret = 0;
3721 	int ret2;
3722 	u64 bytes;
3723 	u64 offset = offset_to_bitmap(ctl, start);
3724 	const u64 max_discard_size = READ_ONCE(discard_ctl->max_discard_size);
3725 
3726 	while (offset < end) {
3727 		bool next_bitmap = false;
3728 		struct btrfs_trim_range trim_entry;
3729 
3730 		mutex_lock(&ctl->cache_writeout_mutex);
3731 		spin_lock(&ctl->tree_lock);
3732 
3733 		if (ctl->free_space < minlen) {
3734 			block_group->discard_cursor =
3735 				btrfs_block_group_end(block_group);
3736 			spin_unlock(&ctl->tree_lock);
3737 			mutex_unlock(&ctl->cache_writeout_mutex);
3738 			break;
3739 		}
3740 
3741 		entry = tree_search_offset(ctl, offset, 1, 0);
3742 		/*
3743 		 * Bitmaps are marked trimmed lossily now to prevent constant
3744 		 * discarding of the same bitmap (the reason why we are bound
3745 		 * by the filters).  So, retrim the block group bitmaps when we
3746 		 * are preparing to punt to the unused_bgs list.  This uses
3747 		 * @minlen to determine if we are in BTRFS_DISCARD_INDEX_UNUSED
3748 		 * which is the only discard index which sets minlen to 0.
3749 		 */
3750 		if (!entry || (async && minlen && start == offset &&
3751 			       btrfs_free_space_trimmed(entry))) {
3752 			spin_unlock(&ctl->tree_lock);
3753 			mutex_unlock(&ctl->cache_writeout_mutex);
3754 			next_bitmap = true;
3755 			goto next;
3756 		}
3757 
3758 		/*
3759 		 * Async discard bitmap trimming begins at by setting the start
3760 		 * to be key.objectid and the offset_to_bitmap() aligns to the
3761 		 * start of the bitmap.  This lets us know we are fully
3762 		 * scanning the bitmap rather than only some portion of it.
3763 		 */
3764 		if (start == offset)
3765 			entry->trim_state = BTRFS_TRIM_STATE_TRIMMING;
3766 
3767 		bytes = minlen;
3768 		ret2 = search_bitmap(ctl, entry, &start, &bytes, false);
3769 		if (ret2 || start >= end) {
3770 			/*
3771 			 * We lossily consider a bitmap trimmed if we only skip
3772 			 * over regions <= BTRFS_ASYNC_DISCARD_MIN_FILTER.
3773 			 */
3774 			if (ret2 && minlen <= BTRFS_ASYNC_DISCARD_MIN_FILTER)
3775 				end_trimming_bitmap(ctl, entry);
3776 			else
3777 				entry->trim_state = BTRFS_TRIM_STATE_UNTRIMMED;
3778 			spin_unlock(&ctl->tree_lock);
3779 			mutex_unlock(&ctl->cache_writeout_mutex);
3780 			next_bitmap = true;
3781 			goto next;
3782 		}
3783 
3784 		/*
3785 		 * We already trimmed a region, but are using the locking above
3786 		 * to reset the trim_state.
3787 		 */
3788 		if (async && *total_trimmed) {
3789 			spin_unlock(&ctl->tree_lock);
3790 			mutex_unlock(&ctl->cache_writeout_mutex);
3791 			goto out;
3792 		}
3793 
3794 		bytes = min(bytes, end - start);
3795 		if (bytes < minlen || (async && maxlen && bytes > maxlen)) {
3796 			spin_unlock(&ctl->tree_lock);
3797 			mutex_unlock(&ctl->cache_writeout_mutex);
3798 			goto next;
3799 		}
3800 
3801 		/*
3802 		 * Let bytes = BTRFS_MAX_DISCARD_SIZE + X.
3803 		 * If X < @minlen, we won't trim X when we come back around.
3804 		 * So trim it now.  We differ here from trimming extents as we
3805 		 * don't keep individual state per bit.
3806 		 */
3807 		if (async &&
3808 		    max_discard_size &&
3809 		    bytes > (max_discard_size + minlen))
3810 			bytes = max_discard_size;
3811 
3812 		bitmap_clear_bits(ctl, entry, start, bytes);
3813 		if (entry->bytes == 0)
3814 			free_bitmap(ctl, entry);
3815 
3816 		spin_unlock(&ctl->tree_lock);
3817 		trim_entry.start = start;
3818 		trim_entry.bytes = bytes;
3819 		list_add_tail(&trim_entry.list, &ctl->trimming_ranges);
3820 		mutex_unlock(&ctl->cache_writeout_mutex);
3821 
3822 		ret = do_trimming(block_group, total_trimmed, start, bytes,
3823 				  start, bytes, 0, &trim_entry);
3824 		if (ret) {
3825 			reset_trimming_bitmap(ctl, offset);
3826 			block_group->discard_cursor =
3827 				btrfs_block_group_end(block_group);
3828 			break;
3829 		}
3830 next:
3831 		if (next_bitmap) {
3832 			offset += BITS_PER_BITMAP * ctl->unit;
3833 			start = offset;
3834 		} else {
3835 			start += bytes;
3836 		}
3837 		block_group->discard_cursor = start;
3838 
3839 		if (fatal_signal_pending(current)) {
3840 			if (start != offset)
3841 				reset_trimming_bitmap(ctl, offset);
3842 			ret = -ERESTARTSYS;
3843 			break;
3844 		}
3845 
3846 		cond_resched();
3847 	}
3848 
3849 	if (offset >= end)
3850 		block_group->discard_cursor = end;
3851 
3852 out:
3853 	return ret;
3854 }
3855 
3856 int btrfs_trim_block_group(struct btrfs_block_group *block_group,
3857 			   u64 *trimmed, u64 start, u64 end, u64 minlen)
3858 {
3859 	struct btrfs_free_space_ctl *ctl = block_group->free_space_ctl;
3860 	int ret;
3861 	u64 rem = 0;
3862 
3863 	ASSERT(!btrfs_is_zoned(block_group->fs_info));
3864 
3865 	*trimmed = 0;
3866 
3867 	spin_lock(&block_group->lock);
3868 	if (block_group->removed) {
3869 		spin_unlock(&block_group->lock);
3870 		return 0;
3871 	}
3872 	btrfs_freeze_block_group(block_group);
3873 	spin_unlock(&block_group->lock);
3874 
3875 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, false);
3876 	if (ret)
3877 		goto out;
3878 
3879 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, 0, false);
3880 	div64_u64_rem(end, BITS_PER_BITMAP * ctl->unit, &rem);
3881 	/* If we ended in the middle of a bitmap, reset the trimming flag */
3882 	if (rem)
3883 		reset_trimming_bitmap(ctl, offset_to_bitmap(ctl, end));
3884 out:
3885 	btrfs_unfreeze_block_group(block_group);
3886 	return ret;
3887 }
3888 
3889 int btrfs_trim_block_group_extents(struct btrfs_block_group *block_group,
3890 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3891 				   bool async)
3892 {
3893 	int ret;
3894 
3895 	*trimmed = 0;
3896 
3897 	spin_lock(&block_group->lock);
3898 	if (block_group->removed) {
3899 		spin_unlock(&block_group->lock);
3900 		return 0;
3901 	}
3902 	btrfs_freeze_block_group(block_group);
3903 	spin_unlock(&block_group->lock);
3904 
3905 	ret = trim_no_bitmap(block_group, trimmed, start, end, minlen, async);
3906 	btrfs_unfreeze_block_group(block_group);
3907 
3908 	return ret;
3909 }
3910 
3911 int btrfs_trim_block_group_bitmaps(struct btrfs_block_group *block_group,
3912 				   u64 *trimmed, u64 start, u64 end, u64 minlen,
3913 				   u64 maxlen, bool async)
3914 {
3915 	int ret;
3916 
3917 	*trimmed = 0;
3918 
3919 	spin_lock(&block_group->lock);
3920 	if (block_group->removed) {
3921 		spin_unlock(&block_group->lock);
3922 		return 0;
3923 	}
3924 	btrfs_freeze_block_group(block_group);
3925 	spin_unlock(&block_group->lock);
3926 
3927 	ret = trim_bitmaps(block_group, trimmed, start, end, minlen, maxlen,
3928 			   async);
3929 
3930 	btrfs_unfreeze_block_group(block_group);
3931 
3932 	return ret;
3933 }
3934 
3935 bool btrfs_free_space_cache_v1_active(struct btrfs_fs_info *fs_info)
3936 {
3937 	return btrfs_super_cache_generation(fs_info->super_copy);
3938 }
3939 
3940 static int cleanup_free_space_cache_v1(struct btrfs_fs_info *fs_info,
3941 				       struct btrfs_trans_handle *trans)
3942 {
3943 	struct btrfs_block_group *block_group;
3944 	struct rb_node *node;
3945 	int ret;
3946 
3947 	btrfs_info(fs_info, "cleaning free space cache v1");
3948 
3949 	node = rb_first(&fs_info->block_group_cache_tree);
3950 	while (node) {
3951 		block_group = rb_entry(node, struct btrfs_block_group, cache_node);
3952 		ret = btrfs_remove_free_space_inode(trans, NULL, block_group);
3953 		if (ret)
3954 			goto out;
3955 		node = rb_next(node);
3956 	}
3957 out:
3958 	return ret;
3959 }
3960 
3961 int btrfs_set_free_space_cache_v1_active(struct btrfs_fs_info *fs_info, bool active)
3962 {
3963 	struct btrfs_trans_handle *trans;
3964 	int ret;
3965 
3966 	/*
3967 	 * update_super_roots will appropriately set or unset
3968 	 * super_copy->cache_generation based on SPACE_CACHE and
3969 	 * BTRFS_FS_CLEANUP_SPACE_CACHE_V1. For this reason, we need a
3970 	 * transaction commit whether we are enabling space cache v1 and don't
3971 	 * have any other work to do, or are disabling it and removing free
3972 	 * space inodes.
3973 	 */
3974 	trans = btrfs_start_transaction(fs_info->tree_root, 0);
3975 	if (IS_ERR(trans))
3976 		return PTR_ERR(trans);
3977 
3978 	if (!active) {
3979 		set_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
3980 		ret = cleanup_free_space_cache_v1(fs_info, trans);
3981 		if (ret) {
3982 			btrfs_abort_transaction(trans, ret);
3983 			btrfs_end_transaction(trans);
3984 			goto out;
3985 		}
3986 	}
3987 
3988 	ret = btrfs_commit_transaction(trans);
3989 out:
3990 	clear_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags);
3991 
3992 	return ret;
3993 }
3994 
3995 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3996 /*
3997  * Use this if you need to make a bitmap or extent entry specifically, it
3998  * doesn't do any of the merging that add_free_space does, this acts a lot like
3999  * how the free space cache loading stuff works, so you can get really weird
4000  * configurations.
4001  */
4002 int test_add_free_space_entry(struct btrfs_block_group *cache,
4003 			      u64 offset, u64 bytes, bool bitmap)
4004 {
4005 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4006 	struct btrfs_free_space *info = NULL, *bitmap_info;
4007 	void *map = NULL;
4008 	enum btrfs_trim_state trim_state = BTRFS_TRIM_STATE_TRIMMED;
4009 	u64 bytes_added;
4010 	int ret;
4011 
4012 again:
4013 	if (!info) {
4014 		info = kmem_cache_zalloc(btrfs_free_space_cachep, GFP_NOFS);
4015 		if (!info)
4016 			return -ENOMEM;
4017 	}
4018 
4019 	if (!bitmap) {
4020 		spin_lock(&ctl->tree_lock);
4021 		info->offset = offset;
4022 		info->bytes = bytes;
4023 		info->max_extent_size = 0;
4024 		ret = link_free_space(ctl, info);
4025 		spin_unlock(&ctl->tree_lock);
4026 		if (ret)
4027 			kmem_cache_free(btrfs_free_space_cachep, info);
4028 		return ret;
4029 	}
4030 
4031 	if (!map) {
4032 		map = kmem_cache_zalloc(btrfs_free_space_bitmap_cachep, GFP_NOFS);
4033 		if (!map) {
4034 			kmem_cache_free(btrfs_free_space_cachep, info);
4035 			return -ENOMEM;
4036 		}
4037 	}
4038 
4039 	spin_lock(&ctl->tree_lock);
4040 	bitmap_info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4041 					 1, 0);
4042 	if (!bitmap_info) {
4043 		info->bitmap = map;
4044 		map = NULL;
4045 		add_new_bitmap(ctl, info, offset);
4046 		bitmap_info = info;
4047 		info = NULL;
4048 	}
4049 
4050 	bytes_added = add_bytes_to_bitmap(ctl, bitmap_info, offset, bytes,
4051 					  trim_state);
4052 
4053 	bytes -= bytes_added;
4054 	offset += bytes_added;
4055 	spin_unlock(&ctl->tree_lock);
4056 
4057 	if (bytes)
4058 		goto again;
4059 
4060 	if (info)
4061 		kmem_cache_free(btrfs_free_space_cachep, info);
4062 	if (map)
4063 		kmem_cache_free(btrfs_free_space_bitmap_cachep, map);
4064 	return 0;
4065 }
4066 
4067 /*
4068  * Checks to see if the given range is in the free space cache.  This is really
4069  * just used to check the absence of space, so if there is free space in the
4070  * range at all we will return 1.
4071  */
4072 int test_check_exists(struct btrfs_block_group *cache,
4073 		      u64 offset, u64 bytes)
4074 {
4075 	struct btrfs_free_space_ctl *ctl = cache->free_space_ctl;
4076 	struct btrfs_free_space *info;
4077 	int ret = 0;
4078 
4079 	spin_lock(&ctl->tree_lock);
4080 	info = tree_search_offset(ctl, offset, 0, 0);
4081 	if (!info) {
4082 		info = tree_search_offset(ctl, offset_to_bitmap(ctl, offset),
4083 					  1, 0);
4084 		if (!info)
4085 			goto out;
4086 	}
4087 
4088 have_info:
4089 	if (info->bitmap) {
4090 		u64 bit_off, bit_bytes;
4091 		struct rb_node *n;
4092 		struct btrfs_free_space *tmp;
4093 
4094 		bit_off = offset;
4095 		bit_bytes = ctl->unit;
4096 		ret = search_bitmap(ctl, info, &bit_off, &bit_bytes, false);
4097 		if (!ret) {
4098 			if (bit_off == offset) {
4099 				ret = 1;
4100 				goto out;
4101 			} else if (bit_off > offset &&
4102 				   offset + bytes > bit_off) {
4103 				ret = 1;
4104 				goto out;
4105 			}
4106 		}
4107 
4108 		n = rb_prev(&info->offset_index);
4109 		while (n) {
4110 			tmp = rb_entry(n, struct btrfs_free_space,
4111 				       offset_index);
4112 			if (tmp->offset + tmp->bytes < offset)
4113 				break;
4114 			if (offset + bytes < tmp->offset) {
4115 				n = rb_prev(&tmp->offset_index);
4116 				continue;
4117 			}
4118 			info = tmp;
4119 			goto have_info;
4120 		}
4121 
4122 		n = rb_next(&info->offset_index);
4123 		while (n) {
4124 			tmp = rb_entry(n, struct btrfs_free_space,
4125 				       offset_index);
4126 			if (offset + bytes < tmp->offset)
4127 				break;
4128 			if (tmp->offset + tmp->bytes < offset) {
4129 				n = rb_next(&tmp->offset_index);
4130 				continue;
4131 			}
4132 			info = tmp;
4133 			goto have_info;
4134 		}
4135 
4136 		ret = 0;
4137 		goto out;
4138 	}
4139 
4140 	if (info->offset == offset) {
4141 		ret = 1;
4142 		goto out;
4143 	}
4144 
4145 	if (offset > info->offset && offset < info->offset + info->bytes)
4146 		ret = 1;
4147 out:
4148 	spin_unlock(&ctl->tree_lock);
4149 	return ret;
4150 }
4151 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */
4152