xref: /linux/fs/btrfs/file.c (revision 14b9f27886ce69c5f11445d107dd020f6fc5754b)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/pagemap.h>
21 #include <linux/highmem.h>
22 #include <linux/time.h>
23 #include <linux/init.h>
24 #include <linux/string.h>
25 #include <linux/backing-dev.h>
26 #include <linux/mpage.h>
27 #include <linux/falloc.h>
28 #include <linux/swap.h>
29 #include <linux/writeback.h>
30 #include <linux/statfs.h>
31 #include <linux/compat.h>
32 #include <linux/slab.h>
33 #include "ctree.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "btrfs_inode.h"
37 #include "ioctl.h"
38 #include "print-tree.h"
39 #include "tree-log.h"
40 #include "locking.h"
41 #include "compat.h"
42 
43 /*
44  * when auto defrag is enabled we
45  * queue up these defrag structs to remember which
46  * inodes need defragging passes
47  */
48 struct inode_defrag {
49 	struct rb_node rb_node;
50 	/* objectid */
51 	u64 ino;
52 	/*
53 	 * transid where the defrag was added, we search for
54 	 * extents newer than this
55 	 */
56 	u64 transid;
57 
58 	/* root objectid */
59 	u64 root;
60 
61 	/* last offset we were able to defrag */
62 	u64 last_offset;
63 
64 	/* if we've wrapped around back to zero once already */
65 	int cycled;
66 };
67 
68 /* pop a record for an inode into the defrag tree.  The lock
69  * must be held already
70  *
71  * If you're inserting a record for an older transid than an
72  * existing record, the transid already in the tree is lowered
73  *
74  * If an existing record is found the defrag item you
75  * pass in is freed
76  */
77 static int __btrfs_add_inode_defrag(struct inode *inode,
78 				    struct inode_defrag *defrag)
79 {
80 	struct btrfs_root *root = BTRFS_I(inode)->root;
81 	struct inode_defrag *entry;
82 	struct rb_node **p;
83 	struct rb_node *parent = NULL;
84 
85 	p = &root->fs_info->defrag_inodes.rb_node;
86 	while (*p) {
87 		parent = *p;
88 		entry = rb_entry(parent, struct inode_defrag, rb_node);
89 
90 		if (defrag->ino < entry->ino)
91 			p = &parent->rb_left;
92 		else if (defrag->ino > entry->ino)
93 			p = &parent->rb_right;
94 		else {
95 			/* if we're reinserting an entry for
96 			 * an old defrag run, make sure to
97 			 * lower the transid of our existing record
98 			 */
99 			if (defrag->transid < entry->transid)
100 				entry->transid = defrag->transid;
101 			if (defrag->last_offset > entry->last_offset)
102 				entry->last_offset = defrag->last_offset;
103 			goto exists;
104 		}
105 	}
106 	BTRFS_I(inode)->in_defrag = 1;
107 	rb_link_node(&defrag->rb_node, parent, p);
108 	rb_insert_color(&defrag->rb_node, &root->fs_info->defrag_inodes);
109 	return 0;
110 
111 exists:
112 	kfree(defrag);
113 	return 0;
114 
115 }
116 
117 /*
118  * insert a defrag record for this inode if auto defrag is
119  * enabled
120  */
121 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
122 			   struct inode *inode)
123 {
124 	struct btrfs_root *root = BTRFS_I(inode)->root;
125 	struct inode_defrag *defrag;
126 	int ret = 0;
127 	u64 transid;
128 
129 	if (!btrfs_test_opt(root, AUTO_DEFRAG))
130 		return 0;
131 
132 	if (btrfs_fs_closing(root->fs_info))
133 		return 0;
134 
135 	if (BTRFS_I(inode)->in_defrag)
136 		return 0;
137 
138 	if (trans)
139 		transid = trans->transid;
140 	else
141 		transid = BTRFS_I(inode)->root->last_trans;
142 
143 	defrag = kzalloc(sizeof(*defrag), GFP_NOFS);
144 	if (!defrag)
145 		return -ENOMEM;
146 
147 	defrag->ino = btrfs_ino(inode);
148 	defrag->transid = transid;
149 	defrag->root = root->root_key.objectid;
150 
151 	spin_lock(&root->fs_info->defrag_inodes_lock);
152 	if (!BTRFS_I(inode)->in_defrag)
153 		ret = __btrfs_add_inode_defrag(inode, defrag);
154 	spin_unlock(&root->fs_info->defrag_inodes_lock);
155 	return ret;
156 }
157 
158 /*
159  * must be called with the defrag_inodes lock held
160  */
161 struct inode_defrag *btrfs_find_defrag_inode(struct btrfs_fs_info *info, u64 ino,
162 					     struct rb_node **next)
163 {
164 	struct inode_defrag *entry = NULL;
165 	struct rb_node *p;
166 	struct rb_node *parent = NULL;
167 
168 	p = info->defrag_inodes.rb_node;
169 	while (p) {
170 		parent = p;
171 		entry = rb_entry(parent, struct inode_defrag, rb_node);
172 
173 		if (ino < entry->ino)
174 			p = parent->rb_left;
175 		else if (ino > entry->ino)
176 			p = parent->rb_right;
177 		else
178 			return entry;
179 	}
180 
181 	if (next) {
182 		while (parent && ino > entry->ino) {
183 			parent = rb_next(parent);
184 			entry = rb_entry(parent, struct inode_defrag, rb_node);
185 		}
186 		*next = parent;
187 	}
188 	return NULL;
189 }
190 
191 /*
192  * run through the list of inodes in the FS that need
193  * defragging
194  */
195 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
196 {
197 	struct inode_defrag *defrag;
198 	struct btrfs_root *inode_root;
199 	struct inode *inode;
200 	struct rb_node *n;
201 	struct btrfs_key key;
202 	struct btrfs_ioctl_defrag_range_args range;
203 	u64 first_ino = 0;
204 	int num_defrag;
205 	int defrag_batch = 1024;
206 
207 	memset(&range, 0, sizeof(range));
208 	range.len = (u64)-1;
209 
210 	atomic_inc(&fs_info->defrag_running);
211 	spin_lock(&fs_info->defrag_inodes_lock);
212 	while(1) {
213 		n = NULL;
214 
215 		/* find an inode to defrag */
216 		defrag = btrfs_find_defrag_inode(fs_info, first_ino, &n);
217 		if (!defrag) {
218 			if (n)
219 				defrag = rb_entry(n, struct inode_defrag, rb_node);
220 			else if (first_ino) {
221 				first_ino = 0;
222 				continue;
223 			} else {
224 				break;
225 			}
226 		}
227 
228 		/* remove it from the rbtree */
229 		first_ino = defrag->ino + 1;
230 		rb_erase(&defrag->rb_node, &fs_info->defrag_inodes);
231 
232 		if (btrfs_fs_closing(fs_info))
233 			goto next_free;
234 
235 		spin_unlock(&fs_info->defrag_inodes_lock);
236 
237 		/* get the inode */
238 		key.objectid = defrag->root;
239 		btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
240 		key.offset = (u64)-1;
241 		inode_root = btrfs_read_fs_root_no_name(fs_info, &key);
242 		if (IS_ERR(inode_root))
243 			goto next;
244 
245 		key.objectid = defrag->ino;
246 		btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
247 		key.offset = 0;
248 
249 		inode = btrfs_iget(fs_info->sb, &key, inode_root, NULL);
250 		if (IS_ERR(inode))
251 			goto next;
252 
253 		/* do a chunk of defrag */
254 		BTRFS_I(inode)->in_defrag = 0;
255 		range.start = defrag->last_offset;
256 		num_defrag = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
257 					       defrag_batch);
258 		/*
259 		 * if we filled the whole defrag batch, there
260 		 * must be more work to do.  Queue this defrag
261 		 * again
262 		 */
263 		if (num_defrag == defrag_batch) {
264 			defrag->last_offset = range.start;
265 			__btrfs_add_inode_defrag(inode, defrag);
266 			/*
267 			 * we don't want to kfree defrag, we added it back to
268 			 * the rbtree
269 			 */
270 			defrag = NULL;
271 		} else if (defrag->last_offset && !defrag->cycled) {
272 			/*
273 			 * we didn't fill our defrag batch, but
274 			 * we didn't start at zero.  Make sure we loop
275 			 * around to the start of the file.
276 			 */
277 			defrag->last_offset = 0;
278 			defrag->cycled = 1;
279 			__btrfs_add_inode_defrag(inode, defrag);
280 			defrag = NULL;
281 		}
282 
283 		iput(inode);
284 next:
285 		spin_lock(&fs_info->defrag_inodes_lock);
286 next_free:
287 		kfree(defrag);
288 	}
289 	spin_unlock(&fs_info->defrag_inodes_lock);
290 
291 	atomic_dec(&fs_info->defrag_running);
292 
293 	/*
294 	 * during unmount, we use the transaction_wait queue to
295 	 * wait for the defragger to stop
296 	 */
297 	wake_up(&fs_info->transaction_wait);
298 	return 0;
299 }
300 
301 /* simple helper to fault in pages and copy.  This should go away
302  * and be replaced with calls into generic code.
303  */
304 static noinline int btrfs_copy_from_user(loff_t pos, int num_pages,
305 					 size_t write_bytes,
306 					 struct page **prepared_pages,
307 					 struct iov_iter *i)
308 {
309 	size_t copied = 0;
310 	size_t total_copied = 0;
311 	int pg = 0;
312 	int offset = pos & (PAGE_CACHE_SIZE - 1);
313 
314 	while (write_bytes > 0) {
315 		size_t count = min_t(size_t,
316 				     PAGE_CACHE_SIZE - offset, write_bytes);
317 		struct page *page = prepared_pages[pg];
318 		/*
319 		 * Copy data from userspace to the current page
320 		 *
321 		 * Disable pagefault to avoid recursive lock since
322 		 * the pages are already locked
323 		 */
324 		pagefault_disable();
325 		copied = iov_iter_copy_from_user_atomic(page, i, offset, count);
326 		pagefault_enable();
327 
328 		/* Flush processor's dcache for this page */
329 		flush_dcache_page(page);
330 
331 		/*
332 		 * if we get a partial write, we can end up with
333 		 * partially up to date pages.  These add
334 		 * a lot of complexity, so make sure they don't
335 		 * happen by forcing this copy to be retried.
336 		 *
337 		 * The rest of the btrfs_file_write code will fall
338 		 * back to page at a time copies after we return 0.
339 		 */
340 		if (!PageUptodate(page) && copied < count)
341 			copied = 0;
342 
343 		iov_iter_advance(i, copied);
344 		write_bytes -= copied;
345 		total_copied += copied;
346 
347 		/* Return to btrfs_file_aio_write to fault page */
348 		if (unlikely(copied == 0))
349 			break;
350 
351 		if (unlikely(copied < PAGE_CACHE_SIZE - offset)) {
352 			offset += copied;
353 		} else {
354 			pg++;
355 			offset = 0;
356 		}
357 	}
358 	return total_copied;
359 }
360 
361 /*
362  * unlocks pages after btrfs_file_write is done with them
363  */
364 void btrfs_drop_pages(struct page **pages, size_t num_pages)
365 {
366 	size_t i;
367 	for (i = 0; i < num_pages; i++) {
368 		/* page checked is some magic around finding pages that
369 		 * have been modified without going through btrfs_set_page_dirty
370 		 * clear it here
371 		 */
372 		ClearPageChecked(pages[i]);
373 		unlock_page(pages[i]);
374 		mark_page_accessed(pages[i]);
375 		page_cache_release(pages[i]);
376 	}
377 }
378 
379 /*
380  * after copy_from_user, pages need to be dirtied and we need to make
381  * sure holes are created between the current EOF and the start of
382  * any next extents (if required).
383  *
384  * this also makes the decision about creating an inline extent vs
385  * doing real data extents, marking pages dirty and delalloc as required.
386  */
387 int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
388 		      struct page **pages, size_t num_pages,
389 		      loff_t pos, size_t write_bytes,
390 		      struct extent_state **cached)
391 {
392 	int err = 0;
393 	int i;
394 	u64 num_bytes;
395 	u64 start_pos;
396 	u64 end_of_last_block;
397 	u64 end_pos = pos + write_bytes;
398 	loff_t isize = i_size_read(inode);
399 
400 	start_pos = pos & ~((u64)root->sectorsize - 1);
401 	num_bytes = (write_bytes + pos - start_pos +
402 		    root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
403 
404 	end_of_last_block = start_pos + num_bytes - 1;
405 	err = btrfs_set_extent_delalloc(inode, start_pos, end_of_last_block,
406 					cached);
407 	if (err)
408 		return err;
409 
410 	for (i = 0; i < num_pages; i++) {
411 		struct page *p = pages[i];
412 		SetPageUptodate(p);
413 		ClearPageChecked(p);
414 		set_page_dirty(p);
415 	}
416 
417 	/*
418 	 * we've only changed i_size in ram, and we haven't updated
419 	 * the disk i_size.  There is no need to log the inode
420 	 * at this time.
421 	 */
422 	if (end_pos > isize)
423 		i_size_write(inode, end_pos);
424 	return 0;
425 }
426 
427 /*
428  * this drops all the extents in the cache that intersect the range
429  * [start, end].  Existing extents are split as required.
430  */
431 int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
432 			    int skip_pinned)
433 {
434 	struct extent_map *em;
435 	struct extent_map *split = NULL;
436 	struct extent_map *split2 = NULL;
437 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
438 	u64 len = end - start + 1;
439 	int ret;
440 	int testend = 1;
441 	unsigned long flags;
442 	int compressed = 0;
443 
444 	WARN_ON(end < start);
445 	if (end == (u64)-1) {
446 		len = (u64)-1;
447 		testend = 0;
448 	}
449 	while (1) {
450 		if (!split)
451 			split = alloc_extent_map();
452 		if (!split2)
453 			split2 = alloc_extent_map();
454 		BUG_ON(!split || !split2);
455 
456 		write_lock(&em_tree->lock);
457 		em = lookup_extent_mapping(em_tree, start, len);
458 		if (!em) {
459 			write_unlock(&em_tree->lock);
460 			break;
461 		}
462 		flags = em->flags;
463 		if (skip_pinned && test_bit(EXTENT_FLAG_PINNED, &em->flags)) {
464 			if (testend && em->start + em->len >= start + len) {
465 				free_extent_map(em);
466 				write_unlock(&em_tree->lock);
467 				break;
468 			}
469 			start = em->start + em->len;
470 			if (testend)
471 				len = start + len - (em->start + em->len);
472 			free_extent_map(em);
473 			write_unlock(&em_tree->lock);
474 			continue;
475 		}
476 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
477 		clear_bit(EXTENT_FLAG_PINNED, &em->flags);
478 		remove_extent_mapping(em_tree, em);
479 
480 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
481 		    em->start < start) {
482 			split->start = em->start;
483 			split->len = start - em->start;
484 			split->orig_start = em->orig_start;
485 			split->block_start = em->block_start;
486 
487 			if (compressed)
488 				split->block_len = em->block_len;
489 			else
490 				split->block_len = split->len;
491 
492 			split->bdev = em->bdev;
493 			split->flags = flags;
494 			split->compress_type = em->compress_type;
495 			ret = add_extent_mapping(em_tree, split);
496 			BUG_ON(ret);
497 			free_extent_map(split);
498 			split = split2;
499 			split2 = NULL;
500 		}
501 		if (em->block_start < EXTENT_MAP_LAST_BYTE &&
502 		    testend && em->start + em->len > start + len) {
503 			u64 diff = start + len - em->start;
504 
505 			split->start = start + len;
506 			split->len = em->start + em->len - (start + len);
507 			split->bdev = em->bdev;
508 			split->flags = flags;
509 			split->compress_type = em->compress_type;
510 
511 			if (compressed) {
512 				split->block_len = em->block_len;
513 				split->block_start = em->block_start;
514 				split->orig_start = em->orig_start;
515 			} else {
516 				split->block_len = split->len;
517 				split->block_start = em->block_start + diff;
518 				split->orig_start = split->start;
519 			}
520 
521 			ret = add_extent_mapping(em_tree, split);
522 			BUG_ON(ret);
523 			free_extent_map(split);
524 			split = NULL;
525 		}
526 		write_unlock(&em_tree->lock);
527 
528 		/* once for us */
529 		free_extent_map(em);
530 		/* once for the tree*/
531 		free_extent_map(em);
532 	}
533 	if (split)
534 		free_extent_map(split);
535 	if (split2)
536 		free_extent_map(split2);
537 	return 0;
538 }
539 
540 /*
541  * this is very complex, but the basic idea is to drop all extents
542  * in the range start - end.  hint_block is filled in with a block number
543  * that would be a good hint to the block allocator for this file.
544  *
545  * If an extent intersects the range but is not entirely inside the range
546  * it is either truncated or split.  Anything entirely inside the range
547  * is deleted from the tree.
548  */
549 int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
550 		       u64 start, u64 end, u64 *hint_byte, int drop_cache)
551 {
552 	struct btrfs_root *root = BTRFS_I(inode)->root;
553 	struct extent_buffer *leaf;
554 	struct btrfs_file_extent_item *fi;
555 	struct btrfs_path *path;
556 	struct btrfs_key key;
557 	struct btrfs_key new_key;
558 	u64 ino = btrfs_ino(inode);
559 	u64 search_start = start;
560 	u64 disk_bytenr = 0;
561 	u64 num_bytes = 0;
562 	u64 extent_offset = 0;
563 	u64 extent_end = 0;
564 	int del_nr = 0;
565 	int del_slot = 0;
566 	int extent_type;
567 	int recow;
568 	int ret;
569 
570 	if (drop_cache)
571 		btrfs_drop_extent_cache(inode, start, end - 1, 0);
572 
573 	path = btrfs_alloc_path();
574 	if (!path)
575 		return -ENOMEM;
576 
577 	while (1) {
578 		recow = 0;
579 		ret = btrfs_lookup_file_extent(trans, root, path, ino,
580 					       search_start, -1);
581 		if (ret < 0)
582 			break;
583 		if (ret > 0 && path->slots[0] > 0 && search_start == start) {
584 			leaf = path->nodes[0];
585 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0] - 1);
586 			if (key.objectid == ino &&
587 			    key.type == BTRFS_EXTENT_DATA_KEY)
588 				path->slots[0]--;
589 		}
590 		ret = 0;
591 next_slot:
592 		leaf = path->nodes[0];
593 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
594 			BUG_ON(del_nr > 0);
595 			ret = btrfs_next_leaf(root, path);
596 			if (ret < 0)
597 				break;
598 			if (ret > 0) {
599 				ret = 0;
600 				break;
601 			}
602 			leaf = path->nodes[0];
603 			recow = 1;
604 		}
605 
606 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
607 		if (key.objectid > ino ||
608 		    key.type > BTRFS_EXTENT_DATA_KEY || key.offset >= end)
609 			break;
610 
611 		fi = btrfs_item_ptr(leaf, path->slots[0],
612 				    struct btrfs_file_extent_item);
613 		extent_type = btrfs_file_extent_type(leaf, fi);
614 
615 		if (extent_type == BTRFS_FILE_EXTENT_REG ||
616 		    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
617 			disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
618 			num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
619 			extent_offset = btrfs_file_extent_offset(leaf, fi);
620 			extent_end = key.offset +
621 				btrfs_file_extent_num_bytes(leaf, fi);
622 		} else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
623 			extent_end = key.offset +
624 				btrfs_file_extent_inline_len(leaf, fi);
625 		} else {
626 			WARN_ON(1);
627 			extent_end = search_start;
628 		}
629 
630 		if (extent_end <= search_start) {
631 			path->slots[0]++;
632 			goto next_slot;
633 		}
634 
635 		search_start = max(key.offset, start);
636 		if (recow) {
637 			btrfs_release_path(path);
638 			continue;
639 		}
640 
641 		/*
642 		 *     | - range to drop - |
643 		 *  | -------- extent -------- |
644 		 */
645 		if (start > key.offset && end < extent_end) {
646 			BUG_ON(del_nr > 0);
647 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
648 
649 			memcpy(&new_key, &key, sizeof(new_key));
650 			new_key.offset = start;
651 			ret = btrfs_duplicate_item(trans, root, path,
652 						   &new_key);
653 			if (ret == -EAGAIN) {
654 				btrfs_release_path(path);
655 				continue;
656 			}
657 			if (ret < 0)
658 				break;
659 
660 			leaf = path->nodes[0];
661 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
662 					    struct btrfs_file_extent_item);
663 			btrfs_set_file_extent_num_bytes(leaf, fi,
664 							start - key.offset);
665 
666 			fi = btrfs_item_ptr(leaf, path->slots[0],
667 					    struct btrfs_file_extent_item);
668 
669 			extent_offset += start - key.offset;
670 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
671 			btrfs_set_file_extent_num_bytes(leaf, fi,
672 							extent_end - start);
673 			btrfs_mark_buffer_dirty(leaf);
674 
675 			if (disk_bytenr > 0) {
676 				ret = btrfs_inc_extent_ref(trans, root,
677 						disk_bytenr, num_bytes, 0,
678 						root->root_key.objectid,
679 						new_key.objectid,
680 						start - extent_offset);
681 				BUG_ON(ret);
682 				*hint_byte = disk_bytenr;
683 			}
684 			key.offset = start;
685 		}
686 		/*
687 		 *  | ---- range to drop ----- |
688 		 *      | -------- extent -------- |
689 		 */
690 		if (start <= key.offset && end < extent_end) {
691 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
692 
693 			memcpy(&new_key, &key, sizeof(new_key));
694 			new_key.offset = end;
695 			btrfs_set_item_key_safe(trans, root, path, &new_key);
696 
697 			extent_offset += end - key.offset;
698 			btrfs_set_file_extent_offset(leaf, fi, extent_offset);
699 			btrfs_set_file_extent_num_bytes(leaf, fi,
700 							extent_end - end);
701 			btrfs_mark_buffer_dirty(leaf);
702 			if (disk_bytenr > 0) {
703 				inode_sub_bytes(inode, end - key.offset);
704 				*hint_byte = disk_bytenr;
705 			}
706 			break;
707 		}
708 
709 		search_start = extent_end;
710 		/*
711 		 *       | ---- range to drop ----- |
712 		 *  | -------- extent -------- |
713 		 */
714 		if (start > key.offset && end >= extent_end) {
715 			BUG_ON(del_nr > 0);
716 			BUG_ON(extent_type == BTRFS_FILE_EXTENT_INLINE);
717 
718 			btrfs_set_file_extent_num_bytes(leaf, fi,
719 							start - key.offset);
720 			btrfs_mark_buffer_dirty(leaf);
721 			if (disk_bytenr > 0) {
722 				inode_sub_bytes(inode, extent_end - start);
723 				*hint_byte = disk_bytenr;
724 			}
725 			if (end == extent_end)
726 				break;
727 
728 			path->slots[0]++;
729 			goto next_slot;
730 		}
731 
732 		/*
733 		 *  | ---- range to drop ----- |
734 		 *    | ------ extent ------ |
735 		 */
736 		if (start <= key.offset && end >= extent_end) {
737 			if (del_nr == 0) {
738 				del_slot = path->slots[0];
739 				del_nr = 1;
740 			} else {
741 				BUG_ON(del_slot + del_nr != path->slots[0]);
742 				del_nr++;
743 			}
744 
745 			if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
746 				inode_sub_bytes(inode,
747 						extent_end - key.offset);
748 				extent_end = ALIGN(extent_end,
749 						   root->sectorsize);
750 			} else if (disk_bytenr > 0) {
751 				ret = btrfs_free_extent(trans, root,
752 						disk_bytenr, num_bytes, 0,
753 						root->root_key.objectid,
754 						key.objectid, key.offset -
755 						extent_offset);
756 				BUG_ON(ret);
757 				inode_sub_bytes(inode,
758 						extent_end - key.offset);
759 				*hint_byte = disk_bytenr;
760 			}
761 
762 			if (end == extent_end)
763 				break;
764 
765 			if (path->slots[0] + 1 < btrfs_header_nritems(leaf)) {
766 				path->slots[0]++;
767 				goto next_slot;
768 			}
769 
770 			ret = btrfs_del_items(trans, root, path, del_slot,
771 					      del_nr);
772 			BUG_ON(ret);
773 
774 			del_nr = 0;
775 			del_slot = 0;
776 
777 			btrfs_release_path(path);
778 			continue;
779 		}
780 
781 		BUG_ON(1);
782 	}
783 
784 	if (del_nr > 0) {
785 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
786 		BUG_ON(ret);
787 	}
788 
789 	btrfs_free_path(path);
790 	return ret;
791 }
792 
793 static int extent_mergeable(struct extent_buffer *leaf, int slot,
794 			    u64 objectid, u64 bytenr, u64 orig_offset,
795 			    u64 *start, u64 *end)
796 {
797 	struct btrfs_file_extent_item *fi;
798 	struct btrfs_key key;
799 	u64 extent_end;
800 
801 	if (slot < 0 || slot >= btrfs_header_nritems(leaf))
802 		return 0;
803 
804 	btrfs_item_key_to_cpu(leaf, &key, slot);
805 	if (key.objectid != objectid || key.type != BTRFS_EXTENT_DATA_KEY)
806 		return 0;
807 
808 	fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
809 	if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG ||
810 	    btrfs_file_extent_disk_bytenr(leaf, fi) != bytenr ||
811 	    btrfs_file_extent_offset(leaf, fi) != key.offset - orig_offset ||
812 	    btrfs_file_extent_compression(leaf, fi) ||
813 	    btrfs_file_extent_encryption(leaf, fi) ||
814 	    btrfs_file_extent_other_encoding(leaf, fi))
815 		return 0;
816 
817 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
818 	if ((*start && *start != key.offset) || (*end && *end != extent_end))
819 		return 0;
820 
821 	*start = key.offset;
822 	*end = extent_end;
823 	return 1;
824 }
825 
826 /*
827  * Mark extent in the range start - end as written.
828  *
829  * This changes extent type from 'pre-allocated' to 'regular'. If only
830  * part of extent is marked as written, the extent will be split into
831  * two or three.
832  */
833 int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
834 			      struct inode *inode, u64 start, u64 end)
835 {
836 	struct btrfs_root *root = BTRFS_I(inode)->root;
837 	struct extent_buffer *leaf;
838 	struct btrfs_path *path;
839 	struct btrfs_file_extent_item *fi;
840 	struct btrfs_key key;
841 	struct btrfs_key new_key;
842 	u64 bytenr;
843 	u64 num_bytes;
844 	u64 extent_end;
845 	u64 orig_offset;
846 	u64 other_start;
847 	u64 other_end;
848 	u64 split;
849 	int del_nr = 0;
850 	int del_slot = 0;
851 	int recow;
852 	int ret;
853 	u64 ino = btrfs_ino(inode);
854 
855 	btrfs_drop_extent_cache(inode, start, end - 1, 0);
856 
857 	path = btrfs_alloc_path();
858 	BUG_ON(!path);
859 again:
860 	recow = 0;
861 	split = start;
862 	key.objectid = ino;
863 	key.type = BTRFS_EXTENT_DATA_KEY;
864 	key.offset = split;
865 
866 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
867 	if (ret < 0)
868 		goto out;
869 	if (ret > 0 && path->slots[0] > 0)
870 		path->slots[0]--;
871 
872 	leaf = path->nodes[0];
873 	btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
874 	BUG_ON(key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY);
875 	fi = btrfs_item_ptr(leaf, path->slots[0],
876 			    struct btrfs_file_extent_item);
877 	BUG_ON(btrfs_file_extent_type(leaf, fi) !=
878 	       BTRFS_FILE_EXTENT_PREALLOC);
879 	extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
880 	BUG_ON(key.offset > start || extent_end < end);
881 
882 	bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
883 	num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
884 	orig_offset = key.offset - btrfs_file_extent_offset(leaf, fi);
885 	memcpy(&new_key, &key, sizeof(new_key));
886 
887 	if (start == key.offset && end < extent_end) {
888 		other_start = 0;
889 		other_end = start;
890 		if (extent_mergeable(leaf, path->slots[0] - 1,
891 				     ino, bytenr, orig_offset,
892 				     &other_start, &other_end)) {
893 			new_key.offset = end;
894 			btrfs_set_item_key_safe(trans, root, path, &new_key);
895 			fi = btrfs_item_ptr(leaf, path->slots[0],
896 					    struct btrfs_file_extent_item);
897 			btrfs_set_file_extent_num_bytes(leaf, fi,
898 							extent_end - end);
899 			btrfs_set_file_extent_offset(leaf, fi,
900 						     end - orig_offset);
901 			fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
902 					    struct btrfs_file_extent_item);
903 			btrfs_set_file_extent_num_bytes(leaf, fi,
904 							end - other_start);
905 			btrfs_mark_buffer_dirty(leaf);
906 			goto out;
907 		}
908 	}
909 
910 	if (start > key.offset && end == extent_end) {
911 		other_start = end;
912 		other_end = 0;
913 		if (extent_mergeable(leaf, path->slots[0] + 1,
914 				     ino, bytenr, orig_offset,
915 				     &other_start, &other_end)) {
916 			fi = btrfs_item_ptr(leaf, path->slots[0],
917 					    struct btrfs_file_extent_item);
918 			btrfs_set_file_extent_num_bytes(leaf, fi,
919 							start - key.offset);
920 			path->slots[0]++;
921 			new_key.offset = start;
922 			btrfs_set_item_key_safe(trans, root, path, &new_key);
923 
924 			fi = btrfs_item_ptr(leaf, path->slots[0],
925 					    struct btrfs_file_extent_item);
926 			btrfs_set_file_extent_num_bytes(leaf, fi,
927 							other_end - start);
928 			btrfs_set_file_extent_offset(leaf, fi,
929 						     start - orig_offset);
930 			btrfs_mark_buffer_dirty(leaf);
931 			goto out;
932 		}
933 	}
934 
935 	while (start > key.offset || end < extent_end) {
936 		if (key.offset == start)
937 			split = end;
938 
939 		new_key.offset = split;
940 		ret = btrfs_duplicate_item(trans, root, path, &new_key);
941 		if (ret == -EAGAIN) {
942 			btrfs_release_path(path);
943 			goto again;
944 		}
945 		BUG_ON(ret < 0);
946 
947 		leaf = path->nodes[0];
948 		fi = btrfs_item_ptr(leaf, path->slots[0] - 1,
949 				    struct btrfs_file_extent_item);
950 		btrfs_set_file_extent_num_bytes(leaf, fi,
951 						split - key.offset);
952 
953 		fi = btrfs_item_ptr(leaf, path->slots[0],
954 				    struct btrfs_file_extent_item);
955 
956 		btrfs_set_file_extent_offset(leaf, fi, split - orig_offset);
957 		btrfs_set_file_extent_num_bytes(leaf, fi,
958 						extent_end - split);
959 		btrfs_mark_buffer_dirty(leaf);
960 
961 		ret = btrfs_inc_extent_ref(trans, root, bytenr, num_bytes, 0,
962 					   root->root_key.objectid,
963 					   ino, orig_offset);
964 		BUG_ON(ret);
965 
966 		if (split == start) {
967 			key.offset = start;
968 		} else {
969 			BUG_ON(start != key.offset);
970 			path->slots[0]--;
971 			extent_end = end;
972 		}
973 		recow = 1;
974 	}
975 
976 	other_start = end;
977 	other_end = 0;
978 	if (extent_mergeable(leaf, path->slots[0] + 1,
979 			     ino, bytenr, orig_offset,
980 			     &other_start, &other_end)) {
981 		if (recow) {
982 			btrfs_release_path(path);
983 			goto again;
984 		}
985 		extent_end = other_end;
986 		del_slot = path->slots[0] + 1;
987 		del_nr++;
988 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
989 					0, root->root_key.objectid,
990 					ino, orig_offset);
991 		BUG_ON(ret);
992 	}
993 	other_start = 0;
994 	other_end = start;
995 	if (extent_mergeable(leaf, path->slots[0] - 1,
996 			     ino, bytenr, orig_offset,
997 			     &other_start, &other_end)) {
998 		if (recow) {
999 			btrfs_release_path(path);
1000 			goto again;
1001 		}
1002 		key.offset = other_start;
1003 		del_slot = path->slots[0];
1004 		del_nr++;
1005 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1006 					0, root->root_key.objectid,
1007 					ino, orig_offset);
1008 		BUG_ON(ret);
1009 	}
1010 	if (del_nr == 0) {
1011 		fi = btrfs_item_ptr(leaf, path->slots[0],
1012 			   struct btrfs_file_extent_item);
1013 		btrfs_set_file_extent_type(leaf, fi,
1014 					   BTRFS_FILE_EXTENT_REG);
1015 		btrfs_mark_buffer_dirty(leaf);
1016 	} else {
1017 		fi = btrfs_item_ptr(leaf, del_slot - 1,
1018 			   struct btrfs_file_extent_item);
1019 		btrfs_set_file_extent_type(leaf, fi,
1020 					   BTRFS_FILE_EXTENT_REG);
1021 		btrfs_set_file_extent_num_bytes(leaf, fi,
1022 						extent_end - key.offset);
1023 		btrfs_mark_buffer_dirty(leaf);
1024 
1025 		ret = btrfs_del_items(trans, root, path, del_slot, del_nr);
1026 		BUG_ON(ret);
1027 	}
1028 out:
1029 	btrfs_free_path(path);
1030 	return 0;
1031 }
1032 
1033 /*
1034  * on error we return an unlocked page and the error value
1035  * on success we return a locked page and 0
1036  */
1037 static int prepare_uptodate_page(struct page *page, u64 pos)
1038 {
1039 	int ret = 0;
1040 
1041 	if ((pos & (PAGE_CACHE_SIZE - 1)) && !PageUptodate(page)) {
1042 		ret = btrfs_readpage(NULL, page);
1043 		if (ret)
1044 			return ret;
1045 		lock_page(page);
1046 		if (!PageUptodate(page)) {
1047 			unlock_page(page);
1048 			return -EIO;
1049 		}
1050 	}
1051 	return 0;
1052 }
1053 
1054 /*
1055  * this gets pages into the page cache and locks them down, it also properly
1056  * waits for data=ordered extents to finish before allowing the pages to be
1057  * modified.
1058  */
1059 static noinline int prepare_pages(struct btrfs_root *root, struct file *file,
1060 			 struct page **pages, size_t num_pages,
1061 			 loff_t pos, unsigned long first_index,
1062 			 unsigned long last_index, size_t write_bytes)
1063 {
1064 	struct extent_state *cached_state = NULL;
1065 	int i;
1066 	unsigned long index = pos >> PAGE_CACHE_SHIFT;
1067 	struct inode *inode = fdentry(file)->d_inode;
1068 	int err = 0;
1069 	int faili = 0;
1070 	u64 start_pos;
1071 	u64 last_pos;
1072 
1073 	start_pos = pos & ~((u64)root->sectorsize - 1);
1074 	last_pos = ((u64)index + num_pages) << PAGE_CACHE_SHIFT;
1075 
1076 	if (start_pos > inode->i_size) {
1077 		err = btrfs_cont_expand(inode, i_size_read(inode), start_pos);
1078 		if (err)
1079 			return err;
1080 	}
1081 
1082 again:
1083 	for (i = 0; i < num_pages; i++) {
1084 		pages[i] = grab_cache_page(inode->i_mapping, index + i);
1085 		if (!pages[i]) {
1086 			faili = i - 1;
1087 			err = -ENOMEM;
1088 			goto fail;
1089 		}
1090 
1091 		if (i == 0)
1092 			err = prepare_uptodate_page(pages[i], pos);
1093 		if (i == num_pages - 1)
1094 			err = prepare_uptodate_page(pages[i],
1095 						    pos + write_bytes);
1096 		if (err) {
1097 			page_cache_release(pages[i]);
1098 			faili = i - 1;
1099 			goto fail;
1100 		}
1101 		wait_on_page_writeback(pages[i]);
1102 	}
1103 	err = 0;
1104 	if (start_pos < inode->i_size) {
1105 		struct btrfs_ordered_extent *ordered;
1106 		lock_extent_bits(&BTRFS_I(inode)->io_tree,
1107 				 start_pos, last_pos - 1, 0, &cached_state,
1108 				 GFP_NOFS);
1109 		ordered = btrfs_lookup_first_ordered_extent(inode,
1110 							    last_pos - 1);
1111 		if (ordered &&
1112 		    ordered->file_offset + ordered->len > start_pos &&
1113 		    ordered->file_offset < last_pos) {
1114 			btrfs_put_ordered_extent(ordered);
1115 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1116 					     start_pos, last_pos - 1,
1117 					     &cached_state, GFP_NOFS);
1118 			for (i = 0; i < num_pages; i++) {
1119 				unlock_page(pages[i]);
1120 				page_cache_release(pages[i]);
1121 			}
1122 			btrfs_wait_ordered_range(inode, start_pos,
1123 						 last_pos - start_pos);
1124 			goto again;
1125 		}
1126 		if (ordered)
1127 			btrfs_put_ordered_extent(ordered);
1128 
1129 		clear_extent_bit(&BTRFS_I(inode)->io_tree, start_pos,
1130 				  last_pos - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1131 				  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
1132 				  GFP_NOFS);
1133 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1134 				     start_pos, last_pos - 1, &cached_state,
1135 				     GFP_NOFS);
1136 	}
1137 	for (i = 0; i < num_pages; i++) {
1138 		clear_page_dirty_for_io(pages[i]);
1139 		set_page_extent_mapped(pages[i]);
1140 		WARN_ON(!PageLocked(pages[i]));
1141 	}
1142 	return 0;
1143 fail:
1144 	while (faili >= 0) {
1145 		unlock_page(pages[faili]);
1146 		page_cache_release(pages[faili]);
1147 		faili--;
1148 	}
1149 	return err;
1150 
1151 }
1152 
1153 static noinline ssize_t __btrfs_buffered_write(struct file *file,
1154 					       struct iov_iter *i,
1155 					       loff_t pos)
1156 {
1157 	struct inode *inode = fdentry(file)->d_inode;
1158 	struct btrfs_root *root = BTRFS_I(inode)->root;
1159 	struct page **pages = NULL;
1160 	unsigned long first_index;
1161 	unsigned long last_index;
1162 	size_t num_written = 0;
1163 	int nrptrs;
1164 	int ret = 0;
1165 
1166 	nrptrs = min((iov_iter_count(i) + PAGE_CACHE_SIZE - 1) /
1167 		     PAGE_CACHE_SIZE, PAGE_CACHE_SIZE /
1168 		     (sizeof(struct page *)));
1169 	pages = kmalloc(nrptrs * sizeof(struct page *), GFP_KERNEL);
1170 	if (!pages)
1171 		return -ENOMEM;
1172 
1173 	first_index = pos >> PAGE_CACHE_SHIFT;
1174 	last_index = (pos + iov_iter_count(i)) >> PAGE_CACHE_SHIFT;
1175 
1176 	while (iov_iter_count(i) > 0) {
1177 		size_t offset = pos & (PAGE_CACHE_SIZE - 1);
1178 		size_t write_bytes = min(iov_iter_count(i),
1179 					 nrptrs * (size_t)PAGE_CACHE_SIZE -
1180 					 offset);
1181 		size_t num_pages = (write_bytes + offset +
1182 				    PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1183 		size_t dirty_pages;
1184 		size_t copied;
1185 
1186 		WARN_ON(num_pages > nrptrs);
1187 
1188 		/*
1189 		 * Fault pages before locking them in prepare_pages
1190 		 * to avoid recursive lock
1191 		 */
1192 		if (unlikely(iov_iter_fault_in_readable(i, write_bytes))) {
1193 			ret = -EFAULT;
1194 			break;
1195 		}
1196 
1197 		ret = btrfs_delalloc_reserve_space(inode,
1198 					num_pages << PAGE_CACHE_SHIFT);
1199 		if (ret)
1200 			break;
1201 
1202 		/*
1203 		 * This is going to setup the pages array with the number of
1204 		 * pages we want, so we don't really need to worry about the
1205 		 * contents of pages from loop to loop
1206 		 */
1207 		ret = prepare_pages(root, file, pages, num_pages,
1208 				    pos, first_index, last_index,
1209 				    write_bytes);
1210 		if (ret) {
1211 			btrfs_delalloc_release_space(inode,
1212 					num_pages << PAGE_CACHE_SHIFT);
1213 			break;
1214 		}
1215 
1216 		copied = btrfs_copy_from_user(pos, num_pages,
1217 					   write_bytes, pages, i);
1218 
1219 		/*
1220 		 * if we have trouble faulting in the pages, fall
1221 		 * back to one page at a time
1222 		 */
1223 		if (copied < write_bytes)
1224 			nrptrs = 1;
1225 
1226 		if (copied == 0)
1227 			dirty_pages = 0;
1228 		else
1229 			dirty_pages = (copied + offset +
1230 				       PAGE_CACHE_SIZE - 1) >>
1231 				       PAGE_CACHE_SHIFT;
1232 
1233 		/*
1234 		 * If we had a short copy we need to release the excess delaloc
1235 		 * bytes we reserved.  We need to increment outstanding_extents
1236 		 * because btrfs_delalloc_release_space will decrement it, but
1237 		 * we still have an outstanding extent for the chunk we actually
1238 		 * managed to copy.
1239 		 */
1240 		if (num_pages > dirty_pages) {
1241 			if (copied > 0)
1242 				atomic_inc(
1243 					&BTRFS_I(inode)->outstanding_extents);
1244 			btrfs_delalloc_release_space(inode,
1245 					(num_pages - dirty_pages) <<
1246 					PAGE_CACHE_SHIFT);
1247 		}
1248 
1249 		if (copied > 0) {
1250 			ret = btrfs_dirty_pages(root, inode, pages,
1251 						dirty_pages, pos, copied,
1252 						NULL);
1253 			if (ret) {
1254 				btrfs_delalloc_release_space(inode,
1255 					dirty_pages << PAGE_CACHE_SHIFT);
1256 				btrfs_drop_pages(pages, num_pages);
1257 				break;
1258 			}
1259 		}
1260 
1261 		btrfs_drop_pages(pages, num_pages);
1262 
1263 		cond_resched();
1264 
1265 		balance_dirty_pages_ratelimited_nr(inode->i_mapping,
1266 						   dirty_pages);
1267 		if (dirty_pages < (root->leafsize >> PAGE_CACHE_SHIFT) + 1)
1268 			btrfs_btree_balance_dirty(root, 1);
1269 		btrfs_throttle(root);
1270 
1271 		pos += copied;
1272 		num_written += copied;
1273 	}
1274 
1275 	kfree(pages);
1276 
1277 	return num_written ? num_written : ret;
1278 }
1279 
1280 static ssize_t __btrfs_direct_write(struct kiocb *iocb,
1281 				    const struct iovec *iov,
1282 				    unsigned long nr_segs, loff_t pos,
1283 				    loff_t *ppos, size_t count, size_t ocount)
1284 {
1285 	struct file *file = iocb->ki_filp;
1286 	struct inode *inode = fdentry(file)->d_inode;
1287 	struct iov_iter i;
1288 	ssize_t written;
1289 	ssize_t written_buffered;
1290 	loff_t endbyte;
1291 	int err;
1292 
1293 	written = generic_file_direct_write(iocb, iov, &nr_segs, pos, ppos,
1294 					    count, ocount);
1295 
1296 	/*
1297 	 * the generic O_DIRECT will update in-memory i_size after the
1298 	 * DIOs are done.  But our endio handlers that update the on
1299 	 * disk i_size never update past the in memory i_size.  So we
1300 	 * need one more update here to catch any additions to the
1301 	 * file
1302 	 */
1303 	if (inode->i_size != BTRFS_I(inode)->disk_i_size) {
1304 		btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
1305 		mark_inode_dirty(inode);
1306 	}
1307 
1308 	if (written < 0 || written == count)
1309 		return written;
1310 
1311 	pos += written;
1312 	count -= written;
1313 	iov_iter_init(&i, iov, nr_segs, count, written);
1314 	written_buffered = __btrfs_buffered_write(file, &i, pos);
1315 	if (written_buffered < 0) {
1316 		err = written_buffered;
1317 		goto out;
1318 	}
1319 	endbyte = pos + written_buffered - 1;
1320 	err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
1321 	if (err)
1322 		goto out;
1323 	written += written_buffered;
1324 	*ppos = pos + written_buffered;
1325 	invalidate_mapping_pages(file->f_mapping, pos >> PAGE_CACHE_SHIFT,
1326 				 endbyte >> PAGE_CACHE_SHIFT);
1327 out:
1328 	return written ? written : err;
1329 }
1330 
1331 static ssize_t btrfs_file_aio_write(struct kiocb *iocb,
1332 				    const struct iovec *iov,
1333 				    unsigned long nr_segs, loff_t pos)
1334 {
1335 	struct file *file = iocb->ki_filp;
1336 	struct inode *inode = fdentry(file)->d_inode;
1337 	struct btrfs_root *root = BTRFS_I(inode)->root;
1338 	loff_t *ppos = &iocb->ki_pos;
1339 	ssize_t num_written = 0;
1340 	ssize_t err = 0;
1341 	size_t count, ocount;
1342 
1343 	vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
1344 
1345 	mutex_lock(&inode->i_mutex);
1346 
1347 	err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
1348 	if (err) {
1349 		mutex_unlock(&inode->i_mutex);
1350 		goto out;
1351 	}
1352 	count = ocount;
1353 
1354 	current->backing_dev_info = inode->i_mapping->backing_dev_info;
1355 	err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
1356 	if (err) {
1357 		mutex_unlock(&inode->i_mutex);
1358 		goto out;
1359 	}
1360 
1361 	if (count == 0) {
1362 		mutex_unlock(&inode->i_mutex);
1363 		goto out;
1364 	}
1365 
1366 	err = file_remove_suid(file);
1367 	if (err) {
1368 		mutex_unlock(&inode->i_mutex);
1369 		goto out;
1370 	}
1371 
1372 	/*
1373 	 * If BTRFS flips readonly due to some impossible error
1374 	 * (fs_info->fs_state now has BTRFS_SUPER_FLAG_ERROR),
1375 	 * although we have opened a file as writable, we have
1376 	 * to stop this write operation to ensure FS consistency.
1377 	 */
1378 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
1379 		mutex_unlock(&inode->i_mutex);
1380 		err = -EROFS;
1381 		goto out;
1382 	}
1383 
1384 	file_update_time(file);
1385 	BTRFS_I(inode)->sequence++;
1386 
1387 	if (unlikely(file->f_flags & O_DIRECT)) {
1388 		num_written = __btrfs_direct_write(iocb, iov, nr_segs,
1389 						   pos, ppos, count, ocount);
1390 	} else {
1391 		struct iov_iter i;
1392 
1393 		iov_iter_init(&i, iov, nr_segs, count, num_written);
1394 
1395 		num_written = __btrfs_buffered_write(file, &i, pos);
1396 		if (num_written > 0)
1397 			*ppos = pos + num_written;
1398 	}
1399 
1400 	mutex_unlock(&inode->i_mutex);
1401 
1402 	/*
1403 	 * we want to make sure fsync finds this change
1404 	 * but we haven't joined a transaction running right now.
1405 	 *
1406 	 * Later on, someone is sure to update the inode and get the
1407 	 * real transid recorded.
1408 	 *
1409 	 * We set last_trans now to the fs_info generation + 1,
1410 	 * this will either be one more than the running transaction
1411 	 * or the generation used for the next transaction if there isn't
1412 	 * one running right now.
1413 	 */
1414 	BTRFS_I(inode)->last_trans = root->fs_info->generation + 1;
1415 	if (num_written > 0 || num_written == -EIOCBQUEUED) {
1416 		err = generic_write_sync(file, pos, num_written);
1417 		if (err < 0 && num_written > 0)
1418 			num_written = err;
1419 	}
1420 out:
1421 	current->backing_dev_info = NULL;
1422 	return num_written ? num_written : err;
1423 }
1424 
1425 int btrfs_release_file(struct inode *inode, struct file *filp)
1426 {
1427 	/*
1428 	 * ordered_data_close is set by settattr when we are about to truncate
1429 	 * a file from a non-zero size to a zero size.  This tries to
1430 	 * flush down new bytes that may have been written if the
1431 	 * application were using truncate to replace a file in place.
1432 	 */
1433 	if (BTRFS_I(inode)->ordered_data_close) {
1434 		BTRFS_I(inode)->ordered_data_close = 0;
1435 		btrfs_add_ordered_operation(NULL, BTRFS_I(inode)->root, inode);
1436 		if (inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
1437 			filemap_flush(inode->i_mapping);
1438 	}
1439 	if (filp->private_data)
1440 		btrfs_ioctl_trans_end(filp);
1441 	return 0;
1442 }
1443 
1444 /*
1445  * fsync call for both files and directories.  This logs the inode into
1446  * the tree log instead of forcing full commits whenever possible.
1447  *
1448  * It needs to call filemap_fdatawait so that all ordered extent updates are
1449  * in the metadata btree are up to date for copying to the log.
1450  *
1451  * It drops the inode mutex before doing the tree log commit.  This is an
1452  * important optimization for directories because holding the mutex prevents
1453  * new operations on the dir while we write to disk.
1454  */
1455 int btrfs_sync_file(struct file *file, int datasync)
1456 {
1457 	struct dentry *dentry = file->f_path.dentry;
1458 	struct inode *inode = dentry->d_inode;
1459 	struct btrfs_root *root = BTRFS_I(inode)->root;
1460 	int ret = 0;
1461 	struct btrfs_trans_handle *trans;
1462 
1463 	trace_btrfs_sync_file(file, datasync);
1464 
1465 	/* we wait first, since the writeback may change the inode */
1466 	root->log_batch++;
1467 	/* the VFS called filemap_fdatawrite for us */
1468 	btrfs_wait_ordered_range(inode, 0, (u64)-1);
1469 	root->log_batch++;
1470 
1471 	/*
1472 	 * check the transaction that last modified this inode
1473 	 * and see if its already been committed
1474 	 */
1475 	if (!BTRFS_I(inode)->last_trans)
1476 		goto out;
1477 
1478 	/*
1479 	 * if the last transaction that changed this file was before
1480 	 * the current transaction, we can bail out now without any
1481 	 * syncing
1482 	 */
1483 	smp_mb();
1484 	if (BTRFS_I(inode)->last_trans <=
1485 	    root->fs_info->last_trans_committed) {
1486 		BTRFS_I(inode)->last_trans = 0;
1487 		goto out;
1488 	}
1489 
1490 	/*
1491 	 * ok we haven't committed the transaction yet, lets do a commit
1492 	 */
1493 	if (file->private_data)
1494 		btrfs_ioctl_trans_end(file);
1495 
1496 	trans = btrfs_start_transaction(root, 0);
1497 	if (IS_ERR(trans)) {
1498 		ret = PTR_ERR(trans);
1499 		goto out;
1500 	}
1501 
1502 	ret = btrfs_log_dentry_safe(trans, root, dentry);
1503 	if (ret < 0)
1504 		goto out;
1505 
1506 	/* we've logged all the items and now have a consistent
1507 	 * version of the file in the log.  It is possible that
1508 	 * someone will come in and modify the file, but that's
1509 	 * fine because the log is consistent on disk, and we
1510 	 * have references to all of the file's extents
1511 	 *
1512 	 * It is possible that someone will come in and log the
1513 	 * file again, but that will end up using the synchronization
1514 	 * inside btrfs_sync_log to keep things safe.
1515 	 */
1516 	mutex_unlock(&dentry->d_inode->i_mutex);
1517 
1518 	if (ret != BTRFS_NO_LOG_SYNC) {
1519 		if (ret > 0) {
1520 			ret = btrfs_commit_transaction(trans, root);
1521 		} else {
1522 			ret = btrfs_sync_log(trans, root);
1523 			if (ret == 0)
1524 				ret = btrfs_end_transaction(trans, root);
1525 			else
1526 				ret = btrfs_commit_transaction(trans, root);
1527 		}
1528 	} else {
1529 		ret = btrfs_end_transaction(trans, root);
1530 	}
1531 	mutex_lock(&dentry->d_inode->i_mutex);
1532 out:
1533 	return ret > 0 ? -EIO : ret;
1534 }
1535 
1536 static const struct vm_operations_struct btrfs_file_vm_ops = {
1537 	.fault		= filemap_fault,
1538 	.page_mkwrite	= btrfs_page_mkwrite,
1539 };
1540 
1541 static int btrfs_file_mmap(struct file	*filp, struct vm_area_struct *vma)
1542 {
1543 	struct address_space *mapping = filp->f_mapping;
1544 
1545 	if (!mapping->a_ops->readpage)
1546 		return -ENOEXEC;
1547 
1548 	file_accessed(filp);
1549 	vma->vm_ops = &btrfs_file_vm_ops;
1550 	vma->vm_flags |= VM_CAN_NONLINEAR;
1551 
1552 	return 0;
1553 }
1554 
1555 static long btrfs_fallocate(struct file *file, int mode,
1556 			    loff_t offset, loff_t len)
1557 {
1558 	struct inode *inode = file->f_path.dentry->d_inode;
1559 	struct extent_state *cached_state = NULL;
1560 	u64 cur_offset;
1561 	u64 last_byte;
1562 	u64 alloc_start;
1563 	u64 alloc_end;
1564 	u64 alloc_hint = 0;
1565 	u64 locked_end;
1566 	u64 mask = BTRFS_I(inode)->root->sectorsize - 1;
1567 	struct extent_map *em;
1568 	int ret;
1569 
1570 	alloc_start = offset & ~mask;
1571 	alloc_end =  (offset + len + mask) & ~mask;
1572 
1573 	/* We only support the FALLOC_FL_KEEP_SIZE mode */
1574 	if (mode & ~FALLOC_FL_KEEP_SIZE)
1575 		return -EOPNOTSUPP;
1576 
1577 	/*
1578 	 * wait for ordered IO before we have any locks.  We'll loop again
1579 	 * below with the locks held.
1580 	 */
1581 	btrfs_wait_ordered_range(inode, alloc_start, alloc_end - alloc_start);
1582 
1583 	mutex_lock(&inode->i_mutex);
1584 	ret = inode_newsize_ok(inode, alloc_end);
1585 	if (ret)
1586 		goto out;
1587 
1588 	if (alloc_start > inode->i_size) {
1589 		ret = btrfs_cont_expand(inode, i_size_read(inode),
1590 					alloc_start);
1591 		if (ret)
1592 			goto out;
1593 	}
1594 
1595 	ret = btrfs_check_data_free_space(inode, alloc_end - alloc_start);
1596 	if (ret)
1597 		goto out;
1598 
1599 	locked_end = alloc_end - 1;
1600 	while (1) {
1601 		struct btrfs_ordered_extent *ordered;
1602 
1603 		/* the extent lock is ordered inside the running
1604 		 * transaction
1605 		 */
1606 		lock_extent_bits(&BTRFS_I(inode)->io_tree, alloc_start,
1607 				 locked_end, 0, &cached_state, GFP_NOFS);
1608 		ordered = btrfs_lookup_first_ordered_extent(inode,
1609 							    alloc_end - 1);
1610 		if (ordered &&
1611 		    ordered->file_offset + ordered->len > alloc_start &&
1612 		    ordered->file_offset < alloc_end) {
1613 			btrfs_put_ordered_extent(ordered);
1614 			unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1615 					     alloc_start, locked_end,
1616 					     &cached_state, GFP_NOFS);
1617 			/*
1618 			 * we can't wait on the range with the transaction
1619 			 * running or with the extent lock held
1620 			 */
1621 			btrfs_wait_ordered_range(inode, alloc_start,
1622 						 alloc_end - alloc_start);
1623 		} else {
1624 			if (ordered)
1625 				btrfs_put_ordered_extent(ordered);
1626 			break;
1627 		}
1628 	}
1629 
1630 	cur_offset = alloc_start;
1631 	while (1) {
1632 		em = btrfs_get_extent(inode, NULL, 0, cur_offset,
1633 				      alloc_end - cur_offset, 0);
1634 		BUG_ON(IS_ERR_OR_NULL(em));
1635 		last_byte = min(extent_map_end(em), alloc_end);
1636 		last_byte = (last_byte + mask) & ~mask;
1637 		if (em->block_start == EXTENT_MAP_HOLE ||
1638 		    (cur_offset >= inode->i_size &&
1639 		     !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
1640 			ret = btrfs_prealloc_file_range(inode, mode, cur_offset,
1641 							last_byte - cur_offset,
1642 							1 << inode->i_blkbits,
1643 							offset + len,
1644 							&alloc_hint);
1645 			if (ret < 0) {
1646 				free_extent_map(em);
1647 				break;
1648 			}
1649 		}
1650 		free_extent_map(em);
1651 
1652 		cur_offset = last_byte;
1653 		if (cur_offset >= alloc_end) {
1654 			ret = 0;
1655 			break;
1656 		}
1657 	}
1658 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, alloc_start, locked_end,
1659 			     &cached_state, GFP_NOFS);
1660 
1661 	btrfs_free_reserved_data_space(inode, alloc_end - alloc_start);
1662 out:
1663 	mutex_unlock(&inode->i_mutex);
1664 	return ret;
1665 }
1666 
1667 const struct file_operations btrfs_file_operations = {
1668 	.llseek		= generic_file_llseek,
1669 	.read		= do_sync_read,
1670 	.write		= do_sync_write,
1671 	.aio_read       = generic_file_aio_read,
1672 	.splice_read	= generic_file_splice_read,
1673 	.aio_write	= btrfs_file_aio_write,
1674 	.mmap		= btrfs_file_mmap,
1675 	.open		= generic_file_open,
1676 	.release	= btrfs_release_file,
1677 	.fsync		= btrfs_sync_file,
1678 	.fallocate	= btrfs_fallocate,
1679 	.unlocked_ioctl	= btrfs_ioctl,
1680 #ifdef CONFIG_COMPAT
1681 	.compat_ioctl	= btrfs_ioctl,
1682 #endif
1683 };
1684