xref: /linux/fs/btrfs/extent_io.c (revision 307797159ac25fe5a2048bf5c6a5718298edca57)
1 // SPDX-License-Identifier: GPL-2.0
2 
3 #include <linux/bitops.h>
4 #include <linux/slab.h>
5 #include <linux/bio.h>
6 #include <linux/mm.h>
7 #include <linux/pagemap.h>
8 #include <linux/page-flags.h>
9 #include <linux/spinlock.h>
10 #include <linux/blkdev.h>
11 #include <linux/swap.h>
12 #include <linux/writeback.h>
13 #include <linux/pagevec.h>
14 #include <linux/prefetch.h>
15 #include <linux/cleancache.h>
16 #include "extent_io.h"
17 #include "extent_map.h"
18 #include "ctree.h"
19 #include "btrfs_inode.h"
20 #include "volumes.h"
21 #include "check-integrity.h"
22 #include "locking.h"
23 #include "rcu-string.h"
24 #include "backref.h"
25 #include "disk-io.h"
26 
27 static struct kmem_cache *extent_state_cache;
28 static struct kmem_cache *extent_buffer_cache;
29 static struct bio_set btrfs_bioset;
30 
31 static inline bool extent_state_in_tree(const struct extent_state *state)
32 {
33 	return !RB_EMPTY_NODE(&state->rb_node);
34 }
35 
36 #ifdef CONFIG_BTRFS_DEBUG
37 static LIST_HEAD(buffers);
38 static LIST_HEAD(states);
39 
40 static DEFINE_SPINLOCK(leak_lock);
41 
42 static inline
43 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
44 {
45 	unsigned long flags;
46 
47 	spin_lock_irqsave(&leak_lock, flags);
48 	list_add(new, head);
49 	spin_unlock_irqrestore(&leak_lock, flags);
50 }
51 
52 static inline
53 void btrfs_leak_debug_del(struct list_head *entry)
54 {
55 	unsigned long flags;
56 
57 	spin_lock_irqsave(&leak_lock, flags);
58 	list_del(entry);
59 	spin_unlock_irqrestore(&leak_lock, flags);
60 }
61 
62 static inline
63 void btrfs_leak_debug_check(void)
64 {
65 	struct extent_state *state;
66 	struct extent_buffer *eb;
67 
68 	while (!list_empty(&states)) {
69 		state = list_entry(states.next, struct extent_state, leak_list);
70 		pr_err("BTRFS: state leak: start %llu end %llu state %u in tree %d refs %d\n",
71 		       state->start, state->end, state->state,
72 		       extent_state_in_tree(state),
73 		       refcount_read(&state->refs));
74 		list_del(&state->leak_list);
75 		kmem_cache_free(extent_state_cache, state);
76 	}
77 
78 	while (!list_empty(&buffers)) {
79 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
80 		pr_err("BTRFS: buffer leak start %llu len %lu refs %d bflags %lu\n",
81 		       eb->start, eb->len, atomic_read(&eb->refs), eb->bflags);
82 		list_del(&eb->leak_list);
83 		kmem_cache_free(extent_buffer_cache, eb);
84 	}
85 }
86 
87 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
88 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
89 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
90 		struct extent_io_tree *tree, u64 start, u64 end)
91 {
92 	if (tree->ops && tree->ops->check_extent_io_range)
93 		tree->ops->check_extent_io_range(tree->private_data, caller,
94 						 start, end);
95 }
96 #else
97 #define btrfs_leak_debug_add(new, head)	do {} while (0)
98 #define btrfs_leak_debug_del(entry)	do {} while (0)
99 #define btrfs_leak_debug_check()	do {} while (0)
100 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
101 #endif
102 
103 #define BUFFER_LRU_MAX 64
104 
105 struct tree_entry {
106 	u64 start;
107 	u64 end;
108 	struct rb_node rb_node;
109 };
110 
111 struct extent_page_data {
112 	struct bio *bio;
113 	struct extent_io_tree *tree;
114 	/* tells writepage not to lock the state bits for this range
115 	 * it still does the unlocking
116 	 */
117 	unsigned int extent_locked:1;
118 
119 	/* tells the submit_bio code to use REQ_SYNC */
120 	unsigned int sync_io:1;
121 };
122 
123 static int add_extent_changeset(struct extent_state *state, unsigned bits,
124 				 struct extent_changeset *changeset,
125 				 int set)
126 {
127 	int ret;
128 
129 	if (!changeset)
130 		return 0;
131 	if (set && (state->state & bits) == bits)
132 		return 0;
133 	if (!set && (state->state & bits) == 0)
134 		return 0;
135 	changeset->bytes_changed += state->end - state->start + 1;
136 	ret = ulist_add(&changeset->range_changed, state->start, state->end,
137 			GFP_ATOMIC);
138 	return ret;
139 }
140 
141 static void flush_write_bio(struct extent_page_data *epd);
142 
143 int __init extent_io_init(void)
144 {
145 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
146 			sizeof(struct extent_state), 0,
147 			SLAB_MEM_SPREAD, NULL);
148 	if (!extent_state_cache)
149 		return -ENOMEM;
150 
151 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152 			sizeof(struct extent_buffer), 0,
153 			SLAB_MEM_SPREAD, NULL);
154 	if (!extent_buffer_cache)
155 		goto free_state_cache;
156 
157 	if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE,
158 			offsetof(struct btrfs_io_bio, bio),
159 			BIOSET_NEED_BVECS))
160 		goto free_buffer_cache;
161 
162 	if (bioset_integrity_create(&btrfs_bioset, BIO_POOL_SIZE))
163 		goto free_bioset;
164 
165 	return 0;
166 
167 free_bioset:
168 	bioset_exit(&btrfs_bioset);
169 
170 free_buffer_cache:
171 	kmem_cache_destroy(extent_buffer_cache);
172 	extent_buffer_cache = NULL;
173 
174 free_state_cache:
175 	kmem_cache_destroy(extent_state_cache);
176 	extent_state_cache = NULL;
177 	return -ENOMEM;
178 }
179 
180 void __cold extent_io_exit(void)
181 {
182 	btrfs_leak_debug_check();
183 
184 	/*
185 	 * Make sure all delayed rcu free are flushed before we
186 	 * destroy caches.
187 	 */
188 	rcu_barrier();
189 	kmem_cache_destroy(extent_state_cache);
190 	kmem_cache_destroy(extent_buffer_cache);
191 	bioset_exit(&btrfs_bioset);
192 }
193 
194 void extent_io_tree_init(struct extent_io_tree *tree,
195 			 void *private_data)
196 {
197 	tree->state = RB_ROOT;
198 	tree->ops = NULL;
199 	tree->dirty_bytes = 0;
200 	spin_lock_init(&tree->lock);
201 	tree->private_data = private_data;
202 }
203 
204 static struct extent_state *alloc_extent_state(gfp_t mask)
205 {
206 	struct extent_state *state;
207 
208 	/*
209 	 * The given mask might be not appropriate for the slab allocator,
210 	 * drop the unsupported bits
211 	 */
212 	mask &= ~(__GFP_DMA32|__GFP_HIGHMEM);
213 	state = kmem_cache_alloc(extent_state_cache, mask);
214 	if (!state)
215 		return state;
216 	state->state = 0;
217 	state->failrec = NULL;
218 	RB_CLEAR_NODE(&state->rb_node);
219 	btrfs_leak_debug_add(&state->leak_list, &states);
220 	refcount_set(&state->refs, 1);
221 	init_waitqueue_head(&state->wq);
222 	trace_alloc_extent_state(state, mask, _RET_IP_);
223 	return state;
224 }
225 
226 void free_extent_state(struct extent_state *state)
227 {
228 	if (!state)
229 		return;
230 	if (refcount_dec_and_test(&state->refs)) {
231 		WARN_ON(extent_state_in_tree(state));
232 		btrfs_leak_debug_del(&state->leak_list);
233 		trace_free_extent_state(state, _RET_IP_);
234 		kmem_cache_free(extent_state_cache, state);
235 	}
236 }
237 
238 static struct rb_node *tree_insert(struct rb_root *root,
239 				   struct rb_node *search_start,
240 				   u64 offset,
241 				   struct rb_node *node,
242 				   struct rb_node ***p_in,
243 				   struct rb_node **parent_in)
244 {
245 	struct rb_node **p;
246 	struct rb_node *parent = NULL;
247 	struct tree_entry *entry;
248 
249 	if (p_in && parent_in) {
250 		p = *p_in;
251 		parent = *parent_in;
252 		goto do_insert;
253 	}
254 
255 	p = search_start ? &search_start : &root->rb_node;
256 	while (*p) {
257 		parent = *p;
258 		entry = rb_entry(parent, struct tree_entry, rb_node);
259 
260 		if (offset < entry->start)
261 			p = &(*p)->rb_left;
262 		else if (offset > entry->end)
263 			p = &(*p)->rb_right;
264 		else
265 			return parent;
266 	}
267 
268 do_insert:
269 	rb_link_node(node, parent, p);
270 	rb_insert_color(node, root);
271 	return NULL;
272 }
273 
274 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
275 				      struct rb_node **prev_ret,
276 				      struct rb_node **next_ret,
277 				      struct rb_node ***p_ret,
278 				      struct rb_node **parent_ret)
279 {
280 	struct rb_root *root = &tree->state;
281 	struct rb_node **n = &root->rb_node;
282 	struct rb_node *prev = NULL;
283 	struct rb_node *orig_prev = NULL;
284 	struct tree_entry *entry;
285 	struct tree_entry *prev_entry = NULL;
286 
287 	while (*n) {
288 		prev = *n;
289 		entry = rb_entry(prev, struct tree_entry, rb_node);
290 		prev_entry = entry;
291 
292 		if (offset < entry->start)
293 			n = &(*n)->rb_left;
294 		else if (offset > entry->end)
295 			n = &(*n)->rb_right;
296 		else
297 			return *n;
298 	}
299 
300 	if (p_ret)
301 		*p_ret = n;
302 	if (parent_ret)
303 		*parent_ret = prev;
304 
305 	if (prev_ret) {
306 		orig_prev = prev;
307 		while (prev && offset > prev_entry->end) {
308 			prev = rb_next(prev);
309 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
310 		}
311 		*prev_ret = prev;
312 		prev = orig_prev;
313 	}
314 
315 	if (next_ret) {
316 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
317 		while (prev && offset < prev_entry->start) {
318 			prev = rb_prev(prev);
319 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
320 		}
321 		*next_ret = prev;
322 	}
323 	return NULL;
324 }
325 
326 static inline struct rb_node *
327 tree_search_for_insert(struct extent_io_tree *tree,
328 		       u64 offset,
329 		       struct rb_node ***p_ret,
330 		       struct rb_node **parent_ret)
331 {
332 	struct rb_node *prev = NULL;
333 	struct rb_node *ret;
334 
335 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
336 	if (!ret)
337 		return prev;
338 	return ret;
339 }
340 
341 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
342 					  u64 offset)
343 {
344 	return tree_search_for_insert(tree, offset, NULL, NULL);
345 }
346 
347 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
348 		     struct extent_state *other)
349 {
350 	if (tree->ops && tree->ops->merge_extent_hook)
351 		tree->ops->merge_extent_hook(tree->private_data, new, other);
352 }
353 
354 /*
355  * utility function to look for merge candidates inside a given range.
356  * Any extents with matching state are merged together into a single
357  * extent in the tree.  Extents with EXTENT_IO in their state field
358  * are not merged because the end_io handlers need to be able to do
359  * operations on them without sleeping (or doing allocations/splits).
360  *
361  * This should be called with the tree lock held.
362  */
363 static void merge_state(struct extent_io_tree *tree,
364 		        struct extent_state *state)
365 {
366 	struct extent_state *other;
367 	struct rb_node *other_node;
368 
369 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
370 		return;
371 
372 	other_node = rb_prev(&state->rb_node);
373 	if (other_node) {
374 		other = rb_entry(other_node, struct extent_state, rb_node);
375 		if (other->end == state->start - 1 &&
376 		    other->state == state->state) {
377 			merge_cb(tree, state, other);
378 			state->start = other->start;
379 			rb_erase(&other->rb_node, &tree->state);
380 			RB_CLEAR_NODE(&other->rb_node);
381 			free_extent_state(other);
382 		}
383 	}
384 	other_node = rb_next(&state->rb_node);
385 	if (other_node) {
386 		other = rb_entry(other_node, struct extent_state, rb_node);
387 		if (other->start == state->end + 1 &&
388 		    other->state == state->state) {
389 			merge_cb(tree, state, other);
390 			state->end = other->end;
391 			rb_erase(&other->rb_node, &tree->state);
392 			RB_CLEAR_NODE(&other->rb_node);
393 			free_extent_state(other);
394 		}
395 	}
396 }
397 
398 static void set_state_cb(struct extent_io_tree *tree,
399 			 struct extent_state *state, unsigned *bits)
400 {
401 	if (tree->ops && tree->ops->set_bit_hook)
402 		tree->ops->set_bit_hook(tree->private_data, state, bits);
403 }
404 
405 static void clear_state_cb(struct extent_io_tree *tree,
406 			   struct extent_state *state, unsigned *bits)
407 {
408 	if (tree->ops && tree->ops->clear_bit_hook)
409 		tree->ops->clear_bit_hook(tree->private_data, state, bits);
410 }
411 
412 static void set_state_bits(struct extent_io_tree *tree,
413 			   struct extent_state *state, unsigned *bits,
414 			   struct extent_changeset *changeset);
415 
416 /*
417  * insert an extent_state struct into the tree.  'bits' are set on the
418  * struct before it is inserted.
419  *
420  * This may return -EEXIST if the extent is already there, in which case the
421  * state struct is freed.
422  *
423  * The tree lock is not taken internally.  This is a utility function and
424  * probably isn't what you want to call (see set/clear_extent_bit).
425  */
426 static int insert_state(struct extent_io_tree *tree,
427 			struct extent_state *state, u64 start, u64 end,
428 			struct rb_node ***p,
429 			struct rb_node **parent,
430 			unsigned *bits, struct extent_changeset *changeset)
431 {
432 	struct rb_node *node;
433 
434 	if (end < start)
435 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
436 		       end, start);
437 	state->start = start;
438 	state->end = end;
439 
440 	set_state_bits(tree, state, bits, changeset);
441 
442 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
443 	if (node) {
444 		struct extent_state *found;
445 		found = rb_entry(node, struct extent_state, rb_node);
446 		pr_err("BTRFS: found node %llu %llu on insert of %llu %llu\n",
447 		       found->start, found->end, start, end);
448 		return -EEXIST;
449 	}
450 	merge_state(tree, state);
451 	return 0;
452 }
453 
454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
455 		     u64 split)
456 {
457 	if (tree->ops && tree->ops->split_extent_hook)
458 		tree->ops->split_extent_hook(tree->private_data, orig, split);
459 }
460 
461 /*
462  * split a given extent state struct in two, inserting the preallocated
463  * struct 'prealloc' as the newly created second half.  'split' indicates an
464  * offset inside 'orig' where it should be split.
465  *
466  * Before calling,
467  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
468  * are two extent state structs in the tree:
469  * prealloc: [orig->start, split - 1]
470  * orig: [ split, orig->end ]
471  *
472  * The tree locks are not taken by this function. They need to be held
473  * by the caller.
474  */
475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 		       struct extent_state *prealloc, u64 split)
477 {
478 	struct rb_node *node;
479 
480 	split_cb(tree, orig, split);
481 
482 	prealloc->start = orig->start;
483 	prealloc->end = split - 1;
484 	prealloc->state = orig->state;
485 	orig->start = split;
486 
487 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 			   &prealloc->rb_node, NULL, NULL);
489 	if (node) {
490 		free_extent_state(prealloc);
491 		return -EEXIST;
492 	}
493 	return 0;
494 }
495 
496 static struct extent_state *next_state(struct extent_state *state)
497 {
498 	struct rb_node *next = rb_next(&state->rb_node);
499 	if (next)
500 		return rb_entry(next, struct extent_state, rb_node);
501 	else
502 		return NULL;
503 }
504 
505 /*
506  * utility function to clear some bits in an extent state struct.
507  * it will optionally wake up any one waiting on this state (wake == 1).
508  *
509  * If no bits are set on the state struct after clearing things, the
510  * struct is freed and removed from the tree
511  */
512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 					    struct extent_state *state,
514 					    unsigned *bits, int wake,
515 					    struct extent_changeset *changeset)
516 {
517 	struct extent_state *next;
518 	unsigned bits_to_clear = *bits & ~EXTENT_CTLBITS;
519 	int ret;
520 
521 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
522 		u64 range = state->end - state->start + 1;
523 		WARN_ON(range > tree->dirty_bytes);
524 		tree->dirty_bytes -= range;
525 	}
526 	clear_state_cb(tree, state, bits);
527 	ret = add_extent_changeset(state, bits_to_clear, changeset, 0);
528 	BUG_ON(ret < 0);
529 	state->state &= ~bits_to_clear;
530 	if (wake)
531 		wake_up(&state->wq);
532 	if (state->state == 0) {
533 		next = next_state(state);
534 		if (extent_state_in_tree(state)) {
535 			rb_erase(&state->rb_node, &tree->state);
536 			RB_CLEAR_NODE(&state->rb_node);
537 			free_extent_state(state);
538 		} else {
539 			WARN_ON(1);
540 		}
541 	} else {
542 		merge_state(tree, state);
543 		next = next_state(state);
544 	}
545 	return next;
546 }
547 
548 static struct extent_state *
549 alloc_extent_state_atomic(struct extent_state *prealloc)
550 {
551 	if (!prealloc)
552 		prealloc = alloc_extent_state(GFP_ATOMIC);
553 
554 	return prealloc;
555 }
556 
557 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
558 {
559 	struct inode *inode = tree->private_data;
560 
561 	btrfs_panic(btrfs_sb(inode->i_sb), err,
562 	"locking error: extent tree was modified by another thread while locked");
563 }
564 
565 /*
566  * clear some bits on a range in the tree.  This may require splitting
567  * or inserting elements in the tree, so the gfp mask is used to
568  * indicate which allocations or sleeping are allowed.
569  *
570  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
571  * the given range from the tree regardless of state (ie for truncate).
572  *
573  * the range [start, end] is inclusive.
574  *
575  * This takes the tree lock, and returns 0 on success and < 0 on error.
576  */
577 int __clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
578 			      unsigned bits, int wake, int delete,
579 			      struct extent_state **cached_state,
580 			      gfp_t mask, struct extent_changeset *changeset)
581 {
582 	struct extent_state *state;
583 	struct extent_state *cached;
584 	struct extent_state *prealloc = NULL;
585 	struct rb_node *node;
586 	u64 last_end;
587 	int err;
588 	int clear = 0;
589 
590 	btrfs_debug_check_extent_io_range(tree, start, end);
591 
592 	if (bits & EXTENT_DELALLOC)
593 		bits |= EXTENT_NORESERVE;
594 
595 	if (delete)
596 		bits |= ~EXTENT_CTLBITS;
597 	bits |= EXTENT_FIRST_DELALLOC;
598 
599 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
600 		clear = 1;
601 again:
602 	if (!prealloc && gfpflags_allow_blocking(mask)) {
603 		/*
604 		 * Don't care for allocation failure here because we might end
605 		 * up not needing the pre-allocated extent state at all, which
606 		 * is the case if we only have in the tree extent states that
607 		 * cover our input range and don't cover too any other range.
608 		 * If we end up needing a new extent state we allocate it later.
609 		 */
610 		prealloc = alloc_extent_state(mask);
611 	}
612 
613 	spin_lock(&tree->lock);
614 	if (cached_state) {
615 		cached = *cached_state;
616 
617 		if (clear) {
618 			*cached_state = NULL;
619 			cached_state = NULL;
620 		}
621 
622 		if (cached && extent_state_in_tree(cached) &&
623 		    cached->start <= start && cached->end > start) {
624 			if (clear)
625 				refcount_dec(&cached->refs);
626 			state = cached;
627 			goto hit_next;
628 		}
629 		if (clear)
630 			free_extent_state(cached);
631 	}
632 	/*
633 	 * this search will find the extents that end after
634 	 * our range starts
635 	 */
636 	node = tree_search(tree, start);
637 	if (!node)
638 		goto out;
639 	state = rb_entry(node, struct extent_state, rb_node);
640 hit_next:
641 	if (state->start > end)
642 		goto out;
643 	WARN_ON(state->end < start);
644 	last_end = state->end;
645 
646 	/* the state doesn't have the wanted bits, go ahead */
647 	if (!(state->state & bits)) {
648 		state = next_state(state);
649 		goto next;
650 	}
651 
652 	/*
653 	 *     | ---- desired range ---- |
654 	 *  | state | or
655 	 *  | ------------- state -------------- |
656 	 *
657 	 * We need to split the extent we found, and may flip
658 	 * bits on second half.
659 	 *
660 	 * If the extent we found extends past our range, we
661 	 * just split and search again.  It'll get split again
662 	 * the next time though.
663 	 *
664 	 * If the extent we found is inside our range, we clear
665 	 * the desired bit on it.
666 	 */
667 
668 	if (state->start < start) {
669 		prealloc = alloc_extent_state_atomic(prealloc);
670 		BUG_ON(!prealloc);
671 		err = split_state(tree, state, prealloc, start);
672 		if (err)
673 			extent_io_tree_panic(tree, err);
674 
675 		prealloc = NULL;
676 		if (err)
677 			goto out;
678 		if (state->end <= end) {
679 			state = clear_state_bit(tree, state, &bits, wake,
680 						changeset);
681 			goto next;
682 		}
683 		goto search_again;
684 	}
685 	/*
686 	 * | ---- desired range ---- |
687 	 *                        | state |
688 	 * We need to split the extent, and clear the bit
689 	 * on the first half
690 	 */
691 	if (state->start <= end && state->end > end) {
692 		prealloc = alloc_extent_state_atomic(prealloc);
693 		BUG_ON(!prealloc);
694 		err = split_state(tree, state, prealloc, end + 1);
695 		if (err)
696 			extent_io_tree_panic(tree, err);
697 
698 		if (wake)
699 			wake_up(&state->wq);
700 
701 		clear_state_bit(tree, prealloc, &bits, wake, changeset);
702 
703 		prealloc = NULL;
704 		goto out;
705 	}
706 
707 	state = clear_state_bit(tree, state, &bits, wake, changeset);
708 next:
709 	if (last_end == (u64)-1)
710 		goto out;
711 	start = last_end + 1;
712 	if (start <= end && state && !need_resched())
713 		goto hit_next;
714 
715 search_again:
716 	if (start > end)
717 		goto out;
718 	spin_unlock(&tree->lock);
719 	if (gfpflags_allow_blocking(mask))
720 		cond_resched();
721 	goto again;
722 
723 out:
724 	spin_unlock(&tree->lock);
725 	if (prealloc)
726 		free_extent_state(prealloc);
727 
728 	return 0;
729 
730 }
731 
732 static void wait_on_state(struct extent_io_tree *tree,
733 			  struct extent_state *state)
734 		__releases(tree->lock)
735 		__acquires(tree->lock)
736 {
737 	DEFINE_WAIT(wait);
738 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
739 	spin_unlock(&tree->lock);
740 	schedule();
741 	spin_lock(&tree->lock);
742 	finish_wait(&state->wq, &wait);
743 }
744 
745 /*
746  * waits for one or more bits to clear on a range in the state tree.
747  * The range [start, end] is inclusive.
748  * The tree lock is taken by this function
749  */
750 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
751 			    unsigned long bits)
752 {
753 	struct extent_state *state;
754 	struct rb_node *node;
755 
756 	btrfs_debug_check_extent_io_range(tree, start, end);
757 
758 	spin_lock(&tree->lock);
759 again:
760 	while (1) {
761 		/*
762 		 * this search will find all the extents that end after
763 		 * our range starts
764 		 */
765 		node = tree_search(tree, start);
766 process_node:
767 		if (!node)
768 			break;
769 
770 		state = rb_entry(node, struct extent_state, rb_node);
771 
772 		if (state->start > end)
773 			goto out;
774 
775 		if (state->state & bits) {
776 			start = state->start;
777 			refcount_inc(&state->refs);
778 			wait_on_state(tree, state);
779 			free_extent_state(state);
780 			goto again;
781 		}
782 		start = state->end + 1;
783 
784 		if (start > end)
785 			break;
786 
787 		if (!cond_resched_lock(&tree->lock)) {
788 			node = rb_next(node);
789 			goto process_node;
790 		}
791 	}
792 out:
793 	spin_unlock(&tree->lock);
794 }
795 
796 static void set_state_bits(struct extent_io_tree *tree,
797 			   struct extent_state *state,
798 			   unsigned *bits, struct extent_changeset *changeset)
799 {
800 	unsigned bits_to_set = *bits & ~EXTENT_CTLBITS;
801 	int ret;
802 
803 	set_state_cb(tree, state, bits);
804 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
805 		u64 range = state->end - state->start + 1;
806 		tree->dirty_bytes += range;
807 	}
808 	ret = add_extent_changeset(state, bits_to_set, changeset, 1);
809 	BUG_ON(ret < 0);
810 	state->state |= bits_to_set;
811 }
812 
813 static void cache_state_if_flags(struct extent_state *state,
814 				 struct extent_state **cached_ptr,
815 				 unsigned flags)
816 {
817 	if (cached_ptr && !(*cached_ptr)) {
818 		if (!flags || (state->state & flags)) {
819 			*cached_ptr = state;
820 			refcount_inc(&state->refs);
821 		}
822 	}
823 }
824 
825 static void cache_state(struct extent_state *state,
826 			struct extent_state **cached_ptr)
827 {
828 	return cache_state_if_flags(state, cached_ptr,
829 				    EXTENT_IOBITS | EXTENT_BOUNDARY);
830 }
831 
832 /*
833  * set some bits on a range in the tree.  This may require allocations or
834  * sleeping, so the gfp mask is used to indicate what is allowed.
835  *
836  * If any of the exclusive bits are set, this will fail with -EEXIST if some
837  * part of the range already has the desired bits set.  The start of the
838  * existing range is returned in failed_start in this case.
839  *
840  * [start, end] is inclusive This takes the tree lock.
841  */
842 
843 static int __must_check
844 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
845 		 unsigned bits, unsigned exclusive_bits,
846 		 u64 *failed_start, struct extent_state **cached_state,
847 		 gfp_t mask, struct extent_changeset *changeset)
848 {
849 	struct extent_state *state;
850 	struct extent_state *prealloc = NULL;
851 	struct rb_node *node;
852 	struct rb_node **p;
853 	struct rb_node *parent;
854 	int err = 0;
855 	u64 last_start;
856 	u64 last_end;
857 
858 	btrfs_debug_check_extent_io_range(tree, start, end);
859 
860 	bits |= EXTENT_FIRST_DELALLOC;
861 again:
862 	if (!prealloc && gfpflags_allow_blocking(mask)) {
863 		/*
864 		 * Don't care for allocation failure here because we might end
865 		 * up not needing the pre-allocated extent state at all, which
866 		 * is the case if we only have in the tree extent states that
867 		 * cover our input range and don't cover too any other range.
868 		 * If we end up needing a new extent state we allocate it later.
869 		 */
870 		prealloc = alloc_extent_state(mask);
871 	}
872 
873 	spin_lock(&tree->lock);
874 	if (cached_state && *cached_state) {
875 		state = *cached_state;
876 		if (state->start <= start && state->end > start &&
877 		    extent_state_in_tree(state)) {
878 			node = &state->rb_node;
879 			goto hit_next;
880 		}
881 	}
882 	/*
883 	 * this search will find all the extents that end after
884 	 * our range starts.
885 	 */
886 	node = tree_search_for_insert(tree, start, &p, &parent);
887 	if (!node) {
888 		prealloc = alloc_extent_state_atomic(prealloc);
889 		BUG_ON(!prealloc);
890 		err = insert_state(tree, prealloc, start, end,
891 				   &p, &parent, &bits, changeset);
892 		if (err)
893 			extent_io_tree_panic(tree, err);
894 
895 		cache_state(prealloc, cached_state);
896 		prealloc = NULL;
897 		goto out;
898 	}
899 	state = rb_entry(node, struct extent_state, rb_node);
900 hit_next:
901 	last_start = state->start;
902 	last_end = state->end;
903 
904 	/*
905 	 * | ---- desired range ---- |
906 	 * | state |
907 	 *
908 	 * Just lock what we found and keep going
909 	 */
910 	if (state->start == start && state->end <= end) {
911 		if (state->state & exclusive_bits) {
912 			*failed_start = state->start;
913 			err = -EEXIST;
914 			goto out;
915 		}
916 
917 		set_state_bits(tree, state, &bits, changeset);
918 		cache_state(state, cached_state);
919 		merge_state(tree, state);
920 		if (last_end == (u64)-1)
921 			goto out;
922 		start = last_end + 1;
923 		state = next_state(state);
924 		if (start < end && state && state->start == start &&
925 		    !need_resched())
926 			goto hit_next;
927 		goto search_again;
928 	}
929 
930 	/*
931 	 *     | ---- desired range ---- |
932 	 * | state |
933 	 *   or
934 	 * | ------------- state -------------- |
935 	 *
936 	 * We need to split the extent we found, and may flip bits on
937 	 * second half.
938 	 *
939 	 * If the extent we found extends past our
940 	 * range, we just split and search again.  It'll get split
941 	 * again the next time though.
942 	 *
943 	 * If the extent we found is inside our range, we set the
944 	 * desired bit on it.
945 	 */
946 	if (state->start < start) {
947 		if (state->state & exclusive_bits) {
948 			*failed_start = start;
949 			err = -EEXIST;
950 			goto out;
951 		}
952 
953 		prealloc = alloc_extent_state_atomic(prealloc);
954 		BUG_ON(!prealloc);
955 		err = split_state(tree, state, prealloc, start);
956 		if (err)
957 			extent_io_tree_panic(tree, err);
958 
959 		prealloc = NULL;
960 		if (err)
961 			goto out;
962 		if (state->end <= end) {
963 			set_state_bits(tree, state, &bits, changeset);
964 			cache_state(state, cached_state);
965 			merge_state(tree, state);
966 			if (last_end == (u64)-1)
967 				goto out;
968 			start = last_end + 1;
969 			state = next_state(state);
970 			if (start < end && state && state->start == start &&
971 			    !need_resched())
972 				goto hit_next;
973 		}
974 		goto search_again;
975 	}
976 	/*
977 	 * | ---- desired range ---- |
978 	 *     | state | or               | state |
979 	 *
980 	 * There's a hole, we need to insert something in it and
981 	 * ignore the extent we found.
982 	 */
983 	if (state->start > start) {
984 		u64 this_end;
985 		if (end < last_start)
986 			this_end = end;
987 		else
988 			this_end = last_start - 1;
989 
990 		prealloc = alloc_extent_state_atomic(prealloc);
991 		BUG_ON(!prealloc);
992 
993 		/*
994 		 * Avoid to free 'prealloc' if it can be merged with
995 		 * the later extent.
996 		 */
997 		err = insert_state(tree, prealloc, start, this_end,
998 				   NULL, NULL, &bits, changeset);
999 		if (err)
1000 			extent_io_tree_panic(tree, err);
1001 
1002 		cache_state(prealloc, cached_state);
1003 		prealloc = NULL;
1004 		start = this_end + 1;
1005 		goto search_again;
1006 	}
1007 	/*
1008 	 * | ---- desired range ---- |
1009 	 *                        | state |
1010 	 * We need to split the extent, and set the bit
1011 	 * on the first half
1012 	 */
1013 	if (state->start <= end && state->end > end) {
1014 		if (state->state & exclusive_bits) {
1015 			*failed_start = start;
1016 			err = -EEXIST;
1017 			goto out;
1018 		}
1019 
1020 		prealloc = alloc_extent_state_atomic(prealloc);
1021 		BUG_ON(!prealloc);
1022 		err = split_state(tree, state, prealloc, end + 1);
1023 		if (err)
1024 			extent_io_tree_panic(tree, err);
1025 
1026 		set_state_bits(tree, prealloc, &bits, changeset);
1027 		cache_state(prealloc, cached_state);
1028 		merge_state(tree, prealloc);
1029 		prealloc = NULL;
1030 		goto out;
1031 	}
1032 
1033 search_again:
1034 	if (start > end)
1035 		goto out;
1036 	spin_unlock(&tree->lock);
1037 	if (gfpflags_allow_blocking(mask))
1038 		cond_resched();
1039 	goto again;
1040 
1041 out:
1042 	spin_unlock(&tree->lock);
1043 	if (prealloc)
1044 		free_extent_state(prealloc);
1045 
1046 	return err;
1047 
1048 }
1049 
1050 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1051 		   unsigned bits, u64 * failed_start,
1052 		   struct extent_state **cached_state, gfp_t mask)
1053 {
1054 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1055 				cached_state, mask, NULL);
1056 }
1057 
1058 
1059 /**
1060  * convert_extent_bit - convert all bits in a given range from one bit to
1061  * 			another
1062  * @tree:	the io tree to search
1063  * @start:	the start offset in bytes
1064  * @end:	the end offset in bytes (inclusive)
1065  * @bits:	the bits to set in this range
1066  * @clear_bits:	the bits to clear in this range
1067  * @cached_state:	state that we're going to cache
1068  *
1069  * This will go through and set bits for the given range.  If any states exist
1070  * already in this range they are set with the given bit and cleared of the
1071  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1072  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1073  * boundary bits like LOCK.
1074  *
1075  * All allocations are done with GFP_NOFS.
1076  */
1077 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1078 		       unsigned bits, unsigned clear_bits,
1079 		       struct extent_state **cached_state)
1080 {
1081 	struct extent_state *state;
1082 	struct extent_state *prealloc = NULL;
1083 	struct rb_node *node;
1084 	struct rb_node **p;
1085 	struct rb_node *parent;
1086 	int err = 0;
1087 	u64 last_start;
1088 	u64 last_end;
1089 	bool first_iteration = true;
1090 
1091 	btrfs_debug_check_extent_io_range(tree, start, end);
1092 
1093 again:
1094 	if (!prealloc) {
1095 		/*
1096 		 * Best effort, don't worry if extent state allocation fails
1097 		 * here for the first iteration. We might have a cached state
1098 		 * that matches exactly the target range, in which case no
1099 		 * extent state allocations are needed. We'll only know this
1100 		 * after locking the tree.
1101 		 */
1102 		prealloc = alloc_extent_state(GFP_NOFS);
1103 		if (!prealloc && !first_iteration)
1104 			return -ENOMEM;
1105 	}
1106 
1107 	spin_lock(&tree->lock);
1108 	if (cached_state && *cached_state) {
1109 		state = *cached_state;
1110 		if (state->start <= start && state->end > start &&
1111 		    extent_state_in_tree(state)) {
1112 			node = &state->rb_node;
1113 			goto hit_next;
1114 		}
1115 	}
1116 
1117 	/*
1118 	 * this search will find all the extents that end after
1119 	 * our range starts.
1120 	 */
1121 	node = tree_search_for_insert(tree, start, &p, &parent);
1122 	if (!node) {
1123 		prealloc = alloc_extent_state_atomic(prealloc);
1124 		if (!prealloc) {
1125 			err = -ENOMEM;
1126 			goto out;
1127 		}
1128 		err = insert_state(tree, prealloc, start, end,
1129 				   &p, &parent, &bits, NULL);
1130 		if (err)
1131 			extent_io_tree_panic(tree, err);
1132 		cache_state(prealloc, cached_state);
1133 		prealloc = NULL;
1134 		goto out;
1135 	}
1136 	state = rb_entry(node, struct extent_state, rb_node);
1137 hit_next:
1138 	last_start = state->start;
1139 	last_end = state->end;
1140 
1141 	/*
1142 	 * | ---- desired range ---- |
1143 	 * | state |
1144 	 *
1145 	 * Just lock what we found and keep going
1146 	 */
1147 	if (state->start == start && state->end <= end) {
1148 		set_state_bits(tree, state, &bits, NULL);
1149 		cache_state(state, cached_state);
1150 		state = clear_state_bit(tree, state, &clear_bits, 0, NULL);
1151 		if (last_end == (u64)-1)
1152 			goto out;
1153 		start = last_end + 1;
1154 		if (start < end && state && state->start == start &&
1155 		    !need_resched())
1156 			goto hit_next;
1157 		goto search_again;
1158 	}
1159 
1160 	/*
1161 	 *     | ---- desired range ---- |
1162 	 * | state |
1163 	 *   or
1164 	 * | ------------- state -------------- |
1165 	 *
1166 	 * We need to split the extent we found, and may flip bits on
1167 	 * second half.
1168 	 *
1169 	 * If the extent we found extends past our
1170 	 * range, we just split and search again.  It'll get split
1171 	 * again the next time though.
1172 	 *
1173 	 * If the extent we found is inside our range, we set the
1174 	 * desired bit on it.
1175 	 */
1176 	if (state->start < start) {
1177 		prealloc = alloc_extent_state_atomic(prealloc);
1178 		if (!prealloc) {
1179 			err = -ENOMEM;
1180 			goto out;
1181 		}
1182 		err = split_state(tree, state, prealloc, start);
1183 		if (err)
1184 			extent_io_tree_panic(tree, err);
1185 		prealloc = NULL;
1186 		if (err)
1187 			goto out;
1188 		if (state->end <= end) {
1189 			set_state_bits(tree, state, &bits, NULL);
1190 			cache_state(state, cached_state);
1191 			state = clear_state_bit(tree, state, &clear_bits, 0,
1192 						NULL);
1193 			if (last_end == (u64)-1)
1194 				goto out;
1195 			start = last_end + 1;
1196 			if (start < end && state && state->start == start &&
1197 			    !need_resched())
1198 				goto hit_next;
1199 		}
1200 		goto search_again;
1201 	}
1202 	/*
1203 	 * | ---- desired range ---- |
1204 	 *     | state | or               | state |
1205 	 *
1206 	 * There's a hole, we need to insert something in it and
1207 	 * ignore the extent we found.
1208 	 */
1209 	if (state->start > start) {
1210 		u64 this_end;
1211 		if (end < last_start)
1212 			this_end = end;
1213 		else
1214 			this_end = last_start - 1;
1215 
1216 		prealloc = alloc_extent_state_atomic(prealloc);
1217 		if (!prealloc) {
1218 			err = -ENOMEM;
1219 			goto out;
1220 		}
1221 
1222 		/*
1223 		 * Avoid to free 'prealloc' if it can be merged with
1224 		 * the later extent.
1225 		 */
1226 		err = insert_state(tree, prealloc, start, this_end,
1227 				   NULL, NULL, &bits, NULL);
1228 		if (err)
1229 			extent_io_tree_panic(tree, err);
1230 		cache_state(prealloc, cached_state);
1231 		prealloc = NULL;
1232 		start = this_end + 1;
1233 		goto search_again;
1234 	}
1235 	/*
1236 	 * | ---- desired range ---- |
1237 	 *                        | state |
1238 	 * We need to split the extent, and set the bit
1239 	 * on the first half
1240 	 */
1241 	if (state->start <= end && state->end > end) {
1242 		prealloc = alloc_extent_state_atomic(prealloc);
1243 		if (!prealloc) {
1244 			err = -ENOMEM;
1245 			goto out;
1246 		}
1247 
1248 		err = split_state(tree, state, prealloc, end + 1);
1249 		if (err)
1250 			extent_io_tree_panic(tree, err);
1251 
1252 		set_state_bits(tree, prealloc, &bits, NULL);
1253 		cache_state(prealloc, cached_state);
1254 		clear_state_bit(tree, prealloc, &clear_bits, 0, NULL);
1255 		prealloc = NULL;
1256 		goto out;
1257 	}
1258 
1259 search_again:
1260 	if (start > end)
1261 		goto out;
1262 	spin_unlock(&tree->lock);
1263 	cond_resched();
1264 	first_iteration = false;
1265 	goto again;
1266 
1267 out:
1268 	spin_unlock(&tree->lock);
1269 	if (prealloc)
1270 		free_extent_state(prealloc);
1271 
1272 	return err;
1273 }
1274 
1275 /* wrappers around set/clear extent bit */
1276 int set_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1277 			   unsigned bits, struct extent_changeset *changeset)
1278 {
1279 	/*
1280 	 * We don't support EXTENT_LOCKED yet, as current changeset will
1281 	 * record any bits changed, so for EXTENT_LOCKED case, it will
1282 	 * either fail with -EEXIST or changeset will record the whole
1283 	 * range.
1284 	 */
1285 	BUG_ON(bits & EXTENT_LOCKED);
1286 
1287 	return __set_extent_bit(tree, start, end, bits, 0, NULL, NULL, GFP_NOFS,
1288 				changeset);
1289 }
1290 
1291 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1292 		     unsigned bits, int wake, int delete,
1293 		     struct extent_state **cached)
1294 {
1295 	return __clear_extent_bit(tree, start, end, bits, wake, delete,
1296 				  cached, GFP_NOFS, NULL);
1297 }
1298 
1299 int clear_record_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1300 		unsigned bits, struct extent_changeset *changeset)
1301 {
1302 	/*
1303 	 * Don't support EXTENT_LOCKED case, same reason as
1304 	 * set_record_extent_bits().
1305 	 */
1306 	BUG_ON(bits & EXTENT_LOCKED);
1307 
1308 	return __clear_extent_bit(tree, start, end, bits, 0, 0, NULL, GFP_NOFS,
1309 				  changeset);
1310 }
1311 
1312 /*
1313  * either insert or lock state struct between start and end use mask to tell
1314  * us if waiting is desired.
1315  */
1316 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1317 		     struct extent_state **cached_state)
1318 {
1319 	int err;
1320 	u64 failed_start;
1321 
1322 	while (1) {
1323 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED,
1324 				       EXTENT_LOCKED, &failed_start,
1325 				       cached_state, GFP_NOFS, NULL);
1326 		if (err == -EEXIST) {
1327 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1328 			start = failed_start;
1329 		} else
1330 			break;
1331 		WARN_ON(start > end);
1332 	}
1333 	return err;
1334 }
1335 
1336 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1337 {
1338 	int err;
1339 	u64 failed_start;
1340 
1341 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1342 			       &failed_start, NULL, GFP_NOFS, NULL);
1343 	if (err == -EEXIST) {
1344 		if (failed_start > start)
1345 			clear_extent_bit(tree, start, failed_start - 1,
1346 					 EXTENT_LOCKED, 1, 0, NULL);
1347 		return 0;
1348 	}
1349 	return 1;
1350 }
1351 
1352 void extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1353 {
1354 	unsigned long index = start >> PAGE_SHIFT;
1355 	unsigned long end_index = end >> PAGE_SHIFT;
1356 	struct page *page;
1357 
1358 	while (index <= end_index) {
1359 		page = find_get_page(inode->i_mapping, index);
1360 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1361 		clear_page_dirty_for_io(page);
1362 		put_page(page);
1363 		index++;
1364 	}
1365 }
1366 
1367 void extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1368 {
1369 	unsigned long index = start >> PAGE_SHIFT;
1370 	unsigned long end_index = end >> PAGE_SHIFT;
1371 	struct page *page;
1372 
1373 	while (index <= end_index) {
1374 		page = find_get_page(inode->i_mapping, index);
1375 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1376 		__set_page_dirty_nobuffers(page);
1377 		account_page_redirty(page);
1378 		put_page(page);
1379 		index++;
1380 	}
1381 }
1382 
1383 /* find the first state struct with 'bits' set after 'start', and
1384  * return it.  tree->lock must be held.  NULL will returned if
1385  * nothing was found after 'start'
1386  */
1387 static struct extent_state *
1388 find_first_extent_bit_state(struct extent_io_tree *tree,
1389 			    u64 start, unsigned bits)
1390 {
1391 	struct rb_node *node;
1392 	struct extent_state *state;
1393 
1394 	/*
1395 	 * this search will find all the extents that end after
1396 	 * our range starts.
1397 	 */
1398 	node = tree_search(tree, start);
1399 	if (!node)
1400 		goto out;
1401 
1402 	while (1) {
1403 		state = rb_entry(node, struct extent_state, rb_node);
1404 		if (state->end >= start && (state->state & bits))
1405 			return state;
1406 
1407 		node = rb_next(node);
1408 		if (!node)
1409 			break;
1410 	}
1411 out:
1412 	return NULL;
1413 }
1414 
1415 /*
1416  * find the first offset in the io tree with 'bits' set. zero is
1417  * returned if we find something, and *start_ret and *end_ret are
1418  * set to reflect the state struct that was found.
1419  *
1420  * If nothing was found, 1 is returned. If found something, return 0.
1421  */
1422 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1423 			  u64 *start_ret, u64 *end_ret, unsigned bits,
1424 			  struct extent_state **cached_state)
1425 {
1426 	struct extent_state *state;
1427 	struct rb_node *n;
1428 	int ret = 1;
1429 
1430 	spin_lock(&tree->lock);
1431 	if (cached_state && *cached_state) {
1432 		state = *cached_state;
1433 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1434 			n = rb_next(&state->rb_node);
1435 			while (n) {
1436 				state = rb_entry(n, struct extent_state,
1437 						 rb_node);
1438 				if (state->state & bits)
1439 					goto got_it;
1440 				n = rb_next(n);
1441 			}
1442 			free_extent_state(*cached_state);
1443 			*cached_state = NULL;
1444 			goto out;
1445 		}
1446 		free_extent_state(*cached_state);
1447 		*cached_state = NULL;
1448 	}
1449 
1450 	state = find_first_extent_bit_state(tree, start, bits);
1451 got_it:
1452 	if (state) {
1453 		cache_state_if_flags(state, cached_state, 0);
1454 		*start_ret = state->start;
1455 		*end_ret = state->end;
1456 		ret = 0;
1457 	}
1458 out:
1459 	spin_unlock(&tree->lock);
1460 	return ret;
1461 }
1462 
1463 /*
1464  * find a contiguous range of bytes in the file marked as delalloc, not
1465  * more than 'max_bytes'.  start and end are used to return the range,
1466  *
1467  * 1 is returned if we find something, 0 if nothing was in the tree
1468  */
1469 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1470 					u64 *start, u64 *end, u64 max_bytes,
1471 					struct extent_state **cached_state)
1472 {
1473 	struct rb_node *node;
1474 	struct extent_state *state;
1475 	u64 cur_start = *start;
1476 	u64 found = 0;
1477 	u64 total_bytes = 0;
1478 
1479 	spin_lock(&tree->lock);
1480 
1481 	/*
1482 	 * this search will find all the extents that end after
1483 	 * our range starts.
1484 	 */
1485 	node = tree_search(tree, cur_start);
1486 	if (!node) {
1487 		if (!found)
1488 			*end = (u64)-1;
1489 		goto out;
1490 	}
1491 
1492 	while (1) {
1493 		state = rb_entry(node, struct extent_state, rb_node);
1494 		if (found && (state->start != cur_start ||
1495 			      (state->state & EXTENT_BOUNDARY))) {
1496 			goto out;
1497 		}
1498 		if (!(state->state & EXTENT_DELALLOC)) {
1499 			if (!found)
1500 				*end = state->end;
1501 			goto out;
1502 		}
1503 		if (!found) {
1504 			*start = state->start;
1505 			*cached_state = state;
1506 			refcount_inc(&state->refs);
1507 		}
1508 		found++;
1509 		*end = state->end;
1510 		cur_start = state->end + 1;
1511 		node = rb_next(node);
1512 		total_bytes += state->end - state->start + 1;
1513 		if (total_bytes >= max_bytes)
1514 			break;
1515 		if (!node)
1516 			break;
1517 	}
1518 out:
1519 	spin_unlock(&tree->lock);
1520 	return found;
1521 }
1522 
1523 static int __process_pages_contig(struct address_space *mapping,
1524 				  struct page *locked_page,
1525 				  pgoff_t start_index, pgoff_t end_index,
1526 				  unsigned long page_ops, pgoff_t *index_ret);
1527 
1528 static noinline void __unlock_for_delalloc(struct inode *inode,
1529 					   struct page *locked_page,
1530 					   u64 start, u64 end)
1531 {
1532 	unsigned long index = start >> PAGE_SHIFT;
1533 	unsigned long end_index = end >> PAGE_SHIFT;
1534 
1535 	ASSERT(locked_page);
1536 	if (index == locked_page->index && end_index == index)
1537 		return;
1538 
1539 	__process_pages_contig(inode->i_mapping, locked_page, index, end_index,
1540 			       PAGE_UNLOCK, NULL);
1541 }
1542 
1543 static noinline int lock_delalloc_pages(struct inode *inode,
1544 					struct page *locked_page,
1545 					u64 delalloc_start,
1546 					u64 delalloc_end)
1547 {
1548 	unsigned long index = delalloc_start >> PAGE_SHIFT;
1549 	unsigned long index_ret = index;
1550 	unsigned long end_index = delalloc_end >> PAGE_SHIFT;
1551 	int ret;
1552 
1553 	ASSERT(locked_page);
1554 	if (index == locked_page->index && index == end_index)
1555 		return 0;
1556 
1557 	ret = __process_pages_contig(inode->i_mapping, locked_page, index,
1558 				     end_index, PAGE_LOCK, &index_ret);
1559 	if (ret == -EAGAIN)
1560 		__unlock_for_delalloc(inode, locked_page, delalloc_start,
1561 				      (u64)index_ret << PAGE_SHIFT);
1562 	return ret;
1563 }
1564 
1565 /*
1566  * find a contiguous range of bytes in the file marked as delalloc, not
1567  * more than 'max_bytes'.  start and end are used to return the range,
1568  *
1569  * 1 is returned if we find something, 0 if nothing was in the tree
1570  */
1571 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1572 				    struct extent_io_tree *tree,
1573 				    struct page *locked_page, u64 *start,
1574 				    u64 *end, u64 max_bytes)
1575 {
1576 	u64 delalloc_start;
1577 	u64 delalloc_end;
1578 	u64 found;
1579 	struct extent_state *cached_state = NULL;
1580 	int ret;
1581 	int loops = 0;
1582 
1583 again:
1584 	/* step one, find a bunch of delalloc bytes starting at start */
1585 	delalloc_start = *start;
1586 	delalloc_end = 0;
1587 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1588 				    max_bytes, &cached_state);
1589 	if (!found || delalloc_end <= *start) {
1590 		*start = delalloc_start;
1591 		*end = delalloc_end;
1592 		free_extent_state(cached_state);
1593 		return 0;
1594 	}
1595 
1596 	/*
1597 	 * start comes from the offset of locked_page.  We have to lock
1598 	 * pages in order, so we can't process delalloc bytes before
1599 	 * locked_page
1600 	 */
1601 	if (delalloc_start < *start)
1602 		delalloc_start = *start;
1603 
1604 	/*
1605 	 * make sure to limit the number of pages we try to lock down
1606 	 */
1607 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1608 		delalloc_end = delalloc_start + max_bytes - 1;
1609 
1610 	/* step two, lock all the pages after the page that has start */
1611 	ret = lock_delalloc_pages(inode, locked_page,
1612 				  delalloc_start, delalloc_end);
1613 	if (ret == -EAGAIN) {
1614 		/* some of the pages are gone, lets avoid looping by
1615 		 * shortening the size of the delalloc range we're searching
1616 		 */
1617 		free_extent_state(cached_state);
1618 		cached_state = NULL;
1619 		if (!loops) {
1620 			max_bytes = PAGE_SIZE;
1621 			loops = 1;
1622 			goto again;
1623 		} else {
1624 			found = 0;
1625 			goto out_failed;
1626 		}
1627 	}
1628 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1629 
1630 	/* step three, lock the state bits for the whole range */
1631 	lock_extent_bits(tree, delalloc_start, delalloc_end, &cached_state);
1632 
1633 	/* then test to make sure it is all still delalloc */
1634 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1635 			     EXTENT_DELALLOC, 1, cached_state);
1636 	if (!ret) {
1637 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1638 				     &cached_state);
1639 		__unlock_for_delalloc(inode, locked_page,
1640 			      delalloc_start, delalloc_end);
1641 		cond_resched();
1642 		goto again;
1643 	}
1644 	free_extent_state(cached_state);
1645 	*start = delalloc_start;
1646 	*end = delalloc_end;
1647 out_failed:
1648 	return found;
1649 }
1650 
1651 static int __process_pages_contig(struct address_space *mapping,
1652 				  struct page *locked_page,
1653 				  pgoff_t start_index, pgoff_t end_index,
1654 				  unsigned long page_ops, pgoff_t *index_ret)
1655 {
1656 	unsigned long nr_pages = end_index - start_index + 1;
1657 	unsigned long pages_locked = 0;
1658 	pgoff_t index = start_index;
1659 	struct page *pages[16];
1660 	unsigned ret;
1661 	int err = 0;
1662 	int i;
1663 
1664 	if (page_ops & PAGE_LOCK) {
1665 		ASSERT(page_ops == PAGE_LOCK);
1666 		ASSERT(index_ret && *index_ret == start_index);
1667 	}
1668 
1669 	if ((page_ops & PAGE_SET_ERROR) && nr_pages > 0)
1670 		mapping_set_error(mapping, -EIO);
1671 
1672 	while (nr_pages > 0) {
1673 		ret = find_get_pages_contig(mapping, index,
1674 				     min_t(unsigned long,
1675 				     nr_pages, ARRAY_SIZE(pages)), pages);
1676 		if (ret == 0) {
1677 			/*
1678 			 * Only if we're going to lock these pages,
1679 			 * can we find nothing at @index.
1680 			 */
1681 			ASSERT(page_ops & PAGE_LOCK);
1682 			err = -EAGAIN;
1683 			goto out;
1684 		}
1685 
1686 		for (i = 0; i < ret; i++) {
1687 			if (page_ops & PAGE_SET_PRIVATE2)
1688 				SetPagePrivate2(pages[i]);
1689 
1690 			if (pages[i] == locked_page) {
1691 				put_page(pages[i]);
1692 				pages_locked++;
1693 				continue;
1694 			}
1695 			if (page_ops & PAGE_CLEAR_DIRTY)
1696 				clear_page_dirty_for_io(pages[i]);
1697 			if (page_ops & PAGE_SET_WRITEBACK)
1698 				set_page_writeback(pages[i]);
1699 			if (page_ops & PAGE_SET_ERROR)
1700 				SetPageError(pages[i]);
1701 			if (page_ops & PAGE_END_WRITEBACK)
1702 				end_page_writeback(pages[i]);
1703 			if (page_ops & PAGE_UNLOCK)
1704 				unlock_page(pages[i]);
1705 			if (page_ops & PAGE_LOCK) {
1706 				lock_page(pages[i]);
1707 				if (!PageDirty(pages[i]) ||
1708 				    pages[i]->mapping != mapping) {
1709 					unlock_page(pages[i]);
1710 					put_page(pages[i]);
1711 					err = -EAGAIN;
1712 					goto out;
1713 				}
1714 			}
1715 			put_page(pages[i]);
1716 			pages_locked++;
1717 		}
1718 		nr_pages -= ret;
1719 		index += ret;
1720 		cond_resched();
1721 	}
1722 out:
1723 	if (err && index_ret)
1724 		*index_ret = start_index + pages_locked - 1;
1725 	return err;
1726 }
1727 
1728 void extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1729 				 u64 delalloc_end, struct page *locked_page,
1730 				 unsigned clear_bits,
1731 				 unsigned long page_ops)
1732 {
1733 	clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, clear_bits, 1, 0,
1734 			 NULL);
1735 
1736 	__process_pages_contig(inode->i_mapping, locked_page,
1737 			       start >> PAGE_SHIFT, end >> PAGE_SHIFT,
1738 			       page_ops, NULL);
1739 }
1740 
1741 /*
1742  * count the number of bytes in the tree that have a given bit(s)
1743  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1744  * cached.  The total number found is returned.
1745  */
1746 u64 count_range_bits(struct extent_io_tree *tree,
1747 		     u64 *start, u64 search_end, u64 max_bytes,
1748 		     unsigned bits, int contig)
1749 {
1750 	struct rb_node *node;
1751 	struct extent_state *state;
1752 	u64 cur_start = *start;
1753 	u64 total_bytes = 0;
1754 	u64 last = 0;
1755 	int found = 0;
1756 
1757 	if (WARN_ON(search_end <= cur_start))
1758 		return 0;
1759 
1760 	spin_lock(&tree->lock);
1761 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1762 		total_bytes = tree->dirty_bytes;
1763 		goto out;
1764 	}
1765 	/*
1766 	 * this search will find all the extents that end after
1767 	 * our range starts.
1768 	 */
1769 	node = tree_search(tree, cur_start);
1770 	if (!node)
1771 		goto out;
1772 
1773 	while (1) {
1774 		state = rb_entry(node, struct extent_state, rb_node);
1775 		if (state->start > search_end)
1776 			break;
1777 		if (contig && found && state->start > last + 1)
1778 			break;
1779 		if (state->end >= cur_start && (state->state & bits) == bits) {
1780 			total_bytes += min(search_end, state->end) + 1 -
1781 				       max(cur_start, state->start);
1782 			if (total_bytes >= max_bytes)
1783 				break;
1784 			if (!found) {
1785 				*start = max(cur_start, state->start);
1786 				found = 1;
1787 			}
1788 			last = state->end;
1789 		} else if (contig && found) {
1790 			break;
1791 		}
1792 		node = rb_next(node);
1793 		if (!node)
1794 			break;
1795 	}
1796 out:
1797 	spin_unlock(&tree->lock);
1798 	return total_bytes;
1799 }
1800 
1801 /*
1802  * set the private field for a given byte offset in the tree.  If there isn't
1803  * an extent_state there already, this does nothing.
1804  */
1805 static noinline int set_state_failrec(struct extent_io_tree *tree, u64 start,
1806 		struct io_failure_record *failrec)
1807 {
1808 	struct rb_node *node;
1809 	struct extent_state *state;
1810 	int ret = 0;
1811 
1812 	spin_lock(&tree->lock);
1813 	/*
1814 	 * this search will find all the extents that end after
1815 	 * our range starts.
1816 	 */
1817 	node = tree_search(tree, start);
1818 	if (!node) {
1819 		ret = -ENOENT;
1820 		goto out;
1821 	}
1822 	state = rb_entry(node, struct extent_state, rb_node);
1823 	if (state->start != start) {
1824 		ret = -ENOENT;
1825 		goto out;
1826 	}
1827 	state->failrec = failrec;
1828 out:
1829 	spin_unlock(&tree->lock);
1830 	return ret;
1831 }
1832 
1833 static noinline int get_state_failrec(struct extent_io_tree *tree, u64 start,
1834 		struct io_failure_record **failrec)
1835 {
1836 	struct rb_node *node;
1837 	struct extent_state *state;
1838 	int ret = 0;
1839 
1840 	spin_lock(&tree->lock);
1841 	/*
1842 	 * this search will find all the extents that end after
1843 	 * our range starts.
1844 	 */
1845 	node = tree_search(tree, start);
1846 	if (!node) {
1847 		ret = -ENOENT;
1848 		goto out;
1849 	}
1850 	state = rb_entry(node, struct extent_state, rb_node);
1851 	if (state->start != start) {
1852 		ret = -ENOENT;
1853 		goto out;
1854 	}
1855 	*failrec = state->failrec;
1856 out:
1857 	spin_unlock(&tree->lock);
1858 	return ret;
1859 }
1860 
1861 /*
1862  * searches a range in the state tree for a given mask.
1863  * If 'filled' == 1, this returns 1 only if every extent in the tree
1864  * has the bits set.  Otherwise, 1 is returned if any bit in the
1865  * range is found set.
1866  */
1867 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1868 		   unsigned bits, int filled, struct extent_state *cached)
1869 {
1870 	struct extent_state *state = NULL;
1871 	struct rb_node *node;
1872 	int bitset = 0;
1873 
1874 	spin_lock(&tree->lock);
1875 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1876 	    cached->end > start)
1877 		node = &cached->rb_node;
1878 	else
1879 		node = tree_search(tree, start);
1880 	while (node && start <= end) {
1881 		state = rb_entry(node, struct extent_state, rb_node);
1882 
1883 		if (filled && state->start > start) {
1884 			bitset = 0;
1885 			break;
1886 		}
1887 
1888 		if (state->start > end)
1889 			break;
1890 
1891 		if (state->state & bits) {
1892 			bitset = 1;
1893 			if (!filled)
1894 				break;
1895 		} else if (filled) {
1896 			bitset = 0;
1897 			break;
1898 		}
1899 
1900 		if (state->end == (u64)-1)
1901 			break;
1902 
1903 		start = state->end + 1;
1904 		if (start > end)
1905 			break;
1906 		node = rb_next(node);
1907 		if (!node) {
1908 			if (filled)
1909 				bitset = 0;
1910 			break;
1911 		}
1912 	}
1913 	spin_unlock(&tree->lock);
1914 	return bitset;
1915 }
1916 
1917 /*
1918  * helper function to set a given page up to date if all the
1919  * extents in the tree for that page are up to date
1920  */
1921 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1922 {
1923 	u64 start = page_offset(page);
1924 	u64 end = start + PAGE_SIZE - 1;
1925 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1926 		SetPageUptodate(page);
1927 }
1928 
1929 int free_io_failure(struct extent_io_tree *failure_tree,
1930 		    struct extent_io_tree *io_tree,
1931 		    struct io_failure_record *rec)
1932 {
1933 	int ret;
1934 	int err = 0;
1935 
1936 	set_state_failrec(failure_tree, rec->start, NULL);
1937 	ret = clear_extent_bits(failure_tree, rec->start,
1938 				rec->start + rec->len - 1,
1939 				EXTENT_LOCKED | EXTENT_DIRTY);
1940 	if (ret)
1941 		err = ret;
1942 
1943 	ret = clear_extent_bits(io_tree, rec->start,
1944 				rec->start + rec->len - 1,
1945 				EXTENT_DAMAGED);
1946 	if (ret && !err)
1947 		err = ret;
1948 
1949 	kfree(rec);
1950 	return err;
1951 }
1952 
1953 /*
1954  * this bypasses the standard btrfs submit functions deliberately, as
1955  * the standard behavior is to write all copies in a raid setup. here we only
1956  * want to write the one bad copy. so we do the mapping for ourselves and issue
1957  * submit_bio directly.
1958  * to avoid any synchronization issues, wait for the data after writing, which
1959  * actually prevents the read that triggered the error from finishing.
1960  * currently, there can be no more than two copies of every data bit. thus,
1961  * exactly one rewrite is required.
1962  */
1963 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 ino, u64 start,
1964 		      u64 length, u64 logical, struct page *page,
1965 		      unsigned int pg_offset, int mirror_num)
1966 {
1967 	struct bio *bio;
1968 	struct btrfs_device *dev;
1969 	u64 map_length = 0;
1970 	u64 sector;
1971 	struct btrfs_bio *bbio = NULL;
1972 	int ret;
1973 
1974 	ASSERT(!(fs_info->sb->s_flags & SB_RDONLY));
1975 	BUG_ON(!mirror_num);
1976 
1977 	bio = btrfs_io_bio_alloc(1);
1978 	bio->bi_iter.bi_size = 0;
1979 	map_length = length;
1980 
1981 	/*
1982 	 * Avoid races with device replace and make sure our bbio has devices
1983 	 * associated to its stripes that don't go away while we are doing the
1984 	 * read repair operation.
1985 	 */
1986 	btrfs_bio_counter_inc_blocked(fs_info);
1987 	if (btrfs_is_parity_mirror(fs_info, logical, length)) {
1988 		/*
1989 		 * Note that we don't use BTRFS_MAP_WRITE because it's supposed
1990 		 * to update all raid stripes, but here we just want to correct
1991 		 * bad stripe, thus BTRFS_MAP_READ is abused to only get the bad
1992 		 * stripe's dev and sector.
1993 		 */
1994 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, logical,
1995 				      &map_length, &bbio, 0);
1996 		if (ret) {
1997 			btrfs_bio_counter_dec(fs_info);
1998 			bio_put(bio);
1999 			return -EIO;
2000 		}
2001 		ASSERT(bbio->mirror_num == 1);
2002 	} else {
2003 		ret = btrfs_map_block(fs_info, BTRFS_MAP_WRITE, logical,
2004 				      &map_length, &bbio, mirror_num);
2005 		if (ret) {
2006 			btrfs_bio_counter_dec(fs_info);
2007 			bio_put(bio);
2008 			return -EIO;
2009 		}
2010 		BUG_ON(mirror_num != bbio->mirror_num);
2011 	}
2012 
2013 	sector = bbio->stripes[bbio->mirror_num - 1].physical >> 9;
2014 	bio->bi_iter.bi_sector = sector;
2015 	dev = bbio->stripes[bbio->mirror_num - 1].dev;
2016 	btrfs_put_bbio(bbio);
2017 	if (!dev || !dev->bdev ||
2018 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
2019 		btrfs_bio_counter_dec(fs_info);
2020 		bio_put(bio);
2021 		return -EIO;
2022 	}
2023 	bio_set_dev(bio, dev->bdev);
2024 	bio->bi_opf = REQ_OP_WRITE | REQ_SYNC;
2025 	bio_add_page(bio, page, length, pg_offset);
2026 
2027 	if (btrfsic_submit_bio_wait(bio)) {
2028 		/* try to remap that extent elsewhere? */
2029 		btrfs_bio_counter_dec(fs_info);
2030 		bio_put(bio);
2031 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2032 		return -EIO;
2033 	}
2034 
2035 	btrfs_info_rl_in_rcu(fs_info,
2036 		"read error corrected: ino %llu off %llu (dev %s sector %llu)",
2037 				  ino, start,
2038 				  rcu_str_deref(dev->name), sector);
2039 	btrfs_bio_counter_dec(fs_info);
2040 	bio_put(bio);
2041 	return 0;
2042 }
2043 
2044 int repair_eb_io_failure(struct btrfs_fs_info *fs_info,
2045 			 struct extent_buffer *eb, int mirror_num)
2046 {
2047 	u64 start = eb->start;
2048 	int i, num_pages = num_extent_pages(eb);
2049 	int ret = 0;
2050 
2051 	if (sb_rdonly(fs_info->sb))
2052 		return -EROFS;
2053 
2054 	for (i = 0; i < num_pages; i++) {
2055 		struct page *p = eb->pages[i];
2056 
2057 		ret = repair_io_failure(fs_info, 0, start, PAGE_SIZE, start, p,
2058 					start - page_offset(p), mirror_num);
2059 		if (ret)
2060 			break;
2061 		start += PAGE_SIZE;
2062 	}
2063 
2064 	return ret;
2065 }
2066 
2067 /*
2068  * each time an IO finishes, we do a fast check in the IO failure tree
2069  * to see if we need to process or clean up an io_failure_record
2070  */
2071 int clean_io_failure(struct btrfs_fs_info *fs_info,
2072 		     struct extent_io_tree *failure_tree,
2073 		     struct extent_io_tree *io_tree, u64 start,
2074 		     struct page *page, u64 ino, unsigned int pg_offset)
2075 {
2076 	u64 private;
2077 	struct io_failure_record *failrec;
2078 	struct extent_state *state;
2079 	int num_copies;
2080 	int ret;
2081 
2082 	private = 0;
2083 	ret = count_range_bits(failure_tree, &private, (u64)-1, 1,
2084 			       EXTENT_DIRTY, 0);
2085 	if (!ret)
2086 		return 0;
2087 
2088 	ret = get_state_failrec(failure_tree, start, &failrec);
2089 	if (ret)
2090 		return 0;
2091 
2092 	BUG_ON(!failrec->this_mirror);
2093 
2094 	if (failrec->in_validation) {
2095 		/* there was no real error, just free the record */
2096 		btrfs_debug(fs_info,
2097 			"clean_io_failure: freeing dummy error at %llu",
2098 			failrec->start);
2099 		goto out;
2100 	}
2101 	if (sb_rdonly(fs_info->sb))
2102 		goto out;
2103 
2104 	spin_lock(&io_tree->lock);
2105 	state = find_first_extent_bit_state(io_tree,
2106 					    failrec->start,
2107 					    EXTENT_LOCKED);
2108 	spin_unlock(&io_tree->lock);
2109 
2110 	if (state && state->start <= failrec->start &&
2111 	    state->end >= failrec->start + failrec->len - 1) {
2112 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2113 					      failrec->len);
2114 		if (num_copies > 1)  {
2115 			repair_io_failure(fs_info, ino, start, failrec->len,
2116 					  failrec->logical, page, pg_offset,
2117 					  failrec->failed_mirror);
2118 		}
2119 	}
2120 
2121 out:
2122 	free_io_failure(failure_tree, io_tree, failrec);
2123 
2124 	return 0;
2125 }
2126 
2127 /*
2128  * Can be called when
2129  * - hold extent lock
2130  * - under ordered extent
2131  * - the inode is freeing
2132  */
2133 void btrfs_free_io_failure_record(struct btrfs_inode *inode, u64 start, u64 end)
2134 {
2135 	struct extent_io_tree *failure_tree = &inode->io_failure_tree;
2136 	struct io_failure_record *failrec;
2137 	struct extent_state *state, *next;
2138 
2139 	if (RB_EMPTY_ROOT(&failure_tree->state))
2140 		return;
2141 
2142 	spin_lock(&failure_tree->lock);
2143 	state = find_first_extent_bit_state(failure_tree, start, EXTENT_DIRTY);
2144 	while (state) {
2145 		if (state->start > end)
2146 			break;
2147 
2148 		ASSERT(state->end <= end);
2149 
2150 		next = next_state(state);
2151 
2152 		failrec = state->failrec;
2153 		free_extent_state(state);
2154 		kfree(failrec);
2155 
2156 		state = next;
2157 	}
2158 	spin_unlock(&failure_tree->lock);
2159 }
2160 
2161 int btrfs_get_io_failure_record(struct inode *inode, u64 start, u64 end,
2162 		struct io_failure_record **failrec_ret)
2163 {
2164 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2165 	struct io_failure_record *failrec;
2166 	struct extent_map *em;
2167 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2168 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2169 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2170 	int ret;
2171 	u64 logical;
2172 
2173 	ret = get_state_failrec(failure_tree, start, &failrec);
2174 	if (ret) {
2175 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2176 		if (!failrec)
2177 			return -ENOMEM;
2178 
2179 		failrec->start = start;
2180 		failrec->len = end - start + 1;
2181 		failrec->this_mirror = 0;
2182 		failrec->bio_flags = 0;
2183 		failrec->in_validation = 0;
2184 
2185 		read_lock(&em_tree->lock);
2186 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2187 		if (!em) {
2188 			read_unlock(&em_tree->lock);
2189 			kfree(failrec);
2190 			return -EIO;
2191 		}
2192 
2193 		if (em->start > start || em->start + em->len <= start) {
2194 			free_extent_map(em);
2195 			em = NULL;
2196 		}
2197 		read_unlock(&em_tree->lock);
2198 		if (!em) {
2199 			kfree(failrec);
2200 			return -EIO;
2201 		}
2202 
2203 		logical = start - em->start;
2204 		logical = em->block_start + logical;
2205 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2206 			logical = em->block_start;
2207 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2208 			extent_set_compress_type(&failrec->bio_flags,
2209 						 em->compress_type);
2210 		}
2211 
2212 		btrfs_debug(fs_info,
2213 			"Get IO Failure Record: (new) logical=%llu, start=%llu, len=%llu",
2214 			logical, start, failrec->len);
2215 
2216 		failrec->logical = logical;
2217 		free_extent_map(em);
2218 
2219 		/* set the bits in the private failure tree */
2220 		ret = set_extent_bits(failure_tree, start, end,
2221 					EXTENT_LOCKED | EXTENT_DIRTY);
2222 		if (ret >= 0)
2223 			ret = set_state_failrec(failure_tree, start, failrec);
2224 		/* set the bits in the inode's tree */
2225 		if (ret >= 0)
2226 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED);
2227 		if (ret < 0) {
2228 			kfree(failrec);
2229 			return ret;
2230 		}
2231 	} else {
2232 		btrfs_debug(fs_info,
2233 			"Get IO Failure Record: (found) logical=%llu, start=%llu, len=%llu, validation=%d",
2234 			failrec->logical, failrec->start, failrec->len,
2235 			failrec->in_validation);
2236 		/*
2237 		 * when data can be on disk more than twice, add to failrec here
2238 		 * (e.g. with a list for failed_mirror) to make
2239 		 * clean_io_failure() clean all those errors at once.
2240 		 */
2241 	}
2242 
2243 	*failrec_ret = failrec;
2244 
2245 	return 0;
2246 }
2247 
2248 bool btrfs_check_repairable(struct inode *inode, unsigned failed_bio_pages,
2249 			   struct io_failure_record *failrec, int failed_mirror)
2250 {
2251 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2252 	int num_copies;
2253 
2254 	num_copies = btrfs_num_copies(fs_info, failrec->logical, failrec->len);
2255 	if (num_copies == 1) {
2256 		/*
2257 		 * we only have a single copy of the data, so don't bother with
2258 		 * all the retry and error correction code that follows. no
2259 		 * matter what the error is, it is very likely to persist.
2260 		 */
2261 		btrfs_debug(fs_info,
2262 			"Check Repairable: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d",
2263 			num_copies, failrec->this_mirror, failed_mirror);
2264 		return false;
2265 	}
2266 
2267 	/*
2268 	 * there are two premises:
2269 	 *	a) deliver good data to the caller
2270 	 *	b) correct the bad sectors on disk
2271 	 */
2272 	if (failed_bio_pages > 1) {
2273 		/*
2274 		 * to fulfill b), we need to know the exact failing sectors, as
2275 		 * we don't want to rewrite any more than the failed ones. thus,
2276 		 * we need separate read requests for the failed bio
2277 		 *
2278 		 * if the following BUG_ON triggers, our validation request got
2279 		 * merged. we need separate requests for our algorithm to work.
2280 		 */
2281 		BUG_ON(failrec->in_validation);
2282 		failrec->in_validation = 1;
2283 		failrec->this_mirror = failed_mirror;
2284 	} else {
2285 		/*
2286 		 * we're ready to fulfill a) and b) alongside. get a good copy
2287 		 * of the failed sector and if we succeed, we have setup
2288 		 * everything for repair_io_failure to do the rest for us.
2289 		 */
2290 		if (failrec->in_validation) {
2291 			BUG_ON(failrec->this_mirror != failed_mirror);
2292 			failrec->in_validation = 0;
2293 			failrec->this_mirror = 0;
2294 		}
2295 		failrec->failed_mirror = failed_mirror;
2296 		failrec->this_mirror++;
2297 		if (failrec->this_mirror == failed_mirror)
2298 			failrec->this_mirror++;
2299 	}
2300 
2301 	if (failrec->this_mirror > num_copies) {
2302 		btrfs_debug(fs_info,
2303 			"Check Repairable: (fail) num_copies=%d, next_mirror %d, failed_mirror %d",
2304 			num_copies, failrec->this_mirror, failed_mirror);
2305 		return false;
2306 	}
2307 
2308 	return true;
2309 }
2310 
2311 
2312 struct bio *btrfs_create_repair_bio(struct inode *inode, struct bio *failed_bio,
2313 				    struct io_failure_record *failrec,
2314 				    struct page *page, int pg_offset, int icsum,
2315 				    bio_end_io_t *endio_func, void *data)
2316 {
2317 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2318 	struct bio *bio;
2319 	struct btrfs_io_bio *btrfs_failed_bio;
2320 	struct btrfs_io_bio *btrfs_bio;
2321 
2322 	bio = btrfs_io_bio_alloc(1);
2323 	bio->bi_end_io = endio_func;
2324 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2325 	bio_set_dev(bio, fs_info->fs_devices->latest_bdev);
2326 	bio->bi_iter.bi_size = 0;
2327 	bio->bi_private = data;
2328 
2329 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2330 	if (btrfs_failed_bio->csum) {
2331 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2332 
2333 		btrfs_bio = btrfs_io_bio(bio);
2334 		btrfs_bio->csum = btrfs_bio->csum_inline;
2335 		icsum *= csum_size;
2336 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + icsum,
2337 		       csum_size);
2338 	}
2339 
2340 	bio_add_page(bio, page, failrec->len, pg_offset);
2341 
2342 	return bio;
2343 }
2344 
2345 /*
2346  * this is a generic handler for readpage errors (default
2347  * readpage_io_failed_hook). if other copies exist, read those and write back
2348  * good data to the failed position. does not investigate in remapping the
2349  * failed extent elsewhere, hoping the device will be smart enough to do this as
2350  * needed
2351  */
2352 
2353 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2354 			      struct page *page, u64 start, u64 end,
2355 			      int failed_mirror)
2356 {
2357 	struct io_failure_record *failrec;
2358 	struct inode *inode = page->mapping->host;
2359 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2360 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2361 	struct bio *bio;
2362 	int read_mode = 0;
2363 	blk_status_t status;
2364 	int ret;
2365 	unsigned failed_bio_pages = bio_pages_all(failed_bio);
2366 
2367 	BUG_ON(bio_op(failed_bio) == REQ_OP_WRITE);
2368 
2369 	ret = btrfs_get_io_failure_record(inode, start, end, &failrec);
2370 	if (ret)
2371 		return ret;
2372 
2373 	if (!btrfs_check_repairable(inode, failed_bio_pages, failrec,
2374 				    failed_mirror)) {
2375 		free_io_failure(failure_tree, tree, failrec);
2376 		return -EIO;
2377 	}
2378 
2379 	if (failed_bio_pages > 1)
2380 		read_mode |= REQ_FAILFAST_DEV;
2381 
2382 	phy_offset >>= inode->i_sb->s_blocksize_bits;
2383 	bio = btrfs_create_repair_bio(inode, failed_bio, failrec, page,
2384 				      start - page_offset(page),
2385 				      (int)phy_offset, failed_bio->bi_end_io,
2386 				      NULL);
2387 	bio->bi_opf = REQ_OP_READ | read_mode;
2388 
2389 	btrfs_debug(btrfs_sb(inode->i_sb),
2390 		"Repair Read Error: submitting new read[%#x] to this_mirror=%d, in_validation=%d",
2391 		read_mode, failrec->this_mirror, failrec->in_validation);
2392 
2393 	status = tree->ops->submit_bio_hook(tree->private_data, bio, failrec->this_mirror,
2394 					 failrec->bio_flags, 0);
2395 	if (status) {
2396 		free_io_failure(failure_tree, tree, failrec);
2397 		bio_put(bio);
2398 		ret = blk_status_to_errno(status);
2399 	}
2400 
2401 	return ret;
2402 }
2403 
2404 /* lots and lots of room for performance fixes in the end_bio funcs */
2405 
2406 void end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2407 {
2408 	int uptodate = (err == 0);
2409 	struct extent_io_tree *tree;
2410 	int ret = 0;
2411 
2412 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2413 
2414 	if (tree->ops && tree->ops->writepage_end_io_hook)
2415 		tree->ops->writepage_end_io_hook(page, start, end, NULL,
2416 				uptodate);
2417 
2418 	if (!uptodate) {
2419 		ClearPageUptodate(page);
2420 		SetPageError(page);
2421 		ret = err < 0 ? err : -EIO;
2422 		mapping_set_error(page->mapping, ret);
2423 	}
2424 }
2425 
2426 /*
2427  * after a writepage IO is done, we need to:
2428  * clear the uptodate bits on error
2429  * clear the writeback bits in the extent tree for this IO
2430  * end_page_writeback if the page has no more pending IO
2431  *
2432  * Scheduling is not allowed, so the extent state tree is expected
2433  * to have one and only one object corresponding to this IO.
2434  */
2435 static void end_bio_extent_writepage(struct bio *bio)
2436 {
2437 	int error = blk_status_to_errno(bio->bi_status);
2438 	struct bio_vec *bvec;
2439 	u64 start;
2440 	u64 end;
2441 	int i;
2442 
2443 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2444 	bio_for_each_segment_all(bvec, bio, i) {
2445 		struct page *page = bvec->bv_page;
2446 		struct inode *inode = page->mapping->host;
2447 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2448 
2449 		/* We always issue full-page reads, but if some block
2450 		 * in a page fails to read, blk_update_request() will
2451 		 * advance bv_offset and adjust bv_len to compensate.
2452 		 * Print a warning for nonzero offsets, and an error
2453 		 * if they don't add up to a full page.  */
2454 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2455 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2456 				btrfs_err(fs_info,
2457 				   "partial page write in btrfs with offset %u and length %u",
2458 					bvec->bv_offset, bvec->bv_len);
2459 			else
2460 				btrfs_info(fs_info,
2461 				   "incomplete page write in btrfs with offset %u and length %u",
2462 					bvec->bv_offset, bvec->bv_len);
2463 		}
2464 
2465 		start = page_offset(page);
2466 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2467 
2468 		end_extent_writepage(page, error, start, end);
2469 		end_page_writeback(page);
2470 	}
2471 
2472 	bio_put(bio);
2473 }
2474 
2475 static void
2476 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2477 			      int uptodate)
2478 {
2479 	struct extent_state *cached = NULL;
2480 	u64 end = start + len - 1;
2481 
2482 	if (uptodate && tree->track_uptodate)
2483 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2484 	unlock_extent_cached_atomic(tree, start, end, &cached);
2485 }
2486 
2487 /*
2488  * after a readpage IO is done, we need to:
2489  * clear the uptodate bits on error
2490  * set the uptodate bits if things worked
2491  * set the page up to date if all extents in the tree are uptodate
2492  * clear the lock bit in the extent tree
2493  * unlock the page if there are no other extents locked for it
2494  *
2495  * Scheduling is not allowed, so the extent state tree is expected
2496  * to have one and only one object corresponding to this IO.
2497  */
2498 static void end_bio_extent_readpage(struct bio *bio)
2499 {
2500 	struct bio_vec *bvec;
2501 	int uptodate = !bio->bi_status;
2502 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2503 	struct extent_io_tree *tree, *failure_tree;
2504 	u64 offset = 0;
2505 	u64 start;
2506 	u64 end;
2507 	u64 len;
2508 	u64 extent_start = 0;
2509 	u64 extent_len = 0;
2510 	int mirror;
2511 	int ret;
2512 	int i;
2513 
2514 	ASSERT(!bio_flagged(bio, BIO_CLONED));
2515 	bio_for_each_segment_all(bvec, bio, i) {
2516 		struct page *page = bvec->bv_page;
2517 		struct inode *inode = page->mapping->host;
2518 		struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
2519 
2520 		btrfs_debug(fs_info,
2521 			"end_bio_extent_readpage: bi_sector=%llu, err=%d, mirror=%u",
2522 			(u64)bio->bi_iter.bi_sector, bio->bi_status,
2523 			io_bio->mirror_num);
2524 		tree = &BTRFS_I(inode)->io_tree;
2525 		failure_tree = &BTRFS_I(inode)->io_failure_tree;
2526 
2527 		/* We always issue full-page reads, but if some block
2528 		 * in a page fails to read, blk_update_request() will
2529 		 * advance bv_offset and adjust bv_len to compensate.
2530 		 * Print a warning for nonzero offsets, and an error
2531 		 * if they don't add up to a full page.  */
2532 		if (bvec->bv_offset || bvec->bv_len != PAGE_SIZE) {
2533 			if (bvec->bv_offset + bvec->bv_len != PAGE_SIZE)
2534 				btrfs_err(fs_info,
2535 					"partial page read in btrfs with offset %u and length %u",
2536 					bvec->bv_offset, bvec->bv_len);
2537 			else
2538 				btrfs_info(fs_info,
2539 					"incomplete page read in btrfs with offset %u and length %u",
2540 					bvec->bv_offset, bvec->bv_len);
2541 		}
2542 
2543 		start = page_offset(page);
2544 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2545 		len = bvec->bv_len;
2546 
2547 		mirror = io_bio->mirror_num;
2548 		if (likely(uptodate && tree->ops)) {
2549 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2550 							      page, start, end,
2551 							      mirror);
2552 			if (ret)
2553 				uptodate = 0;
2554 			else
2555 				clean_io_failure(BTRFS_I(inode)->root->fs_info,
2556 						 failure_tree, tree, start,
2557 						 page,
2558 						 btrfs_ino(BTRFS_I(inode)), 0);
2559 		}
2560 
2561 		if (likely(uptodate))
2562 			goto readpage_ok;
2563 
2564 		if (tree->ops) {
2565 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2566 			if (ret == -EAGAIN) {
2567 				/*
2568 				 * Data inode's readpage_io_failed_hook() always
2569 				 * returns -EAGAIN.
2570 				 *
2571 				 * The generic bio_readpage_error handles errors
2572 				 * the following way: If possible, new read
2573 				 * requests are created and submitted and will
2574 				 * end up in end_bio_extent_readpage as well (if
2575 				 * we're lucky, not in the !uptodate case). In
2576 				 * that case it returns 0 and we just go on with
2577 				 * the next page in our bio. If it can't handle
2578 				 * the error it will return -EIO and we remain
2579 				 * responsible for that page.
2580 				 */
2581 				ret = bio_readpage_error(bio, offset, page,
2582 							 start, end, mirror);
2583 				if (ret == 0) {
2584 					uptodate = !bio->bi_status;
2585 					offset += len;
2586 					continue;
2587 				}
2588 			}
2589 
2590 			/*
2591 			 * metadata's readpage_io_failed_hook() always returns
2592 			 * -EIO and fixes nothing.  -EIO is also returned if
2593 			 * data inode error could not be fixed.
2594 			 */
2595 			ASSERT(ret == -EIO);
2596 		}
2597 readpage_ok:
2598 		if (likely(uptodate)) {
2599 			loff_t i_size = i_size_read(inode);
2600 			pgoff_t end_index = i_size >> PAGE_SHIFT;
2601 			unsigned off;
2602 
2603 			/* Zero out the end if this page straddles i_size */
2604 			off = i_size & (PAGE_SIZE-1);
2605 			if (page->index == end_index && off)
2606 				zero_user_segment(page, off, PAGE_SIZE);
2607 			SetPageUptodate(page);
2608 		} else {
2609 			ClearPageUptodate(page);
2610 			SetPageError(page);
2611 		}
2612 		unlock_page(page);
2613 		offset += len;
2614 
2615 		if (unlikely(!uptodate)) {
2616 			if (extent_len) {
2617 				endio_readpage_release_extent(tree,
2618 							      extent_start,
2619 							      extent_len, 1);
2620 				extent_start = 0;
2621 				extent_len = 0;
2622 			}
2623 			endio_readpage_release_extent(tree, start,
2624 						      end - start + 1, 0);
2625 		} else if (!extent_len) {
2626 			extent_start = start;
2627 			extent_len = end + 1 - start;
2628 		} else if (extent_start + extent_len == start) {
2629 			extent_len += end + 1 - start;
2630 		} else {
2631 			endio_readpage_release_extent(tree, extent_start,
2632 						      extent_len, uptodate);
2633 			extent_start = start;
2634 			extent_len = end + 1 - start;
2635 		}
2636 	}
2637 
2638 	if (extent_len)
2639 		endio_readpage_release_extent(tree, extent_start, extent_len,
2640 					      uptodate);
2641 	if (io_bio->end_io)
2642 		io_bio->end_io(io_bio, blk_status_to_errno(bio->bi_status));
2643 	bio_put(bio);
2644 }
2645 
2646 /*
2647  * Initialize the members up to but not including 'bio'. Use after allocating a
2648  * new bio by bio_alloc_bioset as it does not initialize the bytes outside of
2649  * 'bio' because use of __GFP_ZERO is not supported.
2650  */
2651 static inline void btrfs_io_bio_init(struct btrfs_io_bio *btrfs_bio)
2652 {
2653 	memset(btrfs_bio, 0, offsetof(struct btrfs_io_bio, bio));
2654 }
2655 
2656 /*
2657  * The following helpers allocate a bio. As it's backed by a bioset, it'll
2658  * never fail.  We're returning a bio right now but you can call btrfs_io_bio
2659  * for the appropriate container_of magic
2660  */
2661 struct bio *btrfs_bio_alloc(struct block_device *bdev, u64 first_byte)
2662 {
2663 	struct bio *bio;
2664 
2665 	bio = bio_alloc_bioset(GFP_NOFS, BIO_MAX_PAGES, &btrfs_bioset);
2666 	bio_set_dev(bio, bdev);
2667 	bio->bi_iter.bi_sector = first_byte >> 9;
2668 	btrfs_io_bio_init(btrfs_io_bio(bio));
2669 	return bio;
2670 }
2671 
2672 struct bio *btrfs_bio_clone(struct bio *bio)
2673 {
2674 	struct btrfs_io_bio *btrfs_bio;
2675 	struct bio *new;
2676 
2677 	/* Bio allocation backed by a bioset does not fail */
2678 	new = bio_clone_fast(bio, GFP_NOFS, &btrfs_bioset);
2679 	btrfs_bio = btrfs_io_bio(new);
2680 	btrfs_io_bio_init(btrfs_bio);
2681 	btrfs_bio->iter = bio->bi_iter;
2682 	return new;
2683 }
2684 
2685 struct bio *btrfs_io_bio_alloc(unsigned int nr_iovecs)
2686 {
2687 	struct bio *bio;
2688 
2689 	/* Bio allocation backed by a bioset does not fail */
2690 	bio = bio_alloc_bioset(GFP_NOFS, nr_iovecs, &btrfs_bioset);
2691 	btrfs_io_bio_init(btrfs_io_bio(bio));
2692 	return bio;
2693 }
2694 
2695 struct bio *btrfs_bio_clone_partial(struct bio *orig, int offset, int size)
2696 {
2697 	struct bio *bio;
2698 	struct btrfs_io_bio *btrfs_bio;
2699 
2700 	/* this will never fail when it's backed by a bioset */
2701 	bio = bio_clone_fast(orig, GFP_NOFS, &btrfs_bioset);
2702 	ASSERT(bio);
2703 
2704 	btrfs_bio = btrfs_io_bio(bio);
2705 	btrfs_io_bio_init(btrfs_bio);
2706 
2707 	bio_trim(bio, offset >> 9, size >> 9);
2708 	btrfs_bio->iter = bio->bi_iter;
2709 	return bio;
2710 }
2711 
2712 static int __must_check submit_one_bio(struct bio *bio, int mirror_num,
2713 				       unsigned long bio_flags)
2714 {
2715 	blk_status_t ret = 0;
2716 	struct bio_vec *bvec = bio_last_bvec_all(bio);
2717 	struct page *page = bvec->bv_page;
2718 	struct extent_io_tree *tree = bio->bi_private;
2719 	u64 start;
2720 
2721 	start = page_offset(page) + bvec->bv_offset;
2722 
2723 	bio->bi_private = NULL;
2724 
2725 	if (tree->ops)
2726 		ret = tree->ops->submit_bio_hook(tree->private_data, bio,
2727 					   mirror_num, bio_flags, start);
2728 	else
2729 		btrfsic_submit_bio(bio);
2730 
2731 	return blk_status_to_errno(ret);
2732 }
2733 
2734 /*
2735  * @opf:	bio REQ_OP_* and REQ_* flags as one value
2736  * @tree:	tree so we can call our merge_bio hook
2737  * @wbc:	optional writeback control for io accounting
2738  * @page:	page to add to the bio
2739  * @pg_offset:	offset of the new bio or to check whether we are adding
2740  *              a contiguous page to the previous one
2741  * @size:	portion of page that we want to write
2742  * @offset:	starting offset in the page
2743  * @bdev:	attach newly created bios to this bdev
2744  * @bio_ret:	must be valid pointer, newly allocated bio will be stored there
2745  * @end_io_func:     end_io callback for new bio
2746  * @mirror_num:	     desired mirror to read/write
2747  * @prev_bio_flags:  flags of previous bio to see if we can merge the current one
2748  * @bio_flags:	flags of the current bio to see if we can merge them
2749  */
2750 static int submit_extent_page(unsigned int opf, struct extent_io_tree *tree,
2751 			      struct writeback_control *wbc,
2752 			      struct page *page, u64 offset,
2753 			      size_t size, unsigned long pg_offset,
2754 			      struct block_device *bdev,
2755 			      struct bio **bio_ret,
2756 			      bio_end_io_t end_io_func,
2757 			      int mirror_num,
2758 			      unsigned long prev_bio_flags,
2759 			      unsigned long bio_flags,
2760 			      bool force_bio_submit)
2761 {
2762 	int ret = 0;
2763 	struct bio *bio;
2764 	size_t page_size = min_t(size_t, size, PAGE_SIZE);
2765 	sector_t sector = offset >> 9;
2766 
2767 	ASSERT(bio_ret);
2768 
2769 	if (*bio_ret) {
2770 		bool contig;
2771 		bool can_merge = true;
2772 
2773 		bio = *bio_ret;
2774 		if (prev_bio_flags & EXTENT_BIO_COMPRESSED)
2775 			contig = bio->bi_iter.bi_sector == sector;
2776 		else
2777 			contig = bio_end_sector(bio) == sector;
2778 
2779 		if (tree->ops && btrfs_merge_bio_hook(page, offset, page_size,
2780 						      bio, bio_flags))
2781 			can_merge = false;
2782 
2783 		if (prev_bio_flags != bio_flags || !contig || !can_merge ||
2784 		    force_bio_submit ||
2785 		    bio_add_page(bio, page, page_size, pg_offset) < page_size) {
2786 			ret = submit_one_bio(bio, mirror_num, prev_bio_flags);
2787 			if (ret < 0) {
2788 				*bio_ret = NULL;
2789 				return ret;
2790 			}
2791 			bio = NULL;
2792 		} else {
2793 			if (wbc)
2794 				wbc_account_io(wbc, page, page_size);
2795 			return 0;
2796 		}
2797 	}
2798 
2799 	bio = btrfs_bio_alloc(bdev, offset);
2800 	bio_add_page(bio, page, page_size, pg_offset);
2801 	bio->bi_end_io = end_io_func;
2802 	bio->bi_private = tree;
2803 	bio->bi_write_hint = page->mapping->host->i_write_hint;
2804 	bio->bi_opf = opf;
2805 	if (wbc) {
2806 		wbc_init_bio(wbc, bio);
2807 		wbc_account_io(wbc, page, page_size);
2808 	}
2809 
2810 	*bio_ret = bio;
2811 
2812 	return ret;
2813 }
2814 
2815 static void attach_extent_buffer_page(struct extent_buffer *eb,
2816 				      struct page *page)
2817 {
2818 	if (!PagePrivate(page)) {
2819 		SetPagePrivate(page);
2820 		get_page(page);
2821 		set_page_private(page, (unsigned long)eb);
2822 	} else {
2823 		WARN_ON(page->private != (unsigned long)eb);
2824 	}
2825 }
2826 
2827 void set_page_extent_mapped(struct page *page)
2828 {
2829 	if (!PagePrivate(page)) {
2830 		SetPagePrivate(page);
2831 		get_page(page);
2832 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2833 	}
2834 }
2835 
2836 static struct extent_map *
2837 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2838 		 u64 start, u64 len, get_extent_t *get_extent,
2839 		 struct extent_map **em_cached)
2840 {
2841 	struct extent_map *em;
2842 
2843 	if (em_cached && *em_cached) {
2844 		em = *em_cached;
2845 		if (extent_map_in_tree(em) && start >= em->start &&
2846 		    start < extent_map_end(em)) {
2847 			refcount_inc(&em->refs);
2848 			return em;
2849 		}
2850 
2851 		free_extent_map(em);
2852 		*em_cached = NULL;
2853 	}
2854 
2855 	em = get_extent(BTRFS_I(inode), page, pg_offset, start, len, 0);
2856 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2857 		BUG_ON(*em_cached);
2858 		refcount_inc(&em->refs);
2859 		*em_cached = em;
2860 	}
2861 	return em;
2862 }
2863 /*
2864  * basic readpage implementation.  Locked extent state structs are inserted
2865  * into the tree that are removed when the IO is done (by the end_io
2866  * handlers)
2867  * XXX JDM: This needs looking at to ensure proper page locking
2868  * return 0 on success, otherwise return error
2869  */
2870 static int __do_readpage(struct extent_io_tree *tree,
2871 			 struct page *page,
2872 			 get_extent_t *get_extent,
2873 			 struct extent_map **em_cached,
2874 			 struct bio **bio, int mirror_num,
2875 			 unsigned long *bio_flags, unsigned int read_flags,
2876 			 u64 *prev_em_start)
2877 {
2878 	struct inode *inode = page->mapping->host;
2879 	u64 start = page_offset(page);
2880 	const u64 end = start + PAGE_SIZE - 1;
2881 	u64 cur = start;
2882 	u64 extent_offset;
2883 	u64 last_byte = i_size_read(inode);
2884 	u64 block_start;
2885 	u64 cur_end;
2886 	struct extent_map *em;
2887 	struct block_device *bdev;
2888 	int ret = 0;
2889 	int nr = 0;
2890 	size_t pg_offset = 0;
2891 	size_t iosize;
2892 	size_t disk_io_size;
2893 	size_t blocksize = inode->i_sb->s_blocksize;
2894 	unsigned long this_bio_flag = 0;
2895 
2896 	set_page_extent_mapped(page);
2897 
2898 	if (!PageUptodate(page)) {
2899 		if (cleancache_get_page(page) == 0) {
2900 			BUG_ON(blocksize != PAGE_SIZE);
2901 			unlock_extent(tree, start, end);
2902 			goto out;
2903 		}
2904 	}
2905 
2906 	if (page->index == last_byte >> PAGE_SHIFT) {
2907 		char *userpage;
2908 		size_t zero_offset = last_byte & (PAGE_SIZE - 1);
2909 
2910 		if (zero_offset) {
2911 			iosize = PAGE_SIZE - zero_offset;
2912 			userpage = kmap_atomic(page);
2913 			memset(userpage + zero_offset, 0, iosize);
2914 			flush_dcache_page(page);
2915 			kunmap_atomic(userpage);
2916 		}
2917 	}
2918 	while (cur <= end) {
2919 		bool force_bio_submit = false;
2920 		u64 offset;
2921 
2922 		if (cur >= last_byte) {
2923 			char *userpage;
2924 			struct extent_state *cached = NULL;
2925 
2926 			iosize = PAGE_SIZE - pg_offset;
2927 			userpage = kmap_atomic(page);
2928 			memset(userpage + pg_offset, 0, iosize);
2929 			flush_dcache_page(page);
2930 			kunmap_atomic(userpage);
2931 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2932 					    &cached, GFP_NOFS);
2933 			unlock_extent_cached(tree, cur,
2934 					     cur + iosize - 1, &cached);
2935 			break;
2936 		}
2937 		em = __get_extent_map(inode, page, pg_offset, cur,
2938 				      end - cur + 1, get_extent, em_cached);
2939 		if (IS_ERR_OR_NULL(em)) {
2940 			SetPageError(page);
2941 			unlock_extent(tree, cur, end);
2942 			break;
2943 		}
2944 		extent_offset = cur - em->start;
2945 		BUG_ON(extent_map_end(em) <= cur);
2946 		BUG_ON(end < cur);
2947 
2948 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2949 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2950 			extent_set_compress_type(&this_bio_flag,
2951 						 em->compress_type);
2952 		}
2953 
2954 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2955 		cur_end = min(extent_map_end(em) - 1, end);
2956 		iosize = ALIGN(iosize, blocksize);
2957 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2958 			disk_io_size = em->block_len;
2959 			offset = em->block_start;
2960 		} else {
2961 			offset = em->block_start + extent_offset;
2962 			disk_io_size = iosize;
2963 		}
2964 		bdev = em->bdev;
2965 		block_start = em->block_start;
2966 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2967 			block_start = EXTENT_MAP_HOLE;
2968 
2969 		/*
2970 		 * If we have a file range that points to a compressed extent
2971 		 * and it's followed by a consecutive file range that points to
2972 		 * to the same compressed extent (possibly with a different
2973 		 * offset and/or length, so it either points to the whole extent
2974 		 * or only part of it), we must make sure we do not submit a
2975 		 * single bio to populate the pages for the 2 ranges because
2976 		 * this makes the compressed extent read zero out the pages
2977 		 * belonging to the 2nd range. Imagine the following scenario:
2978 		 *
2979 		 *  File layout
2980 		 *  [0 - 8K]                     [8K - 24K]
2981 		 *    |                               |
2982 		 *    |                               |
2983 		 * points to extent X,         points to extent X,
2984 		 * offset 4K, length of 8K     offset 0, length 16K
2985 		 *
2986 		 * [extent X, compressed length = 4K uncompressed length = 16K]
2987 		 *
2988 		 * If the bio to read the compressed extent covers both ranges,
2989 		 * it will decompress extent X into the pages belonging to the
2990 		 * first range and then it will stop, zeroing out the remaining
2991 		 * pages that belong to the other range that points to extent X.
2992 		 * So here we make sure we submit 2 bios, one for the first
2993 		 * range and another one for the third range. Both will target
2994 		 * the same physical extent from disk, but we can't currently
2995 		 * make the compressed bio endio callback populate the pages
2996 		 * for both ranges because each compressed bio is tightly
2997 		 * coupled with a single extent map, and each range can have
2998 		 * an extent map with a different offset value relative to the
2999 		 * uncompressed data of our extent and different lengths. This
3000 		 * is a corner case so we prioritize correctness over
3001 		 * non-optimal behavior (submitting 2 bios for the same extent).
3002 		 */
3003 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) &&
3004 		    prev_em_start && *prev_em_start != (u64)-1 &&
3005 		    *prev_em_start != em->orig_start)
3006 			force_bio_submit = true;
3007 
3008 		if (prev_em_start)
3009 			*prev_em_start = em->orig_start;
3010 
3011 		free_extent_map(em);
3012 		em = NULL;
3013 
3014 		/* we've found a hole, just zero and go on */
3015 		if (block_start == EXTENT_MAP_HOLE) {
3016 			char *userpage;
3017 			struct extent_state *cached = NULL;
3018 
3019 			userpage = kmap_atomic(page);
3020 			memset(userpage + pg_offset, 0, iosize);
3021 			flush_dcache_page(page);
3022 			kunmap_atomic(userpage);
3023 
3024 			set_extent_uptodate(tree, cur, cur + iosize - 1,
3025 					    &cached, GFP_NOFS);
3026 			unlock_extent_cached(tree, cur,
3027 					     cur + iosize - 1, &cached);
3028 			cur = cur + iosize;
3029 			pg_offset += iosize;
3030 			continue;
3031 		}
3032 		/* the get_extent function already copied into the page */
3033 		if (test_range_bit(tree, cur, cur_end,
3034 				   EXTENT_UPTODATE, 1, NULL)) {
3035 			check_page_uptodate(tree, page);
3036 			unlock_extent(tree, cur, cur + iosize - 1);
3037 			cur = cur + iosize;
3038 			pg_offset += iosize;
3039 			continue;
3040 		}
3041 		/* we have an inline extent but it didn't get marked up
3042 		 * to date.  Error out
3043 		 */
3044 		if (block_start == EXTENT_MAP_INLINE) {
3045 			SetPageError(page);
3046 			unlock_extent(tree, cur, cur + iosize - 1);
3047 			cur = cur + iosize;
3048 			pg_offset += iosize;
3049 			continue;
3050 		}
3051 
3052 		ret = submit_extent_page(REQ_OP_READ | read_flags, tree, NULL,
3053 					 page, offset, disk_io_size,
3054 					 pg_offset, bdev, bio,
3055 					 end_bio_extent_readpage, mirror_num,
3056 					 *bio_flags,
3057 					 this_bio_flag,
3058 					 force_bio_submit);
3059 		if (!ret) {
3060 			nr++;
3061 			*bio_flags = this_bio_flag;
3062 		} else {
3063 			SetPageError(page);
3064 			unlock_extent(tree, cur, cur + iosize - 1);
3065 			goto out;
3066 		}
3067 		cur = cur + iosize;
3068 		pg_offset += iosize;
3069 	}
3070 out:
3071 	if (!nr) {
3072 		if (!PageError(page))
3073 			SetPageUptodate(page);
3074 		unlock_page(page);
3075 	}
3076 	return ret;
3077 }
3078 
3079 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
3080 					     struct page *pages[], int nr_pages,
3081 					     u64 start, u64 end,
3082 					     struct extent_map **em_cached,
3083 					     struct bio **bio,
3084 					     unsigned long *bio_flags,
3085 					     u64 *prev_em_start)
3086 {
3087 	struct inode *inode;
3088 	struct btrfs_ordered_extent *ordered;
3089 	int index;
3090 
3091 	inode = pages[0]->mapping->host;
3092 	while (1) {
3093 		lock_extent(tree, start, end);
3094 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3095 						     end - start + 1);
3096 		if (!ordered)
3097 			break;
3098 		unlock_extent(tree, start, end);
3099 		btrfs_start_ordered_extent(inode, ordered, 1);
3100 		btrfs_put_ordered_extent(ordered);
3101 	}
3102 
3103 	for (index = 0; index < nr_pages; index++) {
3104 		__do_readpage(tree, pages[index], btrfs_get_extent, em_cached,
3105 				bio, 0, bio_flags, REQ_RAHEAD, prev_em_start);
3106 		put_page(pages[index]);
3107 	}
3108 }
3109 
3110 static void __extent_readpages(struct extent_io_tree *tree,
3111 			       struct page *pages[],
3112 			       int nr_pages,
3113 			       struct extent_map **em_cached,
3114 			       struct bio **bio, unsigned long *bio_flags,
3115 			       u64 *prev_em_start)
3116 {
3117 	u64 start = 0;
3118 	u64 end = 0;
3119 	u64 page_start;
3120 	int index;
3121 	int first_index = 0;
3122 
3123 	for (index = 0; index < nr_pages; index++) {
3124 		page_start = page_offset(pages[index]);
3125 		if (!end) {
3126 			start = page_start;
3127 			end = start + PAGE_SIZE - 1;
3128 			first_index = index;
3129 		} else if (end + 1 == page_start) {
3130 			end += PAGE_SIZE;
3131 		} else {
3132 			__do_contiguous_readpages(tree, &pages[first_index],
3133 						  index - first_index, start,
3134 						  end, em_cached,
3135 						  bio, bio_flags,
3136 						  prev_em_start);
3137 			start = page_start;
3138 			end = start + PAGE_SIZE - 1;
3139 			first_index = index;
3140 		}
3141 	}
3142 
3143 	if (end)
3144 		__do_contiguous_readpages(tree, &pages[first_index],
3145 					  index - first_index, start,
3146 					  end, em_cached, bio,
3147 					  bio_flags, prev_em_start);
3148 }
3149 
3150 static int __extent_read_full_page(struct extent_io_tree *tree,
3151 				   struct page *page,
3152 				   get_extent_t *get_extent,
3153 				   struct bio **bio, int mirror_num,
3154 				   unsigned long *bio_flags,
3155 				   unsigned int read_flags)
3156 {
3157 	struct inode *inode = page->mapping->host;
3158 	struct btrfs_ordered_extent *ordered;
3159 	u64 start = page_offset(page);
3160 	u64 end = start + PAGE_SIZE - 1;
3161 	int ret;
3162 
3163 	while (1) {
3164 		lock_extent(tree, start, end);
3165 		ordered = btrfs_lookup_ordered_range(BTRFS_I(inode), start,
3166 						PAGE_SIZE);
3167 		if (!ordered)
3168 			break;
3169 		unlock_extent(tree, start, end);
3170 		btrfs_start_ordered_extent(inode, ordered, 1);
3171 		btrfs_put_ordered_extent(ordered);
3172 	}
3173 
3174 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3175 			    bio_flags, read_flags, NULL);
3176 	return ret;
3177 }
3178 
3179 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3180 			    get_extent_t *get_extent, int mirror_num)
3181 {
3182 	struct bio *bio = NULL;
3183 	unsigned long bio_flags = 0;
3184 	int ret;
3185 
3186 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3187 				      &bio_flags, 0);
3188 	if (bio)
3189 		ret = submit_one_bio(bio, mirror_num, bio_flags);
3190 	return ret;
3191 }
3192 
3193 static void update_nr_written(struct writeback_control *wbc,
3194 			      unsigned long nr_written)
3195 {
3196 	wbc->nr_to_write -= nr_written;
3197 }
3198 
3199 /*
3200  * helper for __extent_writepage, doing all of the delayed allocation setup.
3201  *
3202  * This returns 1 if our fill_delalloc function did all the work required
3203  * to write the page (copy into inline extent).  In this case the IO has
3204  * been started and the page is already unlocked.
3205  *
3206  * This returns 0 if all went well (page still locked)
3207  * This returns < 0 if there were errors (page still locked)
3208  */
3209 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3210 			      struct page *page, struct writeback_control *wbc,
3211 			      struct extent_page_data *epd,
3212 			      u64 delalloc_start,
3213 			      unsigned long *nr_written)
3214 {
3215 	struct extent_io_tree *tree = epd->tree;
3216 	u64 page_end = delalloc_start + PAGE_SIZE - 1;
3217 	u64 nr_delalloc;
3218 	u64 delalloc_to_write = 0;
3219 	u64 delalloc_end = 0;
3220 	int ret;
3221 	int page_started = 0;
3222 
3223 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3224 		return 0;
3225 
3226 	while (delalloc_end < page_end) {
3227 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3228 					       page,
3229 					       &delalloc_start,
3230 					       &delalloc_end,
3231 					       BTRFS_MAX_EXTENT_SIZE);
3232 		if (nr_delalloc == 0) {
3233 			delalloc_start = delalloc_end + 1;
3234 			continue;
3235 		}
3236 		ret = tree->ops->fill_delalloc(inode, page,
3237 					       delalloc_start,
3238 					       delalloc_end,
3239 					       &page_started,
3240 					       nr_written, wbc);
3241 		/* File system has been set read-only */
3242 		if (ret) {
3243 			SetPageError(page);
3244 			/* fill_delalloc should be return < 0 for error
3245 			 * but just in case, we use > 0 here meaning the
3246 			 * IO is started, so we don't want to return > 0
3247 			 * unless things are going well.
3248 			 */
3249 			ret = ret < 0 ? ret : -EIO;
3250 			goto done;
3251 		}
3252 		/*
3253 		 * delalloc_end is already one less than the total length, so
3254 		 * we don't subtract one from PAGE_SIZE
3255 		 */
3256 		delalloc_to_write += (delalloc_end - delalloc_start +
3257 				      PAGE_SIZE) >> PAGE_SHIFT;
3258 		delalloc_start = delalloc_end + 1;
3259 	}
3260 	if (wbc->nr_to_write < delalloc_to_write) {
3261 		int thresh = 8192;
3262 
3263 		if (delalloc_to_write < thresh * 2)
3264 			thresh = delalloc_to_write;
3265 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3266 					 thresh);
3267 	}
3268 
3269 	/* did the fill delalloc function already unlock and start
3270 	 * the IO?
3271 	 */
3272 	if (page_started) {
3273 		/*
3274 		 * we've unlocked the page, so we can't update
3275 		 * the mapping's writeback index, just update
3276 		 * nr_to_write.
3277 		 */
3278 		wbc->nr_to_write -= *nr_written;
3279 		return 1;
3280 	}
3281 
3282 	ret = 0;
3283 
3284 done:
3285 	return ret;
3286 }
3287 
3288 /*
3289  * helper for __extent_writepage.  This calls the writepage start hooks,
3290  * and does the loop to map the page into extents and bios.
3291  *
3292  * We return 1 if the IO is started and the page is unlocked,
3293  * 0 if all went well (page still locked)
3294  * < 0 if there were errors (page still locked)
3295  */
3296 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3297 				 struct page *page,
3298 				 struct writeback_control *wbc,
3299 				 struct extent_page_data *epd,
3300 				 loff_t i_size,
3301 				 unsigned long nr_written,
3302 				 unsigned int write_flags, int *nr_ret)
3303 {
3304 	struct extent_io_tree *tree = epd->tree;
3305 	u64 start = page_offset(page);
3306 	u64 page_end = start + PAGE_SIZE - 1;
3307 	u64 end;
3308 	u64 cur = start;
3309 	u64 extent_offset;
3310 	u64 block_start;
3311 	u64 iosize;
3312 	struct extent_map *em;
3313 	struct block_device *bdev;
3314 	size_t pg_offset = 0;
3315 	size_t blocksize;
3316 	int ret = 0;
3317 	int nr = 0;
3318 	bool compressed;
3319 
3320 	if (tree->ops && tree->ops->writepage_start_hook) {
3321 		ret = tree->ops->writepage_start_hook(page, start,
3322 						      page_end);
3323 		if (ret) {
3324 			/* Fixup worker will requeue */
3325 			if (ret == -EBUSY)
3326 				wbc->pages_skipped++;
3327 			else
3328 				redirty_page_for_writepage(wbc, page);
3329 
3330 			update_nr_written(wbc, nr_written);
3331 			unlock_page(page);
3332 			return 1;
3333 		}
3334 	}
3335 
3336 	/*
3337 	 * we don't want to touch the inode after unlocking the page,
3338 	 * so we update the mapping writeback index now
3339 	 */
3340 	update_nr_written(wbc, nr_written + 1);
3341 
3342 	end = page_end;
3343 	if (i_size <= start) {
3344 		if (tree->ops && tree->ops->writepage_end_io_hook)
3345 			tree->ops->writepage_end_io_hook(page, start,
3346 							 page_end, NULL, 1);
3347 		goto done;
3348 	}
3349 
3350 	blocksize = inode->i_sb->s_blocksize;
3351 
3352 	while (cur <= end) {
3353 		u64 em_end;
3354 		u64 offset;
3355 
3356 		if (cur >= i_size) {
3357 			if (tree->ops && tree->ops->writepage_end_io_hook)
3358 				tree->ops->writepage_end_io_hook(page, cur,
3359 							 page_end, NULL, 1);
3360 			break;
3361 		}
3362 		em = btrfs_get_extent(BTRFS_I(inode), page, pg_offset, cur,
3363 				     end - cur + 1, 1);
3364 		if (IS_ERR_OR_NULL(em)) {
3365 			SetPageError(page);
3366 			ret = PTR_ERR_OR_ZERO(em);
3367 			break;
3368 		}
3369 
3370 		extent_offset = cur - em->start;
3371 		em_end = extent_map_end(em);
3372 		BUG_ON(em_end <= cur);
3373 		BUG_ON(end < cur);
3374 		iosize = min(em_end - cur, end - cur + 1);
3375 		iosize = ALIGN(iosize, blocksize);
3376 		offset = em->block_start + extent_offset;
3377 		bdev = em->bdev;
3378 		block_start = em->block_start;
3379 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3380 		free_extent_map(em);
3381 		em = NULL;
3382 
3383 		/*
3384 		 * compressed and inline extents are written through other
3385 		 * paths in the FS
3386 		 */
3387 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3388 		    block_start == EXTENT_MAP_INLINE) {
3389 			/*
3390 			 * end_io notification does not happen here for
3391 			 * compressed extents
3392 			 */
3393 			if (!compressed && tree->ops &&
3394 			    tree->ops->writepage_end_io_hook)
3395 				tree->ops->writepage_end_io_hook(page, cur,
3396 							 cur + iosize - 1,
3397 							 NULL, 1);
3398 			else if (compressed) {
3399 				/* we don't want to end_page_writeback on
3400 				 * a compressed extent.  this happens
3401 				 * elsewhere
3402 				 */
3403 				nr++;
3404 			}
3405 
3406 			cur += iosize;
3407 			pg_offset += iosize;
3408 			continue;
3409 		}
3410 
3411 		btrfs_set_range_writeback(tree, cur, cur + iosize - 1);
3412 		if (!PageWriteback(page)) {
3413 			btrfs_err(BTRFS_I(inode)->root->fs_info,
3414 				   "page %lu not writeback, cur %llu end %llu",
3415 			       page->index, cur, end);
3416 		}
3417 
3418 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3419 					 page, offset, iosize, pg_offset,
3420 					 bdev, &epd->bio,
3421 					 end_bio_extent_writepage,
3422 					 0, 0, 0, false);
3423 		if (ret) {
3424 			SetPageError(page);
3425 			if (PageWriteback(page))
3426 				end_page_writeback(page);
3427 		}
3428 
3429 		cur = cur + iosize;
3430 		pg_offset += iosize;
3431 		nr++;
3432 	}
3433 done:
3434 	*nr_ret = nr;
3435 	return ret;
3436 }
3437 
3438 /*
3439  * the writepage semantics are similar to regular writepage.  extent
3440  * records are inserted to lock ranges in the tree, and as dirty areas
3441  * are found, they are marked writeback.  Then the lock bits are removed
3442  * and the end_io handler clears the writeback ranges
3443  */
3444 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3445 			      struct extent_page_data *epd)
3446 {
3447 	struct inode *inode = page->mapping->host;
3448 	u64 start = page_offset(page);
3449 	u64 page_end = start + PAGE_SIZE - 1;
3450 	int ret;
3451 	int nr = 0;
3452 	size_t pg_offset = 0;
3453 	loff_t i_size = i_size_read(inode);
3454 	unsigned long end_index = i_size >> PAGE_SHIFT;
3455 	unsigned int write_flags = 0;
3456 	unsigned long nr_written = 0;
3457 
3458 	write_flags = wbc_to_write_flags(wbc);
3459 
3460 	trace___extent_writepage(page, inode, wbc);
3461 
3462 	WARN_ON(!PageLocked(page));
3463 
3464 	ClearPageError(page);
3465 
3466 	pg_offset = i_size & (PAGE_SIZE - 1);
3467 	if (page->index > end_index ||
3468 	   (page->index == end_index && !pg_offset)) {
3469 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_SIZE);
3470 		unlock_page(page);
3471 		return 0;
3472 	}
3473 
3474 	if (page->index == end_index) {
3475 		char *userpage;
3476 
3477 		userpage = kmap_atomic(page);
3478 		memset(userpage + pg_offset, 0,
3479 		       PAGE_SIZE - pg_offset);
3480 		kunmap_atomic(userpage);
3481 		flush_dcache_page(page);
3482 	}
3483 
3484 	pg_offset = 0;
3485 
3486 	set_page_extent_mapped(page);
3487 
3488 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3489 	if (ret == 1)
3490 		goto done_unlocked;
3491 	if (ret)
3492 		goto done;
3493 
3494 	ret = __extent_writepage_io(inode, page, wbc, epd,
3495 				    i_size, nr_written, write_flags, &nr);
3496 	if (ret == 1)
3497 		goto done_unlocked;
3498 
3499 done:
3500 	if (nr == 0) {
3501 		/* make sure the mapping tag for page dirty gets cleared */
3502 		set_page_writeback(page);
3503 		end_page_writeback(page);
3504 	}
3505 	if (PageError(page)) {
3506 		ret = ret < 0 ? ret : -EIO;
3507 		end_extent_writepage(page, ret, start, page_end);
3508 	}
3509 	unlock_page(page);
3510 	return ret;
3511 
3512 done_unlocked:
3513 	return 0;
3514 }
3515 
3516 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3517 {
3518 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3519 		       TASK_UNINTERRUPTIBLE);
3520 }
3521 
3522 static noinline_for_stack int
3523 lock_extent_buffer_for_io(struct extent_buffer *eb,
3524 			  struct btrfs_fs_info *fs_info,
3525 			  struct extent_page_data *epd)
3526 {
3527 	int i, num_pages;
3528 	int flush = 0;
3529 	int ret = 0;
3530 
3531 	if (!btrfs_try_tree_write_lock(eb)) {
3532 		flush = 1;
3533 		flush_write_bio(epd);
3534 		btrfs_tree_lock(eb);
3535 	}
3536 
3537 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3538 		btrfs_tree_unlock(eb);
3539 		if (!epd->sync_io)
3540 			return 0;
3541 		if (!flush) {
3542 			flush_write_bio(epd);
3543 			flush = 1;
3544 		}
3545 		while (1) {
3546 			wait_on_extent_buffer_writeback(eb);
3547 			btrfs_tree_lock(eb);
3548 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3549 				break;
3550 			btrfs_tree_unlock(eb);
3551 		}
3552 	}
3553 
3554 	/*
3555 	 * We need to do this to prevent races in people who check if the eb is
3556 	 * under IO since we can end up having no IO bits set for a short period
3557 	 * of time.
3558 	 */
3559 	spin_lock(&eb->refs_lock);
3560 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3561 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3562 		spin_unlock(&eb->refs_lock);
3563 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3564 		percpu_counter_add_batch(&fs_info->dirty_metadata_bytes,
3565 					 -eb->len,
3566 					 fs_info->dirty_metadata_batch);
3567 		ret = 1;
3568 	} else {
3569 		spin_unlock(&eb->refs_lock);
3570 	}
3571 
3572 	btrfs_tree_unlock(eb);
3573 
3574 	if (!ret)
3575 		return ret;
3576 
3577 	num_pages = num_extent_pages(eb);
3578 	for (i = 0; i < num_pages; i++) {
3579 		struct page *p = eb->pages[i];
3580 
3581 		if (!trylock_page(p)) {
3582 			if (!flush) {
3583 				flush_write_bio(epd);
3584 				flush = 1;
3585 			}
3586 			lock_page(p);
3587 		}
3588 	}
3589 
3590 	return ret;
3591 }
3592 
3593 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3594 {
3595 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3596 	smp_mb__after_atomic();
3597 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3598 }
3599 
3600 static void set_btree_ioerr(struct page *page)
3601 {
3602 	struct extent_buffer *eb = (struct extent_buffer *)page->private;
3603 
3604 	SetPageError(page);
3605 	if (test_and_set_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags))
3606 		return;
3607 
3608 	/*
3609 	 * If writeback for a btree extent that doesn't belong to a log tree
3610 	 * failed, increment the counter transaction->eb_write_errors.
3611 	 * We do this because while the transaction is running and before it's
3612 	 * committing (when we call filemap_fdata[write|wait]_range against
3613 	 * the btree inode), we might have
3614 	 * btree_inode->i_mapping->a_ops->writepages() called by the VM - if it
3615 	 * returns an error or an error happens during writeback, when we're
3616 	 * committing the transaction we wouldn't know about it, since the pages
3617 	 * can be no longer dirty nor marked anymore for writeback (if a
3618 	 * subsequent modification to the extent buffer didn't happen before the
3619 	 * transaction commit), which makes filemap_fdata[write|wait]_range not
3620 	 * able to find the pages tagged with SetPageError at transaction
3621 	 * commit time. So if this happens we must abort the transaction,
3622 	 * otherwise we commit a super block with btree roots that point to
3623 	 * btree nodes/leafs whose content on disk is invalid - either garbage
3624 	 * or the content of some node/leaf from a past generation that got
3625 	 * cowed or deleted and is no longer valid.
3626 	 *
3627 	 * Note: setting AS_EIO/AS_ENOSPC in the btree inode's i_mapping would
3628 	 * not be enough - we need to distinguish between log tree extents vs
3629 	 * non-log tree extents, and the next filemap_fdatawait_range() call
3630 	 * will catch and clear such errors in the mapping - and that call might
3631 	 * be from a log sync and not from a transaction commit. Also, checking
3632 	 * for the eb flag EXTENT_BUFFER_WRITE_ERR at transaction commit time is
3633 	 * not done and would not be reliable - the eb might have been released
3634 	 * from memory and reading it back again means that flag would not be
3635 	 * set (since it's a runtime flag, not persisted on disk).
3636 	 *
3637 	 * Using the flags below in the btree inode also makes us achieve the
3638 	 * goal of AS_EIO/AS_ENOSPC when writepages() returns success, started
3639 	 * writeback for all dirty pages and before filemap_fdatawait_range()
3640 	 * is called, the writeback for all dirty pages had already finished
3641 	 * with errors - because we were not using AS_EIO/AS_ENOSPC,
3642 	 * filemap_fdatawait_range() would return success, as it could not know
3643 	 * that writeback errors happened (the pages were no longer tagged for
3644 	 * writeback).
3645 	 */
3646 	switch (eb->log_index) {
3647 	case -1:
3648 		set_bit(BTRFS_FS_BTREE_ERR, &eb->fs_info->flags);
3649 		break;
3650 	case 0:
3651 		set_bit(BTRFS_FS_LOG1_ERR, &eb->fs_info->flags);
3652 		break;
3653 	case 1:
3654 		set_bit(BTRFS_FS_LOG2_ERR, &eb->fs_info->flags);
3655 		break;
3656 	default:
3657 		BUG(); /* unexpected, logic error */
3658 	}
3659 }
3660 
3661 static void end_bio_extent_buffer_writepage(struct bio *bio)
3662 {
3663 	struct bio_vec *bvec;
3664 	struct extent_buffer *eb;
3665 	int i, done;
3666 
3667 	ASSERT(!bio_flagged(bio, BIO_CLONED));
3668 	bio_for_each_segment_all(bvec, bio, i) {
3669 		struct page *page = bvec->bv_page;
3670 
3671 		eb = (struct extent_buffer *)page->private;
3672 		BUG_ON(!eb);
3673 		done = atomic_dec_and_test(&eb->io_pages);
3674 
3675 		if (bio->bi_status ||
3676 		    test_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags)) {
3677 			ClearPageUptodate(page);
3678 			set_btree_ioerr(page);
3679 		}
3680 
3681 		end_page_writeback(page);
3682 
3683 		if (!done)
3684 			continue;
3685 
3686 		end_extent_buffer_writeback(eb);
3687 	}
3688 
3689 	bio_put(bio);
3690 }
3691 
3692 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3693 			struct btrfs_fs_info *fs_info,
3694 			struct writeback_control *wbc,
3695 			struct extent_page_data *epd)
3696 {
3697 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3698 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3699 	u64 offset = eb->start;
3700 	u32 nritems;
3701 	int i, num_pages;
3702 	unsigned long start, end;
3703 	unsigned int write_flags = wbc_to_write_flags(wbc) | REQ_META;
3704 	int ret = 0;
3705 
3706 	clear_bit(EXTENT_BUFFER_WRITE_ERR, &eb->bflags);
3707 	num_pages = num_extent_pages(eb);
3708 	atomic_set(&eb->io_pages, num_pages);
3709 
3710 	/* set btree blocks beyond nritems with 0 to avoid stale content. */
3711 	nritems = btrfs_header_nritems(eb);
3712 	if (btrfs_header_level(eb) > 0) {
3713 		end = btrfs_node_key_ptr_offset(nritems);
3714 
3715 		memzero_extent_buffer(eb, end, eb->len - end);
3716 	} else {
3717 		/*
3718 		 * leaf:
3719 		 * header 0 1 2 .. N ... data_N .. data_2 data_1 data_0
3720 		 */
3721 		start = btrfs_item_nr_offset(nritems);
3722 		end = BTRFS_LEAF_DATA_OFFSET + leaf_data_end(fs_info, eb);
3723 		memzero_extent_buffer(eb, start, end - start);
3724 	}
3725 
3726 	for (i = 0; i < num_pages; i++) {
3727 		struct page *p = eb->pages[i];
3728 
3729 		clear_page_dirty_for_io(p);
3730 		set_page_writeback(p);
3731 		ret = submit_extent_page(REQ_OP_WRITE | write_flags, tree, wbc,
3732 					 p, offset, PAGE_SIZE, 0, bdev,
3733 					 &epd->bio,
3734 					 end_bio_extent_buffer_writepage,
3735 					 0, 0, 0, false);
3736 		if (ret) {
3737 			set_btree_ioerr(p);
3738 			if (PageWriteback(p))
3739 				end_page_writeback(p);
3740 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3741 				end_extent_buffer_writeback(eb);
3742 			ret = -EIO;
3743 			break;
3744 		}
3745 		offset += PAGE_SIZE;
3746 		update_nr_written(wbc, 1);
3747 		unlock_page(p);
3748 	}
3749 
3750 	if (unlikely(ret)) {
3751 		for (; i < num_pages; i++) {
3752 			struct page *p = eb->pages[i];
3753 			clear_page_dirty_for_io(p);
3754 			unlock_page(p);
3755 		}
3756 	}
3757 
3758 	return ret;
3759 }
3760 
3761 int btree_write_cache_pages(struct address_space *mapping,
3762 				   struct writeback_control *wbc)
3763 {
3764 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3765 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3766 	struct extent_buffer *eb, *prev_eb = NULL;
3767 	struct extent_page_data epd = {
3768 		.bio = NULL,
3769 		.tree = tree,
3770 		.extent_locked = 0,
3771 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3772 	};
3773 	int ret = 0;
3774 	int done = 0;
3775 	int nr_to_write_done = 0;
3776 	struct pagevec pvec;
3777 	int nr_pages;
3778 	pgoff_t index;
3779 	pgoff_t end;		/* Inclusive */
3780 	int scanned = 0;
3781 	int tag;
3782 
3783 	pagevec_init(&pvec);
3784 	if (wbc->range_cyclic) {
3785 		index = mapping->writeback_index; /* Start from prev offset */
3786 		end = -1;
3787 	} else {
3788 		index = wbc->range_start >> PAGE_SHIFT;
3789 		end = wbc->range_end >> PAGE_SHIFT;
3790 		scanned = 1;
3791 	}
3792 	if (wbc->sync_mode == WB_SYNC_ALL)
3793 		tag = PAGECACHE_TAG_TOWRITE;
3794 	else
3795 		tag = PAGECACHE_TAG_DIRTY;
3796 retry:
3797 	if (wbc->sync_mode == WB_SYNC_ALL)
3798 		tag_pages_for_writeback(mapping, index, end);
3799 	while (!done && !nr_to_write_done && (index <= end) &&
3800 	       (nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
3801 			tag))) {
3802 		unsigned i;
3803 
3804 		scanned = 1;
3805 		for (i = 0; i < nr_pages; i++) {
3806 			struct page *page = pvec.pages[i];
3807 
3808 			if (!PagePrivate(page))
3809 				continue;
3810 
3811 			spin_lock(&mapping->private_lock);
3812 			if (!PagePrivate(page)) {
3813 				spin_unlock(&mapping->private_lock);
3814 				continue;
3815 			}
3816 
3817 			eb = (struct extent_buffer *)page->private;
3818 
3819 			/*
3820 			 * Shouldn't happen and normally this would be a BUG_ON
3821 			 * but no sense in crashing the users box for something
3822 			 * we can survive anyway.
3823 			 */
3824 			if (WARN_ON(!eb)) {
3825 				spin_unlock(&mapping->private_lock);
3826 				continue;
3827 			}
3828 
3829 			if (eb == prev_eb) {
3830 				spin_unlock(&mapping->private_lock);
3831 				continue;
3832 			}
3833 
3834 			ret = atomic_inc_not_zero(&eb->refs);
3835 			spin_unlock(&mapping->private_lock);
3836 			if (!ret)
3837 				continue;
3838 
3839 			prev_eb = eb;
3840 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3841 			if (!ret) {
3842 				free_extent_buffer(eb);
3843 				continue;
3844 			}
3845 
3846 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3847 			if (ret) {
3848 				done = 1;
3849 				free_extent_buffer(eb);
3850 				break;
3851 			}
3852 			free_extent_buffer(eb);
3853 
3854 			/*
3855 			 * the filesystem may choose to bump up nr_to_write.
3856 			 * We have to make sure to honor the new nr_to_write
3857 			 * at any time
3858 			 */
3859 			nr_to_write_done = wbc->nr_to_write <= 0;
3860 		}
3861 		pagevec_release(&pvec);
3862 		cond_resched();
3863 	}
3864 	if (!scanned && !done) {
3865 		/*
3866 		 * We hit the last page and there is more work to be done: wrap
3867 		 * back to the start of the file
3868 		 */
3869 		scanned = 1;
3870 		index = 0;
3871 		goto retry;
3872 	}
3873 	flush_write_bio(&epd);
3874 	return ret;
3875 }
3876 
3877 /**
3878  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3879  * @mapping: address space structure to write
3880  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3881  * @data: data passed to __extent_writepage function
3882  *
3883  * If a page is already under I/O, write_cache_pages() skips it, even
3884  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3885  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3886  * and msync() need to guarantee that all the data which was dirty at the time
3887  * the call was made get new I/O started against them.  If wbc->sync_mode is
3888  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3889  * existing IO to complete.
3890  */
3891 static int extent_write_cache_pages(struct address_space *mapping,
3892 			     struct writeback_control *wbc,
3893 			     struct extent_page_data *epd)
3894 {
3895 	struct inode *inode = mapping->host;
3896 	int ret = 0;
3897 	int done = 0;
3898 	int nr_to_write_done = 0;
3899 	struct pagevec pvec;
3900 	int nr_pages;
3901 	pgoff_t index;
3902 	pgoff_t end;		/* Inclusive */
3903 	pgoff_t done_index;
3904 	int range_whole = 0;
3905 	int scanned = 0;
3906 	int tag;
3907 
3908 	/*
3909 	 * We have to hold onto the inode so that ordered extents can do their
3910 	 * work when the IO finishes.  The alternative to this is failing to add
3911 	 * an ordered extent if the igrab() fails there and that is a huge pain
3912 	 * to deal with, so instead just hold onto the inode throughout the
3913 	 * writepages operation.  If it fails here we are freeing up the inode
3914 	 * anyway and we'd rather not waste our time writing out stuff that is
3915 	 * going to be truncated anyway.
3916 	 */
3917 	if (!igrab(inode))
3918 		return 0;
3919 
3920 	pagevec_init(&pvec);
3921 	if (wbc->range_cyclic) {
3922 		index = mapping->writeback_index; /* Start from prev offset */
3923 		end = -1;
3924 	} else {
3925 		index = wbc->range_start >> PAGE_SHIFT;
3926 		end = wbc->range_end >> PAGE_SHIFT;
3927 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
3928 			range_whole = 1;
3929 		scanned = 1;
3930 	}
3931 	if (wbc->sync_mode == WB_SYNC_ALL)
3932 		tag = PAGECACHE_TAG_TOWRITE;
3933 	else
3934 		tag = PAGECACHE_TAG_DIRTY;
3935 retry:
3936 	if (wbc->sync_mode == WB_SYNC_ALL)
3937 		tag_pages_for_writeback(mapping, index, end);
3938 	done_index = index;
3939 	while (!done && !nr_to_write_done && (index <= end) &&
3940 			(nr_pages = pagevec_lookup_range_tag(&pvec, mapping,
3941 						&index, end, tag))) {
3942 		unsigned i;
3943 
3944 		scanned = 1;
3945 		for (i = 0; i < nr_pages; i++) {
3946 			struct page *page = pvec.pages[i];
3947 
3948 			done_index = page->index;
3949 			/*
3950 			 * At this point we hold neither the i_pages lock nor
3951 			 * the page lock: the page may be truncated or
3952 			 * invalidated (changing page->mapping to NULL),
3953 			 * or even swizzled back from swapper_space to
3954 			 * tmpfs file mapping
3955 			 */
3956 			if (!trylock_page(page)) {
3957 				flush_write_bio(epd);
3958 				lock_page(page);
3959 			}
3960 
3961 			if (unlikely(page->mapping != mapping)) {
3962 				unlock_page(page);
3963 				continue;
3964 			}
3965 
3966 			if (wbc->sync_mode != WB_SYNC_NONE) {
3967 				if (PageWriteback(page))
3968 					flush_write_bio(epd);
3969 				wait_on_page_writeback(page);
3970 			}
3971 
3972 			if (PageWriteback(page) ||
3973 			    !clear_page_dirty_for_io(page)) {
3974 				unlock_page(page);
3975 				continue;
3976 			}
3977 
3978 			ret = __extent_writepage(page, wbc, epd);
3979 
3980 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3981 				unlock_page(page);
3982 				ret = 0;
3983 			}
3984 			if (ret < 0) {
3985 				/*
3986 				 * done_index is set past this page,
3987 				 * so media errors will not choke
3988 				 * background writeout for the entire
3989 				 * file. This has consequences for
3990 				 * range_cyclic semantics (ie. it may
3991 				 * not be suitable for data integrity
3992 				 * writeout).
3993 				 */
3994 				done_index = page->index + 1;
3995 				done = 1;
3996 				break;
3997 			}
3998 
3999 			/*
4000 			 * the filesystem may choose to bump up nr_to_write.
4001 			 * We have to make sure to honor the new nr_to_write
4002 			 * at any time
4003 			 */
4004 			nr_to_write_done = wbc->nr_to_write <= 0;
4005 		}
4006 		pagevec_release(&pvec);
4007 		cond_resched();
4008 	}
4009 	if (!scanned && !done) {
4010 		/*
4011 		 * We hit the last page and there is more work to be done: wrap
4012 		 * back to the start of the file
4013 		 */
4014 		scanned = 1;
4015 		index = 0;
4016 		goto retry;
4017 	}
4018 
4019 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 && range_whole))
4020 		mapping->writeback_index = done_index;
4021 
4022 	btrfs_add_delayed_iput(inode);
4023 	return ret;
4024 }
4025 
4026 static void flush_write_bio(struct extent_page_data *epd)
4027 {
4028 	if (epd->bio) {
4029 		int ret;
4030 
4031 		ret = submit_one_bio(epd->bio, 0, 0);
4032 		BUG_ON(ret < 0); /* -ENOMEM */
4033 		epd->bio = NULL;
4034 	}
4035 }
4036 
4037 int extent_write_full_page(struct page *page, struct writeback_control *wbc)
4038 {
4039 	int ret;
4040 	struct extent_page_data epd = {
4041 		.bio = NULL,
4042 		.tree = &BTRFS_I(page->mapping->host)->io_tree,
4043 		.extent_locked = 0,
4044 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4045 	};
4046 
4047 	ret = __extent_writepage(page, wbc, &epd);
4048 
4049 	flush_write_bio(&epd);
4050 	return ret;
4051 }
4052 
4053 int extent_write_locked_range(struct inode *inode, u64 start, u64 end,
4054 			      int mode)
4055 {
4056 	int ret = 0;
4057 	struct address_space *mapping = inode->i_mapping;
4058 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
4059 	struct page *page;
4060 	unsigned long nr_pages = (end - start + PAGE_SIZE) >>
4061 		PAGE_SHIFT;
4062 
4063 	struct extent_page_data epd = {
4064 		.bio = NULL,
4065 		.tree = tree,
4066 		.extent_locked = 1,
4067 		.sync_io = mode == WB_SYNC_ALL,
4068 	};
4069 	struct writeback_control wbc_writepages = {
4070 		.sync_mode	= mode,
4071 		.nr_to_write	= nr_pages * 2,
4072 		.range_start	= start,
4073 		.range_end	= end + 1,
4074 	};
4075 
4076 	while (start <= end) {
4077 		page = find_get_page(mapping, start >> PAGE_SHIFT);
4078 		if (clear_page_dirty_for_io(page))
4079 			ret = __extent_writepage(page, &wbc_writepages, &epd);
4080 		else {
4081 			if (tree->ops && tree->ops->writepage_end_io_hook)
4082 				tree->ops->writepage_end_io_hook(page, start,
4083 						 start + PAGE_SIZE - 1,
4084 						 NULL, 1);
4085 			unlock_page(page);
4086 		}
4087 		put_page(page);
4088 		start += PAGE_SIZE;
4089 	}
4090 
4091 	flush_write_bio(&epd);
4092 	return ret;
4093 }
4094 
4095 int extent_writepages(struct address_space *mapping,
4096 		      struct writeback_control *wbc)
4097 {
4098 	int ret = 0;
4099 	struct extent_page_data epd = {
4100 		.bio = NULL,
4101 		.tree = &BTRFS_I(mapping->host)->io_tree,
4102 		.extent_locked = 0,
4103 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
4104 	};
4105 
4106 	ret = extent_write_cache_pages(mapping, wbc, &epd);
4107 	flush_write_bio(&epd);
4108 	return ret;
4109 }
4110 
4111 int extent_readpages(struct address_space *mapping, struct list_head *pages,
4112 		     unsigned nr_pages)
4113 {
4114 	struct bio *bio = NULL;
4115 	unsigned page_idx;
4116 	unsigned long bio_flags = 0;
4117 	struct page *pagepool[16];
4118 	struct page *page;
4119 	struct extent_map *em_cached = NULL;
4120 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
4121 	int nr = 0;
4122 	u64 prev_em_start = (u64)-1;
4123 
4124 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
4125 		page = list_entry(pages->prev, struct page, lru);
4126 
4127 		prefetchw(&page->flags);
4128 		list_del(&page->lru);
4129 		if (add_to_page_cache_lru(page, mapping,
4130 					page->index,
4131 					readahead_gfp_mask(mapping))) {
4132 			put_page(page);
4133 			continue;
4134 		}
4135 
4136 		pagepool[nr++] = page;
4137 		if (nr < ARRAY_SIZE(pagepool))
4138 			continue;
4139 		__extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4140 				&bio_flags, &prev_em_start);
4141 		nr = 0;
4142 	}
4143 	if (nr)
4144 		__extent_readpages(tree, pagepool, nr, &em_cached, &bio,
4145 				&bio_flags, &prev_em_start);
4146 
4147 	if (em_cached)
4148 		free_extent_map(em_cached);
4149 
4150 	BUG_ON(!list_empty(pages));
4151 	if (bio)
4152 		return submit_one_bio(bio, 0, bio_flags);
4153 	return 0;
4154 }
4155 
4156 /*
4157  * basic invalidatepage code, this waits on any locked or writeback
4158  * ranges corresponding to the page, and then deletes any extent state
4159  * records from the tree
4160  */
4161 int extent_invalidatepage(struct extent_io_tree *tree,
4162 			  struct page *page, unsigned long offset)
4163 {
4164 	struct extent_state *cached_state = NULL;
4165 	u64 start = page_offset(page);
4166 	u64 end = start + PAGE_SIZE - 1;
4167 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4168 
4169 	start += ALIGN(offset, blocksize);
4170 	if (start > end)
4171 		return 0;
4172 
4173 	lock_extent_bits(tree, start, end, &cached_state);
4174 	wait_on_page_writeback(page);
4175 	clear_extent_bit(tree, start, end,
4176 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4177 			 EXTENT_DO_ACCOUNTING,
4178 			 1, 1, &cached_state);
4179 	return 0;
4180 }
4181 
4182 /*
4183  * a helper for releasepage, this tests for areas of the page that
4184  * are locked or under IO and drops the related state bits if it is safe
4185  * to drop the page.
4186  */
4187 static int try_release_extent_state(struct extent_io_tree *tree,
4188 				    struct page *page, gfp_t mask)
4189 {
4190 	u64 start = page_offset(page);
4191 	u64 end = start + PAGE_SIZE - 1;
4192 	int ret = 1;
4193 
4194 	if (test_range_bit(tree, start, end,
4195 			   EXTENT_IOBITS, 0, NULL))
4196 		ret = 0;
4197 	else {
4198 		/*
4199 		 * at this point we can safely clear everything except the
4200 		 * locked bit and the nodatasum bit
4201 		 */
4202 		ret = __clear_extent_bit(tree, start, end,
4203 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4204 				 0, 0, NULL, mask, NULL);
4205 
4206 		/* if clear_extent_bit failed for enomem reasons,
4207 		 * we can't allow the release to continue.
4208 		 */
4209 		if (ret < 0)
4210 			ret = 0;
4211 		else
4212 			ret = 1;
4213 	}
4214 	return ret;
4215 }
4216 
4217 /*
4218  * a helper for releasepage.  As long as there are no locked extents
4219  * in the range corresponding to the page, both state records and extent
4220  * map records are removed
4221  */
4222 int try_release_extent_mapping(struct page *page, gfp_t mask)
4223 {
4224 	struct extent_map *em;
4225 	u64 start = page_offset(page);
4226 	u64 end = start + PAGE_SIZE - 1;
4227 	struct btrfs_inode *btrfs_inode = BTRFS_I(page->mapping->host);
4228 	struct extent_io_tree *tree = &btrfs_inode->io_tree;
4229 	struct extent_map_tree *map = &btrfs_inode->extent_tree;
4230 
4231 	if (gfpflags_allow_blocking(mask) &&
4232 	    page->mapping->host->i_size > SZ_16M) {
4233 		u64 len;
4234 		while (start <= end) {
4235 			len = end - start + 1;
4236 			write_lock(&map->lock);
4237 			em = lookup_extent_mapping(map, start, len);
4238 			if (!em) {
4239 				write_unlock(&map->lock);
4240 				break;
4241 			}
4242 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4243 			    em->start != start) {
4244 				write_unlock(&map->lock);
4245 				free_extent_map(em);
4246 				break;
4247 			}
4248 			if (!test_range_bit(tree, em->start,
4249 					    extent_map_end(em) - 1,
4250 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4251 					    0, NULL)) {
4252 				set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4253 					&btrfs_inode->runtime_flags);
4254 				remove_extent_mapping(map, em);
4255 				/* once for the rb tree */
4256 				free_extent_map(em);
4257 			}
4258 			start = extent_map_end(em);
4259 			write_unlock(&map->lock);
4260 
4261 			/* once for us */
4262 			free_extent_map(em);
4263 		}
4264 	}
4265 	return try_release_extent_state(tree, page, mask);
4266 }
4267 
4268 /*
4269  * helper function for fiemap, which doesn't want to see any holes.
4270  * This maps until we find something past 'last'
4271  */
4272 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4273 						u64 offset, u64 last)
4274 {
4275 	u64 sectorsize = btrfs_inode_sectorsize(inode);
4276 	struct extent_map *em;
4277 	u64 len;
4278 
4279 	if (offset >= last)
4280 		return NULL;
4281 
4282 	while (1) {
4283 		len = last - offset;
4284 		if (len == 0)
4285 			break;
4286 		len = ALIGN(len, sectorsize);
4287 		em = btrfs_get_extent_fiemap(BTRFS_I(inode), NULL, 0, offset,
4288 				len, 0);
4289 		if (IS_ERR_OR_NULL(em))
4290 			return em;
4291 
4292 		/* if this isn't a hole return it */
4293 		if (em->block_start != EXTENT_MAP_HOLE)
4294 			return em;
4295 
4296 		/* this is a hole, advance to the next extent */
4297 		offset = extent_map_end(em);
4298 		free_extent_map(em);
4299 		if (offset >= last)
4300 			break;
4301 	}
4302 	return NULL;
4303 }
4304 
4305 /*
4306  * To cache previous fiemap extent
4307  *
4308  * Will be used for merging fiemap extent
4309  */
4310 struct fiemap_cache {
4311 	u64 offset;
4312 	u64 phys;
4313 	u64 len;
4314 	u32 flags;
4315 	bool cached;
4316 };
4317 
4318 /*
4319  * Helper to submit fiemap extent.
4320  *
4321  * Will try to merge current fiemap extent specified by @offset, @phys,
4322  * @len and @flags with cached one.
4323  * And only when we fails to merge, cached one will be submitted as
4324  * fiemap extent.
4325  *
4326  * Return value is the same as fiemap_fill_next_extent().
4327  */
4328 static int emit_fiemap_extent(struct fiemap_extent_info *fieinfo,
4329 				struct fiemap_cache *cache,
4330 				u64 offset, u64 phys, u64 len, u32 flags)
4331 {
4332 	int ret = 0;
4333 
4334 	if (!cache->cached)
4335 		goto assign;
4336 
4337 	/*
4338 	 * Sanity check, extent_fiemap() should have ensured that new
4339 	 * fiemap extent won't overlap with cahced one.
4340 	 * Not recoverable.
4341 	 *
4342 	 * NOTE: Physical address can overlap, due to compression
4343 	 */
4344 	if (cache->offset + cache->len > offset) {
4345 		WARN_ON(1);
4346 		return -EINVAL;
4347 	}
4348 
4349 	/*
4350 	 * Only merges fiemap extents if
4351 	 * 1) Their logical addresses are continuous
4352 	 *
4353 	 * 2) Their physical addresses are continuous
4354 	 *    So truly compressed (physical size smaller than logical size)
4355 	 *    extents won't get merged with each other
4356 	 *
4357 	 * 3) Share same flags except FIEMAP_EXTENT_LAST
4358 	 *    So regular extent won't get merged with prealloc extent
4359 	 */
4360 	if (cache->offset + cache->len  == offset &&
4361 	    cache->phys + cache->len == phys  &&
4362 	    (cache->flags & ~FIEMAP_EXTENT_LAST) ==
4363 			(flags & ~FIEMAP_EXTENT_LAST)) {
4364 		cache->len += len;
4365 		cache->flags |= flags;
4366 		goto try_submit_last;
4367 	}
4368 
4369 	/* Not mergeable, need to submit cached one */
4370 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4371 				      cache->len, cache->flags);
4372 	cache->cached = false;
4373 	if (ret)
4374 		return ret;
4375 assign:
4376 	cache->cached = true;
4377 	cache->offset = offset;
4378 	cache->phys = phys;
4379 	cache->len = len;
4380 	cache->flags = flags;
4381 try_submit_last:
4382 	if (cache->flags & FIEMAP_EXTENT_LAST) {
4383 		ret = fiemap_fill_next_extent(fieinfo, cache->offset,
4384 				cache->phys, cache->len, cache->flags);
4385 		cache->cached = false;
4386 	}
4387 	return ret;
4388 }
4389 
4390 /*
4391  * Emit last fiemap cache
4392  *
4393  * The last fiemap cache may still be cached in the following case:
4394  * 0		      4k		    8k
4395  * |<- Fiemap range ->|
4396  * |<------------  First extent ----------->|
4397  *
4398  * In this case, the first extent range will be cached but not emitted.
4399  * So we must emit it before ending extent_fiemap().
4400  */
4401 static int emit_last_fiemap_cache(struct btrfs_fs_info *fs_info,
4402 				  struct fiemap_extent_info *fieinfo,
4403 				  struct fiemap_cache *cache)
4404 {
4405 	int ret;
4406 
4407 	if (!cache->cached)
4408 		return 0;
4409 
4410 	ret = fiemap_fill_next_extent(fieinfo, cache->offset, cache->phys,
4411 				      cache->len, cache->flags);
4412 	cache->cached = false;
4413 	if (ret > 0)
4414 		ret = 0;
4415 	return ret;
4416 }
4417 
4418 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4419 		__u64 start, __u64 len)
4420 {
4421 	int ret = 0;
4422 	u64 off = start;
4423 	u64 max = start + len;
4424 	u32 flags = 0;
4425 	u32 found_type;
4426 	u64 last;
4427 	u64 last_for_get_extent = 0;
4428 	u64 disko = 0;
4429 	u64 isize = i_size_read(inode);
4430 	struct btrfs_key found_key;
4431 	struct extent_map *em = NULL;
4432 	struct extent_state *cached_state = NULL;
4433 	struct btrfs_path *path;
4434 	struct btrfs_root *root = BTRFS_I(inode)->root;
4435 	struct fiemap_cache cache = { 0 };
4436 	int end = 0;
4437 	u64 em_start = 0;
4438 	u64 em_len = 0;
4439 	u64 em_end = 0;
4440 
4441 	if (len == 0)
4442 		return -EINVAL;
4443 
4444 	path = btrfs_alloc_path();
4445 	if (!path)
4446 		return -ENOMEM;
4447 	path->leave_spinning = 1;
4448 
4449 	start = round_down(start, btrfs_inode_sectorsize(inode));
4450 	len = round_up(max, btrfs_inode_sectorsize(inode)) - start;
4451 
4452 	/*
4453 	 * lookup the last file extent.  We're not using i_size here
4454 	 * because there might be preallocation past i_size
4455 	 */
4456 	ret = btrfs_lookup_file_extent(NULL, root, path,
4457 			btrfs_ino(BTRFS_I(inode)), -1, 0);
4458 	if (ret < 0) {
4459 		btrfs_free_path(path);
4460 		return ret;
4461 	} else {
4462 		WARN_ON(!ret);
4463 		if (ret == 1)
4464 			ret = 0;
4465 	}
4466 
4467 	path->slots[0]--;
4468 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4469 	found_type = found_key.type;
4470 
4471 	/* No extents, but there might be delalloc bits */
4472 	if (found_key.objectid != btrfs_ino(BTRFS_I(inode)) ||
4473 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4474 		/* have to trust i_size as the end */
4475 		last = (u64)-1;
4476 		last_for_get_extent = isize;
4477 	} else {
4478 		/*
4479 		 * remember the start of the last extent.  There are a
4480 		 * bunch of different factors that go into the length of the
4481 		 * extent, so its much less complex to remember where it started
4482 		 */
4483 		last = found_key.offset;
4484 		last_for_get_extent = last + 1;
4485 	}
4486 	btrfs_release_path(path);
4487 
4488 	/*
4489 	 * we might have some extents allocated but more delalloc past those
4490 	 * extents.  so, we trust isize unless the start of the last extent is
4491 	 * beyond isize
4492 	 */
4493 	if (last < isize) {
4494 		last = (u64)-1;
4495 		last_for_get_extent = isize;
4496 	}
4497 
4498 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4499 			 &cached_state);
4500 
4501 	em = get_extent_skip_holes(inode, start, last_for_get_extent);
4502 	if (!em)
4503 		goto out;
4504 	if (IS_ERR(em)) {
4505 		ret = PTR_ERR(em);
4506 		goto out;
4507 	}
4508 
4509 	while (!end) {
4510 		u64 offset_in_extent = 0;
4511 
4512 		/* break if the extent we found is outside the range */
4513 		if (em->start >= max || extent_map_end(em) < off)
4514 			break;
4515 
4516 		/*
4517 		 * get_extent may return an extent that starts before our
4518 		 * requested range.  We have to make sure the ranges
4519 		 * we return to fiemap always move forward and don't
4520 		 * overlap, so adjust the offsets here
4521 		 */
4522 		em_start = max(em->start, off);
4523 
4524 		/*
4525 		 * record the offset from the start of the extent
4526 		 * for adjusting the disk offset below.  Only do this if the
4527 		 * extent isn't compressed since our in ram offset may be past
4528 		 * what we have actually allocated on disk.
4529 		 */
4530 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4531 			offset_in_extent = em_start - em->start;
4532 		em_end = extent_map_end(em);
4533 		em_len = em_end - em_start;
4534 		flags = 0;
4535 		if (em->block_start < EXTENT_MAP_LAST_BYTE)
4536 			disko = em->block_start + offset_in_extent;
4537 		else
4538 			disko = 0;
4539 
4540 		/*
4541 		 * bump off for our next call to get_extent
4542 		 */
4543 		off = extent_map_end(em);
4544 		if (off >= max)
4545 			end = 1;
4546 
4547 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4548 			end = 1;
4549 			flags |= FIEMAP_EXTENT_LAST;
4550 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4551 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4552 				  FIEMAP_EXTENT_NOT_ALIGNED);
4553 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4554 			flags |= (FIEMAP_EXTENT_DELALLOC |
4555 				  FIEMAP_EXTENT_UNKNOWN);
4556 		} else if (fieinfo->fi_extents_max) {
4557 			u64 bytenr = em->block_start -
4558 				(em->start - em->orig_start);
4559 
4560 			/*
4561 			 * As btrfs supports shared space, this information
4562 			 * can be exported to userspace tools via
4563 			 * flag FIEMAP_EXTENT_SHARED.  If fi_extents_max == 0
4564 			 * then we're just getting a count and we can skip the
4565 			 * lookup stuff.
4566 			 */
4567 			ret = btrfs_check_shared(root,
4568 						 btrfs_ino(BTRFS_I(inode)),
4569 						 bytenr);
4570 			if (ret < 0)
4571 				goto out_free;
4572 			if (ret)
4573 				flags |= FIEMAP_EXTENT_SHARED;
4574 			ret = 0;
4575 		}
4576 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4577 			flags |= FIEMAP_EXTENT_ENCODED;
4578 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
4579 			flags |= FIEMAP_EXTENT_UNWRITTEN;
4580 
4581 		free_extent_map(em);
4582 		em = NULL;
4583 		if ((em_start >= last) || em_len == (u64)-1 ||
4584 		   (last == (u64)-1 && isize <= em_end)) {
4585 			flags |= FIEMAP_EXTENT_LAST;
4586 			end = 1;
4587 		}
4588 
4589 		/* now scan forward to see if this is really the last extent. */
4590 		em = get_extent_skip_holes(inode, off, last_for_get_extent);
4591 		if (IS_ERR(em)) {
4592 			ret = PTR_ERR(em);
4593 			goto out;
4594 		}
4595 		if (!em) {
4596 			flags |= FIEMAP_EXTENT_LAST;
4597 			end = 1;
4598 		}
4599 		ret = emit_fiemap_extent(fieinfo, &cache, em_start, disko,
4600 					   em_len, flags);
4601 		if (ret) {
4602 			if (ret == 1)
4603 				ret = 0;
4604 			goto out_free;
4605 		}
4606 	}
4607 out_free:
4608 	if (!ret)
4609 		ret = emit_last_fiemap_cache(root->fs_info, fieinfo, &cache);
4610 	free_extent_map(em);
4611 out:
4612 	btrfs_free_path(path);
4613 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4614 			     &cached_state);
4615 	return ret;
4616 }
4617 
4618 static void __free_extent_buffer(struct extent_buffer *eb)
4619 {
4620 	btrfs_leak_debug_del(&eb->leak_list);
4621 	kmem_cache_free(extent_buffer_cache, eb);
4622 }
4623 
4624 int extent_buffer_under_io(struct extent_buffer *eb)
4625 {
4626 	return (atomic_read(&eb->io_pages) ||
4627 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4628 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4629 }
4630 
4631 /*
4632  * Release all pages attached to the extent buffer.
4633  */
4634 static void btrfs_release_extent_buffer_pages(struct extent_buffer *eb)
4635 {
4636 	int i;
4637 	int num_pages;
4638 	int mapped = !test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4639 
4640 	BUG_ON(extent_buffer_under_io(eb));
4641 
4642 	num_pages = num_extent_pages(eb);
4643 	for (i = 0; i < num_pages; i++) {
4644 		struct page *page = eb->pages[i];
4645 
4646 		if (!page)
4647 			continue;
4648 		if (mapped)
4649 			spin_lock(&page->mapping->private_lock);
4650 		/*
4651 		 * We do this since we'll remove the pages after we've
4652 		 * removed the eb from the radix tree, so we could race
4653 		 * and have this page now attached to the new eb.  So
4654 		 * only clear page_private if it's still connected to
4655 		 * this eb.
4656 		 */
4657 		if (PagePrivate(page) &&
4658 		    page->private == (unsigned long)eb) {
4659 			BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4660 			BUG_ON(PageDirty(page));
4661 			BUG_ON(PageWriteback(page));
4662 			/*
4663 			 * We need to make sure we haven't be attached
4664 			 * to a new eb.
4665 			 */
4666 			ClearPagePrivate(page);
4667 			set_page_private(page, 0);
4668 			/* One for the page private */
4669 			put_page(page);
4670 		}
4671 
4672 		if (mapped)
4673 			spin_unlock(&page->mapping->private_lock);
4674 
4675 		/* One for when we allocated the page */
4676 		put_page(page);
4677 	}
4678 }
4679 
4680 /*
4681  * Helper for releasing the extent buffer.
4682  */
4683 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4684 {
4685 	btrfs_release_extent_buffer_pages(eb);
4686 	__free_extent_buffer(eb);
4687 }
4688 
4689 static struct extent_buffer *
4690 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4691 		      unsigned long len)
4692 {
4693 	struct extent_buffer *eb = NULL;
4694 
4695 	eb = kmem_cache_zalloc(extent_buffer_cache, GFP_NOFS|__GFP_NOFAIL);
4696 	eb->start = start;
4697 	eb->len = len;
4698 	eb->fs_info = fs_info;
4699 	eb->bflags = 0;
4700 	rwlock_init(&eb->lock);
4701 	atomic_set(&eb->write_locks, 0);
4702 	atomic_set(&eb->read_locks, 0);
4703 	atomic_set(&eb->blocking_readers, 0);
4704 	atomic_set(&eb->blocking_writers, 0);
4705 	atomic_set(&eb->spinning_readers, 0);
4706 	atomic_set(&eb->spinning_writers, 0);
4707 	eb->lock_nested = 0;
4708 	init_waitqueue_head(&eb->write_lock_wq);
4709 	init_waitqueue_head(&eb->read_lock_wq);
4710 
4711 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4712 
4713 	spin_lock_init(&eb->refs_lock);
4714 	atomic_set(&eb->refs, 1);
4715 	atomic_set(&eb->io_pages, 0);
4716 
4717 	/*
4718 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4719 	 */
4720 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4721 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4722 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4723 
4724 	return eb;
4725 }
4726 
4727 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4728 {
4729 	int i;
4730 	struct page *p;
4731 	struct extent_buffer *new;
4732 	int num_pages = num_extent_pages(src);
4733 
4734 	new = __alloc_extent_buffer(src->fs_info, src->start, src->len);
4735 	if (new == NULL)
4736 		return NULL;
4737 
4738 	for (i = 0; i < num_pages; i++) {
4739 		p = alloc_page(GFP_NOFS);
4740 		if (!p) {
4741 			btrfs_release_extent_buffer(new);
4742 			return NULL;
4743 		}
4744 		attach_extent_buffer_page(new, p);
4745 		WARN_ON(PageDirty(p));
4746 		SetPageUptodate(p);
4747 		new->pages[i] = p;
4748 		copy_page(page_address(p), page_address(src->pages[i]));
4749 	}
4750 
4751 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4752 	set_bit(EXTENT_BUFFER_UNMAPPED, &new->bflags);
4753 
4754 	return new;
4755 }
4756 
4757 struct extent_buffer *__alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4758 						  u64 start, unsigned long len)
4759 {
4760 	struct extent_buffer *eb;
4761 	int num_pages;
4762 	int i;
4763 
4764 	eb = __alloc_extent_buffer(fs_info, start, len);
4765 	if (!eb)
4766 		return NULL;
4767 
4768 	num_pages = num_extent_pages(eb);
4769 	for (i = 0; i < num_pages; i++) {
4770 		eb->pages[i] = alloc_page(GFP_NOFS);
4771 		if (!eb->pages[i])
4772 			goto err;
4773 	}
4774 	set_extent_buffer_uptodate(eb);
4775 	btrfs_set_header_nritems(eb, 0);
4776 	set_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags);
4777 
4778 	return eb;
4779 err:
4780 	for (; i > 0; i--)
4781 		__free_page(eb->pages[i - 1]);
4782 	__free_extent_buffer(eb);
4783 	return NULL;
4784 }
4785 
4786 struct extent_buffer *alloc_dummy_extent_buffer(struct btrfs_fs_info *fs_info,
4787 						u64 start)
4788 {
4789 	return __alloc_dummy_extent_buffer(fs_info, start, fs_info->nodesize);
4790 }
4791 
4792 static void check_buffer_tree_ref(struct extent_buffer *eb)
4793 {
4794 	int refs;
4795 	/* the ref bit is tricky.  We have to make sure it is set
4796 	 * if we have the buffer dirty.   Otherwise the
4797 	 * code to free a buffer can end up dropping a dirty
4798 	 * page
4799 	 *
4800 	 * Once the ref bit is set, it won't go away while the
4801 	 * buffer is dirty or in writeback, and it also won't
4802 	 * go away while we have the reference count on the
4803 	 * eb bumped.
4804 	 *
4805 	 * We can't just set the ref bit without bumping the
4806 	 * ref on the eb because free_extent_buffer might
4807 	 * see the ref bit and try to clear it.  If this happens
4808 	 * free_extent_buffer might end up dropping our original
4809 	 * ref by mistake and freeing the page before we are able
4810 	 * to add one more ref.
4811 	 *
4812 	 * So bump the ref count first, then set the bit.  If someone
4813 	 * beat us to it, drop the ref we added.
4814 	 */
4815 	refs = atomic_read(&eb->refs);
4816 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4817 		return;
4818 
4819 	spin_lock(&eb->refs_lock);
4820 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4821 		atomic_inc(&eb->refs);
4822 	spin_unlock(&eb->refs_lock);
4823 }
4824 
4825 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4826 		struct page *accessed)
4827 {
4828 	int num_pages, i;
4829 
4830 	check_buffer_tree_ref(eb);
4831 
4832 	num_pages = num_extent_pages(eb);
4833 	for (i = 0; i < num_pages; i++) {
4834 		struct page *p = eb->pages[i];
4835 
4836 		if (p != accessed)
4837 			mark_page_accessed(p);
4838 	}
4839 }
4840 
4841 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4842 					 u64 start)
4843 {
4844 	struct extent_buffer *eb;
4845 
4846 	rcu_read_lock();
4847 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4848 			       start >> PAGE_SHIFT);
4849 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4850 		rcu_read_unlock();
4851 		/*
4852 		 * Lock our eb's refs_lock to avoid races with
4853 		 * free_extent_buffer. When we get our eb it might be flagged
4854 		 * with EXTENT_BUFFER_STALE and another task running
4855 		 * free_extent_buffer might have seen that flag set,
4856 		 * eb->refs == 2, that the buffer isn't under IO (dirty and
4857 		 * writeback flags not set) and it's still in the tree (flag
4858 		 * EXTENT_BUFFER_TREE_REF set), therefore being in the process
4859 		 * of decrementing the extent buffer's reference count twice.
4860 		 * So here we could race and increment the eb's reference count,
4861 		 * clear its stale flag, mark it as dirty and drop our reference
4862 		 * before the other task finishes executing free_extent_buffer,
4863 		 * which would later result in an attempt to free an extent
4864 		 * buffer that is dirty.
4865 		 */
4866 		if (test_bit(EXTENT_BUFFER_STALE, &eb->bflags)) {
4867 			spin_lock(&eb->refs_lock);
4868 			spin_unlock(&eb->refs_lock);
4869 		}
4870 		mark_extent_buffer_accessed(eb, NULL);
4871 		return eb;
4872 	}
4873 	rcu_read_unlock();
4874 
4875 	return NULL;
4876 }
4877 
4878 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4879 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4880 					u64 start)
4881 {
4882 	struct extent_buffer *eb, *exists = NULL;
4883 	int ret;
4884 
4885 	eb = find_extent_buffer(fs_info, start);
4886 	if (eb)
4887 		return eb;
4888 	eb = alloc_dummy_extent_buffer(fs_info, start);
4889 	if (!eb)
4890 		return NULL;
4891 	eb->fs_info = fs_info;
4892 again:
4893 	ret = radix_tree_preload(GFP_NOFS);
4894 	if (ret)
4895 		goto free_eb;
4896 	spin_lock(&fs_info->buffer_lock);
4897 	ret = radix_tree_insert(&fs_info->buffer_radix,
4898 				start >> PAGE_SHIFT, eb);
4899 	spin_unlock(&fs_info->buffer_lock);
4900 	radix_tree_preload_end();
4901 	if (ret == -EEXIST) {
4902 		exists = find_extent_buffer(fs_info, start);
4903 		if (exists)
4904 			goto free_eb;
4905 		else
4906 			goto again;
4907 	}
4908 	check_buffer_tree_ref(eb);
4909 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4910 
4911 	/*
4912 	 * We will free dummy extent buffer's if they come into
4913 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4914 	 * want the buffers to stay in memory until we're done with them, so
4915 	 * bump the ref count again.
4916 	 */
4917 	atomic_inc(&eb->refs);
4918 	return eb;
4919 free_eb:
4920 	btrfs_release_extent_buffer(eb);
4921 	return exists;
4922 }
4923 #endif
4924 
4925 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4926 					  u64 start)
4927 {
4928 	unsigned long len = fs_info->nodesize;
4929 	int num_pages;
4930 	int i;
4931 	unsigned long index = start >> PAGE_SHIFT;
4932 	struct extent_buffer *eb;
4933 	struct extent_buffer *exists = NULL;
4934 	struct page *p;
4935 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4936 	int uptodate = 1;
4937 	int ret;
4938 
4939 	if (!IS_ALIGNED(start, fs_info->sectorsize)) {
4940 		btrfs_err(fs_info, "bad tree block start %llu", start);
4941 		return ERR_PTR(-EINVAL);
4942 	}
4943 
4944 	eb = find_extent_buffer(fs_info, start);
4945 	if (eb)
4946 		return eb;
4947 
4948 	eb = __alloc_extent_buffer(fs_info, start, len);
4949 	if (!eb)
4950 		return ERR_PTR(-ENOMEM);
4951 
4952 	num_pages = num_extent_pages(eb);
4953 	for (i = 0; i < num_pages; i++, index++) {
4954 		p = find_or_create_page(mapping, index, GFP_NOFS|__GFP_NOFAIL);
4955 		if (!p) {
4956 			exists = ERR_PTR(-ENOMEM);
4957 			goto free_eb;
4958 		}
4959 
4960 		spin_lock(&mapping->private_lock);
4961 		if (PagePrivate(p)) {
4962 			/*
4963 			 * We could have already allocated an eb for this page
4964 			 * and attached one so lets see if we can get a ref on
4965 			 * the existing eb, and if we can we know it's good and
4966 			 * we can just return that one, else we know we can just
4967 			 * overwrite page->private.
4968 			 */
4969 			exists = (struct extent_buffer *)p->private;
4970 			if (atomic_inc_not_zero(&exists->refs)) {
4971 				spin_unlock(&mapping->private_lock);
4972 				unlock_page(p);
4973 				put_page(p);
4974 				mark_extent_buffer_accessed(exists, p);
4975 				goto free_eb;
4976 			}
4977 			exists = NULL;
4978 
4979 			/*
4980 			 * Do this so attach doesn't complain and we need to
4981 			 * drop the ref the old guy had.
4982 			 */
4983 			ClearPagePrivate(p);
4984 			WARN_ON(PageDirty(p));
4985 			put_page(p);
4986 		}
4987 		attach_extent_buffer_page(eb, p);
4988 		spin_unlock(&mapping->private_lock);
4989 		WARN_ON(PageDirty(p));
4990 		eb->pages[i] = p;
4991 		if (!PageUptodate(p))
4992 			uptodate = 0;
4993 
4994 		/*
4995 		 * We can't unlock the pages just yet since the extent buffer
4996 		 * hasn't been properly inserted in the radix tree, this
4997 		 * opens a race with btree_releasepage which can free a page
4998 		 * while we are still filling in all pages for the buffer and
4999 		 * we could crash.
5000 		 */
5001 	}
5002 	if (uptodate)
5003 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5004 again:
5005 	ret = radix_tree_preload(GFP_NOFS);
5006 	if (ret) {
5007 		exists = ERR_PTR(ret);
5008 		goto free_eb;
5009 	}
5010 
5011 	spin_lock(&fs_info->buffer_lock);
5012 	ret = radix_tree_insert(&fs_info->buffer_radix,
5013 				start >> PAGE_SHIFT, eb);
5014 	spin_unlock(&fs_info->buffer_lock);
5015 	radix_tree_preload_end();
5016 	if (ret == -EEXIST) {
5017 		exists = find_extent_buffer(fs_info, start);
5018 		if (exists)
5019 			goto free_eb;
5020 		else
5021 			goto again;
5022 	}
5023 	/* add one reference for the tree */
5024 	check_buffer_tree_ref(eb);
5025 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
5026 
5027 	/*
5028 	 * Now it's safe to unlock the pages because any calls to
5029 	 * btree_releasepage will correctly detect that a page belongs to a
5030 	 * live buffer and won't free them prematurely.
5031 	 */
5032 	for (i = 0; i < num_pages; i++)
5033 		unlock_page(eb->pages[i]);
5034 	return eb;
5035 
5036 free_eb:
5037 	WARN_ON(!atomic_dec_and_test(&eb->refs));
5038 	for (i = 0; i < num_pages; i++) {
5039 		if (eb->pages[i])
5040 			unlock_page(eb->pages[i]);
5041 	}
5042 
5043 	btrfs_release_extent_buffer(eb);
5044 	return exists;
5045 }
5046 
5047 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
5048 {
5049 	struct extent_buffer *eb =
5050 			container_of(head, struct extent_buffer, rcu_head);
5051 
5052 	__free_extent_buffer(eb);
5053 }
5054 
5055 static int release_extent_buffer(struct extent_buffer *eb)
5056 {
5057 	lockdep_assert_held(&eb->refs_lock);
5058 
5059 	WARN_ON(atomic_read(&eb->refs) == 0);
5060 	if (atomic_dec_and_test(&eb->refs)) {
5061 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
5062 			struct btrfs_fs_info *fs_info = eb->fs_info;
5063 
5064 			spin_unlock(&eb->refs_lock);
5065 
5066 			spin_lock(&fs_info->buffer_lock);
5067 			radix_tree_delete(&fs_info->buffer_radix,
5068 					  eb->start >> PAGE_SHIFT);
5069 			spin_unlock(&fs_info->buffer_lock);
5070 		} else {
5071 			spin_unlock(&eb->refs_lock);
5072 		}
5073 
5074 		/* Should be safe to release our pages at this point */
5075 		btrfs_release_extent_buffer_pages(eb);
5076 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
5077 		if (unlikely(test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))) {
5078 			__free_extent_buffer(eb);
5079 			return 1;
5080 		}
5081 #endif
5082 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
5083 		return 1;
5084 	}
5085 	spin_unlock(&eb->refs_lock);
5086 
5087 	return 0;
5088 }
5089 
5090 void free_extent_buffer(struct extent_buffer *eb)
5091 {
5092 	int refs;
5093 	int old;
5094 	if (!eb)
5095 		return;
5096 
5097 	while (1) {
5098 		refs = atomic_read(&eb->refs);
5099 		if (refs <= 3)
5100 			break;
5101 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
5102 		if (old == refs)
5103 			return;
5104 	}
5105 
5106 	spin_lock(&eb->refs_lock);
5107 	if (atomic_read(&eb->refs) == 2 &&
5108 	    test_bit(EXTENT_BUFFER_UNMAPPED, &eb->bflags))
5109 		atomic_dec(&eb->refs);
5110 
5111 	if (atomic_read(&eb->refs) == 2 &&
5112 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
5113 	    !extent_buffer_under_io(eb) &&
5114 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5115 		atomic_dec(&eb->refs);
5116 
5117 	/*
5118 	 * I know this is terrible, but it's temporary until we stop tracking
5119 	 * the uptodate bits and such for the extent buffers.
5120 	 */
5121 	release_extent_buffer(eb);
5122 }
5123 
5124 void free_extent_buffer_stale(struct extent_buffer *eb)
5125 {
5126 	if (!eb)
5127 		return;
5128 
5129 	spin_lock(&eb->refs_lock);
5130 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
5131 
5132 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
5133 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
5134 		atomic_dec(&eb->refs);
5135 	release_extent_buffer(eb);
5136 }
5137 
5138 void clear_extent_buffer_dirty(struct extent_buffer *eb)
5139 {
5140 	int i;
5141 	int num_pages;
5142 	struct page *page;
5143 
5144 	num_pages = num_extent_pages(eb);
5145 
5146 	for (i = 0; i < num_pages; i++) {
5147 		page = eb->pages[i];
5148 		if (!PageDirty(page))
5149 			continue;
5150 
5151 		lock_page(page);
5152 		WARN_ON(!PagePrivate(page));
5153 
5154 		clear_page_dirty_for_io(page);
5155 		xa_lock_irq(&page->mapping->i_pages);
5156 		if (!PageDirty(page)) {
5157 			radix_tree_tag_clear(&page->mapping->i_pages,
5158 						page_index(page),
5159 						PAGECACHE_TAG_DIRTY);
5160 		}
5161 		xa_unlock_irq(&page->mapping->i_pages);
5162 		ClearPageError(page);
5163 		unlock_page(page);
5164 	}
5165 	WARN_ON(atomic_read(&eb->refs) == 0);
5166 }
5167 
5168 int set_extent_buffer_dirty(struct extent_buffer *eb)
5169 {
5170 	int i;
5171 	int num_pages;
5172 	int was_dirty = 0;
5173 
5174 	check_buffer_tree_ref(eb);
5175 
5176 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
5177 
5178 	num_pages = num_extent_pages(eb);
5179 	WARN_ON(atomic_read(&eb->refs) == 0);
5180 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
5181 
5182 	for (i = 0; i < num_pages; i++)
5183 		set_page_dirty(eb->pages[i]);
5184 	return was_dirty;
5185 }
5186 
5187 void clear_extent_buffer_uptodate(struct extent_buffer *eb)
5188 {
5189 	int i;
5190 	struct page *page;
5191 	int num_pages;
5192 
5193 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5194 	num_pages = num_extent_pages(eb);
5195 	for (i = 0; i < num_pages; i++) {
5196 		page = eb->pages[i];
5197 		if (page)
5198 			ClearPageUptodate(page);
5199 	}
5200 }
5201 
5202 void set_extent_buffer_uptodate(struct extent_buffer *eb)
5203 {
5204 	int i;
5205 	struct page *page;
5206 	int num_pages;
5207 
5208 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5209 	num_pages = num_extent_pages(eb);
5210 	for (i = 0; i < num_pages; i++) {
5211 		page = eb->pages[i];
5212 		SetPageUptodate(page);
5213 	}
5214 }
5215 
5216 int read_extent_buffer_pages(struct extent_io_tree *tree,
5217 			     struct extent_buffer *eb, int wait, int mirror_num)
5218 {
5219 	int i;
5220 	struct page *page;
5221 	int err;
5222 	int ret = 0;
5223 	int locked_pages = 0;
5224 	int all_uptodate = 1;
5225 	int num_pages;
5226 	unsigned long num_reads = 0;
5227 	struct bio *bio = NULL;
5228 	unsigned long bio_flags = 0;
5229 
5230 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
5231 		return 0;
5232 
5233 	num_pages = num_extent_pages(eb);
5234 	for (i = 0; i < num_pages; i++) {
5235 		page = eb->pages[i];
5236 		if (wait == WAIT_NONE) {
5237 			if (!trylock_page(page))
5238 				goto unlock_exit;
5239 		} else {
5240 			lock_page(page);
5241 		}
5242 		locked_pages++;
5243 	}
5244 	/*
5245 	 * We need to firstly lock all pages to make sure that
5246 	 * the uptodate bit of our pages won't be affected by
5247 	 * clear_extent_buffer_uptodate().
5248 	 */
5249 	for (i = 0; i < num_pages; i++) {
5250 		page = eb->pages[i];
5251 		if (!PageUptodate(page)) {
5252 			num_reads++;
5253 			all_uptodate = 0;
5254 		}
5255 	}
5256 
5257 	if (all_uptodate) {
5258 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
5259 		goto unlock_exit;
5260 	}
5261 
5262 	clear_bit(EXTENT_BUFFER_READ_ERR, &eb->bflags);
5263 	eb->read_mirror = 0;
5264 	atomic_set(&eb->io_pages, num_reads);
5265 	for (i = 0; i < num_pages; i++) {
5266 		page = eb->pages[i];
5267 
5268 		if (!PageUptodate(page)) {
5269 			if (ret) {
5270 				atomic_dec(&eb->io_pages);
5271 				unlock_page(page);
5272 				continue;
5273 			}
5274 
5275 			ClearPageError(page);
5276 			err = __extent_read_full_page(tree, page,
5277 						      btree_get_extent, &bio,
5278 						      mirror_num, &bio_flags,
5279 						      REQ_META);
5280 			if (err) {
5281 				ret = err;
5282 				/*
5283 				 * We use &bio in above __extent_read_full_page,
5284 				 * so we ensure that if it returns error, the
5285 				 * current page fails to add itself to bio and
5286 				 * it's been unlocked.
5287 				 *
5288 				 * We must dec io_pages by ourselves.
5289 				 */
5290 				atomic_dec(&eb->io_pages);
5291 			}
5292 		} else {
5293 			unlock_page(page);
5294 		}
5295 	}
5296 
5297 	if (bio) {
5298 		err = submit_one_bio(bio, mirror_num, bio_flags);
5299 		if (err)
5300 			return err;
5301 	}
5302 
5303 	if (ret || wait != WAIT_COMPLETE)
5304 		return ret;
5305 
5306 	for (i = 0; i < num_pages; i++) {
5307 		page = eb->pages[i];
5308 		wait_on_page_locked(page);
5309 		if (!PageUptodate(page))
5310 			ret = -EIO;
5311 	}
5312 
5313 	return ret;
5314 
5315 unlock_exit:
5316 	while (locked_pages > 0) {
5317 		locked_pages--;
5318 		page = eb->pages[locked_pages];
5319 		unlock_page(page);
5320 	}
5321 	return ret;
5322 }
5323 
5324 void read_extent_buffer(const struct extent_buffer *eb, void *dstv,
5325 			unsigned long start, unsigned long len)
5326 {
5327 	size_t cur;
5328 	size_t offset;
5329 	struct page *page;
5330 	char *kaddr;
5331 	char *dst = (char *)dstv;
5332 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5333 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5334 
5335 	if (start + len > eb->len) {
5336 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5337 		     eb->start, eb->len, start, len);
5338 		memset(dst, 0, len);
5339 		return;
5340 	}
5341 
5342 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5343 
5344 	while (len > 0) {
5345 		page = eb->pages[i];
5346 
5347 		cur = min(len, (PAGE_SIZE - offset));
5348 		kaddr = page_address(page);
5349 		memcpy(dst, kaddr + offset, cur);
5350 
5351 		dst += cur;
5352 		len -= cur;
5353 		offset = 0;
5354 		i++;
5355 	}
5356 }
5357 
5358 int read_extent_buffer_to_user(const struct extent_buffer *eb,
5359 			       void __user *dstv,
5360 			       unsigned long start, unsigned long len)
5361 {
5362 	size_t cur;
5363 	size_t offset;
5364 	struct page *page;
5365 	char *kaddr;
5366 	char __user *dst = (char __user *)dstv;
5367 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5368 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5369 	int ret = 0;
5370 
5371 	WARN_ON(start > eb->len);
5372 	WARN_ON(start + len > eb->start + eb->len);
5373 
5374 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5375 
5376 	while (len > 0) {
5377 		page = eb->pages[i];
5378 
5379 		cur = min(len, (PAGE_SIZE - offset));
5380 		kaddr = page_address(page);
5381 		if (copy_to_user(dst, kaddr + offset, cur)) {
5382 			ret = -EFAULT;
5383 			break;
5384 		}
5385 
5386 		dst += cur;
5387 		len -= cur;
5388 		offset = 0;
5389 		i++;
5390 	}
5391 
5392 	return ret;
5393 }
5394 
5395 /*
5396  * return 0 if the item is found within a page.
5397  * return 1 if the item spans two pages.
5398  * return -EINVAL otherwise.
5399  */
5400 int map_private_extent_buffer(const struct extent_buffer *eb,
5401 			      unsigned long start, unsigned long min_len,
5402 			      char **map, unsigned long *map_start,
5403 			      unsigned long *map_len)
5404 {
5405 	size_t offset = start & (PAGE_SIZE - 1);
5406 	char *kaddr;
5407 	struct page *p;
5408 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5409 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5410 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5411 		PAGE_SHIFT;
5412 
5413 	if (start + min_len > eb->len) {
5414 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, wanted %lu %lu\n",
5415 		       eb->start, eb->len, start, min_len);
5416 		return -EINVAL;
5417 	}
5418 
5419 	if (i != end_i)
5420 		return 1;
5421 
5422 	if (i == 0) {
5423 		offset = start_offset;
5424 		*map_start = 0;
5425 	} else {
5426 		offset = 0;
5427 		*map_start = ((u64)i << PAGE_SHIFT) - start_offset;
5428 	}
5429 
5430 	p = eb->pages[i];
5431 	kaddr = page_address(p);
5432 	*map = kaddr + offset;
5433 	*map_len = PAGE_SIZE - offset;
5434 	return 0;
5435 }
5436 
5437 int memcmp_extent_buffer(const struct extent_buffer *eb, const void *ptrv,
5438 			 unsigned long start, unsigned long len)
5439 {
5440 	size_t cur;
5441 	size_t offset;
5442 	struct page *page;
5443 	char *kaddr;
5444 	char *ptr = (char *)ptrv;
5445 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5446 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5447 	int ret = 0;
5448 
5449 	WARN_ON(start > eb->len);
5450 	WARN_ON(start + len > eb->start + eb->len);
5451 
5452 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5453 
5454 	while (len > 0) {
5455 		page = eb->pages[i];
5456 
5457 		cur = min(len, (PAGE_SIZE - offset));
5458 
5459 		kaddr = page_address(page);
5460 		ret = memcmp(ptr, kaddr + offset, cur);
5461 		if (ret)
5462 			break;
5463 
5464 		ptr += cur;
5465 		len -= cur;
5466 		offset = 0;
5467 		i++;
5468 	}
5469 	return ret;
5470 }
5471 
5472 void write_extent_buffer_chunk_tree_uuid(struct extent_buffer *eb,
5473 		const void *srcv)
5474 {
5475 	char *kaddr;
5476 
5477 	WARN_ON(!PageUptodate(eb->pages[0]));
5478 	kaddr = page_address(eb->pages[0]);
5479 	memcpy(kaddr + offsetof(struct btrfs_header, chunk_tree_uuid), srcv,
5480 			BTRFS_FSID_SIZE);
5481 }
5482 
5483 void write_extent_buffer_fsid(struct extent_buffer *eb, const void *srcv)
5484 {
5485 	char *kaddr;
5486 
5487 	WARN_ON(!PageUptodate(eb->pages[0]));
5488 	kaddr = page_address(eb->pages[0]);
5489 	memcpy(kaddr + offsetof(struct btrfs_header, fsid), srcv,
5490 			BTRFS_FSID_SIZE);
5491 }
5492 
5493 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5494 			 unsigned long start, unsigned long len)
5495 {
5496 	size_t cur;
5497 	size_t offset;
5498 	struct page *page;
5499 	char *kaddr;
5500 	char *src = (char *)srcv;
5501 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5502 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5503 
5504 	WARN_ON(start > eb->len);
5505 	WARN_ON(start + len > eb->start + eb->len);
5506 
5507 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5508 
5509 	while (len > 0) {
5510 		page = eb->pages[i];
5511 		WARN_ON(!PageUptodate(page));
5512 
5513 		cur = min(len, PAGE_SIZE - offset);
5514 		kaddr = page_address(page);
5515 		memcpy(kaddr + offset, src, cur);
5516 
5517 		src += cur;
5518 		len -= cur;
5519 		offset = 0;
5520 		i++;
5521 	}
5522 }
5523 
5524 void memzero_extent_buffer(struct extent_buffer *eb, unsigned long start,
5525 		unsigned long len)
5526 {
5527 	size_t cur;
5528 	size_t offset;
5529 	struct page *page;
5530 	char *kaddr;
5531 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5532 	unsigned long i = (start_offset + start) >> PAGE_SHIFT;
5533 
5534 	WARN_ON(start > eb->len);
5535 	WARN_ON(start + len > eb->start + eb->len);
5536 
5537 	offset = (start_offset + start) & (PAGE_SIZE - 1);
5538 
5539 	while (len > 0) {
5540 		page = eb->pages[i];
5541 		WARN_ON(!PageUptodate(page));
5542 
5543 		cur = min(len, PAGE_SIZE - offset);
5544 		kaddr = page_address(page);
5545 		memset(kaddr + offset, 0, cur);
5546 
5547 		len -= cur;
5548 		offset = 0;
5549 		i++;
5550 	}
5551 }
5552 
5553 void copy_extent_buffer_full(struct extent_buffer *dst,
5554 			     struct extent_buffer *src)
5555 {
5556 	int i;
5557 	int num_pages;
5558 
5559 	ASSERT(dst->len == src->len);
5560 
5561 	num_pages = num_extent_pages(dst);
5562 	for (i = 0; i < num_pages; i++)
5563 		copy_page(page_address(dst->pages[i]),
5564 				page_address(src->pages[i]));
5565 }
5566 
5567 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5568 			unsigned long dst_offset, unsigned long src_offset,
5569 			unsigned long len)
5570 {
5571 	u64 dst_len = dst->len;
5572 	size_t cur;
5573 	size_t offset;
5574 	struct page *page;
5575 	char *kaddr;
5576 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5577 	unsigned long i = (start_offset + dst_offset) >> PAGE_SHIFT;
5578 
5579 	WARN_ON(src->len != dst_len);
5580 
5581 	offset = (start_offset + dst_offset) &
5582 		(PAGE_SIZE - 1);
5583 
5584 	while (len > 0) {
5585 		page = dst->pages[i];
5586 		WARN_ON(!PageUptodate(page));
5587 
5588 		cur = min(len, (unsigned long)(PAGE_SIZE - offset));
5589 
5590 		kaddr = page_address(page);
5591 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5592 
5593 		src_offset += cur;
5594 		len -= cur;
5595 		offset = 0;
5596 		i++;
5597 	}
5598 }
5599 
5600 /*
5601  * eb_bitmap_offset() - calculate the page and offset of the byte containing the
5602  * given bit number
5603  * @eb: the extent buffer
5604  * @start: offset of the bitmap item in the extent buffer
5605  * @nr: bit number
5606  * @page_index: return index of the page in the extent buffer that contains the
5607  * given bit number
5608  * @page_offset: return offset into the page given by page_index
5609  *
5610  * This helper hides the ugliness of finding the byte in an extent buffer which
5611  * contains a given bit.
5612  */
5613 static inline void eb_bitmap_offset(struct extent_buffer *eb,
5614 				    unsigned long start, unsigned long nr,
5615 				    unsigned long *page_index,
5616 				    size_t *page_offset)
5617 {
5618 	size_t start_offset = eb->start & ((u64)PAGE_SIZE - 1);
5619 	size_t byte_offset = BIT_BYTE(nr);
5620 	size_t offset;
5621 
5622 	/*
5623 	 * The byte we want is the offset of the extent buffer + the offset of
5624 	 * the bitmap item in the extent buffer + the offset of the byte in the
5625 	 * bitmap item.
5626 	 */
5627 	offset = start_offset + start + byte_offset;
5628 
5629 	*page_index = offset >> PAGE_SHIFT;
5630 	*page_offset = offset & (PAGE_SIZE - 1);
5631 }
5632 
5633 /**
5634  * extent_buffer_test_bit - determine whether a bit in a bitmap item is set
5635  * @eb: the extent buffer
5636  * @start: offset of the bitmap item in the extent buffer
5637  * @nr: bit number to test
5638  */
5639 int extent_buffer_test_bit(struct extent_buffer *eb, unsigned long start,
5640 			   unsigned long nr)
5641 {
5642 	u8 *kaddr;
5643 	struct page *page;
5644 	unsigned long i;
5645 	size_t offset;
5646 
5647 	eb_bitmap_offset(eb, start, nr, &i, &offset);
5648 	page = eb->pages[i];
5649 	WARN_ON(!PageUptodate(page));
5650 	kaddr = page_address(page);
5651 	return 1U & (kaddr[offset] >> (nr & (BITS_PER_BYTE - 1)));
5652 }
5653 
5654 /**
5655  * extent_buffer_bitmap_set - set an area of a bitmap
5656  * @eb: the extent buffer
5657  * @start: offset of the bitmap item in the extent buffer
5658  * @pos: bit number of the first bit
5659  * @len: number of bits to set
5660  */
5661 void extent_buffer_bitmap_set(struct extent_buffer *eb, unsigned long start,
5662 			      unsigned long pos, unsigned long len)
5663 {
5664 	u8 *kaddr;
5665 	struct page *page;
5666 	unsigned long i;
5667 	size_t offset;
5668 	const unsigned int size = pos + len;
5669 	int bits_to_set = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5670 	u8 mask_to_set = BITMAP_FIRST_BYTE_MASK(pos);
5671 
5672 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5673 	page = eb->pages[i];
5674 	WARN_ON(!PageUptodate(page));
5675 	kaddr = page_address(page);
5676 
5677 	while (len >= bits_to_set) {
5678 		kaddr[offset] |= mask_to_set;
5679 		len -= bits_to_set;
5680 		bits_to_set = BITS_PER_BYTE;
5681 		mask_to_set = ~0;
5682 		if (++offset >= PAGE_SIZE && len > 0) {
5683 			offset = 0;
5684 			page = eb->pages[++i];
5685 			WARN_ON(!PageUptodate(page));
5686 			kaddr = page_address(page);
5687 		}
5688 	}
5689 	if (len) {
5690 		mask_to_set &= BITMAP_LAST_BYTE_MASK(size);
5691 		kaddr[offset] |= mask_to_set;
5692 	}
5693 }
5694 
5695 
5696 /**
5697  * extent_buffer_bitmap_clear - clear an area of a bitmap
5698  * @eb: the extent buffer
5699  * @start: offset of the bitmap item in the extent buffer
5700  * @pos: bit number of the first bit
5701  * @len: number of bits to clear
5702  */
5703 void extent_buffer_bitmap_clear(struct extent_buffer *eb, unsigned long start,
5704 				unsigned long pos, unsigned long len)
5705 {
5706 	u8 *kaddr;
5707 	struct page *page;
5708 	unsigned long i;
5709 	size_t offset;
5710 	const unsigned int size = pos + len;
5711 	int bits_to_clear = BITS_PER_BYTE - (pos % BITS_PER_BYTE);
5712 	u8 mask_to_clear = BITMAP_FIRST_BYTE_MASK(pos);
5713 
5714 	eb_bitmap_offset(eb, start, pos, &i, &offset);
5715 	page = eb->pages[i];
5716 	WARN_ON(!PageUptodate(page));
5717 	kaddr = page_address(page);
5718 
5719 	while (len >= bits_to_clear) {
5720 		kaddr[offset] &= ~mask_to_clear;
5721 		len -= bits_to_clear;
5722 		bits_to_clear = BITS_PER_BYTE;
5723 		mask_to_clear = ~0;
5724 		if (++offset >= PAGE_SIZE && len > 0) {
5725 			offset = 0;
5726 			page = eb->pages[++i];
5727 			WARN_ON(!PageUptodate(page));
5728 			kaddr = page_address(page);
5729 		}
5730 	}
5731 	if (len) {
5732 		mask_to_clear &= BITMAP_LAST_BYTE_MASK(size);
5733 		kaddr[offset] &= ~mask_to_clear;
5734 	}
5735 }
5736 
5737 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5738 {
5739 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5740 	return distance < len;
5741 }
5742 
5743 static void copy_pages(struct page *dst_page, struct page *src_page,
5744 		       unsigned long dst_off, unsigned long src_off,
5745 		       unsigned long len)
5746 {
5747 	char *dst_kaddr = page_address(dst_page);
5748 	char *src_kaddr;
5749 	int must_memmove = 0;
5750 
5751 	if (dst_page != src_page) {
5752 		src_kaddr = page_address(src_page);
5753 	} else {
5754 		src_kaddr = dst_kaddr;
5755 		if (areas_overlap(src_off, dst_off, len))
5756 			must_memmove = 1;
5757 	}
5758 
5759 	if (must_memmove)
5760 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5761 	else
5762 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5763 }
5764 
5765 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5766 			   unsigned long src_offset, unsigned long len)
5767 {
5768 	struct btrfs_fs_info *fs_info = dst->fs_info;
5769 	size_t cur;
5770 	size_t dst_off_in_page;
5771 	size_t src_off_in_page;
5772 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5773 	unsigned long dst_i;
5774 	unsigned long src_i;
5775 
5776 	if (src_offset + len > dst->len) {
5777 		btrfs_err(fs_info,
5778 			"memmove bogus src_offset %lu move len %lu dst len %lu",
5779 			 src_offset, len, dst->len);
5780 		BUG_ON(1);
5781 	}
5782 	if (dst_offset + len > dst->len) {
5783 		btrfs_err(fs_info,
5784 			"memmove bogus dst_offset %lu move len %lu dst len %lu",
5785 			 dst_offset, len, dst->len);
5786 		BUG_ON(1);
5787 	}
5788 
5789 	while (len > 0) {
5790 		dst_off_in_page = (start_offset + dst_offset) &
5791 			(PAGE_SIZE - 1);
5792 		src_off_in_page = (start_offset + src_offset) &
5793 			(PAGE_SIZE - 1);
5794 
5795 		dst_i = (start_offset + dst_offset) >> PAGE_SHIFT;
5796 		src_i = (start_offset + src_offset) >> PAGE_SHIFT;
5797 
5798 		cur = min(len, (unsigned long)(PAGE_SIZE -
5799 					       src_off_in_page));
5800 		cur = min_t(unsigned long, cur,
5801 			(unsigned long)(PAGE_SIZE - dst_off_in_page));
5802 
5803 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5804 			   dst_off_in_page, src_off_in_page, cur);
5805 
5806 		src_offset += cur;
5807 		dst_offset += cur;
5808 		len -= cur;
5809 	}
5810 }
5811 
5812 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5813 			   unsigned long src_offset, unsigned long len)
5814 {
5815 	struct btrfs_fs_info *fs_info = dst->fs_info;
5816 	size_t cur;
5817 	size_t dst_off_in_page;
5818 	size_t src_off_in_page;
5819 	unsigned long dst_end = dst_offset + len - 1;
5820 	unsigned long src_end = src_offset + len - 1;
5821 	size_t start_offset = dst->start & ((u64)PAGE_SIZE - 1);
5822 	unsigned long dst_i;
5823 	unsigned long src_i;
5824 
5825 	if (src_offset + len > dst->len) {
5826 		btrfs_err(fs_info,
5827 			  "memmove bogus src_offset %lu move len %lu len %lu",
5828 			  src_offset, len, dst->len);
5829 		BUG_ON(1);
5830 	}
5831 	if (dst_offset + len > dst->len) {
5832 		btrfs_err(fs_info,
5833 			  "memmove bogus dst_offset %lu move len %lu len %lu",
5834 			  dst_offset, len, dst->len);
5835 		BUG_ON(1);
5836 	}
5837 	if (dst_offset < src_offset) {
5838 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5839 		return;
5840 	}
5841 	while (len > 0) {
5842 		dst_i = (start_offset + dst_end) >> PAGE_SHIFT;
5843 		src_i = (start_offset + src_end) >> PAGE_SHIFT;
5844 
5845 		dst_off_in_page = (start_offset + dst_end) &
5846 			(PAGE_SIZE - 1);
5847 		src_off_in_page = (start_offset + src_end) &
5848 			(PAGE_SIZE - 1);
5849 
5850 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5851 		cur = min(cur, dst_off_in_page + 1);
5852 		copy_pages(dst->pages[dst_i], dst->pages[src_i],
5853 			   dst_off_in_page - cur + 1,
5854 			   src_off_in_page - cur + 1, cur);
5855 
5856 		dst_end -= cur;
5857 		src_end -= cur;
5858 		len -= cur;
5859 	}
5860 }
5861 
5862 int try_release_extent_buffer(struct page *page)
5863 {
5864 	struct extent_buffer *eb;
5865 
5866 	/*
5867 	 * We need to make sure nobody is attaching this page to an eb right
5868 	 * now.
5869 	 */
5870 	spin_lock(&page->mapping->private_lock);
5871 	if (!PagePrivate(page)) {
5872 		spin_unlock(&page->mapping->private_lock);
5873 		return 1;
5874 	}
5875 
5876 	eb = (struct extent_buffer *)page->private;
5877 	BUG_ON(!eb);
5878 
5879 	/*
5880 	 * This is a little awful but should be ok, we need to make sure that
5881 	 * the eb doesn't disappear out from under us while we're looking at
5882 	 * this page.
5883 	 */
5884 	spin_lock(&eb->refs_lock);
5885 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5886 		spin_unlock(&eb->refs_lock);
5887 		spin_unlock(&page->mapping->private_lock);
5888 		return 0;
5889 	}
5890 	spin_unlock(&page->mapping->private_lock);
5891 
5892 	/*
5893 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5894 	 * so just return, this page will likely be freed soon anyway.
5895 	 */
5896 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5897 		spin_unlock(&eb->refs_lock);
5898 		return 0;
5899 	}
5900 
5901 	return release_extent_buffer(eb);
5902 }
5903