xref: /linux/fs/btrfs/defrag.c (revision bf5802238dc181b1f7375d358af1d01cd72d1c11)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/sched.h>
7 #include "ctree.h"
8 #include "disk-io.h"
9 #include "print-tree.h"
10 #include "transaction.h"
11 #include "locking.h"
12 #include "accessors.h"
13 #include "messages.h"
14 #include "delalloc-space.h"
15 #include "subpage.h"
16 #include "defrag.h"
17 #include "file-item.h"
18 #include "super.h"
19 
20 static struct kmem_cache *btrfs_inode_defrag_cachep;
21 
22 /*
23  * When auto defrag is enabled we queue up these defrag structs to remember
24  * which inodes need defragging passes.
25  */
26 struct inode_defrag {
27 	struct rb_node rb_node;
28 	/* Inode number */
29 	u64 ino;
30 	/*
31 	 * Transid where the defrag was added, we search for extents newer than
32 	 * this.
33 	 */
34 	u64 transid;
35 
36 	/* Root objectid */
37 	u64 root;
38 
39 	/*
40 	 * The extent size threshold for autodefrag.
41 	 *
42 	 * This value is different for compressed/non-compressed extents, thus
43 	 * needs to be passed from higher layer.
44 	 * (aka, inode_should_defrag())
45 	 */
46 	u32 extent_thresh;
47 };
48 
49 static int __compare_inode_defrag(struct inode_defrag *defrag1,
50 				  struct inode_defrag *defrag2)
51 {
52 	if (defrag1->root > defrag2->root)
53 		return 1;
54 	else if (defrag1->root < defrag2->root)
55 		return -1;
56 	else if (defrag1->ino > defrag2->ino)
57 		return 1;
58 	else if (defrag1->ino < defrag2->ino)
59 		return -1;
60 	else
61 		return 0;
62 }
63 
64 /*
65  * Pop a record for an inode into the defrag tree.  The lock must be held
66  * already.
67  *
68  * If you're inserting a record for an older transid than an existing record,
69  * the transid already in the tree is lowered.
70  *
71  * If an existing record is found the defrag item you pass in is freed.
72  */
73 static int __btrfs_add_inode_defrag(struct btrfs_inode *inode,
74 				    struct inode_defrag *defrag)
75 {
76 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
77 	struct inode_defrag *entry;
78 	struct rb_node **p;
79 	struct rb_node *parent = NULL;
80 	int ret;
81 
82 	p = &fs_info->defrag_inodes.rb_node;
83 	while (*p) {
84 		parent = *p;
85 		entry = rb_entry(parent, struct inode_defrag, rb_node);
86 
87 		ret = __compare_inode_defrag(defrag, entry);
88 		if (ret < 0)
89 			p = &parent->rb_left;
90 		else if (ret > 0)
91 			p = &parent->rb_right;
92 		else {
93 			/*
94 			 * If we're reinserting an entry for an old defrag run,
95 			 * make sure to lower the transid of our existing
96 			 * record.
97 			 */
98 			if (defrag->transid < entry->transid)
99 				entry->transid = defrag->transid;
100 			entry->extent_thresh = min(defrag->extent_thresh,
101 						   entry->extent_thresh);
102 			return -EEXIST;
103 		}
104 	}
105 	set_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags);
106 	rb_link_node(&defrag->rb_node, parent, p);
107 	rb_insert_color(&defrag->rb_node, &fs_info->defrag_inodes);
108 	return 0;
109 }
110 
111 static inline int __need_auto_defrag(struct btrfs_fs_info *fs_info)
112 {
113 	if (!btrfs_test_opt(fs_info, AUTO_DEFRAG))
114 		return 0;
115 
116 	if (btrfs_fs_closing(fs_info))
117 		return 0;
118 
119 	return 1;
120 }
121 
122 /*
123  * Insert a defrag record for this inode if auto defrag is enabled.
124  */
125 int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
126 			   struct btrfs_inode *inode, u32 extent_thresh)
127 {
128 	struct btrfs_root *root = inode->root;
129 	struct btrfs_fs_info *fs_info = root->fs_info;
130 	struct inode_defrag *defrag;
131 	u64 transid;
132 	int ret;
133 
134 	if (!__need_auto_defrag(fs_info))
135 		return 0;
136 
137 	if (test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags))
138 		return 0;
139 
140 	if (trans)
141 		transid = trans->transid;
142 	else
143 		transid = inode->root->last_trans;
144 
145 	defrag = kmem_cache_zalloc(btrfs_inode_defrag_cachep, GFP_NOFS);
146 	if (!defrag)
147 		return -ENOMEM;
148 
149 	defrag->ino = btrfs_ino(inode);
150 	defrag->transid = transid;
151 	defrag->root = root->root_key.objectid;
152 	defrag->extent_thresh = extent_thresh;
153 
154 	spin_lock(&fs_info->defrag_inodes_lock);
155 	if (!test_bit(BTRFS_INODE_IN_DEFRAG, &inode->runtime_flags)) {
156 		/*
157 		 * If we set IN_DEFRAG flag and evict the inode from memory,
158 		 * and then re-read this inode, this new inode doesn't have
159 		 * IN_DEFRAG flag. At the case, we may find the existed defrag.
160 		 */
161 		ret = __btrfs_add_inode_defrag(inode, defrag);
162 		if (ret)
163 			kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
164 	} else {
165 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
166 	}
167 	spin_unlock(&fs_info->defrag_inodes_lock);
168 	return 0;
169 }
170 
171 /*
172  * Pick the defragable inode that we want, if it doesn't exist, we will get the
173  * next one.
174  */
175 static struct inode_defrag *btrfs_pick_defrag_inode(
176 			struct btrfs_fs_info *fs_info, u64 root, u64 ino)
177 {
178 	struct inode_defrag *entry = NULL;
179 	struct inode_defrag tmp;
180 	struct rb_node *p;
181 	struct rb_node *parent = NULL;
182 	int ret;
183 
184 	tmp.ino = ino;
185 	tmp.root = root;
186 
187 	spin_lock(&fs_info->defrag_inodes_lock);
188 	p = fs_info->defrag_inodes.rb_node;
189 	while (p) {
190 		parent = p;
191 		entry = rb_entry(parent, struct inode_defrag, rb_node);
192 
193 		ret = __compare_inode_defrag(&tmp, entry);
194 		if (ret < 0)
195 			p = parent->rb_left;
196 		else if (ret > 0)
197 			p = parent->rb_right;
198 		else
199 			goto out;
200 	}
201 
202 	if (parent && __compare_inode_defrag(&tmp, entry) > 0) {
203 		parent = rb_next(parent);
204 		if (parent)
205 			entry = rb_entry(parent, struct inode_defrag, rb_node);
206 		else
207 			entry = NULL;
208 	}
209 out:
210 	if (entry)
211 		rb_erase(parent, &fs_info->defrag_inodes);
212 	spin_unlock(&fs_info->defrag_inodes_lock);
213 	return entry;
214 }
215 
216 void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info)
217 {
218 	struct inode_defrag *defrag;
219 	struct rb_node *node;
220 
221 	spin_lock(&fs_info->defrag_inodes_lock);
222 	node = rb_first(&fs_info->defrag_inodes);
223 	while (node) {
224 		rb_erase(node, &fs_info->defrag_inodes);
225 		defrag = rb_entry(node, struct inode_defrag, rb_node);
226 		kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
227 
228 		cond_resched_lock(&fs_info->defrag_inodes_lock);
229 
230 		node = rb_first(&fs_info->defrag_inodes);
231 	}
232 	spin_unlock(&fs_info->defrag_inodes_lock);
233 }
234 
235 #define BTRFS_DEFRAG_BATCH	1024
236 
237 static int __btrfs_run_defrag_inode(struct btrfs_fs_info *fs_info,
238 				    struct inode_defrag *defrag)
239 {
240 	struct btrfs_root *inode_root;
241 	struct inode *inode;
242 	struct btrfs_ioctl_defrag_range_args range;
243 	int ret = 0;
244 	u64 cur = 0;
245 
246 again:
247 	if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
248 		goto cleanup;
249 	if (!__need_auto_defrag(fs_info))
250 		goto cleanup;
251 
252 	/* Get the inode */
253 	inode_root = btrfs_get_fs_root(fs_info, defrag->root, true);
254 	if (IS_ERR(inode_root)) {
255 		ret = PTR_ERR(inode_root);
256 		goto cleanup;
257 	}
258 
259 	inode = btrfs_iget(fs_info->sb, defrag->ino, inode_root);
260 	btrfs_put_root(inode_root);
261 	if (IS_ERR(inode)) {
262 		ret = PTR_ERR(inode);
263 		goto cleanup;
264 	}
265 
266 	if (cur >= i_size_read(inode)) {
267 		iput(inode);
268 		goto cleanup;
269 	}
270 
271 	/* Do a chunk of defrag */
272 	clear_bit(BTRFS_INODE_IN_DEFRAG, &BTRFS_I(inode)->runtime_flags);
273 	memset(&range, 0, sizeof(range));
274 	range.len = (u64)-1;
275 	range.start = cur;
276 	range.extent_thresh = defrag->extent_thresh;
277 
278 	sb_start_write(fs_info->sb);
279 	ret = btrfs_defrag_file(inode, NULL, &range, defrag->transid,
280 				       BTRFS_DEFRAG_BATCH);
281 	sb_end_write(fs_info->sb);
282 	iput(inode);
283 
284 	if (ret < 0)
285 		goto cleanup;
286 
287 	cur = max(cur + fs_info->sectorsize, range.start);
288 	goto again;
289 
290 cleanup:
291 	kmem_cache_free(btrfs_inode_defrag_cachep, defrag);
292 	return ret;
293 }
294 
295 /*
296  * Run through the list of inodes in the FS that need defragging.
297  */
298 int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info)
299 {
300 	struct inode_defrag *defrag;
301 	u64 first_ino = 0;
302 	u64 root_objectid = 0;
303 
304 	atomic_inc(&fs_info->defrag_running);
305 	while (1) {
306 		/* Pause the auto defragger. */
307 		if (test_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state))
308 			break;
309 
310 		if (!__need_auto_defrag(fs_info))
311 			break;
312 
313 		/* find an inode to defrag */
314 		defrag = btrfs_pick_defrag_inode(fs_info, root_objectid, first_ino);
315 		if (!defrag) {
316 			if (root_objectid || first_ino) {
317 				root_objectid = 0;
318 				first_ino = 0;
319 				continue;
320 			} else {
321 				break;
322 			}
323 		}
324 
325 		first_ino = defrag->ino + 1;
326 		root_objectid = defrag->root;
327 
328 		__btrfs_run_defrag_inode(fs_info, defrag);
329 	}
330 	atomic_dec(&fs_info->defrag_running);
331 
332 	/*
333 	 * During unmount, we use the transaction_wait queue to wait for the
334 	 * defragger to stop.
335 	 */
336 	wake_up(&fs_info->transaction_wait);
337 	return 0;
338 }
339 
340 /*
341  * Check if two blocks addresses are close, used by defrag.
342  */
343 static bool close_blocks(u64 blocknr, u64 other, u32 blocksize)
344 {
345 	if (blocknr < other && other - (blocknr + blocksize) < SZ_32K)
346 		return true;
347 	if (blocknr > other && blocknr - (other + blocksize) < SZ_32K)
348 		return true;
349 	return false;
350 }
351 
352 /*
353  * Go through all the leaves pointed to by a node and reallocate them so that
354  * disk order is close to key order.
355  */
356 static int btrfs_realloc_node(struct btrfs_trans_handle *trans,
357 			      struct btrfs_root *root,
358 			      struct extent_buffer *parent,
359 			      int start_slot, u64 *last_ret,
360 			      struct btrfs_key *progress)
361 {
362 	struct btrfs_fs_info *fs_info = root->fs_info;
363 	const u32 blocksize = fs_info->nodesize;
364 	const int end_slot = btrfs_header_nritems(parent) - 1;
365 	u64 search_start = *last_ret;
366 	u64 last_block = 0;
367 	int ret = 0;
368 	bool progress_passed = false;
369 
370 	/*
371 	 * COWing must happen through a running transaction, which always
372 	 * matches the current fs generation (it's a transaction with a state
373 	 * less than TRANS_STATE_UNBLOCKED). If it doesn't, then turn the fs
374 	 * into error state to prevent the commit of any transaction.
375 	 */
376 	if (unlikely(trans->transaction != fs_info->running_transaction ||
377 		     trans->transid != fs_info->generation)) {
378 		btrfs_abort_transaction(trans, -EUCLEAN);
379 		btrfs_crit(fs_info,
380 "unexpected transaction when attempting to reallocate parent %llu for root %llu, transaction %llu running transaction %llu fs generation %llu",
381 			   parent->start, btrfs_root_id(root), trans->transid,
382 			   fs_info->running_transaction->transid,
383 			   fs_info->generation);
384 		return -EUCLEAN;
385 	}
386 
387 	if (btrfs_header_nritems(parent) <= 1)
388 		return 0;
389 
390 	for (int i = start_slot; i <= end_slot; i++) {
391 		struct extent_buffer *cur;
392 		struct btrfs_disk_key disk_key;
393 		u64 blocknr;
394 		u64 other;
395 		bool close = true;
396 
397 		btrfs_node_key(parent, &disk_key, i);
398 		if (!progress_passed && btrfs_comp_keys(&disk_key, progress) < 0)
399 			continue;
400 
401 		progress_passed = true;
402 		blocknr = btrfs_node_blockptr(parent, i);
403 		if (last_block == 0)
404 			last_block = blocknr;
405 
406 		if (i > 0) {
407 			other = btrfs_node_blockptr(parent, i - 1);
408 			close = close_blocks(blocknr, other, blocksize);
409 		}
410 		if (!close && i < end_slot) {
411 			other = btrfs_node_blockptr(parent, i + 1);
412 			close = close_blocks(blocknr, other, blocksize);
413 		}
414 		if (close) {
415 			last_block = blocknr;
416 			continue;
417 		}
418 
419 		cur = btrfs_read_node_slot(parent, i);
420 		if (IS_ERR(cur))
421 			return PTR_ERR(cur);
422 		if (search_start == 0)
423 			search_start = last_block;
424 
425 		btrfs_tree_lock(cur);
426 		ret = btrfs_force_cow_block(trans, root, cur, parent, i,
427 					    &cur, search_start,
428 					    min(16 * blocksize,
429 						(end_slot - i) * blocksize),
430 					    BTRFS_NESTING_COW);
431 		if (ret) {
432 			btrfs_tree_unlock(cur);
433 			free_extent_buffer(cur);
434 			break;
435 		}
436 		search_start = cur->start;
437 		last_block = cur->start;
438 		*last_ret = search_start;
439 		btrfs_tree_unlock(cur);
440 		free_extent_buffer(cur);
441 	}
442 	return ret;
443 }
444 
445 /*
446  * Defrag all the leaves in a given btree.
447  * Read all the leaves and try to get key order to
448  * better reflect disk order
449  */
450 
451 static int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
452 			       struct btrfs_root *root)
453 {
454 	struct btrfs_path *path = NULL;
455 	struct btrfs_key key;
456 	int ret = 0;
457 	int wret;
458 	int level;
459 	int next_key_ret = 0;
460 	u64 last_ret = 0;
461 
462 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
463 		goto out;
464 
465 	path = btrfs_alloc_path();
466 	if (!path) {
467 		ret = -ENOMEM;
468 		goto out;
469 	}
470 
471 	level = btrfs_header_level(root->node);
472 
473 	if (level == 0)
474 		goto out;
475 
476 	if (root->defrag_progress.objectid == 0) {
477 		struct extent_buffer *root_node;
478 		u32 nritems;
479 
480 		root_node = btrfs_lock_root_node(root);
481 		nritems = btrfs_header_nritems(root_node);
482 		root->defrag_max.objectid = 0;
483 		/* from above we know this is not a leaf */
484 		btrfs_node_key_to_cpu(root_node, &root->defrag_max,
485 				      nritems - 1);
486 		btrfs_tree_unlock(root_node);
487 		free_extent_buffer(root_node);
488 		memset(&key, 0, sizeof(key));
489 	} else {
490 		memcpy(&key, &root->defrag_progress, sizeof(key));
491 	}
492 
493 	path->keep_locks = 1;
494 
495 	ret = btrfs_search_forward(root, &key, path, BTRFS_OLDEST_GENERATION);
496 	if (ret < 0)
497 		goto out;
498 	if (ret > 0) {
499 		ret = 0;
500 		goto out;
501 	}
502 	btrfs_release_path(path);
503 	/*
504 	 * We don't need a lock on a leaf. btrfs_realloc_node() will lock all
505 	 * leafs from path->nodes[1], so set lowest_level to 1 to avoid later
506 	 * a deadlock (attempting to write lock an already write locked leaf).
507 	 */
508 	path->lowest_level = 1;
509 	wret = btrfs_search_slot(trans, root, &key, path, 0, 1);
510 
511 	if (wret < 0) {
512 		ret = wret;
513 		goto out;
514 	}
515 	if (!path->nodes[1]) {
516 		ret = 0;
517 		goto out;
518 	}
519 	/*
520 	 * The node at level 1 must always be locked when our path has
521 	 * keep_locks set and lowest_level is 1, regardless of the value of
522 	 * path->slots[1].
523 	 */
524 	BUG_ON(path->locks[1] == 0);
525 	ret = btrfs_realloc_node(trans, root,
526 				 path->nodes[1], 0,
527 				 &last_ret,
528 				 &root->defrag_progress);
529 	if (ret) {
530 		WARN_ON(ret == -EAGAIN);
531 		goto out;
532 	}
533 	/*
534 	 * Now that we reallocated the node we can find the next key. Note that
535 	 * btrfs_find_next_key() can release our path and do another search
536 	 * without COWing, this is because even with path->keep_locks = 1,
537 	 * btrfs_search_slot() / ctree.c:unlock_up() does not keeps a lock on a
538 	 * node when path->slots[node_level - 1] does not point to the last
539 	 * item or a slot beyond the last item (ctree.c:unlock_up()). Therefore
540 	 * we search for the next key after reallocating our node.
541 	 */
542 	path->slots[1] = btrfs_header_nritems(path->nodes[1]);
543 	next_key_ret = btrfs_find_next_key(root, path, &key, 1,
544 					   BTRFS_OLDEST_GENERATION);
545 	if (next_key_ret == 0) {
546 		memcpy(&root->defrag_progress, &key, sizeof(key));
547 		ret = -EAGAIN;
548 	}
549 out:
550 	btrfs_free_path(path);
551 	if (ret == -EAGAIN) {
552 		if (root->defrag_max.objectid > root->defrag_progress.objectid)
553 			goto done;
554 		if (root->defrag_max.type > root->defrag_progress.type)
555 			goto done;
556 		if (root->defrag_max.offset > root->defrag_progress.offset)
557 			goto done;
558 		ret = 0;
559 	}
560 done:
561 	if (ret != -EAGAIN)
562 		memset(&root->defrag_progress, 0,
563 		       sizeof(root->defrag_progress));
564 
565 	return ret;
566 }
567 
568 /*
569  * Defrag a given btree.  Every leaf in the btree is read and defragmented.
570  */
571 int btrfs_defrag_root(struct btrfs_root *root)
572 {
573 	struct btrfs_fs_info *fs_info = root->fs_info;
574 	int ret;
575 
576 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
577 		return 0;
578 
579 	while (1) {
580 		struct btrfs_trans_handle *trans;
581 
582 		trans = btrfs_start_transaction(root, 0);
583 		if (IS_ERR(trans)) {
584 			ret = PTR_ERR(trans);
585 			break;
586 		}
587 
588 		ret = btrfs_defrag_leaves(trans, root);
589 
590 		btrfs_end_transaction(trans);
591 		btrfs_btree_balance_dirty(fs_info);
592 		cond_resched();
593 
594 		if (btrfs_fs_closing(fs_info) || ret != -EAGAIN)
595 			break;
596 
597 		if (btrfs_defrag_cancelled(fs_info)) {
598 			btrfs_debug(fs_info, "defrag_root cancelled");
599 			ret = -EAGAIN;
600 			break;
601 		}
602 	}
603 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
604 	return ret;
605 }
606 
607 /*
608  * Defrag specific helper to get an extent map.
609  *
610  * Differences between this and btrfs_get_extent() are:
611  *
612  * - No extent_map will be added to inode->extent_tree
613  *   To reduce memory usage in the long run.
614  *
615  * - Extra optimization to skip file extents older than @newer_than
616  *   By using btrfs_search_forward() we can skip entire file ranges that
617  *   have extents created in past transactions, because btrfs_search_forward()
618  *   will not visit leaves and nodes with a generation smaller than given
619  *   minimal generation threshold (@newer_than).
620  *
621  * Return valid em if we find a file extent matching the requirement.
622  * Return NULL if we can not find a file extent matching the requirement.
623  *
624  * Return ERR_PTR() for error.
625  */
626 static struct extent_map *defrag_get_extent(struct btrfs_inode *inode,
627 					    u64 start, u64 newer_than)
628 {
629 	struct btrfs_root *root = inode->root;
630 	struct btrfs_file_extent_item *fi;
631 	struct btrfs_path path = { 0 };
632 	struct extent_map *em;
633 	struct btrfs_key key;
634 	u64 ino = btrfs_ino(inode);
635 	int ret;
636 
637 	em = alloc_extent_map();
638 	if (!em) {
639 		ret = -ENOMEM;
640 		goto err;
641 	}
642 
643 	key.objectid = ino;
644 	key.type = BTRFS_EXTENT_DATA_KEY;
645 	key.offset = start;
646 
647 	if (newer_than) {
648 		ret = btrfs_search_forward(root, &key, &path, newer_than);
649 		if (ret < 0)
650 			goto err;
651 		/* Can't find anything newer */
652 		if (ret > 0)
653 			goto not_found;
654 	} else {
655 		ret = btrfs_search_slot(NULL, root, &key, &path, 0, 0);
656 		if (ret < 0)
657 			goto err;
658 	}
659 	if (path.slots[0] >= btrfs_header_nritems(path.nodes[0])) {
660 		/*
661 		 * If btrfs_search_slot() makes path to point beyond nritems,
662 		 * we should not have an empty leaf, as this inode must at
663 		 * least have its INODE_ITEM.
664 		 */
665 		ASSERT(btrfs_header_nritems(path.nodes[0]));
666 		path.slots[0] = btrfs_header_nritems(path.nodes[0]) - 1;
667 	}
668 	btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
669 	/* Perfect match, no need to go one slot back */
670 	if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY &&
671 	    key.offset == start)
672 		goto iterate;
673 
674 	/* We didn't find a perfect match, needs to go one slot back */
675 	if (path.slots[0] > 0) {
676 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
677 		if (key.objectid == ino && key.type == BTRFS_EXTENT_DATA_KEY)
678 			path.slots[0]--;
679 	}
680 
681 iterate:
682 	/* Iterate through the path to find a file extent covering @start */
683 	while (true) {
684 		u64 extent_end;
685 
686 		if (path.slots[0] >= btrfs_header_nritems(path.nodes[0]))
687 			goto next;
688 
689 		btrfs_item_key_to_cpu(path.nodes[0], &key, path.slots[0]);
690 
691 		/*
692 		 * We may go one slot back to INODE_REF/XATTR item, then
693 		 * need to go forward until we reach an EXTENT_DATA.
694 		 * But we should still has the correct ino as key.objectid.
695 		 */
696 		if (WARN_ON(key.objectid < ino) || key.type < BTRFS_EXTENT_DATA_KEY)
697 			goto next;
698 
699 		/* It's beyond our target range, definitely not extent found */
700 		if (key.objectid > ino || key.type > BTRFS_EXTENT_DATA_KEY)
701 			goto not_found;
702 
703 		/*
704 		 *	|	|<- File extent ->|
705 		 *	\- start
706 		 *
707 		 * This means there is a hole between start and key.offset.
708 		 */
709 		if (key.offset > start) {
710 			em->start = start;
711 			em->orig_start = start;
712 			em->block_start = EXTENT_MAP_HOLE;
713 			em->len = key.offset - start;
714 			break;
715 		}
716 
717 		fi = btrfs_item_ptr(path.nodes[0], path.slots[0],
718 				    struct btrfs_file_extent_item);
719 		extent_end = btrfs_file_extent_end(&path);
720 
721 		/*
722 		 *	|<- file extent ->|	|
723 		 *				\- start
724 		 *
725 		 * We haven't reached start, search next slot.
726 		 */
727 		if (extent_end <= start)
728 			goto next;
729 
730 		/* Now this extent covers @start, convert it to em */
731 		btrfs_extent_item_to_extent_map(inode, &path, fi, em);
732 		break;
733 next:
734 		ret = btrfs_next_item(root, &path);
735 		if (ret < 0)
736 			goto err;
737 		if (ret > 0)
738 			goto not_found;
739 	}
740 	btrfs_release_path(&path);
741 	return em;
742 
743 not_found:
744 	btrfs_release_path(&path);
745 	free_extent_map(em);
746 	return NULL;
747 
748 err:
749 	btrfs_release_path(&path);
750 	free_extent_map(em);
751 	return ERR_PTR(ret);
752 }
753 
754 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start,
755 					       u64 newer_than, bool locked)
756 {
757 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
758 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
759 	struct extent_map *em;
760 	const u32 sectorsize = BTRFS_I(inode)->root->fs_info->sectorsize;
761 
762 	/*
763 	 * Hopefully we have this extent in the tree already, try without the
764 	 * full extent lock.
765 	 */
766 	read_lock(&em_tree->lock);
767 	em = lookup_extent_mapping(em_tree, start, sectorsize);
768 	read_unlock(&em_tree->lock);
769 
770 	/*
771 	 * We can get a merged extent, in that case, we need to re-search
772 	 * tree to get the original em for defrag.
773 	 *
774 	 * If @newer_than is 0 or em::generation < newer_than, we can trust
775 	 * this em, as either we don't care about the generation, or the
776 	 * merged extent map will be rejected anyway.
777 	 */
778 	if (em && (em->flags & EXTENT_FLAG_MERGED) &&
779 	    newer_than && em->generation >= newer_than) {
780 		free_extent_map(em);
781 		em = NULL;
782 	}
783 
784 	if (!em) {
785 		struct extent_state *cached = NULL;
786 		u64 end = start + sectorsize - 1;
787 
788 		/* Get the big lock and read metadata off disk. */
789 		if (!locked)
790 			lock_extent(io_tree, start, end, &cached);
791 		em = defrag_get_extent(BTRFS_I(inode), start, newer_than);
792 		if (!locked)
793 			unlock_extent(io_tree, start, end, &cached);
794 
795 		if (IS_ERR(em))
796 			return NULL;
797 	}
798 
799 	return em;
800 }
801 
802 static u32 get_extent_max_capacity(const struct btrfs_fs_info *fs_info,
803 				   const struct extent_map *em)
804 {
805 	if (extent_map_is_compressed(em))
806 		return BTRFS_MAX_COMPRESSED;
807 	return fs_info->max_extent_size;
808 }
809 
810 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em,
811 				     u32 extent_thresh, u64 newer_than, bool locked)
812 {
813 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
814 	struct extent_map *next;
815 	bool ret = false;
816 
817 	/* This is the last extent */
818 	if (em->start + em->len >= i_size_read(inode))
819 		return false;
820 
821 	/*
822 	 * Here we need to pass @newer_then when checking the next extent, or
823 	 * we will hit a case we mark current extent for defrag, but the next
824 	 * one will not be a target.
825 	 * This will just cause extra IO without really reducing the fragments.
826 	 */
827 	next = defrag_lookup_extent(inode, em->start + em->len, newer_than, locked);
828 	/* No more em or hole */
829 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
830 		goto out;
831 	if (next->flags & EXTENT_FLAG_PREALLOC)
832 		goto out;
833 	/*
834 	 * If the next extent is at its max capacity, defragging current extent
835 	 * makes no sense, as the total number of extents won't change.
836 	 */
837 	if (next->len >= get_extent_max_capacity(fs_info, em))
838 		goto out;
839 	/* Skip older extent */
840 	if (next->generation < newer_than)
841 		goto out;
842 	/* Also check extent size */
843 	if (next->len >= extent_thresh)
844 		goto out;
845 
846 	ret = true;
847 out:
848 	free_extent_map(next);
849 	return ret;
850 }
851 
852 /*
853  * Prepare one page to be defragged.
854  *
855  * This will ensure:
856  *
857  * - Returned page is locked and has been set up properly.
858  * - No ordered extent exists in the page.
859  * - The page is uptodate.
860  *
861  * NOTE: Caller should also wait for page writeback after the cluster is
862  * prepared, here we don't do writeback wait for each page.
863  */
864 static struct page *defrag_prepare_one_page(struct btrfs_inode *inode, pgoff_t index)
865 {
866 	struct address_space *mapping = inode->vfs_inode.i_mapping;
867 	gfp_t mask = btrfs_alloc_write_mask(mapping);
868 	u64 page_start = (u64)index << PAGE_SHIFT;
869 	u64 page_end = page_start + PAGE_SIZE - 1;
870 	struct extent_state *cached_state = NULL;
871 	struct page *page;
872 	int ret;
873 
874 again:
875 	page = find_or_create_page(mapping, index, mask);
876 	if (!page)
877 		return ERR_PTR(-ENOMEM);
878 
879 	/*
880 	 * Since we can defragment files opened read-only, we can encounter
881 	 * transparent huge pages here (see CONFIG_READ_ONLY_THP_FOR_FS). We
882 	 * can't do I/O using huge pages yet, so return an error for now.
883 	 * Filesystem transparent huge pages are typically only used for
884 	 * executables that explicitly enable them, so this isn't very
885 	 * restrictive.
886 	 */
887 	if (PageCompound(page)) {
888 		unlock_page(page);
889 		put_page(page);
890 		return ERR_PTR(-ETXTBSY);
891 	}
892 
893 	ret = set_page_extent_mapped(page);
894 	if (ret < 0) {
895 		unlock_page(page);
896 		put_page(page);
897 		return ERR_PTR(ret);
898 	}
899 
900 	/* Wait for any existing ordered extent in the range */
901 	while (1) {
902 		struct btrfs_ordered_extent *ordered;
903 
904 		lock_extent(&inode->io_tree, page_start, page_end, &cached_state);
905 		ordered = btrfs_lookup_ordered_range(inode, page_start, PAGE_SIZE);
906 		unlock_extent(&inode->io_tree, page_start, page_end,
907 			      &cached_state);
908 		if (!ordered)
909 			break;
910 
911 		unlock_page(page);
912 		btrfs_start_ordered_extent(ordered);
913 		btrfs_put_ordered_extent(ordered);
914 		lock_page(page);
915 		/*
916 		 * We unlocked the page above, so we need check if it was
917 		 * released or not.
918 		 */
919 		if (page->mapping != mapping || !PagePrivate(page)) {
920 			unlock_page(page);
921 			put_page(page);
922 			goto again;
923 		}
924 	}
925 
926 	/*
927 	 * Now the page range has no ordered extent any more.  Read the page to
928 	 * make it uptodate.
929 	 */
930 	if (!PageUptodate(page)) {
931 		btrfs_read_folio(NULL, page_folio(page));
932 		lock_page(page);
933 		if (page->mapping != mapping || !PagePrivate(page)) {
934 			unlock_page(page);
935 			put_page(page);
936 			goto again;
937 		}
938 		if (!PageUptodate(page)) {
939 			unlock_page(page);
940 			put_page(page);
941 			return ERR_PTR(-EIO);
942 		}
943 	}
944 	return page;
945 }
946 
947 struct defrag_target_range {
948 	struct list_head list;
949 	u64 start;
950 	u64 len;
951 };
952 
953 /*
954  * Collect all valid target extents.
955  *
956  * @start:	   file offset to lookup
957  * @len:	   length to lookup
958  * @extent_thresh: file extent size threshold, any extent size >= this value
959  *		   will be ignored
960  * @newer_than:    only defrag extents newer than this value
961  * @do_compress:   whether the defrag is doing compression
962  *		   if true, @extent_thresh will be ignored and all regular
963  *		   file extents meeting @newer_than will be targets.
964  * @locked:	   if the range has already held extent lock
965  * @target_list:   list of targets file extents
966  */
967 static int defrag_collect_targets(struct btrfs_inode *inode,
968 				  u64 start, u64 len, u32 extent_thresh,
969 				  u64 newer_than, bool do_compress,
970 				  bool locked, struct list_head *target_list,
971 				  u64 *last_scanned_ret)
972 {
973 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
974 	bool last_is_target = false;
975 	u64 cur = start;
976 	int ret = 0;
977 
978 	while (cur < start + len) {
979 		struct extent_map *em;
980 		struct defrag_target_range *new;
981 		bool next_mergeable = true;
982 		u64 range_len;
983 
984 		last_is_target = false;
985 		em = defrag_lookup_extent(&inode->vfs_inode, cur, newer_than, locked);
986 		if (!em)
987 			break;
988 
989 		/*
990 		 * If the file extent is an inlined one, we may still want to
991 		 * defrag it (fallthrough) if it will cause a regular extent.
992 		 * This is for users who want to convert inline extents to
993 		 * regular ones through max_inline= mount option.
994 		 */
995 		if (em->block_start == EXTENT_MAP_INLINE &&
996 		    em->len <= inode->root->fs_info->max_inline)
997 			goto next;
998 
999 		/* Skip holes and preallocated extents. */
1000 		if (em->block_start == EXTENT_MAP_HOLE ||
1001 		    (em->flags & EXTENT_FLAG_PREALLOC))
1002 			goto next;
1003 
1004 		/* Skip older extent */
1005 		if (em->generation < newer_than)
1006 			goto next;
1007 
1008 		/* This em is under writeback, no need to defrag */
1009 		if (em->generation == (u64)-1)
1010 			goto next;
1011 
1012 		/*
1013 		 * Our start offset might be in the middle of an existing extent
1014 		 * map, so take that into account.
1015 		 */
1016 		range_len = em->len - (cur - em->start);
1017 		/*
1018 		 * If this range of the extent map is already flagged for delalloc,
1019 		 * skip it, because:
1020 		 *
1021 		 * 1) We could deadlock later, when trying to reserve space for
1022 		 *    delalloc, because in case we can't immediately reserve space
1023 		 *    the flusher can start delalloc and wait for the respective
1024 		 *    ordered extents to complete. The deadlock would happen
1025 		 *    because we do the space reservation while holding the range
1026 		 *    locked, and starting writeback, or finishing an ordered
1027 		 *    extent, requires locking the range;
1028 		 *
1029 		 * 2) If there's delalloc there, it means there's dirty pages for
1030 		 *    which writeback has not started yet (we clean the delalloc
1031 		 *    flag when starting writeback and after creating an ordered
1032 		 *    extent). If we mark pages in an adjacent range for defrag,
1033 		 *    then we will have a larger contiguous range for delalloc,
1034 		 *    very likely resulting in a larger extent after writeback is
1035 		 *    triggered (except in a case of free space fragmentation).
1036 		 */
1037 		if (test_range_bit_exists(&inode->io_tree, cur, cur + range_len - 1,
1038 					  EXTENT_DELALLOC))
1039 			goto next;
1040 
1041 		/*
1042 		 * For do_compress case, we want to compress all valid file
1043 		 * extents, thus no @extent_thresh or mergeable check.
1044 		 */
1045 		if (do_compress)
1046 			goto add;
1047 
1048 		/* Skip too large extent */
1049 		if (range_len >= extent_thresh)
1050 			goto next;
1051 
1052 		/*
1053 		 * Skip extents already at its max capacity, this is mostly for
1054 		 * compressed extents, which max cap is only 128K.
1055 		 */
1056 		if (em->len >= get_extent_max_capacity(fs_info, em))
1057 			goto next;
1058 
1059 		/*
1060 		 * Normally there are no more extents after an inline one, thus
1061 		 * @next_mergeable will normally be false and not defragged.
1062 		 * So if an inline extent passed all above checks, just add it
1063 		 * for defrag, and be converted to regular extents.
1064 		 */
1065 		if (em->block_start == EXTENT_MAP_INLINE)
1066 			goto add;
1067 
1068 		next_mergeable = defrag_check_next_extent(&inode->vfs_inode, em,
1069 						extent_thresh, newer_than, locked);
1070 		if (!next_mergeable) {
1071 			struct defrag_target_range *last;
1072 
1073 			/* Empty target list, no way to merge with last entry */
1074 			if (list_empty(target_list))
1075 				goto next;
1076 			last = list_entry(target_list->prev,
1077 					  struct defrag_target_range, list);
1078 			/* Not mergeable with last entry */
1079 			if (last->start + last->len != cur)
1080 				goto next;
1081 
1082 			/* Mergeable, fall through to add it to @target_list. */
1083 		}
1084 
1085 add:
1086 		last_is_target = true;
1087 		range_len = min(extent_map_end(em), start + len) - cur;
1088 		/*
1089 		 * This one is a good target, check if it can be merged into
1090 		 * last range of the target list.
1091 		 */
1092 		if (!list_empty(target_list)) {
1093 			struct defrag_target_range *last;
1094 
1095 			last = list_entry(target_list->prev,
1096 					  struct defrag_target_range, list);
1097 			ASSERT(last->start + last->len <= cur);
1098 			if (last->start + last->len == cur) {
1099 				/* Mergeable, enlarge the last entry */
1100 				last->len += range_len;
1101 				goto next;
1102 			}
1103 			/* Fall through to allocate a new entry */
1104 		}
1105 
1106 		/* Allocate new defrag_target_range */
1107 		new = kmalloc(sizeof(*new), GFP_NOFS);
1108 		if (!new) {
1109 			free_extent_map(em);
1110 			ret = -ENOMEM;
1111 			break;
1112 		}
1113 		new->start = cur;
1114 		new->len = range_len;
1115 		list_add_tail(&new->list, target_list);
1116 
1117 next:
1118 		cur = extent_map_end(em);
1119 		free_extent_map(em);
1120 	}
1121 	if (ret < 0) {
1122 		struct defrag_target_range *entry;
1123 		struct defrag_target_range *tmp;
1124 
1125 		list_for_each_entry_safe(entry, tmp, target_list, list) {
1126 			list_del_init(&entry->list);
1127 			kfree(entry);
1128 		}
1129 	}
1130 	if (!ret && last_scanned_ret) {
1131 		/*
1132 		 * If the last extent is not a target, the caller can skip to
1133 		 * the end of that extent.
1134 		 * Otherwise, we can only go the end of the specified range.
1135 		 */
1136 		if (!last_is_target)
1137 			*last_scanned_ret = max(cur, *last_scanned_ret);
1138 		else
1139 			*last_scanned_ret = max(start + len, *last_scanned_ret);
1140 	}
1141 	return ret;
1142 }
1143 
1144 #define CLUSTER_SIZE	(SZ_256K)
1145 static_assert(PAGE_ALIGNED(CLUSTER_SIZE));
1146 
1147 /*
1148  * Defrag one contiguous target range.
1149  *
1150  * @inode:	target inode
1151  * @target:	target range to defrag
1152  * @pages:	locked pages covering the defrag range
1153  * @nr_pages:	number of locked pages
1154  *
1155  * Caller should ensure:
1156  *
1157  * - Pages are prepared
1158  *   Pages should be locked, no ordered extent in the pages range,
1159  *   no writeback.
1160  *
1161  * - Extent bits are locked
1162  */
1163 static int defrag_one_locked_target(struct btrfs_inode *inode,
1164 				    struct defrag_target_range *target,
1165 				    struct page **pages, int nr_pages,
1166 				    struct extent_state **cached_state)
1167 {
1168 	struct btrfs_fs_info *fs_info = inode->root->fs_info;
1169 	struct extent_changeset *data_reserved = NULL;
1170 	const u64 start = target->start;
1171 	const u64 len = target->len;
1172 	unsigned long last_index = (start + len - 1) >> PAGE_SHIFT;
1173 	unsigned long start_index = start >> PAGE_SHIFT;
1174 	unsigned long first_index = page_index(pages[0]);
1175 	int ret = 0;
1176 	int i;
1177 
1178 	ASSERT(last_index - first_index + 1 <= nr_pages);
1179 
1180 	ret = btrfs_delalloc_reserve_space(inode, &data_reserved, start, len);
1181 	if (ret < 0)
1182 		return ret;
1183 	clear_extent_bit(&inode->io_tree, start, start + len - 1,
1184 			 EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1185 			 EXTENT_DEFRAG, cached_state);
1186 	set_extent_bit(&inode->io_tree, start, start + len - 1,
1187 		       EXTENT_DELALLOC | EXTENT_DEFRAG, cached_state);
1188 
1189 	/* Update the page status */
1190 	for (i = start_index - first_index; i <= last_index - first_index; i++) {
1191 		ClearPageChecked(pages[i]);
1192 		btrfs_folio_clamp_set_dirty(fs_info, page_folio(pages[i]), start, len);
1193 	}
1194 	btrfs_delalloc_release_extents(inode, len);
1195 	extent_changeset_free(data_reserved);
1196 
1197 	return ret;
1198 }
1199 
1200 static int defrag_one_range(struct btrfs_inode *inode, u64 start, u32 len,
1201 			    u32 extent_thresh, u64 newer_than, bool do_compress,
1202 			    u64 *last_scanned_ret)
1203 {
1204 	struct extent_state *cached_state = NULL;
1205 	struct defrag_target_range *entry;
1206 	struct defrag_target_range *tmp;
1207 	LIST_HEAD(target_list);
1208 	struct page **pages;
1209 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1210 	u64 last_index = (start + len - 1) >> PAGE_SHIFT;
1211 	u64 start_index = start >> PAGE_SHIFT;
1212 	unsigned int nr_pages = last_index - start_index + 1;
1213 	int ret = 0;
1214 	int i;
1215 
1216 	ASSERT(nr_pages <= CLUSTER_SIZE / PAGE_SIZE);
1217 	ASSERT(IS_ALIGNED(start, sectorsize) && IS_ALIGNED(len, sectorsize));
1218 
1219 	pages = kcalloc(nr_pages, sizeof(struct page *), GFP_NOFS);
1220 	if (!pages)
1221 		return -ENOMEM;
1222 
1223 	/* Prepare all pages */
1224 	for (i = 0; i < nr_pages; i++) {
1225 		pages[i] = defrag_prepare_one_page(inode, start_index + i);
1226 		if (IS_ERR(pages[i])) {
1227 			ret = PTR_ERR(pages[i]);
1228 			pages[i] = NULL;
1229 			goto free_pages;
1230 		}
1231 	}
1232 	for (i = 0; i < nr_pages; i++)
1233 		wait_on_page_writeback(pages[i]);
1234 
1235 	/* Lock the pages range */
1236 	lock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1237 		    (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1238 		    &cached_state);
1239 	/*
1240 	 * Now we have a consistent view about the extent map, re-check
1241 	 * which range really needs to be defragged.
1242 	 *
1243 	 * And this time we have extent locked already, pass @locked = true
1244 	 * so that we won't relock the extent range and cause deadlock.
1245 	 */
1246 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1247 				     newer_than, do_compress, true,
1248 				     &target_list, last_scanned_ret);
1249 	if (ret < 0)
1250 		goto unlock_extent;
1251 
1252 	list_for_each_entry(entry, &target_list, list) {
1253 		ret = defrag_one_locked_target(inode, entry, pages, nr_pages,
1254 					       &cached_state);
1255 		if (ret < 0)
1256 			break;
1257 	}
1258 
1259 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1260 		list_del_init(&entry->list);
1261 		kfree(entry);
1262 	}
1263 unlock_extent:
1264 	unlock_extent(&inode->io_tree, start_index << PAGE_SHIFT,
1265 		      (last_index << PAGE_SHIFT) + PAGE_SIZE - 1,
1266 		      &cached_state);
1267 free_pages:
1268 	for (i = 0; i < nr_pages; i++) {
1269 		if (pages[i]) {
1270 			unlock_page(pages[i]);
1271 			put_page(pages[i]);
1272 		}
1273 	}
1274 	kfree(pages);
1275 	return ret;
1276 }
1277 
1278 static int defrag_one_cluster(struct btrfs_inode *inode,
1279 			      struct file_ra_state *ra,
1280 			      u64 start, u32 len, u32 extent_thresh,
1281 			      u64 newer_than, bool do_compress,
1282 			      unsigned long *sectors_defragged,
1283 			      unsigned long max_sectors,
1284 			      u64 *last_scanned_ret)
1285 {
1286 	const u32 sectorsize = inode->root->fs_info->sectorsize;
1287 	struct defrag_target_range *entry;
1288 	struct defrag_target_range *tmp;
1289 	LIST_HEAD(target_list);
1290 	int ret;
1291 
1292 	ret = defrag_collect_targets(inode, start, len, extent_thresh,
1293 				     newer_than, do_compress, false,
1294 				     &target_list, NULL);
1295 	if (ret < 0)
1296 		goto out;
1297 
1298 	list_for_each_entry(entry, &target_list, list) {
1299 		u32 range_len = entry->len;
1300 
1301 		/* Reached or beyond the limit */
1302 		if (max_sectors && *sectors_defragged >= max_sectors) {
1303 			ret = 1;
1304 			break;
1305 		}
1306 
1307 		if (max_sectors)
1308 			range_len = min_t(u32, range_len,
1309 				(max_sectors - *sectors_defragged) * sectorsize);
1310 
1311 		/*
1312 		 * If defrag_one_range() has updated last_scanned_ret,
1313 		 * our range may already be invalid (e.g. hole punched).
1314 		 * Skip if our range is before last_scanned_ret, as there is
1315 		 * no need to defrag the range anymore.
1316 		 */
1317 		if (entry->start + range_len <= *last_scanned_ret)
1318 			continue;
1319 
1320 		if (ra)
1321 			page_cache_sync_readahead(inode->vfs_inode.i_mapping,
1322 				ra, NULL, entry->start >> PAGE_SHIFT,
1323 				((entry->start + range_len - 1) >> PAGE_SHIFT) -
1324 				(entry->start >> PAGE_SHIFT) + 1);
1325 		/*
1326 		 * Here we may not defrag any range if holes are punched before
1327 		 * we locked the pages.
1328 		 * But that's fine, it only affects the @sectors_defragged
1329 		 * accounting.
1330 		 */
1331 		ret = defrag_one_range(inode, entry->start, range_len,
1332 				       extent_thresh, newer_than, do_compress,
1333 				       last_scanned_ret);
1334 		if (ret < 0)
1335 			break;
1336 		*sectors_defragged += range_len >>
1337 				      inode->root->fs_info->sectorsize_bits;
1338 	}
1339 out:
1340 	list_for_each_entry_safe(entry, tmp, &target_list, list) {
1341 		list_del_init(&entry->list);
1342 		kfree(entry);
1343 	}
1344 	if (ret >= 0)
1345 		*last_scanned_ret = max(*last_scanned_ret, start + len);
1346 	return ret;
1347 }
1348 
1349 /*
1350  * Entry point to file defragmentation.
1351  *
1352  * @inode:	   inode to be defragged
1353  * @ra:		   readahead state (can be NUL)
1354  * @range:	   defrag options including range and flags
1355  * @newer_than:	   minimum transid to defrag
1356  * @max_to_defrag: max number of sectors to be defragged, if 0, the whole inode
1357  *		   will be defragged.
1358  *
1359  * Return <0 for error.
1360  * Return >=0 for the number of sectors defragged, and range->start will be updated
1361  * to indicate the file offset where next defrag should be started at.
1362  * (Mostly for autodefrag, which sets @max_to_defrag thus we may exit early without
1363  *  defragging all the range).
1364  */
1365 int btrfs_defrag_file(struct inode *inode, struct file_ra_state *ra,
1366 		      struct btrfs_ioctl_defrag_range_args *range,
1367 		      u64 newer_than, unsigned long max_to_defrag)
1368 {
1369 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1370 	unsigned long sectors_defragged = 0;
1371 	u64 isize = i_size_read(inode);
1372 	u64 cur;
1373 	u64 last_byte;
1374 	bool do_compress = (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS);
1375 	bool ra_allocated = false;
1376 	int compress_type = BTRFS_COMPRESS_ZLIB;
1377 	int ret = 0;
1378 	u32 extent_thresh = range->extent_thresh;
1379 	pgoff_t start_index;
1380 
1381 	if (isize == 0)
1382 		return 0;
1383 
1384 	if (range->start >= isize)
1385 		return -EINVAL;
1386 
1387 	if (do_compress) {
1388 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1389 			return -EINVAL;
1390 		if (range->compress_type)
1391 			compress_type = range->compress_type;
1392 	}
1393 
1394 	if (extent_thresh == 0)
1395 		extent_thresh = SZ_256K;
1396 
1397 	if (range->start + range->len > range->start) {
1398 		/* Got a specific range */
1399 		last_byte = min(isize, range->start + range->len);
1400 	} else {
1401 		/* Defrag until file end */
1402 		last_byte = isize;
1403 	}
1404 
1405 	/* Align the range */
1406 	cur = round_down(range->start, fs_info->sectorsize);
1407 	last_byte = round_up(last_byte, fs_info->sectorsize) - 1;
1408 
1409 	/*
1410 	 * If we were not given a ra, allocate a readahead context. As
1411 	 * readahead is just an optimization, defrag will work without it so
1412 	 * we don't error out.
1413 	 */
1414 	if (!ra) {
1415 		ra_allocated = true;
1416 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1417 		if (ra)
1418 			file_ra_state_init(ra, inode->i_mapping);
1419 	}
1420 
1421 	/*
1422 	 * Make writeback start from the beginning of the range, so that the
1423 	 * defrag range can be written sequentially.
1424 	 */
1425 	start_index = cur >> PAGE_SHIFT;
1426 	if (start_index < inode->i_mapping->writeback_index)
1427 		inode->i_mapping->writeback_index = start_index;
1428 
1429 	while (cur < last_byte) {
1430 		const unsigned long prev_sectors_defragged = sectors_defragged;
1431 		u64 last_scanned = cur;
1432 		u64 cluster_end;
1433 
1434 		if (btrfs_defrag_cancelled(fs_info)) {
1435 			ret = -EAGAIN;
1436 			break;
1437 		}
1438 
1439 		/* We want the cluster end at page boundary when possible */
1440 		cluster_end = (((cur >> PAGE_SHIFT) +
1441 			       (SZ_256K >> PAGE_SHIFT)) << PAGE_SHIFT) - 1;
1442 		cluster_end = min(cluster_end, last_byte);
1443 
1444 		btrfs_inode_lock(BTRFS_I(inode), 0);
1445 		if (IS_SWAPFILE(inode)) {
1446 			ret = -ETXTBSY;
1447 			btrfs_inode_unlock(BTRFS_I(inode), 0);
1448 			break;
1449 		}
1450 		if (!(inode->i_sb->s_flags & SB_ACTIVE)) {
1451 			btrfs_inode_unlock(BTRFS_I(inode), 0);
1452 			break;
1453 		}
1454 		if (do_compress)
1455 			BTRFS_I(inode)->defrag_compress = compress_type;
1456 		ret = defrag_one_cluster(BTRFS_I(inode), ra, cur,
1457 				cluster_end + 1 - cur, extent_thresh,
1458 				newer_than, do_compress, &sectors_defragged,
1459 				max_to_defrag, &last_scanned);
1460 
1461 		if (sectors_defragged > prev_sectors_defragged)
1462 			balance_dirty_pages_ratelimited(inode->i_mapping);
1463 
1464 		btrfs_inode_unlock(BTRFS_I(inode), 0);
1465 		if (ret < 0)
1466 			break;
1467 		cur = max(cluster_end + 1, last_scanned);
1468 		if (ret > 0) {
1469 			ret = 0;
1470 			break;
1471 		}
1472 		cond_resched();
1473 	}
1474 
1475 	if (ra_allocated)
1476 		kfree(ra);
1477 	/*
1478 	 * Update range.start for autodefrag, this will indicate where to start
1479 	 * in next run.
1480 	 */
1481 	range->start = cur;
1482 	if (sectors_defragged) {
1483 		/*
1484 		 * We have defragged some sectors, for compression case they
1485 		 * need to be written back immediately.
1486 		 */
1487 		if (range->flags & BTRFS_DEFRAG_RANGE_START_IO) {
1488 			filemap_flush(inode->i_mapping);
1489 			if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1490 				     &BTRFS_I(inode)->runtime_flags))
1491 				filemap_flush(inode->i_mapping);
1492 		}
1493 		if (range->compress_type == BTRFS_COMPRESS_LZO)
1494 			btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1495 		else if (range->compress_type == BTRFS_COMPRESS_ZSTD)
1496 			btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1497 		ret = sectors_defragged;
1498 	}
1499 	if (do_compress) {
1500 		btrfs_inode_lock(BTRFS_I(inode), 0);
1501 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1502 		btrfs_inode_unlock(BTRFS_I(inode), 0);
1503 	}
1504 	return ret;
1505 }
1506 
1507 void __cold btrfs_auto_defrag_exit(void)
1508 {
1509 	kmem_cache_destroy(btrfs_inode_defrag_cachep);
1510 }
1511 
1512 int __init btrfs_auto_defrag_init(void)
1513 {
1514 	btrfs_inode_defrag_cachep = kmem_cache_create("btrfs_inode_defrag",
1515 					sizeof(struct inode_defrag), 0,
1516 					SLAB_MEM_SPREAD,
1517 					NULL);
1518 	if (!btrfs_inode_defrag_cachep)
1519 		return -ENOMEM;
1520 
1521 	return 0;
1522 }
1523