xref: /linux/fs/btrfs/compression.c (revision e9fb13bfec7e017130ddc5c1b5466340470f4900)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/pagemap.h>
25 #include <linux/highmem.h>
26 #include <linux/time.h>
27 #include <linux/init.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mpage.h>
31 #include <linux/swap.h>
32 #include <linux/writeback.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/slab.h>
35 #include "compat.h"
36 #include "ctree.h"
37 #include "disk-io.h"
38 #include "transaction.h"
39 #include "btrfs_inode.h"
40 #include "volumes.h"
41 #include "ordered-data.h"
42 #include "compression.h"
43 #include "extent_io.h"
44 #include "extent_map.h"
45 
46 struct compressed_bio {
47 	/* number of bios pending for this compressed extent */
48 	atomic_t pending_bios;
49 
50 	/* the pages with the compressed data on them */
51 	struct page **compressed_pages;
52 
53 	/* inode that owns this data */
54 	struct inode *inode;
55 
56 	/* starting offset in the inode for our pages */
57 	u64 start;
58 
59 	/* number of bytes in the inode we're working on */
60 	unsigned long len;
61 
62 	/* number of bytes on disk */
63 	unsigned long compressed_len;
64 
65 	/* the compression algorithm for this bio */
66 	int compress_type;
67 
68 	/* number of compressed pages in the array */
69 	unsigned long nr_pages;
70 
71 	/* IO errors */
72 	int errors;
73 	int mirror_num;
74 
75 	/* for reads, this is the bio we are copying the data into */
76 	struct bio *orig_bio;
77 
78 	/*
79 	 * the start of a variable length array of checksums only
80 	 * used by reads
81 	 */
82 	u32 sums;
83 };
84 
85 static inline int compressed_bio_size(struct btrfs_root *root,
86 				      unsigned long disk_size)
87 {
88 	u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
89 	return sizeof(struct compressed_bio) +
90 		((disk_size + root->sectorsize - 1) / root->sectorsize) *
91 		csum_size;
92 }
93 
94 static struct bio *compressed_bio_alloc(struct block_device *bdev,
95 					u64 first_byte, gfp_t gfp_flags)
96 {
97 	int nr_vecs;
98 
99 	nr_vecs = bio_get_nr_vecs(bdev);
100 	return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
101 }
102 
103 static int check_compressed_csum(struct inode *inode,
104 				 struct compressed_bio *cb,
105 				 u64 disk_start)
106 {
107 	int ret;
108 	struct btrfs_root *root = BTRFS_I(inode)->root;
109 	struct page *page;
110 	unsigned long i;
111 	char *kaddr;
112 	u32 csum;
113 	u32 *cb_sum = &cb->sums;
114 
115 	if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
116 		return 0;
117 
118 	for (i = 0; i < cb->nr_pages; i++) {
119 		page = cb->compressed_pages[i];
120 		csum = ~(u32)0;
121 
122 		kaddr = kmap_atomic(page, KM_USER0);
123 		csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
124 		btrfs_csum_final(csum, (char *)&csum);
125 		kunmap_atomic(kaddr, KM_USER0);
126 
127 		if (csum != *cb_sum) {
128 			printk(KERN_INFO "btrfs csum failed ino %lu "
129 			       "extent %llu csum %u "
130 			       "wanted %u mirror %d\n", inode->i_ino,
131 			       (unsigned long long)disk_start,
132 			       csum, *cb_sum, cb->mirror_num);
133 			ret = -EIO;
134 			goto fail;
135 		}
136 		cb_sum++;
137 
138 	}
139 	ret = 0;
140 fail:
141 	return ret;
142 }
143 
144 /* when we finish reading compressed pages from the disk, we
145  * decompress them and then run the bio end_io routines on the
146  * decompressed pages (in the inode address space).
147  *
148  * This allows the checksumming and other IO error handling routines
149  * to work normally
150  *
151  * The compressed pages are freed here, and it must be run
152  * in process context
153  */
154 static void end_compressed_bio_read(struct bio *bio, int err)
155 {
156 	struct compressed_bio *cb = bio->bi_private;
157 	struct inode *inode;
158 	struct page *page;
159 	unsigned long index;
160 	int ret;
161 
162 	if (err)
163 		cb->errors = 1;
164 
165 	/* if there are more bios still pending for this compressed
166 	 * extent, just exit
167 	 */
168 	if (!atomic_dec_and_test(&cb->pending_bios))
169 		goto out;
170 
171 	inode = cb->inode;
172 	ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
173 	if (ret)
174 		goto csum_failed;
175 
176 	/* ok, we're the last bio for this extent, lets start
177 	 * the decompression.
178 	 */
179 	ret = btrfs_decompress_biovec(cb->compress_type,
180 				      cb->compressed_pages,
181 				      cb->start,
182 				      cb->orig_bio->bi_io_vec,
183 				      cb->orig_bio->bi_vcnt,
184 				      cb->compressed_len);
185 csum_failed:
186 	if (ret)
187 		cb->errors = 1;
188 
189 	/* release the compressed pages */
190 	index = 0;
191 	for (index = 0; index < cb->nr_pages; index++) {
192 		page = cb->compressed_pages[index];
193 		page->mapping = NULL;
194 		page_cache_release(page);
195 	}
196 
197 	/* do io completion on the original bio */
198 	if (cb->errors) {
199 		bio_io_error(cb->orig_bio);
200 	} else {
201 		int bio_index = 0;
202 		struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
203 
204 		/*
205 		 * we have verified the checksum already, set page
206 		 * checked so the end_io handlers know about it
207 		 */
208 		while (bio_index < cb->orig_bio->bi_vcnt) {
209 			SetPageChecked(bvec->bv_page);
210 			bvec++;
211 			bio_index++;
212 		}
213 		bio_endio(cb->orig_bio, 0);
214 	}
215 
216 	/* finally free the cb struct */
217 	kfree(cb->compressed_pages);
218 	kfree(cb);
219 out:
220 	bio_put(bio);
221 }
222 
223 /*
224  * Clear the writeback bits on all of the file
225  * pages for a compressed write
226  */
227 static noinline int end_compressed_writeback(struct inode *inode, u64 start,
228 					     unsigned long ram_size)
229 {
230 	unsigned long index = start >> PAGE_CACHE_SHIFT;
231 	unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
232 	struct page *pages[16];
233 	unsigned long nr_pages = end_index - index + 1;
234 	int i;
235 	int ret;
236 
237 	while (nr_pages > 0) {
238 		ret = find_get_pages_contig(inode->i_mapping, index,
239 				     min_t(unsigned long,
240 				     nr_pages, ARRAY_SIZE(pages)), pages);
241 		if (ret == 0) {
242 			nr_pages -= 1;
243 			index += 1;
244 			continue;
245 		}
246 		for (i = 0; i < ret; i++) {
247 			end_page_writeback(pages[i]);
248 			page_cache_release(pages[i]);
249 		}
250 		nr_pages -= ret;
251 		index += ret;
252 	}
253 	/* the inode may be gone now */
254 	return 0;
255 }
256 
257 /*
258  * do the cleanup once all the compressed pages hit the disk.
259  * This will clear writeback on the file pages and free the compressed
260  * pages.
261  *
262  * This also calls the writeback end hooks for the file pages so that
263  * metadata and checksums can be updated in the file.
264  */
265 static void end_compressed_bio_write(struct bio *bio, int err)
266 {
267 	struct extent_io_tree *tree;
268 	struct compressed_bio *cb = bio->bi_private;
269 	struct inode *inode;
270 	struct page *page;
271 	unsigned long index;
272 
273 	if (err)
274 		cb->errors = 1;
275 
276 	/* if there are more bios still pending for this compressed
277 	 * extent, just exit
278 	 */
279 	if (!atomic_dec_and_test(&cb->pending_bios))
280 		goto out;
281 
282 	/* ok, we're the last bio for this extent, step one is to
283 	 * call back into the FS and do all the end_io operations
284 	 */
285 	inode = cb->inode;
286 	tree = &BTRFS_I(inode)->io_tree;
287 	cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
288 	tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
289 					 cb->start,
290 					 cb->start + cb->len - 1,
291 					 NULL, 1);
292 	cb->compressed_pages[0]->mapping = NULL;
293 
294 	end_compressed_writeback(inode, cb->start, cb->len);
295 	/* note, our inode could be gone now */
296 
297 	/*
298 	 * release the compressed pages, these came from alloc_page and
299 	 * are not attached to the inode at all
300 	 */
301 	index = 0;
302 	for (index = 0; index < cb->nr_pages; index++) {
303 		page = cb->compressed_pages[index];
304 		page->mapping = NULL;
305 		page_cache_release(page);
306 	}
307 
308 	/* finally free the cb struct */
309 	kfree(cb->compressed_pages);
310 	kfree(cb);
311 out:
312 	bio_put(bio);
313 }
314 
315 /*
316  * worker function to build and submit bios for previously compressed pages.
317  * The corresponding pages in the inode should be marked for writeback
318  * and the compressed pages should have a reference on them for dropping
319  * when the IO is complete.
320  *
321  * This also checksums the file bytes and gets things ready for
322  * the end io hooks.
323  */
324 int btrfs_submit_compressed_write(struct inode *inode, u64 start,
325 				 unsigned long len, u64 disk_start,
326 				 unsigned long compressed_len,
327 				 struct page **compressed_pages,
328 				 unsigned long nr_pages)
329 {
330 	struct bio *bio = NULL;
331 	struct btrfs_root *root = BTRFS_I(inode)->root;
332 	struct compressed_bio *cb;
333 	unsigned long bytes_left;
334 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
335 	int page_index = 0;
336 	struct page *page;
337 	u64 first_byte = disk_start;
338 	struct block_device *bdev;
339 	int ret;
340 
341 	WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
342 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
343 	if (!cb)
344 		return -ENOMEM;
345 	atomic_set(&cb->pending_bios, 0);
346 	cb->errors = 0;
347 	cb->inode = inode;
348 	cb->start = start;
349 	cb->len = len;
350 	cb->mirror_num = 0;
351 	cb->compressed_pages = compressed_pages;
352 	cb->compressed_len = compressed_len;
353 	cb->orig_bio = NULL;
354 	cb->nr_pages = nr_pages;
355 
356 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
357 
358 	bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
359 	if(!bio) {
360 		kfree(cb);
361 		return -ENOMEM;
362 	}
363 	bio->bi_private = cb;
364 	bio->bi_end_io = end_compressed_bio_write;
365 	atomic_inc(&cb->pending_bios);
366 
367 	/* create and submit bios for the compressed pages */
368 	bytes_left = compressed_len;
369 	for (page_index = 0; page_index < cb->nr_pages; page_index++) {
370 		page = compressed_pages[page_index];
371 		page->mapping = inode->i_mapping;
372 		if (bio->bi_size)
373 			ret = io_tree->ops->merge_bio_hook(page, 0,
374 							   PAGE_CACHE_SIZE,
375 							   bio, 0);
376 		else
377 			ret = 0;
378 
379 		page->mapping = NULL;
380 		if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
381 		    PAGE_CACHE_SIZE) {
382 			bio_get(bio);
383 
384 			/*
385 			 * inc the count before we submit the bio so
386 			 * we know the end IO handler won't happen before
387 			 * we inc the count.  Otherwise, the cb might get
388 			 * freed before we're done setting it up
389 			 */
390 			atomic_inc(&cb->pending_bios);
391 			ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
392 			BUG_ON(ret);
393 
394 			ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
395 			BUG_ON(ret);
396 
397 			ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
398 			BUG_ON(ret);
399 
400 			bio_put(bio);
401 
402 			bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
403 			bio->bi_private = cb;
404 			bio->bi_end_io = end_compressed_bio_write;
405 			bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
406 		}
407 		if (bytes_left < PAGE_CACHE_SIZE) {
408 			printk("bytes left %lu compress len %lu nr %lu\n",
409 			       bytes_left, cb->compressed_len, cb->nr_pages);
410 		}
411 		bytes_left -= PAGE_CACHE_SIZE;
412 		first_byte += PAGE_CACHE_SIZE;
413 		cond_resched();
414 	}
415 	bio_get(bio);
416 
417 	ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
418 	BUG_ON(ret);
419 
420 	ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
421 	BUG_ON(ret);
422 
423 	ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
424 	BUG_ON(ret);
425 
426 	bio_put(bio);
427 	return 0;
428 }
429 
430 static noinline int add_ra_bio_pages(struct inode *inode,
431 				     u64 compressed_end,
432 				     struct compressed_bio *cb)
433 {
434 	unsigned long end_index;
435 	unsigned long page_index;
436 	u64 last_offset;
437 	u64 isize = i_size_read(inode);
438 	int ret;
439 	struct page *page;
440 	unsigned long nr_pages = 0;
441 	struct extent_map *em;
442 	struct address_space *mapping = inode->i_mapping;
443 	struct extent_map_tree *em_tree;
444 	struct extent_io_tree *tree;
445 	u64 end;
446 	int misses = 0;
447 
448 	page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
449 	last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
450 	em_tree = &BTRFS_I(inode)->extent_tree;
451 	tree = &BTRFS_I(inode)->io_tree;
452 
453 	if (isize == 0)
454 		return 0;
455 
456 	end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
457 
458 	while (last_offset < compressed_end) {
459 		page_index = last_offset >> PAGE_CACHE_SHIFT;
460 
461 		if (page_index > end_index)
462 			break;
463 
464 		rcu_read_lock();
465 		page = radix_tree_lookup(&mapping->page_tree, page_index);
466 		rcu_read_unlock();
467 		if (page) {
468 			misses++;
469 			if (misses > 4)
470 				break;
471 			goto next;
472 		}
473 
474 		page = __page_cache_alloc(mapping_gfp_mask(mapping) &
475 								~__GFP_FS);
476 		if (!page)
477 			break;
478 
479 		if (add_to_page_cache_lru(page, mapping, page_index,
480 								GFP_NOFS)) {
481 			page_cache_release(page);
482 			goto next;
483 		}
484 
485 		end = last_offset + PAGE_CACHE_SIZE - 1;
486 		/*
487 		 * at this point, we have a locked page in the page cache
488 		 * for these bytes in the file.  But, we have to make
489 		 * sure they map to this compressed extent on disk.
490 		 */
491 		set_page_extent_mapped(page);
492 		lock_extent(tree, last_offset, end, GFP_NOFS);
493 		read_lock(&em_tree->lock);
494 		em = lookup_extent_mapping(em_tree, last_offset,
495 					   PAGE_CACHE_SIZE);
496 		read_unlock(&em_tree->lock);
497 
498 		if (!em || last_offset < em->start ||
499 		    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
500 		    (em->block_start >> 9) != cb->orig_bio->bi_sector) {
501 			free_extent_map(em);
502 			unlock_extent(tree, last_offset, end, GFP_NOFS);
503 			unlock_page(page);
504 			page_cache_release(page);
505 			break;
506 		}
507 		free_extent_map(em);
508 
509 		if (page->index == end_index) {
510 			char *userpage;
511 			size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
512 
513 			if (zero_offset) {
514 				int zeros;
515 				zeros = PAGE_CACHE_SIZE - zero_offset;
516 				userpage = kmap_atomic(page, KM_USER0);
517 				memset(userpage + zero_offset, 0, zeros);
518 				flush_dcache_page(page);
519 				kunmap_atomic(userpage, KM_USER0);
520 			}
521 		}
522 
523 		ret = bio_add_page(cb->orig_bio, page,
524 				   PAGE_CACHE_SIZE, 0);
525 
526 		if (ret == PAGE_CACHE_SIZE) {
527 			nr_pages++;
528 			page_cache_release(page);
529 		} else {
530 			unlock_extent(tree, last_offset, end, GFP_NOFS);
531 			unlock_page(page);
532 			page_cache_release(page);
533 			break;
534 		}
535 next:
536 		last_offset += PAGE_CACHE_SIZE;
537 	}
538 	return 0;
539 }
540 
541 /*
542  * for a compressed read, the bio we get passed has all the inode pages
543  * in it.  We don't actually do IO on those pages but allocate new ones
544  * to hold the compressed pages on disk.
545  *
546  * bio->bi_sector points to the compressed extent on disk
547  * bio->bi_io_vec points to all of the inode pages
548  * bio->bi_vcnt is a count of pages
549  *
550  * After the compressed pages are read, we copy the bytes into the
551  * bio we were passed and then call the bio end_io calls
552  */
553 int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
554 				 int mirror_num, unsigned long bio_flags)
555 {
556 	struct extent_io_tree *tree;
557 	struct extent_map_tree *em_tree;
558 	struct compressed_bio *cb;
559 	struct btrfs_root *root = BTRFS_I(inode)->root;
560 	unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
561 	unsigned long compressed_len;
562 	unsigned long nr_pages;
563 	unsigned long page_index;
564 	struct page *page;
565 	struct block_device *bdev;
566 	struct bio *comp_bio;
567 	u64 cur_disk_byte = (u64)bio->bi_sector << 9;
568 	u64 em_len;
569 	u64 em_start;
570 	struct extent_map *em;
571 	int ret = -ENOMEM;
572 	u32 *sums;
573 
574 	tree = &BTRFS_I(inode)->io_tree;
575 	em_tree = &BTRFS_I(inode)->extent_tree;
576 
577 	/* we need the actual starting offset of this extent in the file */
578 	read_lock(&em_tree->lock);
579 	em = lookup_extent_mapping(em_tree,
580 				   page_offset(bio->bi_io_vec->bv_page),
581 				   PAGE_CACHE_SIZE);
582 	read_unlock(&em_tree->lock);
583 
584 	compressed_len = em->block_len;
585 	cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
586 	if (!cb)
587 		goto out;
588 
589 	atomic_set(&cb->pending_bios, 0);
590 	cb->errors = 0;
591 	cb->inode = inode;
592 	cb->mirror_num = mirror_num;
593 	sums = &cb->sums;
594 
595 	cb->start = em->orig_start;
596 	em_len = em->len;
597 	em_start = em->start;
598 
599 	free_extent_map(em);
600 	em = NULL;
601 
602 	cb->len = uncompressed_len;
603 	cb->compressed_len = compressed_len;
604 	cb->compress_type = extent_compress_type(bio_flags);
605 	cb->orig_bio = bio;
606 
607 	nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
608 				 PAGE_CACHE_SIZE;
609 	cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
610 				       GFP_NOFS);
611 	if (!cb->compressed_pages)
612 		goto fail1;
613 
614 	bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
615 
616 	for (page_index = 0; page_index < nr_pages; page_index++) {
617 		cb->compressed_pages[page_index] = alloc_page(GFP_NOFS |
618 							      __GFP_HIGHMEM);
619 		if (!cb->compressed_pages[page_index])
620 			goto fail2;
621 	}
622 	cb->nr_pages = nr_pages;
623 
624 	add_ra_bio_pages(inode, em_start + em_len, cb);
625 
626 	/* include any pages we added in add_ra-bio_pages */
627 	uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
628 	cb->len = uncompressed_len;
629 
630 	comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
631 	if (!comp_bio)
632 		goto fail2;
633 	comp_bio->bi_private = cb;
634 	comp_bio->bi_end_io = end_compressed_bio_read;
635 	atomic_inc(&cb->pending_bios);
636 
637 	for (page_index = 0; page_index < nr_pages; page_index++) {
638 		page = cb->compressed_pages[page_index];
639 		page->mapping = inode->i_mapping;
640 		page->index = em_start >> PAGE_CACHE_SHIFT;
641 
642 		if (comp_bio->bi_size)
643 			ret = tree->ops->merge_bio_hook(page, 0,
644 							PAGE_CACHE_SIZE,
645 							comp_bio, 0);
646 		else
647 			ret = 0;
648 
649 		page->mapping = NULL;
650 		if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
651 		    PAGE_CACHE_SIZE) {
652 			bio_get(comp_bio);
653 
654 			ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
655 			BUG_ON(ret);
656 
657 			/*
658 			 * inc the count before we submit the bio so
659 			 * we know the end IO handler won't happen before
660 			 * we inc the count.  Otherwise, the cb might get
661 			 * freed before we're done setting it up
662 			 */
663 			atomic_inc(&cb->pending_bios);
664 
665 			if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
666 				ret = btrfs_lookup_bio_sums(root, inode,
667 							comp_bio, sums);
668 				BUG_ON(ret);
669 			}
670 			sums += (comp_bio->bi_size + root->sectorsize - 1) /
671 				root->sectorsize;
672 
673 			ret = btrfs_map_bio(root, READ, comp_bio,
674 					    mirror_num, 0);
675 			BUG_ON(ret);
676 
677 			bio_put(comp_bio);
678 
679 			comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
680 							GFP_NOFS);
681 			comp_bio->bi_private = cb;
682 			comp_bio->bi_end_io = end_compressed_bio_read;
683 
684 			bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
685 		}
686 		cur_disk_byte += PAGE_CACHE_SIZE;
687 	}
688 	bio_get(comp_bio);
689 
690 	ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
691 	BUG_ON(ret);
692 
693 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
694 		ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
695 		BUG_ON(ret);
696 	}
697 
698 	ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
699 	BUG_ON(ret);
700 
701 	bio_put(comp_bio);
702 	return 0;
703 
704 fail2:
705 	for (page_index = 0; page_index < nr_pages; page_index++)
706 		free_page((unsigned long)cb->compressed_pages[page_index]);
707 
708 	kfree(cb->compressed_pages);
709 fail1:
710 	kfree(cb);
711 out:
712 	free_extent_map(em);
713 	return ret;
714 }
715 
716 static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
717 static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
718 static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
719 static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
720 static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
721 
722 struct btrfs_compress_op *btrfs_compress_op[] = {
723 	&btrfs_zlib_compress,
724 	&btrfs_lzo_compress,
725 };
726 
727 int __init btrfs_init_compress(void)
728 {
729 	int i;
730 
731 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
732 		INIT_LIST_HEAD(&comp_idle_workspace[i]);
733 		spin_lock_init(&comp_workspace_lock[i]);
734 		atomic_set(&comp_alloc_workspace[i], 0);
735 		init_waitqueue_head(&comp_workspace_wait[i]);
736 	}
737 	return 0;
738 }
739 
740 /*
741  * this finds an available workspace or allocates a new one
742  * ERR_PTR is returned if things go bad.
743  */
744 static struct list_head *find_workspace(int type)
745 {
746 	struct list_head *workspace;
747 	int cpus = num_online_cpus();
748 	int idx = type - 1;
749 
750 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
751 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
752 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
753 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
754 	int *num_workspace			= &comp_num_workspace[idx];
755 again:
756 	spin_lock(workspace_lock);
757 	if (!list_empty(idle_workspace)) {
758 		workspace = idle_workspace->next;
759 		list_del(workspace);
760 		(*num_workspace)--;
761 		spin_unlock(workspace_lock);
762 		return workspace;
763 
764 	}
765 	if (atomic_read(alloc_workspace) > cpus) {
766 		DEFINE_WAIT(wait);
767 
768 		spin_unlock(workspace_lock);
769 		prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
770 		if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
771 			schedule();
772 		finish_wait(workspace_wait, &wait);
773 		goto again;
774 	}
775 	atomic_inc(alloc_workspace);
776 	spin_unlock(workspace_lock);
777 
778 	workspace = btrfs_compress_op[idx]->alloc_workspace();
779 	if (IS_ERR(workspace)) {
780 		atomic_dec(alloc_workspace);
781 		wake_up(workspace_wait);
782 	}
783 	return workspace;
784 }
785 
786 /*
787  * put a workspace struct back on the list or free it if we have enough
788  * idle ones sitting around
789  */
790 static void free_workspace(int type, struct list_head *workspace)
791 {
792 	int idx = type - 1;
793 	struct list_head *idle_workspace	= &comp_idle_workspace[idx];
794 	spinlock_t *workspace_lock		= &comp_workspace_lock[idx];
795 	atomic_t *alloc_workspace		= &comp_alloc_workspace[idx];
796 	wait_queue_head_t *workspace_wait	= &comp_workspace_wait[idx];
797 	int *num_workspace			= &comp_num_workspace[idx];
798 
799 	spin_lock(workspace_lock);
800 	if (*num_workspace < num_online_cpus()) {
801 		list_add_tail(workspace, idle_workspace);
802 		(*num_workspace)++;
803 		spin_unlock(workspace_lock);
804 		goto wake;
805 	}
806 	spin_unlock(workspace_lock);
807 
808 	btrfs_compress_op[idx]->free_workspace(workspace);
809 	atomic_dec(alloc_workspace);
810 wake:
811 	if (waitqueue_active(workspace_wait))
812 		wake_up(workspace_wait);
813 }
814 
815 /*
816  * cleanup function for module exit
817  */
818 static void free_workspaces(void)
819 {
820 	struct list_head *workspace;
821 	int i;
822 
823 	for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
824 		while (!list_empty(&comp_idle_workspace[i])) {
825 			workspace = comp_idle_workspace[i].next;
826 			list_del(workspace);
827 			btrfs_compress_op[i]->free_workspace(workspace);
828 			atomic_dec(&comp_alloc_workspace[i]);
829 		}
830 	}
831 }
832 
833 /*
834  * given an address space and start/len, compress the bytes.
835  *
836  * pages are allocated to hold the compressed result and stored
837  * in 'pages'
838  *
839  * out_pages is used to return the number of pages allocated.  There
840  * may be pages allocated even if we return an error
841  *
842  * total_in is used to return the number of bytes actually read.  It
843  * may be smaller then len if we had to exit early because we
844  * ran out of room in the pages array or because we cross the
845  * max_out threshold.
846  *
847  * total_out is used to return the total number of compressed bytes
848  *
849  * max_out tells us the max number of bytes that we're allowed to
850  * stuff into pages
851  */
852 int btrfs_compress_pages(int type, struct address_space *mapping,
853 			 u64 start, unsigned long len,
854 			 struct page **pages,
855 			 unsigned long nr_dest_pages,
856 			 unsigned long *out_pages,
857 			 unsigned long *total_in,
858 			 unsigned long *total_out,
859 			 unsigned long max_out)
860 {
861 	struct list_head *workspace;
862 	int ret;
863 
864 	workspace = find_workspace(type);
865 	if (IS_ERR(workspace))
866 		return -1;
867 
868 	ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
869 						      start, len, pages,
870 						      nr_dest_pages, out_pages,
871 						      total_in, total_out,
872 						      max_out);
873 	free_workspace(type, workspace);
874 	return ret;
875 }
876 
877 /*
878  * pages_in is an array of pages with compressed data.
879  *
880  * disk_start is the starting logical offset of this array in the file
881  *
882  * bvec is a bio_vec of pages from the file that we want to decompress into
883  *
884  * vcnt is the count of pages in the biovec
885  *
886  * srclen is the number of bytes in pages_in
887  *
888  * The basic idea is that we have a bio that was created by readpages.
889  * The pages in the bio are for the uncompressed data, and they may not
890  * be contiguous.  They all correspond to the range of bytes covered by
891  * the compressed extent.
892  */
893 int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
894 			    struct bio_vec *bvec, int vcnt, size_t srclen)
895 {
896 	struct list_head *workspace;
897 	int ret;
898 
899 	workspace = find_workspace(type);
900 	if (IS_ERR(workspace))
901 		return -ENOMEM;
902 
903 	ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
904 							 disk_start,
905 							 bvec, vcnt, srclen);
906 	free_workspace(type, workspace);
907 	return ret;
908 }
909 
910 /*
911  * a less complex decompression routine.  Our compressed data fits in a
912  * single page, and we want to read a single page out of it.
913  * start_byte tells us the offset into the compressed data we're interested in
914  */
915 int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
916 		     unsigned long start_byte, size_t srclen, size_t destlen)
917 {
918 	struct list_head *workspace;
919 	int ret;
920 
921 	workspace = find_workspace(type);
922 	if (IS_ERR(workspace))
923 		return -ENOMEM;
924 
925 	ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
926 						  dest_page, start_byte,
927 						  srclen, destlen);
928 
929 	free_workspace(type, workspace);
930 	return ret;
931 }
932 
933 void btrfs_exit_compress(void)
934 {
935 	free_workspaces();
936 }
937 
938 /*
939  * Copy uncompressed data from working buffer to pages.
940  *
941  * buf_start is the byte offset we're of the start of our workspace buffer.
942  *
943  * total_out is the last byte of the buffer
944  */
945 int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
946 			      unsigned long total_out, u64 disk_start,
947 			      struct bio_vec *bvec, int vcnt,
948 			      unsigned long *page_index,
949 			      unsigned long *pg_offset)
950 {
951 	unsigned long buf_offset;
952 	unsigned long current_buf_start;
953 	unsigned long start_byte;
954 	unsigned long working_bytes = total_out - buf_start;
955 	unsigned long bytes;
956 	char *kaddr;
957 	struct page *page_out = bvec[*page_index].bv_page;
958 
959 	/*
960 	 * start byte is the first byte of the page we're currently
961 	 * copying into relative to the start of the compressed data.
962 	 */
963 	start_byte = page_offset(page_out) - disk_start;
964 
965 	/* we haven't yet hit data corresponding to this page */
966 	if (total_out <= start_byte)
967 		return 1;
968 
969 	/*
970 	 * the start of the data we care about is offset into
971 	 * the middle of our working buffer
972 	 */
973 	if (total_out > start_byte && buf_start < start_byte) {
974 		buf_offset = start_byte - buf_start;
975 		working_bytes -= buf_offset;
976 	} else {
977 		buf_offset = 0;
978 	}
979 	current_buf_start = buf_start;
980 
981 	/* copy bytes from the working buffer into the pages */
982 	while (working_bytes > 0) {
983 		bytes = min(PAGE_CACHE_SIZE - *pg_offset,
984 			    PAGE_CACHE_SIZE - buf_offset);
985 		bytes = min(bytes, working_bytes);
986 		kaddr = kmap_atomic(page_out, KM_USER0);
987 		memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
988 		kunmap_atomic(kaddr, KM_USER0);
989 		flush_dcache_page(page_out);
990 
991 		*pg_offset += bytes;
992 		buf_offset += bytes;
993 		working_bytes -= bytes;
994 		current_buf_start += bytes;
995 
996 		/* check if we need to pick another page */
997 		if (*pg_offset == PAGE_CACHE_SIZE) {
998 			(*page_index)++;
999 			if (*page_index >= vcnt)
1000 				return 0;
1001 
1002 			page_out = bvec[*page_index].bv_page;
1003 			*pg_offset = 0;
1004 			start_byte = page_offset(page_out) - disk_start;
1005 
1006 			/*
1007 			 * make sure our new page is covered by this
1008 			 * working buffer
1009 			 */
1010 			if (total_out <= start_byte)
1011 				return 1;
1012 
1013 			/*
1014 			 * the next page in the biovec might not be adjacent
1015 			 * to the last page, but it might still be found
1016 			 * inside this working buffer. bump our offset pointer
1017 			 */
1018 			if (total_out > start_byte &&
1019 			    current_buf_start < start_byte) {
1020 				buf_offset = start_byte - buf_start;
1021 				working_bytes = total_out - start_byte;
1022 				current_buf_start = buf_start + buf_offset;
1023 			}
1024 		}
1025 	}
1026 
1027 	return 1;
1028 }
1029