xref: /linux/fs/aio.c (revision eeb9f5c2dcec90009d7cf12e780e7f9631993fc5)
1 /*
2  *	An async IO implementation for Linux
3  *	Written by Benjamin LaHaise <bcrl@kvack.org>
4  *
5  *	Implements an efficient asynchronous io interface.
6  *
7  *	Copyright 2000, 2001, 2002 Red Hat, Inc.  All Rights Reserved.
8  *	Copyright 2018 Christoph Hellwig.
9  *
10  *	See ../COPYING for licensing terms.
11  */
12 #define pr_fmt(fmt) "%s: " fmt, __func__
13 
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
24 
25 #include <linux/sched/signal.h>
26 #include <linux/fs.h>
27 #include <linux/file.h>
28 #include <linux/mm.h>
29 #include <linux/mman.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/timer.h>
33 #include <linux/aio.h>
34 #include <linux/highmem.h>
35 #include <linux/workqueue.h>
36 #include <linux/security.h>
37 #include <linux/eventfd.h>
38 #include <linux/blkdev.h>
39 #include <linux/compat.h>
40 #include <linux/migrate.h>
41 #include <linux/ramfs.h>
42 #include <linux/percpu-refcount.h>
43 #include <linux/mount.h>
44 #include <linux/pseudo_fs.h>
45 
46 #include <linux/uaccess.h>
47 #include <linux/nospec.h>
48 
49 #include "internal.h"
50 
51 #define KIOCB_KEY		0
52 
53 #define AIO_RING_MAGIC			0xa10a10a1
54 #define AIO_RING_COMPAT_FEATURES	1
55 #define AIO_RING_INCOMPAT_FEATURES	0
56 struct aio_ring {
57 	unsigned	id;	/* kernel internal index number */
58 	unsigned	nr;	/* number of io_events */
59 	unsigned	head;	/* Written to by userland or under ring_lock
60 				 * mutex by aio_read_events_ring(). */
61 	unsigned	tail;
62 
63 	unsigned	magic;
64 	unsigned	compat_features;
65 	unsigned	incompat_features;
66 	unsigned	header_length;	/* size of aio_ring */
67 
68 
69 	struct io_event		io_events[];
70 }; /* 128 bytes + ring size */
71 
72 /*
73  * Plugging is meant to work with larger batches of IOs. If we don't
74  * have more than the below, then don't bother setting up a plug.
75  */
76 #define AIO_PLUG_THRESHOLD	2
77 
78 #define AIO_RING_PAGES	8
79 
80 struct kioctx_table {
81 	struct rcu_head		rcu;
82 	unsigned		nr;
83 	struct kioctx __rcu	*table[] __counted_by(nr);
84 };
85 
86 struct kioctx_cpu {
87 	unsigned		reqs_available;
88 };
89 
90 struct ctx_rq_wait {
91 	struct completion comp;
92 	atomic_t count;
93 };
94 
95 struct kioctx {
96 	struct percpu_ref	users;
97 	atomic_t		dead;
98 
99 	struct percpu_ref	reqs;
100 
101 	unsigned long		user_id;
102 
103 	struct __percpu kioctx_cpu *cpu;
104 
105 	/*
106 	 * For percpu reqs_available, number of slots we move to/from global
107 	 * counter at a time:
108 	 */
109 	unsigned		req_batch;
110 	/*
111 	 * This is what userspace passed to io_setup(), it's not used for
112 	 * anything but counting against the global max_reqs quota.
113 	 *
114 	 * The real limit is nr_events - 1, which will be larger (see
115 	 * aio_setup_ring())
116 	 */
117 	unsigned		max_reqs;
118 
119 	/* Size of ringbuffer, in units of struct io_event */
120 	unsigned		nr_events;
121 
122 	unsigned long		mmap_base;
123 	unsigned long		mmap_size;
124 
125 	struct page		**ring_pages;
126 	long			nr_pages;
127 
128 	struct rcu_work		free_rwork;	/* see free_ioctx() */
129 
130 	/*
131 	 * signals when all in-flight requests are done
132 	 */
133 	struct ctx_rq_wait	*rq_wait;
134 
135 	struct {
136 		/*
137 		 * This counts the number of available slots in the ringbuffer,
138 		 * so we avoid overflowing it: it's decremented (if positive)
139 		 * when allocating a kiocb and incremented when the resulting
140 		 * io_event is pulled off the ringbuffer.
141 		 *
142 		 * We batch accesses to it with a percpu version.
143 		 */
144 		atomic_t	reqs_available;
145 	} ____cacheline_aligned_in_smp;
146 
147 	struct {
148 		spinlock_t	ctx_lock;
149 		struct list_head active_reqs;	/* used for cancellation */
150 	} ____cacheline_aligned_in_smp;
151 
152 	struct {
153 		struct mutex	ring_lock;
154 		wait_queue_head_t wait;
155 	} ____cacheline_aligned_in_smp;
156 
157 	struct {
158 		unsigned	tail;
159 		unsigned	completed_events;
160 		spinlock_t	completion_lock;
161 	} ____cacheline_aligned_in_smp;
162 
163 	struct page		*internal_pages[AIO_RING_PAGES];
164 	struct file		*aio_ring_file;
165 
166 	unsigned		id;
167 };
168 
169 /*
170  * First field must be the file pointer in all the
171  * iocb unions! See also 'struct kiocb' in <linux/fs.h>
172  */
173 struct fsync_iocb {
174 	struct file		*file;
175 	struct work_struct	work;
176 	bool			datasync;
177 	struct cred		*creds;
178 };
179 
180 struct poll_iocb {
181 	struct file		*file;
182 	struct wait_queue_head	*head;
183 	__poll_t		events;
184 	bool			cancelled;
185 	bool			work_scheduled;
186 	bool			work_need_resched;
187 	struct wait_queue_entry	wait;
188 	struct work_struct	work;
189 };
190 
191 /*
192  * NOTE! Each of the iocb union members has the file pointer
193  * as the first entry in their struct definition. So you can
194  * access the file pointer through any of the sub-structs,
195  * or directly as just 'ki_filp' in this struct.
196  */
197 struct aio_kiocb {
198 	union {
199 		struct file		*ki_filp;
200 		struct kiocb		rw;
201 		struct fsync_iocb	fsync;
202 		struct poll_iocb	poll;
203 	};
204 
205 	struct kioctx		*ki_ctx;
206 	kiocb_cancel_fn		*ki_cancel;
207 
208 	struct io_event		ki_res;
209 
210 	struct list_head	ki_list;	/* the aio core uses this
211 						 * for cancellation */
212 	refcount_t		ki_refcnt;
213 
214 	/*
215 	 * If the aio_resfd field of the userspace iocb is not zero,
216 	 * this is the underlying eventfd context to deliver events to.
217 	 */
218 	struct eventfd_ctx	*ki_eventfd;
219 };
220 
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock);
223 static unsigned long aio_nr;		/* current system wide number of aio requests */
224 static unsigned long aio_max_nr = 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
226 #ifdef CONFIG_SYSCTL
227 static struct ctl_table aio_sysctls[] = {
228 	{
229 		.procname	= "aio-nr",
230 		.data		= &aio_nr,
231 		.maxlen		= sizeof(aio_nr),
232 		.mode		= 0444,
233 		.proc_handler	= proc_doulongvec_minmax,
234 	},
235 	{
236 		.procname	= "aio-max-nr",
237 		.data		= &aio_max_nr,
238 		.maxlen		= sizeof(aio_max_nr),
239 		.mode		= 0644,
240 		.proc_handler	= proc_doulongvec_minmax,
241 	},
242 };
243 
244 static void __init aio_sysctl_init(void)
245 {
246 	register_sysctl_init("fs", aio_sysctls);
247 }
248 #else
249 #define aio_sysctl_init() do { } while (0)
250 #endif
251 
252 static struct kmem_cache	*kiocb_cachep;
253 static struct kmem_cache	*kioctx_cachep;
254 
255 static struct vfsmount *aio_mnt;
256 
257 static const struct file_operations aio_ring_fops;
258 static const struct address_space_operations aio_ctx_aops;
259 
260 static struct file *aio_private_file(struct kioctx *ctx, loff_t nr_pages)
261 {
262 	struct file *file;
263 	struct inode *inode = alloc_anon_inode(aio_mnt->mnt_sb);
264 	if (IS_ERR(inode))
265 		return ERR_CAST(inode);
266 
267 	inode->i_mapping->a_ops = &aio_ctx_aops;
268 	inode->i_mapping->i_private_data = ctx;
269 	inode->i_size = PAGE_SIZE * nr_pages;
270 
271 	file = alloc_file_pseudo(inode, aio_mnt, "[aio]",
272 				O_RDWR, &aio_ring_fops);
273 	if (IS_ERR(file))
274 		iput(inode);
275 	return file;
276 }
277 
278 static int aio_init_fs_context(struct fs_context *fc)
279 {
280 	if (!init_pseudo(fc, AIO_RING_MAGIC))
281 		return -ENOMEM;
282 	fc->s_iflags |= SB_I_NOEXEC;
283 	return 0;
284 }
285 
286 /* aio_setup
287  *	Creates the slab caches used by the aio routines, panic on
288  *	failure as this is done early during the boot sequence.
289  */
290 static int __init aio_setup(void)
291 {
292 	static struct file_system_type aio_fs = {
293 		.name		= "aio",
294 		.init_fs_context = aio_init_fs_context,
295 		.kill_sb	= kill_anon_super,
296 	};
297 	aio_mnt = kern_mount(&aio_fs);
298 	if (IS_ERR(aio_mnt))
299 		panic("Failed to create aio fs mount.");
300 
301 	kiocb_cachep = KMEM_CACHE(aio_kiocb, SLAB_HWCACHE_ALIGN|SLAB_PANIC);
302 	kioctx_cachep = KMEM_CACHE(kioctx,SLAB_HWCACHE_ALIGN|SLAB_PANIC);
303 	aio_sysctl_init();
304 	return 0;
305 }
306 __initcall(aio_setup);
307 
308 static void put_aio_ring_file(struct kioctx *ctx)
309 {
310 	struct file *aio_ring_file = ctx->aio_ring_file;
311 	struct address_space *i_mapping;
312 
313 	if (aio_ring_file) {
314 		truncate_setsize(file_inode(aio_ring_file), 0);
315 
316 		/* Prevent further access to the kioctx from migratepages */
317 		i_mapping = aio_ring_file->f_mapping;
318 		spin_lock(&i_mapping->i_private_lock);
319 		i_mapping->i_private_data = NULL;
320 		ctx->aio_ring_file = NULL;
321 		spin_unlock(&i_mapping->i_private_lock);
322 
323 		fput(aio_ring_file);
324 	}
325 }
326 
327 static void aio_free_ring(struct kioctx *ctx)
328 {
329 	int i;
330 
331 	/* Disconnect the kiotx from the ring file.  This prevents future
332 	 * accesses to the kioctx from page migration.
333 	 */
334 	put_aio_ring_file(ctx);
335 
336 	for (i = 0; i < ctx->nr_pages; i++) {
337 		struct page *page;
338 		pr_debug("pid(%d) [%d] page->count=%d\n", current->pid, i,
339 				page_count(ctx->ring_pages[i]));
340 		page = ctx->ring_pages[i];
341 		if (!page)
342 			continue;
343 		ctx->ring_pages[i] = NULL;
344 		put_page(page);
345 	}
346 
347 	if (ctx->ring_pages && ctx->ring_pages != ctx->internal_pages) {
348 		kfree(ctx->ring_pages);
349 		ctx->ring_pages = NULL;
350 	}
351 }
352 
353 static int aio_ring_mremap(struct vm_area_struct *vma)
354 {
355 	struct file *file = vma->vm_file;
356 	struct mm_struct *mm = vma->vm_mm;
357 	struct kioctx_table *table;
358 	int i, res = -EINVAL;
359 
360 	spin_lock(&mm->ioctx_lock);
361 	rcu_read_lock();
362 	table = rcu_dereference(mm->ioctx_table);
363 	if (!table)
364 		goto out_unlock;
365 
366 	for (i = 0; i < table->nr; i++) {
367 		struct kioctx *ctx;
368 
369 		ctx = rcu_dereference(table->table[i]);
370 		if (ctx && ctx->aio_ring_file == file) {
371 			if (!atomic_read(&ctx->dead)) {
372 				ctx->user_id = ctx->mmap_base = vma->vm_start;
373 				res = 0;
374 			}
375 			break;
376 		}
377 	}
378 
379 out_unlock:
380 	rcu_read_unlock();
381 	spin_unlock(&mm->ioctx_lock);
382 	return res;
383 }
384 
385 static const struct vm_operations_struct aio_ring_vm_ops = {
386 	.mremap		= aio_ring_mremap,
387 #if IS_ENABLED(CONFIG_MMU)
388 	.fault		= filemap_fault,
389 	.map_pages	= filemap_map_pages,
390 	.page_mkwrite	= filemap_page_mkwrite,
391 #endif
392 };
393 
394 static int aio_ring_mmap(struct file *file, struct vm_area_struct *vma)
395 {
396 	vm_flags_set(vma, VM_DONTEXPAND);
397 	vma->vm_ops = &aio_ring_vm_ops;
398 	return 0;
399 }
400 
401 static const struct file_operations aio_ring_fops = {
402 	.mmap = aio_ring_mmap,
403 };
404 
405 #if IS_ENABLED(CONFIG_MIGRATION)
406 static int aio_migrate_folio(struct address_space *mapping, struct folio *dst,
407 			struct folio *src, enum migrate_mode mode)
408 {
409 	struct kioctx *ctx;
410 	unsigned long flags;
411 	pgoff_t idx;
412 	int rc;
413 
414 	/*
415 	 * We cannot support the _NO_COPY case here, because copy needs to
416 	 * happen under the ctx->completion_lock. That does not work with the
417 	 * migration workflow of MIGRATE_SYNC_NO_COPY.
418 	 */
419 	if (mode == MIGRATE_SYNC_NO_COPY)
420 		return -EINVAL;
421 
422 	rc = 0;
423 
424 	/* mapping->i_private_lock here protects against the kioctx teardown.  */
425 	spin_lock(&mapping->i_private_lock);
426 	ctx = mapping->i_private_data;
427 	if (!ctx) {
428 		rc = -EINVAL;
429 		goto out;
430 	}
431 
432 	/* The ring_lock mutex.  The prevents aio_read_events() from writing
433 	 * to the ring's head, and prevents page migration from mucking in
434 	 * a partially initialized kiotx.
435 	 */
436 	if (!mutex_trylock(&ctx->ring_lock)) {
437 		rc = -EAGAIN;
438 		goto out;
439 	}
440 
441 	idx = src->index;
442 	if (idx < (pgoff_t)ctx->nr_pages) {
443 		/* Make sure the old folio hasn't already been changed */
444 		if (ctx->ring_pages[idx] != &src->page)
445 			rc = -EAGAIN;
446 	} else
447 		rc = -EINVAL;
448 
449 	if (rc != 0)
450 		goto out_unlock;
451 
452 	/* Writeback must be complete */
453 	BUG_ON(folio_test_writeback(src));
454 	folio_get(dst);
455 
456 	rc = folio_migrate_mapping(mapping, dst, src, 1);
457 	if (rc != MIGRATEPAGE_SUCCESS) {
458 		folio_put(dst);
459 		goto out_unlock;
460 	}
461 
462 	/* Take completion_lock to prevent other writes to the ring buffer
463 	 * while the old folio is copied to the new.  This prevents new
464 	 * events from being lost.
465 	 */
466 	spin_lock_irqsave(&ctx->completion_lock, flags);
467 	folio_migrate_copy(dst, src);
468 	BUG_ON(ctx->ring_pages[idx] != &src->page);
469 	ctx->ring_pages[idx] = &dst->page;
470 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
471 
472 	/* The old folio is no longer accessible. */
473 	folio_put(src);
474 
475 out_unlock:
476 	mutex_unlock(&ctx->ring_lock);
477 out:
478 	spin_unlock(&mapping->i_private_lock);
479 	return rc;
480 }
481 #else
482 #define aio_migrate_folio NULL
483 #endif
484 
485 static const struct address_space_operations aio_ctx_aops = {
486 	.dirty_folio	= noop_dirty_folio,
487 	.migrate_folio	= aio_migrate_folio,
488 };
489 
490 static int aio_setup_ring(struct kioctx *ctx, unsigned int nr_events)
491 {
492 	struct aio_ring *ring;
493 	struct mm_struct *mm = current->mm;
494 	unsigned long size, unused;
495 	int nr_pages;
496 	int i;
497 	struct file *file;
498 
499 	/* Compensate for the ring buffer's head/tail overlap entry */
500 	nr_events += 2;	/* 1 is required, 2 for good luck */
501 
502 	size = sizeof(struct aio_ring);
503 	size += sizeof(struct io_event) * nr_events;
504 
505 	nr_pages = PFN_UP(size);
506 	if (nr_pages < 0)
507 		return -EINVAL;
508 
509 	file = aio_private_file(ctx, nr_pages);
510 	if (IS_ERR(file)) {
511 		ctx->aio_ring_file = NULL;
512 		return -ENOMEM;
513 	}
514 
515 	ctx->aio_ring_file = file;
516 	nr_events = (PAGE_SIZE * nr_pages - sizeof(struct aio_ring))
517 			/ sizeof(struct io_event);
518 
519 	ctx->ring_pages = ctx->internal_pages;
520 	if (nr_pages > AIO_RING_PAGES) {
521 		ctx->ring_pages = kcalloc(nr_pages, sizeof(struct page *),
522 					  GFP_KERNEL);
523 		if (!ctx->ring_pages) {
524 			put_aio_ring_file(ctx);
525 			return -ENOMEM;
526 		}
527 	}
528 
529 	for (i = 0; i < nr_pages; i++) {
530 		struct page *page;
531 		page = find_or_create_page(file->f_mapping,
532 					   i, GFP_USER | __GFP_ZERO);
533 		if (!page)
534 			break;
535 		pr_debug("pid(%d) page[%d]->count=%d\n",
536 			 current->pid, i, page_count(page));
537 		SetPageUptodate(page);
538 		unlock_page(page);
539 
540 		ctx->ring_pages[i] = page;
541 	}
542 	ctx->nr_pages = i;
543 
544 	if (unlikely(i != nr_pages)) {
545 		aio_free_ring(ctx);
546 		return -ENOMEM;
547 	}
548 
549 	ctx->mmap_size = nr_pages * PAGE_SIZE;
550 	pr_debug("attempting mmap of %lu bytes\n", ctx->mmap_size);
551 
552 	if (mmap_write_lock_killable(mm)) {
553 		ctx->mmap_size = 0;
554 		aio_free_ring(ctx);
555 		return -EINTR;
556 	}
557 
558 	ctx->mmap_base = do_mmap(ctx->aio_ring_file, 0, ctx->mmap_size,
559 				 PROT_READ | PROT_WRITE,
560 				 MAP_SHARED, 0, 0, &unused, NULL);
561 	mmap_write_unlock(mm);
562 	if (IS_ERR((void *)ctx->mmap_base)) {
563 		ctx->mmap_size = 0;
564 		aio_free_ring(ctx);
565 		return -ENOMEM;
566 	}
567 
568 	pr_debug("mmap address: 0x%08lx\n", ctx->mmap_base);
569 
570 	ctx->user_id = ctx->mmap_base;
571 	ctx->nr_events = nr_events; /* trusted copy */
572 
573 	ring = page_address(ctx->ring_pages[0]);
574 	ring->nr = nr_events;	/* user copy */
575 	ring->id = ~0U;
576 	ring->head = ring->tail = 0;
577 	ring->magic = AIO_RING_MAGIC;
578 	ring->compat_features = AIO_RING_COMPAT_FEATURES;
579 	ring->incompat_features = AIO_RING_INCOMPAT_FEATURES;
580 	ring->header_length = sizeof(struct aio_ring);
581 	flush_dcache_page(ctx->ring_pages[0]);
582 
583 	return 0;
584 }
585 
586 #define AIO_EVENTS_PER_PAGE	(PAGE_SIZE / sizeof(struct io_event))
587 #define AIO_EVENTS_FIRST_PAGE	((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
588 #define AIO_EVENTS_OFFSET	(AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
589 
590 void kiocb_set_cancel_fn(struct kiocb *iocb, kiocb_cancel_fn *cancel)
591 {
592 	struct aio_kiocb *req = container_of(iocb, struct aio_kiocb, rw);
593 	struct kioctx *ctx = req->ki_ctx;
594 	unsigned long flags;
595 
596 	if (WARN_ON_ONCE(!list_empty(&req->ki_list)))
597 		return;
598 
599 	spin_lock_irqsave(&ctx->ctx_lock, flags);
600 	list_add_tail(&req->ki_list, &ctx->active_reqs);
601 	req->ki_cancel = cancel;
602 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
603 }
604 EXPORT_SYMBOL(kiocb_set_cancel_fn);
605 
606 /*
607  * free_ioctx() should be RCU delayed to synchronize against the RCU
608  * protected lookup_ioctx() and also needs process context to call
609  * aio_free_ring().  Use rcu_work.
610  */
611 static void free_ioctx(struct work_struct *work)
612 {
613 	struct kioctx *ctx = container_of(to_rcu_work(work), struct kioctx,
614 					  free_rwork);
615 	pr_debug("freeing %p\n", ctx);
616 
617 	aio_free_ring(ctx);
618 	free_percpu(ctx->cpu);
619 	percpu_ref_exit(&ctx->reqs);
620 	percpu_ref_exit(&ctx->users);
621 	kmem_cache_free(kioctx_cachep, ctx);
622 }
623 
624 static void free_ioctx_reqs(struct percpu_ref *ref)
625 {
626 	struct kioctx *ctx = container_of(ref, struct kioctx, reqs);
627 
628 	/* At this point we know that there are no any in-flight requests */
629 	if (ctx->rq_wait && atomic_dec_and_test(&ctx->rq_wait->count))
630 		complete(&ctx->rq_wait->comp);
631 
632 	/* Synchronize against RCU protected table->table[] dereferences */
633 	INIT_RCU_WORK(&ctx->free_rwork, free_ioctx);
634 	queue_rcu_work(system_wq, &ctx->free_rwork);
635 }
636 
637 /*
638  * When this function runs, the kioctx has been removed from the "hash table"
639  * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
640  * now it's safe to cancel any that need to be.
641  */
642 static void free_ioctx_users(struct percpu_ref *ref)
643 {
644 	struct kioctx *ctx = container_of(ref, struct kioctx, users);
645 	struct aio_kiocb *req;
646 
647 	spin_lock_irq(&ctx->ctx_lock);
648 
649 	while (!list_empty(&ctx->active_reqs)) {
650 		req = list_first_entry(&ctx->active_reqs,
651 				       struct aio_kiocb, ki_list);
652 		req->ki_cancel(&req->rw);
653 		list_del_init(&req->ki_list);
654 	}
655 
656 	spin_unlock_irq(&ctx->ctx_lock);
657 
658 	percpu_ref_kill(&ctx->reqs);
659 	percpu_ref_put(&ctx->reqs);
660 }
661 
662 static int ioctx_add_table(struct kioctx *ctx, struct mm_struct *mm)
663 {
664 	unsigned i, new_nr;
665 	struct kioctx_table *table, *old;
666 	struct aio_ring *ring;
667 
668 	spin_lock(&mm->ioctx_lock);
669 	table = rcu_dereference_raw(mm->ioctx_table);
670 
671 	while (1) {
672 		if (table)
673 			for (i = 0; i < table->nr; i++)
674 				if (!rcu_access_pointer(table->table[i])) {
675 					ctx->id = i;
676 					rcu_assign_pointer(table->table[i], ctx);
677 					spin_unlock(&mm->ioctx_lock);
678 
679 					/* While kioctx setup is in progress,
680 					 * we are protected from page migration
681 					 * changes ring_pages by ->ring_lock.
682 					 */
683 					ring = page_address(ctx->ring_pages[0]);
684 					ring->id = ctx->id;
685 					return 0;
686 				}
687 
688 		new_nr = (table ? table->nr : 1) * 4;
689 		spin_unlock(&mm->ioctx_lock);
690 
691 		table = kzalloc(struct_size(table, table, new_nr), GFP_KERNEL);
692 		if (!table)
693 			return -ENOMEM;
694 
695 		table->nr = new_nr;
696 
697 		spin_lock(&mm->ioctx_lock);
698 		old = rcu_dereference_raw(mm->ioctx_table);
699 
700 		if (!old) {
701 			rcu_assign_pointer(mm->ioctx_table, table);
702 		} else if (table->nr > old->nr) {
703 			memcpy(table->table, old->table,
704 			       old->nr * sizeof(struct kioctx *));
705 
706 			rcu_assign_pointer(mm->ioctx_table, table);
707 			kfree_rcu(old, rcu);
708 		} else {
709 			kfree(table);
710 			table = old;
711 		}
712 	}
713 }
714 
715 static void aio_nr_sub(unsigned nr)
716 {
717 	spin_lock(&aio_nr_lock);
718 	if (WARN_ON(aio_nr - nr > aio_nr))
719 		aio_nr = 0;
720 	else
721 		aio_nr -= nr;
722 	spin_unlock(&aio_nr_lock);
723 }
724 
725 /* ioctx_alloc
726  *	Allocates and initializes an ioctx.  Returns an ERR_PTR if it failed.
727  */
728 static struct kioctx *ioctx_alloc(unsigned nr_events)
729 {
730 	struct mm_struct *mm = current->mm;
731 	struct kioctx *ctx;
732 	int err = -ENOMEM;
733 
734 	/*
735 	 * Store the original nr_events -- what userspace passed to io_setup(),
736 	 * for counting against the global limit -- before it changes.
737 	 */
738 	unsigned int max_reqs = nr_events;
739 
740 	/*
741 	 * We keep track of the number of available ringbuffer slots, to prevent
742 	 * overflow (reqs_available), and we also use percpu counters for this.
743 	 *
744 	 * So since up to half the slots might be on other cpu's percpu counters
745 	 * and unavailable, double nr_events so userspace sees what they
746 	 * expected: additionally, we move req_batch slots to/from percpu
747 	 * counters at a time, so make sure that isn't 0:
748 	 */
749 	nr_events = max(nr_events, num_possible_cpus() * 4);
750 	nr_events *= 2;
751 
752 	/* Prevent overflows */
753 	if (nr_events > (0x10000000U / sizeof(struct io_event))) {
754 		pr_debug("ENOMEM: nr_events too high\n");
755 		return ERR_PTR(-EINVAL);
756 	}
757 
758 	if (!nr_events || (unsigned long)max_reqs > aio_max_nr)
759 		return ERR_PTR(-EAGAIN);
760 
761 	ctx = kmem_cache_zalloc(kioctx_cachep, GFP_KERNEL);
762 	if (!ctx)
763 		return ERR_PTR(-ENOMEM);
764 
765 	ctx->max_reqs = max_reqs;
766 
767 	spin_lock_init(&ctx->ctx_lock);
768 	spin_lock_init(&ctx->completion_lock);
769 	mutex_init(&ctx->ring_lock);
770 	/* Protect against page migration throughout kiotx setup by keeping
771 	 * the ring_lock mutex held until setup is complete. */
772 	mutex_lock(&ctx->ring_lock);
773 	init_waitqueue_head(&ctx->wait);
774 
775 	INIT_LIST_HEAD(&ctx->active_reqs);
776 
777 	if (percpu_ref_init(&ctx->users, free_ioctx_users, 0, GFP_KERNEL))
778 		goto err;
779 
780 	if (percpu_ref_init(&ctx->reqs, free_ioctx_reqs, 0, GFP_KERNEL))
781 		goto err;
782 
783 	ctx->cpu = alloc_percpu(struct kioctx_cpu);
784 	if (!ctx->cpu)
785 		goto err;
786 
787 	err = aio_setup_ring(ctx, nr_events);
788 	if (err < 0)
789 		goto err;
790 
791 	atomic_set(&ctx->reqs_available, ctx->nr_events - 1);
792 	ctx->req_batch = (ctx->nr_events - 1) / (num_possible_cpus() * 4);
793 	if (ctx->req_batch < 1)
794 		ctx->req_batch = 1;
795 
796 	/* limit the number of system wide aios */
797 	spin_lock(&aio_nr_lock);
798 	if (aio_nr + ctx->max_reqs > aio_max_nr ||
799 	    aio_nr + ctx->max_reqs < aio_nr) {
800 		spin_unlock(&aio_nr_lock);
801 		err = -EAGAIN;
802 		goto err_ctx;
803 	}
804 	aio_nr += ctx->max_reqs;
805 	spin_unlock(&aio_nr_lock);
806 
807 	percpu_ref_get(&ctx->users);	/* io_setup() will drop this ref */
808 	percpu_ref_get(&ctx->reqs);	/* free_ioctx_users() will drop this */
809 
810 	err = ioctx_add_table(ctx, mm);
811 	if (err)
812 		goto err_cleanup;
813 
814 	/* Release the ring_lock mutex now that all setup is complete. */
815 	mutex_unlock(&ctx->ring_lock);
816 
817 	pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
818 		 ctx, ctx->user_id, mm, ctx->nr_events);
819 	return ctx;
820 
821 err_cleanup:
822 	aio_nr_sub(ctx->max_reqs);
823 err_ctx:
824 	atomic_set(&ctx->dead, 1);
825 	if (ctx->mmap_size)
826 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
827 	aio_free_ring(ctx);
828 err:
829 	mutex_unlock(&ctx->ring_lock);
830 	free_percpu(ctx->cpu);
831 	percpu_ref_exit(&ctx->reqs);
832 	percpu_ref_exit(&ctx->users);
833 	kmem_cache_free(kioctx_cachep, ctx);
834 	pr_debug("error allocating ioctx %d\n", err);
835 	return ERR_PTR(err);
836 }
837 
838 /* kill_ioctx
839  *	Cancels all outstanding aio requests on an aio context.  Used
840  *	when the processes owning a context have all exited to encourage
841  *	the rapid destruction of the kioctx.
842  */
843 static int kill_ioctx(struct mm_struct *mm, struct kioctx *ctx,
844 		      struct ctx_rq_wait *wait)
845 {
846 	struct kioctx_table *table;
847 
848 	spin_lock(&mm->ioctx_lock);
849 	if (atomic_xchg(&ctx->dead, 1)) {
850 		spin_unlock(&mm->ioctx_lock);
851 		return -EINVAL;
852 	}
853 
854 	table = rcu_dereference_raw(mm->ioctx_table);
855 	WARN_ON(ctx != rcu_access_pointer(table->table[ctx->id]));
856 	RCU_INIT_POINTER(table->table[ctx->id], NULL);
857 	spin_unlock(&mm->ioctx_lock);
858 
859 	/* free_ioctx_reqs() will do the necessary RCU synchronization */
860 	wake_up_all(&ctx->wait);
861 
862 	/*
863 	 * It'd be more correct to do this in free_ioctx(), after all
864 	 * the outstanding kiocbs have finished - but by then io_destroy
865 	 * has already returned, so io_setup() could potentially return
866 	 * -EAGAIN with no ioctxs actually in use (as far as userspace
867 	 *  could tell).
868 	 */
869 	aio_nr_sub(ctx->max_reqs);
870 
871 	if (ctx->mmap_size)
872 		vm_munmap(ctx->mmap_base, ctx->mmap_size);
873 
874 	ctx->rq_wait = wait;
875 	percpu_ref_kill(&ctx->users);
876 	return 0;
877 }
878 
879 /*
880  * exit_aio: called when the last user of mm goes away.  At this point, there is
881  * no way for any new requests to be submited or any of the io_* syscalls to be
882  * called on the context.
883  *
884  * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
885  * them.
886  */
887 void exit_aio(struct mm_struct *mm)
888 {
889 	struct kioctx_table *table = rcu_dereference_raw(mm->ioctx_table);
890 	struct ctx_rq_wait wait;
891 	int i, skipped;
892 
893 	if (!table)
894 		return;
895 
896 	atomic_set(&wait.count, table->nr);
897 	init_completion(&wait.comp);
898 
899 	skipped = 0;
900 	for (i = 0; i < table->nr; ++i) {
901 		struct kioctx *ctx =
902 			rcu_dereference_protected(table->table[i], true);
903 
904 		if (!ctx) {
905 			skipped++;
906 			continue;
907 		}
908 
909 		/*
910 		 * We don't need to bother with munmap() here - exit_mmap(mm)
911 		 * is coming and it'll unmap everything. And we simply can't,
912 		 * this is not necessarily our ->mm.
913 		 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
914 		 * that it needs to unmap the area, just set it to 0.
915 		 */
916 		ctx->mmap_size = 0;
917 		kill_ioctx(mm, ctx, &wait);
918 	}
919 
920 	if (!atomic_sub_and_test(skipped, &wait.count)) {
921 		/* Wait until all IO for the context are done. */
922 		wait_for_completion(&wait.comp);
923 	}
924 
925 	RCU_INIT_POINTER(mm->ioctx_table, NULL);
926 	kfree(table);
927 }
928 
929 static void put_reqs_available(struct kioctx *ctx, unsigned nr)
930 {
931 	struct kioctx_cpu *kcpu;
932 	unsigned long flags;
933 
934 	local_irq_save(flags);
935 	kcpu = this_cpu_ptr(ctx->cpu);
936 	kcpu->reqs_available += nr;
937 
938 	while (kcpu->reqs_available >= ctx->req_batch * 2) {
939 		kcpu->reqs_available -= ctx->req_batch;
940 		atomic_add(ctx->req_batch, &ctx->reqs_available);
941 	}
942 
943 	local_irq_restore(flags);
944 }
945 
946 static bool __get_reqs_available(struct kioctx *ctx)
947 {
948 	struct kioctx_cpu *kcpu;
949 	bool ret = false;
950 	unsigned long flags;
951 
952 	local_irq_save(flags);
953 	kcpu = this_cpu_ptr(ctx->cpu);
954 	if (!kcpu->reqs_available) {
955 		int avail = atomic_read(&ctx->reqs_available);
956 
957 		do {
958 			if (avail < ctx->req_batch)
959 				goto out;
960 		} while (!atomic_try_cmpxchg(&ctx->reqs_available,
961 					     &avail, avail - ctx->req_batch));
962 
963 		kcpu->reqs_available += ctx->req_batch;
964 	}
965 
966 	ret = true;
967 	kcpu->reqs_available--;
968 out:
969 	local_irq_restore(flags);
970 	return ret;
971 }
972 
973 /* refill_reqs_available
974  *	Updates the reqs_available reference counts used for tracking the
975  *	number of free slots in the completion ring.  This can be called
976  *	from aio_complete() (to optimistically update reqs_available) or
977  *	from aio_get_req() (the we're out of events case).  It must be
978  *	called holding ctx->completion_lock.
979  */
980 static void refill_reqs_available(struct kioctx *ctx, unsigned head,
981                                   unsigned tail)
982 {
983 	unsigned events_in_ring, completed;
984 
985 	/* Clamp head since userland can write to it. */
986 	head %= ctx->nr_events;
987 	if (head <= tail)
988 		events_in_ring = tail - head;
989 	else
990 		events_in_ring = ctx->nr_events - (head - tail);
991 
992 	completed = ctx->completed_events;
993 	if (events_in_ring < completed)
994 		completed -= events_in_ring;
995 	else
996 		completed = 0;
997 
998 	if (!completed)
999 		return;
1000 
1001 	ctx->completed_events -= completed;
1002 	put_reqs_available(ctx, completed);
1003 }
1004 
1005 /* user_refill_reqs_available
1006  *	Called to refill reqs_available when aio_get_req() encounters an
1007  *	out of space in the completion ring.
1008  */
1009 static void user_refill_reqs_available(struct kioctx *ctx)
1010 {
1011 	spin_lock_irq(&ctx->completion_lock);
1012 	if (ctx->completed_events) {
1013 		struct aio_ring *ring;
1014 		unsigned head;
1015 
1016 		/* Access of ring->head may race with aio_read_events_ring()
1017 		 * here, but that's okay since whether we read the old version
1018 		 * or the new version, and either will be valid.  The important
1019 		 * part is that head cannot pass tail since we prevent
1020 		 * aio_complete() from updating tail by holding
1021 		 * ctx->completion_lock.  Even if head is invalid, the check
1022 		 * against ctx->completed_events below will make sure we do the
1023 		 * safe/right thing.
1024 		 */
1025 		ring = page_address(ctx->ring_pages[0]);
1026 		head = ring->head;
1027 
1028 		refill_reqs_available(ctx, head, ctx->tail);
1029 	}
1030 
1031 	spin_unlock_irq(&ctx->completion_lock);
1032 }
1033 
1034 static bool get_reqs_available(struct kioctx *ctx)
1035 {
1036 	if (__get_reqs_available(ctx))
1037 		return true;
1038 	user_refill_reqs_available(ctx);
1039 	return __get_reqs_available(ctx);
1040 }
1041 
1042 /* aio_get_req
1043  *	Allocate a slot for an aio request.
1044  * Returns NULL if no requests are free.
1045  *
1046  * The refcount is initialized to 2 - one for the async op completion,
1047  * one for the synchronous code that does this.
1048  */
1049 static inline struct aio_kiocb *aio_get_req(struct kioctx *ctx)
1050 {
1051 	struct aio_kiocb *req;
1052 
1053 	req = kmem_cache_alloc(kiocb_cachep, GFP_KERNEL);
1054 	if (unlikely(!req))
1055 		return NULL;
1056 
1057 	if (unlikely(!get_reqs_available(ctx))) {
1058 		kmem_cache_free(kiocb_cachep, req);
1059 		return NULL;
1060 	}
1061 
1062 	percpu_ref_get(&ctx->reqs);
1063 	req->ki_ctx = ctx;
1064 	INIT_LIST_HEAD(&req->ki_list);
1065 	refcount_set(&req->ki_refcnt, 2);
1066 	req->ki_eventfd = NULL;
1067 	return req;
1068 }
1069 
1070 static struct kioctx *lookup_ioctx(unsigned long ctx_id)
1071 {
1072 	struct aio_ring __user *ring  = (void __user *)ctx_id;
1073 	struct mm_struct *mm = current->mm;
1074 	struct kioctx *ctx, *ret = NULL;
1075 	struct kioctx_table *table;
1076 	unsigned id;
1077 
1078 	if (get_user(id, &ring->id))
1079 		return NULL;
1080 
1081 	rcu_read_lock();
1082 	table = rcu_dereference(mm->ioctx_table);
1083 
1084 	if (!table || id >= table->nr)
1085 		goto out;
1086 
1087 	id = array_index_nospec(id, table->nr);
1088 	ctx = rcu_dereference(table->table[id]);
1089 	if (ctx && ctx->user_id == ctx_id) {
1090 		if (percpu_ref_tryget_live(&ctx->users))
1091 			ret = ctx;
1092 	}
1093 out:
1094 	rcu_read_unlock();
1095 	return ret;
1096 }
1097 
1098 static inline void iocb_destroy(struct aio_kiocb *iocb)
1099 {
1100 	if (iocb->ki_eventfd)
1101 		eventfd_ctx_put(iocb->ki_eventfd);
1102 	if (iocb->ki_filp)
1103 		fput(iocb->ki_filp);
1104 	percpu_ref_put(&iocb->ki_ctx->reqs);
1105 	kmem_cache_free(kiocb_cachep, iocb);
1106 }
1107 
1108 struct aio_waiter {
1109 	struct wait_queue_entry	w;
1110 	size_t			min_nr;
1111 };
1112 
1113 /* aio_complete
1114  *	Called when the io request on the given iocb is complete.
1115  */
1116 static void aio_complete(struct aio_kiocb *iocb)
1117 {
1118 	struct kioctx	*ctx = iocb->ki_ctx;
1119 	struct aio_ring	*ring;
1120 	struct io_event	*ev_page, *event;
1121 	unsigned tail, pos, head, avail;
1122 	unsigned long	flags;
1123 
1124 	/*
1125 	 * Add a completion event to the ring buffer. Must be done holding
1126 	 * ctx->completion_lock to prevent other code from messing with the tail
1127 	 * pointer since we might be called from irq context.
1128 	 */
1129 	spin_lock_irqsave(&ctx->completion_lock, flags);
1130 
1131 	tail = ctx->tail;
1132 	pos = tail + AIO_EVENTS_OFFSET;
1133 
1134 	if (++tail >= ctx->nr_events)
1135 		tail = 0;
1136 
1137 	ev_page = page_address(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1138 	event = ev_page + pos % AIO_EVENTS_PER_PAGE;
1139 
1140 	*event = iocb->ki_res;
1141 
1142 	flush_dcache_page(ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE]);
1143 
1144 	pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx, tail, iocb,
1145 		 (void __user *)(unsigned long)iocb->ki_res.obj,
1146 		 iocb->ki_res.data, iocb->ki_res.res, iocb->ki_res.res2);
1147 
1148 	/* after flagging the request as done, we
1149 	 * must never even look at it again
1150 	 */
1151 	smp_wmb();	/* make event visible before updating tail */
1152 
1153 	ctx->tail = tail;
1154 
1155 	ring = page_address(ctx->ring_pages[0]);
1156 	head = ring->head;
1157 	ring->tail = tail;
1158 	flush_dcache_page(ctx->ring_pages[0]);
1159 
1160 	ctx->completed_events++;
1161 	if (ctx->completed_events > 1)
1162 		refill_reqs_available(ctx, head, tail);
1163 
1164 	avail = tail > head
1165 		? tail - head
1166 		: tail + ctx->nr_events - head;
1167 	spin_unlock_irqrestore(&ctx->completion_lock, flags);
1168 
1169 	pr_debug("added to ring %p at [%u]\n", iocb, tail);
1170 
1171 	/*
1172 	 * Check if the user asked us to deliver the result through an
1173 	 * eventfd. The eventfd_signal() function is safe to be called
1174 	 * from IRQ context.
1175 	 */
1176 	if (iocb->ki_eventfd)
1177 		eventfd_signal(iocb->ki_eventfd);
1178 
1179 	/*
1180 	 * We have to order our ring_info tail store above and test
1181 	 * of the wait list below outside the wait lock.  This is
1182 	 * like in wake_up_bit() where clearing a bit has to be
1183 	 * ordered with the unlocked test.
1184 	 */
1185 	smp_mb();
1186 
1187 	if (waitqueue_active(&ctx->wait)) {
1188 		struct aio_waiter *curr, *next;
1189 		unsigned long flags;
1190 
1191 		spin_lock_irqsave(&ctx->wait.lock, flags);
1192 		list_for_each_entry_safe(curr, next, &ctx->wait.head, w.entry)
1193 			if (avail >= curr->min_nr) {
1194 				list_del_init_careful(&curr->w.entry);
1195 				wake_up_process(curr->w.private);
1196 			}
1197 		spin_unlock_irqrestore(&ctx->wait.lock, flags);
1198 	}
1199 }
1200 
1201 static inline void iocb_put(struct aio_kiocb *iocb)
1202 {
1203 	if (refcount_dec_and_test(&iocb->ki_refcnt)) {
1204 		aio_complete(iocb);
1205 		iocb_destroy(iocb);
1206 	}
1207 }
1208 
1209 /* aio_read_events_ring
1210  *	Pull an event off of the ioctx's event ring.  Returns the number of
1211  *	events fetched
1212  */
1213 static long aio_read_events_ring(struct kioctx *ctx,
1214 				 struct io_event __user *event, long nr)
1215 {
1216 	struct aio_ring *ring;
1217 	unsigned head, tail, pos;
1218 	long ret = 0;
1219 	int copy_ret;
1220 
1221 	/*
1222 	 * The mutex can block and wake us up and that will cause
1223 	 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1224 	 * and repeat. This should be rare enough that it doesn't cause
1225 	 * peformance issues. See the comment in read_events() for more detail.
1226 	 */
1227 	sched_annotate_sleep();
1228 	mutex_lock(&ctx->ring_lock);
1229 
1230 	/* Access to ->ring_pages here is protected by ctx->ring_lock. */
1231 	ring = page_address(ctx->ring_pages[0]);
1232 	head = ring->head;
1233 	tail = ring->tail;
1234 
1235 	/*
1236 	 * Ensure that once we've read the current tail pointer, that
1237 	 * we also see the events that were stored up to the tail.
1238 	 */
1239 	smp_rmb();
1240 
1241 	pr_debug("h%u t%u m%u\n", head, tail, ctx->nr_events);
1242 
1243 	if (head == tail)
1244 		goto out;
1245 
1246 	head %= ctx->nr_events;
1247 	tail %= ctx->nr_events;
1248 
1249 	while (ret < nr) {
1250 		long avail;
1251 		struct io_event *ev;
1252 		struct page *page;
1253 
1254 		avail = (head <= tail ?  tail : ctx->nr_events) - head;
1255 		if (head == tail)
1256 			break;
1257 
1258 		pos = head + AIO_EVENTS_OFFSET;
1259 		page = ctx->ring_pages[pos / AIO_EVENTS_PER_PAGE];
1260 		pos %= AIO_EVENTS_PER_PAGE;
1261 
1262 		avail = min(avail, nr - ret);
1263 		avail = min_t(long, avail, AIO_EVENTS_PER_PAGE - pos);
1264 
1265 		ev = page_address(page);
1266 		copy_ret = copy_to_user(event + ret, ev + pos,
1267 					sizeof(*ev) * avail);
1268 
1269 		if (unlikely(copy_ret)) {
1270 			ret = -EFAULT;
1271 			goto out;
1272 		}
1273 
1274 		ret += avail;
1275 		head += avail;
1276 		head %= ctx->nr_events;
1277 	}
1278 
1279 	ring = page_address(ctx->ring_pages[0]);
1280 	ring->head = head;
1281 	flush_dcache_page(ctx->ring_pages[0]);
1282 
1283 	pr_debug("%li  h%u t%u\n", ret, head, tail);
1284 out:
1285 	mutex_unlock(&ctx->ring_lock);
1286 
1287 	return ret;
1288 }
1289 
1290 static bool aio_read_events(struct kioctx *ctx, long min_nr, long nr,
1291 			    struct io_event __user *event, long *i)
1292 {
1293 	long ret = aio_read_events_ring(ctx, event + *i, nr - *i);
1294 
1295 	if (ret > 0)
1296 		*i += ret;
1297 
1298 	if (unlikely(atomic_read(&ctx->dead)))
1299 		ret = -EINVAL;
1300 
1301 	if (!*i)
1302 		*i = ret;
1303 
1304 	return ret < 0 || *i >= min_nr;
1305 }
1306 
1307 static long read_events(struct kioctx *ctx, long min_nr, long nr,
1308 			struct io_event __user *event,
1309 			ktime_t until)
1310 {
1311 	struct hrtimer_sleeper	t;
1312 	struct aio_waiter	w;
1313 	long ret = 0, ret2 = 0;
1314 
1315 	/*
1316 	 * Note that aio_read_events() is being called as the conditional - i.e.
1317 	 * we're calling it after prepare_to_wait() has set task state to
1318 	 * TASK_INTERRUPTIBLE.
1319 	 *
1320 	 * But aio_read_events() can block, and if it blocks it's going to flip
1321 	 * the task state back to TASK_RUNNING.
1322 	 *
1323 	 * This should be ok, provided it doesn't flip the state back to
1324 	 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1325 	 * will only happen if the mutex_lock() call blocks, and we then find
1326 	 * the ringbuffer empty. So in practice we should be ok, but it's
1327 	 * something to be aware of when touching this code.
1328 	 */
1329 	aio_read_events(ctx, min_nr, nr, event, &ret);
1330 	if (until == 0 || ret < 0 || ret >= min_nr)
1331 		return ret;
1332 
1333 	hrtimer_init_sleeper_on_stack(&t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1334 	if (until != KTIME_MAX) {
1335 		hrtimer_set_expires_range_ns(&t.timer, until, current->timer_slack_ns);
1336 		hrtimer_sleeper_start_expires(&t, HRTIMER_MODE_REL);
1337 	}
1338 
1339 	init_wait(&w.w);
1340 
1341 	while (1) {
1342 		unsigned long nr_got = ret;
1343 
1344 		w.min_nr = min_nr - ret;
1345 
1346 		ret2 = prepare_to_wait_event(&ctx->wait, &w.w, TASK_INTERRUPTIBLE);
1347 		if (!ret2 && !t.task)
1348 			ret2 = -ETIME;
1349 
1350 		if (aio_read_events(ctx, min_nr, nr, event, &ret) || ret2)
1351 			break;
1352 
1353 		if (nr_got == ret)
1354 			schedule();
1355 	}
1356 
1357 	finish_wait(&ctx->wait, &w.w);
1358 	hrtimer_cancel(&t.timer);
1359 	destroy_hrtimer_on_stack(&t.timer);
1360 
1361 	return ret;
1362 }
1363 
1364 /* sys_io_setup:
1365  *	Create an aio_context capable of receiving at least nr_events.
1366  *	ctxp must not point to an aio_context that already exists, and
1367  *	must be initialized to 0 prior to the call.  On successful
1368  *	creation of the aio_context, *ctxp is filled in with the resulting
1369  *	handle.  May fail with -EINVAL if *ctxp is not initialized,
1370  *	if the specified nr_events exceeds internal limits.  May fail
1371  *	with -EAGAIN if the specified nr_events exceeds the user's limit
1372  *	of available events.  May fail with -ENOMEM if insufficient kernel
1373  *	resources are available.  May fail with -EFAULT if an invalid
1374  *	pointer is passed for ctxp.  Will fail with -ENOSYS if not
1375  *	implemented.
1376  */
1377 SYSCALL_DEFINE2(io_setup, unsigned, nr_events, aio_context_t __user *, ctxp)
1378 {
1379 	struct kioctx *ioctx = NULL;
1380 	unsigned long ctx;
1381 	long ret;
1382 
1383 	ret = get_user(ctx, ctxp);
1384 	if (unlikely(ret))
1385 		goto out;
1386 
1387 	ret = -EINVAL;
1388 	if (unlikely(ctx || nr_events == 0)) {
1389 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1390 		         ctx, nr_events);
1391 		goto out;
1392 	}
1393 
1394 	ioctx = ioctx_alloc(nr_events);
1395 	ret = PTR_ERR(ioctx);
1396 	if (!IS_ERR(ioctx)) {
1397 		ret = put_user(ioctx->user_id, ctxp);
1398 		if (ret)
1399 			kill_ioctx(current->mm, ioctx, NULL);
1400 		percpu_ref_put(&ioctx->users);
1401 	}
1402 
1403 out:
1404 	return ret;
1405 }
1406 
1407 #ifdef CONFIG_COMPAT
1408 COMPAT_SYSCALL_DEFINE2(io_setup, unsigned, nr_events, u32 __user *, ctx32p)
1409 {
1410 	struct kioctx *ioctx = NULL;
1411 	unsigned long ctx;
1412 	long ret;
1413 
1414 	ret = get_user(ctx, ctx32p);
1415 	if (unlikely(ret))
1416 		goto out;
1417 
1418 	ret = -EINVAL;
1419 	if (unlikely(ctx || nr_events == 0)) {
1420 		pr_debug("EINVAL: ctx %lu nr_events %u\n",
1421 		         ctx, nr_events);
1422 		goto out;
1423 	}
1424 
1425 	ioctx = ioctx_alloc(nr_events);
1426 	ret = PTR_ERR(ioctx);
1427 	if (!IS_ERR(ioctx)) {
1428 		/* truncating is ok because it's a user address */
1429 		ret = put_user((u32)ioctx->user_id, ctx32p);
1430 		if (ret)
1431 			kill_ioctx(current->mm, ioctx, NULL);
1432 		percpu_ref_put(&ioctx->users);
1433 	}
1434 
1435 out:
1436 	return ret;
1437 }
1438 #endif
1439 
1440 /* sys_io_destroy:
1441  *	Destroy the aio_context specified.  May cancel any outstanding
1442  *	AIOs and block on completion.  Will fail with -ENOSYS if not
1443  *	implemented.  May fail with -EINVAL if the context pointed to
1444  *	is invalid.
1445  */
1446 SYSCALL_DEFINE1(io_destroy, aio_context_t, ctx)
1447 {
1448 	struct kioctx *ioctx = lookup_ioctx(ctx);
1449 	if (likely(NULL != ioctx)) {
1450 		struct ctx_rq_wait wait;
1451 		int ret;
1452 
1453 		init_completion(&wait.comp);
1454 		atomic_set(&wait.count, 1);
1455 
1456 		/* Pass requests_done to kill_ioctx() where it can be set
1457 		 * in a thread-safe way. If we try to set it here then we have
1458 		 * a race condition if two io_destroy() called simultaneously.
1459 		 */
1460 		ret = kill_ioctx(current->mm, ioctx, &wait);
1461 		percpu_ref_put(&ioctx->users);
1462 
1463 		/* Wait until all IO for the context are done. Otherwise kernel
1464 		 * keep using user-space buffers even if user thinks the context
1465 		 * is destroyed.
1466 		 */
1467 		if (!ret)
1468 			wait_for_completion(&wait.comp);
1469 
1470 		return ret;
1471 	}
1472 	pr_debug("EINVAL: invalid context id\n");
1473 	return -EINVAL;
1474 }
1475 
1476 static void aio_remove_iocb(struct aio_kiocb *iocb)
1477 {
1478 	struct kioctx *ctx = iocb->ki_ctx;
1479 	unsigned long flags;
1480 
1481 	spin_lock_irqsave(&ctx->ctx_lock, flags);
1482 	list_del(&iocb->ki_list);
1483 	spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1484 }
1485 
1486 static void aio_complete_rw(struct kiocb *kiocb, long res)
1487 {
1488 	struct aio_kiocb *iocb = container_of(kiocb, struct aio_kiocb, rw);
1489 
1490 	if (!list_empty_careful(&iocb->ki_list))
1491 		aio_remove_iocb(iocb);
1492 
1493 	if (kiocb->ki_flags & IOCB_WRITE) {
1494 		struct inode *inode = file_inode(kiocb->ki_filp);
1495 
1496 		if (S_ISREG(inode->i_mode))
1497 			kiocb_end_write(kiocb);
1498 	}
1499 
1500 	iocb->ki_res.res = res;
1501 	iocb->ki_res.res2 = 0;
1502 	iocb_put(iocb);
1503 }
1504 
1505 static int aio_prep_rw(struct kiocb *req, const struct iocb *iocb)
1506 {
1507 	int ret;
1508 
1509 	req->ki_complete = aio_complete_rw;
1510 	req->private = NULL;
1511 	req->ki_pos = iocb->aio_offset;
1512 	req->ki_flags = req->ki_filp->f_iocb_flags;
1513 	if (iocb->aio_flags & IOCB_FLAG_RESFD)
1514 		req->ki_flags |= IOCB_EVENTFD;
1515 	if (iocb->aio_flags & IOCB_FLAG_IOPRIO) {
1516 		/*
1517 		 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1518 		 * aio_reqprio is interpreted as an I/O scheduling
1519 		 * class and priority.
1520 		 */
1521 		ret = ioprio_check_cap(iocb->aio_reqprio);
1522 		if (ret) {
1523 			pr_debug("aio ioprio check cap error: %d\n", ret);
1524 			return ret;
1525 		}
1526 
1527 		req->ki_ioprio = iocb->aio_reqprio;
1528 	} else
1529 		req->ki_ioprio = get_current_ioprio();
1530 
1531 	ret = kiocb_set_rw_flags(req, iocb->aio_rw_flags);
1532 	if (unlikely(ret))
1533 		return ret;
1534 
1535 	req->ki_flags &= ~IOCB_HIPRI; /* no one is going to poll for this I/O */
1536 	return 0;
1537 }
1538 
1539 static ssize_t aio_setup_rw(int rw, const struct iocb *iocb,
1540 		struct iovec **iovec, bool vectored, bool compat,
1541 		struct iov_iter *iter)
1542 {
1543 	void __user *buf = (void __user *)(uintptr_t)iocb->aio_buf;
1544 	size_t len = iocb->aio_nbytes;
1545 
1546 	if (!vectored) {
1547 		ssize_t ret = import_ubuf(rw, buf, len, iter);
1548 		*iovec = NULL;
1549 		return ret;
1550 	}
1551 
1552 	return __import_iovec(rw, buf, len, UIO_FASTIOV, iovec, iter, compat);
1553 }
1554 
1555 static inline void aio_rw_done(struct kiocb *req, ssize_t ret)
1556 {
1557 	switch (ret) {
1558 	case -EIOCBQUEUED:
1559 		break;
1560 	case -ERESTARTSYS:
1561 	case -ERESTARTNOINTR:
1562 	case -ERESTARTNOHAND:
1563 	case -ERESTART_RESTARTBLOCK:
1564 		/*
1565 		 * There's no easy way to restart the syscall since other AIO's
1566 		 * may be already running. Just fail this IO with EINTR.
1567 		 */
1568 		ret = -EINTR;
1569 		fallthrough;
1570 	default:
1571 		req->ki_complete(req, ret);
1572 	}
1573 }
1574 
1575 static int aio_read(struct kiocb *req, const struct iocb *iocb,
1576 			bool vectored, bool compat)
1577 {
1578 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1579 	struct iov_iter iter;
1580 	struct file *file;
1581 	int ret;
1582 
1583 	ret = aio_prep_rw(req, iocb);
1584 	if (ret)
1585 		return ret;
1586 	file = req->ki_filp;
1587 	if (unlikely(!(file->f_mode & FMODE_READ)))
1588 		return -EBADF;
1589 	if (unlikely(!file->f_op->read_iter))
1590 		return -EINVAL;
1591 
1592 	ret = aio_setup_rw(ITER_DEST, iocb, &iovec, vectored, compat, &iter);
1593 	if (ret < 0)
1594 		return ret;
1595 	ret = rw_verify_area(READ, file, &req->ki_pos, iov_iter_count(&iter));
1596 	if (!ret)
1597 		aio_rw_done(req, call_read_iter(file, req, &iter));
1598 	kfree(iovec);
1599 	return ret;
1600 }
1601 
1602 static int aio_write(struct kiocb *req, const struct iocb *iocb,
1603 			 bool vectored, bool compat)
1604 {
1605 	struct iovec inline_vecs[UIO_FASTIOV], *iovec = inline_vecs;
1606 	struct iov_iter iter;
1607 	struct file *file;
1608 	int ret;
1609 
1610 	ret = aio_prep_rw(req, iocb);
1611 	if (ret)
1612 		return ret;
1613 	file = req->ki_filp;
1614 
1615 	if (unlikely(!(file->f_mode & FMODE_WRITE)))
1616 		return -EBADF;
1617 	if (unlikely(!file->f_op->write_iter))
1618 		return -EINVAL;
1619 
1620 	ret = aio_setup_rw(ITER_SOURCE, iocb, &iovec, vectored, compat, &iter);
1621 	if (ret < 0)
1622 		return ret;
1623 	ret = rw_verify_area(WRITE, file, &req->ki_pos, iov_iter_count(&iter));
1624 	if (!ret) {
1625 		if (S_ISREG(file_inode(file)->i_mode))
1626 			kiocb_start_write(req);
1627 		req->ki_flags |= IOCB_WRITE;
1628 		aio_rw_done(req, call_write_iter(file, req, &iter));
1629 	}
1630 	kfree(iovec);
1631 	return ret;
1632 }
1633 
1634 static void aio_fsync_work(struct work_struct *work)
1635 {
1636 	struct aio_kiocb *iocb = container_of(work, struct aio_kiocb, fsync.work);
1637 	const struct cred *old_cred = override_creds(iocb->fsync.creds);
1638 
1639 	iocb->ki_res.res = vfs_fsync(iocb->fsync.file, iocb->fsync.datasync);
1640 	revert_creds(old_cred);
1641 	put_cred(iocb->fsync.creds);
1642 	iocb_put(iocb);
1643 }
1644 
1645 static int aio_fsync(struct fsync_iocb *req, const struct iocb *iocb,
1646 		     bool datasync)
1647 {
1648 	if (unlikely(iocb->aio_buf || iocb->aio_offset || iocb->aio_nbytes ||
1649 			iocb->aio_rw_flags))
1650 		return -EINVAL;
1651 
1652 	if (unlikely(!req->file->f_op->fsync))
1653 		return -EINVAL;
1654 
1655 	req->creds = prepare_creds();
1656 	if (!req->creds)
1657 		return -ENOMEM;
1658 
1659 	req->datasync = datasync;
1660 	INIT_WORK(&req->work, aio_fsync_work);
1661 	schedule_work(&req->work);
1662 	return 0;
1663 }
1664 
1665 static void aio_poll_put_work(struct work_struct *work)
1666 {
1667 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1668 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1669 
1670 	iocb_put(iocb);
1671 }
1672 
1673 /*
1674  * Safely lock the waitqueue which the request is on, synchronizing with the
1675  * case where the ->poll() provider decides to free its waitqueue early.
1676  *
1677  * Returns true on success, meaning that req->head->lock was locked, req->wait
1678  * is on req->head, and an RCU read lock was taken.  Returns false if the
1679  * request was already removed from its waitqueue (which might no longer exist).
1680  */
1681 static bool poll_iocb_lock_wq(struct poll_iocb *req)
1682 {
1683 	wait_queue_head_t *head;
1684 
1685 	/*
1686 	 * While we hold the waitqueue lock and the waitqueue is nonempty,
1687 	 * wake_up_pollfree() will wait for us.  However, taking the waitqueue
1688 	 * lock in the first place can race with the waitqueue being freed.
1689 	 *
1690 	 * We solve this as eventpoll does: by taking advantage of the fact that
1691 	 * all users of wake_up_pollfree() will RCU-delay the actual free.  If
1692 	 * we enter rcu_read_lock() and see that the pointer to the queue is
1693 	 * non-NULL, we can then lock it without the memory being freed out from
1694 	 * under us, then check whether the request is still on the queue.
1695 	 *
1696 	 * Keep holding rcu_read_lock() as long as we hold the queue lock, in
1697 	 * case the caller deletes the entry from the queue, leaving it empty.
1698 	 * In that case, only RCU prevents the queue memory from being freed.
1699 	 */
1700 	rcu_read_lock();
1701 	head = smp_load_acquire(&req->head);
1702 	if (head) {
1703 		spin_lock(&head->lock);
1704 		if (!list_empty(&req->wait.entry))
1705 			return true;
1706 		spin_unlock(&head->lock);
1707 	}
1708 	rcu_read_unlock();
1709 	return false;
1710 }
1711 
1712 static void poll_iocb_unlock_wq(struct poll_iocb *req)
1713 {
1714 	spin_unlock(&req->head->lock);
1715 	rcu_read_unlock();
1716 }
1717 
1718 static void aio_poll_complete_work(struct work_struct *work)
1719 {
1720 	struct poll_iocb *req = container_of(work, struct poll_iocb, work);
1721 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1722 	struct poll_table_struct pt = { ._key = req->events };
1723 	struct kioctx *ctx = iocb->ki_ctx;
1724 	__poll_t mask = 0;
1725 
1726 	if (!READ_ONCE(req->cancelled))
1727 		mask = vfs_poll(req->file, &pt) & req->events;
1728 
1729 	/*
1730 	 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1731 	 * calling ->ki_cancel.  We need the ctx_lock roundtrip here to
1732 	 * synchronize with them.  In the cancellation case the list_del_init
1733 	 * itself is not actually needed, but harmless so we keep it in to
1734 	 * avoid further branches in the fast path.
1735 	 */
1736 	spin_lock_irq(&ctx->ctx_lock);
1737 	if (poll_iocb_lock_wq(req)) {
1738 		if (!mask && !READ_ONCE(req->cancelled)) {
1739 			/*
1740 			 * The request isn't actually ready to be completed yet.
1741 			 * Reschedule completion if another wakeup came in.
1742 			 */
1743 			if (req->work_need_resched) {
1744 				schedule_work(&req->work);
1745 				req->work_need_resched = false;
1746 			} else {
1747 				req->work_scheduled = false;
1748 			}
1749 			poll_iocb_unlock_wq(req);
1750 			spin_unlock_irq(&ctx->ctx_lock);
1751 			return;
1752 		}
1753 		list_del_init(&req->wait.entry);
1754 		poll_iocb_unlock_wq(req);
1755 	} /* else, POLLFREE has freed the waitqueue, so we must complete */
1756 	list_del_init(&iocb->ki_list);
1757 	iocb->ki_res.res = mangle_poll(mask);
1758 	spin_unlock_irq(&ctx->ctx_lock);
1759 
1760 	iocb_put(iocb);
1761 }
1762 
1763 /* assumes we are called with irqs disabled */
1764 static int aio_poll_cancel(struct kiocb *iocb)
1765 {
1766 	struct aio_kiocb *aiocb = container_of(iocb, struct aio_kiocb, rw);
1767 	struct poll_iocb *req = &aiocb->poll;
1768 
1769 	if (poll_iocb_lock_wq(req)) {
1770 		WRITE_ONCE(req->cancelled, true);
1771 		if (!req->work_scheduled) {
1772 			schedule_work(&aiocb->poll.work);
1773 			req->work_scheduled = true;
1774 		}
1775 		poll_iocb_unlock_wq(req);
1776 	} /* else, the request was force-cancelled by POLLFREE already */
1777 
1778 	return 0;
1779 }
1780 
1781 static int aio_poll_wake(struct wait_queue_entry *wait, unsigned mode, int sync,
1782 		void *key)
1783 {
1784 	struct poll_iocb *req = container_of(wait, struct poll_iocb, wait);
1785 	struct aio_kiocb *iocb = container_of(req, struct aio_kiocb, poll);
1786 	__poll_t mask = key_to_poll(key);
1787 	unsigned long flags;
1788 
1789 	/* for instances that support it check for an event match first: */
1790 	if (mask && !(mask & req->events))
1791 		return 0;
1792 
1793 	/*
1794 	 * Complete the request inline if possible.  This requires that three
1795 	 * conditions be met:
1796 	 *   1. An event mask must have been passed.  If a plain wakeup was done
1797 	 *	instead, then mask == 0 and we have to call vfs_poll() to get
1798 	 *	the events, so inline completion isn't possible.
1799 	 *   2. The completion work must not have already been scheduled.
1800 	 *   3. ctx_lock must not be busy.  We have to use trylock because we
1801 	 *	already hold the waitqueue lock, so this inverts the normal
1802 	 *	locking order.  Use irqsave/irqrestore because not all
1803 	 *	filesystems (e.g. fuse) call this function with IRQs disabled,
1804 	 *	yet IRQs have to be disabled before ctx_lock is obtained.
1805 	 */
1806 	if (mask && !req->work_scheduled &&
1807 	    spin_trylock_irqsave(&iocb->ki_ctx->ctx_lock, flags)) {
1808 		struct kioctx *ctx = iocb->ki_ctx;
1809 
1810 		list_del_init(&req->wait.entry);
1811 		list_del(&iocb->ki_list);
1812 		iocb->ki_res.res = mangle_poll(mask);
1813 		if (iocb->ki_eventfd && !eventfd_signal_allowed()) {
1814 			iocb = NULL;
1815 			INIT_WORK(&req->work, aio_poll_put_work);
1816 			schedule_work(&req->work);
1817 		}
1818 		spin_unlock_irqrestore(&ctx->ctx_lock, flags);
1819 		if (iocb)
1820 			iocb_put(iocb);
1821 	} else {
1822 		/*
1823 		 * Schedule the completion work if needed.  If it was already
1824 		 * scheduled, record that another wakeup came in.
1825 		 *
1826 		 * Don't remove the request from the waitqueue here, as it might
1827 		 * not actually be complete yet (we won't know until vfs_poll()
1828 		 * is called), and we must not miss any wakeups.  POLLFREE is an
1829 		 * exception to this; see below.
1830 		 */
1831 		if (req->work_scheduled) {
1832 			req->work_need_resched = true;
1833 		} else {
1834 			schedule_work(&req->work);
1835 			req->work_scheduled = true;
1836 		}
1837 
1838 		/*
1839 		 * If the waitqueue is being freed early but we can't complete
1840 		 * the request inline, we have to tear down the request as best
1841 		 * we can.  That means immediately removing the request from its
1842 		 * waitqueue and preventing all further accesses to the
1843 		 * waitqueue via the request.  We also need to schedule the
1844 		 * completion work (done above).  Also mark the request as
1845 		 * cancelled, to potentially skip an unneeded call to ->poll().
1846 		 */
1847 		if (mask & POLLFREE) {
1848 			WRITE_ONCE(req->cancelled, true);
1849 			list_del_init(&req->wait.entry);
1850 
1851 			/*
1852 			 * Careful: this *must* be the last step, since as soon
1853 			 * as req->head is NULL'ed out, the request can be
1854 			 * completed and freed, since aio_poll_complete_work()
1855 			 * will no longer need to take the waitqueue lock.
1856 			 */
1857 			smp_store_release(&req->head, NULL);
1858 		}
1859 	}
1860 	return 1;
1861 }
1862 
1863 struct aio_poll_table {
1864 	struct poll_table_struct	pt;
1865 	struct aio_kiocb		*iocb;
1866 	bool				queued;
1867 	int				error;
1868 };
1869 
1870 static void
1871 aio_poll_queue_proc(struct file *file, struct wait_queue_head *head,
1872 		struct poll_table_struct *p)
1873 {
1874 	struct aio_poll_table *pt = container_of(p, struct aio_poll_table, pt);
1875 
1876 	/* multiple wait queues per file are not supported */
1877 	if (unlikely(pt->queued)) {
1878 		pt->error = -EINVAL;
1879 		return;
1880 	}
1881 
1882 	pt->queued = true;
1883 	pt->error = 0;
1884 	pt->iocb->poll.head = head;
1885 	add_wait_queue(head, &pt->iocb->poll.wait);
1886 }
1887 
1888 static int aio_poll(struct aio_kiocb *aiocb, const struct iocb *iocb)
1889 {
1890 	struct kioctx *ctx = aiocb->ki_ctx;
1891 	struct poll_iocb *req = &aiocb->poll;
1892 	struct aio_poll_table apt;
1893 	bool cancel = false;
1894 	__poll_t mask;
1895 
1896 	/* reject any unknown events outside the normal event mask. */
1897 	if ((u16)iocb->aio_buf != iocb->aio_buf)
1898 		return -EINVAL;
1899 	/* reject fields that are not defined for poll */
1900 	if (iocb->aio_offset || iocb->aio_nbytes || iocb->aio_rw_flags)
1901 		return -EINVAL;
1902 
1903 	INIT_WORK(&req->work, aio_poll_complete_work);
1904 	req->events = demangle_poll(iocb->aio_buf) | EPOLLERR | EPOLLHUP;
1905 
1906 	req->head = NULL;
1907 	req->cancelled = false;
1908 	req->work_scheduled = false;
1909 	req->work_need_resched = false;
1910 
1911 	apt.pt._qproc = aio_poll_queue_proc;
1912 	apt.pt._key = req->events;
1913 	apt.iocb = aiocb;
1914 	apt.queued = false;
1915 	apt.error = -EINVAL; /* same as no support for IOCB_CMD_POLL */
1916 
1917 	/* initialized the list so that we can do list_empty checks */
1918 	INIT_LIST_HEAD(&req->wait.entry);
1919 	init_waitqueue_func_entry(&req->wait, aio_poll_wake);
1920 
1921 	mask = vfs_poll(req->file, &apt.pt) & req->events;
1922 	spin_lock_irq(&ctx->ctx_lock);
1923 	if (likely(apt.queued)) {
1924 		bool on_queue = poll_iocb_lock_wq(req);
1925 
1926 		if (!on_queue || req->work_scheduled) {
1927 			/*
1928 			 * aio_poll_wake() already either scheduled the async
1929 			 * completion work, or completed the request inline.
1930 			 */
1931 			if (apt.error) /* unsupported case: multiple queues */
1932 				cancel = true;
1933 			apt.error = 0;
1934 			mask = 0;
1935 		}
1936 		if (mask || apt.error) {
1937 			/* Steal to complete synchronously. */
1938 			list_del_init(&req->wait.entry);
1939 		} else if (cancel) {
1940 			/* Cancel if possible (may be too late though). */
1941 			WRITE_ONCE(req->cancelled, true);
1942 		} else if (on_queue) {
1943 			/*
1944 			 * Actually waiting for an event, so add the request to
1945 			 * active_reqs so that it can be cancelled if needed.
1946 			 */
1947 			list_add_tail(&aiocb->ki_list, &ctx->active_reqs);
1948 			aiocb->ki_cancel = aio_poll_cancel;
1949 		}
1950 		if (on_queue)
1951 			poll_iocb_unlock_wq(req);
1952 	}
1953 	if (mask) { /* no async, we'd stolen it */
1954 		aiocb->ki_res.res = mangle_poll(mask);
1955 		apt.error = 0;
1956 	}
1957 	spin_unlock_irq(&ctx->ctx_lock);
1958 	if (mask)
1959 		iocb_put(aiocb);
1960 	return apt.error;
1961 }
1962 
1963 static int __io_submit_one(struct kioctx *ctx, const struct iocb *iocb,
1964 			   struct iocb __user *user_iocb, struct aio_kiocb *req,
1965 			   bool compat)
1966 {
1967 	req->ki_filp = fget(iocb->aio_fildes);
1968 	if (unlikely(!req->ki_filp))
1969 		return -EBADF;
1970 
1971 	if (iocb->aio_flags & IOCB_FLAG_RESFD) {
1972 		struct eventfd_ctx *eventfd;
1973 		/*
1974 		 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1975 		 * instance of the file* now. The file descriptor must be
1976 		 * an eventfd() fd, and will be signaled for each completed
1977 		 * event using the eventfd_signal() function.
1978 		 */
1979 		eventfd = eventfd_ctx_fdget(iocb->aio_resfd);
1980 		if (IS_ERR(eventfd))
1981 			return PTR_ERR(eventfd);
1982 
1983 		req->ki_eventfd = eventfd;
1984 	}
1985 
1986 	if (unlikely(put_user(KIOCB_KEY, &user_iocb->aio_key))) {
1987 		pr_debug("EFAULT: aio_key\n");
1988 		return -EFAULT;
1989 	}
1990 
1991 	req->ki_res.obj = (u64)(unsigned long)user_iocb;
1992 	req->ki_res.data = iocb->aio_data;
1993 	req->ki_res.res = 0;
1994 	req->ki_res.res2 = 0;
1995 
1996 	switch (iocb->aio_lio_opcode) {
1997 	case IOCB_CMD_PREAD:
1998 		return aio_read(&req->rw, iocb, false, compat);
1999 	case IOCB_CMD_PWRITE:
2000 		return aio_write(&req->rw, iocb, false, compat);
2001 	case IOCB_CMD_PREADV:
2002 		return aio_read(&req->rw, iocb, true, compat);
2003 	case IOCB_CMD_PWRITEV:
2004 		return aio_write(&req->rw, iocb, true, compat);
2005 	case IOCB_CMD_FSYNC:
2006 		return aio_fsync(&req->fsync, iocb, false);
2007 	case IOCB_CMD_FDSYNC:
2008 		return aio_fsync(&req->fsync, iocb, true);
2009 	case IOCB_CMD_POLL:
2010 		return aio_poll(req, iocb);
2011 	default:
2012 		pr_debug("invalid aio operation %d\n", iocb->aio_lio_opcode);
2013 		return -EINVAL;
2014 	}
2015 }
2016 
2017 static int io_submit_one(struct kioctx *ctx, struct iocb __user *user_iocb,
2018 			 bool compat)
2019 {
2020 	struct aio_kiocb *req;
2021 	struct iocb iocb;
2022 	int err;
2023 
2024 	if (unlikely(copy_from_user(&iocb, user_iocb, sizeof(iocb))))
2025 		return -EFAULT;
2026 
2027 	/* enforce forwards compatibility on users */
2028 	if (unlikely(iocb.aio_reserved2)) {
2029 		pr_debug("EINVAL: reserve field set\n");
2030 		return -EINVAL;
2031 	}
2032 
2033 	/* prevent overflows */
2034 	if (unlikely(
2035 	    (iocb.aio_buf != (unsigned long)iocb.aio_buf) ||
2036 	    (iocb.aio_nbytes != (size_t)iocb.aio_nbytes) ||
2037 	    ((ssize_t)iocb.aio_nbytes < 0)
2038 	   )) {
2039 		pr_debug("EINVAL: overflow check\n");
2040 		return -EINVAL;
2041 	}
2042 
2043 	req = aio_get_req(ctx);
2044 	if (unlikely(!req))
2045 		return -EAGAIN;
2046 
2047 	err = __io_submit_one(ctx, &iocb, user_iocb, req, compat);
2048 
2049 	/* Done with the synchronous reference */
2050 	iocb_put(req);
2051 
2052 	/*
2053 	 * If err is 0, we'd either done aio_complete() ourselves or have
2054 	 * arranged for that to be done asynchronously.  Anything non-zero
2055 	 * means that we need to destroy req ourselves.
2056 	 */
2057 	if (unlikely(err)) {
2058 		iocb_destroy(req);
2059 		put_reqs_available(ctx, 1);
2060 	}
2061 	return err;
2062 }
2063 
2064 /* sys_io_submit:
2065  *	Queue the nr iocbs pointed to by iocbpp for processing.  Returns
2066  *	the number of iocbs queued.  May return -EINVAL if the aio_context
2067  *	specified by ctx_id is invalid, if nr is < 0, if the iocb at
2068  *	*iocbpp[0] is not properly initialized, if the operation specified
2069  *	is invalid for the file descriptor in the iocb.  May fail with
2070  *	-EFAULT if any of the data structures point to invalid data.  May
2071  *	fail with -EBADF if the file descriptor specified in the first
2072  *	iocb is invalid.  May fail with -EAGAIN if insufficient resources
2073  *	are available to queue any iocbs.  Will return 0 if nr is 0.  Will
2074  *	fail with -ENOSYS if not implemented.
2075  */
2076 SYSCALL_DEFINE3(io_submit, aio_context_t, ctx_id, long, nr,
2077 		struct iocb __user * __user *, iocbpp)
2078 {
2079 	struct kioctx *ctx;
2080 	long ret = 0;
2081 	int i = 0;
2082 	struct blk_plug plug;
2083 
2084 	if (unlikely(nr < 0))
2085 		return -EINVAL;
2086 
2087 	ctx = lookup_ioctx(ctx_id);
2088 	if (unlikely(!ctx)) {
2089 		pr_debug("EINVAL: invalid context id\n");
2090 		return -EINVAL;
2091 	}
2092 
2093 	if (nr > ctx->nr_events)
2094 		nr = ctx->nr_events;
2095 
2096 	if (nr > AIO_PLUG_THRESHOLD)
2097 		blk_start_plug(&plug);
2098 	for (i = 0; i < nr; i++) {
2099 		struct iocb __user *user_iocb;
2100 
2101 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2102 			ret = -EFAULT;
2103 			break;
2104 		}
2105 
2106 		ret = io_submit_one(ctx, user_iocb, false);
2107 		if (ret)
2108 			break;
2109 	}
2110 	if (nr > AIO_PLUG_THRESHOLD)
2111 		blk_finish_plug(&plug);
2112 
2113 	percpu_ref_put(&ctx->users);
2114 	return i ? i : ret;
2115 }
2116 
2117 #ifdef CONFIG_COMPAT
2118 COMPAT_SYSCALL_DEFINE3(io_submit, compat_aio_context_t, ctx_id,
2119 		       int, nr, compat_uptr_t __user *, iocbpp)
2120 {
2121 	struct kioctx *ctx;
2122 	long ret = 0;
2123 	int i = 0;
2124 	struct blk_plug plug;
2125 
2126 	if (unlikely(nr < 0))
2127 		return -EINVAL;
2128 
2129 	ctx = lookup_ioctx(ctx_id);
2130 	if (unlikely(!ctx)) {
2131 		pr_debug("EINVAL: invalid context id\n");
2132 		return -EINVAL;
2133 	}
2134 
2135 	if (nr > ctx->nr_events)
2136 		nr = ctx->nr_events;
2137 
2138 	if (nr > AIO_PLUG_THRESHOLD)
2139 		blk_start_plug(&plug);
2140 	for (i = 0; i < nr; i++) {
2141 		compat_uptr_t user_iocb;
2142 
2143 		if (unlikely(get_user(user_iocb, iocbpp + i))) {
2144 			ret = -EFAULT;
2145 			break;
2146 		}
2147 
2148 		ret = io_submit_one(ctx, compat_ptr(user_iocb), true);
2149 		if (ret)
2150 			break;
2151 	}
2152 	if (nr > AIO_PLUG_THRESHOLD)
2153 		blk_finish_plug(&plug);
2154 
2155 	percpu_ref_put(&ctx->users);
2156 	return i ? i : ret;
2157 }
2158 #endif
2159 
2160 /* sys_io_cancel:
2161  *	Attempts to cancel an iocb previously passed to io_submit.  If
2162  *	the operation is successfully cancelled, the resulting event is
2163  *	copied into the memory pointed to by result without being placed
2164  *	into the completion queue and 0 is returned.  May fail with
2165  *	-EFAULT if any of the data structures pointed to are invalid.
2166  *	May fail with -EINVAL if aio_context specified by ctx_id is
2167  *	invalid.  May fail with -EAGAIN if the iocb specified was not
2168  *	cancelled.  Will fail with -ENOSYS if not implemented.
2169  */
2170 SYSCALL_DEFINE3(io_cancel, aio_context_t, ctx_id, struct iocb __user *, iocb,
2171 		struct io_event __user *, result)
2172 {
2173 	struct kioctx *ctx;
2174 	struct aio_kiocb *kiocb;
2175 	int ret = -EINVAL;
2176 	u32 key;
2177 	u64 obj = (u64)(unsigned long)iocb;
2178 
2179 	if (unlikely(get_user(key, &iocb->aio_key)))
2180 		return -EFAULT;
2181 	if (unlikely(key != KIOCB_KEY))
2182 		return -EINVAL;
2183 
2184 	ctx = lookup_ioctx(ctx_id);
2185 	if (unlikely(!ctx))
2186 		return -EINVAL;
2187 
2188 	spin_lock_irq(&ctx->ctx_lock);
2189 	/* TODO: use a hash or array, this sucks. */
2190 	list_for_each_entry(kiocb, &ctx->active_reqs, ki_list) {
2191 		if (kiocb->ki_res.obj == obj) {
2192 			ret = kiocb->ki_cancel(&kiocb->rw);
2193 			list_del_init(&kiocb->ki_list);
2194 			break;
2195 		}
2196 	}
2197 	spin_unlock_irq(&ctx->ctx_lock);
2198 
2199 	if (!ret) {
2200 		/*
2201 		 * The result argument is no longer used - the io_event is
2202 		 * always delivered via the ring buffer. -EINPROGRESS indicates
2203 		 * cancellation is progress:
2204 		 */
2205 		ret = -EINPROGRESS;
2206 	}
2207 
2208 	percpu_ref_put(&ctx->users);
2209 
2210 	return ret;
2211 }
2212 
2213 static long do_io_getevents(aio_context_t ctx_id,
2214 		long min_nr,
2215 		long nr,
2216 		struct io_event __user *events,
2217 		struct timespec64 *ts)
2218 {
2219 	ktime_t until = ts ? timespec64_to_ktime(*ts) : KTIME_MAX;
2220 	struct kioctx *ioctx = lookup_ioctx(ctx_id);
2221 	long ret = -EINVAL;
2222 
2223 	if (likely(ioctx)) {
2224 		if (likely(min_nr <= nr && min_nr >= 0))
2225 			ret = read_events(ioctx, min_nr, nr, events, until);
2226 		percpu_ref_put(&ioctx->users);
2227 	}
2228 
2229 	return ret;
2230 }
2231 
2232 /* io_getevents:
2233  *	Attempts to read at least min_nr events and up to nr events from
2234  *	the completion queue for the aio_context specified by ctx_id. If
2235  *	it succeeds, the number of read events is returned. May fail with
2236  *	-EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2237  *	out of range, if timeout is out of range.  May fail with -EFAULT
2238  *	if any of the memory specified is invalid.  May return 0 or
2239  *	< min_nr if the timeout specified by timeout has elapsed
2240  *	before sufficient events are available, where timeout == NULL
2241  *	specifies an infinite timeout. Note that the timeout pointed to by
2242  *	timeout is relative.  Will fail with -ENOSYS if not implemented.
2243  */
2244 #ifdef CONFIG_64BIT
2245 
2246 SYSCALL_DEFINE5(io_getevents, aio_context_t, ctx_id,
2247 		long, min_nr,
2248 		long, nr,
2249 		struct io_event __user *, events,
2250 		struct __kernel_timespec __user *, timeout)
2251 {
2252 	struct timespec64	ts;
2253 	int			ret;
2254 
2255 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2256 		return -EFAULT;
2257 
2258 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2259 	if (!ret && signal_pending(current))
2260 		ret = -EINTR;
2261 	return ret;
2262 }
2263 
2264 #endif
2265 
2266 struct __aio_sigset {
2267 	const sigset_t __user	*sigmask;
2268 	size_t		sigsetsize;
2269 };
2270 
2271 SYSCALL_DEFINE6(io_pgetevents,
2272 		aio_context_t, ctx_id,
2273 		long, min_nr,
2274 		long, nr,
2275 		struct io_event __user *, events,
2276 		struct __kernel_timespec __user *, timeout,
2277 		const struct __aio_sigset __user *, usig)
2278 {
2279 	struct __aio_sigset	ksig = { NULL, };
2280 	struct timespec64	ts;
2281 	bool interrupted;
2282 	int ret;
2283 
2284 	if (timeout && unlikely(get_timespec64(&ts, timeout)))
2285 		return -EFAULT;
2286 
2287 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2288 		return -EFAULT;
2289 
2290 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2291 	if (ret)
2292 		return ret;
2293 
2294 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2295 
2296 	interrupted = signal_pending(current);
2297 	restore_saved_sigmask_unless(interrupted);
2298 	if (interrupted && !ret)
2299 		ret = -ERESTARTNOHAND;
2300 
2301 	return ret;
2302 }
2303 
2304 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2305 
2306 SYSCALL_DEFINE6(io_pgetevents_time32,
2307 		aio_context_t, ctx_id,
2308 		long, min_nr,
2309 		long, nr,
2310 		struct io_event __user *, events,
2311 		struct old_timespec32 __user *, timeout,
2312 		const struct __aio_sigset __user *, usig)
2313 {
2314 	struct __aio_sigset	ksig = { NULL, };
2315 	struct timespec64	ts;
2316 	bool interrupted;
2317 	int ret;
2318 
2319 	if (timeout && unlikely(get_old_timespec32(&ts, timeout)))
2320 		return -EFAULT;
2321 
2322 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2323 		return -EFAULT;
2324 
2325 
2326 	ret = set_user_sigmask(ksig.sigmask, ksig.sigsetsize);
2327 	if (ret)
2328 		return ret;
2329 
2330 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &ts : NULL);
2331 
2332 	interrupted = signal_pending(current);
2333 	restore_saved_sigmask_unless(interrupted);
2334 	if (interrupted && !ret)
2335 		ret = -ERESTARTNOHAND;
2336 
2337 	return ret;
2338 }
2339 
2340 #endif
2341 
2342 #if defined(CONFIG_COMPAT_32BIT_TIME)
2343 
2344 SYSCALL_DEFINE5(io_getevents_time32, __u32, ctx_id,
2345 		__s32, min_nr,
2346 		__s32, nr,
2347 		struct io_event __user *, events,
2348 		struct old_timespec32 __user *, timeout)
2349 {
2350 	struct timespec64 t;
2351 	int ret;
2352 
2353 	if (timeout && get_old_timespec32(&t, timeout))
2354 		return -EFAULT;
2355 
2356 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2357 	if (!ret && signal_pending(current))
2358 		ret = -EINTR;
2359 	return ret;
2360 }
2361 
2362 #endif
2363 
2364 #ifdef CONFIG_COMPAT
2365 
2366 struct __compat_aio_sigset {
2367 	compat_uptr_t		sigmask;
2368 	compat_size_t		sigsetsize;
2369 };
2370 
2371 #if defined(CONFIG_COMPAT_32BIT_TIME)
2372 
2373 COMPAT_SYSCALL_DEFINE6(io_pgetevents,
2374 		compat_aio_context_t, ctx_id,
2375 		compat_long_t, min_nr,
2376 		compat_long_t, nr,
2377 		struct io_event __user *, events,
2378 		struct old_timespec32 __user *, timeout,
2379 		const struct __compat_aio_sigset __user *, usig)
2380 {
2381 	struct __compat_aio_sigset ksig = { 0, };
2382 	struct timespec64 t;
2383 	bool interrupted;
2384 	int ret;
2385 
2386 	if (timeout && get_old_timespec32(&t, timeout))
2387 		return -EFAULT;
2388 
2389 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2390 		return -EFAULT;
2391 
2392 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2393 	if (ret)
2394 		return ret;
2395 
2396 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2397 
2398 	interrupted = signal_pending(current);
2399 	restore_saved_sigmask_unless(interrupted);
2400 	if (interrupted && !ret)
2401 		ret = -ERESTARTNOHAND;
2402 
2403 	return ret;
2404 }
2405 
2406 #endif
2407 
2408 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64,
2409 		compat_aio_context_t, ctx_id,
2410 		compat_long_t, min_nr,
2411 		compat_long_t, nr,
2412 		struct io_event __user *, events,
2413 		struct __kernel_timespec __user *, timeout,
2414 		const struct __compat_aio_sigset __user *, usig)
2415 {
2416 	struct __compat_aio_sigset ksig = { 0, };
2417 	struct timespec64 t;
2418 	bool interrupted;
2419 	int ret;
2420 
2421 	if (timeout && get_timespec64(&t, timeout))
2422 		return -EFAULT;
2423 
2424 	if (usig && copy_from_user(&ksig, usig, sizeof(ksig)))
2425 		return -EFAULT;
2426 
2427 	ret = set_compat_user_sigmask(compat_ptr(ksig.sigmask), ksig.sigsetsize);
2428 	if (ret)
2429 		return ret;
2430 
2431 	ret = do_io_getevents(ctx_id, min_nr, nr, events, timeout ? &t : NULL);
2432 
2433 	interrupted = signal_pending(current);
2434 	restore_saved_sigmask_unless(interrupted);
2435 	if (interrupted && !ret)
2436 		ret = -ERESTARTNOHAND;
2437 
2438 	return ret;
2439 }
2440 #endif
2441