xref: /linux/drivers/usb/mon/mon_bin.c (revision 33619f0d3ff715a2a5499520967d526ad931d70d)
1 /*
2  * The USB Monitor, inspired by Dave Harding's USBMon.
3  *
4  * This is a binary format reader.
5  *
6  * Copyright (C) 2006 Paolo Abeni (paolo.abeni@email.it)
7  * Copyright (C) 2006,2007 Pete Zaitcev (zaitcev@redhat.com)
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/fs.h>
13 #include <linux/cdev.h>
14 #include <linux/usb.h>
15 #include <linux/poll.h>
16 #include <linux/compat.h>
17 #include <linux/mm.h>
18 #include <linux/scatterlist.h>
19 #include <linux/slab.h>
20 
21 #include <asm/uaccess.h>
22 
23 #include "usb_mon.h"
24 
25 /*
26  * Defined by USB 2.0 clause 9.3, table 9.2.
27  */
28 #define SETUP_LEN  8
29 
30 /* ioctl macros */
31 #define MON_IOC_MAGIC 0x92
32 
33 #define MON_IOCQ_URB_LEN _IO(MON_IOC_MAGIC, 1)
34 /* #2 used to be MON_IOCX_URB, removed before it got into Linus tree */
35 #define MON_IOCG_STATS _IOR(MON_IOC_MAGIC, 3, struct mon_bin_stats)
36 #define MON_IOCT_RING_SIZE _IO(MON_IOC_MAGIC, 4)
37 #define MON_IOCQ_RING_SIZE _IO(MON_IOC_MAGIC, 5)
38 #define MON_IOCX_GET   _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get)
39 #define MON_IOCX_MFETCH _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch)
40 #define MON_IOCH_MFLUSH _IO(MON_IOC_MAGIC, 8)
41 /* #9 was MON_IOCT_SETAPI */
42 #define MON_IOCX_GETX   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get)
43 
44 #ifdef CONFIG_COMPAT
45 #define MON_IOCX_GET32 _IOW(MON_IOC_MAGIC, 6, struct mon_bin_get32)
46 #define MON_IOCX_MFETCH32 _IOWR(MON_IOC_MAGIC, 7, struct mon_bin_mfetch32)
47 #define MON_IOCX_GETX32   _IOW(MON_IOC_MAGIC, 10, struct mon_bin_get32)
48 #endif
49 
50 /*
51  * Some architectures have enormous basic pages (16KB for ia64, 64KB for ppc).
52  * But it's all right. Just use a simple way to make sure the chunk is never
53  * smaller than a page.
54  *
55  * N.B. An application does not know our chunk size.
56  *
57  * Woops, get_zeroed_page() returns a single page. I guess we're stuck with
58  * page-sized chunks for the time being.
59  */
60 #define CHUNK_SIZE   PAGE_SIZE
61 #define CHUNK_ALIGN(x)   (((x)+CHUNK_SIZE-1) & ~(CHUNK_SIZE-1))
62 
63 /*
64  * The magic limit was calculated so that it allows the monitoring
65  * application to pick data once in two ticks. This way, another application,
66  * which presumably drives the bus, gets to hog CPU, yet we collect our data.
67  * If HZ is 100, a 480 mbit/s bus drives 614 KB every jiffy. USB has an
68  * enormous overhead built into the bus protocol, so we need about 1000 KB.
69  *
70  * This is still too much for most cases, where we just snoop a few
71  * descriptor fetches for enumeration. So, the default is a "reasonable"
72  * amount for systems with HZ=250 and incomplete bus saturation.
73  *
74  * XXX What about multi-megabyte URBs which take minutes to transfer?
75  */
76 #define BUFF_MAX  CHUNK_ALIGN(1200*1024)
77 #define BUFF_DFL   CHUNK_ALIGN(300*1024)
78 #define BUFF_MIN     CHUNK_ALIGN(8*1024)
79 
80 /*
81  * The per-event API header (2 per URB).
82  *
83  * This structure is seen in userland as defined by the documentation.
84  */
85 struct mon_bin_hdr {
86 	u64 id;			/* URB ID - from submission to callback */
87 	unsigned char type;	/* Same as in text API; extensible. */
88 	unsigned char xfer_type;	/* ISO, Intr, Control, Bulk */
89 	unsigned char epnum;	/* Endpoint number and transfer direction */
90 	unsigned char devnum;	/* Device address */
91 	unsigned short busnum;	/* Bus number */
92 	char flag_setup;
93 	char flag_data;
94 	s64 ts_sec;		/* gettimeofday */
95 	s32 ts_usec;		/* gettimeofday */
96 	int status;
97 	unsigned int len_urb;	/* Length of data (submitted or actual) */
98 	unsigned int len_cap;	/* Delivered length */
99 	union {
100 		unsigned char setup[SETUP_LEN];	/* Only for Control S-type */
101 		struct iso_rec {
102 			int error_count;
103 			int numdesc;
104 		} iso;
105 	} s;
106 	int interval;
107 	int start_frame;
108 	unsigned int xfer_flags;
109 	unsigned int ndesc;	/* Actual number of ISO descriptors */
110 };
111 
112 /*
113  * ISO vector, packed into the head of data stream.
114  * This has to take 16 bytes to make sure that the end of buffer
115  * wrap is not happening in the middle of a descriptor.
116  */
117 struct mon_bin_isodesc {
118 	int          iso_status;
119 	unsigned int iso_off;
120 	unsigned int iso_len;
121 	u32 _pad;
122 };
123 
124 /* per file statistic */
125 struct mon_bin_stats {
126 	u32 queued;
127 	u32 dropped;
128 };
129 
130 struct mon_bin_get {
131 	struct mon_bin_hdr __user *hdr;	/* Can be 48 bytes or 64. */
132 	void __user *data;
133 	size_t alloc;		/* Length of data (can be zero) */
134 };
135 
136 struct mon_bin_mfetch {
137 	u32 __user *offvec;	/* Vector of events fetched */
138 	u32 nfetch;		/* Number of events to fetch (out: fetched) */
139 	u32 nflush;		/* Number of events to flush */
140 };
141 
142 #ifdef CONFIG_COMPAT
143 struct mon_bin_get32 {
144 	u32 hdr32;
145 	u32 data32;
146 	u32 alloc32;
147 };
148 
149 struct mon_bin_mfetch32 {
150         u32 offvec32;
151         u32 nfetch32;
152         u32 nflush32;
153 };
154 #endif
155 
156 /* Having these two values same prevents wrapping of the mon_bin_hdr */
157 #define PKT_ALIGN   64
158 #define PKT_SIZE    64
159 
160 #define PKT_SZ_API0 48	/* API 0 (2.6.20) size */
161 #define PKT_SZ_API1 64	/* API 1 size: extra fields */
162 
163 #define ISODESC_MAX   128	/* Same number as usbfs allows, 2048 bytes. */
164 
165 /* max number of USB bus supported */
166 #define MON_BIN_MAX_MINOR 128
167 
168 /*
169  * The buffer: map of used pages.
170  */
171 struct mon_pgmap {
172 	struct page *pg;
173 	unsigned char *ptr;	/* XXX just use page_to_virt everywhere? */
174 };
175 
176 /*
177  * This gets associated with an open file struct.
178  */
179 struct mon_reader_bin {
180 	/* The buffer: one per open. */
181 	spinlock_t b_lock;		/* Protect b_cnt, b_in */
182 	unsigned int b_size;		/* Current size of the buffer - bytes */
183 	unsigned int b_cnt;		/* Bytes used */
184 	unsigned int b_in, b_out;	/* Offsets into buffer - bytes */
185 	unsigned int b_read;		/* Amount of read data in curr. pkt. */
186 	struct mon_pgmap *b_vec;	/* The map array */
187 	wait_queue_head_t b_wait;	/* Wait for data here */
188 
189 	struct mutex fetch_lock;	/* Protect b_read, b_out */
190 	int mmap_active;
191 
192 	/* A list of these is needed for "bus 0". Some time later. */
193 	struct mon_reader r;
194 
195 	/* Stats */
196 	unsigned int cnt_lost;
197 };
198 
199 static inline struct mon_bin_hdr *MON_OFF2HDR(const struct mon_reader_bin *rp,
200     unsigned int offset)
201 {
202 	return (struct mon_bin_hdr *)
203 	    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
204 }
205 
206 #define MON_RING_EMPTY(rp)	((rp)->b_cnt == 0)
207 
208 static unsigned char xfer_to_pipe[4] = {
209 	PIPE_CONTROL, PIPE_ISOCHRONOUS, PIPE_BULK, PIPE_INTERRUPT
210 };
211 
212 static struct class *mon_bin_class;
213 static dev_t mon_bin_dev0;
214 static struct cdev mon_bin_cdev;
215 
216 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
217     unsigned int offset, unsigned int size);
218 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp);
219 static int mon_alloc_buff(struct mon_pgmap *map, int npages);
220 static void mon_free_buff(struct mon_pgmap *map, int npages);
221 
222 /*
223  * This is a "chunked memcpy". It does not manipulate any counters.
224  */
225 static unsigned int mon_copy_to_buff(const struct mon_reader_bin *this,
226     unsigned int off, const unsigned char *from, unsigned int length)
227 {
228 	unsigned int step_len;
229 	unsigned char *buf;
230 	unsigned int in_page;
231 
232 	while (length) {
233 		/*
234 		 * Determine step_len.
235 		 */
236 		step_len = length;
237 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
238 		if (in_page < step_len)
239 			step_len = in_page;
240 
241 		/*
242 		 * Copy data and advance pointers.
243 		 */
244 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
245 		memcpy(buf, from, step_len);
246 		if ((off += step_len) >= this->b_size) off = 0;
247 		from += step_len;
248 		length -= step_len;
249 	}
250 	return off;
251 }
252 
253 /*
254  * This is a little worse than the above because it's "chunked copy_to_user".
255  * The return value is an error code, not an offset.
256  */
257 static int copy_from_buf(const struct mon_reader_bin *this, unsigned int off,
258     char __user *to, int length)
259 {
260 	unsigned int step_len;
261 	unsigned char *buf;
262 	unsigned int in_page;
263 
264 	while (length) {
265 		/*
266 		 * Determine step_len.
267 		 */
268 		step_len = length;
269 		in_page = CHUNK_SIZE - (off & (CHUNK_SIZE-1));
270 		if (in_page < step_len)
271 			step_len = in_page;
272 
273 		/*
274 		 * Copy data and advance pointers.
275 		 */
276 		buf = this->b_vec[off / CHUNK_SIZE].ptr + off % CHUNK_SIZE;
277 		if (copy_to_user(to, buf, step_len))
278 			return -EINVAL;
279 		if ((off += step_len) >= this->b_size) off = 0;
280 		to += step_len;
281 		length -= step_len;
282 	}
283 	return 0;
284 }
285 
286 /*
287  * Allocate an (aligned) area in the buffer.
288  * This is called under b_lock.
289  * Returns ~0 on failure.
290  */
291 static unsigned int mon_buff_area_alloc(struct mon_reader_bin *rp,
292     unsigned int size)
293 {
294 	unsigned int offset;
295 
296 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
297 	if (rp->b_cnt + size > rp->b_size)
298 		return ~0;
299 	offset = rp->b_in;
300 	rp->b_cnt += size;
301 	if ((rp->b_in += size) >= rp->b_size)
302 		rp->b_in -= rp->b_size;
303 	return offset;
304 }
305 
306 /*
307  * This is the same thing as mon_buff_area_alloc, only it does not allow
308  * buffers to wrap. This is needed by applications which pass references
309  * into mmap-ed buffers up their stacks (libpcap can do that).
310  *
311  * Currently, we always have the header stuck with the data, although
312  * it is not strictly speaking necessary.
313  *
314  * When a buffer would wrap, we place a filler packet to mark the space.
315  */
316 static unsigned int mon_buff_area_alloc_contiguous(struct mon_reader_bin *rp,
317     unsigned int size)
318 {
319 	unsigned int offset;
320 	unsigned int fill_size;
321 
322 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
323 	if (rp->b_cnt + size > rp->b_size)
324 		return ~0;
325 	if (rp->b_in + size > rp->b_size) {
326 		/*
327 		 * This would wrap. Find if we still have space after
328 		 * skipping to the end of the buffer. If we do, place
329 		 * a filler packet and allocate a new packet.
330 		 */
331 		fill_size = rp->b_size - rp->b_in;
332 		if (rp->b_cnt + size + fill_size > rp->b_size)
333 			return ~0;
334 		mon_buff_area_fill(rp, rp->b_in, fill_size);
335 
336 		offset = 0;
337 		rp->b_in = size;
338 		rp->b_cnt += size + fill_size;
339 	} else if (rp->b_in + size == rp->b_size) {
340 		offset = rp->b_in;
341 		rp->b_in = 0;
342 		rp->b_cnt += size;
343 	} else {
344 		offset = rp->b_in;
345 		rp->b_in += size;
346 		rp->b_cnt += size;
347 	}
348 	return offset;
349 }
350 
351 /*
352  * Return a few (kilo-)bytes to the head of the buffer.
353  * This is used if a data fetch fails.
354  */
355 static void mon_buff_area_shrink(struct mon_reader_bin *rp, unsigned int size)
356 {
357 
358 	/* size &= ~(PKT_ALIGN-1);  -- we're called with aligned size */
359 	rp->b_cnt -= size;
360 	if (rp->b_in < size)
361 		rp->b_in += rp->b_size;
362 	rp->b_in -= size;
363 }
364 
365 /*
366  * This has to be called under both b_lock and fetch_lock, because
367  * it accesses both b_cnt and b_out.
368  */
369 static void mon_buff_area_free(struct mon_reader_bin *rp, unsigned int size)
370 {
371 
372 	size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
373 	rp->b_cnt -= size;
374 	if ((rp->b_out += size) >= rp->b_size)
375 		rp->b_out -= rp->b_size;
376 }
377 
378 static void mon_buff_area_fill(const struct mon_reader_bin *rp,
379     unsigned int offset, unsigned int size)
380 {
381 	struct mon_bin_hdr *ep;
382 
383 	ep = MON_OFF2HDR(rp, offset);
384 	memset(ep, 0, PKT_SIZE);
385 	ep->type = '@';
386 	ep->len_cap = size - PKT_SIZE;
387 }
388 
389 static inline char mon_bin_get_setup(unsigned char *setupb,
390     const struct urb *urb, char ev_type)
391 {
392 
393 	if (urb->setup_packet == NULL)
394 		return 'Z';
395 	memcpy(setupb, urb->setup_packet, SETUP_LEN);
396 	return 0;
397 }
398 
399 static unsigned int mon_bin_get_data(const struct mon_reader_bin *rp,
400     unsigned int offset, struct urb *urb, unsigned int length,
401     char *flag)
402 {
403 	int i;
404 	struct scatterlist *sg;
405 	unsigned int this_len;
406 
407 	*flag = 0;
408 	if (urb->num_sgs == 0) {
409 		if (urb->transfer_buffer == NULL) {
410 			*flag = 'Z';
411 			return length;
412 		}
413 		mon_copy_to_buff(rp, offset, urb->transfer_buffer, length);
414 		length = 0;
415 
416 	} else {
417 		/* If IOMMU coalescing occurred, we cannot trust sg_page */
418 		if (urb->transfer_flags & URB_DMA_SG_COMBINED) {
419 			*flag = 'D';
420 			return length;
421 		}
422 
423 		/* Copy up to the first non-addressable segment */
424 		for_each_sg(urb->sg, sg, urb->num_sgs, i) {
425 			if (length == 0 || PageHighMem(sg_page(sg)))
426 				break;
427 			this_len = min_t(unsigned int, sg->length, length);
428 			offset = mon_copy_to_buff(rp, offset, sg_virt(sg),
429 					this_len);
430 			length -= this_len;
431 		}
432 		if (i == 0)
433 			*flag = 'D';
434 	}
435 
436 	return length;
437 }
438 
439 /*
440  * This is the look-ahead pass in case of 'C Zi', when actual_length cannot
441  * be used to determine the length of the whole contiguous buffer.
442  */
443 static unsigned int mon_bin_collate_isodesc(const struct mon_reader_bin *rp,
444     struct urb *urb, unsigned int ndesc)
445 {
446 	struct usb_iso_packet_descriptor *fp;
447 	unsigned int length;
448 
449 	length = 0;
450 	fp = urb->iso_frame_desc;
451 	while (ndesc-- != 0) {
452 		if (fp->actual_length != 0) {
453 			if (fp->offset + fp->actual_length > length)
454 				length = fp->offset + fp->actual_length;
455 		}
456 		fp++;
457 	}
458 	return length;
459 }
460 
461 static void mon_bin_get_isodesc(const struct mon_reader_bin *rp,
462     unsigned int offset, struct urb *urb, char ev_type, unsigned int ndesc)
463 {
464 	struct mon_bin_isodesc *dp;
465 	struct usb_iso_packet_descriptor *fp;
466 
467 	fp = urb->iso_frame_desc;
468 	while (ndesc-- != 0) {
469 		dp = (struct mon_bin_isodesc *)
470 		    (rp->b_vec[offset / CHUNK_SIZE].ptr + offset % CHUNK_SIZE);
471 		dp->iso_status = fp->status;
472 		dp->iso_off = fp->offset;
473 		dp->iso_len = (ev_type == 'S') ? fp->length : fp->actual_length;
474 		dp->_pad = 0;
475 		if ((offset += sizeof(struct mon_bin_isodesc)) >= rp->b_size)
476 			offset = 0;
477 		fp++;
478 	}
479 }
480 
481 static void mon_bin_event(struct mon_reader_bin *rp, struct urb *urb,
482     char ev_type, int status)
483 {
484 	const struct usb_endpoint_descriptor *epd = &urb->ep->desc;
485 	struct timeval ts;
486 	unsigned long flags;
487 	unsigned int urb_length;
488 	unsigned int offset;
489 	unsigned int length;
490 	unsigned int delta;
491 	unsigned int ndesc, lendesc;
492 	unsigned char dir;
493 	struct mon_bin_hdr *ep;
494 	char data_tag = 0;
495 
496 	do_gettimeofday(&ts);
497 
498 	spin_lock_irqsave(&rp->b_lock, flags);
499 
500 	/*
501 	 * Find the maximum allowable length, then allocate space.
502 	 */
503 	urb_length = (ev_type == 'S') ?
504 	    urb->transfer_buffer_length : urb->actual_length;
505 	length = urb_length;
506 
507 	if (usb_endpoint_xfer_isoc(epd)) {
508 		if (urb->number_of_packets < 0) {
509 			ndesc = 0;
510 		} else if (urb->number_of_packets >= ISODESC_MAX) {
511 			ndesc = ISODESC_MAX;
512 		} else {
513 			ndesc = urb->number_of_packets;
514 		}
515 		if (ev_type == 'C' && usb_urb_dir_in(urb))
516 			length = mon_bin_collate_isodesc(rp, urb, ndesc);
517 	} else {
518 		ndesc = 0;
519 	}
520 	lendesc = ndesc*sizeof(struct mon_bin_isodesc);
521 
522 	/* not an issue unless there's a subtle bug in a HCD somewhere */
523 	if (length >= urb->transfer_buffer_length)
524 		length = urb->transfer_buffer_length;
525 
526 	if (length >= rp->b_size/5)
527 		length = rp->b_size/5;
528 
529 	if (usb_urb_dir_in(urb)) {
530 		if (ev_type == 'S') {
531 			length = 0;
532 			data_tag = '<';
533 		}
534 		/* Cannot rely on endpoint number in case of control ep.0 */
535 		dir = USB_DIR_IN;
536 	} else {
537 		if (ev_type == 'C') {
538 			length = 0;
539 			data_tag = '>';
540 		}
541 		dir = 0;
542 	}
543 
544 	if (rp->mmap_active) {
545 		offset = mon_buff_area_alloc_contiguous(rp,
546 						 length + PKT_SIZE + lendesc);
547 	} else {
548 		offset = mon_buff_area_alloc(rp, length + PKT_SIZE + lendesc);
549 	}
550 	if (offset == ~0) {
551 		rp->cnt_lost++;
552 		spin_unlock_irqrestore(&rp->b_lock, flags);
553 		return;
554 	}
555 
556 	ep = MON_OFF2HDR(rp, offset);
557 	if ((offset += PKT_SIZE) >= rp->b_size) offset = 0;
558 
559 	/*
560 	 * Fill the allocated area.
561 	 */
562 	memset(ep, 0, PKT_SIZE);
563 	ep->type = ev_type;
564 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(epd)];
565 	ep->epnum = dir | usb_endpoint_num(epd);
566 	ep->devnum = urb->dev->devnum;
567 	ep->busnum = urb->dev->bus->busnum;
568 	ep->id = (unsigned long) urb;
569 	ep->ts_sec = ts.tv_sec;
570 	ep->ts_usec = ts.tv_usec;
571 	ep->status = status;
572 	ep->len_urb = urb_length;
573 	ep->len_cap = length + lendesc;
574 	ep->xfer_flags = urb->transfer_flags;
575 
576 	if (usb_endpoint_xfer_int(epd)) {
577 		ep->interval = urb->interval;
578 	} else if (usb_endpoint_xfer_isoc(epd)) {
579 		ep->interval = urb->interval;
580 		ep->start_frame = urb->start_frame;
581 		ep->s.iso.error_count = urb->error_count;
582 		ep->s.iso.numdesc = urb->number_of_packets;
583 	}
584 
585 	if (usb_endpoint_xfer_control(epd) && ev_type == 'S') {
586 		ep->flag_setup = mon_bin_get_setup(ep->s.setup, urb, ev_type);
587 	} else {
588 		ep->flag_setup = '-';
589 	}
590 
591 	if (ndesc != 0) {
592 		ep->ndesc = ndesc;
593 		mon_bin_get_isodesc(rp, offset, urb, ev_type, ndesc);
594 		if ((offset += lendesc) >= rp->b_size)
595 			offset -= rp->b_size;
596 	}
597 
598 	if (length != 0) {
599 		length = mon_bin_get_data(rp, offset, urb, length,
600 				&ep->flag_data);
601 		if (length > 0) {
602 			delta = (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
603 			ep->len_cap -= length;
604 			delta -= (ep->len_cap + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
605 			mon_buff_area_shrink(rp, delta);
606 		}
607 	} else {
608 		ep->flag_data = data_tag;
609 	}
610 
611 	spin_unlock_irqrestore(&rp->b_lock, flags);
612 
613 	wake_up(&rp->b_wait);
614 }
615 
616 static void mon_bin_submit(void *data, struct urb *urb)
617 {
618 	struct mon_reader_bin *rp = data;
619 	mon_bin_event(rp, urb, 'S', -EINPROGRESS);
620 }
621 
622 static void mon_bin_complete(void *data, struct urb *urb, int status)
623 {
624 	struct mon_reader_bin *rp = data;
625 	mon_bin_event(rp, urb, 'C', status);
626 }
627 
628 static void mon_bin_error(void *data, struct urb *urb, int error)
629 {
630 	struct mon_reader_bin *rp = data;
631 	struct timeval ts;
632 	unsigned long flags;
633 	unsigned int offset;
634 	struct mon_bin_hdr *ep;
635 
636 	do_gettimeofday(&ts);
637 
638 	spin_lock_irqsave(&rp->b_lock, flags);
639 
640 	offset = mon_buff_area_alloc(rp, PKT_SIZE);
641 	if (offset == ~0) {
642 		/* Not incrementing cnt_lost. Just because. */
643 		spin_unlock_irqrestore(&rp->b_lock, flags);
644 		return;
645 	}
646 
647 	ep = MON_OFF2HDR(rp, offset);
648 
649 	memset(ep, 0, PKT_SIZE);
650 	ep->type = 'E';
651 	ep->xfer_type = xfer_to_pipe[usb_endpoint_type(&urb->ep->desc)];
652 	ep->epnum = usb_urb_dir_in(urb) ? USB_DIR_IN : 0;
653 	ep->epnum |= usb_endpoint_num(&urb->ep->desc);
654 	ep->devnum = urb->dev->devnum;
655 	ep->busnum = urb->dev->bus->busnum;
656 	ep->id = (unsigned long) urb;
657 	ep->ts_sec = ts.tv_sec;
658 	ep->ts_usec = ts.tv_usec;
659 	ep->status = error;
660 
661 	ep->flag_setup = '-';
662 	ep->flag_data = 'E';
663 
664 	spin_unlock_irqrestore(&rp->b_lock, flags);
665 
666 	wake_up(&rp->b_wait);
667 }
668 
669 static int mon_bin_open(struct inode *inode, struct file *file)
670 {
671 	struct mon_bus *mbus;
672 	struct mon_reader_bin *rp;
673 	size_t size;
674 	int rc;
675 
676 	mutex_lock(&mon_lock);
677 	if ((mbus = mon_bus_lookup(iminor(inode))) == NULL) {
678 		mutex_unlock(&mon_lock);
679 		return -ENODEV;
680 	}
681 	if (mbus != &mon_bus0 && mbus->u_bus == NULL) {
682 		printk(KERN_ERR TAG ": consistency error on open\n");
683 		mutex_unlock(&mon_lock);
684 		return -ENODEV;
685 	}
686 
687 	rp = kzalloc(sizeof(struct mon_reader_bin), GFP_KERNEL);
688 	if (rp == NULL) {
689 		rc = -ENOMEM;
690 		goto err_alloc;
691 	}
692 	spin_lock_init(&rp->b_lock);
693 	init_waitqueue_head(&rp->b_wait);
694 	mutex_init(&rp->fetch_lock);
695 	rp->b_size = BUFF_DFL;
696 
697 	size = sizeof(struct mon_pgmap) * (rp->b_size/CHUNK_SIZE);
698 	if ((rp->b_vec = kzalloc(size, GFP_KERNEL)) == NULL) {
699 		rc = -ENOMEM;
700 		goto err_allocvec;
701 	}
702 
703 	if ((rc = mon_alloc_buff(rp->b_vec, rp->b_size/CHUNK_SIZE)) < 0)
704 		goto err_allocbuff;
705 
706 	rp->r.m_bus = mbus;
707 	rp->r.r_data = rp;
708 	rp->r.rnf_submit = mon_bin_submit;
709 	rp->r.rnf_error = mon_bin_error;
710 	rp->r.rnf_complete = mon_bin_complete;
711 
712 	mon_reader_add(mbus, &rp->r);
713 
714 	file->private_data = rp;
715 	mutex_unlock(&mon_lock);
716 	return 0;
717 
718 err_allocbuff:
719 	kfree(rp->b_vec);
720 err_allocvec:
721 	kfree(rp);
722 err_alloc:
723 	mutex_unlock(&mon_lock);
724 	return rc;
725 }
726 
727 /*
728  * Extract an event from buffer and copy it to user space.
729  * Wait if there is no event ready.
730  * Returns zero or error.
731  */
732 static int mon_bin_get_event(struct file *file, struct mon_reader_bin *rp,
733     struct mon_bin_hdr __user *hdr, unsigned int hdrbytes,
734     void __user *data, unsigned int nbytes)
735 {
736 	unsigned long flags;
737 	struct mon_bin_hdr *ep;
738 	size_t step_len;
739 	unsigned int offset;
740 	int rc;
741 
742 	mutex_lock(&rp->fetch_lock);
743 
744 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
745 		mutex_unlock(&rp->fetch_lock);
746 		return rc;
747 	}
748 
749 	ep = MON_OFF2HDR(rp, rp->b_out);
750 
751 	if (copy_to_user(hdr, ep, hdrbytes)) {
752 		mutex_unlock(&rp->fetch_lock);
753 		return -EFAULT;
754 	}
755 
756 	step_len = min(ep->len_cap, nbytes);
757 	if ((offset = rp->b_out + PKT_SIZE) >= rp->b_size) offset = 0;
758 
759 	if (copy_from_buf(rp, offset, data, step_len)) {
760 		mutex_unlock(&rp->fetch_lock);
761 		return -EFAULT;
762 	}
763 
764 	spin_lock_irqsave(&rp->b_lock, flags);
765 	mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
766 	spin_unlock_irqrestore(&rp->b_lock, flags);
767 	rp->b_read = 0;
768 
769 	mutex_unlock(&rp->fetch_lock);
770 	return 0;
771 }
772 
773 static int mon_bin_release(struct inode *inode, struct file *file)
774 {
775 	struct mon_reader_bin *rp = file->private_data;
776 	struct mon_bus* mbus = rp->r.m_bus;
777 
778 	mutex_lock(&mon_lock);
779 
780 	if (mbus->nreaders <= 0) {
781 		printk(KERN_ERR TAG ": consistency error on close\n");
782 		mutex_unlock(&mon_lock);
783 		return 0;
784 	}
785 	mon_reader_del(mbus, &rp->r);
786 
787 	mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
788 	kfree(rp->b_vec);
789 	kfree(rp);
790 
791 	mutex_unlock(&mon_lock);
792 	return 0;
793 }
794 
795 static ssize_t mon_bin_read(struct file *file, char __user *buf,
796     size_t nbytes, loff_t *ppos)
797 {
798 	struct mon_reader_bin *rp = file->private_data;
799 	unsigned int hdrbytes = PKT_SZ_API0;
800 	unsigned long flags;
801 	struct mon_bin_hdr *ep;
802 	unsigned int offset;
803 	size_t step_len;
804 	char *ptr;
805 	ssize_t done = 0;
806 	int rc;
807 
808 	mutex_lock(&rp->fetch_lock);
809 
810 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
811 		mutex_unlock(&rp->fetch_lock);
812 		return rc;
813 	}
814 
815 	ep = MON_OFF2HDR(rp, rp->b_out);
816 
817 	if (rp->b_read < hdrbytes) {
818 		step_len = min(nbytes, (size_t)(hdrbytes - rp->b_read));
819 		ptr = ((char *)ep) + rp->b_read;
820 		if (step_len && copy_to_user(buf, ptr, step_len)) {
821 			mutex_unlock(&rp->fetch_lock);
822 			return -EFAULT;
823 		}
824 		nbytes -= step_len;
825 		buf += step_len;
826 		rp->b_read += step_len;
827 		done += step_len;
828 	}
829 
830 	if (rp->b_read >= hdrbytes) {
831 		step_len = ep->len_cap;
832 		step_len -= rp->b_read - hdrbytes;
833 		if (step_len > nbytes)
834 			step_len = nbytes;
835 		offset = rp->b_out + PKT_SIZE;
836 		offset += rp->b_read - hdrbytes;
837 		if (offset >= rp->b_size)
838 			offset -= rp->b_size;
839 		if (copy_from_buf(rp, offset, buf, step_len)) {
840 			mutex_unlock(&rp->fetch_lock);
841 			return -EFAULT;
842 		}
843 		nbytes -= step_len;
844 		buf += step_len;
845 		rp->b_read += step_len;
846 		done += step_len;
847 	}
848 
849 	/*
850 	 * Check if whole packet was read, and if so, jump to the next one.
851 	 */
852 	if (rp->b_read >= hdrbytes + ep->len_cap) {
853 		spin_lock_irqsave(&rp->b_lock, flags);
854 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
855 		spin_unlock_irqrestore(&rp->b_lock, flags);
856 		rp->b_read = 0;
857 	}
858 
859 	mutex_unlock(&rp->fetch_lock);
860 	return done;
861 }
862 
863 /*
864  * Remove at most nevents from chunked buffer.
865  * Returns the number of removed events.
866  */
867 static int mon_bin_flush(struct mon_reader_bin *rp, unsigned nevents)
868 {
869 	unsigned long flags;
870 	struct mon_bin_hdr *ep;
871 	int i;
872 
873 	mutex_lock(&rp->fetch_lock);
874 	spin_lock_irqsave(&rp->b_lock, flags);
875 	for (i = 0; i < nevents; ++i) {
876 		if (MON_RING_EMPTY(rp))
877 			break;
878 
879 		ep = MON_OFF2HDR(rp, rp->b_out);
880 		mon_buff_area_free(rp, PKT_SIZE + ep->len_cap);
881 	}
882 	spin_unlock_irqrestore(&rp->b_lock, flags);
883 	rp->b_read = 0;
884 	mutex_unlock(&rp->fetch_lock);
885 	return i;
886 }
887 
888 /*
889  * Fetch at most max event offsets into the buffer and put them into vec.
890  * The events are usually freed later with mon_bin_flush.
891  * Return the effective number of events fetched.
892  */
893 static int mon_bin_fetch(struct file *file, struct mon_reader_bin *rp,
894     u32 __user *vec, unsigned int max)
895 {
896 	unsigned int cur_out;
897 	unsigned int bytes, avail;
898 	unsigned int size;
899 	unsigned int nevents;
900 	struct mon_bin_hdr *ep;
901 	unsigned long flags;
902 	int rc;
903 
904 	mutex_lock(&rp->fetch_lock);
905 
906 	if ((rc = mon_bin_wait_event(file, rp)) < 0) {
907 		mutex_unlock(&rp->fetch_lock);
908 		return rc;
909 	}
910 
911 	spin_lock_irqsave(&rp->b_lock, flags);
912 	avail = rp->b_cnt;
913 	spin_unlock_irqrestore(&rp->b_lock, flags);
914 
915 	cur_out = rp->b_out;
916 	nevents = 0;
917 	bytes = 0;
918 	while (bytes < avail) {
919 		if (nevents >= max)
920 			break;
921 
922 		ep = MON_OFF2HDR(rp, cur_out);
923 		if (put_user(cur_out, &vec[nevents])) {
924 			mutex_unlock(&rp->fetch_lock);
925 			return -EFAULT;
926 		}
927 
928 		nevents++;
929 		size = ep->len_cap + PKT_SIZE;
930 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
931 		if ((cur_out += size) >= rp->b_size)
932 			cur_out -= rp->b_size;
933 		bytes += size;
934 	}
935 
936 	mutex_unlock(&rp->fetch_lock);
937 	return nevents;
938 }
939 
940 /*
941  * Count events. This is almost the same as the above mon_bin_fetch,
942  * only we do not store offsets into user vector, and we have no limit.
943  */
944 static int mon_bin_queued(struct mon_reader_bin *rp)
945 {
946 	unsigned int cur_out;
947 	unsigned int bytes, avail;
948 	unsigned int size;
949 	unsigned int nevents;
950 	struct mon_bin_hdr *ep;
951 	unsigned long flags;
952 
953 	mutex_lock(&rp->fetch_lock);
954 
955 	spin_lock_irqsave(&rp->b_lock, flags);
956 	avail = rp->b_cnt;
957 	spin_unlock_irqrestore(&rp->b_lock, flags);
958 
959 	cur_out = rp->b_out;
960 	nevents = 0;
961 	bytes = 0;
962 	while (bytes < avail) {
963 		ep = MON_OFF2HDR(rp, cur_out);
964 
965 		nevents++;
966 		size = ep->len_cap + PKT_SIZE;
967 		size = (size + PKT_ALIGN-1) & ~(PKT_ALIGN-1);
968 		if ((cur_out += size) >= rp->b_size)
969 			cur_out -= rp->b_size;
970 		bytes += size;
971 	}
972 
973 	mutex_unlock(&rp->fetch_lock);
974 	return nevents;
975 }
976 
977 /*
978  */
979 static long mon_bin_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
980 {
981 	struct mon_reader_bin *rp = file->private_data;
982 	// struct mon_bus* mbus = rp->r.m_bus;
983 	int ret = 0;
984 	struct mon_bin_hdr *ep;
985 	unsigned long flags;
986 
987 	switch (cmd) {
988 
989 	case MON_IOCQ_URB_LEN:
990 		/*
991 		 * N.B. This only returns the size of data, without the header.
992 		 */
993 		spin_lock_irqsave(&rp->b_lock, flags);
994 		if (!MON_RING_EMPTY(rp)) {
995 			ep = MON_OFF2HDR(rp, rp->b_out);
996 			ret = ep->len_cap;
997 		}
998 		spin_unlock_irqrestore(&rp->b_lock, flags);
999 		break;
1000 
1001 	case MON_IOCQ_RING_SIZE:
1002 		ret = rp->b_size;
1003 		break;
1004 
1005 	case MON_IOCT_RING_SIZE:
1006 		/*
1007 		 * Changing the buffer size will flush it's contents; the new
1008 		 * buffer is allocated before releasing the old one to be sure
1009 		 * the device will stay functional also in case of memory
1010 		 * pressure.
1011 		 */
1012 		{
1013 		int size;
1014 		struct mon_pgmap *vec;
1015 
1016 		if (arg < BUFF_MIN || arg > BUFF_MAX)
1017 			return -EINVAL;
1018 
1019 		size = CHUNK_ALIGN(arg);
1020 		if ((vec = kzalloc(sizeof(struct mon_pgmap) * (size/CHUNK_SIZE),
1021 		    GFP_KERNEL)) == NULL) {
1022 			ret = -ENOMEM;
1023 			break;
1024 		}
1025 
1026 		ret = mon_alloc_buff(vec, size/CHUNK_SIZE);
1027 		if (ret < 0) {
1028 			kfree(vec);
1029 			break;
1030 		}
1031 
1032 		mutex_lock(&rp->fetch_lock);
1033 		spin_lock_irqsave(&rp->b_lock, flags);
1034 		mon_free_buff(rp->b_vec, rp->b_size/CHUNK_SIZE);
1035 		kfree(rp->b_vec);
1036 		rp->b_vec  = vec;
1037 		rp->b_size = size;
1038 		rp->b_read = rp->b_in = rp->b_out = rp->b_cnt = 0;
1039 		rp->cnt_lost = 0;
1040 		spin_unlock_irqrestore(&rp->b_lock, flags);
1041 		mutex_unlock(&rp->fetch_lock);
1042 		}
1043 		break;
1044 
1045 	case MON_IOCH_MFLUSH:
1046 		ret = mon_bin_flush(rp, arg);
1047 		break;
1048 
1049 	case MON_IOCX_GET:
1050 	case MON_IOCX_GETX:
1051 		{
1052 		struct mon_bin_get getb;
1053 
1054 		if (copy_from_user(&getb, (void __user *)arg,
1055 					    sizeof(struct mon_bin_get)))
1056 			return -EFAULT;
1057 
1058 		if (getb.alloc > 0x10000000)	/* Want to cast to u32 */
1059 			return -EINVAL;
1060 		ret = mon_bin_get_event(file, rp, getb.hdr,
1061 		    (cmd == MON_IOCX_GET)? PKT_SZ_API0: PKT_SZ_API1,
1062 		    getb.data, (unsigned int)getb.alloc);
1063 		}
1064 		break;
1065 
1066 	case MON_IOCX_MFETCH:
1067 		{
1068 		struct mon_bin_mfetch mfetch;
1069 		struct mon_bin_mfetch __user *uptr;
1070 
1071 		uptr = (struct mon_bin_mfetch __user *)arg;
1072 
1073 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1074 			return -EFAULT;
1075 
1076 		if (mfetch.nflush) {
1077 			ret = mon_bin_flush(rp, mfetch.nflush);
1078 			if (ret < 0)
1079 				return ret;
1080 			if (put_user(ret, &uptr->nflush))
1081 				return -EFAULT;
1082 		}
1083 		ret = mon_bin_fetch(file, rp, mfetch.offvec, mfetch.nfetch);
1084 		if (ret < 0)
1085 			return ret;
1086 		if (put_user(ret, &uptr->nfetch))
1087 			return -EFAULT;
1088 		ret = 0;
1089 		}
1090 		break;
1091 
1092 	case MON_IOCG_STATS: {
1093 		struct mon_bin_stats __user *sp;
1094 		unsigned int nevents;
1095 		unsigned int ndropped;
1096 
1097 		spin_lock_irqsave(&rp->b_lock, flags);
1098 		ndropped = rp->cnt_lost;
1099 		rp->cnt_lost = 0;
1100 		spin_unlock_irqrestore(&rp->b_lock, flags);
1101 		nevents = mon_bin_queued(rp);
1102 
1103 		sp = (struct mon_bin_stats __user *)arg;
1104 		if (put_user(rp->cnt_lost, &sp->dropped))
1105 			return -EFAULT;
1106 		if (put_user(nevents, &sp->queued))
1107 			return -EFAULT;
1108 
1109 		}
1110 		break;
1111 
1112 	default:
1113 		return -ENOTTY;
1114 	}
1115 
1116 	return ret;
1117 }
1118 
1119 #ifdef CONFIG_COMPAT
1120 static long mon_bin_compat_ioctl(struct file *file,
1121     unsigned int cmd, unsigned long arg)
1122 {
1123 	struct mon_reader_bin *rp = file->private_data;
1124 	int ret;
1125 
1126 	switch (cmd) {
1127 
1128 	case MON_IOCX_GET32:
1129 	case MON_IOCX_GETX32:
1130 		{
1131 		struct mon_bin_get32 getb;
1132 
1133 		if (copy_from_user(&getb, (void __user *)arg,
1134 					    sizeof(struct mon_bin_get32)))
1135 			return -EFAULT;
1136 
1137 		ret = mon_bin_get_event(file, rp, compat_ptr(getb.hdr32),
1138 		    (cmd == MON_IOCX_GET32)? PKT_SZ_API0: PKT_SZ_API1,
1139 		    compat_ptr(getb.data32), getb.alloc32);
1140 		if (ret < 0)
1141 			return ret;
1142 		}
1143 		return 0;
1144 
1145 	case MON_IOCX_MFETCH32:
1146 		{
1147 		struct mon_bin_mfetch32 mfetch;
1148 		struct mon_bin_mfetch32 __user *uptr;
1149 
1150 		uptr = (struct mon_bin_mfetch32 __user *) compat_ptr(arg);
1151 
1152 		if (copy_from_user(&mfetch, uptr, sizeof(mfetch)))
1153 			return -EFAULT;
1154 
1155 		if (mfetch.nflush32) {
1156 			ret = mon_bin_flush(rp, mfetch.nflush32);
1157 			if (ret < 0)
1158 				return ret;
1159 			if (put_user(ret, &uptr->nflush32))
1160 				return -EFAULT;
1161 		}
1162 		ret = mon_bin_fetch(file, rp, compat_ptr(mfetch.offvec32),
1163 		    mfetch.nfetch32);
1164 		if (ret < 0)
1165 			return ret;
1166 		if (put_user(ret, &uptr->nfetch32))
1167 			return -EFAULT;
1168 		}
1169 		return 0;
1170 
1171 	case MON_IOCG_STATS:
1172 		return mon_bin_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
1173 
1174 	case MON_IOCQ_URB_LEN:
1175 	case MON_IOCQ_RING_SIZE:
1176 	case MON_IOCT_RING_SIZE:
1177 	case MON_IOCH_MFLUSH:
1178 		return mon_bin_ioctl(file, cmd, arg);
1179 
1180 	default:
1181 		;
1182 	}
1183 	return -ENOTTY;
1184 }
1185 #endif /* CONFIG_COMPAT */
1186 
1187 static unsigned int
1188 mon_bin_poll(struct file *file, struct poll_table_struct *wait)
1189 {
1190 	struct mon_reader_bin *rp = file->private_data;
1191 	unsigned int mask = 0;
1192 	unsigned long flags;
1193 
1194 	if (file->f_mode & FMODE_READ)
1195 		poll_wait(file, &rp->b_wait, wait);
1196 
1197 	spin_lock_irqsave(&rp->b_lock, flags);
1198 	if (!MON_RING_EMPTY(rp))
1199 		mask |= POLLIN | POLLRDNORM;    /* readable */
1200 	spin_unlock_irqrestore(&rp->b_lock, flags);
1201 	return mask;
1202 }
1203 
1204 /*
1205  * open and close: just keep track of how many times the device is
1206  * mapped, to use the proper memory allocation function.
1207  */
1208 static void mon_bin_vma_open(struct vm_area_struct *vma)
1209 {
1210 	struct mon_reader_bin *rp = vma->vm_private_data;
1211 	rp->mmap_active++;
1212 }
1213 
1214 static void mon_bin_vma_close(struct vm_area_struct *vma)
1215 {
1216 	struct mon_reader_bin *rp = vma->vm_private_data;
1217 	rp->mmap_active--;
1218 }
1219 
1220 /*
1221  * Map ring pages to user space.
1222  */
1223 static int mon_bin_vma_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1224 {
1225 	struct mon_reader_bin *rp = vma->vm_private_data;
1226 	unsigned long offset, chunk_idx;
1227 	struct page *pageptr;
1228 
1229 	offset = vmf->pgoff << PAGE_SHIFT;
1230 	if (offset >= rp->b_size)
1231 		return VM_FAULT_SIGBUS;
1232 	chunk_idx = offset / CHUNK_SIZE;
1233 	pageptr = rp->b_vec[chunk_idx].pg;
1234 	get_page(pageptr);
1235 	vmf->page = pageptr;
1236 	return 0;
1237 }
1238 
1239 static const struct vm_operations_struct mon_bin_vm_ops = {
1240 	.open =     mon_bin_vma_open,
1241 	.close =    mon_bin_vma_close,
1242 	.fault =    mon_bin_vma_fault,
1243 };
1244 
1245 static int mon_bin_mmap(struct file *filp, struct vm_area_struct *vma)
1246 {
1247 	/* don't do anything here: "fault" will set up page table entries */
1248 	vma->vm_ops = &mon_bin_vm_ops;
1249 	vma->vm_flags |= VM_RESERVED;
1250 	vma->vm_private_data = filp->private_data;
1251 	mon_bin_vma_open(vma);
1252 	return 0;
1253 }
1254 
1255 static const struct file_operations mon_fops_binary = {
1256 	.owner =	THIS_MODULE,
1257 	.open =		mon_bin_open,
1258 	.llseek =	no_llseek,
1259 	.read =		mon_bin_read,
1260 	/* .write =	mon_text_write, */
1261 	.poll =		mon_bin_poll,
1262 	.unlocked_ioctl = mon_bin_ioctl,
1263 #ifdef CONFIG_COMPAT
1264 	.compat_ioctl =	mon_bin_compat_ioctl,
1265 #endif
1266 	.release =	mon_bin_release,
1267 	.mmap =		mon_bin_mmap,
1268 };
1269 
1270 static int mon_bin_wait_event(struct file *file, struct mon_reader_bin *rp)
1271 {
1272 	DECLARE_WAITQUEUE(waita, current);
1273 	unsigned long flags;
1274 
1275 	add_wait_queue(&rp->b_wait, &waita);
1276 	set_current_state(TASK_INTERRUPTIBLE);
1277 
1278 	spin_lock_irqsave(&rp->b_lock, flags);
1279 	while (MON_RING_EMPTY(rp)) {
1280 		spin_unlock_irqrestore(&rp->b_lock, flags);
1281 
1282 		if (file->f_flags & O_NONBLOCK) {
1283 			set_current_state(TASK_RUNNING);
1284 			remove_wait_queue(&rp->b_wait, &waita);
1285 			return -EWOULDBLOCK; /* Same as EAGAIN in Linux */
1286 		}
1287 		schedule();
1288 		if (signal_pending(current)) {
1289 			remove_wait_queue(&rp->b_wait, &waita);
1290 			return -EINTR;
1291 		}
1292 		set_current_state(TASK_INTERRUPTIBLE);
1293 
1294 		spin_lock_irqsave(&rp->b_lock, flags);
1295 	}
1296 	spin_unlock_irqrestore(&rp->b_lock, flags);
1297 
1298 	set_current_state(TASK_RUNNING);
1299 	remove_wait_queue(&rp->b_wait, &waita);
1300 	return 0;
1301 }
1302 
1303 static int mon_alloc_buff(struct mon_pgmap *map, int npages)
1304 {
1305 	int n;
1306 	unsigned long vaddr;
1307 
1308 	for (n = 0; n < npages; n++) {
1309 		vaddr = get_zeroed_page(GFP_KERNEL);
1310 		if (vaddr == 0) {
1311 			while (n-- != 0)
1312 				free_page((unsigned long) map[n].ptr);
1313 			return -ENOMEM;
1314 		}
1315 		map[n].ptr = (unsigned char *) vaddr;
1316 		map[n].pg = virt_to_page((void *) vaddr);
1317 	}
1318 	return 0;
1319 }
1320 
1321 static void mon_free_buff(struct mon_pgmap *map, int npages)
1322 {
1323 	int n;
1324 
1325 	for (n = 0; n < npages; n++)
1326 		free_page((unsigned long) map[n].ptr);
1327 }
1328 
1329 int mon_bin_add(struct mon_bus *mbus, const struct usb_bus *ubus)
1330 {
1331 	struct device *dev;
1332 	unsigned minor = ubus? ubus->busnum: 0;
1333 
1334 	if (minor >= MON_BIN_MAX_MINOR)
1335 		return 0;
1336 
1337 	dev = device_create(mon_bin_class, ubus ? ubus->controller : NULL,
1338 			    MKDEV(MAJOR(mon_bin_dev0), minor), NULL,
1339 			    "usbmon%d", minor);
1340 	if (IS_ERR(dev))
1341 		return 0;
1342 
1343 	mbus->classdev = dev;
1344 	return 1;
1345 }
1346 
1347 void mon_bin_del(struct mon_bus *mbus)
1348 {
1349 	device_destroy(mon_bin_class, mbus->classdev->devt);
1350 }
1351 
1352 int __init mon_bin_init(void)
1353 {
1354 	int rc;
1355 
1356 	mon_bin_class = class_create(THIS_MODULE, "usbmon");
1357 	if (IS_ERR(mon_bin_class)) {
1358 		rc = PTR_ERR(mon_bin_class);
1359 		goto err_class;
1360 	}
1361 
1362 	rc = alloc_chrdev_region(&mon_bin_dev0, 0, MON_BIN_MAX_MINOR, "usbmon");
1363 	if (rc < 0)
1364 		goto err_dev;
1365 
1366 	cdev_init(&mon_bin_cdev, &mon_fops_binary);
1367 	mon_bin_cdev.owner = THIS_MODULE;
1368 
1369 	rc = cdev_add(&mon_bin_cdev, mon_bin_dev0, MON_BIN_MAX_MINOR);
1370 	if (rc < 0)
1371 		goto err_add;
1372 
1373 	return 0;
1374 
1375 err_add:
1376 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1377 err_dev:
1378 	class_destroy(mon_bin_class);
1379 err_class:
1380 	return rc;
1381 }
1382 
1383 void mon_bin_exit(void)
1384 {
1385 	cdev_del(&mon_bin_cdev);
1386 	unregister_chrdev_region(mon_bin_dev0, MON_BIN_MAX_MINOR);
1387 	class_destroy(mon_bin_class);
1388 }
1389