xref: /linux/drivers/usb/host/xhci.c (revision 3bdab16c55f57a24245c97d707241dd9b48d1a91)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/pci.h>
12 #include <linux/iopoll.h>
13 #include <linux/irq.h>
14 #include <linux/log2.h>
15 #include <linux/module.h>
16 #include <linux/moduleparam.h>
17 #include <linux/slab.h>
18 #include <linux/dmi.h>
19 #include <linux/dma-mapping.h>
20 
21 #include "xhci.h"
22 #include "xhci-trace.h"
23 #include "xhci-mtk.h"
24 #include "xhci-debugfs.h"
25 #include "xhci-dbgcap.h"
26 
27 #define DRIVER_AUTHOR "Sarah Sharp"
28 #define DRIVER_DESC "'eXtensible' Host Controller (xHC) Driver"
29 
30 #define	PORT_WAKE_BITS	(PORT_WKOC_E | PORT_WKDISC_E | PORT_WKCONN_E)
31 
32 /* Some 0.95 hardware can't handle the chain bit on a Link TRB being cleared */
33 static int link_quirk;
34 module_param(link_quirk, int, S_IRUGO | S_IWUSR);
35 MODULE_PARM_DESC(link_quirk, "Don't clear the chain bit on a link TRB");
36 
37 static unsigned long long quirks;
38 module_param(quirks, ullong, S_IRUGO);
39 MODULE_PARM_DESC(quirks, "Bit flags for quirks to be enabled as default");
40 
41 static bool td_on_ring(struct xhci_td *td, struct xhci_ring *ring)
42 {
43 	struct xhci_segment *seg = ring->first_seg;
44 
45 	if (!td || !td->start_seg)
46 		return false;
47 	do {
48 		if (seg == td->start_seg)
49 			return true;
50 		seg = seg->next;
51 	} while (seg && seg != ring->first_seg);
52 
53 	return false;
54 }
55 
56 /*
57  * xhci_handshake - spin reading hc until handshake completes or fails
58  * @ptr: address of hc register to be read
59  * @mask: bits to look at in result of read
60  * @done: value of those bits when handshake succeeds
61  * @usec: timeout in microseconds
62  *
63  * Returns negative errno, or zero on success
64  *
65  * Success happens when the "mask" bits have the specified value (hardware
66  * handshake done).  There are two failure modes:  "usec" have passed (major
67  * hardware flakeout), or the register reads as all-ones (hardware removed).
68  */
69 int xhci_handshake(void __iomem *ptr, u32 mask, u32 done, int usec)
70 {
71 	u32	result;
72 	int	ret;
73 
74 	ret = readl_poll_timeout_atomic(ptr, result,
75 					(result & mask) == done ||
76 					result == U32_MAX,
77 					1, usec);
78 	if (result == U32_MAX)		/* card removed */
79 		return -ENODEV;
80 
81 	return ret;
82 }
83 
84 /*
85  * Disable interrupts and begin the xHCI halting process.
86  */
87 void xhci_quiesce(struct xhci_hcd *xhci)
88 {
89 	u32 halted;
90 	u32 cmd;
91 	u32 mask;
92 
93 	mask = ~(XHCI_IRQS);
94 	halted = readl(&xhci->op_regs->status) & STS_HALT;
95 	if (!halted)
96 		mask &= ~CMD_RUN;
97 
98 	cmd = readl(&xhci->op_regs->command);
99 	cmd &= mask;
100 	writel(cmd, &xhci->op_regs->command);
101 }
102 
103 /*
104  * Force HC into halt state.
105  *
106  * Disable any IRQs and clear the run/stop bit.
107  * HC will complete any current and actively pipelined transactions, and
108  * should halt within 16 ms of the run/stop bit being cleared.
109  * Read HC Halted bit in the status register to see when the HC is finished.
110  */
111 int xhci_halt(struct xhci_hcd *xhci)
112 {
113 	int ret;
114 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Halt the HC");
115 	xhci_quiesce(xhci);
116 
117 	ret = xhci_handshake(&xhci->op_regs->status,
118 			STS_HALT, STS_HALT, XHCI_MAX_HALT_USEC);
119 	if (ret) {
120 		xhci_warn(xhci, "Host halt failed, %d\n", ret);
121 		return ret;
122 	}
123 	xhci->xhc_state |= XHCI_STATE_HALTED;
124 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
125 	return ret;
126 }
127 
128 /*
129  * Set the run bit and wait for the host to be running.
130  */
131 int xhci_start(struct xhci_hcd *xhci)
132 {
133 	u32 temp;
134 	int ret;
135 
136 	temp = readl(&xhci->op_regs->command);
137 	temp |= (CMD_RUN);
138 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Turn on HC, cmd = 0x%x.",
139 			temp);
140 	writel(temp, &xhci->op_regs->command);
141 
142 	/*
143 	 * Wait for the HCHalted Status bit to be 0 to indicate the host is
144 	 * running.
145 	 */
146 	ret = xhci_handshake(&xhci->op_regs->status,
147 			STS_HALT, 0, XHCI_MAX_HALT_USEC);
148 	if (ret == -ETIMEDOUT)
149 		xhci_err(xhci, "Host took too long to start, "
150 				"waited %u microseconds.\n",
151 				XHCI_MAX_HALT_USEC);
152 	if (!ret)
153 		/* clear state flags. Including dying, halted or removing */
154 		xhci->xhc_state = 0;
155 
156 	return ret;
157 }
158 
159 /*
160  * Reset a halted HC.
161  *
162  * This resets pipelines, timers, counters, state machines, etc.
163  * Transactions will be terminated immediately, and operational registers
164  * will be set to their defaults.
165  */
166 int xhci_reset(struct xhci_hcd *xhci)
167 {
168 	u32 command;
169 	u32 state;
170 	int ret;
171 
172 	state = readl(&xhci->op_regs->status);
173 
174 	if (state == ~(u32)0) {
175 		xhci_warn(xhci, "Host not accessible, reset failed.\n");
176 		return -ENODEV;
177 	}
178 
179 	if ((state & STS_HALT) == 0) {
180 		xhci_warn(xhci, "Host controller not halted, aborting reset.\n");
181 		return 0;
182 	}
183 
184 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Reset the HC");
185 	command = readl(&xhci->op_regs->command);
186 	command |= CMD_RESET;
187 	writel(command, &xhci->op_regs->command);
188 
189 	/* Existing Intel xHCI controllers require a delay of 1 mS,
190 	 * after setting the CMD_RESET bit, and before accessing any
191 	 * HC registers. This allows the HC to complete the
192 	 * reset operation and be ready for HC register access.
193 	 * Without this delay, the subsequent HC register access,
194 	 * may result in a system hang very rarely.
195 	 */
196 	if (xhci->quirks & XHCI_INTEL_HOST)
197 		udelay(1000);
198 
199 	ret = xhci_handshake(&xhci->op_regs->command,
200 			CMD_RESET, 0, 10 * 1000 * 1000);
201 	if (ret)
202 		return ret;
203 
204 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
205 		usb_asmedia_modifyflowcontrol(to_pci_dev(xhci_to_hcd(xhci)->self.controller));
206 
207 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
208 			 "Wait for controller to be ready for doorbell rings");
209 	/*
210 	 * xHCI cannot write to any doorbells or operational registers other
211 	 * than status until the "Controller Not Ready" flag is cleared.
212 	 */
213 	ret = xhci_handshake(&xhci->op_regs->status,
214 			STS_CNR, 0, 10 * 1000 * 1000);
215 
216 	xhci->usb2_rhub.bus_state.port_c_suspend = 0;
217 	xhci->usb2_rhub.bus_state.suspended_ports = 0;
218 	xhci->usb2_rhub.bus_state.resuming_ports = 0;
219 	xhci->usb3_rhub.bus_state.port_c_suspend = 0;
220 	xhci->usb3_rhub.bus_state.suspended_ports = 0;
221 	xhci->usb3_rhub.bus_state.resuming_ports = 0;
222 
223 	return ret;
224 }
225 
226 static void xhci_zero_64b_regs(struct xhci_hcd *xhci)
227 {
228 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
229 	int err, i;
230 	u64 val;
231 
232 	/*
233 	 * Some Renesas controllers get into a weird state if they are
234 	 * reset while programmed with 64bit addresses (they will preserve
235 	 * the top half of the address in internal, non visible
236 	 * registers). You end up with half the address coming from the
237 	 * kernel, and the other half coming from the firmware. Also,
238 	 * changing the programming leads to extra accesses even if the
239 	 * controller is supposed to be halted. The controller ends up with
240 	 * a fatal fault, and is then ripe for being properly reset.
241 	 *
242 	 * Special care is taken to only apply this if the device is behind
243 	 * an iommu. Doing anything when there is no iommu is definitely
244 	 * unsafe...
245 	 */
246 	if (!(xhci->quirks & XHCI_ZERO_64B_REGS) || !device_iommu_mapped(dev))
247 		return;
248 
249 	xhci_info(xhci, "Zeroing 64bit base registers, expecting fault\n");
250 
251 	/* Clear HSEIE so that faults do not get signaled */
252 	val = readl(&xhci->op_regs->command);
253 	val &= ~CMD_HSEIE;
254 	writel(val, &xhci->op_regs->command);
255 
256 	/* Clear HSE (aka FATAL) */
257 	val = readl(&xhci->op_regs->status);
258 	val |= STS_FATAL;
259 	writel(val, &xhci->op_regs->status);
260 
261 	/* Now zero the registers, and brace for impact */
262 	val = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
263 	if (upper_32_bits(val))
264 		xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
265 	val = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
266 	if (upper_32_bits(val))
267 		xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
268 
269 	for (i = 0; i < HCS_MAX_INTRS(xhci->hcs_params1); i++) {
270 		struct xhci_intr_reg __iomem *ir;
271 
272 		ir = &xhci->run_regs->ir_set[i];
273 		val = xhci_read_64(xhci, &ir->erst_base);
274 		if (upper_32_bits(val))
275 			xhci_write_64(xhci, 0, &ir->erst_base);
276 		val= xhci_read_64(xhci, &ir->erst_dequeue);
277 		if (upper_32_bits(val))
278 			xhci_write_64(xhci, 0, &ir->erst_dequeue);
279 	}
280 
281 	/* Wait for the fault to appear. It will be cleared on reset */
282 	err = xhci_handshake(&xhci->op_regs->status,
283 			     STS_FATAL, STS_FATAL,
284 			     XHCI_MAX_HALT_USEC);
285 	if (!err)
286 		xhci_info(xhci, "Fault detected\n");
287 }
288 
289 #ifdef CONFIG_USB_PCI
290 /*
291  * Set up MSI
292  */
293 static int xhci_setup_msi(struct xhci_hcd *xhci)
294 {
295 	int ret;
296 	/*
297 	 * TODO:Check with MSI Soc for sysdev
298 	 */
299 	struct pci_dev  *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
300 
301 	ret = pci_alloc_irq_vectors(pdev, 1, 1, PCI_IRQ_MSI);
302 	if (ret < 0) {
303 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
304 				"failed to allocate MSI entry");
305 		return ret;
306 	}
307 
308 	ret = request_irq(pdev->irq, xhci_msi_irq,
309 				0, "xhci_hcd", xhci_to_hcd(xhci));
310 	if (ret) {
311 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
312 				"disable MSI interrupt");
313 		pci_free_irq_vectors(pdev);
314 	}
315 
316 	return ret;
317 }
318 
319 /*
320  * Set up MSI-X
321  */
322 static int xhci_setup_msix(struct xhci_hcd *xhci)
323 {
324 	int i, ret = 0;
325 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
326 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
327 
328 	/*
329 	 * calculate number of msi-x vectors supported.
330 	 * - HCS_MAX_INTRS: the max number of interrupts the host can handle,
331 	 *   with max number of interrupters based on the xhci HCSPARAMS1.
332 	 * - num_online_cpus: maximum msi-x vectors per CPUs core.
333 	 *   Add additional 1 vector to ensure always available interrupt.
334 	 */
335 	xhci->msix_count = min(num_online_cpus() + 1,
336 				HCS_MAX_INTRS(xhci->hcs_params1));
337 
338 	ret = pci_alloc_irq_vectors(pdev, xhci->msix_count, xhci->msix_count,
339 			PCI_IRQ_MSIX);
340 	if (ret < 0) {
341 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
342 				"Failed to enable MSI-X");
343 		return ret;
344 	}
345 
346 	for (i = 0; i < xhci->msix_count; i++) {
347 		ret = request_irq(pci_irq_vector(pdev, i), xhci_msi_irq, 0,
348 				"xhci_hcd", xhci_to_hcd(xhci));
349 		if (ret)
350 			goto disable_msix;
351 	}
352 
353 	hcd->msix_enabled = 1;
354 	return ret;
355 
356 disable_msix:
357 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "disable MSI-X interrupt");
358 	while (--i >= 0)
359 		free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
360 	pci_free_irq_vectors(pdev);
361 	return ret;
362 }
363 
364 /* Free any IRQs and disable MSI-X */
365 static void xhci_cleanup_msix(struct xhci_hcd *xhci)
366 {
367 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
368 	struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
369 
370 	if (xhci->quirks & XHCI_PLAT)
371 		return;
372 
373 	/* return if using legacy interrupt */
374 	if (hcd->irq > 0)
375 		return;
376 
377 	if (hcd->msix_enabled) {
378 		int i;
379 
380 		for (i = 0; i < xhci->msix_count; i++)
381 			free_irq(pci_irq_vector(pdev, i), xhci_to_hcd(xhci));
382 	} else {
383 		free_irq(pci_irq_vector(pdev, 0), xhci_to_hcd(xhci));
384 	}
385 
386 	pci_free_irq_vectors(pdev);
387 	hcd->msix_enabled = 0;
388 }
389 
390 static void __maybe_unused xhci_msix_sync_irqs(struct xhci_hcd *xhci)
391 {
392 	struct usb_hcd *hcd = xhci_to_hcd(xhci);
393 
394 	if (hcd->msix_enabled) {
395 		struct pci_dev *pdev = to_pci_dev(hcd->self.controller);
396 		int i;
397 
398 		for (i = 0; i < xhci->msix_count; i++)
399 			synchronize_irq(pci_irq_vector(pdev, i));
400 	}
401 }
402 
403 static int xhci_try_enable_msi(struct usb_hcd *hcd)
404 {
405 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
406 	struct pci_dev  *pdev;
407 	int ret;
408 
409 	/* The xhci platform device has set up IRQs through usb_add_hcd. */
410 	if (xhci->quirks & XHCI_PLAT)
411 		return 0;
412 
413 	pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
414 	/*
415 	 * Some Fresco Logic host controllers advertise MSI, but fail to
416 	 * generate interrupts.  Don't even try to enable MSI.
417 	 */
418 	if (xhci->quirks & XHCI_BROKEN_MSI)
419 		goto legacy_irq;
420 
421 	/* unregister the legacy interrupt */
422 	if (hcd->irq)
423 		free_irq(hcd->irq, hcd);
424 	hcd->irq = 0;
425 
426 	ret = xhci_setup_msix(xhci);
427 	if (ret)
428 		/* fall back to msi*/
429 		ret = xhci_setup_msi(xhci);
430 
431 	if (!ret) {
432 		hcd->msi_enabled = 1;
433 		return 0;
434 	}
435 
436 	if (!pdev->irq) {
437 		xhci_err(xhci, "No msi-x/msi found and no IRQ in BIOS\n");
438 		return -EINVAL;
439 	}
440 
441  legacy_irq:
442 	if (!strlen(hcd->irq_descr))
443 		snprintf(hcd->irq_descr, sizeof(hcd->irq_descr), "%s:usb%d",
444 			 hcd->driver->description, hcd->self.busnum);
445 
446 	/* fall back to legacy interrupt*/
447 	ret = request_irq(pdev->irq, &usb_hcd_irq, IRQF_SHARED,
448 			hcd->irq_descr, hcd);
449 	if (ret) {
450 		xhci_err(xhci, "request interrupt %d failed\n",
451 				pdev->irq);
452 		return ret;
453 	}
454 	hcd->irq = pdev->irq;
455 	return 0;
456 }
457 
458 #else
459 
460 static inline int xhci_try_enable_msi(struct usb_hcd *hcd)
461 {
462 	return 0;
463 }
464 
465 static inline void xhci_cleanup_msix(struct xhci_hcd *xhci)
466 {
467 }
468 
469 static inline void xhci_msix_sync_irqs(struct xhci_hcd *xhci)
470 {
471 }
472 
473 #endif
474 
475 static void compliance_mode_recovery(struct timer_list *t)
476 {
477 	struct xhci_hcd *xhci;
478 	struct usb_hcd *hcd;
479 	struct xhci_hub *rhub;
480 	u32 temp;
481 	int i;
482 
483 	xhci = from_timer(xhci, t, comp_mode_recovery_timer);
484 	rhub = &xhci->usb3_rhub;
485 
486 	for (i = 0; i < rhub->num_ports; i++) {
487 		temp = readl(rhub->ports[i]->addr);
488 		if ((temp & PORT_PLS_MASK) == USB_SS_PORT_LS_COMP_MOD) {
489 			/*
490 			 * Compliance Mode Detected. Letting USB Core
491 			 * handle the Warm Reset
492 			 */
493 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
494 					"Compliance mode detected->port %d",
495 					i + 1);
496 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
497 					"Attempting compliance mode recovery");
498 			hcd = xhci->shared_hcd;
499 
500 			if (hcd->state == HC_STATE_SUSPENDED)
501 				usb_hcd_resume_root_hub(hcd);
502 
503 			usb_hcd_poll_rh_status(hcd);
504 		}
505 	}
506 
507 	if (xhci->port_status_u0 != ((1 << rhub->num_ports) - 1))
508 		mod_timer(&xhci->comp_mode_recovery_timer,
509 			jiffies + msecs_to_jiffies(COMP_MODE_RCVRY_MSECS));
510 }
511 
512 /*
513  * Quirk to work around issue generated by the SN65LVPE502CP USB3.0 re-driver
514  * that causes ports behind that hardware to enter compliance mode sometimes.
515  * The quirk creates a timer that polls every 2 seconds the link state of
516  * each host controller's port and recovers it by issuing a Warm reset
517  * if Compliance mode is detected, otherwise the port will become "dead" (no
518  * device connections or disconnections will be detected anymore). Becasue no
519  * status event is generated when entering compliance mode (per xhci spec),
520  * this quirk is needed on systems that have the failing hardware installed.
521  */
522 static void compliance_mode_recovery_timer_init(struct xhci_hcd *xhci)
523 {
524 	xhci->port_status_u0 = 0;
525 	timer_setup(&xhci->comp_mode_recovery_timer, compliance_mode_recovery,
526 		    0);
527 	xhci->comp_mode_recovery_timer.expires = jiffies +
528 			msecs_to_jiffies(COMP_MODE_RCVRY_MSECS);
529 
530 	add_timer(&xhci->comp_mode_recovery_timer);
531 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
532 			"Compliance mode recovery timer initialized");
533 }
534 
535 /*
536  * This function identifies the systems that have installed the SN65LVPE502CP
537  * USB3.0 re-driver and that need the Compliance Mode Quirk.
538  * Systems:
539  * Vendor: Hewlett-Packard -> System Models: Z420, Z620 and Z820
540  */
541 static bool xhci_compliance_mode_recovery_timer_quirk_check(void)
542 {
543 	const char *dmi_product_name, *dmi_sys_vendor;
544 
545 	dmi_product_name = dmi_get_system_info(DMI_PRODUCT_NAME);
546 	dmi_sys_vendor = dmi_get_system_info(DMI_SYS_VENDOR);
547 	if (!dmi_product_name || !dmi_sys_vendor)
548 		return false;
549 
550 	if (!(strstr(dmi_sys_vendor, "Hewlett-Packard")))
551 		return false;
552 
553 	if (strstr(dmi_product_name, "Z420") ||
554 			strstr(dmi_product_name, "Z620") ||
555 			strstr(dmi_product_name, "Z820") ||
556 			strstr(dmi_product_name, "Z1 Workstation"))
557 		return true;
558 
559 	return false;
560 }
561 
562 static int xhci_all_ports_seen_u0(struct xhci_hcd *xhci)
563 {
564 	return (xhci->port_status_u0 == ((1 << xhci->usb3_rhub.num_ports) - 1));
565 }
566 
567 
568 /*
569  * Initialize memory for HCD and xHC (one-time init).
570  *
571  * Program the PAGESIZE register, initialize the device context array, create
572  * device contexts (?), set up a command ring segment (or two?), create event
573  * ring (one for now).
574  */
575 static int xhci_init(struct usb_hcd *hcd)
576 {
577 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
578 	int retval = 0;
579 
580 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_init");
581 	spin_lock_init(&xhci->lock);
582 	if (xhci->hci_version == 0x95 && link_quirk) {
583 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
584 				"QUIRK: Not clearing Link TRB chain bits.");
585 		xhci->quirks |= XHCI_LINK_TRB_QUIRK;
586 	} else {
587 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
588 				"xHCI doesn't need link TRB QUIRK");
589 	}
590 	retval = xhci_mem_init(xhci, GFP_KERNEL);
591 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Finished xhci_init");
592 
593 	/* Initializing Compliance Mode Recovery Data If Needed */
594 	if (xhci_compliance_mode_recovery_timer_quirk_check()) {
595 		xhci->quirks |= XHCI_COMP_MODE_QUIRK;
596 		compliance_mode_recovery_timer_init(xhci);
597 	}
598 
599 	return retval;
600 }
601 
602 /*-------------------------------------------------------------------------*/
603 
604 
605 static int xhci_run_finished(struct xhci_hcd *xhci)
606 {
607 	if (xhci_start(xhci)) {
608 		xhci_halt(xhci);
609 		return -ENODEV;
610 	}
611 	xhci->shared_hcd->state = HC_STATE_RUNNING;
612 	xhci->cmd_ring_state = CMD_RING_STATE_RUNNING;
613 
614 	if (xhci->quirks & XHCI_NEC_HOST)
615 		xhci_ring_cmd_db(xhci);
616 
617 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
618 			"Finished xhci_run for USB3 roothub");
619 	return 0;
620 }
621 
622 /*
623  * Start the HC after it was halted.
624  *
625  * This function is called by the USB core when the HC driver is added.
626  * Its opposite is xhci_stop().
627  *
628  * xhci_init() must be called once before this function can be called.
629  * Reset the HC, enable device slot contexts, program DCBAAP, and
630  * set command ring pointer and event ring pointer.
631  *
632  * Setup MSI-X vectors and enable interrupts.
633  */
634 int xhci_run(struct usb_hcd *hcd)
635 {
636 	u32 temp;
637 	u64 temp_64;
638 	int ret;
639 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
640 
641 	/* Start the xHCI host controller running only after the USB 2.0 roothub
642 	 * is setup.
643 	 */
644 
645 	hcd->uses_new_polling = 1;
646 	if (!usb_hcd_is_primary_hcd(hcd))
647 		return xhci_run_finished(xhci);
648 
649 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "xhci_run");
650 
651 	ret = xhci_try_enable_msi(hcd);
652 	if (ret)
653 		return ret;
654 
655 	temp_64 = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
656 	temp_64 &= ~ERST_PTR_MASK;
657 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
658 			"ERST deq = 64'h%0lx", (long unsigned int) temp_64);
659 
660 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
661 			"// Set the interrupt modulation register");
662 	temp = readl(&xhci->ir_set->irq_control);
663 	temp &= ~ER_IRQ_INTERVAL_MASK;
664 	temp |= (xhci->imod_interval / 250) & ER_IRQ_INTERVAL_MASK;
665 	writel(temp, &xhci->ir_set->irq_control);
666 
667 	/* Set the HCD state before we enable the irqs */
668 	temp = readl(&xhci->op_regs->command);
669 	temp |= (CMD_EIE);
670 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
671 			"// Enable interrupts, cmd = 0x%x.", temp);
672 	writel(temp, &xhci->op_regs->command);
673 
674 	temp = readl(&xhci->ir_set->irq_pending);
675 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
676 			"// Enabling event ring interrupter %p by writing 0x%x to irq_pending",
677 			xhci->ir_set, (unsigned int) ER_IRQ_ENABLE(temp));
678 	writel(ER_IRQ_ENABLE(temp), &xhci->ir_set->irq_pending);
679 
680 	if (xhci->quirks & XHCI_NEC_HOST) {
681 		struct xhci_command *command;
682 
683 		command = xhci_alloc_command(xhci, false, GFP_KERNEL);
684 		if (!command)
685 			return -ENOMEM;
686 
687 		ret = xhci_queue_vendor_command(xhci, command, 0, 0, 0,
688 				TRB_TYPE(TRB_NEC_GET_FW));
689 		if (ret)
690 			xhci_free_command(xhci, command);
691 	}
692 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
693 			"Finished xhci_run for USB2 roothub");
694 
695 	xhci_dbc_init(xhci);
696 
697 	xhci_debugfs_init(xhci);
698 
699 	return 0;
700 }
701 EXPORT_SYMBOL_GPL(xhci_run);
702 
703 /*
704  * Stop xHCI driver.
705  *
706  * This function is called by the USB core when the HC driver is removed.
707  * Its opposite is xhci_run().
708  *
709  * Disable device contexts, disable IRQs, and quiesce the HC.
710  * Reset the HC, finish any completed transactions, and cleanup memory.
711  */
712 static void xhci_stop(struct usb_hcd *hcd)
713 {
714 	u32 temp;
715 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
716 
717 	mutex_lock(&xhci->mutex);
718 
719 	/* Only halt host and free memory after both hcds are removed */
720 	if (!usb_hcd_is_primary_hcd(hcd)) {
721 		mutex_unlock(&xhci->mutex);
722 		return;
723 	}
724 
725 	xhci_dbc_exit(xhci);
726 
727 	spin_lock_irq(&xhci->lock);
728 	xhci->xhc_state |= XHCI_STATE_HALTED;
729 	xhci->cmd_ring_state = CMD_RING_STATE_STOPPED;
730 	xhci_halt(xhci);
731 	xhci_reset(xhci);
732 	spin_unlock_irq(&xhci->lock);
733 
734 	xhci_cleanup_msix(xhci);
735 
736 	/* Deleting Compliance Mode Recovery Timer */
737 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
738 			(!(xhci_all_ports_seen_u0(xhci)))) {
739 		del_timer_sync(&xhci->comp_mode_recovery_timer);
740 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
741 				"%s: compliance mode recovery timer deleted",
742 				__func__);
743 	}
744 
745 	if (xhci->quirks & XHCI_AMD_PLL_FIX)
746 		usb_amd_dev_put();
747 
748 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
749 			"// Disabling event ring interrupts");
750 	temp = readl(&xhci->op_regs->status);
751 	writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
752 	temp = readl(&xhci->ir_set->irq_pending);
753 	writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
754 
755 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "cleaning up memory");
756 	xhci_mem_cleanup(xhci);
757 	xhci_debugfs_exit(xhci);
758 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
759 			"xhci_stop completed - status = %x",
760 			readl(&xhci->op_regs->status));
761 	mutex_unlock(&xhci->mutex);
762 }
763 
764 /*
765  * Shutdown HC (not bus-specific)
766  *
767  * This is called when the machine is rebooting or halting.  We assume that the
768  * machine will be powered off, and the HC's internal state will be reset.
769  * Don't bother to free memory.
770  *
771  * This will only ever be called with the main usb_hcd (the USB3 roothub).
772  */
773 static void xhci_shutdown(struct usb_hcd *hcd)
774 {
775 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
776 
777 	if (xhci->quirks & XHCI_SPURIOUS_REBOOT)
778 		usb_disable_xhci_ports(to_pci_dev(hcd->self.sysdev));
779 
780 	spin_lock_irq(&xhci->lock);
781 	xhci_halt(xhci);
782 	/* Workaround for spurious wakeups at shutdown with HSW */
783 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
784 		xhci_reset(xhci);
785 	spin_unlock_irq(&xhci->lock);
786 
787 	xhci_cleanup_msix(xhci);
788 
789 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
790 			"xhci_shutdown completed - status = %x",
791 			readl(&xhci->op_regs->status));
792 
793 	/* Yet another workaround for spurious wakeups at shutdown with HSW */
794 	if (xhci->quirks & XHCI_SPURIOUS_WAKEUP)
795 		pci_set_power_state(to_pci_dev(hcd->self.sysdev), PCI_D3hot);
796 }
797 
798 #ifdef CONFIG_PM
799 static void xhci_save_registers(struct xhci_hcd *xhci)
800 {
801 	xhci->s3.command = readl(&xhci->op_regs->command);
802 	xhci->s3.dev_nt = readl(&xhci->op_regs->dev_notification);
803 	xhci->s3.dcbaa_ptr = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
804 	xhci->s3.config_reg = readl(&xhci->op_regs->config_reg);
805 	xhci->s3.erst_size = readl(&xhci->ir_set->erst_size);
806 	xhci->s3.erst_base = xhci_read_64(xhci, &xhci->ir_set->erst_base);
807 	xhci->s3.erst_dequeue = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
808 	xhci->s3.irq_pending = readl(&xhci->ir_set->irq_pending);
809 	xhci->s3.irq_control = readl(&xhci->ir_set->irq_control);
810 }
811 
812 static void xhci_restore_registers(struct xhci_hcd *xhci)
813 {
814 	writel(xhci->s3.command, &xhci->op_regs->command);
815 	writel(xhci->s3.dev_nt, &xhci->op_regs->dev_notification);
816 	xhci_write_64(xhci, xhci->s3.dcbaa_ptr, &xhci->op_regs->dcbaa_ptr);
817 	writel(xhci->s3.config_reg, &xhci->op_regs->config_reg);
818 	writel(xhci->s3.erst_size, &xhci->ir_set->erst_size);
819 	xhci_write_64(xhci, xhci->s3.erst_base, &xhci->ir_set->erst_base);
820 	xhci_write_64(xhci, xhci->s3.erst_dequeue, &xhci->ir_set->erst_dequeue);
821 	writel(xhci->s3.irq_pending, &xhci->ir_set->irq_pending);
822 	writel(xhci->s3.irq_control, &xhci->ir_set->irq_control);
823 }
824 
825 static void xhci_set_cmd_ring_deq(struct xhci_hcd *xhci)
826 {
827 	u64	val_64;
828 
829 	/* step 2: initialize command ring buffer */
830 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
831 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
832 		(xhci_trb_virt_to_dma(xhci->cmd_ring->deq_seg,
833 				      xhci->cmd_ring->dequeue) &
834 		 (u64) ~CMD_RING_RSVD_BITS) |
835 		xhci->cmd_ring->cycle_state;
836 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
837 			"// Setting command ring address to 0x%llx",
838 			(long unsigned long) val_64);
839 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
840 }
841 
842 /*
843  * The whole command ring must be cleared to zero when we suspend the host.
844  *
845  * The host doesn't save the command ring pointer in the suspend well, so we
846  * need to re-program it on resume.  Unfortunately, the pointer must be 64-byte
847  * aligned, because of the reserved bits in the command ring dequeue pointer
848  * register.  Therefore, we can't just set the dequeue pointer back in the
849  * middle of the ring (TRBs are 16-byte aligned).
850  */
851 static void xhci_clear_command_ring(struct xhci_hcd *xhci)
852 {
853 	struct xhci_ring *ring;
854 	struct xhci_segment *seg;
855 
856 	ring = xhci->cmd_ring;
857 	seg = ring->deq_seg;
858 	do {
859 		memset(seg->trbs, 0,
860 			sizeof(union xhci_trb) * (TRBS_PER_SEGMENT - 1));
861 		seg->trbs[TRBS_PER_SEGMENT - 1].link.control &=
862 			cpu_to_le32(~TRB_CYCLE);
863 		seg = seg->next;
864 	} while (seg != ring->deq_seg);
865 
866 	/* Reset the software enqueue and dequeue pointers */
867 	ring->deq_seg = ring->first_seg;
868 	ring->dequeue = ring->first_seg->trbs;
869 	ring->enq_seg = ring->deq_seg;
870 	ring->enqueue = ring->dequeue;
871 
872 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
873 	/*
874 	 * Ring is now zeroed, so the HW should look for change of ownership
875 	 * when the cycle bit is set to 1.
876 	 */
877 	ring->cycle_state = 1;
878 
879 	/*
880 	 * Reset the hardware dequeue pointer.
881 	 * Yes, this will need to be re-written after resume, but we're paranoid
882 	 * and want to make sure the hardware doesn't access bogus memory
883 	 * because, say, the BIOS or an SMI started the host without changing
884 	 * the command ring pointers.
885 	 */
886 	xhci_set_cmd_ring_deq(xhci);
887 }
888 
889 static void xhci_disable_port_wake_on_bits(struct xhci_hcd *xhci)
890 {
891 	struct xhci_port **ports;
892 	int port_index;
893 	unsigned long flags;
894 	u32 t1, t2, portsc;
895 
896 	spin_lock_irqsave(&xhci->lock, flags);
897 
898 	/* disable usb3 ports Wake bits */
899 	port_index = xhci->usb3_rhub.num_ports;
900 	ports = xhci->usb3_rhub.ports;
901 	while (port_index--) {
902 		t1 = readl(ports[port_index]->addr);
903 		portsc = t1;
904 		t1 = xhci_port_state_to_neutral(t1);
905 		t2 = t1 & ~PORT_WAKE_BITS;
906 		if (t1 != t2) {
907 			writel(t2, ports[port_index]->addr);
908 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
909 				 xhci->usb3_rhub.hcd->self.busnum,
910 				 port_index + 1, portsc, t2);
911 		}
912 	}
913 
914 	/* disable usb2 ports Wake bits */
915 	port_index = xhci->usb2_rhub.num_ports;
916 	ports = xhci->usb2_rhub.ports;
917 	while (port_index--) {
918 		t1 = readl(ports[port_index]->addr);
919 		portsc = t1;
920 		t1 = xhci_port_state_to_neutral(t1);
921 		t2 = t1 & ~PORT_WAKE_BITS;
922 		if (t1 != t2) {
923 			writel(t2, ports[port_index]->addr);
924 			xhci_dbg(xhci, "disable wake bits port %d-%d, portsc: 0x%x, write: 0x%x\n",
925 				 xhci->usb2_rhub.hcd->self.busnum,
926 				 port_index + 1, portsc, t2);
927 		}
928 	}
929 	spin_unlock_irqrestore(&xhci->lock, flags);
930 }
931 
932 static bool xhci_pending_portevent(struct xhci_hcd *xhci)
933 {
934 	struct xhci_port	**ports;
935 	int			port_index;
936 	u32			status;
937 	u32			portsc;
938 
939 	status = readl(&xhci->op_regs->status);
940 	if (status & STS_EINT)
941 		return true;
942 	/*
943 	 * Checking STS_EINT is not enough as there is a lag between a change
944 	 * bit being set and the Port Status Change Event that it generated
945 	 * being written to the Event Ring. See note in xhci 1.1 section 4.19.2.
946 	 */
947 
948 	port_index = xhci->usb2_rhub.num_ports;
949 	ports = xhci->usb2_rhub.ports;
950 	while (port_index--) {
951 		portsc = readl(ports[port_index]->addr);
952 		if (portsc & PORT_CHANGE_MASK ||
953 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
954 			return true;
955 	}
956 	port_index = xhci->usb3_rhub.num_ports;
957 	ports = xhci->usb3_rhub.ports;
958 	while (port_index--) {
959 		portsc = readl(ports[port_index]->addr);
960 		if (portsc & PORT_CHANGE_MASK ||
961 		    (portsc & PORT_PLS_MASK) == XDEV_RESUME)
962 			return true;
963 	}
964 	return false;
965 }
966 
967 /*
968  * Stop HC (not bus-specific)
969  *
970  * This is called when the machine transition into S3/S4 mode.
971  *
972  */
973 int xhci_suspend(struct xhci_hcd *xhci, bool do_wakeup)
974 {
975 	int			rc = 0;
976 	unsigned int		delay = XHCI_MAX_HALT_USEC;
977 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
978 	u32			command;
979 	u32			res;
980 
981 	if (!hcd->state)
982 		return 0;
983 
984 	if (hcd->state != HC_STATE_SUSPENDED ||
985 			xhci->shared_hcd->state != HC_STATE_SUSPENDED)
986 		return -EINVAL;
987 
988 	xhci_dbc_suspend(xhci);
989 
990 	/* Clear root port wake on bits if wakeup not allowed. */
991 	if (!do_wakeup)
992 		xhci_disable_port_wake_on_bits(xhci);
993 
994 	/* Don't poll the roothubs on bus suspend. */
995 	xhci_dbg(xhci, "%s: stopping port polling.\n", __func__);
996 	clear_bit(HCD_FLAG_POLL_RH, &hcd->flags);
997 	del_timer_sync(&hcd->rh_timer);
998 	clear_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
999 	del_timer_sync(&xhci->shared_hcd->rh_timer);
1000 
1001 	if (xhci->quirks & XHCI_SUSPEND_DELAY)
1002 		usleep_range(1000, 1500);
1003 
1004 	spin_lock_irq(&xhci->lock);
1005 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1006 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1007 	/* step 1: stop endpoint */
1008 	/* skipped assuming that port suspend has done */
1009 
1010 	/* step 2: clear Run/Stop bit */
1011 	command = readl(&xhci->op_regs->command);
1012 	command &= ~CMD_RUN;
1013 	writel(command, &xhci->op_regs->command);
1014 
1015 	/* Some chips from Fresco Logic need an extraordinary delay */
1016 	delay *= (xhci->quirks & XHCI_SLOW_SUSPEND) ? 10 : 1;
1017 
1018 	if (xhci_handshake(&xhci->op_regs->status,
1019 		      STS_HALT, STS_HALT, delay)) {
1020 		xhci_warn(xhci, "WARN: xHC CMD_RUN timeout\n");
1021 		spin_unlock_irq(&xhci->lock);
1022 		return -ETIMEDOUT;
1023 	}
1024 	xhci_clear_command_ring(xhci);
1025 
1026 	/* step 3: save registers */
1027 	xhci_save_registers(xhci);
1028 
1029 	/* step 4: set CSS flag */
1030 	command = readl(&xhci->op_regs->command);
1031 	command |= CMD_CSS;
1032 	writel(command, &xhci->op_regs->command);
1033 	xhci->broken_suspend = 0;
1034 	if (xhci_handshake(&xhci->op_regs->status,
1035 				STS_SAVE, 0, 10 * 1000)) {
1036 	/*
1037 	 * AMD SNPS xHC 3.0 occasionally does not clear the
1038 	 * SSS bit of USBSTS and when driver tries to poll
1039 	 * to see if the xHC clears BIT(8) which never happens
1040 	 * and driver assumes that controller is not responding
1041 	 * and times out. To workaround this, its good to check
1042 	 * if SRE and HCE bits are not set (as per xhci
1043 	 * Section 5.4.2) and bypass the timeout.
1044 	 */
1045 		res = readl(&xhci->op_regs->status);
1046 		if ((xhci->quirks & XHCI_SNPS_BROKEN_SUSPEND) &&
1047 		    (((res & STS_SRE) == 0) &&
1048 				((res & STS_HCE) == 0))) {
1049 			xhci->broken_suspend = 1;
1050 		} else {
1051 			xhci_warn(xhci, "WARN: xHC save state timeout\n");
1052 			spin_unlock_irq(&xhci->lock);
1053 			return -ETIMEDOUT;
1054 		}
1055 	}
1056 	spin_unlock_irq(&xhci->lock);
1057 
1058 	/*
1059 	 * Deleting Compliance Mode Recovery Timer because the xHCI Host
1060 	 * is about to be suspended.
1061 	 */
1062 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1063 			(!(xhci_all_ports_seen_u0(xhci)))) {
1064 		del_timer_sync(&xhci->comp_mode_recovery_timer);
1065 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1066 				"%s: compliance mode recovery timer deleted",
1067 				__func__);
1068 	}
1069 
1070 	/* step 5: remove core well power */
1071 	/* synchronize irq when using MSI-X */
1072 	xhci_msix_sync_irqs(xhci);
1073 
1074 	return rc;
1075 }
1076 EXPORT_SYMBOL_GPL(xhci_suspend);
1077 
1078 /*
1079  * start xHC (not bus-specific)
1080  *
1081  * This is called when the machine transition from S3/S4 mode.
1082  *
1083  */
1084 int xhci_resume(struct xhci_hcd *xhci, bool hibernated)
1085 {
1086 	u32			command, temp = 0;
1087 	struct usb_hcd		*hcd = xhci_to_hcd(xhci);
1088 	struct usb_hcd		*secondary_hcd;
1089 	int			retval = 0;
1090 	bool			comp_timer_running = false;
1091 
1092 	if (!hcd->state)
1093 		return 0;
1094 
1095 	/* Wait a bit if either of the roothubs need to settle from the
1096 	 * transition into bus suspend.
1097 	 */
1098 
1099 	if (time_before(jiffies, xhci->usb2_rhub.bus_state.next_statechange) ||
1100 	    time_before(jiffies, xhci->usb3_rhub.bus_state.next_statechange))
1101 		msleep(100);
1102 
1103 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
1104 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &xhci->shared_hcd->flags);
1105 
1106 	spin_lock_irq(&xhci->lock);
1107 	if ((xhci->quirks & XHCI_RESET_ON_RESUME) || xhci->broken_suspend)
1108 		hibernated = true;
1109 
1110 	if (!hibernated) {
1111 		/* step 1: restore register */
1112 		xhci_restore_registers(xhci);
1113 		/* step 2: initialize command ring buffer */
1114 		xhci_set_cmd_ring_deq(xhci);
1115 		/* step 3: restore state and start state*/
1116 		/* step 3: set CRS flag */
1117 		command = readl(&xhci->op_regs->command);
1118 		command |= CMD_CRS;
1119 		writel(command, &xhci->op_regs->command);
1120 		/*
1121 		 * Some controllers take up to 55+ ms to complete the controller
1122 		 * restore so setting the timeout to 100ms. Xhci specification
1123 		 * doesn't mention any timeout value.
1124 		 */
1125 		if (xhci_handshake(&xhci->op_regs->status,
1126 			      STS_RESTORE, 0, 100 * 1000)) {
1127 			xhci_warn(xhci, "WARN: xHC restore state timeout\n");
1128 			spin_unlock_irq(&xhci->lock);
1129 			return -ETIMEDOUT;
1130 		}
1131 		temp = readl(&xhci->op_regs->status);
1132 	}
1133 
1134 	/* If restore operation fails, re-initialize the HC during resume */
1135 	if ((temp & STS_SRE) || hibernated) {
1136 
1137 		if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) &&
1138 				!(xhci_all_ports_seen_u0(xhci))) {
1139 			del_timer_sync(&xhci->comp_mode_recovery_timer);
1140 			xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
1141 				"Compliance Mode Recovery Timer deleted!");
1142 		}
1143 
1144 		/* Let the USB core know _both_ roothubs lost power. */
1145 		usb_root_hub_lost_power(xhci->main_hcd->self.root_hub);
1146 		usb_root_hub_lost_power(xhci->shared_hcd->self.root_hub);
1147 
1148 		xhci_dbg(xhci, "Stop HCD\n");
1149 		xhci_halt(xhci);
1150 		xhci_zero_64b_regs(xhci);
1151 		xhci_reset(xhci);
1152 		spin_unlock_irq(&xhci->lock);
1153 		xhci_cleanup_msix(xhci);
1154 
1155 		xhci_dbg(xhci, "// Disabling event ring interrupts\n");
1156 		temp = readl(&xhci->op_regs->status);
1157 		writel((temp & ~0x1fff) | STS_EINT, &xhci->op_regs->status);
1158 		temp = readl(&xhci->ir_set->irq_pending);
1159 		writel(ER_IRQ_DISABLE(temp), &xhci->ir_set->irq_pending);
1160 
1161 		xhci_dbg(xhci, "cleaning up memory\n");
1162 		xhci_mem_cleanup(xhci);
1163 		xhci_debugfs_exit(xhci);
1164 		xhci_dbg(xhci, "xhci_stop completed - status = %x\n",
1165 			    readl(&xhci->op_regs->status));
1166 
1167 		/* USB core calls the PCI reinit and start functions twice:
1168 		 * first with the primary HCD, and then with the secondary HCD.
1169 		 * If we don't do the same, the host will never be started.
1170 		 */
1171 		if (!usb_hcd_is_primary_hcd(hcd))
1172 			secondary_hcd = hcd;
1173 		else
1174 			secondary_hcd = xhci->shared_hcd;
1175 
1176 		xhci_dbg(xhci, "Initialize the xhci_hcd\n");
1177 		retval = xhci_init(hcd->primary_hcd);
1178 		if (retval)
1179 			return retval;
1180 		comp_timer_running = true;
1181 
1182 		xhci_dbg(xhci, "Start the primary HCD\n");
1183 		retval = xhci_run(hcd->primary_hcd);
1184 		if (!retval) {
1185 			xhci_dbg(xhci, "Start the secondary HCD\n");
1186 			retval = xhci_run(secondary_hcd);
1187 		}
1188 		hcd->state = HC_STATE_SUSPENDED;
1189 		xhci->shared_hcd->state = HC_STATE_SUSPENDED;
1190 		goto done;
1191 	}
1192 
1193 	/* step 4: set Run/Stop bit */
1194 	command = readl(&xhci->op_regs->command);
1195 	command |= CMD_RUN;
1196 	writel(command, &xhci->op_regs->command);
1197 	xhci_handshake(&xhci->op_regs->status, STS_HALT,
1198 		  0, 250 * 1000);
1199 
1200 	/* step 5: walk topology and initialize portsc,
1201 	 * portpmsc and portli
1202 	 */
1203 	/* this is done in bus_resume */
1204 
1205 	/* step 6: restart each of the previously
1206 	 * Running endpoints by ringing their doorbells
1207 	 */
1208 
1209 	spin_unlock_irq(&xhci->lock);
1210 
1211 	xhci_dbc_resume(xhci);
1212 
1213  done:
1214 	if (retval == 0) {
1215 		/* Resume root hubs only when have pending events. */
1216 		if (xhci_pending_portevent(xhci)) {
1217 			usb_hcd_resume_root_hub(xhci->shared_hcd);
1218 			usb_hcd_resume_root_hub(hcd);
1219 		}
1220 	}
1221 
1222 	/*
1223 	 * If system is subject to the Quirk, Compliance Mode Timer needs to
1224 	 * be re-initialized Always after a system resume. Ports are subject
1225 	 * to suffer the Compliance Mode issue again. It doesn't matter if
1226 	 * ports have entered previously to U0 before system's suspension.
1227 	 */
1228 	if ((xhci->quirks & XHCI_COMP_MODE_QUIRK) && !comp_timer_running)
1229 		compliance_mode_recovery_timer_init(xhci);
1230 
1231 	if (xhci->quirks & XHCI_ASMEDIA_MODIFY_FLOWCONTROL)
1232 		usb_asmedia_modifyflowcontrol(to_pci_dev(hcd->self.controller));
1233 
1234 	/* Re-enable port polling. */
1235 	xhci_dbg(xhci, "%s: starting port polling.\n", __func__);
1236 	set_bit(HCD_FLAG_POLL_RH, &xhci->shared_hcd->flags);
1237 	usb_hcd_poll_rh_status(xhci->shared_hcd);
1238 	set_bit(HCD_FLAG_POLL_RH, &hcd->flags);
1239 	usb_hcd_poll_rh_status(hcd);
1240 
1241 	return retval;
1242 }
1243 EXPORT_SYMBOL_GPL(xhci_resume);
1244 #endif	/* CONFIG_PM */
1245 
1246 /*-------------------------------------------------------------------------*/
1247 
1248 /*
1249  * Bypass the DMA mapping if URB is suitable for Immediate Transfer (IDT),
1250  * we'll copy the actual data into the TRB address register. This is limited to
1251  * transfers up to 8 bytes on output endpoints of any kind with wMaxPacketSize
1252  * >= 8 bytes. If suitable for IDT only one Transfer TRB per TD is allowed.
1253  */
1254 static int xhci_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
1255 				gfp_t mem_flags)
1256 {
1257 	if (xhci_urb_suitable_for_idt(urb))
1258 		return 0;
1259 
1260 	return usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
1261 }
1262 
1263 /**
1264  * xhci_get_endpoint_index - Used for passing endpoint bitmasks between the core and
1265  * HCDs.  Find the index for an endpoint given its descriptor.  Use the return
1266  * value to right shift 1 for the bitmask.
1267  *
1268  * Index  = (epnum * 2) + direction - 1,
1269  * where direction = 0 for OUT, 1 for IN.
1270  * For control endpoints, the IN index is used (OUT index is unused), so
1271  * index = (epnum * 2) + direction - 1 = (epnum * 2) + 1 - 1 = (epnum * 2)
1272  */
1273 unsigned int xhci_get_endpoint_index(struct usb_endpoint_descriptor *desc)
1274 {
1275 	unsigned int index;
1276 	if (usb_endpoint_xfer_control(desc))
1277 		index = (unsigned int) (usb_endpoint_num(desc)*2);
1278 	else
1279 		index = (unsigned int) (usb_endpoint_num(desc)*2) +
1280 			(usb_endpoint_dir_in(desc) ? 1 : 0) - 1;
1281 	return index;
1282 }
1283 
1284 /* The reverse operation to xhci_get_endpoint_index. Calculate the USB endpoint
1285  * address from the XHCI endpoint index.
1286  */
1287 unsigned int xhci_get_endpoint_address(unsigned int ep_index)
1288 {
1289 	unsigned int number = DIV_ROUND_UP(ep_index, 2);
1290 	unsigned int direction = ep_index % 2 ? USB_DIR_OUT : USB_DIR_IN;
1291 	return direction | number;
1292 }
1293 
1294 /* Find the flag for this endpoint (for use in the control context).  Use the
1295  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1296  * bit 1, etc.
1297  */
1298 static unsigned int xhci_get_endpoint_flag(struct usb_endpoint_descriptor *desc)
1299 {
1300 	return 1 << (xhci_get_endpoint_index(desc) + 1);
1301 }
1302 
1303 /* Find the flag for this endpoint (for use in the control context).  Use the
1304  * endpoint index to create a bitmask.  The slot context is bit 0, endpoint 0 is
1305  * bit 1, etc.
1306  */
1307 static unsigned int xhci_get_endpoint_flag_from_index(unsigned int ep_index)
1308 {
1309 	return 1 << (ep_index + 1);
1310 }
1311 
1312 /* Compute the last valid endpoint context index.  Basically, this is the
1313  * endpoint index plus one.  For slot contexts with more than valid endpoint,
1314  * we find the most significant bit set in the added contexts flags.
1315  * e.g. ep 1 IN (with epnum 0x81) => added_ctxs = 0b1000
1316  * fls(0b1000) = 4, but the endpoint context index is 3, so subtract one.
1317  */
1318 unsigned int xhci_last_valid_endpoint(u32 added_ctxs)
1319 {
1320 	return fls(added_ctxs) - 1;
1321 }
1322 
1323 /* Returns 1 if the arguments are OK;
1324  * returns 0 this is a root hub; returns -EINVAL for NULL pointers.
1325  */
1326 static int xhci_check_args(struct usb_hcd *hcd, struct usb_device *udev,
1327 		struct usb_host_endpoint *ep, int check_ep, bool check_virt_dev,
1328 		const char *func) {
1329 	struct xhci_hcd	*xhci;
1330 	struct xhci_virt_device	*virt_dev;
1331 
1332 	if (!hcd || (check_ep && !ep) || !udev) {
1333 		pr_debug("xHCI %s called with invalid args\n", func);
1334 		return -EINVAL;
1335 	}
1336 	if (!udev->parent) {
1337 		pr_debug("xHCI %s called for root hub\n", func);
1338 		return 0;
1339 	}
1340 
1341 	xhci = hcd_to_xhci(hcd);
1342 	if (check_virt_dev) {
1343 		if (!udev->slot_id || !xhci->devs[udev->slot_id]) {
1344 			xhci_dbg(xhci, "xHCI %s called with unaddressed device\n",
1345 					func);
1346 			return -EINVAL;
1347 		}
1348 
1349 		virt_dev = xhci->devs[udev->slot_id];
1350 		if (virt_dev->udev != udev) {
1351 			xhci_dbg(xhci, "xHCI %s called with udev and "
1352 					  "virt_dev does not match\n", func);
1353 			return -EINVAL;
1354 		}
1355 	}
1356 
1357 	if (xhci->xhc_state & XHCI_STATE_HALTED)
1358 		return -ENODEV;
1359 
1360 	return 1;
1361 }
1362 
1363 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
1364 		struct usb_device *udev, struct xhci_command *command,
1365 		bool ctx_change, bool must_succeed);
1366 
1367 /*
1368  * Full speed devices may have a max packet size greater than 8 bytes, but the
1369  * USB core doesn't know that until it reads the first 8 bytes of the
1370  * descriptor.  If the usb_device's max packet size changes after that point,
1371  * we need to issue an evaluate context command and wait on it.
1372  */
1373 static int xhci_check_maxpacket(struct xhci_hcd *xhci, unsigned int slot_id,
1374 		unsigned int ep_index, struct urb *urb)
1375 {
1376 	struct xhci_container_ctx *out_ctx;
1377 	struct xhci_input_control_ctx *ctrl_ctx;
1378 	struct xhci_ep_ctx *ep_ctx;
1379 	struct xhci_command *command;
1380 	int max_packet_size;
1381 	int hw_max_packet_size;
1382 	int ret = 0;
1383 
1384 	out_ctx = xhci->devs[slot_id]->out_ctx;
1385 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1386 	hw_max_packet_size = MAX_PACKET_DECODED(le32_to_cpu(ep_ctx->ep_info2));
1387 	max_packet_size = usb_endpoint_maxp(&urb->dev->ep0.desc);
1388 	if (hw_max_packet_size != max_packet_size) {
1389 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1390 				"Max Packet Size for ep 0 changed.");
1391 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1392 				"Max packet size in usb_device = %d",
1393 				max_packet_size);
1394 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1395 				"Max packet size in xHCI HW = %d",
1396 				hw_max_packet_size);
1397 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
1398 				"Issuing evaluate context command.");
1399 
1400 		/* Set up the input context flags for the command */
1401 		/* FIXME: This won't work if a non-default control endpoint
1402 		 * changes max packet sizes.
1403 		 */
1404 
1405 		command = xhci_alloc_command(xhci, true, GFP_KERNEL);
1406 		if (!command)
1407 			return -ENOMEM;
1408 
1409 		command->in_ctx = xhci->devs[slot_id]->in_ctx;
1410 		ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
1411 		if (!ctrl_ctx) {
1412 			xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1413 					__func__);
1414 			ret = -ENOMEM;
1415 			goto command_cleanup;
1416 		}
1417 		/* Set up the modified control endpoint 0 */
1418 		xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
1419 				xhci->devs[slot_id]->out_ctx, ep_index);
1420 
1421 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
1422 		ep_ctx->ep_info2 &= cpu_to_le32(~MAX_PACKET_MASK);
1423 		ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet_size));
1424 
1425 		ctrl_ctx->add_flags = cpu_to_le32(EP0_FLAG);
1426 		ctrl_ctx->drop_flags = 0;
1427 
1428 		ret = xhci_configure_endpoint(xhci, urb->dev, command,
1429 				true, false);
1430 
1431 		/* Clean up the input context for later use by bandwidth
1432 		 * functions.
1433 		 */
1434 		ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG);
1435 command_cleanup:
1436 		kfree(command->completion);
1437 		kfree(command);
1438 	}
1439 	return ret;
1440 }
1441 
1442 /*
1443  * non-error returns are a promise to giveback() the urb later
1444  * we drop ownership so next owner (or urb unlink) can get it
1445  */
1446 static int xhci_urb_enqueue(struct usb_hcd *hcd, struct urb *urb, gfp_t mem_flags)
1447 {
1448 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
1449 	unsigned long flags;
1450 	int ret = 0;
1451 	unsigned int slot_id, ep_index;
1452 	unsigned int *ep_state;
1453 	struct urb_priv	*urb_priv;
1454 	int num_tds;
1455 
1456 	if (!urb || xhci_check_args(hcd, urb->dev, urb->ep,
1457 					true, true, __func__) <= 0)
1458 		return -EINVAL;
1459 
1460 	slot_id = urb->dev->slot_id;
1461 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1462 	ep_state = &xhci->devs[slot_id]->eps[ep_index].ep_state;
1463 
1464 	if (!HCD_HW_ACCESSIBLE(hcd)) {
1465 		if (!in_interrupt())
1466 			xhci_dbg(xhci, "urb submitted during PCI suspend\n");
1467 		return -ESHUTDOWN;
1468 	}
1469 
1470 	if (usb_endpoint_xfer_isoc(&urb->ep->desc))
1471 		num_tds = urb->number_of_packets;
1472 	else if (usb_endpoint_is_bulk_out(&urb->ep->desc) &&
1473 	    urb->transfer_buffer_length > 0 &&
1474 	    urb->transfer_flags & URB_ZERO_PACKET &&
1475 	    !(urb->transfer_buffer_length % usb_endpoint_maxp(&urb->ep->desc)))
1476 		num_tds = 2;
1477 	else
1478 		num_tds = 1;
1479 
1480 	urb_priv = kzalloc(struct_size(urb_priv, td, num_tds), mem_flags);
1481 	if (!urb_priv)
1482 		return -ENOMEM;
1483 
1484 	urb_priv->num_tds = num_tds;
1485 	urb_priv->num_tds_done = 0;
1486 	urb->hcpriv = urb_priv;
1487 
1488 	trace_xhci_urb_enqueue(urb);
1489 
1490 	if (usb_endpoint_xfer_control(&urb->ep->desc)) {
1491 		/* Check to see if the max packet size for the default control
1492 		 * endpoint changed during FS device enumeration
1493 		 */
1494 		if (urb->dev->speed == USB_SPEED_FULL) {
1495 			ret = xhci_check_maxpacket(xhci, slot_id,
1496 					ep_index, urb);
1497 			if (ret < 0) {
1498 				xhci_urb_free_priv(urb_priv);
1499 				urb->hcpriv = NULL;
1500 				return ret;
1501 			}
1502 		}
1503 	}
1504 
1505 	spin_lock_irqsave(&xhci->lock, flags);
1506 
1507 	if (xhci->xhc_state & XHCI_STATE_DYING) {
1508 		xhci_dbg(xhci, "Ep 0x%x: URB %p submitted for non-responsive xHCI host.\n",
1509 			 urb->ep->desc.bEndpointAddress, urb);
1510 		ret = -ESHUTDOWN;
1511 		goto free_priv;
1512 	}
1513 	if (*ep_state & (EP_GETTING_STREAMS | EP_GETTING_NO_STREAMS)) {
1514 		xhci_warn(xhci, "WARN: Can't enqueue URB, ep in streams transition state %x\n",
1515 			  *ep_state);
1516 		ret = -EINVAL;
1517 		goto free_priv;
1518 	}
1519 	if (*ep_state & EP_SOFT_CLEAR_TOGGLE) {
1520 		xhci_warn(xhci, "Can't enqueue URB while manually clearing toggle\n");
1521 		ret = -EINVAL;
1522 		goto free_priv;
1523 	}
1524 
1525 	switch (usb_endpoint_type(&urb->ep->desc)) {
1526 
1527 	case USB_ENDPOINT_XFER_CONTROL:
1528 		ret = xhci_queue_ctrl_tx(xhci, GFP_ATOMIC, urb,
1529 					 slot_id, ep_index);
1530 		break;
1531 	case USB_ENDPOINT_XFER_BULK:
1532 		ret = xhci_queue_bulk_tx(xhci, GFP_ATOMIC, urb,
1533 					 slot_id, ep_index);
1534 		break;
1535 	case USB_ENDPOINT_XFER_INT:
1536 		ret = xhci_queue_intr_tx(xhci, GFP_ATOMIC, urb,
1537 				slot_id, ep_index);
1538 		break;
1539 	case USB_ENDPOINT_XFER_ISOC:
1540 		ret = xhci_queue_isoc_tx_prepare(xhci, GFP_ATOMIC, urb,
1541 				slot_id, ep_index);
1542 	}
1543 
1544 	if (ret) {
1545 free_priv:
1546 		xhci_urb_free_priv(urb_priv);
1547 		urb->hcpriv = NULL;
1548 	}
1549 	spin_unlock_irqrestore(&xhci->lock, flags);
1550 	return ret;
1551 }
1552 
1553 /*
1554  * Remove the URB's TD from the endpoint ring.  This may cause the HC to stop
1555  * USB transfers, potentially stopping in the middle of a TRB buffer.  The HC
1556  * should pick up where it left off in the TD, unless a Set Transfer Ring
1557  * Dequeue Pointer is issued.
1558  *
1559  * The TRBs that make up the buffers for the canceled URB will be "removed" from
1560  * the ring.  Since the ring is a contiguous structure, they can't be physically
1561  * removed.  Instead, there are two options:
1562  *
1563  *  1) If the HC is in the middle of processing the URB to be canceled, we
1564  *     simply move the ring's dequeue pointer past those TRBs using the Set
1565  *     Transfer Ring Dequeue Pointer command.  This will be the common case,
1566  *     when drivers timeout on the last submitted URB and attempt to cancel.
1567  *
1568  *  2) If the HC is in the middle of a different TD, we turn the TRBs into a
1569  *     series of 1-TRB transfer no-op TDs.  (No-ops shouldn't be chained.)  The
1570  *     HC will need to invalidate the any TRBs it has cached after the stop
1571  *     endpoint command, as noted in the xHCI 0.95 errata.
1572  *
1573  *  3) The TD may have completed by the time the Stop Endpoint Command
1574  *     completes, so software needs to handle that case too.
1575  *
1576  * This function should protect against the TD enqueueing code ringing the
1577  * doorbell while this code is waiting for a Stop Endpoint command to complete.
1578  * It also needs to account for multiple cancellations on happening at the same
1579  * time for the same endpoint.
1580  *
1581  * Note that this function can be called in any context, or so says
1582  * usb_hcd_unlink_urb()
1583  */
1584 static int xhci_urb_dequeue(struct usb_hcd *hcd, struct urb *urb, int status)
1585 {
1586 	unsigned long flags;
1587 	int ret, i;
1588 	u32 temp;
1589 	struct xhci_hcd *xhci;
1590 	struct urb_priv	*urb_priv;
1591 	struct xhci_td *td;
1592 	unsigned int ep_index;
1593 	struct xhci_ring *ep_ring;
1594 	struct xhci_virt_ep *ep;
1595 	struct xhci_command *command;
1596 	struct xhci_virt_device *vdev;
1597 
1598 	xhci = hcd_to_xhci(hcd);
1599 	spin_lock_irqsave(&xhci->lock, flags);
1600 
1601 	trace_xhci_urb_dequeue(urb);
1602 
1603 	/* Make sure the URB hasn't completed or been unlinked already */
1604 	ret = usb_hcd_check_unlink_urb(hcd, urb, status);
1605 	if (ret)
1606 		goto done;
1607 
1608 	/* give back URB now if we can't queue it for cancel */
1609 	vdev = xhci->devs[urb->dev->slot_id];
1610 	urb_priv = urb->hcpriv;
1611 	if (!vdev || !urb_priv)
1612 		goto err_giveback;
1613 
1614 	ep_index = xhci_get_endpoint_index(&urb->ep->desc);
1615 	ep = &vdev->eps[ep_index];
1616 	ep_ring = xhci_urb_to_transfer_ring(xhci, urb);
1617 	if (!ep || !ep_ring)
1618 		goto err_giveback;
1619 
1620 	/* If xHC is dead take it down and return ALL URBs in xhci_hc_died() */
1621 	temp = readl(&xhci->op_regs->status);
1622 	if (temp == ~(u32)0 || xhci->xhc_state & XHCI_STATE_DYING) {
1623 		xhci_hc_died(xhci);
1624 		goto done;
1625 	}
1626 
1627 	/*
1628 	 * check ring is not re-allocated since URB was enqueued. If it is, then
1629 	 * make sure none of the ring related pointers in this URB private data
1630 	 * are touched, such as td_list, otherwise we overwrite freed data
1631 	 */
1632 	if (!td_on_ring(&urb_priv->td[0], ep_ring)) {
1633 		xhci_err(xhci, "Canceled URB td not found on endpoint ring");
1634 		for (i = urb_priv->num_tds_done; i < urb_priv->num_tds; i++) {
1635 			td = &urb_priv->td[i];
1636 			if (!list_empty(&td->cancelled_td_list))
1637 				list_del_init(&td->cancelled_td_list);
1638 		}
1639 		goto err_giveback;
1640 	}
1641 
1642 	if (xhci->xhc_state & XHCI_STATE_HALTED) {
1643 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1644 				"HC halted, freeing TD manually.");
1645 		for (i = urb_priv->num_tds_done;
1646 		     i < urb_priv->num_tds;
1647 		     i++) {
1648 			td = &urb_priv->td[i];
1649 			if (!list_empty(&td->td_list))
1650 				list_del_init(&td->td_list);
1651 			if (!list_empty(&td->cancelled_td_list))
1652 				list_del_init(&td->cancelled_td_list);
1653 		}
1654 		goto err_giveback;
1655 	}
1656 
1657 	i = urb_priv->num_tds_done;
1658 	if (i < urb_priv->num_tds)
1659 		xhci_dbg_trace(xhci, trace_xhci_dbg_cancel_urb,
1660 				"Cancel URB %p, dev %s, ep 0x%x, "
1661 				"starting at offset 0x%llx",
1662 				urb, urb->dev->devpath,
1663 				urb->ep->desc.bEndpointAddress,
1664 				(unsigned long long) xhci_trb_virt_to_dma(
1665 					urb_priv->td[i].start_seg,
1666 					urb_priv->td[i].first_trb));
1667 
1668 	for (; i < urb_priv->num_tds; i++) {
1669 		td = &urb_priv->td[i];
1670 		list_add_tail(&td->cancelled_td_list, &ep->cancelled_td_list);
1671 	}
1672 
1673 	/* Queue a stop endpoint command, but only if this is
1674 	 * the first cancellation to be handled.
1675 	 */
1676 	if (!(ep->ep_state & EP_STOP_CMD_PENDING)) {
1677 		command = xhci_alloc_command(xhci, false, GFP_ATOMIC);
1678 		if (!command) {
1679 			ret = -ENOMEM;
1680 			goto done;
1681 		}
1682 		ep->ep_state |= EP_STOP_CMD_PENDING;
1683 		ep->stop_cmd_timer.expires = jiffies +
1684 			XHCI_STOP_EP_CMD_TIMEOUT * HZ;
1685 		add_timer(&ep->stop_cmd_timer);
1686 		xhci_queue_stop_endpoint(xhci, command, urb->dev->slot_id,
1687 					 ep_index, 0);
1688 		xhci_ring_cmd_db(xhci);
1689 	}
1690 done:
1691 	spin_unlock_irqrestore(&xhci->lock, flags);
1692 	return ret;
1693 
1694 err_giveback:
1695 	if (urb_priv)
1696 		xhci_urb_free_priv(urb_priv);
1697 	usb_hcd_unlink_urb_from_ep(hcd, urb);
1698 	spin_unlock_irqrestore(&xhci->lock, flags);
1699 	usb_hcd_giveback_urb(hcd, urb, -ESHUTDOWN);
1700 	return ret;
1701 }
1702 
1703 /* Drop an endpoint from a new bandwidth configuration for this device.
1704  * Only one call to this function is allowed per endpoint before
1705  * check_bandwidth() or reset_bandwidth() must be called.
1706  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1707  * add the endpoint to the schedule with possibly new parameters denoted by a
1708  * different endpoint descriptor in usb_host_endpoint.
1709  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1710  * not allowed.
1711  *
1712  * The USB core will not allow URBs to be queued to an endpoint that is being
1713  * disabled, so there's no need for mutual exclusion to protect
1714  * the xhci->devs[slot_id] structure.
1715  */
1716 static int xhci_drop_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1717 		struct usb_host_endpoint *ep)
1718 {
1719 	struct xhci_hcd *xhci;
1720 	struct xhci_container_ctx *in_ctx, *out_ctx;
1721 	struct xhci_input_control_ctx *ctrl_ctx;
1722 	unsigned int ep_index;
1723 	struct xhci_ep_ctx *ep_ctx;
1724 	u32 drop_flag;
1725 	u32 new_add_flags, new_drop_flags;
1726 	int ret;
1727 
1728 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1729 	if (ret <= 0)
1730 		return ret;
1731 	xhci = hcd_to_xhci(hcd);
1732 	if (xhci->xhc_state & XHCI_STATE_DYING)
1733 		return -ENODEV;
1734 
1735 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
1736 	drop_flag = xhci_get_endpoint_flag(&ep->desc);
1737 	if (drop_flag == SLOT_FLAG || drop_flag == EP0_FLAG) {
1738 		xhci_dbg(xhci, "xHCI %s - can't drop slot or ep 0 %#x\n",
1739 				__func__, drop_flag);
1740 		return 0;
1741 	}
1742 
1743 	in_ctx = xhci->devs[udev->slot_id]->in_ctx;
1744 	out_ctx = xhci->devs[udev->slot_id]->out_ctx;
1745 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1746 	if (!ctrl_ctx) {
1747 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1748 				__func__);
1749 		return 0;
1750 	}
1751 
1752 	ep_index = xhci_get_endpoint_index(&ep->desc);
1753 	ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1754 	/* If the HC already knows the endpoint is disabled,
1755 	 * or the HCD has noted it is disabled, ignore this request
1756 	 */
1757 	if ((GET_EP_CTX_STATE(ep_ctx) == EP_STATE_DISABLED) ||
1758 	    le32_to_cpu(ctrl_ctx->drop_flags) &
1759 	    xhci_get_endpoint_flag(&ep->desc)) {
1760 		/* Do not warn when called after a usb_device_reset */
1761 		if (xhci->devs[udev->slot_id]->eps[ep_index].ring != NULL)
1762 			xhci_warn(xhci, "xHCI %s called with disabled ep %p\n",
1763 				  __func__, ep);
1764 		return 0;
1765 	}
1766 
1767 	ctrl_ctx->drop_flags |= cpu_to_le32(drop_flag);
1768 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1769 
1770 	ctrl_ctx->add_flags &= cpu_to_le32(~drop_flag);
1771 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1772 
1773 	xhci_debugfs_remove_endpoint(xhci, xhci->devs[udev->slot_id], ep_index);
1774 
1775 	xhci_endpoint_zero(xhci, xhci->devs[udev->slot_id], ep);
1776 
1777 	if (xhci->quirks & XHCI_MTK_HOST)
1778 		xhci_mtk_drop_ep_quirk(hcd, udev, ep);
1779 
1780 	xhci_dbg(xhci, "drop ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1781 			(unsigned int) ep->desc.bEndpointAddress,
1782 			udev->slot_id,
1783 			(unsigned int) new_drop_flags,
1784 			(unsigned int) new_add_flags);
1785 	return 0;
1786 }
1787 
1788 /* Add an endpoint to a new possible bandwidth configuration for this device.
1789  * Only one call to this function is allowed per endpoint before
1790  * check_bandwidth() or reset_bandwidth() must be called.
1791  * A call to xhci_drop_endpoint() followed by a call to xhci_add_endpoint() will
1792  * add the endpoint to the schedule with possibly new parameters denoted by a
1793  * different endpoint descriptor in usb_host_endpoint.
1794  * A call to xhci_add_endpoint() followed by a call to xhci_drop_endpoint() is
1795  * not allowed.
1796  *
1797  * The USB core will not allow URBs to be queued to an endpoint until the
1798  * configuration or alt setting is installed in the device, so there's no need
1799  * for mutual exclusion to protect the xhci->devs[slot_id] structure.
1800  */
1801 static int xhci_add_endpoint(struct usb_hcd *hcd, struct usb_device *udev,
1802 		struct usb_host_endpoint *ep)
1803 {
1804 	struct xhci_hcd *xhci;
1805 	struct xhci_container_ctx *in_ctx;
1806 	unsigned int ep_index;
1807 	struct xhci_input_control_ctx *ctrl_ctx;
1808 	struct xhci_ep_ctx *ep_ctx;
1809 	u32 added_ctxs;
1810 	u32 new_add_flags, new_drop_flags;
1811 	struct xhci_virt_device *virt_dev;
1812 	int ret = 0;
1813 
1814 	ret = xhci_check_args(hcd, udev, ep, 1, true, __func__);
1815 	if (ret <= 0) {
1816 		/* So we won't queue a reset ep command for a root hub */
1817 		ep->hcpriv = NULL;
1818 		return ret;
1819 	}
1820 	xhci = hcd_to_xhci(hcd);
1821 	if (xhci->xhc_state & XHCI_STATE_DYING)
1822 		return -ENODEV;
1823 
1824 	added_ctxs = xhci_get_endpoint_flag(&ep->desc);
1825 	if (added_ctxs == SLOT_FLAG || added_ctxs == EP0_FLAG) {
1826 		/* FIXME when we have to issue an evaluate endpoint command to
1827 		 * deal with ep0 max packet size changing once we get the
1828 		 * descriptors
1829 		 */
1830 		xhci_dbg(xhci, "xHCI %s - can't add slot or ep 0 %#x\n",
1831 				__func__, added_ctxs);
1832 		return 0;
1833 	}
1834 
1835 	virt_dev = xhci->devs[udev->slot_id];
1836 	in_ctx = virt_dev->in_ctx;
1837 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
1838 	if (!ctrl_ctx) {
1839 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1840 				__func__);
1841 		return 0;
1842 	}
1843 
1844 	ep_index = xhci_get_endpoint_index(&ep->desc);
1845 	/* If this endpoint is already in use, and the upper layers are trying
1846 	 * to add it again without dropping it, reject the addition.
1847 	 */
1848 	if (virt_dev->eps[ep_index].ring &&
1849 			!(le32_to_cpu(ctrl_ctx->drop_flags) & added_ctxs)) {
1850 		xhci_warn(xhci, "Trying to add endpoint 0x%x "
1851 				"without dropping it.\n",
1852 				(unsigned int) ep->desc.bEndpointAddress);
1853 		return -EINVAL;
1854 	}
1855 
1856 	/* If the HCD has already noted the endpoint is enabled,
1857 	 * ignore this request.
1858 	 */
1859 	if (le32_to_cpu(ctrl_ctx->add_flags) & added_ctxs) {
1860 		xhci_warn(xhci, "xHCI %s called with enabled ep %p\n",
1861 				__func__, ep);
1862 		return 0;
1863 	}
1864 
1865 	/*
1866 	 * Configuration and alternate setting changes must be done in
1867 	 * process context, not interrupt context (or so documenation
1868 	 * for usb_set_interface() and usb_set_configuration() claim).
1869 	 */
1870 	if (xhci_endpoint_init(xhci, virt_dev, udev, ep, GFP_NOIO) < 0) {
1871 		dev_dbg(&udev->dev, "%s - could not initialize ep %#x\n",
1872 				__func__, ep->desc.bEndpointAddress);
1873 		return -ENOMEM;
1874 	}
1875 
1876 	if (xhci->quirks & XHCI_MTK_HOST) {
1877 		ret = xhci_mtk_add_ep_quirk(hcd, udev, ep);
1878 		if (ret < 0) {
1879 			xhci_ring_free(xhci, virt_dev->eps[ep_index].new_ring);
1880 			virt_dev->eps[ep_index].new_ring = NULL;
1881 			return ret;
1882 		}
1883 	}
1884 
1885 	ctrl_ctx->add_flags |= cpu_to_le32(added_ctxs);
1886 	new_add_flags = le32_to_cpu(ctrl_ctx->add_flags);
1887 
1888 	/* If xhci_endpoint_disable() was called for this endpoint, but the
1889 	 * xHC hasn't been notified yet through the check_bandwidth() call,
1890 	 * this re-adds a new state for the endpoint from the new endpoint
1891 	 * descriptors.  We must drop and re-add this endpoint, so we leave the
1892 	 * drop flags alone.
1893 	 */
1894 	new_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags);
1895 
1896 	/* Store the usb_device pointer for later use */
1897 	ep->hcpriv = udev;
1898 
1899 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1900 	trace_xhci_add_endpoint(ep_ctx);
1901 
1902 	xhci_debugfs_create_endpoint(xhci, virt_dev, ep_index);
1903 
1904 	xhci_dbg(xhci, "add ep 0x%x, slot id %d, new drop flags = %#x, new add flags = %#x\n",
1905 			(unsigned int) ep->desc.bEndpointAddress,
1906 			udev->slot_id,
1907 			(unsigned int) new_drop_flags,
1908 			(unsigned int) new_add_flags);
1909 	return 0;
1910 }
1911 
1912 static void xhci_zero_in_ctx(struct xhci_hcd *xhci, struct xhci_virt_device *virt_dev)
1913 {
1914 	struct xhci_input_control_ctx *ctrl_ctx;
1915 	struct xhci_ep_ctx *ep_ctx;
1916 	struct xhci_slot_ctx *slot_ctx;
1917 	int i;
1918 
1919 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
1920 	if (!ctrl_ctx) {
1921 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
1922 				__func__);
1923 		return;
1924 	}
1925 
1926 	/* When a device's add flag and drop flag are zero, any subsequent
1927 	 * configure endpoint command will leave that endpoint's state
1928 	 * untouched.  Make sure we don't leave any old state in the input
1929 	 * endpoint contexts.
1930 	 */
1931 	ctrl_ctx->drop_flags = 0;
1932 	ctrl_ctx->add_flags = 0;
1933 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
1934 	slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
1935 	/* Endpoint 0 is always valid */
1936 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1));
1937 	for (i = 1; i < 31; i++) {
1938 		ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, i);
1939 		ep_ctx->ep_info = 0;
1940 		ep_ctx->ep_info2 = 0;
1941 		ep_ctx->deq = 0;
1942 		ep_ctx->tx_info = 0;
1943 	}
1944 }
1945 
1946 static int xhci_configure_endpoint_result(struct xhci_hcd *xhci,
1947 		struct usb_device *udev, u32 *cmd_status)
1948 {
1949 	int ret;
1950 
1951 	switch (*cmd_status) {
1952 	case COMP_COMMAND_ABORTED:
1953 	case COMP_COMMAND_RING_STOPPED:
1954 		xhci_warn(xhci, "Timeout while waiting for configure endpoint command\n");
1955 		ret = -ETIME;
1956 		break;
1957 	case COMP_RESOURCE_ERROR:
1958 		dev_warn(&udev->dev,
1959 			 "Not enough host controller resources for new device state.\n");
1960 		ret = -ENOMEM;
1961 		/* FIXME: can we allocate more resources for the HC? */
1962 		break;
1963 	case COMP_BANDWIDTH_ERROR:
1964 	case COMP_SECONDARY_BANDWIDTH_ERROR:
1965 		dev_warn(&udev->dev,
1966 			 "Not enough bandwidth for new device state.\n");
1967 		ret = -ENOSPC;
1968 		/* FIXME: can we go back to the old state? */
1969 		break;
1970 	case COMP_TRB_ERROR:
1971 		/* the HCD set up something wrong */
1972 		dev_warn(&udev->dev, "ERROR: Endpoint drop flag = 0, "
1973 				"add flag = 1, "
1974 				"and endpoint is not disabled.\n");
1975 		ret = -EINVAL;
1976 		break;
1977 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
1978 		dev_warn(&udev->dev,
1979 			 "ERROR: Incompatible device for endpoint configure command.\n");
1980 		ret = -ENODEV;
1981 		break;
1982 	case COMP_SUCCESS:
1983 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
1984 				"Successful Endpoint Configure command");
1985 		ret = 0;
1986 		break;
1987 	default:
1988 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
1989 				*cmd_status);
1990 		ret = -EINVAL;
1991 		break;
1992 	}
1993 	return ret;
1994 }
1995 
1996 static int xhci_evaluate_context_result(struct xhci_hcd *xhci,
1997 		struct usb_device *udev, u32 *cmd_status)
1998 {
1999 	int ret;
2000 
2001 	switch (*cmd_status) {
2002 	case COMP_COMMAND_ABORTED:
2003 	case COMP_COMMAND_RING_STOPPED:
2004 		xhci_warn(xhci, "Timeout while waiting for evaluate context command\n");
2005 		ret = -ETIME;
2006 		break;
2007 	case COMP_PARAMETER_ERROR:
2008 		dev_warn(&udev->dev,
2009 			 "WARN: xHCI driver setup invalid evaluate context command.\n");
2010 		ret = -EINVAL;
2011 		break;
2012 	case COMP_SLOT_NOT_ENABLED_ERROR:
2013 		dev_warn(&udev->dev,
2014 			"WARN: slot not enabled for evaluate context command.\n");
2015 		ret = -EINVAL;
2016 		break;
2017 	case COMP_CONTEXT_STATE_ERROR:
2018 		dev_warn(&udev->dev,
2019 			"WARN: invalid context state for evaluate context command.\n");
2020 		ret = -EINVAL;
2021 		break;
2022 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
2023 		dev_warn(&udev->dev,
2024 			"ERROR: Incompatible device for evaluate context command.\n");
2025 		ret = -ENODEV;
2026 		break;
2027 	case COMP_MAX_EXIT_LATENCY_TOO_LARGE_ERROR:
2028 		/* Max Exit Latency too large error */
2029 		dev_warn(&udev->dev, "WARN: Max Exit Latency too large\n");
2030 		ret = -EINVAL;
2031 		break;
2032 	case COMP_SUCCESS:
2033 		xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
2034 				"Successful evaluate context command");
2035 		ret = 0;
2036 		break;
2037 	default:
2038 		xhci_err(xhci, "ERROR: unexpected command completion code 0x%x.\n",
2039 			*cmd_status);
2040 		ret = -EINVAL;
2041 		break;
2042 	}
2043 	return ret;
2044 }
2045 
2046 static u32 xhci_count_num_new_endpoints(struct xhci_hcd *xhci,
2047 		struct xhci_input_control_ctx *ctrl_ctx)
2048 {
2049 	u32 valid_add_flags;
2050 	u32 valid_drop_flags;
2051 
2052 	/* Ignore the slot flag (bit 0), and the default control endpoint flag
2053 	 * (bit 1).  The default control endpoint is added during the Address
2054 	 * Device command and is never removed until the slot is disabled.
2055 	 */
2056 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2057 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2058 
2059 	/* Use hweight32 to count the number of ones in the add flags, or
2060 	 * number of endpoints added.  Don't count endpoints that are changed
2061 	 * (both added and dropped).
2062 	 */
2063 	return hweight32(valid_add_flags) -
2064 		hweight32(valid_add_flags & valid_drop_flags);
2065 }
2066 
2067 static unsigned int xhci_count_num_dropped_endpoints(struct xhci_hcd *xhci,
2068 		struct xhci_input_control_ctx *ctrl_ctx)
2069 {
2070 	u32 valid_add_flags;
2071 	u32 valid_drop_flags;
2072 
2073 	valid_add_flags = le32_to_cpu(ctrl_ctx->add_flags) >> 2;
2074 	valid_drop_flags = le32_to_cpu(ctrl_ctx->drop_flags) >> 2;
2075 
2076 	return hweight32(valid_drop_flags) -
2077 		hweight32(valid_add_flags & valid_drop_flags);
2078 }
2079 
2080 /*
2081  * We need to reserve the new number of endpoints before the configure endpoint
2082  * command completes.  We can't subtract the dropped endpoints from the number
2083  * of active endpoints until the command completes because we can oversubscribe
2084  * the host in this case:
2085  *
2086  *  - the first configure endpoint command drops more endpoints than it adds
2087  *  - a second configure endpoint command that adds more endpoints is queued
2088  *  - the first configure endpoint command fails, so the config is unchanged
2089  *  - the second command may succeed, even though there isn't enough resources
2090  *
2091  * Must be called with xhci->lock held.
2092  */
2093 static int xhci_reserve_host_resources(struct xhci_hcd *xhci,
2094 		struct xhci_input_control_ctx *ctrl_ctx)
2095 {
2096 	u32 added_eps;
2097 
2098 	added_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2099 	if (xhci->num_active_eps + added_eps > xhci->limit_active_eps) {
2100 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2101 				"Not enough ep ctxs: "
2102 				"%u active, need to add %u, limit is %u.",
2103 				xhci->num_active_eps, added_eps,
2104 				xhci->limit_active_eps);
2105 		return -ENOMEM;
2106 	}
2107 	xhci->num_active_eps += added_eps;
2108 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2109 			"Adding %u ep ctxs, %u now active.", added_eps,
2110 			xhci->num_active_eps);
2111 	return 0;
2112 }
2113 
2114 /*
2115  * The configure endpoint was failed by the xHC for some other reason, so we
2116  * need to revert the resources that failed configuration would have used.
2117  *
2118  * Must be called with xhci->lock held.
2119  */
2120 static void xhci_free_host_resources(struct xhci_hcd *xhci,
2121 		struct xhci_input_control_ctx *ctrl_ctx)
2122 {
2123 	u32 num_failed_eps;
2124 
2125 	num_failed_eps = xhci_count_num_new_endpoints(xhci, ctrl_ctx);
2126 	xhci->num_active_eps -= num_failed_eps;
2127 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2128 			"Removing %u failed ep ctxs, %u now active.",
2129 			num_failed_eps,
2130 			xhci->num_active_eps);
2131 }
2132 
2133 /*
2134  * Now that the command has completed, clean up the active endpoint count by
2135  * subtracting out the endpoints that were dropped (but not changed).
2136  *
2137  * Must be called with xhci->lock held.
2138  */
2139 static void xhci_finish_resource_reservation(struct xhci_hcd *xhci,
2140 		struct xhci_input_control_ctx *ctrl_ctx)
2141 {
2142 	u32 num_dropped_eps;
2143 
2144 	num_dropped_eps = xhci_count_num_dropped_endpoints(xhci, ctrl_ctx);
2145 	xhci->num_active_eps -= num_dropped_eps;
2146 	if (num_dropped_eps)
2147 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2148 				"Removing %u dropped ep ctxs, %u now active.",
2149 				num_dropped_eps,
2150 				xhci->num_active_eps);
2151 }
2152 
2153 static unsigned int xhci_get_block_size(struct usb_device *udev)
2154 {
2155 	switch (udev->speed) {
2156 	case USB_SPEED_LOW:
2157 	case USB_SPEED_FULL:
2158 		return FS_BLOCK;
2159 	case USB_SPEED_HIGH:
2160 		return HS_BLOCK;
2161 	case USB_SPEED_SUPER:
2162 	case USB_SPEED_SUPER_PLUS:
2163 		return SS_BLOCK;
2164 	case USB_SPEED_UNKNOWN:
2165 	case USB_SPEED_WIRELESS:
2166 	default:
2167 		/* Should never happen */
2168 		return 1;
2169 	}
2170 }
2171 
2172 static unsigned int
2173 xhci_get_largest_overhead(struct xhci_interval_bw *interval_bw)
2174 {
2175 	if (interval_bw->overhead[LS_OVERHEAD_TYPE])
2176 		return LS_OVERHEAD;
2177 	if (interval_bw->overhead[FS_OVERHEAD_TYPE])
2178 		return FS_OVERHEAD;
2179 	return HS_OVERHEAD;
2180 }
2181 
2182 /* If we are changing a LS/FS device under a HS hub,
2183  * make sure (if we are activating a new TT) that the HS bus has enough
2184  * bandwidth for this new TT.
2185  */
2186 static int xhci_check_tt_bw_table(struct xhci_hcd *xhci,
2187 		struct xhci_virt_device *virt_dev,
2188 		int old_active_eps)
2189 {
2190 	struct xhci_interval_bw_table *bw_table;
2191 	struct xhci_tt_bw_info *tt_info;
2192 
2193 	/* Find the bandwidth table for the root port this TT is attached to. */
2194 	bw_table = &xhci->rh_bw[virt_dev->real_port - 1].bw_table;
2195 	tt_info = virt_dev->tt_info;
2196 	/* If this TT already had active endpoints, the bandwidth for this TT
2197 	 * has already been added.  Removing all periodic endpoints (and thus
2198 	 * making the TT enactive) will only decrease the bandwidth used.
2199 	 */
2200 	if (old_active_eps)
2201 		return 0;
2202 	if (old_active_eps == 0 && tt_info->active_eps != 0) {
2203 		if (bw_table->bw_used + TT_HS_OVERHEAD > HS_BW_LIMIT)
2204 			return -ENOMEM;
2205 		return 0;
2206 	}
2207 	/* Not sure why we would have no new active endpoints...
2208 	 *
2209 	 * Maybe because of an Evaluate Context change for a hub update or a
2210 	 * control endpoint 0 max packet size change?
2211 	 * FIXME: skip the bandwidth calculation in that case.
2212 	 */
2213 	return 0;
2214 }
2215 
2216 static int xhci_check_ss_bw(struct xhci_hcd *xhci,
2217 		struct xhci_virt_device *virt_dev)
2218 {
2219 	unsigned int bw_reserved;
2220 
2221 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_IN, 100);
2222 	if (virt_dev->bw_table->ss_bw_in > (SS_BW_LIMIT_IN - bw_reserved))
2223 		return -ENOMEM;
2224 
2225 	bw_reserved = DIV_ROUND_UP(SS_BW_RESERVED*SS_BW_LIMIT_OUT, 100);
2226 	if (virt_dev->bw_table->ss_bw_out > (SS_BW_LIMIT_OUT - bw_reserved))
2227 		return -ENOMEM;
2228 
2229 	return 0;
2230 }
2231 
2232 /*
2233  * This algorithm is a very conservative estimate of the worst-case scheduling
2234  * scenario for any one interval.  The hardware dynamically schedules the
2235  * packets, so we can't tell which microframe could be the limiting factor in
2236  * the bandwidth scheduling.  This only takes into account periodic endpoints.
2237  *
2238  * Obviously, we can't solve an NP complete problem to find the minimum worst
2239  * case scenario.  Instead, we come up with an estimate that is no less than
2240  * the worst case bandwidth used for any one microframe, but may be an
2241  * over-estimate.
2242  *
2243  * We walk the requirements for each endpoint by interval, starting with the
2244  * smallest interval, and place packets in the schedule where there is only one
2245  * possible way to schedule packets for that interval.  In order to simplify
2246  * this algorithm, we record the largest max packet size for each interval, and
2247  * assume all packets will be that size.
2248  *
2249  * For interval 0, we obviously must schedule all packets for each interval.
2250  * The bandwidth for interval 0 is just the amount of data to be transmitted
2251  * (the sum of all max ESIT payload sizes, plus any overhead per packet times
2252  * the number of packets).
2253  *
2254  * For interval 1, we have two possible microframes to schedule those packets
2255  * in.  For this algorithm, if we can schedule the same number of packets for
2256  * each possible scheduling opportunity (each microframe), we will do so.  The
2257  * remaining number of packets will be saved to be transmitted in the gaps in
2258  * the next interval's scheduling sequence.
2259  *
2260  * As we move those remaining packets to be scheduled with interval 2 packets,
2261  * we have to double the number of remaining packets to transmit.  This is
2262  * because the intervals are actually powers of 2, and we would be transmitting
2263  * the previous interval's packets twice in this interval.  We also have to be
2264  * sure that when we look at the largest max packet size for this interval, we
2265  * also look at the largest max packet size for the remaining packets and take
2266  * the greater of the two.
2267  *
2268  * The algorithm continues to evenly distribute packets in each scheduling
2269  * opportunity, and push the remaining packets out, until we get to the last
2270  * interval.  Then those packets and their associated overhead are just added
2271  * to the bandwidth used.
2272  */
2273 static int xhci_check_bw_table(struct xhci_hcd *xhci,
2274 		struct xhci_virt_device *virt_dev,
2275 		int old_active_eps)
2276 {
2277 	unsigned int bw_reserved;
2278 	unsigned int max_bandwidth;
2279 	unsigned int bw_used;
2280 	unsigned int block_size;
2281 	struct xhci_interval_bw_table *bw_table;
2282 	unsigned int packet_size = 0;
2283 	unsigned int overhead = 0;
2284 	unsigned int packets_transmitted = 0;
2285 	unsigned int packets_remaining = 0;
2286 	unsigned int i;
2287 
2288 	if (virt_dev->udev->speed >= USB_SPEED_SUPER)
2289 		return xhci_check_ss_bw(xhci, virt_dev);
2290 
2291 	if (virt_dev->udev->speed == USB_SPEED_HIGH) {
2292 		max_bandwidth = HS_BW_LIMIT;
2293 		/* Convert percent of bus BW reserved to blocks reserved */
2294 		bw_reserved = DIV_ROUND_UP(HS_BW_RESERVED * max_bandwidth, 100);
2295 	} else {
2296 		max_bandwidth = FS_BW_LIMIT;
2297 		bw_reserved = DIV_ROUND_UP(FS_BW_RESERVED * max_bandwidth, 100);
2298 	}
2299 
2300 	bw_table = virt_dev->bw_table;
2301 	/* We need to translate the max packet size and max ESIT payloads into
2302 	 * the units the hardware uses.
2303 	 */
2304 	block_size = xhci_get_block_size(virt_dev->udev);
2305 
2306 	/* If we are manipulating a LS/FS device under a HS hub, double check
2307 	 * that the HS bus has enough bandwidth if we are activing a new TT.
2308 	 */
2309 	if (virt_dev->tt_info) {
2310 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2311 				"Recalculating BW for rootport %u",
2312 				virt_dev->real_port);
2313 		if (xhci_check_tt_bw_table(xhci, virt_dev, old_active_eps)) {
2314 			xhci_warn(xhci, "Not enough bandwidth on HS bus for "
2315 					"newly activated TT.\n");
2316 			return -ENOMEM;
2317 		}
2318 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2319 				"Recalculating BW for TT slot %u port %u",
2320 				virt_dev->tt_info->slot_id,
2321 				virt_dev->tt_info->ttport);
2322 	} else {
2323 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2324 				"Recalculating BW for rootport %u",
2325 				virt_dev->real_port);
2326 	}
2327 
2328 	/* Add in how much bandwidth will be used for interval zero, or the
2329 	 * rounded max ESIT payload + number of packets * largest overhead.
2330 	 */
2331 	bw_used = DIV_ROUND_UP(bw_table->interval0_esit_payload, block_size) +
2332 		bw_table->interval_bw[0].num_packets *
2333 		xhci_get_largest_overhead(&bw_table->interval_bw[0]);
2334 
2335 	for (i = 1; i < XHCI_MAX_INTERVAL; i++) {
2336 		unsigned int bw_added;
2337 		unsigned int largest_mps;
2338 		unsigned int interval_overhead;
2339 
2340 		/*
2341 		 * How many packets could we transmit in this interval?
2342 		 * If packets didn't fit in the previous interval, we will need
2343 		 * to transmit that many packets twice within this interval.
2344 		 */
2345 		packets_remaining = 2 * packets_remaining +
2346 			bw_table->interval_bw[i].num_packets;
2347 
2348 		/* Find the largest max packet size of this or the previous
2349 		 * interval.
2350 		 */
2351 		if (list_empty(&bw_table->interval_bw[i].endpoints))
2352 			largest_mps = 0;
2353 		else {
2354 			struct xhci_virt_ep *virt_ep;
2355 			struct list_head *ep_entry;
2356 
2357 			ep_entry = bw_table->interval_bw[i].endpoints.next;
2358 			virt_ep = list_entry(ep_entry,
2359 					struct xhci_virt_ep, bw_endpoint_list);
2360 			/* Convert to blocks, rounding up */
2361 			largest_mps = DIV_ROUND_UP(
2362 					virt_ep->bw_info.max_packet_size,
2363 					block_size);
2364 		}
2365 		if (largest_mps > packet_size)
2366 			packet_size = largest_mps;
2367 
2368 		/* Use the larger overhead of this or the previous interval. */
2369 		interval_overhead = xhci_get_largest_overhead(
2370 				&bw_table->interval_bw[i]);
2371 		if (interval_overhead > overhead)
2372 			overhead = interval_overhead;
2373 
2374 		/* How many packets can we evenly distribute across
2375 		 * (1 << (i + 1)) possible scheduling opportunities?
2376 		 */
2377 		packets_transmitted = packets_remaining >> (i + 1);
2378 
2379 		/* Add in the bandwidth used for those scheduled packets */
2380 		bw_added = packets_transmitted * (overhead + packet_size);
2381 
2382 		/* How many packets do we have remaining to transmit? */
2383 		packets_remaining = packets_remaining % (1 << (i + 1));
2384 
2385 		/* What largest max packet size should those packets have? */
2386 		/* If we've transmitted all packets, don't carry over the
2387 		 * largest packet size.
2388 		 */
2389 		if (packets_remaining == 0) {
2390 			packet_size = 0;
2391 			overhead = 0;
2392 		} else if (packets_transmitted > 0) {
2393 			/* Otherwise if we do have remaining packets, and we've
2394 			 * scheduled some packets in this interval, take the
2395 			 * largest max packet size from endpoints with this
2396 			 * interval.
2397 			 */
2398 			packet_size = largest_mps;
2399 			overhead = interval_overhead;
2400 		}
2401 		/* Otherwise carry over packet_size and overhead from the last
2402 		 * time we had a remainder.
2403 		 */
2404 		bw_used += bw_added;
2405 		if (bw_used > max_bandwidth) {
2406 			xhci_warn(xhci, "Not enough bandwidth. "
2407 					"Proposed: %u, Max: %u\n",
2408 				bw_used, max_bandwidth);
2409 			return -ENOMEM;
2410 		}
2411 	}
2412 	/*
2413 	 * Ok, we know we have some packets left over after even-handedly
2414 	 * scheduling interval 15.  We don't know which microframes they will
2415 	 * fit into, so we over-schedule and say they will be scheduled every
2416 	 * microframe.
2417 	 */
2418 	if (packets_remaining > 0)
2419 		bw_used += overhead + packet_size;
2420 
2421 	if (!virt_dev->tt_info && virt_dev->udev->speed == USB_SPEED_HIGH) {
2422 		unsigned int port_index = virt_dev->real_port - 1;
2423 
2424 		/* OK, we're manipulating a HS device attached to a
2425 		 * root port bandwidth domain.  Include the number of active TTs
2426 		 * in the bandwidth used.
2427 		 */
2428 		bw_used += TT_HS_OVERHEAD *
2429 			xhci->rh_bw[port_index].num_active_tts;
2430 	}
2431 
2432 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
2433 		"Final bandwidth: %u, Limit: %u, Reserved: %u, "
2434 		"Available: %u " "percent",
2435 		bw_used, max_bandwidth, bw_reserved,
2436 		(max_bandwidth - bw_used - bw_reserved) * 100 /
2437 		max_bandwidth);
2438 
2439 	bw_used += bw_reserved;
2440 	if (bw_used > max_bandwidth) {
2441 		xhci_warn(xhci, "Not enough bandwidth. Proposed: %u, Max: %u\n",
2442 				bw_used, max_bandwidth);
2443 		return -ENOMEM;
2444 	}
2445 
2446 	bw_table->bw_used = bw_used;
2447 	return 0;
2448 }
2449 
2450 static bool xhci_is_async_ep(unsigned int ep_type)
2451 {
2452 	return (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
2453 					ep_type != ISOC_IN_EP &&
2454 					ep_type != INT_IN_EP);
2455 }
2456 
2457 static bool xhci_is_sync_in_ep(unsigned int ep_type)
2458 {
2459 	return (ep_type == ISOC_IN_EP || ep_type == INT_IN_EP);
2460 }
2461 
2462 static unsigned int xhci_get_ss_bw_consumed(struct xhci_bw_info *ep_bw)
2463 {
2464 	unsigned int mps = DIV_ROUND_UP(ep_bw->max_packet_size, SS_BLOCK);
2465 
2466 	if (ep_bw->ep_interval == 0)
2467 		return SS_OVERHEAD_BURST +
2468 			(ep_bw->mult * ep_bw->num_packets *
2469 					(SS_OVERHEAD + mps));
2470 	return DIV_ROUND_UP(ep_bw->mult * ep_bw->num_packets *
2471 				(SS_OVERHEAD + mps + SS_OVERHEAD_BURST),
2472 				1 << ep_bw->ep_interval);
2473 
2474 }
2475 
2476 static void xhci_drop_ep_from_interval_table(struct xhci_hcd *xhci,
2477 		struct xhci_bw_info *ep_bw,
2478 		struct xhci_interval_bw_table *bw_table,
2479 		struct usb_device *udev,
2480 		struct xhci_virt_ep *virt_ep,
2481 		struct xhci_tt_bw_info *tt_info)
2482 {
2483 	struct xhci_interval_bw	*interval_bw;
2484 	int normalized_interval;
2485 
2486 	if (xhci_is_async_ep(ep_bw->type))
2487 		return;
2488 
2489 	if (udev->speed >= USB_SPEED_SUPER) {
2490 		if (xhci_is_sync_in_ep(ep_bw->type))
2491 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in -=
2492 				xhci_get_ss_bw_consumed(ep_bw);
2493 		else
2494 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out -=
2495 				xhci_get_ss_bw_consumed(ep_bw);
2496 		return;
2497 	}
2498 
2499 	/* SuperSpeed endpoints never get added to intervals in the table, so
2500 	 * this check is only valid for HS/FS/LS devices.
2501 	 */
2502 	if (list_empty(&virt_ep->bw_endpoint_list))
2503 		return;
2504 	/* For LS/FS devices, we need to translate the interval expressed in
2505 	 * microframes to frames.
2506 	 */
2507 	if (udev->speed == USB_SPEED_HIGH)
2508 		normalized_interval = ep_bw->ep_interval;
2509 	else
2510 		normalized_interval = ep_bw->ep_interval - 3;
2511 
2512 	if (normalized_interval == 0)
2513 		bw_table->interval0_esit_payload -= ep_bw->max_esit_payload;
2514 	interval_bw = &bw_table->interval_bw[normalized_interval];
2515 	interval_bw->num_packets -= ep_bw->num_packets;
2516 	switch (udev->speed) {
2517 	case USB_SPEED_LOW:
2518 		interval_bw->overhead[LS_OVERHEAD_TYPE] -= 1;
2519 		break;
2520 	case USB_SPEED_FULL:
2521 		interval_bw->overhead[FS_OVERHEAD_TYPE] -= 1;
2522 		break;
2523 	case USB_SPEED_HIGH:
2524 		interval_bw->overhead[HS_OVERHEAD_TYPE] -= 1;
2525 		break;
2526 	case USB_SPEED_SUPER:
2527 	case USB_SPEED_SUPER_PLUS:
2528 	case USB_SPEED_UNKNOWN:
2529 	case USB_SPEED_WIRELESS:
2530 		/* Should never happen because only LS/FS/HS endpoints will get
2531 		 * added to the endpoint list.
2532 		 */
2533 		return;
2534 	}
2535 	if (tt_info)
2536 		tt_info->active_eps -= 1;
2537 	list_del_init(&virt_ep->bw_endpoint_list);
2538 }
2539 
2540 static void xhci_add_ep_to_interval_table(struct xhci_hcd *xhci,
2541 		struct xhci_bw_info *ep_bw,
2542 		struct xhci_interval_bw_table *bw_table,
2543 		struct usb_device *udev,
2544 		struct xhci_virt_ep *virt_ep,
2545 		struct xhci_tt_bw_info *tt_info)
2546 {
2547 	struct xhci_interval_bw	*interval_bw;
2548 	struct xhci_virt_ep *smaller_ep;
2549 	int normalized_interval;
2550 
2551 	if (xhci_is_async_ep(ep_bw->type))
2552 		return;
2553 
2554 	if (udev->speed == USB_SPEED_SUPER) {
2555 		if (xhci_is_sync_in_ep(ep_bw->type))
2556 			xhci->devs[udev->slot_id]->bw_table->ss_bw_in +=
2557 				xhci_get_ss_bw_consumed(ep_bw);
2558 		else
2559 			xhci->devs[udev->slot_id]->bw_table->ss_bw_out +=
2560 				xhci_get_ss_bw_consumed(ep_bw);
2561 		return;
2562 	}
2563 
2564 	/* For LS/FS devices, we need to translate the interval expressed in
2565 	 * microframes to frames.
2566 	 */
2567 	if (udev->speed == USB_SPEED_HIGH)
2568 		normalized_interval = ep_bw->ep_interval;
2569 	else
2570 		normalized_interval = ep_bw->ep_interval - 3;
2571 
2572 	if (normalized_interval == 0)
2573 		bw_table->interval0_esit_payload += ep_bw->max_esit_payload;
2574 	interval_bw = &bw_table->interval_bw[normalized_interval];
2575 	interval_bw->num_packets += ep_bw->num_packets;
2576 	switch (udev->speed) {
2577 	case USB_SPEED_LOW:
2578 		interval_bw->overhead[LS_OVERHEAD_TYPE] += 1;
2579 		break;
2580 	case USB_SPEED_FULL:
2581 		interval_bw->overhead[FS_OVERHEAD_TYPE] += 1;
2582 		break;
2583 	case USB_SPEED_HIGH:
2584 		interval_bw->overhead[HS_OVERHEAD_TYPE] += 1;
2585 		break;
2586 	case USB_SPEED_SUPER:
2587 	case USB_SPEED_SUPER_PLUS:
2588 	case USB_SPEED_UNKNOWN:
2589 	case USB_SPEED_WIRELESS:
2590 		/* Should never happen because only LS/FS/HS endpoints will get
2591 		 * added to the endpoint list.
2592 		 */
2593 		return;
2594 	}
2595 
2596 	if (tt_info)
2597 		tt_info->active_eps += 1;
2598 	/* Insert the endpoint into the list, largest max packet size first. */
2599 	list_for_each_entry(smaller_ep, &interval_bw->endpoints,
2600 			bw_endpoint_list) {
2601 		if (ep_bw->max_packet_size >=
2602 				smaller_ep->bw_info.max_packet_size) {
2603 			/* Add the new ep before the smaller endpoint */
2604 			list_add_tail(&virt_ep->bw_endpoint_list,
2605 					&smaller_ep->bw_endpoint_list);
2606 			return;
2607 		}
2608 	}
2609 	/* Add the new endpoint at the end of the list. */
2610 	list_add_tail(&virt_ep->bw_endpoint_list,
2611 			&interval_bw->endpoints);
2612 }
2613 
2614 void xhci_update_tt_active_eps(struct xhci_hcd *xhci,
2615 		struct xhci_virt_device *virt_dev,
2616 		int old_active_eps)
2617 {
2618 	struct xhci_root_port_bw_info *rh_bw_info;
2619 	if (!virt_dev->tt_info)
2620 		return;
2621 
2622 	rh_bw_info = &xhci->rh_bw[virt_dev->real_port - 1];
2623 	if (old_active_eps == 0 &&
2624 				virt_dev->tt_info->active_eps != 0) {
2625 		rh_bw_info->num_active_tts += 1;
2626 		rh_bw_info->bw_table.bw_used += TT_HS_OVERHEAD;
2627 	} else if (old_active_eps != 0 &&
2628 				virt_dev->tt_info->active_eps == 0) {
2629 		rh_bw_info->num_active_tts -= 1;
2630 		rh_bw_info->bw_table.bw_used -= TT_HS_OVERHEAD;
2631 	}
2632 }
2633 
2634 static int xhci_reserve_bandwidth(struct xhci_hcd *xhci,
2635 		struct xhci_virt_device *virt_dev,
2636 		struct xhci_container_ctx *in_ctx)
2637 {
2638 	struct xhci_bw_info ep_bw_info[31];
2639 	int i;
2640 	struct xhci_input_control_ctx *ctrl_ctx;
2641 	int old_active_eps = 0;
2642 
2643 	if (virt_dev->tt_info)
2644 		old_active_eps = virt_dev->tt_info->active_eps;
2645 
2646 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2647 	if (!ctrl_ctx) {
2648 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2649 				__func__);
2650 		return -ENOMEM;
2651 	}
2652 
2653 	for (i = 0; i < 31; i++) {
2654 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2655 			continue;
2656 
2657 		/* Make a copy of the BW info in case we need to revert this */
2658 		memcpy(&ep_bw_info[i], &virt_dev->eps[i].bw_info,
2659 				sizeof(ep_bw_info[i]));
2660 		/* Drop the endpoint from the interval table if the endpoint is
2661 		 * being dropped or changed.
2662 		 */
2663 		if (EP_IS_DROPPED(ctrl_ctx, i))
2664 			xhci_drop_ep_from_interval_table(xhci,
2665 					&virt_dev->eps[i].bw_info,
2666 					virt_dev->bw_table,
2667 					virt_dev->udev,
2668 					&virt_dev->eps[i],
2669 					virt_dev->tt_info);
2670 	}
2671 	/* Overwrite the information stored in the endpoints' bw_info */
2672 	xhci_update_bw_info(xhci, virt_dev->in_ctx, ctrl_ctx, virt_dev);
2673 	for (i = 0; i < 31; i++) {
2674 		/* Add any changed or added endpoints to the interval table */
2675 		if (EP_IS_ADDED(ctrl_ctx, i))
2676 			xhci_add_ep_to_interval_table(xhci,
2677 					&virt_dev->eps[i].bw_info,
2678 					virt_dev->bw_table,
2679 					virt_dev->udev,
2680 					&virt_dev->eps[i],
2681 					virt_dev->tt_info);
2682 	}
2683 
2684 	if (!xhci_check_bw_table(xhci, virt_dev, old_active_eps)) {
2685 		/* Ok, this fits in the bandwidth we have.
2686 		 * Update the number of active TTs.
2687 		 */
2688 		xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
2689 		return 0;
2690 	}
2691 
2692 	/* We don't have enough bandwidth for this, revert the stored info. */
2693 	for (i = 0; i < 31; i++) {
2694 		if (!EP_IS_ADDED(ctrl_ctx, i) && !EP_IS_DROPPED(ctrl_ctx, i))
2695 			continue;
2696 
2697 		/* Drop the new copies of any added or changed endpoints from
2698 		 * the interval table.
2699 		 */
2700 		if (EP_IS_ADDED(ctrl_ctx, i)) {
2701 			xhci_drop_ep_from_interval_table(xhci,
2702 					&virt_dev->eps[i].bw_info,
2703 					virt_dev->bw_table,
2704 					virt_dev->udev,
2705 					&virt_dev->eps[i],
2706 					virt_dev->tt_info);
2707 		}
2708 		/* Revert the endpoint back to its old information */
2709 		memcpy(&virt_dev->eps[i].bw_info, &ep_bw_info[i],
2710 				sizeof(ep_bw_info[i]));
2711 		/* Add any changed or dropped endpoints back into the table */
2712 		if (EP_IS_DROPPED(ctrl_ctx, i))
2713 			xhci_add_ep_to_interval_table(xhci,
2714 					&virt_dev->eps[i].bw_info,
2715 					virt_dev->bw_table,
2716 					virt_dev->udev,
2717 					&virt_dev->eps[i],
2718 					virt_dev->tt_info);
2719 	}
2720 	return -ENOMEM;
2721 }
2722 
2723 
2724 /* Issue a configure endpoint command or evaluate context command
2725  * and wait for it to finish.
2726  */
2727 static int xhci_configure_endpoint(struct xhci_hcd *xhci,
2728 		struct usb_device *udev,
2729 		struct xhci_command *command,
2730 		bool ctx_change, bool must_succeed)
2731 {
2732 	int ret;
2733 	unsigned long flags;
2734 	struct xhci_input_control_ctx *ctrl_ctx;
2735 	struct xhci_virt_device *virt_dev;
2736 	struct xhci_slot_ctx *slot_ctx;
2737 
2738 	if (!command)
2739 		return -EINVAL;
2740 
2741 	spin_lock_irqsave(&xhci->lock, flags);
2742 
2743 	if (xhci->xhc_state & XHCI_STATE_DYING) {
2744 		spin_unlock_irqrestore(&xhci->lock, flags);
2745 		return -ESHUTDOWN;
2746 	}
2747 
2748 	virt_dev = xhci->devs[udev->slot_id];
2749 
2750 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2751 	if (!ctrl_ctx) {
2752 		spin_unlock_irqrestore(&xhci->lock, flags);
2753 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2754 				__func__);
2755 		return -ENOMEM;
2756 	}
2757 
2758 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK) &&
2759 			xhci_reserve_host_resources(xhci, ctrl_ctx)) {
2760 		spin_unlock_irqrestore(&xhci->lock, flags);
2761 		xhci_warn(xhci, "Not enough host resources, "
2762 				"active endpoint contexts = %u\n",
2763 				xhci->num_active_eps);
2764 		return -ENOMEM;
2765 	}
2766 	if ((xhci->quirks & XHCI_SW_BW_CHECKING) &&
2767 	    xhci_reserve_bandwidth(xhci, virt_dev, command->in_ctx)) {
2768 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2769 			xhci_free_host_resources(xhci, ctrl_ctx);
2770 		spin_unlock_irqrestore(&xhci->lock, flags);
2771 		xhci_warn(xhci, "Not enough bandwidth\n");
2772 		return -ENOMEM;
2773 	}
2774 
2775 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
2776 
2777 	trace_xhci_configure_endpoint_ctrl_ctx(ctrl_ctx);
2778 	trace_xhci_configure_endpoint(slot_ctx);
2779 
2780 	if (!ctx_change)
2781 		ret = xhci_queue_configure_endpoint(xhci, command,
2782 				command->in_ctx->dma,
2783 				udev->slot_id, must_succeed);
2784 	else
2785 		ret = xhci_queue_evaluate_context(xhci, command,
2786 				command->in_ctx->dma,
2787 				udev->slot_id, must_succeed);
2788 	if (ret < 0) {
2789 		if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK))
2790 			xhci_free_host_resources(xhci, ctrl_ctx);
2791 		spin_unlock_irqrestore(&xhci->lock, flags);
2792 		xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
2793 				"FIXME allocate a new ring segment");
2794 		return -ENOMEM;
2795 	}
2796 	xhci_ring_cmd_db(xhci);
2797 	spin_unlock_irqrestore(&xhci->lock, flags);
2798 
2799 	/* Wait for the configure endpoint command to complete */
2800 	wait_for_completion(command->completion);
2801 
2802 	if (!ctx_change)
2803 		ret = xhci_configure_endpoint_result(xhci, udev,
2804 						     &command->status);
2805 	else
2806 		ret = xhci_evaluate_context_result(xhci, udev,
2807 						   &command->status);
2808 
2809 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
2810 		spin_lock_irqsave(&xhci->lock, flags);
2811 		/* If the command failed, remove the reserved resources.
2812 		 * Otherwise, clean up the estimate to include dropped eps.
2813 		 */
2814 		if (ret)
2815 			xhci_free_host_resources(xhci, ctrl_ctx);
2816 		else
2817 			xhci_finish_resource_reservation(xhci, ctrl_ctx);
2818 		spin_unlock_irqrestore(&xhci->lock, flags);
2819 	}
2820 	return ret;
2821 }
2822 
2823 static void xhci_check_bw_drop_ep_streams(struct xhci_hcd *xhci,
2824 	struct xhci_virt_device *vdev, int i)
2825 {
2826 	struct xhci_virt_ep *ep = &vdev->eps[i];
2827 
2828 	if (ep->ep_state & EP_HAS_STREAMS) {
2829 		xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on set_interface, freeing streams.\n",
2830 				xhci_get_endpoint_address(i));
2831 		xhci_free_stream_info(xhci, ep->stream_info);
2832 		ep->stream_info = NULL;
2833 		ep->ep_state &= ~EP_HAS_STREAMS;
2834 	}
2835 }
2836 
2837 /* Called after one or more calls to xhci_add_endpoint() or
2838  * xhci_drop_endpoint().  If this call fails, the USB core is expected
2839  * to call xhci_reset_bandwidth().
2840  *
2841  * Since we are in the middle of changing either configuration or
2842  * installing a new alt setting, the USB core won't allow URBs to be
2843  * enqueued for any endpoint on the old config or interface.  Nothing
2844  * else should be touching the xhci->devs[slot_id] structure, so we
2845  * don't need to take the xhci->lock for manipulating that.
2846  */
2847 static int xhci_check_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2848 {
2849 	int i;
2850 	int ret = 0;
2851 	struct xhci_hcd *xhci;
2852 	struct xhci_virt_device	*virt_dev;
2853 	struct xhci_input_control_ctx *ctrl_ctx;
2854 	struct xhci_slot_ctx *slot_ctx;
2855 	struct xhci_command *command;
2856 
2857 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2858 	if (ret <= 0)
2859 		return ret;
2860 	xhci = hcd_to_xhci(hcd);
2861 	if ((xhci->xhc_state & XHCI_STATE_DYING) ||
2862 		(xhci->xhc_state & XHCI_STATE_REMOVING))
2863 		return -ENODEV;
2864 
2865 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2866 	virt_dev = xhci->devs[udev->slot_id];
2867 
2868 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
2869 	if (!command)
2870 		return -ENOMEM;
2871 
2872 	command->in_ctx = virt_dev->in_ctx;
2873 
2874 	/* See section 4.6.6 - A0 = 1; A1 = D0 = D1 = 0 */
2875 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
2876 	if (!ctrl_ctx) {
2877 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2878 				__func__);
2879 		ret = -ENOMEM;
2880 		goto command_cleanup;
2881 	}
2882 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2883 	ctrl_ctx->add_flags &= cpu_to_le32(~EP0_FLAG);
2884 	ctrl_ctx->drop_flags &= cpu_to_le32(~(SLOT_FLAG | EP0_FLAG));
2885 
2886 	/* Don't issue the command if there's no endpoints to update. */
2887 	if (ctrl_ctx->add_flags == cpu_to_le32(SLOT_FLAG) &&
2888 	    ctrl_ctx->drop_flags == 0) {
2889 		ret = 0;
2890 		goto command_cleanup;
2891 	}
2892 	/* Fix up Context Entries field. Minimum value is EP0 == BIT(1). */
2893 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
2894 	for (i = 31; i >= 1; i--) {
2895 		__le32 le32 = cpu_to_le32(BIT(i));
2896 
2897 		if ((virt_dev->eps[i-1].ring && !(ctrl_ctx->drop_flags & le32))
2898 		    || (ctrl_ctx->add_flags & le32) || i == 1) {
2899 			slot_ctx->dev_info &= cpu_to_le32(~LAST_CTX_MASK);
2900 			slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(i));
2901 			break;
2902 		}
2903 	}
2904 
2905 	ret = xhci_configure_endpoint(xhci, udev, command,
2906 			false, false);
2907 	if (ret)
2908 		/* Callee should call reset_bandwidth() */
2909 		goto command_cleanup;
2910 
2911 	/* Free any rings that were dropped, but not changed. */
2912 	for (i = 1; i < 31; i++) {
2913 		if ((le32_to_cpu(ctrl_ctx->drop_flags) & (1 << (i + 1))) &&
2914 		    !(le32_to_cpu(ctrl_ctx->add_flags) & (1 << (i + 1)))) {
2915 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2916 			xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2917 		}
2918 	}
2919 	xhci_zero_in_ctx(xhci, virt_dev);
2920 	/*
2921 	 * Install any rings for completely new endpoints or changed endpoints,
2922 	 * and free any old rings from changed endpoints.
2923 	 */
2924 	for (i = 1; i < 31; i++) {
2925 		if (!virt_dev->eps[i].new_ring)
2926 			continue;
2927 		/* Only free the old ring if it exists.
2928 		 * It may not if this is the first add of an endpoint.
2929 		 */
2930 		if (virt_dev->eps[i].ring) {
2931 			xhci_free_endpoint_ring(xhci, virt_dev, i);
2932 		}
2933 		xhci_check_bw_drop_ep_streams(xhci, virt_dev, i);
2934 		virt_dev->eps[i].ring = virt_dev->eps[i].new_ring;
2935 		virt_dev->eps[i].new_ring = NULL;
2936 	}
2937 command_cleanup:
2938 	kfree(command->completion);
2939 	kfree(command);
2940 
2941 	return ret;
2942 }
2943 
2944 static void xhci_reset_bandwidth(struct usb_hcd *hcd, struct usb_device *udev)
2945 {
2946 	struct xhci_hcd *xhci;
2947 	struct xhci_virt_device	*virt_dev;
2948 	int i, ret;
2949 
2950 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
2951 	if (ret <= 0)
2952 		return;
2953 	xhci = hcd_to_xhci(hcd);
2954 
2955 	xhci_dbg(xhci, "%s called for udev %p\n", __func__, udev);
2956 	virt_dev = xhci->devs[udev->slot_id];
2957 	/* Free any rings allocated for added endpoints */
2958 	for (i = 0; i < 31; i++) {
2959 		if (virt_dev->eps[i].new_ring) {
2960 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
2961 			xhci_ring_free(xhci, virt_dev->eps[i].new_ring);
2962 			virt_dev->eps[i].new_ring = NULL;
2963 		}
2964 	}
2965 	xhci_zero_in_ctx(xhci, virt_dev);
2966 }
2967 
2968 static void xhci_setup_input_ctx_for_config_ep(struct xhci_hcd *xhci,
2969 		struct xhci_container_ctx *in_ctx,
2970 		struct xhci_container_ctx *out_ctx,
2971 		struct xhci_input_control_ctx *ctrl_ctx,
2972 		u32 add_flags, u32 drop_flags)
2973 {
2974 	ctrl_ctx->add_flags = cpu_to_le32(add_flags);
2975 	ctrl_ctx->drop_flags = cpu_to_le32(drop_flags);
2976 	xhci_slot_copy(xhci, in_ctx, out_ctx);
2977 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
2978 }
2979 
2980 static void xhci_setup_input_ctx_for_quirk(struct xhci_hcd *xhci,
2981 		unsigned int slot_id, unsigned int ep_index,
2982 		struct xhci_dequeue_state *deq_state)
2983 {
2984 	struct xhci_input_control_ctx *ctrl_ctx;
2985 	struct xhci_container_ctx *in_ctx;
2986 	struct xhci_ep_ctx *ep_ctx;
2987 	u32 added_ctxs;
2988 	dma_addr_t addr;
2989 
2990 	in_ctx = xhci->devs[slot_id]->in_ctx;
2991 	ctrl_ctx = xhci_get_input_control_ctx(in_ctx);
2992 	if (!ctrl_ctx) {
2993 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
2994 				__func__);
2995 		return;
2996 	}
2997 
2998 	xhci_endpoint_copy(xhci, xhci->devs[slot_id]->in_ctx,
2999 			xhci->devs[slot_id]->out_ctx, ep_index);
3000 	ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
3001 	addr = xhci_trb_virt_to_dma(deq_state->new_deq_seg,
3002 			deq_state->new_deq_ptr);
3003 	if (addr == 0) {
3004 		xhci_warn(xhci, "WARN Cannot submit config ep after "
3005 				"reset ep command\n");
3006 		xhci_warn(xhci, "WARN deq seg = %p, deq ptr = %p\n",
3007 				deq_state->new_deq_seg,
3008 				deq_state->new_deq_ptr);
3009 		return;
3010 	}
3011 	ep_ctx->deq = cpu_to_le64(addr | deq_state->new_cycle_state);
3012 
3013 	added_ctxs = xhci_get_endpoint_flag_from_index(ep_index);
3014 	xhci_setup_input_ctx_for_config_ep(xhci, xhci->devs[slot_id]->in_ctx,
3015 			xhci->devs[slot_id]->out_ctx, ctrl_ctx,
3016 			added_ctxs, added_ctxs);
3017 }
3018 
3019 void xhci_cleanup_stalled_ring(struct xhci_hcd *xhci, unsigned int ep_index,
3020 			       unsigned int stream_id, struct xhci_td *td)
3021 {
3022 	struct xhci_dequeue_state deq_state;
3023 	struct usb_device *udev = td->urb->dev;
3024 
3025 	xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3026 			"Cleaning up stalled endpoint ring");
3027 	/* We need to move the HW's dequeue pointer past this TD,
3028 	 * or it will attempt to resend it on the next doorbell ring.
3029 	 */
3030 	xhci_find_new_dequeue_state(xhci, udev->slot_id,
3031 			ep_index, stream_id, td, &deq_state);
3032 
3033 	if (!deq_state.new_deq_ptr || !deq_state.new_deq_seg)
3034 		return;
3035 
3036 	/* HW with the reset endpoint quirk will use the saved dequeue state to
3037 	 * issue a configure endpoint command later.
3038 	 */
3039 	if (!(xhci->quirks & XHCI_RESET_EP_QUIRK)) {
3040 		xhci_dbg_trace(xhci, trace_xhci_dbg_reset_ep,
3041 				"Queueing new dequeue state");
3042 		xhci_queue_new_dequeue_state(xhci, udev->slot_id,
3043 				ep_index, &deq_state);
3044 	} else {
3045 		/* Better hope no one uses the input context between now and the
3046 		 * reset endpoint completion!
3047 		 * XXX: No idea how this hardware will react when stream rings
3048 		 * are enabled.
3049 		 */
3050 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3051 				"Setting up input context for "
3052 				"configure endpoint command");
3053 		xhci_setup_input_ctx_for_quirk(xhci, udev->slot_id,
3054 				ep_index, &deq_state);
3055 	}
3056 }
3057 
3058 /*
3059  * Called after usb core issues a clear halt control message.
3060  * The host side of the halt should already be cleared by a reset endpoint
3061  * command issued when the STALL event was received.
3062  *
3063  * The reset endpoint command may only be issued to endpoints in the halted
3064  * state. For software that wishes to reset the data toggle or sequence number
3065  * of an endpoint that isn't in the halted state this function will issue a
3066  * configure endpoint command with the Drop and Add bits set for the target
3067  * endpoint. Refer to the additional note in xhci spcification section 4.6.8.
3068  */
3069 
3070 static void xhci_endpoint_reset(struct usb_hcd *hcd,
3071 		struct usb_host_endpoint *host_ep)
3072 {
3073 	struct xhci_hcd *xhci;
3074 	struct usb_device *udev;
3075 	struct xhci_virt_device *vdev;
3076 	struct xhci_virt_ep *ep;
3077 	struct xhci_input_control_ctx *ctrl_ctx;
3078 	struct xhci_command *stop_cmd, *cfg_cmd;
3079 	unsigned int ep_index;
3080 	unsigned long flags;
3081 	u32 ep_flag;
3082 
3083 	xhci = hcd_to_xhci(hcd);
3084 	if (!host_ep->hcpriv)
3085 		return;
3086 	udev = (struct usb_device *) host_ep->hcpriv;
3087 	vdev = xhci->devs[udev->slot_id];
3088 	ep_index = xhci_get_endpoint_index(&host_ep->desc);
3089 	ep = &vdev->eps[ep_index];
3090 
3091 	/* Bail out if toggle is already being cleared by a endpoint reset */
3092 	if (ep->ep_state & EP_HARD_CLEAR_TOGGLE) {
3093 		ep->ep_state &= ~EP_HARD_CLEAR_TOGGLE;
3094 		return;
3095 	}
3096 	/* Only interrupt and bulk ep's use data toggle, USB2 spec 5.5.4-> */
3097 	if (usb_endpoint_xfer_control(&host_ep->desc) ||
3098 	    usb_endpoint_xfer_isoc(&host_ep->desc))
3099 		return;
3100 
3101 	ep_flag = xhci_get_endpoint_flag(&host_ep->desc);
3102 
3103 	if (ep_flag == SLOT_FLAG || ep_flag == EP0_FLAG)
3104 		return;
3105 
3106 	stop_cmd = xhci_alloc_command(xhci, true, GFP_NOWAIT);
3107 	if (!stop_cmd)
3108 		return;
3109 
3110 	cfg_cmd = xhci_alloc_command_with_ctx(xhci, true, GFP_NOWAIT);
3111 	if (!cfg_cmd)
3112 		goto cleanup;
3113 
3114 	spin_lock_irqsave(&xhci->lock, flags);
3115 
3116 	/* block queuing new trbs and ringing ep doorbell */
3117 	ep->ep_state |= EP_SOFT_CLEAR_TOGGLE;
3118 
3119 	/*
3120 	 * Make sure endpoint ring is empty before resetting the toggle/seq.
3121 	 * Driver is required to synchronously cancel all transfer request.
3122 	 * Stop the endpoint to force xHC to update the output context
3123 	 */
3124 
3125 	if (!list_empty(&ep->ring->td_list)) {
3126 		dev_err(&udev->dev, "EP not empty, refuse reset\n");
3127 		spin_unlock_irqrestore(&xhci->lock, flags);
3128 		xhci_free_command(xhci, cfg_cmd);
3129 		goto cleanup;
3130 	}
3131 	xhci_queue_stop_endpoint(xhci, stop_cmd, udev->slot_id, ep_index, 0);
3132 	xhci_ring_cmd_db(xhci);
3133 	spin_unlock_irqrestore(&xhci->lock, flags);
3134 
3135 	wait_for_completion(stop_cmd->completion);
3136 
3137 	spin_lock_irqsave(&xhci->lock, flags);
3138 
3139 	/* config ep command clears toggle if add and drop ep flags are set */
3140 	ctrl_ctx = xhci_get_input_control_ctx(cfg_cmd->in_ctx);
3141 	xhci_setup_input_ctx_for_config_ep(xhci, cfg_cmd->in_ctx, vdev->out_ctx,
3142 					   ctrl_ctx, ep_flag, ep_flag);
3143 	xhci_endpoint_copy(xhci, cfg_cmd->in_ctx, vdev->out_ctx, ep_index);
3144 
3145 	xhci_queue_configure_endpoint(xhci, cfg_cmd, cfg_cmd->in_ctx->dma,
3146 				      udev->slot_id, false);
3147 	xhci_ring_cmd_db(xhci);
3148 	spin_unlock_irqrestore(&xhci->lock, flags);
3149 
3150 	wait_for_completion(cfg_cmd->completion);
3151 
3152 	ep->ep_state &= ~EP_SOFT_CLEAR_TOGGLE;
3153 	xhci_free_command(xhci, cfg_cmd);
3154 cleanup:
3155 	xhci_free_command(xhci, stop_cmd);
3156 }
3157 
3158 static int xhci_check_streams_endpoint(struct xhci_hcd *xhci,
3159 		struct usb_device *udev, struct usb_host_endpoint *ep,
3160 		unsigned int slot_id)
3161 {
3162 	int ret;
3163 	unsigned int ep_index;
3164 	unsigned int ep_state;
3165 
3166 	if (!ep)
3167 		return -EINVAL;
3168 	ret = xhci_check_args(xhci_to_hcd(xhci), udev, ep, 1, true, __func__);
3169 	if (ret <= 0)
3170 		return -EINVAL;
3171 	if (usb_ss_max_streams(&ep->ss_ep_comp) == 0) {
3172 		xhci_warn(xhci, "WARN: SuperSpeed Endpoint Companion"
3173 				" descriptor for ep 0x%x does not support streams\n",
3174 				ep->desc.bEndpointAddress);
3175 		return -EINVAL;
3176 	}
3177 
3178 	ep_index = xhci_get_endpoint_index(&ep->desc);
3179 	ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3180 	if (ep_state & EP_HAS_STREAMS ||
3181 			ep_state & EP_GETTING_STREAMS) {
3182 		xhci_warn(xhci, "WARN: SuperSpeed bulk endpoint 0x%x "
3183 				"already has streams set up.\n",
3184 				ep->desc.bEndpointAddress);
3185 		xhci_warn(xhci, "Send email to xHCI maintainer and ask for "
3186 				"dynamic stream context array reallocation.\n");
3187 		return -EINVAL;
3188 	}
3189 	if (!list_empty(&xhci->devs[slot_id]->eps[ep_index].ring->td_list)) {
3190 		xhci_warn(xhci, "Cannot setup streams for SuperSpeed bulk "
3191 				"endpoint 0x%x; URBs are pending.\n",
3192 				ep->desc.bEndpointAddress);
3193 		return -EINVAL;
3194 	}
3195 	return 0;
3196 }
3197 
3198 static void xhci_calculate_streams_entries(struct xhci_hcd *xhci,
3199 		unsigned int *num_streams, unsigned int *num_stream_ctxs)
3200 {
3201 	unsigned int max_streams;
3202 
3203 	/* The stream context array size must be a power of two */
3204 	*num_stream_ctxs = roundup_pow_of_two(*num_streams);
3205 	/*
3206 	 * Find out how many primary stream array entries the host controller
3207 	 * supports.  Later we may use secondary stream arrays (similar to 2nd
3208 	 * level page entries), but that's an optional feature for xHCI host
3209 	 * controllers. xHCs must support at least 4 stream IDs.
3210 	 */
3211 	max_streams = HCC_MAX_PSA(xhci->hcc_params);
3212 	if (*num_stream_ctxs > max_streams) {
3213 		xhci_dbg(xhci, "xHCI HW only supports %u stream ctx entries.\n",
3214 				max_streams);
3215 		*num_stream_ctxs = max_streams;
3216 		*num_streams = max_streams;
3217 	}
3218 }
3219 
3220 /* Returns an error code if one of the endpoint already has streams.
3221  * This does not change any data structures, it only checks and gathers
3222  * information.
3223  */
3224 static int xhci_calculate_streams_and_bitmask(struct xhci_hcd *xhci,
3225 		struct usb_device *udev,
3226 		struct usb_host_endpoint **eps, unsigned int num_eps,
3227 		unsigned int *num_streams, u32 *changed_ep_bitmask)
3228 {
3229 	unsigned int max_streams;
3230 	unsigned int endpoint_flag;
3231 	int i;
3232 	int ret;
3233 
3234 	for (i = 0; i < num_eps; i++) {
3235 		ret = xhci_check_streams_endpoint(xhci, udev,
3236 				eps[i], udev->slot_id);
3237 		if (ret < 0)
3238 			return ret;
3239 
3240 		max_streams = usb_ss_max_streams(&eps[i]->ss_ep_comp);
3241 		if (max_streams < (*num_streams - 1)) {
3242 			xhci_dbg(xhci, "Ep 0x%x only supports %u stream IDs.\n",
3243 					eps[i]->desc.bEndpointAddress,
3244 					max_streams);
3245 			*num_streams = max_streams+1;
3246 		}
3247 
3248 		endpoint_flag = xhci_get_endpoint_flag(&eps[i]->desc);
3249 		if (*changed_ep_bitmask & endpoint_flag)
3250 			return -EINVAL;
3251 		*changed_ep_bitmask |= endpoint_flag;
3252 	}
3253 	return 0;
3254 }
3255 
3256 static u32 xhci_calculate_no_streams_bitmask(struct xhci_hcd *xhci,
3257 		struct usb_device *udev,
3258 		struct usb_host_endpoint **eps, unsigned int num_eps)
3259 {
3260 	u32 changed_ep_bitmask = 0;
3261 	unsigned int slot_id;
3262 	unsigned int ep_index;
3263 	unsigned int ep_state;
3264 	int i;
3265 
3266 	slot_id = udev->slot_id;
3267 	if (!xhci->devs[slot_id])
3268 		return 0;
3269 
3270 	for (i = 0; i < num_eps; i++) {
3271 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3272 		ep_state = xhci->devs[slot_id]->eps[ep_index].ep_state;
3273 		/* Are streams already being freed for the endpoint? */
3274 		if (ep_state & EP_GETTING_NO_STREAMS) {
3275 			xhci_warn(xhci, "WARN Can't disable streams for "
3276 					"endpoint 0x%x, "
3277 					"streams are being disabled already\n",
3278 					eps[i]->desc.bEndpointAddress);
3279 			return 0;
3280 		}
3281 		/* Are there actually any streams to free? */
3282 		if (!(ep_state & EP_HAS_STREAMS) &&
3283 				!(ep_state & EP_GETTING_STREAMS)) {
3284 			xhci_warn(xhci, "WARN Can't disable streams for "
3285 					"endpoint 0x%x, "
3286 					"streams are already disabled!\n",
3287 					eps[i]->desc.bEndpointAddress);
3288 			xhci_warn(xhci, "WARN xhci_free_streams() called "
3289 					"with non-streams endpoint\n");
3290 			return 0;
3291 		}
3292 		changed_ep_bitmask |= xhci_get_endpoint_flag(&eps[i]->desc);
3293 	}
3294 	return changed_ep_bitmask;
3295 }
3296 
3297 /*
3298  * The USB device drivers use this function (through the HCD interface in USB
3299  * core) to prepare a set of bulk endpoints to use streams.  Streams are used to
3300  * coordinate mass storage command queueing across multiple endpoints (basically
3301  * a stream ID == a task ID).
3302  *
3303  * Setting up streams involves allocating the same size stream context array
3304  * for each endpoint and issuing a configure endpoint command for all endpoints.
3305  *
3306  * Don't allow the call to succeed if one endpoint only supports one stream
3307  * (which means it doesn't support streams at all).
3308  *
3309  * Drivers may get less stream IDs than they asked for, if the host controller
3310  * hardware or endpoints claim they can't support the number of requested
3311  * stream IDs.
3312  */
3313 static int xhci_alloc_streams(struct usb_hcd *hcd, struct usb_device *udev,
3314 		struct usb_host_endpoint **eps, unsigned int num_eps,
3315 		unsigned int num_streams, gfp_t mem_flags)
3316 {
3317 	int i, ret;
3318 	struct xhci_hcd *xhci;
3319 	struct xhci_virt_device *vdev;
3320 	struct xhci_command *config_cmd;
3321 	struct xhci_input_control_ctx *ctrl_ctx;
3322 	unsigned int ep_index;
3323 	unsigned int num_stream_ctxs;
3324 	unsigned int max_packet;
3325 	unsigned long flags;
3326 	u32 changed_ep_bitmask = 0;
3327 
3328 	if (!eps)
3329 		return -EINVAL;
3330 
3331 	/* Add one to the number of streams requested to account for
3332 	 * stream 0 that is reserved for xHCI usage.
3333 	 */
3334 	num_streams += 1;
3335 	xhci = hcd_to_xhci(hcd);
3336 	xhci_dbg(xhci, "Driver wants %u stream IDs (including stream 0).\n",
3337 			num_streams);
3338 
3339 	/* MaxPSASize value 0 (2 streams) means streams are not supported */
3340 	if ((xhci->quirks & XHCI_BROKEN_STREAMS) ||
3341 			HCC_MAX_PSA(xhci->hcc_params) < 4) {
3342 		xhci_dbg(xhci, "xHCI controller does not support streams.\n");
3343 		return -ENOSYS;
3344 	}
3345 
3346 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
3347 	if (!config_cmd)
3348 		return -ENOMEM;
3349 
3350 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
3351 	if (!ctrl_ctx) {
3352 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3353 				__func__);
3354 		xhci_free_command(xhci, config_cmd);
3355 		return -ENOMEM;
3356 	}
3357 
3358 	/* Check to make sure all endpoints are not already configured for
3359 	 * streams.  While we're at it, find the maximum number of streams that
3360 	 * all the endpoints will support and check for duplicate endpoints.
3361 	 */
3362 	spin_lock_irqsave(&xhci->lock, flags);
3363 	ret = xhci_calculate_streams_and_bitmask(xhci, udev, eps,
3364 			num_eps, &num_streams, &changed_ep_bitmask);
3365 	if (ret < 0) {
3366 		xhci_free_command(xhci, config_cmd);
3367 		spin_unlock_irqrestore(&xhci->lock, flags);
3368 		return ret;
3369 	}
3370 	if (num_streams <= 1) {
3371 		xhci_warn(xhci, "WARN: endpoints can't handle "
3372 				"more than one stream.\n");
3373 		xhci_free_command(xhci, config_cmd);
3374 		spin_unlock_irqrestore(&xhci->lock, flags);
3375 		return -EINVAL;
3376 	}
3377 	vdev = xhci->devs[udev->slot_id];
3378 	/* Mark each endpoint as being in transition, so
3379 	 * xhci_urb_enqueue() will reject all URBs.
3380 	 */
3381 	for (i = 0; i < num_eps; i++) {
3382 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3383 		vdev->eps[ep_index].ep_state |= EP_GETTING_STREAMS;
3384 	}
3385 	spin_unlock_irqrestore(&xhci->lock, flags);
3386 
3387 	/* Setup internal data structures and allocate HW data structures for
3388 	 * streams (but don't install the HW structures in the input context
3389 	 * until we're sure all memory allocation succeeded).
3390 	 */
3391 	xhci_calculate_streams_entries(xhci, &num_streams, &num_stream_ctxs);
3392 	xhci_dbg(xhci, "Need %u stream ctx entries for %u stream IDs.\n",
3393 			num_stream_ctxs, num_streams);
3394 
3395 	for (i = 0; i < num_eps; i++) {
3396 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3397 		max_packet = usb_endpoint_maxp(&eps[i]->desc);
3398 		vdev->eps[ep_index].stream_info = xhci_alloc_stream_info(xhci,
3399 				num_stream_ctxs,
3400 				num_streams,
3401 				max_packet, mem_flags);
3402 		if (!vdev->eps[ep_index].stream_info)
3403 			goto cleanup;
3404 		/* Set maxPstreams in endpoint context and update deq ptr to
3405 		 * point to stream context array. FIXME
3406 		 */
3407 	}
3408 
3409 	/* Set up the input context for a configure endpoint command. */
3410 	for (i = 0; i < num_eps; i++) {
3411 		struct xhci_ep_ctx *ep_ctx;
3412 
3413 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3414 		ep_ctx = xhci_get_ep_ctx(xhci, config_cmd->in_ctx, ep_index);
3415 
3416 		xhci_endpoint_copy(xhci, config_cmd->in_ctx,
3417 				vdev->out_ctx, ep_index);
3418 		xhci_setup_streams_ep_input_ctx(xhci, ep_ctx,
3419 				vdev->eps[ep_index].stream_info);
3420 	}
3421 	/* Tell the HW to drop its old copy of the endpoint context info
3422 	 * and add the updated copy from the input context.
3423 	 */
3424 	xhci_setup_input_ctx_for_config_ep(xhci, config_cmd->in_ctx,
3425 			vdev->out_ctx, ctrl_ctx,
3426 			changed_ep_bitmask, changed_ep_bitmask);
3427 
3428 	/* Issue and wait for the configure endpoint command */
3429 	ret = xhci_configure_endpoint(xhci, udev, config_cmd,
3430 			false, false);
3431 
3432 	/* xHC rejected the configure endpoint command for some reason, so we
3433 	 * leave the old ring intact and free our internal streams data
3434 	 * structure.
3435 	 */
3436 	if (ret < 0)
3437 		goto cleanup;
3438 
3439 	spin_lock_irqsave(&xhci->lock, flags);
3440 	for (i = 0; i < num_eps; i++) {
3441 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3442 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3443 		xhci_dbg(xhci, "Slot %u ep ctx %u now has streams.\n",
3444 			 udev->slot_id, ep_index);
3445 		vdev->eps[ep_index].ep_state |= EP_HAS_STREAMS;
3446 	}
3447 	xhci_free_command(xhci, config_cmd);
3448 	spin_unlock_irqrestore(&xhci->lock, flags);
3449 
3450 	/* Subtract 1 for stream 0, which drivers can't use */
3451 	return num_streams - 1;
3452 
3453 cleanup:
3454 	/* If it didn't work, free the streams! */
3455 	for (i = 0; i < num_eps; i++) {
3456 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3457 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3458 		vdev->eps[ep_index].stream_info = NULL;
3459 		/* FIXME Unset maxPstreams in endpoint context and
3460 		 * update deq ptr to point to normal string ring.
3461 		 */
3462 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_STREAMS;
3463 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3464 		xhci_endpoint_zero(xhci, vdev, eps[i]);
3465 	}
3466 	xhci_free_command(xhci, config_cmd);
3467 	return -ENOMEM;
3468 }
3469 
3470 /* Transition the endpoint from using streams to being a "normal" endpoint
3471  * without streams.
3472  *
3473  * Modify the endpoint context state, submit a configure endpoint command,
3474  * and free all endpoint rings for streams if that completes successfully.
3475  */
3476 static int xhci_free_streams(struct usb_hcd *hcd, struct usb_device *udev,
3477 		struct usb_host_endpoint **eps, unsigned int num_eps,
3478 		gfp_t mem_flags)
3479 {
3480 	int i, ret;
3481 	struct xhci_hcd *xhci;
3482 	struct xhci_virt_device *vdev;
3483 	struct xhci_command *command;
3484 	struct xhci_input_control_ctx *ctrl_ctx;
3485 	unsigned int ep_index;
3486 	unsigned long flags;
3487 	u32 changed_ep_bitmask;
3488 
3489 	xhci = hcd_to_xhci(hcd);
3490 	vdev = xhci->devs[udev->slot_id];
3491 
3492 	/* Set up a configure endpoint command to remove the streams rings */
3493 	spin_lock_irqsave(&xhci->lock, flags);
3494 	changed_ep_bitmask = xhci_calculate_no_streams_bitmask(xhci,
3495 			udev, eps, num_eps);
3496 	if (changed_ep_bitmask == 0) {
3497 		spin_unlock_irqrestore(&xhci->lock, flags);
3498 		return -EINVAL;
3499 	}
3500 
3501 	/* Use the xhci_command structure from the first endpoint.  We may have
3502 	 * allocated too many, but the driver may call xhci_free_streams() for
3503 	 * each endpoint it grouped into one call to xhci_alloc_streams().
3504 	 */
3505 	ep_index = xhci_get_endpoint_index(&eps[0]->desc);
3506 	command = vdev->eps[ep_index].stream_info->free_streams_command;
3507 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
3508 	if (!ctrl_ctx) {
3509 		spin_unlock_irqrestore(&xhci->lock, flags);
3510 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
3511 				__func__);
3512 		return -EINVAL;
3513 	}
3514 
3515 	for (i = 0; i < num_eps; i++) {
3516 		struct xhci_ep_ctx *ep_ctx;
3517 
3518 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3519 		ep_ctx = xhci_get_ep_ctx(xhci, command->in_ctx, ep_index);
3520 		xhci->devs[udev->slot_id]->eps[ep_index].ep_state |=
3521 			EP_GETTING_NO_STREAMS;
3522 
3523 		xhci_endpoint_copy(xhci, command->in_ctx,
3524 				vdev->out_ctx, ep_index);
3525 		xhci_setup_no_streams_ep_input_ctx(ep_ctx,
3526 				&vdev->eps[ep_index]);
3527 	}
3528 	xhci_setup_input_ctx_for_config_ep(xhci, command->in_ctx,
3529 			vdev->out_ctx, ctrl_ctx,
3530 			changed_ep_bitmask, changed_ep_bitmask);
3531 	spin_unlock_irqrestore(&xhci->lock, flags);
3532 
3533 	/* Issue and wait for the configure endpoint command,
3534 	 * which must succeed.
3535 	 */
3536 	ret = xhci_configure_endpoint(xhci, udev, command,
3537 			false, true);
3538 
3539 	/* xHC rejected the configure endpoint command for some reason, so we
3540 	 * leave the streams rings intact.
3541 	 */
3542 	if (ret < 0)
3543 		return ret;
3544 
3545 	spin_lock_irqsave(&xhci->lock, flags);
3546 	for (i = 0; i < num_eps; i++) {
3547 		ep_index = xhci_get_endpoint_index(&eps[i]->desc);
3548 		xhci_free_stream_info(xhci, vdev->eps[ep_index].stream_info);
3549 		vdev->eps[ep_index].stream_info = NULL;
3550 		/* FIXME Unset maxPstreams in endpoint context and
3551 		 * update deq ptr to point to normal string ring.
3552 		 */
3553 		vdev->eps[ep_index].ep_state &= ~EP_GETTING_NO_STREAMS;
3554 		vdev->eps[ep_index].ep_state &= ~EP_HAS_STREAMS;
3555 	}
3556 	spin_unlock_irqrestore(&xhci->lock, flags);
3557 
3558 	return 0;
3559 }
3560 
3561 /*
3562  * Deletes endpoint resources for endpoints that were active before a Reset
3563  * Device command, or a Disable Slot command.  The Reset Device command leaves
3564  * the control endpoint intact, whereas the Disable Slot command deletes it.
3565  *
3566  * Must be called with xhci->lock held.
3567  */
3568 void xhci_free_device_endpoint_resources(struct xhci_hcd *xhci,
3569 	struct xhci_virt_device *virt_dev, bool drop_control_ep)
3570 {
3571 	int i;
3572 	unsigned int num_dropped_eps = 0;
3573 	unsigned int drop_flags = 0;
3574 
3575 	for (i = (drop_control_ep ? 0 : 1); i < 31; i++) {
3576 		if (virt_dev->eps[i].ring) {
3577 			drop_flags |= 1 << i;
3578 			num_dropped_eps++;
3579 		}
3580 	}
3581 	xhci->num_active_eps -= num_dropped_eps;
3582 	if (num_dropped_eps)
3583 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3584 				"Dropped %u ep ctxs, flags = 0x%x, "
3585 				"%u now active.",
3586 				num_dropped_eps, drop_flags,
3587 				xhci->num_active_eps);
3588 }
3589 
3590 /*
3591  * This submits a Reset Device Command, which will set the device state to 0,
3592  * set the device address to 0, and disable all the endpoints except the default
3593  * control endpoint.  The USB core should come back and call
3594  * xhci_address_device(), and then re-set up the configuration.  If this is
3595  * called because of a usb_reset_and_verify_device(), then the old alternate
3596  * settings will be re-installed through the normal bandwidth allocation
3597  * functions.
3598  *
3599  * Wait for the Reset Device command to finish.  Remove all structures
3600  * associated with the endpoints that were disabled.  Clear the input device
3601  * structure? Reset the control endpoint 0 max packet size?
3602  *
3603  * If the virt_dev to be reset does not exist or does not match the udev,
3604  * it means the device is lost, possibly due to the xHC restore error and
3605  * re-initialization during S3/S4. In this case, call xhci_alloc_dev() to
3606  * re-allocate the device.
3607  */
3608 static int xhci_discover_or_reset_device(struct usb_hcd *hcd,
3609 		struct usb_device *udev)
3610 {
3611 	int ret, i;
3612 	unsigned long flags;
3613 	struct xhci_hcd *xhci;
3614 	unsigned int slot_id;
3615 	struct xhci_virt_device *virt_dev;
3616 	struct xhci_command *reset_device_cmd;
3617 	struct xhci_slot_ctx *slot_ctx;
3618 	int old_active_eps = 0;
3619 
3620 	ret = xhci_check_args(hcd, udev, NULL, 0, false, __func__);
3621 	if (ret <= 0)
3622 		return ret;
3623 	xhci = hcd_to_xhci(hcd);
3624 	slot_id = udev->slot_id;
3625 	virt_dev = xhci->devs[slot_id];
3626 	if (!virt_dev) {
3627 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3628 				"not exist. Re-allocate the device\n", slot_id);
3629 		ret = xhci_alloc_dev(hcd, udev);
3630 		if (ret == 1)
3631 			return 0;
3632 		else
3633 			return -EINVAL;
3634 	}
3635 
3636 	if (virt_dev->tt_info)
3637 		old_active_eps = virt_dev->tt_info->active_eps;
3638 
3639 	if (virt_dev->udev != udev) {
3640 		/* If the virt_dev and the udev does not match, this virt_dev
3641 		 * may belong to another udev.
3642 		 * Re-allocate the device.
3643 		 */
3644 		xhci_dbg(xhci, "The device to be reset with slot ID %u does "
3645 				"not match the udev. Re-allocate the device\n",
3646 				slot_id);
3647 		ret = xhci_alloc_dev(hcd, udev);
3648 		if (ret == 1)
3649 			return 0;
3650 		else
3651 			return -EINVAL;
3652 	}
3653 
3654 	/* If device is not setup, there is no point in resetting it */
3655 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3656 	if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
3657 						SLOT_STATE_DISABLED)
3658 		return 0;
3659 
3660 	trace_xhci_discover_or_reset_device(slot_ctx);
3661 
3662 	xhci_dbg(xhci, "Resetting device with slot ID %u\n", slot_id);
3663 	/* Allocate the command structure that holds the struct completion.
3664 	 * Assume we're in process context, since the normal device reset
3665 	 * process has to wait for the device anyway.  Storage devices are
3666 	 * reset as part of error handling, so use GFP_NOIO instead of
3667 	 * GFP_KERNEL.
3668 	 */
3669 	reset_device_cmd = xhci_alloc_command(xhci, true, GFP_NOIO);
3670 	if (!reset_device_cmd) {
3671 		xhci_dbg(xhci, "Couldn't allocate command structure.\n");
3672 		return -ENOMEM;
3673 	}
3674 
3675 	/* Attempt to submit the Reset Device command to the command ring */
3676 	spin_lock_irqsave(&xhci->lock, flags);
3677 
3678 	ret = xhci_queue_reset_device(xhci, reset_device_cmd, slot_id);
3679 	if (ret) {
3680 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3681 		spin_unlock_irqrestore(&xhci->lock, flags);
3682 		goto command_cleanup;
3683 	}
3684 	xhci_ring_cmd_db(xhci);
3685 	spin_unlock_irqrestore(&xhci->lock, flags);
3686 
3687 	/* Wait for the Reset Device command to finish */
3688 	wait_for_completion(reset_device_cmd->completion);
3689 
3690 	/* The Reset Device command can't fail, according to the 0.95/0.96 spec,
3691 	 * unless we tried to reset a slot ID that wasn't enabled,
3692 	 * or the device wasn't in the addressed or configured state.
3693 	 */
3694 	ret = reset_device_cmd->status;
3695 	switch (ret) {
3696 	case COMP_COMMAND_ABORTED:
3697 	case COMP_COMMAND_RING_STOPPED:
3698 		xhci_warn(xhci, "Timeout waiting for reset device command\n");
3699 		ret = -ETIME;
3700 		goto command_cleanup;
3701 	case COMP_SLOT_NOT_ENABLED_ERROR: /* 0.95 completion for bad slot ID */
3702 	case COMP_CONTEXT_STATE_ERROR: /* 0.96 completion code for same thing */
3703 		xhci_dbg(xhci, "Can't reset device (slot ID %u) in %s state\n",
3704 				slot_id,
3705 				xhci_get_slot_state(xhci, virt_dev->out_ctx));
3706 		xhci_dbg(xhci, "Not freeing device rings.\n");
3707 		/* Don't treat this as an error.  May change my mind later. */
3708 		ret = 0;
3709 		goto command_cleanup;
3710 	case COMP_SUCCESS:
3711 		xhci_dbg(xhci, "Successful reset device command.\n");
3712 		break;
3713 	default:
3714 		if (xhci_is_vendor_info_code(xhci, ret))
3715 			break;
3716 		xhci_warn(xhci, "Unknown completion code %u for "
3717 				"reset device command.\n", ret);
3718 		ret = -EINVAL;
3719 		goto command_cleanup;
3720 	}
3721 
3722 	/* Free up host controller endpoint resources */
3723 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3724 		spin_lock_irqsave(&xhci->lock, flags);
3725 		/* Don't delete the default control endpoint resources */
3726 		xhci_free_device_endpoint_resources(xhci, virt_dev, false);
3727 		spin_unlock_irqrestore(&xhci->lock, flags);
3728 	}
3729 
3730 	/* Everything but endpoint 0 is disabled, so free the rings. */
3731 	for (i = 1; i < 31; i++) {
3732 		struct xhci_virt_ep *ep = &virt_dev->eps[i];
3733 
3734 		if (ep->ep_state & EP_HAS_STREAMS) {
3735 			xhci_warn(xhci, "WARN: endpoint 0x%02x has streams on device reset, freeing streams.\n",
3736 					xhci_get_endpoint_address(i));
3737 			xhci_free_stream_info(xhci, ep->stream_info);
3738 			ep->stream_info = NULL;
3739 			ep->ep_state &= ~EP_HAS_STREAMS;
3740 		}
3741 
3742 		if (ep->ring) {
3743 			xhci_debugfs_remove_endpoint(xhci, virt_dev, i);
3744 			xhci_free_endpoint_ring(xhci, virt_dev, i);
3745 		}
3746 		if (!list_empty(&virt_dev->eps[i].bw_endpoint_list))
3747 			xhci_drop_ep_from_interval_table(xhci,
3748 					&virt_dev->eps[i].bw_info,
3749 					virt_dev->bw_table,
3750 					udev,
3751 					&virt_dev->eps[i],
3752 					virt_dev->tt_info);
3753 		xhci_clear_endpoint_bw_info(&virt_dev->eps[i].bw_info);
3754 	}
3755 	/* If necessary, update the number of active TTs on this root port */
3756 	xhci_update_tt_active_eps(xhci, virt_dev, old_active_eps);
3757 	ret = 0;
3758 
3759 command_cleanup:
3760 	xhci_free_command(xhci, reset_device_cmd);
3761 	return ret;
3762 }
3763 
3764 /*
3765  * At this point, the struct usb_device is about to go away, the device has
3766  * disconnected, and all traffic has been stopped and the endpoints have been
3767  * disabled.  Free any HC data structures associated with that device.
3768  */
3769 static void xhci_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
3770 {
3771 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3772 	struct xhci_virt_device *virt_dev;
3773 	struct xhci_slot_ctx *slot_ctx;
3774 	int i, ret;
3775 
3776 #ifndef CONFIG_USB_DEFAULT_PERSIST
3777 	/*
3778 	 * We called pm_runtime_get_noresume when the device was attached.
3779 	 * Decrement the counter here to allow controller to runtime suspend
3780 	 * if no devices remain.
3781 	 */
3782 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3783 		pm_runtime_put_noidle(hcd->self.controller);
3784 #endif
3785 
3786 	ret = xhci_check_args(hcd, udev, NULL, 0, true, __func__);
3787 	/* If the host is halted due to driver unload, we still need to free the
3788 	 * device.
3789 	 */
3790 	if (ret <= 0 && ret != -ENODEV)
3791 		return;
3792 
3793 	virt_dev = xhci->devs[udev->slot_id];
3794 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
3795 	trace_xhci_free_dev(slot_ctx);
3796 
3797 	/* Stop any wayward timer functions (which may grab the lock) */
3798 	for (i = 0; i < 31; i++) {
3799 		virt_dev->eps[i].ep_state &= ~EP_STOP_CMD_PENDING;
3800 		del_timer_sync(&virt_dev->eps[i].stop_cmd_timer);
3801 	}
3802 	xhci_debugfs_remove_slot(xhci, udev->slot_id);
3803 	virt_dev->udev = NULL;
3804 	ret = xhci_disable_slot(xhci, udev->slot_id);
3805 	if (ret)
3806 		xhci_free_virt_device(xhci, udev->slot_id);
3807 }
3808 
3809 int xhci_disable_slot(struct xhci_hcd *xhci, u32 slot_id)
3810 {
3811 	struct xhci_command *command;
3812 	unsigned long flags;
3813 	u32 state;
3814 	int ret = 0;
3815 
3816 	command = xhci_alloc_command(xhci, false, GFP_KERNEL);
3817 	if (!command)
3818 		return -ENOMEM;
3819 
3820 	spin_lock_irqsave(&xhci->lock, flags);
3821 	/* Don't disable the slot if the host controller is dead. */
3822 	state = readl(&xhci->op_regs->status);
3823 	if (state == 0xffffffff || (xhci->xhc_state & XHCI_STATE_DYING) ||
3824 			(xhci->xhc_state & XHCI_STATE_HALTED)) {
3825 		spin_unlock_irqrestore(&xhci->lock, flags);
3826 		kfree(command);
3827 		return -ENODEV;
3828 	}
3829 
3830 	ret = xhci_queue_slot_control(xhci, command, TRB_DISABLE_SLOT,
3831 				slot_id);
3832 	if (ret) {
3833 		spin_unlock_irqrestore(&xhci->lock, flags);
3834 		kfree(command);
3835 		return ret;
3836 	}
3837 	xhci_ring_cmd_db(xhci);
3838 	spin_unlock_irqrestore(&xhci->lock, flags);
3839 	return ret;
3840 }
3841 
3842 /*
3843  * Checks if we have enough host controller resources for the default control
3844  * endpoint.
3845  *
3846  * Must be called with xhci->lock held.
3847  */
3848 static int xhci_reserve_host_control_ep_resources(struct xhci_hcd *xhci)
3849 {
3850 	if (xhci->num_active_eps + 1 > xhci->limit_active_eps) {
3851 		xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3852 				"Not enough ep ctxs: "
3853 				"%u active, need to add 1, limit is %u.",
3854 				xhci->num_active_eps, xhci->limit_active_eps);
3855 		return -ENOMEM;
3856 	}
3857 	xhci->num_active_eps += 1;
3858 	xhci_dbg_trace(xhci, trace_xhci_dbg_quirks,
3859 			"Adding 1 ep ctx, %u now active.",
3860 			xhci->num_active_eps);
3861 	return 0;
3862 }
3863 
3864 
3865 /*
3866  * Returns 0 if the xHC ran out of device slots, the Enable Slot command
3867  * timed out, or allocating memory failed.  Returns 1 on success.
3868  */
3869 int xhci_alloc_dev(struct usb_hcd *hcd, struct usb_device *udev)
3870 {
3871 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3872 	struct xhci_virt_device *vdev;
3873 	struct xhci_slot_ctx *slot_ctx;
3874 	unsigned long flags;
3875 	int ret, slot_id;
3876 	struct xhci_command *command;
3877 
3878 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
3879 	if (!command)
3880 		return 0;
3881 
3882 	spin_lock_irqsave(&xhci->lock, flags);
3883 	ret = xhci_queue_slot_control(xhci, command, TRB_ENABLE_SLOT, 0);
3884 	if (ret) {
3885 		spin_unlock_irqrestore(&xhci->lock, flags);
3886 		xhci_dbg(xhci, "FIXME: allocate a command ring segment\n");
3887 		xhci_free_command(xhci, command);
3888 		return 0;
3889 	}
3890 	xhci_ring_cmd_db(xhci);
3891 	spin_unlock_irqrestore(&xhci->lock, flags);
3892 
3893 	wait_for_completion(command->completion);
3894 	slot_id = command->slot_id;
3895 
3896 	if (!slot_id || command->status != COMP_SUCCESS) {
3897 		xhci_err(xhci, "Error while assigning device slot ID\n");
3898 		xhci_err(xhci, "Max number of devices this xHCI host supports is %u.\n",
3899 				HCS_MAX_SLOTS(
3900 					readl(&xhci->cap_regs->hcs_params1)));
3901 		xhci_free_command(xhci, command);
3902 		return 0;
3903 	}
3904 
3905 	xhci_free_command(xhci, command);
3906 
3907 	if ((xhci->quirks & XHCI_EP_LIMIT_QUIRK)) {
3908 		spin_lock_irqsave(&xhci->lock, flags);
3909 		ret = xhci_reserve_host_control_ep_resources(xhci);
3910 		if (ret) {
3911 			spin_unlock_irqrestore(&xhci->lock, flags);
3912 			xhci_warn(xhci, "Not enough host resources, "
3913 					"active endpoint contexts = %u\n",
3914 					xhci->num_active_eps);
3915 			goto disable_slot;
3916 		}
3917 		spin_unlock_irqrestore(&xhci->lock, flags);
3918 	}
3919 	/* Use GFP_NOIO, since this function can be called from
3920 	 * xhci_discover_or_reset_device(), which may be called as part of
3921 	 * mass storage driver error handling.
3922 	 */
3923 	if (!xhci_alloc_virt_device(xhci, slot_id, udev, GFP_NOIO)) {
3924 		xhci_warn(xhci, "Could not allocate xHCI USB device data structures\n");
3925 		goto disable_slot;
3926 	}
3927 	vdev = xhci->devs[slot_id];
3928 	slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
3929 	trace_xhci_alloc_dev(slot_ctx);
3930 
3931 	udev->slot_id = slot_id;
3932 
3933 	xhci_debugfs_create_slot(xhci, slot_id);
3934 
3935 #ifndef CONFIG_USB_DEFAULT_PERSIST
3936 	/*
3937 	 * If resetting upon resume, we can't put the controller into runtime
3938 	 * suspend if there is a device attached.
3939 	 */
3940 	if (xhci->quirks & XHCI_RESET_ON_RESUME)
3941 		pm_runtime_get_noresume(hcd->self.controller);
3942 #endif
3943 
3944 	/* Is this a LS or FS device under a HS hub? */
3945 	/* Hub or peripherial? */
3946 	return 1;
3947 
3948 disable_slot:
3949 	ret = xhci_disable_slot(xhci, udev->slot_id);
3950 	if (ret)
3951 		xhci_free_virt_device(xhci, udev->slot_id);
3952 
3953 	return 0;
3954 }
3955 
3956 /*
3957  * Issue an Address Device command and optionally send a corresponding
3958  * SetAddress request to the device.
3959  */
3960 static int xhci_setup_device(struct usb_hcd *hcd, struct usb_device *udev,
3961 			     enum xhci_setup_dev setup)
3962 {
3963 	const char *act = setup == SETUP_CONTEXT_ONLY ? "context" : "address";
3964 	unsigned long flags;
3965 	struct xhci_virt_device *virt_dev;
3966 	int ret = 0;
3967 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
3968 	struct xhci_slot_ctx *slot_ctx;
3969 	struct xhci_input_control_ctx *ctrl_ctx;
3970 	u64 temp_64;
3971 	struct xhci_command *command = NULL;
3972 
3973 	mutex_lock(&xhci->mutex);
3974 
3975 	if (xhci->xhc_state) {	/* dying, removing or halted */
3976 		ret = -ESHUTDOWN;
3977 		goto out;
3978 	}
3979 
3980 	if (!udev->slot_id) {
3981 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
3982 				"Bad Slot ID %d", udev->slot_id);
3983 		ret = -EINVAL;
3984 		goto out;
3985 	}
3986 
3987 	virt_dev = xhci->devs[udev->slot_id];
3988 
3989 	if (WARN_ON(!virt_dev)) {
3990 		/*
3991 		 * In plug/unplug torture test with an NEC controller,
3992 		 * a zero-dereference was observed once due to virt_dev = 0.
3993 		 * Print useful debug rather than crash if it is observed again!
3994 		 */
3995 		xhci_warn(xhci, "Virt dev invalid for slot_id 0x%x!\n",
3996 			udev->slot_id);
3997 		ret = -EINVAL;
3998 		goto out;
3999 	}
4000 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->out_ctx);
4001 	trace_xhci_setup_device_slot(slot_ctx);
4002 
4003 	if (setup == SETUP_CONTEXT_ONLY) {
4004 		if (GET_SLOT_STATE(le32_to_cpu(slot_ctx->dev_state)) ==
4005 		    SLOT_STATE_DEFAULT) {
4006 			xhci_dbg(xhci, "Slot already in default state\n");
4007 			goto out;
4008 		}
4009 	}
4010 
4011 	command = xhci_alloc_command(xhci, true, GFP_KERNEL);
4012 	if (!command) {
4013 		ret = -ENOMEM;
4014 		goto out;
4015 	}
4016 
4017 	command->in_ctx = virt_dev->in_ctx;
4018 
4019 	slot_ctx = xhci_get_slot_ctx(xhci, virt_dev->in_ctx);
4020 	ctrl_ctx = xhci_get_input_control_ctx(virt_dev->in_ctx);
4021 	if (!ctrl_ctx) {
4022 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4023 				__func__);
4024 		ret = -EINVAL;
4025 		goto out;
4026 	}
4027 	/*
4028 	 * If this is the first Set Address since device plug-in or
4029 	 * virt_device realloaction after a resume with an xHCI power loss,
4030 	 * then set up the slot context.
4031 	 */
4032 	if (!slot_ctx->dev_info)
4033 		xhci_setup_addressable_virt_dev(xhci, udev);
4034 	/* Otherwise, update the control endpoint ring enqueue pointer. */
4035 	else
4036 		xhci_copy_ep0_dequeue_into_input_ctx(xhci, udev);
4037 	ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
4038 	ctrl_ctx->drop_flags = 0;
4039 
4040 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4041 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4042 
4043 	trace_xhci_address_ctrl_ctx(ctrl_ctx);
4044 	spin_lock_irqsave(&xhci->lock, flags);
4045 	trace_xhci_setup_device(virt_dev);
4046 	ret = xhci_queue_address_device(xhci, command, virt_dev->in_ctx->dma,
4047 					udev->slot_id, setup);
4048 	if (ret) {
4049 		spin_unlock_irqrestore(&xhci->lock, flags);
4050 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4051 				"FIXME: allocate a command ring segment");
4052 		goto out;
4053 	}
4054 	xhci_ring_cmd_db(xhci);
4055 	spin_unlock_irqrestore(&xhci->lock, flags);
4056 
4057 	/* ctrl tx can take up to 5 sec; XXX: need more time for xHC? */
4058 	wait_for_completion(command->completion);
4059 
4060 	/* FIXME: From section 4.3.4: "Software shall be responsible for timing
4061 	 * the SetAddress() "recovery interval" required by USB and aborting the
4062 	 * command on a timeout.
4063 	 */
4064 	switch (command->status) {
4065 	case COMP_COMMAND_ABORTED:
4066 	case COMP_COMMAND_RING_STOPPED:
4067 		xhci_warn(xhci, "Timeout while waiting for setup device command\n");
4068 		ret = -ETIME;
4069 		break;
4070 	case COMP_CONTEXT_STATE_ERROR:
4071 	case COMP_SLOT_NOT_ENABLED_ERROR:
4072 		xhci_err(xhci, "Setup ERROR: setup %s command for slot %d.\n",
4073 			 act, udev->slot_id);
4074 		ret = -EINVAL;
4075 		break;
4076 	case COMP_USB_TRANSACTION_ERROR:
4077 		dev_warn(&udev->dev, "Device not responding to setup %s.\n", act);
4078 
4079 		mutex_unlock(&xhci->mutex);
4080 		ret = xhci_disable_slot(xhci, udev->slot_id);
4081 		if (!ret)
4082 			xhci_alloc_dev(hcd, udev);
4083 		kfree(command->completion);
4084 		kfree(command);
4085 		return -EPROTO;
4086 	case COMP_INCOMPATIBLE_DEVICE_ERROR:
4087 		dev_warn(&udev->dev,
4088 			 "ERROR: Incompatible device for setup %s command\n", act);
4089 		ret = -ENODEV;
4090 		break;
4091 	case COMP_SUCCESS:
4092 		xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4093 			       "Successful setup %s command", act);
4094 		break;
4095 	default:
4096 		xhci_err(xhci,
4097 			 "ERROR: unexpected setup %s command completion code 0x%x.\n",
4098 			 act, command->status);
4099 		trace_xhci_address_ctx(xhci, virt_dev->out_ctx, 1);
4100 		ret = -EINVAL;
4101 		break;
4102 	}
4103 	if (ret)
4104 		goto out;
4105 	temp_64 = xhci_read_64(xhci, &xhci->op_regs->dcbaa_ptr);
4106 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4107 			"Op regs DCBAA ptr = %#016llx", temp_64);
4108 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4109 		"Slot ID %d dcbaa entry @%p = %#016llx",
4110 		udev->slot_id,
4111 		&xhci->dcbaa->dev_context_ptrs[udev->slot_id],
4112 		(unsigned long long)
4113 		le64_to_cpu(xhci->dcbaa->dev_context_ptrs[udev->slot_id]));
4114 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4115 			"Output Context DMA address = %#08llx",
4116 			(unsigned long long)virt_dev->out_ctx->dma);
4117 	trace_xhci_address_ctx(xhci, virt_dev->in_ctx,
4118 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4119 	/*
4120 	 * USB core uses address 1 for the roothubs, so we add one to the
4121 	 * address given back to us by the HC.
4122 	 */
4123 	trace_xhci_address_ctx(xhci, virt_dev->out_ctx,
4124 				le32_to_cpu(slot_ctx->dev_info) >> 27);
4125 	/* Zero the input context control for later use */
4126 	ctrl_ctx->add_flags = 0;
4127 	ctrl_ctx->drop_flags = 0;
4128 
4129 	xhci_dbg_trace(xhci, trace_xhci_dbg_address,
4130 		       "Internal device address = %d",
4131 		       le32_to_cpu(slot_ctx->dev_state) & DEV_ADDR_MASK);
4132 out:
4133 	mutex_unlock(&xhci->mutex);
4134 	if (command) {
4135 		kfree(command->completion);
4136 		kfree(command);
4137 	}
4138 	return ret;
4139 }
4140 
4141 static int xhci_address_device(struct usb_hcd *hcd, struct usb_device *udev)
4142 {
4143 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ADDRESS);
4144 }
4145 
4146 static int xhci_enable_device(struct usb_hcd *hcd, struct usb_device *udev)
4147 {
4148 	return xhci_setup_device(hcd, udev, SETUP_CONTEXT_ONLY);
4149 }
4150 
4151 /*
4152  * Transfer the port index into real index in the HW port status
4153  * registers. Caculate offset between the port's PORTSC register
4154  * and port status base. Divide the number of per port register
4155  * to get the real index. The raw port number bases 1.
4156  */
4157 int xhci_find_raw_port_number(struct usb_hcd *hcd, int port1)
4158 {
4159 	struct xhci_hub *rhub;
4160 
4161 	rhub = xhci_get_rhub(hcd);
4162 	return rhub->ports[port1 - 1]->hw_portnum + 1;
4163 }
4164 
4165 /*
4166  * Issue an Evaluate Context command to change the Maximum Exit Latency in the
4167  * slot context.  If that succeeds, store the new MEL in the xhci_virt_device.
4168  */
4169 static int __maybe_unused xhci_change_max_exit_latency(struct xhci_hcd *xhci,
4170 			struct usb_device *udev, u16 max_exit_latency)
4171 {
4172 	struct xhci_virt_device *virt_dev;
4173 	struct xhci_command *command;
4174 	struct xhci_input_control_ctx *ctrl_ctx;
4175 	struct xhci_slot_ctx *slot_ctx;
4176 	unsigned long flags;
4177 	int ret;
4178 
4179 	spin_lock_irqsave(&xhci->lock, flags);
4180 
4181 	virt_dev = xhci->devs[udev->slot_id];
4182 
4183 	/*
4184 	 * virt_dev might not exists yet if xHC resumed from hibernate (S4) and
4185 	 * xHC was re-initialized. Exit latency will be set later after
4186 	 * hub_port_finish_reset() is done and xhci->devs[] are re-allocated
4187 	 */
4188 
4189 	if (!virt_dev || max_exit_latency == virt_dev->current_mel) {
4190 		spin_unlock_irqrestore(&xhci->lock, flags);
4191 		return 0;
4192 	}
4193 
4194 	/* Attempt to issue an Evaluate Context command to change the MEL. */
4195 	command = xhci->lpm_command;
4196 	ctrl_ctx = xhci_get_input_control_ctx(command->in_ctx);
4197 	if (!ctrl_ctx) {
4198 		spin_unlock_irqrestore(&xhci->lock, flags);
4199 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4200 				__func__);
4201 		return -ENOMEM;
4202 	}
4203 
4204 	xhci_slot_copy(xhci, command->in_ctx, virt_dev->out_ctx);
4205 	spin_unlock_irqrestore(&xhci->lock, flags);
4206 
4207 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4208 	slot_ctx = xhci_get_slot_ctx(xhci, command->in_ctx);
4209 	slot_ctx->dev_info2 &= cpu_to_le32(~((u32) MAX_EXIT));
4210 	slot_ctx->dev_info2 |= cpu_to_le32(max_exit_latency);
4211 	slot_ctx->dev_state = 0;
4212 
4213 	xhci_dbg_trace(xhci, trace_xhci_dbg_context_change,
4214 			"Set up evaluate context for LPM MEL change.");
4215 
4216 	/* Issue and wait for the evaluate context command. */
4217 	ret = xhci_configure_endpoint(xhci, udev, command,
4218 			true, true);
4219 
4220 	if (!ret) {
4221 		spin_lock_irqsave(&xhci->lock, flags);
4222 		virt_dev->current_mel = max_exit_latency;
4223 		spin_unlock_irqrestore(&xhci->lock, flags);
4224 	}
4225 	return ret;
4226 }
4227 
4228 #ifdef CONFIG_PM
4229 
4230 /* BESL to HIRD Encoding array for USB2 LPM */
4231 static int xhci_besl_encoding[16] = {125, 150, 200, 300, 400, 500, 1000, 2000,
4232 	3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000};
4233 
4234 /* Calculate HIRD/BESL for USB2 PORTPMSC*/
4235 static int xhci_calculate_hird_besl(struct xhci_hcd *xhci,
4236 					struct usb_device *udev)
4237 {
4238 	int u2del, besl, besl_host;
4239 	int besl_device = 0;
4240 	u32 field;
4241 
4242 	u2del = HCS_U2_LATENCY(xhci->hcs_params3);
4243 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4244 
4245 	if (field & USB_BESL_SUPPORT) {
4246 		for (besl_host = 0; besl_host < 16; besl_host++) {
4247 			if (xhci_besl_encoding[besl_host] >= u2del)
4248 				break;
4249 		}
4250 		/* Use baseline BESL value as default */
4251 		if (field & USB_BESL_BASELINE_VALID)
4252 			besl_device = USB_GET_BESL_BASELINE(field);
4253 		else if (field & USB_BESL_DEEP_VALID)
4254 			besl_device = USB_GET_BESL_DEEP(field);
4255 	} else {
4256 		if (u2del <= 50)
4257 			besl_host = 0;
4258 		else
4259 			besl_host = (u2del - 51) / 75 + 1;
4260 	}
4261 
4262 	besl = besl_host + besl_device;
4263 	if (besl > 15)
4264 		besl = 15;
4265 
4266 	return besl;
4267 }
4268 
4269 /* Calculate BESLD, L1 timeout and HIRDM for USB2 PORTHLPMC */
4270 static int xhci_calculate_usb2_hw_lpm_params(struct usb_device *udev)
4271 {
4272 	u32 field;
4273 	int l1;
4274 	int besld = 0;
4275 	int hirdm = 0;
4276 
4277 	field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4278 
4279 	/* xHCI l1 is set in steps of 256us, xHCI 1.0 section 5.4.11.2 */
4280 	l1 = udev->l1_params.timeout / 256;
4281 
4282 	/* device has preferred BESLD */
4283 	if (field & USB_BESL_DEEP_VALID) {
4284 		besld = USB_GET_BESL_DEEP(field);
4285 		hirdm = 1;
4286 	}
4287 
4288 	return PORT_BESLD(besld) | PORT_L1_TIMEOUT(l1) | PORT_HIRDM(hirdm);
4289 }
4290 
4291 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4292 			struct usb_device *udev, int enable)
4293 {
4294 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4295 	struct xhci_port **ports;
4296 	__le32 __iomem	*pm_addr, *hlpm_addr;
4297 	u32		pm_val, hlpm_val, field;
4298 	unsigned int	port_num;
4299 	unsigned long	flags;
4300 	int		hird, exit_latency;
4301 	int		ret;
4302 
4303 	if (hcd->speed >= HCD_USB3 || !xhci->hw_lpm_support ||
4304 			!udev->lpm_capable)
4305 		return -EPERM;
4306 
4307 	if (!udev->parent || udev->parent->parent ||
4308 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4309 		return -EPERM;
4310 
4311 	if (udev->usb2_hw_lpm_capable != 1)
4312 		return -EPERM;
4313 
4314 	spin_lock_irqsave(&xhci->lock, flags);
4315 
4316 	ports = xhci->usb2_rhub.ports;
4317 	port_num = udev->portnum - 1;
4318 	pm_addr = ports[port_num]->addr + PORTPMSC;
4319 	pm_val = readl(pm_addr);
4320 	hlpm_addr = ports[port_num]->addr + PORTHLPMC;
4321 
4322 	xhci_dbg(xhci, "%s port %d USB2 hardware LPM\n",
4323 			enable ? "enable" : "disable", port_num + 1);
4324 
4325 	if (enable && !(xhci->quirks & XHCI_HW_LPM_DISABLE)) {
4326 		/* Host supports BESL timeout instead of HIRD */
4327 		if (udev->usb2_hw_lpm_besl_capable) {
4328 			/* if device doesn't have a preferred BESL value use a
4329 			 * default one which works with mixed HIRD and BESL
4330 			 * systems. See XHCI_DEFAULT_BESL definition in xhci.h
4331 			 */
4332 			field = le32_to_cpu(udev->bos->ext_cap->bmAttributes);
4333 			if ((field & USB_BESL_SUPPORT) &&
4334 			    (field & USB_BESL_BASELINE_VALID))
4335 				hird = USB_GET_BESL_BASELINE(field);
4336 			else
4337 				hird = udev->l1_params.besl;
4338 
4339 			exit_latency = xhci_besl_encoding[hird];
4340 			spin_unlock_irqrestore(&xhci->lock, flags);
4341 
4342 			/* USB 3.0 code dedicate one xhci->lpm_command->in_ctx
4343 			 * input context for link powermanagement evaluate
4344 			 * context commands. It is protected by hcd->bandwidth
4345 			 * mutex and is shared by all devices. We need to set
4346 			 * the max ext latency in USB 2 BESL LPM as well, so
4347 			 * use the same mutex and xhci_change_max_exit_latency()
4348 			 */
4349 			mutex_lock(hcd->bandwidth_mutex);
4350 			ret = xhci_change_max_exit_latency(xhci, udev,
4351 							   exit_latency);
4352 			mutex_unlock(hcd->bandwidth_mutex);
4353 
4354 			if (ret < 0)
4355 				return ret;
4356 			spin_lock_irqsave(&xhci->lock, flags);
4357 
4358 			hlpm_val = xhci_calculate_usb2_hw_lpm_params(udev);
4359 			writel(hlpm_val, hlpm_addr);
4360 			/* flush write */
4361 			readl(hlpm_addr);
4362 		} else {
4363 			hird = xhci_calculate_hird_besl(xhci, udev);
4364 		}
4365 
4366 		pm_val &= ~PORT_HIRD_MASK;
4367 		pm_val |= PORT_HIRD(hird) | PORT_RWE | PORT_L1DS(udev->slot_id);
4368 		writel(pm_val, pm_addr);
4369 		pm_val = readl(pm_addr);
4370 		pm_val |= PORT_HLE;
4371 		writel(pm_val, pm_addr);
4372 		/* flush write */
4373 		readl(pm_addr);
4374 	} else {
4375 		pm_val &= ~(PORT_HLE | PORT_RWE | PORT_HIRD_MASK | PORT_L1DS_MASK);
4376 		writel(pm_val, pm_addr);
4377 		/* flush write */
4378 		readl(pm_addr);
4379 		if (udev->usb2_hw_lpm_besl_capable) {
4380 			spin_unlock_irqrestore(&xhci->lock, flags);
4381 			mutex_lock(hcd->bandwidth_mutex);
4382 			xhci_change_max_exit_latency(xhci, udev, 0);
4383 			mutex_unlock(hcd->bandwidth_mutex);
4384 			return 0;
4385 		}
4386 	}
4387 
4388 	spin_unlock_irqrestore(&xhci->lock, flags);
4389 	return 0;
4390 }
4391 
4392 /* check if a usb2 port supports a given extened capability protocol
4393  * only USB2 ports extended protocol capability values are cached.
4394  * Return 1 if capability is supported
4395  */
4396 static int xhci_check_usb2_port_capability(struct xhci_hcd *xhci, int port,
4397 					   unsigned capability)
4398 {
4399 	u32 port_offset, port_count;
4400 	int i;
4401 
4402 	for (i = 0; i < xhci->num_ext_caps; i++) {
4403 		if (xhci->ext_caps[i] & capability) {
4404 			/* port offsets starts at 1 */
4405 			port_offset = XHCI_EXT_PORT_OFF(xhci->ext_caps[i]) - 1;
4406 			port_count = XHCI_EXT_PORT_COUNT(xhci->ext_caps[i]);
4407 			if (port >= port_offset &&
4408 			    port < port_offset + port_count)
4409 				return 1;
4410 		}
4411 	}
4412 	return 0;
4413 }
4414 
4415 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4416 {
4417 	struct xhci_hcd	*xhci = hcd_to_xhci(hcd);
4418 	int		portnum = udev->portnum - 1;
4419 
4420 	if (hcd->speed >= HCD_USB3 || !udev->lpm_capable)
4421 		return 0;
4422 
4423 	/* we only support lpm for non-hub device connected to root hub yet */
4424 	if (!udev->parent || udev->parent->parent ||
4425 			udev->descriptor.bDeviceClass == USB_CLASS_HUB)
4426 		return 0;
4427 
4428 	if (xhci->hw_lpm_support == 1 &&
4429 			xhci_check_usb2_port_capability(
4430 				xhci, portnum, XHCI_HLC)) {
4431 		udev->usb2_hw_lpm_capable = 1;
4432 		udev->l1_params.timeout = XHCI_L1_TIMEOUT;
4433 		udev->l1_params.besl = XHCI_DEFAULT_BESL;
4434 		if (xhci_check_usb2_port_capability(xhci, portnum,
4435 					XHCI_BLC))
4436 			udev->usb2_hw_lpm_besl_capable = 1;
4437 	}
4438 
4439 	return 0;
4440 }
4441 
4442 /*---------------------- USB 3.0 Link PM functions ------------------------*/
4443 
4444 /* Service interval in nanoseconds = 2^(bInterval - 1) * 125us * 1000ns / 1us */
4445 static unsigned long long xhci_service_interval_to_ns(
4446 		struct usb_endpoint_descriptor *desc)
4447 {
4448 	return (1ULL << (desc->bInterval - 1)) * 125 * 1000;
4449 }
4450 
4451 static u16 xhci_get_timeout_no_hub_lpm(struct usb_device *udev,
4452 		enum usb3_link_state state)
4453 {
4454 	unsigned long long sel;
4455 	unsigned long long pel;
4456 	unsigned int max_sel_pel;
4457 	char *state_name;
4458 
4459 	switch (state) {
4460 	case USB3_LPM_U1:
4461 		/* Convert SEL and PEL stored in nanoseconds to microseconds */
4462 		sel = DIV_ROUND_UP(udev->u1_params.sel, 1000);
4463 		pel = DIV_ROUND_UP(udev->u1_params.pel, 1000);
4464 		max_sel_pel = USB3_LPM_MAX_U1_SEL_PEL;
4465 		state_name = "U1";
4466 		break;
4467 	case USB3_LPM_U2:
4468 		sel = DIV_ROUND_UP(udev->u2_params.sel, 1000);
4469 		pel = DIV_ROUND_UP(udev->u2_params.pel, 1000);
4470 		max_sel_pel = USB3_LPM_MAX_U2_SEL_PEL;
4471 		state_name = "U2";
4472 		break;
4473 	default:
4474 		dev_warn(&udev->dev, "%s: Can't get timeout for non-U1 or U2 state.\n",
4475 				__func__);
4476 		return USB3_LPM_DISABLED;
4477 	}
4478 
4479 	if (sel <= max_sel_pel && pel <= max_sel_pel)
4480 		return USB3_LPM_DEVICE_INITIATED;
4481 
4482 	if (sel > max_sel_pel)
4483 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4484 				"due to long SEL %llu ms\n",
4485 				state_name, sel);
4486 	else
4487 		dev_dbg(&udev->dev, "Device-initiated %s disabled "
4488 				"due to long PEL %llu ms\n",
4489 				state_name, pel);
4490 	return USB3_LPM_DISABLED;
4491 }
4492 
4493 /* The U1 timeout should be the maximum of the following values:
4494  *  - For control endpoints, U1 system exit latency (SEL) * 3
4495  *  - For bulk endpoints, U1 SEL * 5
4496  *  - For interrupt endpoints:
4497  *    - Notification EPs, U1 SEL * 3
4498  *    - Periodic EPs, max(105% of bInterval, U1 SEL * 2)
4499  *  - For isochronous endpoints, max(105% of bInterval, U1 SEL * 2)
4500  */
4501 static unsigned long long xhci_calculate_intel_u1_timeout(
4502 		struct usb_device *udev,
4503 		struct usb_endpoint_descriptor *desc)
4504 {
4505 	unsigned long long timeout_ns;
4506 	int ep_type;
4507 	int intr_type;
4508 
4509 	ep_type = usb_endpoint_type(desc);
4510 	switch (ep_type) {
4511 	case USB_ENDPOINT_XFER_CONTROL:
4512 		timeout_ns = udev->u1_params.sel * 3;
4513 		break;
4514 	case USB_ENDPOINT_XFER_BULK:
4515 		timeout_ns = udev->u1_params.sel * 5;
4516 		break;
4517 	case USB_ENDPOINT_XFER_INT:
4518 		intr_type = usb_endpoint_interrupt_type(desc);
4519 		if (intr_type == USB_ENDPOINT_INTR_NOTIFICATION) {
4520 			timeout_ns = udev->u1_params.sel * 3;
4521 			break;
4522 		}
4523 		/* Otherwise the calculation is the same as isoc eps */
4524 		/* fall through */
4525 	case USB_ENDPOINT_XFER_ISOC:
4526 		timeout_ns = xhci_service_interval_to_ns(desc);
4527 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns * 105, 100);
4528 		if (timeout_ns < udev->u1_params.sel * 2)
4529 			timeout_ns = udev->u1_params.sel * 2;
4530 		break;
4531 	default:
4532 		return 0;
4533 	}
4534 
4535 	return timeout_ns;
4536 }
4537 
4538 /* Returns the hub-encoded U1 timeout value. */
4539 static u16 xhci_calculate_u1_timeout(struct xhci_hcd *xhci,
4540 		struct usb_device *udev,
4541 		struct usb_endpoint_descriptor *desc)
4542 {
4543 	unsigned long long timeout_ns;
4544 
4545 	/* Prevent U1 if service interval is shorter than U1 exit latency */
4546 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4547 		if (xhci_service_interval_to_ns(desc) <= udev->u1_params.mel) {
4548 			dev_dbg(&udev->dev, "Disable U1, ESIT shorter than exit latency\n");
4549 			return USB3_LPM_DISABLED;
4550 		}
4551 	}
4552 
4553 	if (xhci->quirks & XHCI_INTEL_HOST)
4554 		timeout_ns = xhci_calculate_intel_u1_timeout(udev, desc);
4555 	else
4556 		timeout_ns = udev->u1_params.sel;
4557 
4558 	/* The U1 timeout is encoded in 1us intervals.
4559 	 * Don't return a timeout of zero, because that's USB3_LPM_DISABLED.
4560 	 */
4561 	if (timeout_ns == USB3_LPM_DISABLED)
4562 		timeout_ns = 1;
4563 	else
4564 		timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 1000);
4565 
4566 	/* If the necessary timeout value is bigger than what we can set in the
4567 	 * USB 3.0 hub, we have to disable hub-initiated U1.
4568 	 */
4569 	if (timeout_ns <= USB3_LPM_U1_MAX_TIMEOUT)
4570 		return timeout_ns;
4571 	dev_dbg(&udev->dev, "Hub-initiated U1 disabled "
4572 			"due to long timeout %llu ms\n", timeout_ns);
4573 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U1);
4574 }
4575 
4576 /* The U2 timeout should be the maximum of:
4577  *  - 10 ms (to avoid the bandwidth impact on the scheduler)
4578  *  - largest bInterval of any active periodic endpoint (to avoid going
4579  *    into lower power link states between intervals).
4580  *  - the U2 Exit Latency of the device
4581  */
4582 static unsigned long long xhci_calculate_intel_u2_timeout(
4583 		struct usb_device *udev,
4584 		struct usb_endpoint_descriptor *desc)
4585 {
4586 	unsigned long long timeout_ns;
4587 	unsigned long long u2_del_ns;
4588 
4589 	timeout_ns = 10 * 1000 * 1000;
4590 
4591 	if ((usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) &&
4592 			(xhci_service_interval_to_ns(desc) > timeout_ns))
4593 		timeout_ns = xhci_service_interval_to_ns(desc);
4594 
4595 	u2_del_ns = le16_to_cpu(udev->bos->ss_cap->bU2DevExitLat) * 1000ULL;
4596 	if (u2_del_ns > timeout_ns)
4597 		timeout_ns = u2_del_ns;
4598 
4599 	return timeout_ns;
4600 }
4601 
4602 /* Returns the hub-encoded U2 timeout value. */
4603 static u16 xhci_calculate_u2_timeout(struct xhci_hcd *xhci,
4604 		struct usb_device *udev,
4605 		struct usb_endpoint_descriptor *desc)
4606 {
4607 	unsigned long long timeout_ns;
4608 
4609 	/* Prevent U2 if service interval is shorter than U2 exit latency */
4610 	if (usb_endpoint_xfer_int(desc) || usb_endpoint_xfer_isoc(desc)) {
4611 		if (xhci_service_interval_to_ns(desc) <= udev->u2_params.mel) {
4612 			dev_dbg(&udev->dev, "Disable U2, ESIT shorter than exit latency\n");
4613 			return USB3_LPM_DISABLED;
4614 		}
4615 	}
4616 
4617 	if (xhci->quirks & XHCI_INTEL_HOST)
4618 		timeout_ns = xhci_calculate_intel_u2_timeout(udev, desc);
4619 	else
4620 		timeout_ns = udev->u2_params.sel;
4621 
4622 	/* The U2 timeout is encoded in 256us intervals */
4623 	timeout_ns = DIV_ROUND_UP_ULL(timeout_ns, 256 * 1000);
4624 	/* If the necessary timeout value is bigger than what we can set in the
4625 	 * USB 3.0 hub, we have to disable hub-initiated U2.
4626 	 */
4627 	if (timeout_ns <= USB3_LPM_U2_MAX_TIMEOUT)
4628 		return timeout_ns;
4629 	dev_dbg(&udev->dev, "Hub-initiated U2 disabled "
4630 			"due to long timeout %llu ms\n", timeout_ns);
4631 	return xhci_get_timeout_no_hub_lpm(udev, USB3_LPM_U2);
4632 }
4633 
4634 static u16 xhci_call_host_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4635 		struct usb_device *udev,
4636 		struct usb_endpoint_descriptor *desc,
4637 		enum usb3_link_state state,
4638 		u16 *timeout)
4639 {
4640 	if (state == USB3_LPM_U1)
4641 		return xhci_calculate_u1_timeout(xhci, udev, desc);
4642 	else if (state == USB3_LPM_U2)
4643 		return xhci_calculate_u2_timeout(xhci, udev, desc);
4644 
4645 	return USB3_LPM_DISABLED;
4646 }
4647 
4648 static int xhci_update_timeout_for_endpoint(struct xhci_hcd *xhci,
4649 		struct usb_device *udev,
4650 		struct usb_endpoint_descriptor *desc,
4651 		enum usb3_link_state state,
4652 		u16 *timeout)
4653 {
4654 	u16 alt_timeout;
4655 
4656 	alt_timeout = xhci_call_host_update_timeout_for_endpoint(xhci, udev,
4657 		desc, state, timeout);
4658 
4659 	/* If we found we can't enable hub-initiated LPM, or
4660 	 * the U1 or U2 exit latency was too high to allow
4661 	 * device-initiated LPM as well, just stop searching.
4662 	 */
4663 	if (alt_timeout == USB3_LPM_DISABLED ||
4664 			alt_timeout == USB3_LPM_DEVICE_INITIATED) {
4665 		*timeout = alt_timeout;
4666 		return -E2BIG;
4667 	}
4668 	if (alt_timeout > *timeout)
4669 		*timeout = alt_timeout;
4670 	return 0;
4671 }
4672 
4673 static int xhci_update_timeout_for_interface(struct xhci_hcd *xhci,
4674 		struct usb_device *udev,
4675 		struct usb_host_interface *alt,
4676 		enum usb3_link_state state,
4677 		u16 *timeout)
4678 {
4679 	int j;
4680 
4681 	for (j = 0; j < alt->desc.bNumEndpoints; j++) {
4682 		if (xhci_update_timeout_for_endpoint(xhci, udev,
4683 					&alt->endpoint[j].desc, state, timeout))
4684 			return -E2BIG;
4685 		continue;
4686 	}
4687 	return 0;
4688 }
4689 
4690 static int xhci_check_intel_tier_policy(struct usb_device *udev,
4691 		enum usb3_link_state state)
4692 {
4693 	struct usb_device *parent;
4694 	unsigned int num_hubs;
4695 
4696 	if (state == USB3_LPM_U2)
4697 		return 0;
4698 
4699 	/* Don't enable U1 if the device is on a 2nd tier hub or lower. */
4700 	for (parent = udev->parent, num_hubs = 0; parent->parent;
4701 			parent = parent->parent)
4702 		num_hubs++;
4703 
4704 	if (num_hubs < 2)
4705 		return 0;
4706 
4707 	dev_dbg(&udev->dev, "Disabling U1 link state for device"
4708 			" below second-tier hub.\n");
4709 	dev_dbg(&udev->dev, "Plug device into first-tier hub "
4710 			"to decrease power consumption.\n");
4711 	return -E2BIG;
4712 }
4713 
4714 static int xhci_check_tier_policy(struct xhci_hcd *xhci,
4715 		struct usb_device *udev,
4716 		enum usb3_link_state state)
4717 {
4718 	if (xhci->quirks & XHCI_INTEL_HOST)
4719 		return xhci_check_intel_tier_policy(udev, state);
4720 	else
4721 		return 0;
4722 }
4723 
4724 /* Returns the U1 or U2 timeout that should be enabled.
4725  * If the tier check or timeout setting functions return with a non-zero exit
4726  * code, that means the timeout value has been finalized and we shouldn't look
4727  * at any more endpoints.
4728  */
4729 static u16 xhci_calculate_lpm_timeout(struct usb_hcd *hcd,
4730 			struct usb_device *udev, enum usb3_link_state state)
4731 {
4732 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4733 	struct usb_host_config *config;
4734 	char *state_name;
4735 	int i;
4736 	u16 timeout = USB3_LPM_DISABLED;
4737 
4738 	if (state == USB3_LPM_U1)
4739 		state_name = "U1";
4740 	else if (state == USB3_LPM_U2)
4741 		state_name = "U2";
4742 	else {
4743 		dev_warn(&udev->dev, "Can't enable unknown link state %i\n",
4744 				state);
4745 		return timeout;
4746 	}
4747 
4748 	if (xhci_check_tier_policy(xhci, udev, state) < 0)
4749 		return timeout;
4750 
4751 	/* Gather some information about the currently installed configuration
4752 	 * and alternate interface settings.
4753 	 */
4754 	if (xhci_update_timeout_for_endpoint(xhci, udev, &udev->ep0.desc,
4755 			state, &timeout))
4756 		return timeout;
4757 
4758 	config = udev->actconfig;
4759 	if (!config)
4760 		return timeout;
4761 
4762 	for (i = 0; i < config->desc.bNumInterfaces; i++) {
4763 		struct usb_driver *driver;
4764 		struct usb_interface *intf = config->interface[i];
4765 
4766 		if (!intf)
4767 			continue;
4768 
4769 		/* Check if any currently bound drivers want hub-initiated LPM
4770 		 * disabled.
4771 		 */
4772 		if (intf->dev.driver) {
4773 			driver = to_usb_driver(intf->dev.driver);
4774 			if (driver && driver->disable_hub_initiated_lpm) {
4775 				dev_dbg(&udev->dev, "Hub-initiated %s disabled "
4776 						"at request of driver %s\n",
4777 						state_name, driver->name);
4778 				return xhci_get_timeout_no_hub_lpm(udev, state);
4779 			}
4780 		}
4781 
4782 		/* Not sure how this could happen... */
4783 		if (!intf->cur_altsetting)
4784 			continue;
4785 
4786 		if (xhci_update_timeout_for_interface(xhci, udev,
4787 					intf->cur_altsetting,
4788 					state, &timeout))
4789 			return timeout;
4790 	}
4791 	return timeout;
4792 }
4793 
4794 static int calculate_max_exit_latency(struct usb_device *udev,
4795 		enum usb3_link_state state_changed,
4796 		u16 hub_encoded_timeout)
4797 {
4798 	unsigned long long u1_mel_us = 0;
4799 	unsigned long long u2_mel_us = 0;
4800 	unsigned long long mel_us = 0;
4801 	bool disabling_u1;
4802 	bool disabling_u2;
4803 	bool enabling_u1;
4804 	bool enabling_u2;
4805 
4806 	disabling_u1 = (state_changed == USB3_LPM_U1 &&
4807 			hub_encoded_timeout == USB3_LPM_DISABLED);
4808 	disabling_u2 = (state_changed == USB3_LPM_U2 &&
4809 			hub_encoded_timeout == USB3_LPM_DISABLED);
4810 
4811 	enabling_u1 = (state_changed == USB3_LPM_U1 &&
4812 			hub_encoded_timeout != USB3_LPM_DISABLED);
4813 	enabling_u2 = (state_changed == USB3_LPM_U2 &&
4814 			hub_encoded_timeout != USB3_LPM_DISABLED);
4815 
4816 	/* If U1 was already enabled and we're not disabling it,
4817 	 * or we're going to enable U1, account for the U1 max exit latency.
4818 	 */
4819 	if ((udev->u1_params.timeout != USB3_LPM_DISABLED && !disabling_u1) ||
4820 			enabling_u1)
4821 		u1_mel_us = DIV_ROUND_UP(udev->u1_params.mel, 1000);
4822 	if ((udev->u2_params.timeout != USB3_LPM_DISABLED && !disabling_u2) ||
4823 			enabling_u2)
4824 		u2_mel_us = DIV_ROUND_UP(udev->u2_params.mel, 1000);
4825 
4826 	if (u1_mel_us > u2_mel_us)
4827 		mel_us = u1_mel_us;
4828 	else
4829 		mel_us = u2_mel_us;
4830 	/* xHCI host controller max exit latency field is only 16 bits wide. */
4831 	if (mel_us > MAX_EXIT) {
4832 		dev_warn(&udev->dev, "Link PM max exit latency of %lluus "
4833 				"is too big.\n", mel_us);
4834 		return -E2BIG;
4835 	}
4836 	return mel_us;
4837 }
4838 
4839 /* Returns the USB3 hub-encoded value for the U1/U2 timeout. */
4840 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4841 			struct usb_device *udev, enum usb3_link_state state)
4842 {
4843 	struct xhci_hcd	*xhci;
4844 	u16 hub_encoded_timeout;
4845 	int mel;
4846 	int ret;
4847 
4848 	xhci = hcd_to_xhci(hcd);
4849 	/* The LPM timeout values are pretty host-controller specific, so don't
4850 	 * enable hub-initiated timeouts unless the vendor has provided
4851 	 * information about their timeout algorithm.
4852 	 */
4853 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4854 			!xhci->devs[udev->slot_id])
4855 		return USB3_LPM_DISABLED;
4856 
4857 	hub_encoded_timeout = xhci_calculate_lpm_timeout(hcd, udev, state);
4858 	mel = calculate_max_exit_latency(udev, state, hub_encoded_timeout);
4859 	if (mel < 0) {
4860 		/* Max Exit Latency is too big, disable LPM. */
4861 		hub_encoded_timeout = USB3_LPM_DISABLED;
4862 		mel = 0;
4863 	}
4864 
4865 	ret = xhci_change_max_exit_latency(xhci, udev, mel);
4866 	if (ret)
4867 		return ret;
4868 	return hub_encoded_timeout;
4869 }
4870 
4871 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4872 			struct usb_device *udev, enum usb3_link_state state)
4873 {
4874 	struct xhci_hcd	*xhci;
4875 	u16 mel;
4876 
4877 	xhci = hcd_to_xhci(hcd);
4878 	if (!xhci || !(xhci->quirks & XHCI_LPM_SUPPORT) ||
4879 			!xhci->devs[udev->slot_id])
4880 		return 0;
4881 
4882 	mel = calculate_max_exit_latency(udev, state, USB3_LPM_DISABLED);
4883 	return xhci_change_max_exit_latency(xhci, udev, mel);
4884 }
4885 #else /* CONFIG_PM */
4886 
4887 static int xhci_set_usb2_hardware_lpm(struct usb_hcd *hcd,
4888 				struct usb_device *udev, int enable)
4889 {
4890 	return 0;
4891 }
4892 
4893 static int xhci_update_device(struct usb_hcd *hcd, struct usb_device *udev)
4894 {
4895 	return 0;
4896 }
4897 
4898 static int xhci_enable_usb3_lpm_timeout(struct usb_hcd *hcd,
4899 			struct usb_device *udev, enum usb3_link_state state)
4900 {
4901 	return USB3_LPM_DISABLED;
4902 }
4903 
4904 static int xhci_disable_usb3_lpm_timeout(struct usb_hcd *hcd,
4905 			struct usb_device *udev, enum usb3_link_state state)
4906 {
4907 	return 0;
4908 }
4909 #endif	/* CONFIG_PM */
4910 
4911 /*-------------------------------------------------------------------------*/
4912 
4913 /* Once a hub descriptor is fetched for a device, we need to update the xHC's
4914  * internal data structures for the device.
4915  */
4916 static int xhci_update_hub_device(struct usb_hcd *hcd, struct usb_device *hdev,
4917 			struct usb_tt *tt, gfp_t mem_flags)
4918 {
4919 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
4920 	struct xhci_virt_device *vdev;
4921 	struct xhci_command *config_cmd;
4922 	struct xhci_input_control_ctx *ctrl_ctx;
4923 	struct xhci_slot_ctx *slot_ctx;
4924 	unsigned long flags;
4925 	unsigned think_time;
4926 	int ret;
4927 
4928 	/* Ignore root hubs */
4929 	if (!hdev->parent)
4930 		return 0;
4931 
4932 	vdev = xhci->devs[hdev->slot_id];
4933 	if (!vdev) {
4934 		xhci_warn(xhci, "Cannot update hub desc for unknown device.\n");
4935 		return -EINVAL;
4936 	}
4937 
4938 	config_cmd = xhci_alloc_command_with_ctx(xhci, true, mem_flags);
4939 	if (!config_cmd)
4940 		return -ENOMEM;
4941 
4942 	ctrl_ctx = xhci_get_input_control_ctx(config_cmd->in_ctx);
4943 	if (!ctrl_ctx) {
4944 		xhci_warn(xhci, "%s: Could not get input context, bad type.\n",
4945 				__func__);
4946 		xhci_free_command(xhci, config_cmd);
4947 		return -ENOMEM;
4948 	}
4949 
4950 	spin_lock_irqsave(&xhci->lock, flags);
4951 	if (hdev->speed == USB_SPEED_HIGH &&
4952 			xhci_alloc_tt_info(xhci, vdev, hdev, tt, GFP_ATOMIC)) {
4953 		xhci_dbg(xhci, "Could not allocate xHCI TT structure.\n");
4954 		xhci_free_command(xhci, config_cmd);
4955 		spin_unlock_irqrestore(&xhci->lock, flags);
4956 		return -ENOMEM;
4957 	}
4958 
4959 	xhci_slot_copy(xhci, config_cmd->in_ctx, vdev->out_ctx);
4960 	ctrl_ctx->add_flags |= cpu_to_le32(SLOT_FLAG);
4961 	slot_ctx = xhci_get_slot_ctx(xhci, config_cmd->in_ctx);
4962 	slot_ctx->dev_info |= cpu_to_le32(DEV_HUB);
4963 	/*
4964 	 * refer to section 6.2.2: MTT should be 0 for full speed hub,
4965 	 * but it may be already set to 1 when setup an xHCI virtual
4966 	 * device, so clear it anyway.
4967 	 */
4968 	if (tt->multi)
4969 		slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
4970 	else if (hdev->speed == USB_SPEED_FULL)
4971 		slot_ctx->dev_info &= cpu_to_le32(~DEV_MTT);
4972 
4973 	if (xhci->hci_version > 0x95) {
4974 		xhci_dbg(xhci, "xHCI version %x needs hub "
4975 				"TT think time and number of ports\n",
4976 				(unsigned int) xhci->hci_version);
4977 		slot_ctx->dev_info2 |= cpu_to_le32(XHCI_MAX_PORTS(hdev->maxchild));
4978 		/* Set TT think time - convert from ns to FS bit times.
4979 		 * 0 = 8 FS bit times, 1 = 16 FS bit times,
4980 		 * 2 = 24 FS bit times, 3 = 32 FS bit times.
4981 		 *
4982 		 * xHCI 1.0: this field shall be 0 if the device is not a
4983 		 * High-spped hub.
4984 		 */
4985 		think_time = tt->think_time;
4986 		if (think_time != 0)
4987 			think_time = (think_time / 666) - 1;
4988 		if (xhci->hci_version < 0x100 || hdev->speed == USB_SPEED_HIGH)
4989 			slot_ctx->tt_info |=
4990 				cpu_to_le32(TT_THINK_TIME(think_time));
4991 	} else {
4992 		xhci_dbg(xhci, "xHCI version %x doesn't need hub "
4993 				"TT think time or number of ports\n",
4994 				(unsigned int) xhci->hci_version);
4995 	}
4996 	slot_ctx->dev_state = 0;
4997 	spin_unlock_irqrestore(&xhci->lock, flags);
4998 
4999 	xhci_dbg(xhci, "Set up %s for hub device.\n",
5000 			(xhci->hci_version > 0x95) ?
5001 			"configure endpoint" : "evaluate context");
5002 
5003 	/* Issue and wait for the configure endpoint or
5004 	 * evaluate context command.
5005 	 */
5006 	if (xhci->hci_version > 0x95)
5007 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5008 				false, false);
5009 	else
5010 		ret = xhci_configure_endpoint(xhci, hdev, config_cmd,
5011 				true, false);
5012 
5013 	xhci_free_command(xhci, config_cmd);
5014 	return ret;
5015 }
5016 
5017 static int xhci_get_frame(struct usb_hcd *hcd)
5018 {
5019 	struct xhci_hcd *xhci = hcd_to_xhci(hcd);
5020 	/* EHCI mods by the periodic size.  Why? */
5021 	return readl(&xhci->run_regs->microframe_index) >> 3;
5022 }
5023 
5024 int xhci_gen_setup(struct usb_hcd *hcd, xhci_get_quirks_t get_quirks)
5025 {
5026 	struct xhci_hcd		*xhci;
5027 	/*
5028 	 * TODO: Check with DWC3 clients for sysdev according to
5029 	 * quirks
5030 	 */
5031 	struct device		*dev = hcd->self.sysdev;
5032 	unsigned int		minor_rev;
5033 	int			retval;
5034 
5035 	/* Accept arbitrarily long scatter-gather lists */
5036 	hcd->self.sg_tablesize = ~0;
5037 
5038 	/* support to build packet from discontinuous buffers */
5039 	hcd->self.no_sg_constraint = 1;
5040 
5041 	/* XHCI controllers don't stop the ep queue on short packets :| */
5042 	hcd->self.no_stop_on_short = 1;
5043 
5044 	xhci = hcd_to_xhci(hcd);
5045 
5046 	if (usb_hcd_is_primary_hcd(hcd)) {
5047 		xhci->main_hcd = hcd;
5048 		xhci->usb2_rhub.hcd = hcd;
5049 		/* Mark the first roothub as being USB 2.0.
5050 		 * The xHCI driver will register the USB 3.0 roothub.
5051 		 */
5052 		hcd->speed = HCD_USB2;
5053 		hcd->self.root_hub->speed = USB_SPEED_HIGH;
5054 		/*
5055 		 * USB 2.0 roothub under xHCI has an integrated TT,
5056 		 * (rate matching hub) as opposed to having an OHCI/UHCI
5057 		 * companion controller.
5058 		 */
5059 		hcd->has_tt = 1;
5060 	} else {
5061 		/*
5062 		 * Some 3.1 hosts return sbrn 0x30, use xhci supported protocol
5063 		 * minor revision instead of sbrn
5064 		 */
5065 		minor_rev = xhci->usb3_rhub.min_rev;
5066 		if (minor_rev) {
5067 			hcd->speed = HCD_USB31;
5068 			hcd->self.root_hub->speed = USB_SPEED_SUPER_PLUS;
5069 		}
5070 		xhci_info(xhci, "Host supports USB 3.%x %s SuperSpeed\n",
5071 			  minor_rev,
5072 			  minor_rev ? "Enhanced" : "");
5073 
5074 		xhci->usb3_rhub.hcd = hcd;
5075 		/* xHCI private pointer was set in xhci_pci_probe for the second
5076 		 * registered roothub.
5077 		 */
5078 		return 0;
5079 	}
5080 
5081 	mutex_init(&xhci->mutex);
5082 	xhci->cap_regs = hcd->regs;
5083 	xhci->op_regs = hcd->regs +
5084 		HC_LENGTH(readl(&xhci->cap_regs->hc_capbase));
5085 	xhci->run_regs = hcd->regs +
5086 		(readl(&xhci->cap_regs->run_regs_off) & RTSOFF_MASK);
5087 	/* Cache read-only capability registers */
5088 	xhci->hcs_params1 = readl(&xhci->cap_regs->hcs_params1);
5089 	xhci->hcs_params2 = readl(&xhci->cap_regs->hcs_params2);
5090 	xhci->hcs_params3 = readl(&xhci->cap_regs->hcs_params3);
5091 	xhci->hcc_params = readl(&xhci->cap_regs->hc_capbase);
5092 	xhci->hci_version = HC_VERSION(xhci->hcc_params);
5093 	xhci->hcc_params = readl(&xhci->cap_regs->hcc_params);
5094 	if (xhci->hci_version > 0x100)
5095 		xhci->hcc_params2 = readl(&xhci->cap_regs->hcc_params2);
5096 
5097 	xhci->quirks |= quirks;
5098 
5099 	get_quirks(dev, xhci);
5100 
5101 	/* In xhci controllers which follow xhci 1.0 spec gives a spurious
5102 	 * success event after a short transfer. This quirk will ignore such
5103 	 * spurious event.
5104 	 */
5105 	if (xhci->hci_version > 0x96)
5106 		xhci->quirks |= XHCI_SPURIOUS_SUCCESS;
5107 
5108 	/* Make sure the HC is halted. */
5109 	retval = xhci_halt(xhci);
5110 	if (retval)
5111 		return retval;
5112 
5113 	xhci_zero_64b_regs(xhci);
5114 
5115 	xhci_dbg(xhci, "Resetting HCD\n");
5116 	/* Reset the internal HC memory state and registers. */
5117 	retval = xhci_reset(xhci);
5118 	if (retval)
5119 		return retval;
5120 	xhci_dbg(xhci, "Reset complete\n");
5121 
5122 	/*
5123 	 * On some xHCI controllers (e.g. R-Car SoCs), the AC64 bit (bit 0)
5124 	 * of HCCPARAMS1 is set to 1. However, the xHCs don't support 64-bit
5125 	 * address memory pointers actually. So, this driver clears the AC64
5126 	 * bit of xhci->hcc_params to call dma_set_coherent_mask(dev,
5127 	 * DMA_BIT_MASK(32)) in this xhci_gen_setup().
5128 	 */
5129 	if (xhci->quirks & XHCI_NO_64BIT_SUPPORT)
5130 		xhci->hcc_params &= ~BIT(0);
5131 
5132 	/* Set dma_mask and coherent_dma_mask to 64-bits,
5133 	 * if xHC supports 64-bit addressing */
5134 	if (HCC_64BIT_ADDR(xhci->hcc_params) &&
5135 			!dma_set_mask(dev, DMA_BIT_MASK(64))) {
5136 		xhci_dbg(xhci, "Enabling 64-bit DMA addresses.\n");
5137 		dma_set_coherent_mask(dev, DMA_BIT_MASK(64));
5138 	} else {
5139 		/*
5140 		 * This is to avoid error in cases where a 32-bit USB
5141 		 * controller is used on a 64-bit capable system.
5142 		 */
5143 		retval = dma_set_mask(dev, DMA_BIT_MASK(32));
5144 		if (retval)
5145 			return retval;
5146 		xhci_dbg(xhci, "Enabling 32-bit DMA addresses.\n");
5147 		dma_set_coherent_mask(dev, DMA_BIT_MASK(32));
5148 	}
5149 
5150 	xhci_dbg(xhci, "Calling HCD init\n");
5151 	/* Initialize HCD and host controller data structures. */
5152 	retval = xhci_init(hcd);
5153 	if (retval)
5154 		return retval;
5155 	xhci_dbg(xhci, "Called HCD init\n");
5156 
5157 	xhci_info(xhci, "hcc params 0x%08x hci version 0x%x quirks 0x%016llx\n",
5158 		  xhci->hcc_params, xhci->hci_version, xhci->quirks);
5159 
5160 	return 0;
5161 }
5162 EXPORT_SYMBOL_GPL(xhci_gen_setup);
5163 
5164 static const struct hc_driver xhci_hc_driver = {
5165 	.description =		"xhci-hcd",
5166 	.product_desc =		"xHCI Host Controller",
5167 	.hcd_priv_size =	sizeof(struct xhci_hcd),
5168 
5169 	/*
5170 	 * generic hardware linkage
5171 	 */
5172 	.irq =			xhci_irq,
5173 	.flags =		HCD_MEMORY | HCD_USB3 | HCD_SHARED,
5174 
5175 	/*
5176 	 * basic lifecycle operations
5177 	 */
5178 	.reset =		NULL, /* set in xhci_init_driver() */
5179 	.start =		xhci_run,
5180 	.stop =			xhci_stop,
5181 	.shutdown =		xhci_shutdown,
5182 
5183 	/*
5184 	 * managing i/o requests and associated device resources
5185 	 */
5186 	.map_urb_for_dma =      xhci_map_urb_for_dma,
5187 	.urb_enqueue =		xhci_urb_enqueue,
5188 	.urb_dequeue =		xhci_urb_dequeue,
5189 	.alloc_dev =		xhci_alloc_dev,
5190 	.free_dev =		xhci_free_dev,
5191 	.alloc_streams =	xhci_alloc_streams,
5192 	.free_streams =		xhci_free_streams,
5193 	.add_endpoint =		xhci_add_endpoint,
5194 	.drop_endpoint =	xhci_drop_endpoint,
5195 	.endpoint_reset =	xhci_endpoint_reset,
5196 	.check_bandwidth =	xhci_check_bandwidth,
5197 	.reset_bandwidth =	xhci_reset_bandwidth,
5198 	.address_device =	xhci_address_device,
5199 	.enable_device =	xhci_enable_device,
5200 	.update_hub_device =	xhci_update_hub_device,
5201 	.reset_device =		xhci_discover_or_reset_device,
5202 
5203 	/*
5204 	 * scheduling support
5205 	 */
5206 	.get_frame_number =	xhci_get_frame,
5207 
5208 	/*
5209 	 * root hub support
5210 	 */
5211 	.hub_control =		xhci_hub_control,
5212 	.hub_status_data =	xhci_hub_status_data,
5213 	.bus_suspend =		xhci_bus_suspend,
5214 	.bus_resume =		xhci_bus_resume,
5215 	.get_resuming_ports =	xhci_get_resuming_ports,
5216 
5217 	/*
5218 	 * call back when device connected and addressed
5219 	 */
5220 	.update_device =        xhci_update_device,
5221 	.set_usb2_hw_lpm =	xhci_set_usb2_hardware_lpm,
5222 	.enable_usb3_lpm_timeout =	xhci_enable_usb3_lpm_timeout,
5223 	.disable_usb3_lpm_timeout =	xhci_disable_usb3_lpm_timeout,
5224 	.find_raw_port_number =	xhci_find_raw_port_number,
5225 };
5226 
5227 void xhci_init_driver(struct hc_driver *drv,
5228 		      const struct xhci_driver_overrides *over)
5229 {
5230 	BUG_ON(!over);
5231 
5232 	/* Copy the generic table to drv then apply the overrides */
5233 	*drv = xhci_hc_driver;
5234 
5235 	if (over) {
5236 		drv->hcd_priv_size += over->extra_priv_size;
5237 		if (over->reset)
5238 			drv->reset = over->reset;
5239 		if (over->start)
5240 			drv->start = over->start;
5241 	}
5242 }
5243 EXPORT_SYMBOL_GPL(xhci_init_driver);
5244 
5245 MODULE_DESCRIPTION(DRIVER_DESC);
5246 MODULE_AUTHOR(DRIVER_AUTHOR);
5247 MODULE_LICENSE("GPL");
5248 
5249 static int __init xhci_hcd_init(void)
5250 {
5251 	/*
5252 	 * Check the compiler generated sizes of structures that must be laid
5253 	 * out in specific ways for hardware access.
5254 	 */
5255 	BUILD_BUG_ON(sizeof(struct xhci_doorbell_array) != 256*32/8);
5256 	BUILD_BUG_ON(sizeof(struct xhci_slot_ctx) != 8*32/8);
5257 	BUILD_BUG_ON(sizeof(struct xhci_ep_ctx) != 8*32/8);
5258 	/* xhci_device_control has eight fields, and also
5259 	 * embeds one xhci_slot_ctx and 31 xhci_ep_ctx
5260 	 */
5261 	BUILD_BUG_ON(sizeof(struct xhci_stream_ctx) != 4*32/8);
5262 	BUILD_BUG_ON(sizeof(union xhci_trb) != 4*32/8);
5263 	BUILD_BUG_ON(sizeof(struct xhci_erst_entry) != 4*32/8);
5264 	BUILD_BUG_ON(sizeof(struct xhci_cap_regs) != 8*32/8);
5265 	BUILD_BUG_ON(sizeof(struct xhci_intr_reg) != 8*32/8);
5266 	/* xhci_run_regs has eight fields and embeds 128 xhci_intr_regs */
5267 	BUILD_BUG_ON(sizeof(struct xhci_run_regs) != (8+8*128)*32/8);
5268 
5269 	if (usb_disabled())
5270 		return -ENODEV;
5271 
5272 	xhci_debugfs_create_root();
5273 
5274 	return 0;
5275 }
5276 
5277 /*
5278  * If an init function is provided, an exit function must also be provided
5279  * to allow module unload.
5280  */
5281 static void __exit xhci_hcd_fini(void)
5282 {
5283 	xhci_debugfs_remove_root();
5284 }
5285 
5286 module_init(xhci_hcd_init);
5287 module_exit(xhci_hcd_fini);
5288