xref: /linux/drivers/usb/host/xhci-mem.c (revision 3ad0876554cafa368f574d4d408468510543e9ff)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * xHCI host controller driver
4  *
5  * Copyright (C) 2008 Intel Corp.
6  *
7  * Author: Sarah Sharp
8  * Some code borrowed from the Linux EHCI driver.
9  */
10 
11 #include <linux/usb.h>
12 #include <linux/pci.h>
13 #include <linux/slab.h>
14 #include <linux/dmapool.h>
15 #include <linux/dma-mapping.h>
16 
17 #include "xhci.h"
18 #include "xhci-trace.h"
19 #include "xhci-debugfs.h"
20 
21 /*
22  * Allocates a generic ring segment from the ring pool, sets the dma address,
23  * initializes the segment to zero, and sets the private next pointer to NULL.
24  *
25  * Section 4.11.1.1:
26  * "All components of all Command and Transfer TRBs shall be initialized to '0'"
27  */
28 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci,
29 					       unsigned int cycle_state,
30 					       unsigned int max_packet,
31 					       gfp_t flags)
32 {
33 	struct xhci_segment *seg;
34 	dma_addr_t	dma;
35 	int		i;
36 
37 	seg = kzalloc(sizeof *seg, flags);
38 	if (!seg)
39 		return NULL;
40 
41 	seg->trbs = dma_pool_zalloc(xhci->segment_pool, flags, &dma);
42 	if (!seg->trbs) {
43 		kfree(seg);
44 		return NULL;
45 	}
46 
47 	if (max_packet) {
48 		seg->bounce_buf = kzalloc(max_packet, flags);
49 		if (!seg->bounce_buf) {
50 			dma_pool_free(xhci->segment_pool, seg->trbs, dma);
51 			kfree(seg);
52 			return NULL;
53 		}
54 	}
55 	/* If the cycle state is 0, set the cycle bit to 1 for all the TRBs */
56 	if (cycle_state == 0) {
57 		for (i = 0; i < TRBS_PER_SEGMENT; i++)
58 			seg->trbs[i].link.control |= cpu_to_le32(TRB_CYCLE);
59 	}
60 	seg->dma = dma;
61 	seg->next = NULL;
62 
63 	return seg;
64 }
65 
66 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
67 {
68 	if (seg->trbs) {
69 		dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
70 		seg->trbs = NULL;
71 	}
72 	kfree(seg->bounce_buf);
73 	kfree(seg);
74 }
75 
76 static void xhci_free_segments_for_ring(struct xhci_hcd *xhci,
77 				struct xhci_segment *first)
78 {
79 	struct xhci_segment *seg;
80 
81 	seg = first->next;
82 	while (seg != first) {
83 		struct xhci_segment *next = seg->next;
84 		xhci_segment_free(xhci, seg);
85 		seg = next;
86 	}
87 	xhci_segment_free(xhci, first);
88 }
89 
90 /*
91  * Make the prev segment point to the next segment.
92  *
93  * Change the last TRB in the prev segment to be a Link TRB which points to the
94  * DMA address of the next segment.  The caller needs to set any Link TRB
95  * related flags, such as End TRB, Toggle Cycle, and no snoop.
96  */
97 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
98 		struct xhci_segment *next, enum xhci_ring_type type)
99 {
100 	u32 val;
101 
102 	if (!prev || !next)
103 		return;
104 	prev->next = next;
105 	if (type != TYPE_EVENT) {
106 		prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
107 			cpu_to_le64(next->dma);
108 
109 		/* Set the last TRB in the segment to have a TRB type ID of Link TRB */
110 		val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
111 		val &= ~TRB_TYPE_BITMASK;
112 		val |= TRB_TYPE(TRB_LINK);
113 		/* Always set the chain bit with 0.95 hardware */
114 		/* Set chain bit for isoc rings on AMD 0.96 host */
115 		if (xhci_link_trb_quirk(xhci) ||
116 				(type == TYPE_ISOC &&
117 				 (xhci->quirks & XHCI_AMD_0x96_HOST)))
118 			val |= TRB_CHAIN;
119 		prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
120 	}
121 }
122 
123 /*
124  * Link the ring to the new segments.
125  * Set Toggle Cycle for the new ring if needed.
126  */
127 static void xhci_link_rings(struct xhci_hcd *xhci, struct xhci_ring *ring,
128 		struct xhci_segment *first, struct xhci_segment *last,
129 		unsigned int num_segs)
130 {
131 	struct xhci_segment *next;
132 
133 	if (!ring || !first || !last)
134 		return;
135 
136 	next = ring->enq_seg->next;
137 	xhci_link_segments(xhci, ring->enq_seg, first, ring->type);
138 	xhci_link_segments(xhci, last, next, ring->type);
139 	ring->num_segs += num_segs;
140 	ring->num_trbs_free += (TRBS_PER_SEGMENT - 1) * num_segs;
141 
142 	if (ring->type != TYPE_EVENT && ring->enq_seg == ring->last_seg) {
143 		ring->last_seg->trbs[TRBS_PER_SEGMENT-1].link.control
144 			&= ~cpu_to_le32(LINK_TOGGLE);
145 		last->trbs[TRBS_PER_SEGMENT-1].link.control
146 			|= cpu_to_le32(LINK_TOGGLE);
147 		ring->last_seg = last;
148 	}
149 }
150 
151 /*
152  * We need a radix tree for mapping physical addresses of TRBs to which stream
153  * ID they belong to.  We need to do this because the host controller won't tell
154  * us which stream ring the TRB came from.  We could store the stream ID in an
155  * event data TRB, but that doesn't help us for the cancellation case, since the
156  * endpoint may stop before it reaches that event data TRB.
157  *
158  * The radix tree maps the upper portion of the TRB DMA address to a ring
159  * segment that has the same upper portion of DMA addresses.  For example, say I
160  * have segments of size 1KB, that are always 1KB aligned.  A segment may
161  * start at 0x10c91000 and end at 0x10c913f0.  If I use the upper 10 bits, the
162  * key to the stream ID is 0x43244.  I can use the DMA address of the TRB to
163  * pass the radix tree a key to get the right stream ID:
164  *
165  *	0x10c90fff >> 10 = 0x43243
166  *	0x10c912c0 >> 10 = 0x43244
167  *	0x10c91400 >> 10 = 0x43245
168  *
169  * Obviously, only those TRBs with DMA addresses that are within the segment
170  * will make the radix tree return the stream ID for that ring.
171  *
172  * Caveats for the radix tree:
173  *
174  * The radix tree uses an unsigned long as a key pair.  On 32-bit systems, an
175  * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
176  * 64-bits.  Since we only request 32-bit DMA addresses, we can use that as the
177  * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
178  * PCI DMA addresses on a 64-bit system).  There might be a problem on 32-bit
179  * extended systems (where the DMA address can be bigger than 32-bits),
180  * if we allow the PCI dma mask to be bigger than 32-bits.  So don't do that.
181  */
182 static int xhci_insert_segment_mapping(struct radix_tree_root *trb_address_map,
183 		struct xhci_ring *ring,
184 		struct xhci_segment *seg,
185 		gfp_t mem_flags)
186 {
187 	unsigned long key;
188 	int ret;
189 
190 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
191 	/* Skip any segments that were already added. */
192 	if (radix_tree_lookup(trb_address_map, key))
193 		return 0;
194 
195 	ret = radix_tree_maybe_preload(mem_flags);
196 	if (ret)
197 		return ret;
198 	ret = radix_tree_insert(trb_address_map,
199 			key, ring);
200 	radix_tree_preload_end();
201 	return ret;
202 }
203 
204 static void xhci_remove_segment_mapping(struct radix_tree_root *trb_address_map,
205 		struct xhci_segment *seg)
206 {
207 	unsigned long key;
208 
209 	key = (unsigned long)(seg->dma >> TRB_SEGMENT_SHIFT);
210 	if (radix_tree_lookup(trb_address_map, key))
211 		radix_tree_delete(trb_address_map, key);
212 }
213 
214 static int xhci_update_stream_segment_mapping(
215 		struct radix_tree_root *trb_address_map,
216 		struct xhci_ring *ring,
217 		struct xhci_segment *first_seg,
218 		struct xhci_segment *last_seg,
219 		gfp_t mem_flags)
220 {
221 	struct xhci_segment *seg;
222 	struct xhci_segment *failed_seg;
223 	int ret;
224 
225 	if (WARN_ON_ONCE(trb_address_map == NULL))
226 		return 0;
227 
228 	seg = first_seg;
229 	do {
230 		ret = xhci_insert_segment_mapping(trb_address_map,
231 				ring, seg, mem_flags);
232 		if (ret)
233 			goto remove_streams;
234 		if (seg == last_seg)
235 			return 0;
236 		seg = seg->next;
237 	} while (seg != first_seg);
238 
239 	return 0;
240 
241 remove_streams:
242 	failed_seg = seg;
243 	seg = first_seg;
244 	do {
245 		xhci_remove_segment_mapping(trb_address_map, seg);
246 		if (seg == failed_seg)
247 			return ret;
248 		seg = seg->next;
249 	} while (seg != first_seg);
250 
251 	return ret;
252 }
253 
254 static void xhci_remove_stream_mapping(struct xhci_ring *ring)
255 {
256 	struct xhci_segment *seg;
257 
258 	if (WARN_ON_ONCE(ring->trb_address_map == NULL))
259 		return;
260 
261 	seg = ring->first_seg;
262 	do {
263 		xhci_remove_segment_mapping(ring->trb_address_map, seg);
264 		seg = seg->next;
265 	} while (seg != ring->first_seg);
266 }
267 
268 static int xhci_update_stream_mapping(struct xhci_ring *ring, gfp_t mem_flags)
269 {
270 	return xhci_update_stream_segment_mapping(ring->trb_address_map, ring,
271 			ring->first_seg, ring->last_seg, mem_flags);
272 }
273 
274 /* XXX: Do we need the hcd structure in all these functions? */
275 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
276 {
277 	if (!ring)
278 		return;
279 
280 	trace_xhci_ring_free(ring);
281 
282 	if (ring->first_seg) {
283 		if (ring->type == TYPE_STREAM)
284 			xhci_remove_stream_mapping(ring);
285 		xhci_free_segments_for_ring(xhci, ring->first_seg);
286 	}
287 
288 	kfree(ring);
289 }
290 
291 static void xhci_initialize_ring_info(struct xhci_ring *ring,
292 					unsigned int cycle_state)
293 {
294 	/* The ring is empty, so the enqueue pointer == dequeue pointer */
295 	ring->enqueue = ring->first_seg->trbs;
296 	ring->enq_seg = ring->first_seg;
297 	ring->dequeue = ring->enqueue;
298 	ring->deq_seg = ring->first_seg;
299 	/* The ring is initialized to 0. The producer must write 1 to the cycle
300 	 * bit to handover ownership of the TRB, so PCS = 1.  The consumer must
301 	 * compare CCS to the cycle bit to check ownership, so CCS = 1.
302 	 *
303 	 * New rings are initialized with cycle state equal to 1; if we are
304 	 * handling ring expansion, set the cycle state equal to the old ring.
305 	 */
306 	ring->cycle_state = cycle_state;
307 
308 	/*
309 	 * Each segment has a link TRB, and leave an extra TRB for SW
310 	 * accounting purpose
311 	 */
312 	ring->num_trbs_free = ring->num_segs * (TRBS_PER_SEGMENT - 1) - 1;
313 }
314 
315 /* Allocate segments and link them for a ring */
316 static int xhci_alloc_segments_for_ring(struct xhci_hcd *xhci,
317 		struct xhci_segment **first, struct xhci_segment **last,
318 		unsigned int num_segs, unsigned int cycle_state,
319 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
320 {
321 	struct xhci_segment *prev;
322 
323 	prev = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
324 	if (!prev)
325 		return -ENOMEM;
326 	num_segs--;
327 
328 	*first = prev;
329 	while (num_segs > 0) {
330 		struct xhci_segment	*next;
331 
332 		next = xhci_segment_alloc(xhci, cycle_state, max_packet, flags);
333 		if (!next) {
334 			prev = *first;
335 			while (prev) {
336 				next = prev->next;
337 				xhci_segment_free(xhci, prev);
338 				prev = next;
339 			}
340 			return -ENOMEM;
341 		}
342 		xhci_link_segments(xhci, prev, next, type);
343 
344 		prev = next;
345 		num_segs--;
346 	}
347 	xhci_link_segments(xhci, prev, *first, type);
348 	*last = prev;
349 
350 	return 0;
351 }
352 
353 /**
354  * Create a new ring with zero or more segments.
355  *
356  * Link each segment together into a ring.
357  * Set the end flag and the cycle toggle bit on the last segment.
358  * See section 4.9.1 and figures 15 and 16.
359  */
360 struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
361 		unsigned int num_segs, unsigned int cycle_state,
362 		enum xhci_ring_type type, unsigned int max_packet, gfp_t flags)
363 {
364 	struct xhci_ring	*ring;
365 	int ret;
366 
367 	ring = kzalloc(sizeof *(ring), flags);
368 	if (!ring)
369 		return NULL;
370 
371 	ring->num_segs = num_segs;
372 	ring->bounce_buf_len = max_packet;
373 	INIT_LIST_HEAD(&ring->td_list);
374 	ring->type = type;
375 	if (num_segs == 0)
376 		return ring;
377 
378 	ret = xhci_alloc_segments_for_ring(xhci, &ring->first_seg,
379 			&ring->last_seg, num_segs, cycle_state, type,
380 			max_packet, flags);
381 	if (ret)
382 		goto fail;
383 
384 	/* Only event ring does not use link TRB */
385 	if (type != TYPE_EVENT) {
386 		/* See section 4.9.2.1 and 6.4.4.1 */
387 		ring->last_seg->trbs[TRBS_PER_SEGMENT - 1].link.control |=
388 			cpu_to_le32(LINK_TOGGLE);
389 	}
390 	xhci_initialize_ring_info(ring, cycle_state);
391 	trace_xhci_ring_alloc(ring);
392 	return ring;
393 
394 fail:
395 	kfree(ring);
396 	return NULL;
397 }
398 
399 void xhci_free_endpoint_ring(struct xhci_hcd *xhci,
400 		struct xhci_virt_device *virt_dev,
401 		unsigned int ep_index)
402 {
403 	xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
404 	virt_dev->eps[ep_index].ring = NULL;
405 }
406 
407 /*
408  * Expand an existing ring.
409  * Allocate a new ring which has same segment numbers and link the two rings.
410  */
411 int xhci_ring_expansion(struct xhci_hcd *xhci, struct xhci_ring *ring,
412 				unsigned int num_trbs, gfp_t flags)
413 {
414 	struct xhci_segment	*first;
415 	struct xhci_segment	*last;
416 	unsigned int		num_segs;
417 	unsigned int		num_segs_needed;
418 	int			ret;
419 
420 	num_segs_needed = (num_trbs + (TRBS_PER_SEGMENT - 1) - 1) /
421 				(TRBS_PER_SEGMENT - 1);
422 
423 	/* Allocate number of segments we needed, or double the ring size */
424 	num_segs = ring->num_segs > num_segs_needed ?
425 			ring->num_segs : num_segs_needed;
426 
427 	ret = xhci_alloc_segments_for_ring(xhci, &first, &last,
428 			num_segs, ring->cycle_state, ring->type,
429 			ring->bounce_buf_len, flags);
430 	if (ret)
431 		return -ENOMEM;
432 
433 	if (ring->type == TYPE_STREAM)
434 		ret = xhci_update_stream_segment_mapping(ring->trb_address_map,
435 						ring, first, last, flags);
436 	if (ret) {
437 		struct xhci_segment *next;
438 		do {
439 			next = first->next;
440 			xhci_segment_free(xhci, first);
441 			if (first == last)
442 				break;
443 			first = next;
444 		} while (true);
445 		return ret;
446 	}
447 
448 	xhci_link_rings(xhci, ring, first, last, num_segs);
449 	trace_xhci_ring_expansion(ring);
450 	xhci_dbg_trace(xhci, trace_xhci_dbg_ring_expansion,
451 			"ring expansion succeed, now has %d segments",
452 			ring->num_segs);
453 
454 	return 0;
455 }
456 
457 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
458 						    int type, gfp_t flags)
459 {
460 	struct xhci_container_ctx *ctx;
461 
462 	if ((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT))
463 		return NULL;
464 
465 	ctx = kzalloc(sizeof(*ctx), flags);
466 	if (!ctx)
467 		return NULL;
468 
469 	ctx->type = type;
470 	ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
471 	if (type == XHCI_CTX_TYPE_INPUT)
472 		ctx->size += CTX_SIZE(xhci->hcc_params);
473 
474 	ctx->bytes = dma_pool_zalloc(xhci->device_pool, flags, &ctx->dma);
475 	if (!ctx->bytes) {
476 		kfree(ctx);
477 		return NULL;
478 	}
479 	return ctx;
480 }
481 
482 void xhci_free_container_ctx(struct xhci_hcd *xhci,
483 			     struct xhci_container_ctx *ctx)
484 {
485 	if (!ctx)
486 		return;
487 	dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
488 	kfree(ctx);
489 }
490 
491 struct xhci_input_control_ctx *xhci_get_input_control_ctx(
492 					      struct xhci_container_ctx *ctx)
493 {
494 	if (ctx->type != XHCI_CTX_TYPE_INPUT)
495 		return NULL;
496 
497 	return (struct xhci_input_control_ctx *)ctx->bytes;
498 }
499 
500 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
501 					struct xhci_container_ctx *ctx)
502 {
503 	if (ctx->type == XHCI_CTX_TYPE_DEVICE)
504 		return (struct xhci_slot_ctx *)ctx->bytes;
505 
506 	return (struct xhci_slot_ctx *)
507 		(ctx->bytes + CTX_SIZE(xhci->hcc_params));
508 }
509 
510 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
511 				    struct xhci_container_ctx *ctx,
512 				    unsigned int ep_index)
513 {
514 	/* increment ep index by offset of start of ep ctx array */
515 	ep_index++;
516 	if (ctx->type == XHCI_CTX_TYPE_INPUT)
517 		ep_index++;
518 
519 	return (struct xhci_ep_ctx *)
520 		(ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
521 }
522 
523 
524 /***************** Streams structures manipulation *************************/
525 
526 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
527 		unsigned int num_stream_ctxs,
528 		struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
529 {
530 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
531 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
532 
533 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
534 		dma_free_coherent(dev, size,
535 				stream_ctx, dma);
536 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
537 		return dma_pool_free(xhci->small_streams_pool,
538 				stream_ctx, dma);
539 	else
540 		return dma_pool_free(xhci->medium_streams_pool,
541 				stream_ctx, dma);
542 }
543 
544 /*
545  * The stream context array for each endpoint with bulk streams enabled can
546  * vary in size, based on:
547  *  - how many streams the endpoint supports,
548  *  - the maximum primary stream array size the host controller supports,
549  *  - and how many streams the device driver asks for.
550  *
551  * The stream context array must be a power of 2, and can be as small as
552  * 64 bytes or as large as 1MB.
553  */
554 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
555 		unsigned int num_stream_ctxs, dma_addr_t *dma,
556 		gfp_t mem_flags)
557 {
558 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
559 	size_t size = sizeof(struct xhci_stream_ctx) * num_stream_ctxs;
560 
561 	if (size > MEDIUM_STREAM_ARRAY_SIZE)
562 		return dma_alloc_coherent(dev, size,
563 				dma, mem_flags);
564 	else if (size <= SMALL_STREAM_ARRAY_SIZE)
565 		return dma_pool_alloc(xhci->small_streams_pool,
566 				mem_flags, dma);
567 	else
568 		return dma_pool_alloc(xhci->medium_streams_pool,
569 				mem_flags, dma);
570 }
571 
572 struct xhci_ring *xhci_dma_to_transfer_ring(
573 		struct xhci_virt_ep *ep,
574 		u64 address)
575 {
576 	if (ep->ep_state & EP_HAS_STREAMS)
577 		return radix_tree_lookup(&ep->stream_info->trb_address_map,
578 				address >> TRB_SEGMENT_SHIFT);
579 	return ep->ring;
580 }
581 
582 struct xhci_ring *xhci_stream_id_to_ring(
583 		struct xhci_virt_device *dev,
584 		unsigned int ep_index,
585 		unsigned int stream_id)
586 {
587 	struct xhci_virt_ep *ep = &dev->eps[ep_index];
588 
589 	if (stream_id == 0)
590 		return ep->ring;
591 	if (!ep->stream_info)
592 		return NULL;
593 
594 	if (stream_id > ep->stream_info->num_streams)
595 		return NULL;
596 	return ep->stream_info->stream_rings[stream_id];
597 }
598 
599 /*
600  * Change an endpoint's internal structure so it supports stream IDs.  The
601  * number of requested streams includes stream 0, which cannot be used by device
602  * drivers.
603  *
604  * The number of stream contexts in the stream context array may be bigger than
605  * the number of streams the driver wants to use.  This is because the number of
606  * stream context array entries must be a power of two.
607  */
608 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
609 		unsigned int num_stream_ctxs,
610 		unsigned int num_streams,
611 		unsigned int max_packet, gfp_t mem_flags)
612 {
613 	struct xhci_stream_info *stream_info;
614 	u32 cur_stream;
615 	struct xhci_ring *cur_ring;
616 	u64 addr;
617 	int ret;
618 
619 	xhci_dbg(xhci, "Allocating %u streams and %u "
620 			"stream context array entries.\n",
621 			num_streams, num_stream_ctxs);
622 	if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
623 		xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
624 		return NULL;
625 	}
626 	xhci->cmd_ring_reserved_trbs++;
627 
628 	stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
629 	if (!stream_info)
630 		goto cleanup_trbs;
631 
632 	stream_info->num_streams = num_streams;
633 	stream_info->num_stream_ctxs = num_stream_ctxs;
634 
635 	/* Initialize the array of virtual pointers to stream rings. */
636 	stream_info->stream_rings = kzalloc(
637 			sizeof(struct xhci_ring *)*num_streams,
638 			mem_flags);
639 	if (!stream_info->stream_rings)
640 		goto cleanup_info;
641 
642 	/* Initialize the array of DMA addresses for stream rings for the HW. */
643 	stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
644 			num_stream_ctxs, &stream_info->ctx_array_dma,
645 			mem_flags);
646 	if (!stream_info->stream_ctx_array)
647 		goto cleanup_ctx;
648 	memset(stream_info->stream_ctx_array, 0,
649 			sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
650 
651 	/* Allocate everything needed to free the stream rings later */
652 	stream_info->free_streams_command =
653 		xhci_alloc_command_with_ctx(xhci, true, mem_flags);
654 	if (!stream_info->free_streams_command)
655 		goto cleanup_ctx;
656 
657 	INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
658 
659 	/* Allocate rings for all the streams that the driver will use,
660 	 * and add their segment DMA addresses to the radix tree.
661 	 * Stream 0 is reserved.
662 	 */
663 
664 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
665 		stream_info->stream_rings[cur_stream] =
666 			xhci_ring_alloc(xhci, 2, 1, TYPE_STREAM, max_packet,
667 					mem_flags);
668 		cur_ring = stream_info->stream_rings[cur_stream];
669 		if (!cur_ring)
670 			goto cleanup_rings;
671 		cur_ring->stream_id = cur_stream;
672 		cur_ring->trb_address_map = &stream_info->trb_address_map;
673 		/* Set deq ptr, cycle bit, and stream context type */
674 		addr = cur_ring->first_seg->dma |
675 			SCT_FOR_CTX(SCT_PRI_TR) |
676 			cur_ring->cycle_state;
677 		stream_info->stream_ctx_array[cur_stream].stream_ring =
678 			cpu_to_le64(addr);
679 		xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
680 				cur_stream, (unsigned long long) addr);
681 
682 		ret = xhci_update_stream_mapping(cur_ring, mem_flags);
683 		if (ret) {
684 			xhci_ring_free(xhci, cur_ring);
685 			stream_info->stream_rings[cur_stream] = NULL;
686 			goto cleanup_rings;
687 		}
688 	}
689 	/* Leave the other unused stream ring pointers in the stream context
690 	 * array initialized to zero.  This will cause the xHC to give us an
691 	 * error if the device asks for a stream ID we don't have setup (if it
692 	 * was any other way, the host controller would assume the ring is
693 	 * "empty" and wait forever for data to be queued to that stream ID).
694 	 */
695 
696 	return stream_info;
697 
698 cleanup_rings:
699 	for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
700 		cur_ring = stream_info->stream_rings[cur_stream];
701 		if (cur_ring) {
702 			xhci_ring_free(xhci, cur_ring);
703 			stream_info->stream_rings[cur_stream] = NULL;
704 		}
705 	}
706 	xhci_free_command(xhci, stream_info->free_streams_command);
707 cleanup_ctx:
708 	kfree(stream_info->stream_rings);
709 cleanup_info:
710 	kfree(stream_info);
711 cleanup_trbs:
712 	xhci->cmd_ring_reserved_trbs--;
713 	return NULL;
714 }
715 /*
716  * Sets the MaxPStreams field and the Linear Stream Array field.
717  * Sets the dequeue pointer to the stream context array.
718  */
719 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
720 		struct xhci_ep_ctx *ep_ctx,
721 		struct xhci_stream_info *stream_info)
722 {
723 	u32 max_primary_streams;
724 	/* MaxPStreams is the number of stream context array entries, not the
725 	 * number we're actually using.  Must be in 2^(MaxPstreams + 1) format.
726 	 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
727 	 */
728 	max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
729 	xhci_dbg_trace(xhci,  trace_xhci_dbg_context_change,
730 			"Setting number of stream ctx array entries to %u",
731 			1 << (max_primary_streams + 1));
732 	ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
733 	ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
734 				       | EP_HAS_LSA);
735 	ep_ctx->deq  = cpu_to_le64(stream_info->ctx_array_dma);
736 }
737 
738 /*
739  * Sets the MaxPStreams field and the Linear Stream Array field to 0.
740  * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
741  * not at the beginning of the ring).
742  */
743 void xhci_setup_no_streams_ep_input_ctx(struct xhci_ep_ctx *ep_ctx,
744 		struct xhci_virt_ep *ep)
745 {
746 	dma_addr_t addr;
747 	ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
748 	addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
749 	ep_ctx->deq  = cpu_to_le64(addr | ep->ring->cycle_state);
750 }
751 
752 /* Frees all stream contexts associated with the endpoint,
753  *
754  * Caller should fix the endpoint context streams fields.
755  */
756 void xhci_free_stream_info(struct xhci_hcd *xhci,
757 		struct xhci_stream_info *stream_info)
758 {
759 	int cur_stream;
760 	struct xhci_ring *cur_ring;
761 
762 	if (!stream_info)
763 		return;
764 
765 	for (cur_stream = 1; cur_stream < stream_info->num_streams;
766 			cur_stream++) {
767 		cur_ring = stream_info->stream_rings[cur_stream];
768 		if (cur_ring) {
769 			xhci_ring_free(xhci, cur_ring);
770 			stream_info->stream_rings[cur_stream] = NULL;
771 		}
772 	}
773 	xhci_free_command(xhci, stream_info->free_streams_command);
774 	xhci->cmd_ring_reserved_trbs--;
775 	if (stream_info->stream_ctx_array)
776 		xhci_free_stream_ctx(xhci,
777 				stream_info->num_stream_ctxs,
778 				stream_info->stream_ctx_array,
779 				stream_info->ctx_array_dma);
780 
781 	kfree(stream_info->stream_rings);
782 	kfree(stream_info);
783 }
784 
785 
786 /***************** Device context manipulation *************************/
787 
788 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
789 		struct xhci_virt_ep *ep)
790 {
791 	timer_setup(&ep->stop_cmd_timer, xhci_stop_endpoint_command_watchdog,
792 		    0);
793 	ep->xhci = xhci;
794 }
795 
796 static void xhci_free_tt_info(struct xhci_hcd *xhci,
797 		struct xhci_virt_device *virt_dev,
798 		int slot_id)
799 {
800 	struct list_head *tt_list_head;
801 	struct xhci_tt_bw_info *tt_info, *next;
802 	bool slot_found = false;
803 
804 	/* If the device never made it past the Set Address stage,
805 	 * it may not have the real_port set correctly.
806 	 */
807 	if (virt_dev->real_port == 0 ||
808 			virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
809 		xhci_dbg(xhci, "Bad real port.\n");
810 		return;
811 	}
812 
813 	tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
814 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
815 		/* Multi-TT hubs will have more than one entry */
816 		if (tt_info->slot_id == slot_id) {
817 			slot_found = true;
818 			list_del(&tt_info->tt_list);
819 			kfree(tt_info);
820 		} else if (slot_found) {
821 			break;
822 		}
823 	}
824 }
825 
826 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
827 		struct xhci_virt_device *virt_dev,
828 		struct usb_device *hdev,
829 		struct usb_tt *tt, gfp_t mem_flags)
830 {
831 	struct xhci_tt_bw_info		*tt_info;
832 	unsigned int			num_ports;
833 	int				i, j;
834 
835 	if (!tt->multi)
836 		num_ports = 1;
837 	else
838 		num_ports = hdev->maxchild;
839 
840 	for (i = 0; i < num_ports; i++, tt_info++) {
841 		struct xhci_interval_bw_table *bw_table;
842 
843 		tt_info = kzalloc(sizeof(*tt_info), mem_flags);
844 		if (!tt_info)
845 			goto free_tts;
846 		INIT_LIST_HEAD(&tt_info->tt_list);
847 		list_add(&tt_info->tt_list,
848 				&xhci->rh_bw[virt_dev->real_port - 1].tts);
849 		tt_info->slot_id = virt_dev->udev->slot_id;
850 		if (tt->multi)
851 			tt_info->ttport = i+1;
852 		bw_table = &tt_info->bw_table;
853 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
854 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
855 	}
856 	return 0;
857 
858 free_tts:
859 	xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
860 	return -ENOMEM;
861 }
862 
863 
864 /* All the xhci_tds in the ring's TD list should be freed at this point.
865  * Should be called with xhci->lock held if there is any chance the TT lists
866  * will be manipulated by the configure endpoint, allocate device, or update
867  * hub functions while this function is removing the TT entries from the list.
868  */
869 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
870 {
871 	struct xhci_virt_device *dev;
872 	int i;
873 	int old_active_eps = 0;
874 
875 	/* Slot ID 0 is reserved */
876 	if (slot_id == 0 || !xhci->devs[slot_id])
877 		return;
878 
879 	dev = xhci->devs[slot_id];
880 
881 	trace_xhci_free_virt_device(dev);
882 
883 	xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
884 	if (!dev)
885 		return;
886 
887 	if (dev->tt_info)
888 		old_active_eps = dev->tt_info->active_eps;
889 
890 	for (i = 0; i < 31; i++) {
891 		if (dev->eps[i].ring)
892 			xhci_ring_free(xhci, dev->eps[i].ring);
893 		if (dev->eps[i].stream_info)
894 			xhci_free_stream_info(xhci,
895 					dev->eps[i].stream_info);
896 		/* Endpoints on the TT/root port lists should have been removed
897 		 * when usb_disable_device() was called for the device.
898 		 * We can't drop them anyway, because the udev might have gone
899 		 * away by this point, and we can't tell what speed it was.
900 		 */
901 		if (!list_empty(&dev->eps[i].bw_endpoint_list))
902 			xhci_warn(xhci, "Slot %u endpoint %u "
903 					"not removed from BW list!\n",
904 					slot_id, i);
905 	}
906 	/* If this is a hub, free the TT(s) from the TT list */
907 	xhci_free_tt_info(xhci, dev, slot_id);
908 	/* If necessary, update the number of active TTs on this root port */
909 	xhci_update_tt_active_eps(xhci, dev, old_active_eps);
910 
911 	if (dev->in_ctx)
912 		xhci_free_container_ctx(xhci, dev->in_ctx);
913 	if (dev->out_ctx)
914 		xhci_free_container_ctx(xhci, dev->out_ctx);
915 
916 	if (dev->udev && dev->udev->slot_id)
917 		dev->udev->slot_id = 0;
918 	kfree(xhci->devs[slot_id]);
919 	xhci->devs[slot_id] = NULL;
920 }
921 
922 /*
923  * Free a virt_device structure.
924  * If the virt_device added a tt_info (a hub) and has children pointing to
925  * that tt_info, then free the child first. Recursive.
926  * We can't rely on udev at this point to find child-parent relationships.
927  */
928 void xhci_free_virt_devices_depth_first(struct xhci_hcd *xhci, int slot_id)
929 {
930 	struct xhci_virt_device *vdev;
931 	struct list_head *tt_list_head;
932 	struct xhci_tt_bw_info *tt_info, *next;
933 	int i;
934 
935 	vdev = xhci->devs[slot_id];
936 	if (!vdev)
937 		return;
938 
939 	if (vdev->real_port == 0 ||
940 			vdev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
941 		xhci_dbg(xhci, "Bad vdev->real_port.\n");
942 		goto out;
943 	}
944 
945 	tt_list_head = &(xhci->rh_bw[vdev->real_port - 1].tts);
946 	list_for_each_entry_safe(tt_info, next, tt_list_head, tt_list) {
947 		/* is this a hub device that added a tt_info to the tts list */
948 		if (tt_info->slot_id == slot_id) {
949 			/* are any devices using this tt_info? */
950 			for (i = 1; i < HCS_MAX_SLOTS(xhci->hcs_params1); i++) {
951 				vdev = xhci->devs[i];
952 				if (vdev && (vdev->tt_info == tt_info))
953 					xhci_free_virt_devices_depth_first(
954 						xhci, i);
955 			}
956 		}
957 	}
958 out:
959 	/* we are now at a leaf device */
960 	xhci_debugfs_remove_slot(xhci, slot_id);
961 	xhci_free_virt_device(xhci, slot_id);
962 }
963 
964 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
965 		struct usb_device *udev, gfp_t flags)
966 {
967 	struct xhci_virt_device *dev;
968 	int i;
969 
970 	/* Slot ID 0 is reserved */
971 	if (slot_id == 0 || xhci->devs[slot_id]) {
972 		xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
973 		return 0;
974 	}
975 
976 	dev = kzalloc(sizeof(*dev), flags);
977 	if (!dev)
978 		return 0;
979 
980 	/* Allocate the (output) device context that will be used in the HC. */
981 	dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
982 	if (!dev->out_ctx)
983 		goto fail;
984 
985 	xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
986 			(unsigned long long)dev->out_ctx->dma);
987 
988 	/* Allocate the (input) device context for address device command */
989 	dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
990 	if (!dev->in_ctx)
991 		goto fail;
992 
993 	xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
994 			(unsigned long long)dev->in_ctx->dma);
995 
996 	/* Initialize the cancellation list and watchdog timers for each ep */
997 	for (i = 0; i < 31; i++) {
998 		xhci_init_endpoint_timer(xhci, &dev->eps[i]);
999 		INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
1000 		INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
1001 	}
1002 
1003 	/* Allocate endpoint 0 ring */
1004 	dev->eps[0].ring = xhci_ring_alloc(xhci, 2, 1, TYPE_CTRL, 0, flags);
1005 	if (!dev->eps[0].ring)
1006 		goto fail;
1007 
1008 	dev->udev = udev;
1009 
1010 	/* Point to output device context in dcbaa. */
1011 	xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
1012 	xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
1013 		 slot_id,
1014 		 &xhci->dcbaa->dev_context_ptrs[slot_id],
1015 		 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
1016 
1017 	trace_xhci_alloc_virt_device(dev);
1018 
1019 	xhci->devs[slot_id] = dev;
1020 
1021 	return 1;
1022 fail:
1023 
1024 	if (dev->in_ctx)
1025 		xhci_free_container_ctx(xhci, dev->in_ctx);
1026 	if (dev->out_ctx)
1027 		xhci_free_container_ctx(xhci, dev->out_ctx);
1028 	kfree(dev);
1029 
1030 	return 0;
1031 }
1032 
1033 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
1034 		struct usb_device *udev)
1035 {
1036 	struct xhci_virt_device *virt_dev;
1037 	struct xhci_ep_ctx	*ep0_ctx;
1038 	struct xhci_ring	*ep_ring;
1039 
1040 	virt_dev = xhci->devs[udev->slot_id];
1041 	ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
1042 	ep_ring = virt_dev->eps[0].ring;
1043 	/*
1044 	 * FIXME we don't keep track of the dequeue pointer very well after a
1045 	 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
1046 	 * host to our enqueue pointer.  This should only be called after a
1047 	 * configured device has reset, so all control transfers should have
1048 	 * been completed or cancelled before the reset.
1049 	 */
1050 	ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
1051 							ep_ring->enqueue)
1052 				   | ep_ring->cycle_state);
1053 }
1054 
1055 /*
1056  * The xHCI roothub may have ports of differing speeds in any order in the port
1057  * status registers.  xhci->port_array provides an array of the port speed for
1058  * each offset into the port status registers.
1059  *
1060  * The xHCI hardware wants to know the roothub port number that the USB device
1061  * is attached to (or the roothub port its ancestor hub is attached to).  All we
1062  * know is the index of that port under either the USB 2.0 or the USB 3.0
1063  * roothub, but that doesn't give us the real index into the HW port status
1064  * registers. Call xhci_find_raw_port_number() to get real index.
1065  */
1066 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
1067 		struct usb_device *udev)
1068 {
1069 	struct usb_device *top_dev;
1070 	struct usb_hcd *hcd;
1071 
1072 	if (udev->speed >= USB_SPEED_SUPER)
1073 		hcd = xhci->shared_hcd;
1074 	else
1075 		hcd = xhci->main_hcd;
1076 
1077 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1078 			top_dev = top_dev->parent)
1079 		/* Found device below root hub */;
1080 
1081 	return	xhci_find_raw_port_number(hcd, top_dev->portnum);
1082 }
1083 
1084 /* Setup an xHCI virtual device for a Set Address command */
1085 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
1086 {
1087 	struct xhci_virt_device *dev;
1088 	struct xhci_ep_ctx	*ep0_ctx;
1089 	struct xhci_slot_ctx    *slot_ctx;
1090 	u32			port_num;
1091 	u32			max_packets;
1092 	struct usb_device *top_dev;
1093 
1094 	dev = xhci->devs[udev->slot_id];
1095 	/* Slot ID 0 is reserved */
1096 	if (udev->slot_id == 0 || !dev) {
1097 		xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
1098 				udev->slot_id);
1099 		return -EINVAL;
1100 	}
1101 	ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
1102 	slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1103 
1104 	/* 3) Only the control endpoint is valid - one endpoint context */
1105 	slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1106 	switch (udev->speed) {
1107 	case USB_SPEED_SUPER_PLUS:
1108 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SSP);
1109 		max_packets = MAX_PACKET(512);
1110 		break;
1111 	case USB_SPEED_SUPER:
1112 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1113 		max_packets = MAX_PACKET(512);
1114 		break;
1115 	case USB_SPEED_HIGH:
1116 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1117 		max_packets = MAX_PACKET(64);
1118 		break;
1119 	/* USB core guesses at a 64-byte max packet first for FS devices */
1120 	case USB_SPEED_FULL:
1121 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1122 		max_packets = MAX_PACKET(64);
1123 		break;
1124 	case USB_SPEED_LOW:
1125 		slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1126 		max_packets = MAX_PACKET(8);
1127 		break;
1128 	case USB_SPEED_WIRELESS:
1129 		xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1130 		return -EINVAL;
1131 		break;
1132 	default:
1133 		/* Speed was set earlier, this shouldn't happen. */
1134 		return -EINVAL;
1135 	}
1136 	/* Find the root hub port this device is under */
1137 	port_num = xhci_find_real_port_number(xhci, udev);
1138 	if (!port_num)
1139 		return -EINVAL;
1140 	slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1141 	/* Set the port number in the virtual_device to the faked port number */
1142 	for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1143 			top_dev = top_dev->parent)
1144 		/* Found device below root hub */;
1145 	dev->fake_port = top_dev->portnum;
1146 	dev->real_port = port_num;
1147 	xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1148 	xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1149 
1150 	/* Find the right bandwidth table that this device will be a part of.
1151 	 * If this is a full speed device attached directly to a root port (or a
1152 	 * decendent of one), it counts as a primary bandwidth domain, not a
1153 	 * secondary bandwidth domain under a TT.  An xhci_tt_info structure
1154 	 * will never be created for the HS root hub.
1155 	 */
1156 	if (!udev->tt || !udev->tt->hub->parent) {
1157 		dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1158 	} else {
1159 		struct xhci_root_port_bw_info *rh_bw;
1160 		struct xhci_tt_bw_info *tt_bw;
1161 
1162 		rh_bw = &xhci->rh_bw[port_num - 1];
1163 		/* Find the right TT. */
1164 		list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1165 			if (tt_bw->slot_id != udev->tt->hub->slot_id)
1166 				continue;
1167 
1168 			if (!dev->udev->tt->multi ||
1169 					(udev->tt->multi &&
1170 					 tt_bw->ttport == dev->udev->ttport)) {
1171 				dev->bw_table = &tt_bw->bw_table;
1172 				dev->tt_info = tt_bw;
1173 				break;
1174 			}
1175 		}
1176 		if (!dev->tt_info)
1177 			xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1178 	}
1179 
1180 	/* Is this a LS/FS device under an external HS hub? */
1181 	if (udev->tt && udev->tt->hub->parent) {
1182 		slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1183 						(udev->ttport << 8));
1184 		if (udev->tt->multi)
1185 			slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1186 	}
1187 	xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1188 	xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1189 
1190 	/* Step 4 - ring already allocated */
1191 	/* Step 5 */
1192 	ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1193 
1194 	/* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1195 	ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3) |
1196 					 max_packets);
1197 
1198 	ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1199 				   dev->eps[0].ring->cycle_state);
1200 
1201 	trace_xhci_setup_addressable_virt_device(dev);
1202 
1203 	/* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1204 
1205 	return 0;
1206 }
1207 
1208 /*
1209  * Convert interval expressed as 2^(bInterval - 1) == interval into
1210  * straight exponent value 2^n == interval.
1211  *
1212  */
1213 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1214 		struct usb_host_endpoint *ep)
1215 {
1216 	unsigned int interval;
1217 
1218 	interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1219 	if (interval != ep->desc.bInterval - 1)
1220 		dev_warn(&udev->dev,
1221 			 "ep %#x - rounding interval to %d %sframes\n",
1222 			 ep->desc.bEndpointAddress,
1223 			 1 << interval,
1224 			 udev->speed == USB_SPEED_FULL ? "" : "micro");
1225 
1226 	if (udev->speed == USB_SPEED_FULL) {
1227 		/*
1228 		 * Full speed isoc endpoints specify interval in frames,
1229 		 * not microframes. We are using microframes everywhere,
1230 		 * so adjust accordingly.
1231 		 */
1232 		interval += 3;	/* 1 frame = 2^3 uframes */
1233 	}
1234 
1235 	return interval;
1236 }
1237 
1238 /*
1239  * Convert bInterval expressed in microframes (in 1-255 range) to exponent of
1240  * microframes, rounded down to nearest power of 2.
1241  */
1242 static unsigned int xhci_microframes_to_exponent(struct usb_device *udev,
1243 		struct usb_host_endpoint *ep, unsigned int desc_interval,
1244 		unsigned int min_exponent, unsigned int max_exponent)
1245 {
1246 	unsigned int interval;
1247 
1248 	interval = fls(desc_interval) - 1;
1249 	interval = clamp_val(interval, min_exponent, max_exponent);
1250 	if ((1 << interval) != desc_interval)
1251 		dev_dbg(&udev->dev,
1252 			 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1253 			 ep->desc.bEndpointAddress,
1254 			 1 << interval,
1255 			 desc_interval);
1256 
1257 	return interval;
1258 }
1259 
1260 static unsigned int xhci_parse_microframe_interval(struct usb_device *udev,
1261 		struct usb_host_endpoint *ep)
1262 {
1263 	if (ep->desc.bInterval == 0)
1264 		return 0;
1265 	return xhci_microframes_to_exponent(udev, ep,
1266 			ep->desc.bInterval, 0, 15);
1267 }
1268 
1269 
1270 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1271 		struct usb_host_endpoint *ep)
1272 {
1273 	return xhci_microframes_to_exponent(udev, ep,
1274 			ep->desc.bInterval * 8, 3, 10);
1275 }
1276 
1277 /* Return the polling or NAK interval.
1278  *
1279  * The polling interval is expressed in "microframes".  If xHCI's Interval field
1280  * is set to N, it will service the endpoint every 2^(Interval)*125us.
1281  *
1282  * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1283  * is set to 0.
1284  */
1285 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1286 		struct usb_host_endpoint *ep)
1287 {
1288 	unsigned int interval = 0;
1289 
1290 	switch (udev->speed) {
1291 	case USB_SPEED_HIGH:
1292 		/* Max NAK rate */
1293 		if (usb_endpoint_xfer_control(&ep->desc) ||
1294 		    usb_endpoint_xfer_bulk(&ep->desc)) {
1295 			interval = xhci_parse_microframe_interval(udev, ep);
1296 			break;
1297 		}
1298 		/* Fall through - SS and HS isoc/int have same decoding */
1299 
1300 	case USB_SPEED_SUPER_PLUS:
1301 	case USB_SPEED_SUPER:
1302 		if (usb_endpoint_xfer_int(&ep->desc) ||
1303 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1304 			interval = xhci_parse_exponent_interval(udev, ep);
1305 		}
1306 		break;
1307 
1308 	case USB_SPEED_FULL:
1309 		if (usb_endpoint_xfer_isoc(&ep->desc)) {
1310 			interval = xhci_parse_exponent_interval(udev, ep);
1311 			break;
1312 		}
1313 		/*
1314 		 * Fall through for interrupt endpoint interval decoding
1315 		 * since it uses the same rules as low speed interrupt
1316 		 * endpoints.
1317 		 */
1318 		/* fall through */
1319 
1320 	case USB_SPEED_LOW:
1321 		if (usb_endpoint_xfer_int(&ep->desc) ||
1322 		    usb_endpoint_xfer_isoc(&ep->desc)) {
1323 
1324 			interval = xhci_parse_frame_interval(udev, ep);
1325 		}
1326 		break;
1327 
1328 	default:
1329 		BUG();
1330 	}
1331 	return interval;
1332 }
1333 
1334 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1335  * High speed endpoint descriptors can define "the number of additional
1336  * transaction opportunities per microframe", but that goes in the Max Burst
1337  * endpoint context field.
1338  */
1339 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1340 		struct usb_host_endpoint *ep)
1341 {
1342 	if (udev->speed < USB_SPEED_SUPER ||
1343 			!usb_endpoint_xfer_isoc(&ep->desc))
1344 		return 0;
1345 	return ep->ss_ep_comp.bmAttributes;
1346 }
1347 
1348 static u32 xhci_get_endpoint_max_burst(struct usb_device *udev,
1349 				       struct usb_host_endpoint *ep)
1350 {
1351 	/* Super speed and Plus have max burst in ep companion desc */
1352 	if (udev->speed >= USB_SPEED_SUPER)
1353 		return ep->ss_ep_comp.bMaxBurst;
1354 
1355 	if (udev->speed == USB_SPEED_HIGH &&
1356 	    (usb_endpoint_xfer_isoc(&ep->desc) ||
1357 	     usb_endpoint_xfer_int(&ep->desc)))
1358 		return usb_endpoint_maxp_mult(&ep->desc) - 1;
1359 
1360 	return 0;
1361 }
1362 
1363 static u32 xhci_get_endpoint_type(struct usb_host_endpoint *ep)
1364 {
1365 	int in;
1366 
1367 	in = usb_endpoint_dir_in(&ep->desc);
1368 
1369 	switch (usb_endpoint_type(&ep->desc)) {
1370 	case USB_ENDPOINT_XFER_CONTROL:
1371 		return CTRL_EP;
1372 	case USB_ENDPOINT_XFER_BULK:
1373 		return in ? BULK_IN_EP : BULK_OUT_EP;
1374 	case USB_ENDPOINT_XFER_ISOC:
1375 		return in ? ISOC_IN_EP : ISOC_OUT_EP;
1376 	case USB_ENDPOINT_XFER_INT:
1377 		return in ? INT_IN_EP : INT_OUT_EP;
1378 	}
1379 	return 0;
1380 }
1381 
1382 /* Return the maximum endpoint service interval time (ESIT) payload.
1383  * Basically, this is the maxpacket size, multiplied by the burst size
1384  * and mult size.
1385  */
1386 static u32 xhci_get_max_esit_payload(struct usb_device *udev,
1387 		struct usb_host_endpoint *ep)
1388 {
1389 	int max_burst;
1390 	int max_packet;
1391 
1392 	/* Only applies for interrupt or isochronous endpoints */
1393 	if (usb_endpoint_xfer_control(&ep->desc) ||
1394 			usb_endpoint_xfer_bulk(&ep->desc))
1395 		return 0;
1396 
1397 	/* SuperSpeedPlus Isoc ep sending over 48k per esit */
1398 	if ((udev->speed >= USB_SPEED_SUPER_PLUS) &&
1399 	    USB_SS_SSP_ISOC_COMP(ep->ss_ep_comp.bmAttributes))
1400 		return le32_to_cpu(ep->ssp_isoc_ep_comp.dwBytesPerInterval);
1401 	/* SuperSpeed or SuperSpeedPlus Isoc ep with less than 48k per esit */
1402 	else if (udev->speed >= USB_SPEED_SUPER)
1403 		return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1404 
1405 	max_packet = usb_endpoint_maxp(&ep->desc);
1406 	max_burst = usb_endpoint_maxp_mult(&ep->desc);
1407 	/* A 0 in max burst means 1 transfer per ESIT */
1408 	return max_packet * max_burst;
1409 }
1410 
1411 /* Set up an endpoint with one ring segment.  Do not allocate stream rings.
1412  * Drivers will have to call usb_alloc_streams() to do that.
1413  */
1414 int xhci_endpoint_init(struct xhci_hcd *xhci,
1415 		struct xhci_virt_device *virt_dev,
1416 		struct usb_device *udev,
1417 		struct usb_host_endpoint *ep,
1418 		gfp_t mem_flags)
1419 {
1420 	unsigned int ep_index;
1421 	struct xhci_ep_ctx *ep_ctx;
1422 	struct xhci_ring *ep_ring;
1423 	unsigned int max_packet;
1424 	enum xhci_ring_type ring_type;
1425 	u32 max_esit_payload;
1426 	u32 endpoint_type;
1427 	unsigned int max_burst;
1428 	unsigned int interval;
1429 	unsigned int mult;
1430 	unsigned int avg_trb_len;
1431 	unsigned int err_count = 0;
1432 
1433 	ep_index = xhci_get_endpoint_index(&ep->desc);
1434 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1435 
1436 	endpoint_type = xhci_get_endpoint_type(ep);
1437 	if (!endpoint_type)
1438 		return -EINVAL;
1439 
1440 	ring_type = usb_endpoint_type(&ep->desc);
1441 
1442 	/*
1443 	 * Get values to fill the endpoint context, mostly from ep descriptor.
1444 	 * The average TRB buffer lengt for bulk endpoints is unclear as we
1445 	 * have no clue on scatter gather list entry size. For Isoc and Int,
1446 	 * set it to max available. See xHCI 1.1 spec 4.14.1.1 for details.
1447 	 */
1448 	max_esit_payload = xhci_get_max_esit_payload(udev, ep);
1449 	interval = xhci_get_endpoint_interval(udev, ep);
1450 
1451 	/* Periodic endpoint bInterval limit quirk */
1452 	if (usb_endpoint_xfer_int(&ep->desc) ||
1453 	    usb_endpoint_xfer_isoc(&ep->desc)) {
1454 		if ((xhci->quirks & XHCI_LIMIT_ENDPOINT_INTERVAL_7) &&
1455 		    udev->speed >= USB_SPEED_HIGH &&
1456 		    interval >= 7) {
1457 			interval = 6;
1458 		}
1459 	}
1460 
1461 	mult = xhci_get_endpoint_mult(udev, ep);
1462 	max_packet = usb_endpoint_maxp(&ep->desc);
1463 	max_burst = xhci_get_endpoint_max_burst(udev, ep);
1464 	avg_trb_len = max_esit_payload;
1465 
1466 	/* FIXME dig Mult and streams info out of ep companion desc */
1467 
1468 	/* Allow 3 retries for everything but isoc, set CErr = 3 */
1469 	if (!usb_endpoint_xfer_isoc(&ep->desc))
1470 		err_count = 3;
1471 	/* Some devices get this wrong */
1472 	if (usb_endpoint_xfer_bulk(&ep->desc) && udev->speed == USB_SPEED_HIGH)
1473 		max_packet = 512;
1474 	/* xHCI 1.0 and 1.1 indicates that ctrl ep avg TRB Length should be 8 */
1475 	if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version >= 0x100)
1476 		avg_trb_len = 8;
1477 	/* xhci 1.1 with LEC support doesn't use mult field, use RsvdZ */
1478 	if ((xhci->hci_version > 0x100) && HCC2_LEC(xhci->hcc_params2))
1479 		mult = 0;
1480 
1481 	/* Set up the endpoint ring */
1482 	virt_dev->eps[ep_index].new_ring =
1483 		xhci_ring_alloc(xhci, 2, 1, ring_type, max_packet, mem_flags);
1484 	if (!virt_dev->eps[ep_index].new_ring)
1485 		return -ENOMEM;
1486 
1487 	virt_dev->eps[ep_index].skip = false;
1488 	ep_ring = virt_dev->eps[ep_index].new_ring;
1489 
1490 	/* Fill the endpoint context */
1491 	ep_ctx->ep_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_HI(max_esit_payload) |
1492 				      EP_INTERVAL(interval) |
1493 				      EP_MULT(mult));
1494 	ep_ctx->ep_info2 = cpu_to_le32(EP_TYPE(endpoint_type) |
1495 				       MAX_PACKET(max_packet) |
1496 				       MAX_BURST(max_burst) |
1497 				       ERROR_COUNT(err_count));
1498 	ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma |
1499 				  ep_ring->cycle_state);
1500 
1501 	ep_ctx->tx_info = cpu_to_le32(EP_MAX_ESIT_PAYLOAD_LO(max_esit_payload) |
1502 				      EP_AVG_TRB_LENGTH(avg_trb_len));
1503 
1504 	return 0;
1505 }
1506 
1507 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1508 		struct xhci_virt_device *virt_dev,
1509 		struct usb_host_endpoint *ep)
1510 {
1511 	unsigned int ep_index;
1512 	struct xhci_ep_ctx *ep_ctx;
1513 
1514 	ep_index = xhci_get_endpoint_index(&ep->desc);
1515 	ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1516 
1517 	ep_ctx->ep_info = 0;
1518 	ep_ctx->ep_info2 = 0;
1519 	ep_ctx->deq = 0;
1520 	ep_ctx->tx_info = 0;
1521 	/* Don't free the endpoint ring until the set interface or configuration
1522 	 * request succeeds.
1523 	 */
1524 }
1525 
1526 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1527 {
1528 	bw_info->ep_interval = 0;
1529 	bw_info->mult = 0;
1530 	bw_info->num_packets = 0;
1531 	bw_info->max_packet_size = 0;
1532 	bw_info->type = 0;
1533 	bw_info->max_esit_payload = 0;
1534 }
1535 
1536 void xhci_update_bw_info(struct xhci_hcd *xhci,
1537 		struct xhci_container_ctx *in_ctx,
1538 		struct xhci_input_control_ctx *ctrl_ctx,
1539 		struct xhci_virt_device *virt_dev)
1540 {
1541 	struct xhci_bw_info *bw_info;
1542 	struct xhci_ep_ctx *ep_ctx;
1543 	unsigned int ep_type;
1544 	int i;
1545 
1546 	for (i = 1; i < 31; i++) {
1547 		bw_info = &virt_dev->eps[i].bw_info;
1548 
1549 		/* We can't tell what endpoint type is being dropped, but
1550 		 * unconditionally clearing the bandwidth info for non-periodic
1551 		 * endpoints should be harmless because the info will never be
1552 		 * set in the first place.
1553 		 */
1554 		if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1555 			/* Dropped endpoint */
1556 			xhci_clear_endpoint_bw_info(bw_info);
1557 			continue;
1558 		}
1559 
1560 		if (EP_IS_ADDED(ctrl_ctx, i)) {
1561 			ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1562 			ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1563 
1564 			/* Ignore non-periodic endpoints */
1565 			if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1566 					ep_type != ISOC_IN_EP &&
1567 					ep_type != INT_IN_EP)
1568 				continue;
1569 
1570 			/* Added or changed endpoint */
1571 			bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1572 					le32_to_cpu(ep_ctx->ep_info));
1573 			/* Number of packets and mult are zero-based in the
1574 			 * input context, but we want one-based for the
1575 			 * interval table.
1576 			 */
1577 			bw_info->mult = CTX_TO_EP_MULT(
1578 					le32_to_cpu(ep_ctx->ep_info)) + 1;
1579 			bw_info->num_packets = CTX_TO_MAX_BURST(
1580 					le32_to_cpu(ep_ctx->ep_info2)) + 1;
1581 			bw_info->max_packet_size = MAX_PACKET_DECODED(
1582 					le32_to_cpu(ep_ctx->ep_info2));
1583 			bw_info->type = ep_type;
1584 			bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1585 					le32_to_cpu(ep_ctx->tx_info));
1586 		}
1587 	}
1588 }
1589 
1590 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1591  * Useful when you want to change one particular aspect of the endpoint and then
1592  * issue a configure endpoint command.
1593  */
1594 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1595 		struct xhci_container_ctx *in_ctx,
1596 		struct xhci_container_ctx *out_ctx,
1597 		unsigned int ep_index)
1598 {
1599 	struct xhci_ep_ctx *out_ep_ctx;
1600 	struct xhci_ep_ctx *in_ep_ctx;
1601 
1602 	out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1603 	in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1604 
1605 	in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1606 	in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1607 	in_ep_ctx->deq = out_ep_ctx->deq;
1608 	in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1609 }
1610 
1611 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1612  * Useful when you want to change one particular aspect of the endpoint and then
1613  * issue a configure endpoint command.  Only the context entries field matters,
1614  * but we'll copy the whole thing anyway.
1615  */
1616 void xhci_slot_copy(struct xhci_hcd *xhci,
1617 		struct xhci_container_ctx *in_ctx,
1618 		struct xhci_container_ctx *out_ctx)
1619 {
1620 	struct xhci_slot_ctx *in_slot_ctx;
1621 	struct xhci_slot_ctx *out_slot_ctx;
1622 
1623 	in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1624 	out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1625 
1626 	in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1627 	in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1628 	in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1629 	in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1630 }
1631 
1632 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1633 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1634 {
1635 	int i;
1636 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1637 	int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1638 
1639 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1640 			"Allocating %d scratchpad buffers", num_sp);
1641 
1642 	if (!num_sp)
1643 		return 0;
1644 
1645 	xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1646 	if (!xhci->scratchpad)
1647 		goto fail_sp;
1648 
1649 	xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1650 				     num_sp * sizeof(u64),
1651 				     &xhci->scratchpad->sp_dma, flags);
1652 	if (!xhci->scratchpad->sp_array)
1653 		goto fail_sp2;
1654 
1655 	xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1656 	if (!xhci->scratchpad->sp_buffers)
1657 		goto fail_sp3;
1658 
1659 	xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1660 	for (i = 0; i < num_sp; i++) {
1661 		dma_addr_t dma;
1662 		void *buf = dma_zalloc_coherent(dev, xhci->page_size, &dma,
1663 				flags);
1664 		if (!buf)
1665 			goto fail_sp4;
1666 
1667 		xhci->scratchpad->sp_array[i] = dma;
1668 		xhci->scratchpad->sp_buffers[i] = buf;
1669 	}
1670 
1671 	return 0;
1672 
1673  fail_sp4:
1674 	for (i = i - 1; i >= 0; i--) {
1675 		dma_free_coherent(dev, xhci->page_size,
1676 				    xhci->scratchpad->sp_buffers[i],
1677 				    xhci->scratchpad->sp_array[i]);
1678 	}
1679 
1680 	kfree(xhci->scratchpad->sp_buffers);
1681 
1682  fail_sp3:
1683 	dma_free_coherent(dev, num_sp * sizeof(u64),
1684 			    xhci->scratchpad->sp_array,
1685 			    xhci->scratchpad->sp_dma);
1686 
1687  fail_sp2:
1688 	kfree(xhci->scratchpad);
1689 	xhci->scratchpad = NULL;
1690 
1691  fail_sp:
1692 	return -ENOMEM;
1693 }
1694 
1695 static void scratchpad_free(struct xhci_hcd *xhci)
1696 {
1697 	int num_sp;
1698 	int i;
1699 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1700 
1701 	if (!xhci->scratchpad)
1702 		return;
1703 
1704 	num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1705 
1706 	for (i = 0; i < num_sp; i++) {
1707 		dma_free_coherent(dev, xhci->page_size,
1708 				    xhci->scratchpad->sp_buffers[i],
1709 				    xhci->scratchpad->sp_array[i]);
1710 	}
1711 	kfree(xhci->scratchpad->sp_buffers);
1712 	dma_free_coherent(dev, num_sp * sizeof(u64),
1713 			    xhci->scratchpad->sp_array,
1714 			    xhci->scratchpad->sp_dma);
1715 	kfree(xhci->scratchpad);
1716 	xhci->scratchpad = NULL;
1717 }
1718 
1719 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1720 		bool allocate_completion, gfp_t mem_flags)
1721 {
1722 	struct xhci_command *command;
1723 
1724 	command = kzalloc(sizeof(*command), mem_flags);
1725 	if (!command)
1726 		return NULL;
1727 
1728 	if (allocate_completion) {
1729 		command->completion =
1730 			kzalloc(sizeof(struct completion), mem_flags);
1731 		if (!command->completion) {
1732 			kfree(command);
1733 			return NULL;
1734 		}
1735 		init_completion(command->completion);
1736 	}
1737 
1738 	command->status = 0;
1739 	INIT_LIST_HEAD(&command->cmd_list);
1740 	return command;
1741 }
1742 
1743 struct xhci_command *xhci_alloc_command_with_ctx(struct xhci_hcd *xhci,
1744 		bool allocate_completion, gfp_t mem_flags)
1745 {
1746 	struct xhci_command *command;
1747 
1748 	command = xhci_alloc_command(xhci, allocate_completion, mem_flags);
1749 	if (!command)
1750 		return NULL;
1751 
1752 	command->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1753 						   mem_flags);
1754 	if (!command->in_ctx) {
1755 		kfree(command->completion);
1756 		kfree(command);
1757 		return NULL;
1758 	}
1759 	return command;
1760 }
1761 
1762 void xhci_urb_free_priv(struct urb_priv *urb_priv)
1763 {
1764 	kfree(urb_priv);
1765 }
1766 
1767 void xhci_free_command(struct xhci_hcd *xhci,
1768 		struct xhci_command *command)
1769 {
1770 	xhci_free_container_ctx(xhci,
1771 			command->in_ctx);
1772 	kfree(command->completion);
1773 	kfree(command);
1774 }
1775 
1776 int xhci_alloc_erst(struct xhci_hcd *xhci,
1777 		    struct xhci_ring *evt_ring,
1778 		    struct xhci_erst *erst,
1779 		    gfp_t flags)
1780 {
1781 	size_t size;
1782 	unsigned int val;
1783 	struct xhci_segment *seg;
1784 	struct xhci_erst_entry *entry;
1785 
1786 	size = sizeof(struct xhci_erst_entry) * evt_ring->num_segs;
1787 	erst->entries = dma_zalloc_coherent(xhci_to_hcd(xhci)->self.sysdev,
1788 					    size, &erst->erst_dma_addr, flags);
1789 	if (!erst->entries)
1790 		return -ENOMEM;
1791 
1792 	erst->num_entries = evt_ring->num_segs;
1793 
1794 	seg = evt_ring->first_seg;
1795 	for (val = 0; val < evt_ring->num_segs; val++) {
1796 		entry = &erst->entries[val];
1797 		entry->seg_addr = cpu_to_le64(seg->dma);
1798 		entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
1799 		entry->rsvd = 0;
1800 		seg = seg->next;
1801 	}
1802 
1803 	return 0;
1804 }
1805 
1806 void xhci_free_erst(struct xhci_hcd *xhci, struct xhci_erst *erst)
1807 {
1808 	size_t size;
1809 	struct device *dev = xhci_to_hcd(xhci)->self.sysdev;
1810 
1811 	size = sizeof(struct xhci_erst_entry) * (erst->num_entries);
1812 	if (erst->entries)
1813 		dma_free_coherent(dev, size,
1814 				erst->entries,
1815 				erst->erst_dma_addr);
1816 	erst->entries = NULL;
1817 }
1818 
1819 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1820 {
1821 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
1822 	int i, j, num_ports;
1823 
1824 	cancel_delayed_work_sync(&xhci->cmd_timer);
1825 
1826 	xhci_free_erst(xhci, &xhci->erst);
1827 
1828 	if (xhci->event_ring)
1829 		xhci_ring_free(xhci, xhci->event_ring);
1830 	xhci->event_ring = NULL;
1831 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed event ring");
1832 
1833 	if (xhci->lpm_command)
1834 		xhci_free_command(xhci, xhci->lpm_command);
1835 	xhci->lpm_command = NULL;
1836 	if (xhci->cmd_ring)
1837 		xhci_ring_free(xhci, xhci->cmd_ring);
1838 	xhci->cmd_ring = NULL;
1839 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed command ring");
1840 	xhci_cleanup_command_queue(xhci);
1841 
1842 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
1843 	for (i = 0; i < num_ports && xhci->rh_bw; i++) {
1844 		struct xhci_interval_bw_table *bwt = &xhci->rh_bw[i].bw_table;
1845 		for (j = 0; j < XHCI_MAX_INTERVAL; j++) {
1846 			struct list_head *ep = &bwt->interval_bw[j].endpoints;
1847 			while (!list_empty(ep))
1848 				list_del_init(ep->next);
1849 		}
1850 	}
1851 
1852 	for (i = HCS_MAX_SLOTS(xhci->hcs_params1); i > 0; i--)
1853 		xhci_free_virt_devices_depth_first(xhci, i);
1854 
1855 	dma_pool_destroy(xhci->segment_pool);
1856 	xhci->segment_pool = NULL;
1857 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed segment pool");
1858 
1859 	dma_pool_destroy(xhci->device_pool);
1860 	xhci->device_pool = NULL;
1861 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "Freed device context pool");
1862 
1863 	dma_pool_destroy(xhci->small_streams_pool);
1864 	xhci->small_streams_pool = NULL;
1865 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1866 			"Freed small stream array pool");
1867 
1868 	dma_pool_destroy(xhci->medium_streams_pool);
1869 	xhci->medium_streams_pool = NULL;
1870 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
1871 			"Freed medium stream array pool");
1872 
1873 	if (xhci->dcbaa)
1874 		dma_free_coherent(dev, sizeof(*xhci->dcbaa),
1875 				xhci->dcbaa, xhci->dcbaa->dma);
1876 	xhci->dcbaa = NULL;
1877 
1878 	scratchpad_free(xhci);
1879 
1880 	if (!xhci->rh_bw)
1881 		goto no_bw;
1882 
1883 	for (i = 0; i < num_ports; i++) {
1884 		struct xhci_tt_bw_info *tt, *n;
1885 		list_for_each_entry_safe(tt, n, &xhci->rh_bw[i].tts, tt_list) {
1886 			list_del(&tt->tt_list);
1887 			kfree(tt);
1888 		}
1889 	}
1890 
1891 no_bw:
1892 	xhci->cmd_ring_reserved_trbs = 0;
1893 	xhci->num_usb2_ports = 0;
1894 	xhci->num_usb3_ports = 0;
1895 	xhci->num_active_eps = 0;
1896 	kfree(xhci->usb2_ports);
1897 	kfree(xhci->usb3_ports);
1898 	kfree(xhci->port_array);
1899 	kfree(xhci->rh_bw);
1900 	kfree(xhci->ext_caps);
1901 
1902 	xhci->usb2_ports = NULL;
1903 	xhci->usb3_ports = NULL;
1904 	xhci->port_array = NULL;
1905 	xhci->rh_bw = NULL;
1906 	xhci->ext_caps = NULL;
1907 
1908 	xhci->page_size = 0;
1909 	xhci->page_shift = 0;
1910 	xhci->bus_state[0].bus_suspended = 0;
1911 	xhci->bus_state[1].bus_suspended = 0;
1912 }
1913 
1914 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1915 		struct xhci_segment *input_seg,
1916 		union xhci_trb *start_trb,
1917 		union xhci_trb *end_trb,
1918 		dma_addr_t input_dma,
1919 		struct xhci_segment *result_seg,
1920 		char *test_name, int test_number)
1921 {
1922 	unsigned long long start_dma;
1923 	unsigned long long end_dma;
1924 	struct xhci_segment *seg;
1925 
1926 	start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1927 	end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1928 
1929 	seg = trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma, false);
1930 	if (seg != result_seg) {
1931 		xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1932 				test_name, test_number);
1933 		xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1934 				"input DMA 0x%llx\n",
1935 				input_seg,
1936 				(unsigned long long) input_dma);
1937 		xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1938 				"ending TRB %p (0x%llx DMA)\n",
1939 				start_trb, start_dma,
1940 				end_trb, end_dma);
1941 		xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1942 				result_seg, seg);
1943 		trb_in_td(xhci, input_seg, start_trb, end_trb, input_dma,
1944 			  true);
1945 		return -1;
1946 	}
1947 	return 0;
1948 }
1949 
1950 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1951 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci)
1952 {
1953 	struct {
1954 		dma_addr_t		input_dma;
1955 		struct xhci_segment	*result_seg;
1956 	} simple_test_vector [] = {
1957 		/* A zeroed DMA field should fail */
1958 		{ 0, NULL },
1959 		/* One TRB before the ring start should fail */
1960 		{ xhci->event_ring->first_seg->dma - 16, NULL },
1961 		/* One byte before the ring start should fail */
1962 		{ xhci->event_ring->first_seg->dma - 1, NULL },
1963 		/* Starting TRB should succeed */
1964 		{ xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1965 		/* Ending TRB should succeed */
1966 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1967 			xhci->event_ring->first_seg },
1968 		/* One byte after the ring end should fail */
1969 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1970 		/* One TRB after the ring end should fail */
1971 		{ xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1972 		/* An address of all ones should fail */
1973 		{ (dma_addr_t) (~0), NULL },
1974 	};
1975 	struct {
1976 		struct xhci_segment	*input_seg;
1977 		union xhci_trb		*start_trb;
1978 		union xhci_trb		*end_trb;
1979 		dma_addr_t		input_dma;
1980 		struct xhci_segment	*result_seg;
1981 	} complex_test_vector [] = {
1982 		/* Test feeding a valid DMA address from a different ring */
1983 		{	.input_seg = xhci->event_ring->first_seg,
1984 			.start_trb = xhci->event_ring->first_seg->trbs,
1985 			.end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1986 			.input_dma = xhci->cmd_ring->first_seg->dma,
1987 			.result_seg = NULL,
1988 		},
1989 		/* Test feeding a valid end TRB from a different ring */
1990 		{	.input_seg = xhci->event_ring->first_seg,
1991 			.start_trb = xhci->event_ring->first_seg->trbs,
1992 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1993 			.input_dma = xhci->cmd_ring->first_seg->dma,
1994 			.result_seg = NULL,
1995 		},
1996 		/* Test feeding a valid start and end TRB from a different ring */
1997 		{	.input_seg = xhci->event_ring->first_seg,
1998 			.start_trb = xhci->cmd_ring->first_seg->trbs,
1999 			.end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2000 			.input_dma = xhci->cmd_ring->first_seg->dma,
2001 			.result_seg = NULL,
2002 		},
2003 		/* TRB in this ring, but after this TD */
2004 		{	.input_seg = xhci->event_ring->first_seg,
2005 			.start_trb = &xhci->event_ring->first_seg->trbs[0],
2006 			.end_trb = &xhci->event_ring->first_seg->trbs[3],
2007 			.input_dma = xhci->event_ring->first_seg->dma + 4*16,
2008 			.result_seg = NULL,
2009 		},
2010 		/* TRB in this ring, but before this TD */
2011 		{	.input_seg = xhci->event_ring->first_seg,
2012 			.start_trb = &xhci->event_ring->first_seg->trbs[3],
2013 			.end_trb = &xhci->event_ring->first_seg->trbs[6],
2014 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2015 			.result_seg = NULL,
2016 		},
2017 		/* TRB in this ring, but after this wrapped TD */
2018 		{	.input_seg = xhci->event_ring->first_seg,
2019 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2020 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2021 			.input_dma = xhci->event_ring->first_seg->dma + 2*16,
2022 			.result_seg = NULL,
2023 		},
2024 		/* TRB in this ring, but before this wrapped TD */
2025 		{	.input_seg = xhci->event_ring->first_seg,
2026 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2027 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2028 			.input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
2029 			.result_seg = NULL,
2030 		},
2031 		/* TRB not in this ring, and we have a wrapped TD */
2032 		{	.input_seg = xhci->event_ring->first_seg,
2033 			.start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
2034 			.end_trb = &xhci->event_ring->first_seg->trbs[1],
2035 			.input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
2036 			.result_seg = NULL,
2037 		},
2038 	};
2039 
2040 	unsigned int num_tests;
2041 	int i, ret;
2042 
2043 	num_tests = ARRAY_SIZE(simple_test_vector);
2044 	for (i = 0; i < num_tests; i++) {
2045 		ret = xhci_test_trb_in_td(xhci,
2046 				xhci->event_ring->first_seg,
2047 				xhci->event_ring->first_seg->trbs,
2048 				&xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
2049 				simple_test_vector[i].input_dma,
2050 				simple_test_vector[i].result_seg,
2051 				"Simple", i);
2052 		if (ret < 0)
2053 			return ret;
2054 	}
2055 
2056 	num_tests = ARRAY_SIZE(complex_test_vector);
2057 	for (i = 0; i < num_tests; i++) {
2058 		ret = xhci_test_trb_in_td(xhci,
2059 				complex_test_vector[i].input_seg,
2060 				complex_test_vector[i].start_trb,
2061 				complex_test_vector[i].end_trb,
2062 				complex_test_vector[i].input_dma,
2063 				complex_test_vector[i].result_seg,
2064 				"Complex", i);
2065 		if (ret < 0)
2066 			return ret;
2067 	}
2068 	xhci_dbg(xhci, "TRB math tests passed.\n");
2069 	return 0;
2070 }
2071 
2072 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
2073 {
2074 	u64 temp;
2075 	dma_addr_t deq;
2076 
2077 	deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
2078 			xhci->event_ring->dequeue);
2079 	if (deq == 0 && !in_interrupt())
2080 		xhci_warn(xhci, "WARN something wrong with SW event ring "
2081 				"dequeue ptr.\n");
2082 	/* Update HC event ring dequeue pointer */
2083 	temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
2084 	temp &= ERST_PTR_MASK;
2085 	/* Don't clear the EHB bit (which is RW1C) because
2086 	 * there might be more events to service.
2087 	 */
2088 	temp &= ~ERST_EHB;
2089 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2090 			"// Write event ring dequeue pointer, "
2091 			"preserving EHB bit");
2092 	xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
2093 			&xhci->ir_set->erst_dequeue);
2094 }
2095 
2096 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
2097 		__le32 __iomem *addr, int max_caps)
2098 {
2099 	u32 temp, port_offset, port_count;
2100 	int i;
2101 	u8 major_revision, minor_revision;
2102 	struct xhci_hub *rhub;
2103 
2104 	temp = readl(addr);
2105 	major_revision = XHCI_EXT_PORT_MAJOR(temp);
2106 	minor_revision = XHCI_EXT_PORT_MINOR(temp);
2107 
2108 	if (major_revision == 0x03) {
2109 		rhub = &xhci->usb3_rhub;
2110 	} else if (major_revision <= 0x02) {
2111 		rhub = &xhci->usb2_rhub;
2112 	} else {
2113 		xhci_warn(xhci, "Ignoring unknown port speed, "
2114 				"Ext Cap %p, revision = 0x%x\n",
2115 				addr, major_revision);
2116 		/* Ignoring port protocol we can't understand. FIXME */
2117 		return;
2118 	}
2119 	rhub->maj_rev = XHCI_EXT_PORT_MAJOR(temp);
2120 
2121 	if (rhub->min_rev < minor_revision)
2122 		rhub->min_rev = minor_revision;
2123 
2124 	/* Port offset and count in the third dword, see section 7.2 */
2125 	temp = readl(addr + 2);
2126 	port_offset = XHCI_EXT_PORT_OFF(temp);
2127 	port_count = XHCI_EXT_PORT_COUNT(temp);
2128 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2129 			"Ext Cap %p, port offset = %u, "
2130 			"count = %u, revision = 0x%x",
2131 			addr, port_offset, port_count, major_revision);
2132 	/* Port count includes the current port offset */
2133 	if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
2134 		/* WTF? "Valid values are ‘1’ to MaxPorts" */
2135 		return;
2136 
2137 	rhub->psi_count = XHCI_EXT_PORT_PSIC(temp);
2138 	if (rhub->psi_count) {
2139 		rhub->psi = kcalloc(rhub->psi_count, sizeof(*rhub->psi),
2140 				    GFP_KERNEL);
2141 		if (!rhub->psi)
2142 			rhub->psi_count = 0;
2143 
2144 		rhub->psi_uid_count++;
2145 		for (i = 0; i < rhub->psi_count; i++) {
2146 			rhub->psi[i] = readl(addr + 4 + i);
2147 
2148 			/* count unique ID values, two consecutive entries can
2149 			 * have the same ID if link is assymetric
2150 			 */
2151 			if (i && (XHCI_EXT_PORT_PSIV(rhub->psi[i]) !=
2152 				  XHCI_EXT_PORT_PSIV(rhub->psi[i - 1])))
2153 				rhub->psi_uid_count++;
2154 
2155 			xhci_dbg(xhci, "PSIV:%d PSIE:%d PLT:%d PFD:%d LP:%d PSIM:%d\n",
2156 				  XHCI_EXT_PORT_PSIV(rhub->psi[i]),
2157 				  XHCI_EXT_PORT_PSIE(rhub->psi[i]),
2158 				  XHCI_EXT_PORT_PLT(rhub->psi[i]),
2159 				  XHCI_EXT_PORT_PFD(rhub->psi[i]),
2160 				  XHCI_EXT_PORT_LP(rhub->psi[i]),
2161 				  XHCI_EXT_PORT_PSIM(rhub->psi[i]));
2162 		}
2163 	}
2164 	/* cache usb2 port capabilities */
2165 	if (major_revision < 0x03 && xhci->num_ext_caps < max_caps)
2166 		xhci->ext_caps[xhci->num_ext_caps++] = temp;
2167 
2168 	/* Check the host's USB2 LPM capability */
2169 	if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
2170 			(temp & XHCI_L1C)) {
2171 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2172 				"xHCI 0.96: support USB2 software lpm");
2173 		xhci->sw_lpm_support = 1;
2174 	}
2175 
2176 	if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
2177 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2178 				"xHCI 1.0: support USB2 software lpm");
2179 		xhci->sw_lpm_support = 1;
2180 		if (temp & XHCI_HLC) {
2181 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2182 					"xHCI 1.0: support USB2 hardware lpm");
2183 			xhci->hw_lpm_support = 1;
2184 		}
2185 	}
2186 
2187 	port_offset--;
2188 	for (i = port_offset; i < (port_offset + port_count); i++) {
2189 		/* Duplicate entry.  Ignore the port if the revisions differ. */
2190 		if (xhci->port_array[i] != 0) {
2191 			xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
2192 					" port %u\n", addr, i);
2193 			xhci_warn(xhci, "Port was marked as USB %u, "
2194 					"duplicated as USB %u\n",
2195 					xhci->port_array[i], major_revision);
2196 			/* Only adjust the roothub port counts if we haven't
2197 			 * found a similar duplicate.
2198 			 */
2199 			if (xhci->port_array[i] != major_revision &&
2200 				xhci->port_array[i] != DUPLICATE_ENTRY) {
2201 				if (xhci->port_array[i] == 0x03)
2202 					xhci->num_usb3_ports--;
2203 				else
2204 					xhci->num_usb2_ports--;
2205 				xhci->port_array[i] = DUPLICATE_ENTRY;
2206 			}
2207 			/* FIXME: Should we disable the port? */
2208 			continue;
2209 		}
2210 		xhci->port_array[i] = major_revision;
2211 		if (major_revision == 0x03)
2212 			xhci->num_usb3_ports++;
2213 		else
2214 			xhci->num_usb2_ports++;
2215 	}
2216 	/* FIXME: Should we disable ports not in the Extended Capabilities? */
2217 }
2218 
2219 /*
2220  * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2221  * specify what speeds each port is supposed to be.  We can't count on the port
2222  * speed bits in the PORTSC register being correct until a device is connected,
2223  * but we need to set up the two fake roothubs with the correct number of USB
2224  * 3.0 and USB 2.0 ports at host controller initialization time.
2225  */
2226 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2227 {
2228 	void __iomem *base;
2229 	u32 offset;
2230 	unsigned int num_ports;
2231 	int i, j, port_index;
2232 	int cap_count = 0;
2233 	u32 cap_start;
2234 
2235 	num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2236 	xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2237 	if (!xhci->port_array)
2238 		return -ENOMEM;
2239 
2240 	xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2241 	if (!xhci->rh_bw)
2242 		return -ENOMEM;
2243 	for (i = 0; i < num_ports; i++) {
2244 		struct xhci_interval_bw_table *bw_table;
2245 
2246 		INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2247 		bw_table = &xhci->rh_bw[i].bw_table;
2248 		for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2249 			INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2250 	}
2251 	base = &xhci->cap_regs->hc_capbase;
2252 
2253 	cap_start = xhci_find_next_ext_cap(base, 0, XHCI_EXT_CAPS_PROTOCOL);
2254 	if (!cap_start) {
2255 		xhci_err(xhci, "No Extended Capability registers, unable to set up roothub\n");
2256 		return -ENODEV;
2257 	}
2258 
2259 	offset = cap_start;
2260 	/* count extended protocol capability entries for later caching */
2261 	while (offset) {
2262 		cap_count++;
2263 		offset = xhci_find_next_ext_cap(base, offset,
2264 						      XHCI_EXT_CAPS_PROTOCOL);
2265 	}
2266 
2267 	xhci->ext_caps = kzalloc(sizeof(*xhci->ext_caps) * cap_count, flags);
2268 	if (!xhci->ext_caps)
2269 		return -ENOMEM;
2270 
2271 	offset = cap_start;
2272 
2273 	while (offset) {
2274 		xhci_add_in_port(xhci, num_ports, base + offset, cap_count);
2275 		if (xhci->num_usb2_ports + xhci->num_usb3_ports == num_ports)
2276 			break;
2277 		offset = xhci_find_next_ext_cap(base, offset,
2278 						XHCI_EXT_CAPS_PROTOCOL);
2279 	}
2280 
2281 	if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2282 		xhci_warn(xhci, "No ports on the roothubs?\n");
2283 		return -ENODEV;
2284 	}
2285 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2286 			"Found %u USB 2.0 ports and %u USB 3.0 ports.",
2287 			xhci->num_usb2_ports, xhci->num_usb3_ports);
2288 
2289 	/* Place limits on the number of roothub ports so that the hub
2290 	 * descriptors aren't longer than the USB core will allocate.
2291 	 */
2292 	if (xhci->num_usb3_ports > USB_SS_MAXPORTS) {
2293 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2294 				"Limiting USB 3.0 roothub ports to %u.",
2295 				USB_SS_MAXPORTS);
2296 		xhci->num_usb3_ports = USB_SS_MAXPORTS;
2297 	}
2298 	if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2299 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2300 				"Limiting USB 2.0 roothub ports to %u.",
2301 				USB_MAXCHILDREN);
2302 		xhci->num_usb2_ports = USB_MAXCHILDREN;
2303 	}
2304 
2305 	/*
2306 	 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2307 	 * Not sure how the USB core will handle a hub with no ports...
2308 	 */
2309 	if (xhci->num_usb2_ports) {
2310 		xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2311 				xhci->num_usb2_ports, flags);
2312 		if (!xhci->usb2_ports)
2313 			return -ENOMEM;
2314 
2315 		port_index = 0;
2316 		for (i = 0; i < num_ports; i++) {
2317 			if (xhci->port_array[i] == 0x03 ||
2318 					xhci->port_array[i] == 0 ||
2319 					xhci->port_array[i] == DUPLICATE_ENTRY)
2320 				continue;
2321 
2322 			xhci->usb2_ports[port_index] =
2323 				&xhci->op_regs->port_status_base +
2324 				NUM_PORT_REGS*i;
2325 			xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2326 					"USB 2.0 port at index %u, "
2327 					"addr = %p", i,
2328 					xhci->usb2_ports[port_index]);
2329 			port_index++;
2330 			if (port_index == xhci->num_usb2_ports)
2331 				break;
2332 		}
2333 	}
2334 	if (xhci->num_usb3_ports) {
2335 		xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2336 				xhci->num_usb3_ports, flags);
2337 		if (!xhci->usb3_ports)
2338 			return -ENOMEM;
2339 
2340 		port_index = 0;
2341 		for (i = 0; i < num_ports; i++)
2342 			if (xhci->port_array[i] == 0x03) {
2343 				xhci->usb3_ports[port_index] =
2344 					&xhci->op_regs->port_status_base +
2345 					NUM_PORT_REGS*i;
2346 				xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2347 						"USB 3.0 port at index %u, "
2348 						"addr = %p", i,
2349 						xhci->usb3_ports[port_index]);
2350 				port_index++;
2351 				if (port_index == xhci->num_usb3_ports)
2352 					break;
2353 			}
2354 	}
2355 	return 0;
2356 }
2357 
2358 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2359 {
2360 	dma_addr_t	dma;
2361 	struct device	*dev = xhci_to_hcd(xhci)->self.sysdev;
2362 	unsigned int	val, val2;
2363 	u64		val_64;
2364 	u32		page_size, temp;
2365 	int		i, ret;
2366 
2367 	INIT_LIST_HEAD(&xhci->cmd_list);
2368 
2369 	/* init command timeout work */
2370 	INIT_DELAYED_WORK(&xhci->cmd_timer, xhci_handle_command_timeout);
2371 	init_completion(&xhci->cmd_ring_stop_completion);
2372 
2373 	page_size = readl(&xhci->op_regs->page_size);
2374 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2375 			"Supported page size register = 0x%x", page_size);
2376 	for (i = 0; i < 16; i++) {
2377 		if ((0x1 & page_size) != 0)
2378 			break;
2379 		page_size = page_size >> 1;
2380 	}
2381 	if (i < 16)
2382 		xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2383 			"Supported page size of %iK", (1 << (i+12)) / 1024);
2384 	else
2385 		xhci_warn(xhci, "WARN: no supported page size\n");
2386 	/* Use 4K pages, since that's common and the minimum the HC supports */
2387 	xhci->page_shift = 12;
2388 	xhci->page_size = 1 << xhci->page_shift;
2389 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2390 			"HCD page size set to %iK", xhci->page_size / 1024);
2391 
2392 	/*
2393 	 * Program the Number of Device Slots Enabled field in the CONFIG
2394 	 * register with the max value of slots the HC can handle.
2395 	 */
2396 	val = HCS_MAX_SLOTS(readl(&xhci->cap_regs->hcs_params1));
2397 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2398 			"// xHC can handle at most %d device slots.", val);
2399 	val2 = readl(&xhci->op_regs->config_reg);
2400 	val |= (val2 & ~HCS_SLOTS_MASK);
2401 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2402 			"// Setting Max device slots reg = 0x%x.", val);
2403 	writel(val, &xhci->op_regs->config_reg);
2404 
2405 	/*
2406 	 * xHCI section 5.4.6 - doorbell array must be
2407 	 * "physically contiguous and 64-byte (cache line) aligned".
2408 	 */
2409 	xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2410 			flags);
2411 	if (!xhci->dcbaa)
2412 		goto fail;
2413 	memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2414 	xhci->dcbaa->dma = dma;
2415 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2416 			"// Device context base array address = 0x%llx (DMA), %p (virt)",
2417 			(unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2418 	xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2419 
2420 	/*
2421 	 * Initialize the ring segment pool.  The ring must be a contiguous
2422 	 * structure comprised of TRBs.  The TRBs must be 16 byte aligned,
2423 	 * however, the command ring segment needs 64-byte aligned segments
2424 	 * and our use of dma addresses in the trb_address_map radix tree needs
2425 	 * TRB_SEGMENT_SIZE alignment, so we pick the greater alignment need.
2426 	 */
2427 	xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2428 			TRB_SEGMENT_SIZE, TRB_SEGMENT_SIZE, xhci->page_size);
2429 
2430 	/* See Table 46 and Note on Figure 55 */
2431 	xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2432 			2112, 64, xhci->page_size);
2433 	if (!xhci->segment_pool || !xhci->device_pool)
2434 		goto fail;
2435 
2436 	/* Linear stream context arrays don't have any boundary restrictions,
2437 	 * and only need to be 16-byte aligned.
2438 	 */
2439 	xhci->small_streams_pool =
2440 		dma_pool_create("xHCI 256 byte stream ctx arrays",
2441 			dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2442 	xhci->medium_streams_pool =
2443 		dma_pool_create("xHCI 1KB stream ctx arrays",
2444 			dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2445 	/* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2446 	 * will be allocated with dma_alloc_coherent()
2447 	 */
2448 
2449 	if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2450 		goto fail;
2451 
2452 	/* Set up the command ring to have one segments for now. */
2453 	xhci->cmd_ring = xhci_ring_alloc(xhci, 1, 1, TYPE_COMMAND, 0, flags);
2454 	if (!xhci->cmd_ring)
2455 		goto fail;
2456 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2457 			"Allocated command ring at %p", xhci->cmd_ring);
2458 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "First segment DMA is 0x%llx",
2459 			(unsigned long long)xhci->cmd_ring->first_seg->dma);
2460 
2461 	/* Set the address in the Command Ring Control register */
2462 	val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2463 	val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2464 		(xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2465 		xhci->cmd_ring->cycle_state;
2466 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2467 			"// Setting command ring address to 0x%016llx", val_64);
2468 	xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2469 
2470 	xhci->lpm_command = xhci_alloc_command_with_ctx(xhci, true, flags);
2471 	if (!xhci->lpm_command)
2472 		goto fail;
2473 
2474 	/* Reserve one command ring TRB for disabling LPM.
2475 	 * Since the USB core grabs the shared usb_bus bandwidth mutex before
2476 	 * disabling LPM, we only need to reserve one TRB for all devices.
2477 	 */
2478 	xhci->cmd_ring_reserved_trbs++;
2479 
2480 	val = readl(&xhci->cap_regs->db_off);
2481 	val &= DBOFF_MASK;
2482 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2483 			"// Doorbell array is located at offset 0x%x"
2484 			" from cap regs base addr", val);
2485 	xhci->dba = (void __iomem *) xhci->cap_regs + val;
2486 	/* Set ir_set to interrupt register set 0 */
2487 	xhci->ir_set = &xhci->run_regs->ir_set[0];
2488 
2489 	/*
2490 	 * Event ring setup: Allocate a normal ring, but also setup
2491 	 * the event ring segment table (ERST).  Section 4.9.3.
2492 	 */
2493 	xhci_dbg_trace(xhci, trace_xhci_dbg_init, "// Allocating event ring");
2494 	xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, 1, TYPE_EVENT,
2495 					0, flags);
2496 	if (!xhci->event_ring)
2497 		goto fail;
2498 	if (xhci_check_trb_in_td_math(xhci) < 0)
2499 		goto fail;
2500 
2501 	ret = xhci_alloc_erst(xhci, xhci->event_ring, &xhci->erst, flags);
2502 	if (ret)
2503 		goto fail;
2504 
2505 	/* set ERST count with the number of entries in the segment table */
2506 	val = readl(&xhci->ir_set->erst_size);
2507 	val &= ERST_SIZE_MASK;
2508 	val |= ERST_NUM_SEGS;
2509 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2510 			"// Write ERST size = %i to ir_set 0 (some bits preserved)",
2511 			val);
2512 	writel(val, &xhci->ir_set->erst_size);
2513 
2514 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2515 			"// Set ERST entries to point to event ring.");
2516 	/* set the segment table base address */
2517 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2518 			"// Set ERST base address for ir_set 0 = 0x%llx",
2519 			(unsigned long long)xhci->erst.erst_dma_addr);
2520 	val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2521 	val_64 &= ERST_PTR_MASK;
2522 	val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2523 	xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2524 
2525 	/* Set the event ring dequeue address */
2526 	xhci_set_hc_event_deq(xhci);
2527 	xhci_dbg_trace(xhci, trace_xhci_dbg_init,
2528 			"Wrote ERST address to ir_set 0.");
2529 
2530 	/*
2531 	 * XXX: Might need to set the Interrupter Moderation Register to
2532 	 * something other than the default (~1ms minimum between interrupts).
2533 	 * See section 5.5.1.2.
2534 	 */
2535 	for (i = 0; i < MAX_HC_SLOTS; i++)
2536 		xhci->devs[i] = NULL;
2537 	for (i = 0; i < USB_MAXCHILDREN; i++) {
2538 		xhci->bus_state[0].resume_done[i] = 0;
2539 		xhci->bus_state[1].resume_done[i] = 0;
2540 		/* Only the USB 2.0 completions will ever be used. */
2541 		init_completion(&xhci->bus_state[1].rexit_done[i]);
2542 	}
2543 
2544 	if (scratchpad_alloc(xhci, flags))
2545 		goto fail;
2546 	if (xhci_setup_port_arrays(xhci, flags))
2547 		goto fail;
2548 
2549 	/* Enable USB 3.0 device notifications for function remote wake, which
2550 	 * is necessary for allowing USB 3.0 devices to do remote wakeup from
2551 	 * U3 (device suspend).
2552 	 */
2553 	temp = readl(&xhci->op_regs->dev_notification);
2554 	temp &= ~DEV_NOTE_MASK;
2555 	temp |= DEV_NOTE_FWAKE;
2556 	writel(temp, &xhci->op_regs->dev_notification);
2557 
2558 	return 0;
2559 
2560 fail:
2561 	xhci_halt(xhci);
2562 	xhci_reset(xhci);
2563 	xhci_mem_cleanup(xhci);
2564 	return -ENOMEM;
2565 }
2566