xref: /linux/drivers/usb/dwc2/hcd.c (revision 975ef7ff81bb000af6e6c8e63e81f89f3468dcf7)
1 // SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
2 /*
3  * hcd.c - DesignWare HS OTG Controller host-mode routines
4  *
5  * Copyright (C) 2004-2013 Synopsys, Inc.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  *    notice, this list of conditions, and the following disclaimer,
12  *    without modification.
13  * 2. Redistributions in binary form must reproduce the above copyright
14  *    notice, this list of conditions and the following disclaimer in the
15  *    documentation and/or other materials provided with the distribution.
16  * 3. The names of the above-listed copyright holders may not be used
17  *    to endorse or promote products derived from this software without
18  *    specific prior written permission.
19  *
20  * ALTERNATIVELY, this software may be distributed under the terms of the
21  * GNU General Public License ("GPL") as published by the Free Software
22  * Foundation; either version 2 of the License, or (at your option) any
23  * later version.
24  *
25  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
26  * IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
27  * THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
28  * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
29  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
30  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
31  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
32  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
33  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
34  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
35  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
36  */
37 
38 /*
39  * This file contains the core HCD code, and implements the Linux hc_driver
40  * API
41  */
42 #include <linux/kernel.h>
43 #include <linux/module.h>
44 #include <linux/spinlock.h>
45 #include <linux/interrupt.h>
46 #include <linux/platform_device.h>
47 #include <linux/dma-mapping.h>
48 #include <linux/delay.h>
49 #include <linux/io.h>
50 #include <linux/slab.h>
51 #include <linux/usb.h>
52 
53 #include <linux/usb/hcd.h>
54 #include <linux/usb/ch11.h>
55 
56 #include "core.h"
57 #include "hcd.h"
58 
59 static void dwc2_port_resume(struct dwc2_hsotg *hsotg);
60 
61 /*
62  * =========================================================================
63  *  Host Core Layer Functions
64  * =========================================================================
65  */
66 
67 /**
68  * dwc2_enable_common_interrupts() - Initializes the commmon interrupts,
69  * used in both device and host modes
70  *
71  * @hsotg: Programming view of the DWC_otg controller
72  */
73 static void dwc2_enable_common_interrupts(struct dwc2_hsotg *hsotg)
74 {
75 	u32 intmsk;
76 
77 	/* Clear any pending OTG Interrupts */
78 	dwc2_writel(0xffffffff, hsotg->regs + GOTGINT);
79 
80 	/* Clear any pending interrupts */
81 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
82 
83 	/* Enable the interrupts in the GINTMSK */
84 	intmsk = GINTSTS_MODEMIS | GINTSTS_OTGINT;
85 
86 	if (!hsotg->params.host_dma)
87 		intmsk |= GINTSTS_RXFLVL;
88 	if (!hsotg->params.external_id_pin_ctl)
89 		intmsk |= GINTSTS_CONIDSTSCHNG;
90 
91 	intmsk |= GINTSTS_WKUPINT | GINTSTS_USBSUSP |
92 		  GINTSTS_SESSREQINT;
93 
94 	if (dwc2_is_device_mode(hsotg) && hsotg->params.lpm)
95 		intmsk |= GINTSTS_LPMTRANRCVD;
96 
97 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
98 }
99 
100 /*
101  * Initializes the FSLSPClkSel field of the HCFG register depending on the
102  * PHY type
103  */
104 static void dwc2_init_fs_ls_pclk_sel(struct dwc2_hsotg *hsotg)
105 {
106 	u32 hcfg, val;
107 
108 	if ((hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
109 	     hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
110 	     hsotg->params.ulpi_fs_ls) ||
111 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
112 		/* Full speed PHY */
113 		val = HCFG_FSLSPCLKSEL_48_MHZ;
114 	} else {
115 		/* High speed PHY running at full speed or high speed */
116 		val = HCFG_FSLSPCLKSEL_30_60_MHZ;
117 	}
118 
119 	dev_dbg(hsotg->dev, "Initializing HCFG.FSLSPClkSel to %08x\n", val);
120 	hcfg = dwc2_readl(hsotg->regs + HCFG);
121 	hcfg &= ~HCFG_FSLSPCLKSEL_MASK;
122 	hcfg |= val << HCFG_FSLSPCLKSEL_SHIFT;
123 	dwc2_writel(hcfg, hsotg->regs + HCFG);
124 }
125 
126 static int dwc2_fs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
127 {
128 	u32 usbcfg, ggpio, i2cctl;
129 	int retval = 0;
130 
131 	/*
132 	 * core_init() is now called on every switch so only call the
133 	 * following for the first time through
134 	 */
135 	if (select_phy) {
136 		dev_dbg(hsotg->dev, "FS PHY selected\n");
137 
138 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
139 		if (!(usbcfg & GUSBCFG_PHYSEL)) {
140 			usbcfg |= GUSBCFG_PHYSEL;
141 			dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
142 
143 			/* Reset after a PHY select */
144 			retval = dwc2_core_reset(hsotg, false);
145 
146 			if (retval) {
147 				dev_err(hsotg->dev,
148 					"%s: Reset failed, aborting", __func__);
149 				return retval;
150 			}
151 		}
152 
153 		if (hsotg->params.activate_stm_fs_transceiver) {
154 			ggpio = dwc2_readl(hsotg->regs + GGPIO);
155 			if (!(ggpio & GGPIO_STM32_OTG_GCCFG_PWRDWN)) {
156 				dev_dbg(hsotg->dev, "Activating transceiver\n");
157 				/*
158 				 * STM32F4x9 uses the GGPIO register as general
159 				 * core configuration register.
160 				 */
161 				ggpio |= GGPIO_STM32_OTG_GCCFG_PWRDWN;
162 				dwc2_writel(ggpio, hsotg->regs + GGPIO);
163 			}
164 		}
165 	}
166 
167 	/*
168 	 * Program DCFG.DevSpd or HCFG.FSLSPclkSel to 48Mhz in FS. Also
169 	 * do this on HNP Dev/Host mode switches (done in dev_init and
170 	 * host_init).
171 	 */
172 	if (dwc2_is_host_mode(hsotg))
173 		dwc2_init_fs_ls_pclk_sel(hsotg);
174 
175 	if (hsotg->params.i2c_enable) {
176 		dev_dbg(hsotg->dev, "FS PHY enabling I2C\n");
177 
178 		/* Program GUSBCFG.OtgUtmiFsSel to I2C */
179 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
180 		usbcfg |= GUSBCFG_OTG_UTMI_FS_SEL;
181 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
182 
183 		/* Program GI2CCTL.I2CEn */
184 		i2cctl = dwc2_readl(hsotg->regs + GI2CCTL);
185 		i2cctl &= ~GI2CCTL_I2CDEVADDR_MASK;
186 		i2cctl |= 1 << GI2CCTL_I2CDEVADDR_SHIFT;
187 		i2cctl &= ~GI2CCTL_I2CEN;
188 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
189 		i2cctl |= GI2CCTL_I2CEN;
190 		dwc2_writel(i2cctl, hsotg->regs + GI2CCTL);
191 	}
192 
193 	return retval;
194 }
195 
196 static int dwc2_hs_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
197 {
198 	u32 usbcfg, usbcfg_old;
199 	int retval = 0;
200 
201 	if (!select_phy)
202 		return 0;
203 
204 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
205 	usbcfg_old = usbcfg;
206 
207 	/*
208 	 * HS PHY parameters. These parameters are preserved during soft reset
209 	 * so only program the first time. Do a soft reset immediately after
210 	 * setting phyif.
211 	 */
212 	switch (hsotg->params.phy_type) {
213 	case DWC2_PHY_TYPE_PARAM_ULPI:
214 		/* ULPI interface */
215 		dev_dbg(hsotg->dev, "HS ULPI PHY selected\n");
216 		usbcfg |= GUSBCFG_ULPI_UTMI_SEL;
217 		usbcfg &= ~(GUSBCFG_PHYIF16 | GUSBCFG_DDRSEL);
218 		if (hsotg->params.phy_ulpi_ddr)
219 			usbcfg |= GUSBCFG_DDRSEL;
220 
221 		/* Set external VBUS indicator as needed. */
222 		if (hsotg->params.oc_disable)
223 			usbcfg |= (GUSBCFG_ULPI_INT_VBUS_IND |
224 				   GUSBCFG_INDICATORPASSTHROUGH);
225 		break;
226 	case DWC2_PHY_TYPE_PARAM_UTMI:
227 		/* UTMI+ interface */
228 		dev_dbg(hsotg->dev, "HS UTMI+ PHY selected\n");
229 		usbcfg &= ~(GUSBCFG_ULPI_UTMI_SEL | GUSBCFG_PHYIF16);
230 		if (hsotg->params.phy_utmi_width == 16)
231 			usbcfg |= GUSBCFG_PHYIF16;
232 		break;
233 	default:
234 		dev_err(hsotg->dev, "FS PHY selected at HS!\n");
235 		break;
236 	}
237 
238 	if (usbcfg != usbcfg_old) {
239 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
240 
241 		/* Reset after setting the PHY parameters */
242 		retval = dwc2_core_reset(hsotg, false);
243 		if (retval) {
244 			dev_err(hsotg->dev,
245 				"%s: Reset failed, aborting", __func__);
246 			return retval;
247 		}
248 	}
249 
250 	return retval;
251 }
252 
253 static int dwc2_phy_init(struct dwc2_hsotg *hsotg, bool select_phy)
254 {
255 	u32 usbcfg;
256 	int retval = 0;
257 
258 	if ((hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
259 	     hsotg->params.speed == DWC2_SPEED_PARAM_LOW) &&
260 	    hsotg->params.phy_type == DWC2_PHY_TYPE_PARAM_FS) {
261 		/* If FS/LS mode with FS/LS PHY */
262 		retval = dwc2_fs_phy_init(hsotg, select_phy);
263 		if (retval)
264 			return retval;
265 	} else {
266 		/* High speed PHY */
267 		retval = dwc2_hs_phy_init(hsotg, select_phy);
268 		if (retval)
269 			return retval;
270 	}
271 
272 	if (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_ULPI &&
273 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED &&
274 	    hsotg->params.ulpi_fs_ls) {
275 		dev_dbg(hsotg->dev, "Setting ULPI FSLS\n");
276 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
277 		usbcfg |= GUSBCFG_ULPI_FS_LS;
278 		usbcfg |= GUSBCFG_ULPI_CLK_SUSP_M;
279 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
280 	} else {
281 		usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
282 		usbcfg &= ~GUSBCFG_ULPI_FS_LS;
283 		usbcfg &= ~GUSBCFG_ULPI_CLK_SUSP_M;
284 		dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
285 	}
286 
287 	return retval;
288 }
289 
290 static int dwc2_gahbcfg_init(struct dwc2_hsotg *hsotg)
291 {
292 	u32 ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
293 
294 	switch (hsotg->hw_params.arch) {
295 	case GHWCFG2_EXT_DMA_ARCH:
296 		dev_err(hsotg->dev, "External DMA Mode not supported\n");
297 		return -EINVAL;
298 
299 	case GHWCFG2_INT_DMA_ARCH:
300 		dev_dbg(hsotg->dev, "Internal DMA Mode\n");
301 		if (hsotg->params.ahbcfg != -1) {
302 			ahbcfg &= GAHBCFG_CTRL_MASK;
303 			ahbcfg |= hsotg->params.ahbcfg &
304 				  ~GAHBCFG_CTRL_MASK;
305 		}
306 		break;
307 
308 	case GHWCFG2_SLAVE_ONLY_ARCH:
309 	default:
310 		dev_dbg(hsotg->dev, "Slave Only Mode\n");
311 		break;
312 	}
313 
314 	if (hsotg->params.host_dma)
315 		ahbcfg |= GAHBCFG_DMA_EN;
316 	else
317 		hsotg->params.dma_desc_enable = false;
318 
319 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
320 
321 	return 0;
322 }
323 
324 static void dwc2_gusbcfg_init(struct dwc2_hsotg *hsotg)
325 {
326 	u32 usbcfg;
327 
328 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
329 	usbcfg &= ~(GUSBCFG_HNPCAP | GUSBCFG_SRPCAP);
330 
331 	switch (hsotg->hw_params.op_mode) {
332 	case GHWCFG2_OP_MODE_HNP_SRP_CAPABLE:
333 		if (hsotg->params.otg_cap ==
334 				DWC2_CAP_PARAM_HNP_SRP_CAPABLE)
335 			usbcfg |= GUSBCFG_HNPCAP;
336 		if (hsotg->params.otg_cap !=
337 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
338 			usbcfg |= GUSBCFG_SRPCAP;
339 		break;
340 
341 	case GHWCFG2_OP_MODE_SRP_ONLY_CAPABLE:
342 	case GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE:
343 	case GHWCFG2_OP_MODE_SRP_CAPABLE_HOST:
344 		if (hsotg->params.otg_cap !=
345 				DWC2_CAP_PARAM_NO_HNP_SRP_CAPABLE)
346 			usbcfg |= GUSBCFG_SRPCAP;
347 		break;
348 
349 	case GHWCFG2_OP_MODE_NO_HNP_SRP_CAPABLE:
350 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE:
351 	case GHWCFG2_OP_MODE_NO_SRP_CAPABLE_HOST:
352 	default:
353 		break;
354 	}
355 
356 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
357 }
358 
359 static int dwc2_vbus_supply_init(struct dwc2_hsotg *hsotg)
360 {
361 	int ret;
362 
363 	hsotg->vbus_supply = devm_regulator_get_optional(hsotg->dev, "vbus");
364 	if (IS_ERR(hsotg->vbus_supply)) {
365 		ret = PTR_ERR(hsotg->vbus_supply);
366 		hsotg->vbus_supply = NULL;
367 		return ret == -ENODEV ? 0 : ret;
368 	}
369 
370 	return regulator_enable(hsotg->vbus_supply);
371 }
372 
373 static int dwc2_vbus_supply_exit(struct dwc2_hsotg *hsotg)
374 {
375 	if (hsotg->vbus_supply)
376 		return regulator_disable(hsotg->vbus_supply);
377 
378 	return 0;
379 }
380 
381 /**
382  * dwc2_enable_host_interrupts() - Enables the Host mode interrupts
383  *
384  * @hsotg: Programming view of DWC_otg controller
385  */
386 static void dwc2_enable_host_interrupts(struct dwc2_hsotg *hsotg)
387 {
388 	u32 intmsk;
389 
390 	dev_dbg(hsotg->dev, "%s()\n", __func__);
391 
392 	/* Disable all interrupts */
393 	dwc2_writel(0, hsotg->regs + GINTMSK);
394 	dwc2_writel(0, hsotg->regs + HAINTMSK);
395 
396 	/* Enable the common interrupts */
397 	dwc2_enable_common_interrupts(hsotg);
398 
399 	/* Enable host mode interrupts without disturbing common interrupts */
400 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
401 	intmsk |= GINTSTS_DISCONNINT | GINTSTS_PRTINT | GINTSTS_HCHINT;
402 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
403 }
404 
405 /**
406  * dwc2_disable_host_interrupts() - Disables the Host Mode interrupts
407  *
408  * @hsotg: Programming view of DWC_otg controller
409  */
410 static void dwc2_disable_host_interrupts(struct dwc2_hsotg *hsotg)
411 {
412 	u32 intmsk = dwc2_readl(hsotg->regs + GINTMSK);
413 
414 	/* Disable host mode interrupts without disturbing common interrupts */
415 	intmsk &= ~(GINTSTS_SOF | GINTSTS_PRTINT | GINTSTS_HCHINT |
416 		    GINTSTS_PTXFEMP | GINTSTS_NPTXFEMP | GINTSTS_DISCONNINT);
417 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
418 }
419 
420 /*
421  * dwc2_calculate_dynamic_fifo() - Calculates the default fifo size
422  * For system that have a total fifo depth that is smaller than the default
423  * RX + TX fifo size.
424  *
425  * @hsotg: Programming view of DWC_otg controller
426  */
427 static void dwc2_calculate_dynamic_fifo(struct dwc2_hsotg *hsotg)
428 {
429 	struct dwc2_core_params *params = &hsotg->params;
430 	struct dwc2_hw_params *hw = &hsotg->hw_params;
431 	u32 rxfsiz, nptxfsiz, ptxfsiz, total_fifo_size;
432 
433 	total_fifo_size = hw->total_fifo_size;
434 	rxfsiz = params->host_rx_fifo_size;
435 	nptxfsiz = params->host_nperio_tx_fifo_size;
436 	ptxfsiz = params->host_perio_tx_fifo_size;
437 
438 	/*
439 	 * Will use Method 2 defined in the DWC2 spec: minimum FIFO depth
440 	 * allocation with support for high bandwidth endpoints. Synopsys
441 	 * defines MPS(Max Packet size) for a periodic EP=1024, and for
442 	 * non-periodic as 512.
443 	 */
444 	if (total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)) {
445 		/*
446 		 * For Buffer DMA mode/Scatter Gather DMA mode
447 		 * 2 * ((Largest Packet size / 4) + 1 + 1) + n
448 		 * with n = number of host channel.
449 		 * 2 * ((1024/4) + 2) = 516
450 		 */
451 		rxfsiz = 516 + hw->host_channels;
452 
453 		/*
454 		 * min non-periodic tx fifo depth
455 		 * 2 * (largest non-periodic USB packet used / 4)
456 		 * 2 * (512/4) = 256
457 		 */
458 		nptxfsiz = 256;
459 
460 		/*
461 		 * min periodic tx fifo depth
462 		 * (largest packet size*MC)/4
463 		 * (1024 * 3)/4 = 768
464 		 */
465 		ptxfsiz = 768;
466 
467 		params->host_rx_fifo_size = rxfsiz;
468 		params->host_nperio_tx_fifo_size = nptxfsiz;
469 		params->host_perio_tx_fifo_size = ptxfsiz;
470 	}
471 
472 	/*
473 	 * If the summation of RX, NPTX and PTX fifo sizes is still
474 	 * bigger than the total_fifo_size, then we have a problem.
475 	 *
476 	 * We won't be able to allocate as many endpoints. Right now,
477 	 * we're just printing an error message, but ideally this FIFO
478 	 * allocation algorithm would be improved in the future.
479 	 *
480 	 * FIXME improve this FIFO allocation algorithm.
481 	 */
482 	if (unlikely(total_fifo_size < (rxfsiz + nptxfsiz + ptxfsiz)))
483 		dev_err(hsotg->dev, "invalid fifo sizes\n");
484 }
485 
486 static void dwc2_config_fifos(struct dwc2_hsotg *hsotg)
487 {
488 	struct dwc2_core_params *params = &hsotg->params;
489 	u32 nptxfsiz, hptxfsiz, dfifocfg, grxfsiz;
490 
491 	if (!params->enable_dynamic_fifo)
492 		return;
493 
494 	dwc2_calculate_dynamic_fifo(hsotg);
495 
496 	/* Rx FIFO */
497 	grxfsiz = dwc2_readl(hsotg->regs + GRXFSIZ);
498 	dev_dbg(hsotg->dev, "initial grxfsiz=%08x\n", grxfsiz);
499 	grxfsiz &= ~GRXFSIZ_DEPTH_MASK;
500 	grxfsiz |= params->host_rx_fifo_size <<
501 		   GRXFSIZ_DEPTH_SHIFT & GRXFSIZ_DEPTH_MASK;
502 	dwc2_writel(grxfsiz, hsotg->regs + GRXFSIZ);
503 	dev_dbg(hsotg->dev, "new grxfsiz=%08x\n",
504 		dwc2_readl(hsotg->regs + GRXFSIZ));
505 
506 	/* Non-periodic Tx FIFO */
507 	dev_dbg(hsotg->dev, "initial gnptxfsiz=%08x\n",
508 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
509 	nptxfsiz = params->host_nperio_tx_fifo_size <<
510 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
511 	nptxfsiz |= params->host_rx_fifo_size <<
512 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
513 	dwc2_writel(nptxfsiz, hsotg->regs + GNPTXFSIZ);
514 	dev_dbg(hsotg->dev, "new gnptxfsiz=%08x\n",
515 		dwc2_readl(hsotg->regs + GNPTXFSIZ));
516 
517 	/* Periodic Tx FIFO */
518 	dev_dbg(hsotg->dev, "initial hptxfsiz=%08x\n",
519 		dwc2_readl(hsotg->regs + HPTXFSIZ));
520 	hptxfsiz = params->host_perio_tx_fifo_size <<
521 		   FIFOSIZE_DEPTH_SHIFT & FIFOSIZE_DEPTH_MASK;
522 	hptxfsiz |= (params->host_rx_fifo_size +
523 		     params->host_nperio_tx_fifo_size) <<
524 		    FIFOSIZE_STARTADDR_SHIFT & FIFOSIZE_STARTADDR_MASK;
525 	dwc2_writel(hptxfsiz, hsotg->regs + HPTXFSIZ);
526 	dev_dbg(hsotg->dev, "new hptxfsiz=%08x\n",
527 		dwc2_readl(hsotg->regs + HPTXFSIZ));
528 
529 	if (hsotg->params.en_multiple_tx_fifo &&
530 	    hsotg->hw_params.snpsid >= DWC2_CORE_REV_2_91a) {
531 		/*
532 		 * This feature was implemented in 2.91a version
533 		 * Global DFIFOCFG calculation for Host mode -
534 		 * include RxFIFO, NPTXFIFO and HPTXFIFO
535 		 */
536 		dfifocfg = dwc2_readl(hsotg->regs + GDFIFOCFG);
537 		dfifocfg &= ~GDFIFOCFG_EPINFOBASE_MASK;
538 		dfifocfg |= (params->host_rx_fifo_size +
539 			     params->host_nperio_tx_fifo_size +
540 			     params->host_perio_tx_fifo_size) <<
541 			    GDFIFOCFG_EPINFOBASE_SHIFT &
542 			    GDFIFOCFG_EPINFOBASE_MASK;
543 		dwc2_writel(dfifocfg, hsotg->regs + GDFIFOCFG);
544 	}
545 }
546 
547 /**
548  * dwc2_calc_frame_interval() - Calculates the correct frame Interval value for
549  * the HFIR register according to PHY type and speed
550  *
551  * @hsotg: Programming view of DWC_otg controller
552  *
553  * NOTE: The caller can modify the value of the HFIR register only after the
554  * Port Enable bit of the Host Port Control and Status register (HPRT.EnaPort)
555  * has been set
556  */
557 u32 dwc2_calc_frame_interval(struct dwc2_hsotg *hsotg)
558 {
559 	u32 usbcfg;
560 	u32 hprt0;
561 	int clock = 60;	/* default value */
562 
563 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
564 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
565 
566 	if (!(usbcfg & GUSBCFG_PHYSEL) && (usbcfg & GUSBCFG_ULPI_UTMI_SEL) &&
567 	    !(usbcfg & GUSBCFG_PHYIF16))
568 		clock = 60;
569 	if ((usbcfg & GUSBCFG_PHYSEL) && hsotg->hw_params.fs_phy_type ==
570 	    GHWCFG2_FS_PHY_TYPE_SHARED_ULPI)
571 		clock = 48;
572 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
573 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
574 		clock = 30;
575 	if (!(usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
576 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && !(usbcfg & GUSBCFG_PHYIF16))
577 		clock = 60;
578 	if ((usbcfg & GUSBCFG_PHY_LP_CLK_SEL) && !(usbcfg & GUSBCFG_PHYSEL) &&
579 	    !(usbcfg & GUSBCFG_ULPI_UTMI_SEL) && (usbcfg & GUSBCFG_PHYIF16))
580 		clock = 48;
581 	if ((usbcfg & GUSBCFG_PHYSEL) && !(usbcfg & GUSBCFG_PHYIF16) &&
582 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_SHARED_UTMI)
583 		clock = 48;
584 	if ((usbcfg & GUSBCFG_PHYSEL) &&
585 	    hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED)
586 		clock = 48;
587 
588 	if ((hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT == HPRT0_SPD_HIGH_SPEED)
589 		/* High speed case */
590 		return 125 * clock - 1;
591 
592 	/* FS/LS case */
593 	return 1000 * clock - 1;
594 }
595 
596 /**
597  * dwc2_read_packet() - Reads a packet from the Rx FIFO into the destination
598  * buffer
599  *
600  * @hsotg: Programming view of DWC_otg controller
601  * @dest:    Destination buffer for the packet
602  * @bytes:   Number of bytes to copy to the destination
603  */
604 void dwc2_read_packet(struct dwc2_hsotg *hsotg, u8 *dest, u16 bytes)
605 {
606 	u32 __iomem *fifo = hsotg->regs + HCFIFO(0);
607 	u32 *data_buf = (u32 *)dest;
608 	int word_count = (bytes + 3) / 4;
609 	int i;
610 
611 	/*
612 	 * Todo: Account for the case where dest is not dword aligned. This
613 	 * requires reading data from the FIFO into a u32 temp buffer, then
614 	 * moving it into the data buffer.
615 	 */
616 
617 	dev_vdbg(hsotg->dev, "%s(%p,%p,%d)\n", __func__, hsotg, dest, bytes);
618 
619 	for (i = 0; i < word_count; i++, data_buf++)
620 		*data_buf = dwc2_readl(fifo);
621 }
622 
623 /**
624  * dwc2_dump_channel_info() - Prints the state of a host channel
625  *
626  * @hsotg: Programming view of DWC_otg controller
627  * @chan:  Pointer to the channel to dump
628  *
629  * Must be called with interrupt disabled and spinlock held
630  *
631  * NOTE: This function will be removed once the peripheral controller code
632  * is integrated and the driver is stable
633  */
634 static void dwc2_dump_channel_info(struct dwc2_hsotg *hsotg,
635 				   struct dwc2_host_chan *chan)
636 {
637 #ifdef VERBOSE_DEBUG
638 	int num_channels = hsotg->params.host_channels;
639 	struct dwc2_qh *qh;
640 	u32 hcchar;
641 	u32 hcsplt;
642 	u32 hctsiz;
643 	u32 hc_dma;
644 	int i;
645 
646 	if (!chan)
647 		return;
648 
649 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
650 	hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
651 	hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(chan->hc_num));
652 	hc_dma = dwc2_readl(hsotg->regs + HCDMA(chan->hc_num));
653 
654 	dev_dbg(hsotg->dev, "  Assigned to channel %p:\n", chan);
655 	dev_dbg(hsotg->dev, "    hcchar 0x%08x, hcsplt 0x%08x\n",
656 		hcchar, hcsplt);
657 	dev_dbg(hsotg->dev, "    hctsiz 0x%08x, hc_dma 0x%08x\n",
658 		hctsiz, hc_dma);
659 	dev_dbg(hsotg->dev, "    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
660 		chan->dev_addr, chan->ep_num, chan->ep_is_in);
661 	dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
662 	dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
663 	dev_dbg(hsotg->dev, "    data_pid_start: %d\n", chan->data_pid_start);
664 	dev_dbg(hsotg->dev, "    xfer_started: %d\n", chan->xfer_started);
665 	dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
666 	dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
667 	dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
668 		(unsigned long)chan->xfer_dma);
669 	dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
670 	dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
671 	dev_dbg(hsotg->dev, "  NP inactive sched:\n");
672 	list_for_each_entry(qh, &hsotg->non_periodic_sched_inactive,
673 			    qh_list_entry)
674 		dev_dbg(hsotg->dev, "    %p\n", qh);
675 	dev_dbg(hsotg->dev, "  NP waiting sched:\n");
676 	list_for_each_entry(qh, &hsotg->non_periodic_sched_waiting,
677 			    qh_list_entry)
678 		dev_dbg(hsotg->dev, "    %p\n", qh);
679 	dev_dbg(hsotg->dev, "  NP active sched:\n");
680 	list_for_each_entry(qh, &hsotg->non_periodic_sched_active,
681 			    qh_list_entry)
682 		dev_dbg(hsotg->dev, "    %p\n", qh);
683 	dev_dbg(hsotg->dev, "  Channels:\n");
684 	for (i = 0; i < num_channels; i++) {
685 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
686 
687 		dev_dbg(hsotg->dev, "    %2d: %p\n", i, chan);
688 	}
689 #endif /* VERBOSE_DEBUG */
690 }
691 
692 static int _dwc2_hcd_start(struct usb_hcd *hcd);
693 
694 static void dwc2_host_start(struct dwc2_hsotg *hsotg)
695 {
696 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
697 
698 	hcd->self.is_b_host = dwc2_hcd_is_b_host(hsotg);
699 	_dwc2_hcd_start(hcd);
700 }
701 
702 static void dwc2_host_disconnect(struct dwc2_hsotg *hsotg)
703 {
704 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
705 
706 	hcd->self.is_b_host = 0;
707 }
708 
709 static void dwc2_host_hub_info(struct dwc2_hsotg *hsotg, void *context,
710 			       int *hub_addr, int *hub_port)
711 {
712 	struct urb *urb = context;
713 
714 	if (urb->dev->tt)
715 		*hub_addr = urb->dev->tt->hub->devnum;
716 	else
717 		*hub_addr = 0;
718 	*hub_port = urb->dev->ttport;
719 }
720 
721 /*
722  * =========================================================================
723  *  Low Level Host Channel Access Functions
724  * =========================================================================
725  */
726 
727 static void dwc2_hc_enable_slave_ints(struct dwc2_hsotg *hsotg,
728 				      struct dwc2_host_chan *chan)
729 {
730 	u32 hcintmsk = HCINTMSK_CHHLTD;
731 
732 	switch (chan->ep_type) {
733 	case USB_ENDPOINT_XFER_CONTROL:
734 	case USB_ENDPOINT_XFER_BULK:
735 		dev_vdbg(hsotg->dev, "control/bulk\n");
736 		hcintmsk |= HCINTMSK_XFERCOMPL;
737 		hcintmsk |= HCINTMSK_STALL;
738 		hcintmsk |= HCINTMSK_XACTERR;
739 		hcintmsk |= HCINTMSK_DATATGLERR;
740 		if (chan->ep_is_in) {
741 			hcintmsk |= HCINTMSK_BBLERR;
742 		} else {
743 			hcintmsk |= HCINTMSK_NAK;
744 			hcintmsk |= HCINTMSK_NYET;
745 			if (chan->do_ping)
746 				hcintmsk |= HCINTMSK_ACK;
747 		}
748 
749 		if (chan->do_split) {
750 			hcintmsk |= HCINTMSK_NAK;
751 			if (chan->complete_split)
752 				hcintmsk |= HCINTMSK_NYET;
753 			else
754 				hcintmsk |= HCINTMSK_ACK;
755 		}
756 
757 		if (chan->error_state)
758 			hcintmsk |= HCINTMSK_ACK;
759 		break;
760 
761 	case USB_ENDPOINT_XFER_INT:
762 		if (dbg_perio())
763 			dev_vdbg(hsotg->dev, "intr\n");
764 		hcintmsk |= HCINTMSK_XFERCOMPL;
765 		hcintmsk |= HCINTMSK_NAK;
766 		hcintmsk |= HCINTMSK_STALL;
767 		hcintmsk |= HCINTMSK_XACTERR;
768 		hcintmsk |= HCINTMSK_DATATGLERR;
769 		hcintmsk |= HCINTMSK_FRMOVRUN;
770 
771 		if (chan->ep_is_in)
772 			hcintmsk |= HCINTMSK_BBLERR;
773 		if (chan->error_state)
774 			hcintmsk |= HCINTMSK_ACK;
775 		if (chan->do_split) {
776 			if (chan->complete_split)
777 				hcintmsk |= HCINTMSK_NYET;
778 			else
779 				hcintmsk |= HCINTMSK_ACK;
780 		}
781 		break;
782 
783 	case USB_ENDPOINT_XFER_ISOC:
784 		if (dbg_perio())
785 			dev_vdbg(hsotg->dev, "isoc\n");
786 		hcintmsk |= HCINTMSK_XFERCOMPL;
787 		hcintmsk |= HCINTMSK_FRMOVRUN;
788 		hcintmsk |= HCINTMSK_ACK;
789 
790 		if (chan->ep_is_in) {
791 			hcintmsk |= HCINTMSK_XACTERR;
792 			hcintmsk |= HCINTMSK_BBLERR;
793 		}
794 		break;
795 	default:
796 		dev_err(hsotg->dev, "## Unknown EP type ##\n");
797 		break;
798 	}
799 
800 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
801 	if (dbg_hc(chan))
802 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
803 }
804 
805 static void dwc2_hc_enable_dma_ints(struct dwc2_hsotg *hsotg,
806 				    struct dwc2_host_chan *chan)
807 {
808 	u32 hcintmsk = HCINTMSK_CHHLTD;
809 
810 	/*
811 	 * For Descriptor DMA mode core halts the channel on AHB error.
812 	 * Interrupt is not required.
813 	 */
814 	if (!hsotg->params.dma_desc_enable) {
815 		if (dbg_hc(chan))
816 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
817 		hcintmsk |= HCINTMSK_AHBERR;
818 	} else {
819 		if (dbg_hc(chan))
820 			dev_vdbg(hsotg->dev, "desc DMA enabled\n");
821 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
822 			hcintmsk |= HCINTMSK_XFERCOMPL;
823 	}
824 
825 	if (chan->error_state && !chan->do_split &&
826 	    chan->ep_type != USB_ENDPOINT_XFER_ISOC) {
827 		if (dbg_hc(chan))
828 			dev_vdbg(hsotg->dev, "setting ACK\n");
829 		hcintmsk |= HCINTMSK_ACK;
830 		if (chan->ep_is_in) {
831 			hcintmsk |= HCINTMSK_DATATGLERR;
832 			if (chan->ep_type != USB_ENDPOINT_XFER_INT)
833 				hcintmsk |= HCINTMSK_NAK;
834 		}
835 	}
836 
837 	dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
838 	if (dbg_hc(chan))
839 		dev_vdbg(hsotg->dev, "set HCINTMSK to %08x\n", hcintmsk);
840 }
841 
842 static void dwc2_hc_enable_ints(struct dwc2_hsotg *hsotg,
843 				struct dwc2_host_chan *chan)
844 {
845 	u32 intmsk;
846 
847 	if (hsotg->params.host_dma) {
848 		if (dbg_hc(chan))
849 			dev_vdbg(hsotg->dev, "DMA enabled\n");
850 		dwc2_hc_enable_dma_ints(hsotg, chan);
851 	} else {
852 		if (dbg_hc(chan))
853 			dev_vdbg(hsotg->dev, "DMA disabled\n");
854 		dwc2_hc_enable_slave_ints(hsotg, chan);
855 	}
856 
857 	/* Enable the top level host channel interrupt */
858 	intmsk = dwc2_readl(hsotg->regs + HAINTMSK);
859 	intmsk |= 1 << chan->hc_num;
860 	dwc2_writel(intmsk, hsotg->regs + HAINTMSK);
861 	if (dbg_hc(chan))
862 		dev_vdbg(hsotg->dev, "set HAINTMSK to %08x\n", intmsk);
863 
864 	/* Make sure host channel interrupts are enabled */
865 	intmsk = dwc2_readl(hsotg->regs + GINTMSK);
866 	intmsk |= GINTSTS_HCHINT;
867 	dwc2_writel(intmsk, hsotg->regs + GINTMSK);
868 	if (dbg_hc(chan))
869 		dev_vdbg(hsotg->dev, "set GINTMSK to %08x\n", intmsk);
870 }
871 
872 /**
873  * dwc2_hc_init() - Prepares a host channel for transferring packets to/from
874  * a specific endpoint
875  *
876  * @hsotg: Programming view of DWC_otg controller
877  * @chan:  Information needed to initialize the host channel
878  *
879  * The HCCHARn register is set up with the characteristics specified in chan.
880  * Host channel interrupts that may need to be serviced while this transfer is
881  * in progress are enabled.
882  */
883 static void dwc2_hc_init(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
884 {
885 	u8 hc_num = chan->hc_num;
886 	u32 hcintmsk;
887 	u32 hcchar;
888 	u32 hcsplt = 0;
889 
890 	if (dbg_hc(chan))
891 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
892 
893 	/* Clear old interrupt conditions for this host channel */
894 	hcintmsk = 0xffffffff;
895 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
896 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(hc_num));
897 
898 	/* Enable channel interrupts required for this transfer */
899 	dwc2_hc_enable_ints(hsotg, chan);
900 
901 	/*
902 	 * Program the HCCHARn register with the endpoint characteristics for
903 	 * the current transfer
904 	 */
905 	hcchar = chan->dev_addr << HCCHAR_DEVADDR_SHIFT & HCCHAR_DEVADDR_MASK;
906 	hcchar |= chan->ep_num << HCCHAR_EPNUM_SHIFT & HCCHAR_EPNUM_MASK;
907 	if (chan->ep_is_in)
908 		hcchar |= HCCHAR_EPDIR;
909 	if (chan->speed == USB_SPEED_LOW)
910 		hcchar |= HCCHAR_LSPDDEV;
911 	hcchar |= chan->ep_type << HCCHAR_EPTYPE_SHIFT & HCCHAR_EPTYPE_MASK;
912 	hcchar |= chan->max_packet << HCCHAR_MPS_SHIFT & HCCHAR_MPS_MASK;
913 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(hc_num));
914 	if (dbg_hc(chan)) {
915 		dev_vdbg(hsotg->dev, "set HCCHAR(%d) to %08x\n",
916 			 hc_num, hcchar);
917 
918 		dev_vdbg(hsotg->dev, "%s: Channel %d\n",
919 			 __func__, hc_num);
920 		dev_vdbg(hsotg->dev, "	 Dev Addr: %d\n",
921 			 chan->dev_addr);
922 		dev_vdbg(hsotg->dev, "	 Ep Num: %d\n",
923 			 chan->ep_num);
924 		dev_vdbg(hsotg->dev, "	 Is In: %d\n",
925 			 chan->ep_is_in);
926 		dev_vdbg(hsotg->dev, "	 Is Low Speed: %d\n",
927 			 chan->speed == USB_SPEED_LOW);
928 		dev_vdbg(hsotg->dev, "	 Ep Type: %d\n",
929 			 chan->ep_type);
930 		dev_vdbg(hsotg->dev, "	 Max Pkt: %d\n",
931 			 chan->max_packet);
932 	}
933 
934 	/* Program the HCSPLT register for SPLITs */
935 	if (chan->do_split) {
936 		if (dbg_hc(chan))
937 			dev_vdbg(hsotg->dev,
938 				 "Programming HC %d with split --> %s\n",
939 				 hc_num,
940 				 chan->complete_split ? "CSPLIT" : "SSPLIT");
941 		if (chan->complete_split)
942 			hcsplt |= HCSPLT_COMPSPLT;
943 		hcsplt |= chan->xact_pos << HCSPLT_XACTPOS_SHIFT &
944 			  HCSPLT_XACTPOS_MASK;
945 		hcsplt |= chan->hub_addr << HCSPLT_HUBADDR_SHIFT &
946 			  HCSPLT_HUBADDR_MASK;
947 		hcsplt |= chan->hub_port << HCSPLT_PRTADDR_SHIFT &
948 			  HCSPLT_PRTADDR_MASK;
949 		if (dbg_hc(chan)) {
950 			dev_vdbg(hsotg->dev, "	  comp split %d\n",
951 				 chan->complete_split);
952 			dev_vdbg(hsotg->dev, "	  xact pos %d\n",
953 				 chan->xact_pos);
954 			dev_vdbg(hsotg->dev, "	  hub addr %d\n",
955 				 chan->hub_addr);
956 			dev_vdbg(hsotg->dev, "	  hub port %d\n",
957 				 chan->hub_port);
958 			dev_vdbg(hsotg->dev, "	  is_in %d\n",
959 				 chan->ep_is_in);
960 			dev_vdbg(hsotg->dev, "	  Max Pkt %d\n",
961 				 chan->max_packet);
962 			dev_vdbg(hsotg->dev, "	  xferlen %d\n",
963 				 chan->xfer_len);
964 		}
965 	}
966 
967 	dwc2_writel(hcsplt, hsotg->regs + HCSPLT(hc_num));
968 }
969 
970 /**
971  * dwc2_hc_halt() - Attempts to halt a host channel
972  *
973  * @hsotg:       Controller register interface
974  * @chan:        Host channel to halt
975  * @halt_status: Reason for halting the channel
976  *
977  * This function should only be called in Slave mode or to abort a transfer in
978  * either Slave mode or DMA mode. Under normal circumstances in DMA mode, the
979  * controller halts the channel when the transfer is complete or a condition
980  * occurs that requires application intervention.
981  *
982  * In slave mode, checks for a free request queue entry, then sets the Channel
983  * Enable and Channel Disable bits of the Host Channel Characteristics
984  * register of the specified channel to intiate the halt. If there is no free
985  * request queue entry, sets only the Channel Disable bit of the HCCHARn
986  * register to flush requests for this channel. In the latter case, sets a
987  * flag to indicate that the host channel needs to be halted when a request
988  * queue slot is open.
989  *
990  * In DMA mode, always sets the Channel Enable and Channel Disable bits of the
991  * HCCHARn register. The controller ensures there is space in the request
992  * queue before submitting the halt request.
993  *
994  * Some time may elapse before the core flushes any posted requests for this
995  * host channel and halts. The Channel Halted interrupt handler completes the
996  * deactivation of the host channel.
997  */
998 void dwc2_hc_halt(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan,
999 		  enum dwc2_halt_status halt_status)
1000 {
1001 	u32 nptxsts, hptxsts, hcchar;
1002 
1003 	if (dbg_hc(chan))
1004 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1005 
1006 	/*
1007 	 * In buffer DMA or external DMA mode channel can't be halted
1008 	 * for non-split periodic channels. At the end of the next
1009 	 * uframe/frame (in the worst case), the core generates a channel
1010 	 * halted and disables the channel automatically.
1011 	 */
1012 	if ((hsotg->params.g_dma && !hsotg->params.g_dma_desc) ||
1013 	    hsotg->hw_params.arch == GHWCFG2_EXT_DMA_ARCH) {
1014 		if (!chan->do_split &&
1015 		    (chan->ep_type == USB_ENDPOINT_XFER_ISOC ||
1016 		     chan->ep_type == USB_ENDPOINT_XFER_INT)) {
1017 			dev_err(hsotg->dev, "%s() Channel can't be halted\n",
1018 				__func__);
1019 			return;
1020 		}
1021 	}
1022 
1023 	if (halt_status == DWC2_HC_XFER_NO_HALT_STATUS)
1024 		dev_err(hsotg->dev, "!!! halt_status = %d !!!\n", halt_status);
1025 
1026 	if (halt_status == DWC2_HC_XFER_URB_DEQUEUE ||
1027 	    halt_status == DWC2_HC_XFER_AHB_ERR) {
1028 		/*
1029 		 * Disable all channel interrupts except Ch Halted. The QTD
1030 		 * and QH state associated with this transfer has been cleared
1031 		 * (in the case of URB_DEQUEUE), so the channel needs to be
1032 		 * shut down carefully to prevent crashes.
1033 		 */
1034 		u32 hcintmsk = HCINTMSK_CHHLTD;
1035 
1036 		dev_vdbg(hsotg->dev, "dequeue/error\n");
1037 		dwc2_writel(hcintmsk, hsotg->regs + HCINTMSK(chan->hc_num));
1038 
1039 		/*
1040 		 * Make sure no other interrupts besides halt are currently
1041 		 * pending. Handling another interrupt could cause a crash due
1042 		 * to the QTD and QH state.
1043 		 */
1044 		dwc2_writel(~hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1045 
1046 		/*
1047 		 * Make sure the halt status is set to URB_DEQUEUE or AHB_ERR
1048 		 * even if the channel was already halted for some other
1049 		 * reason
1050 		 */
1051 		chan->halt_status = halt_status;
1052 
1053 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1054 		if (!(hcchar & HCCHAR_CHENA)) {
1055 			/*
1056 			 * The channel is either already halted or it hasn't
1057 			 * started yet. In DMA mode, the transfer may halt if
1058 			 * it finishes normally or a condition occurs that
1059 			 * requires driver intervention. Don't want to halt
1060 			 * the channel again. In either Slave or DMA mode,
1061 			 * it's possible that the transfer has been assigned
1062 			 * to a channel, but not started yet when an URB is
1063 			 * dequeued. Don't want to halt a channel that hasn't
1064 			 * started yet.
1065 			 */
1066 			return;
1067 		}
1068 	}
1069 	if (chan->halt_pending) {
1070 		/*
1071 		 * A halt has already been issued for this channel. This might
1072 		 * happen when a transfer is aborted by a higher level in
1073 		 * the stack.
1074 		 */
1075 		dev_vdbg(hsotg->dev,
1076 			 "*** %s: Channel %d, chan->halt_pending already set ***\n",
1077 			 __func__, chan->hc_num);
1078 		return;
1079 	}
1080 
1081 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1082 
1083 	/* No need to set the bit in DDMA for disabling the channel */
1084 	/* TODO check it everywhere channel is disabled */
1085 	if (!hsotg->params.dma_desc_enable) {
1086 		if (dbg_hc(chan))
1087 			dev_vdbg(hsotg->dev, "desc DMA disabled\n");
1088 		hcchar |= HCCHAR_CHENA;
1089 	} else {
1090 		if (dbg_hc(chan))
1091 			dev_dbg(hsotg->dev, "desc DMA enabled\n");
1092 	}
1093 	hcchar |= HCCHAR_CHDIS;
1094 
1095 	if (!hsotg->params.host_dma) {
1096 		if (dbg_hc(chan))
1097 			dev_vdbg(hsotg->dev, "DMA not enabled\n");
1098 		hcchar |= HCCHAR_CHENA;
1099 
1100 		/* Check for space in the request queue to issue the halt */
1101 		if (chan->ep_type == USB_ENDPOINT_XFER_CONTROL ||
1102 		    chan->ep_type == USB_ENDPOINT_XFER_BULK) {
1103 			dev_vdbg(hsotg->dev, "control/bulk\n");
1104 			nptxsts = dwc2_readl(hsotg->regs + GNPTXSTS);
1105 			if ((nptxsts & TXSTS_QSPCAVAIL_MASK) == 0) {
1106 				dev_vdbg(hsotg->dev, "Disabling channel\n");
1107 				hcchar &= ~HCCHAR_CHENA;
1108 			}
1109 		} else {
1110 			if (dbg_perio())
1111 				dev_vdbg(hsotg->dev, "isoc/intr\n");
1112 			hptxsts = dwc2_readl(hsotg->regs + HPTXSTS);
1113 			if ((hptxsts & TXSTS_QSPCAVAIL_MASK) == 0 ||
1114 			    hsotg->queuing_high_bandwidth) {
1115 				if (dbg_perio())
1116 					dev_vdbg(hsotg->dev, "Disabling channel\n");
1117 				hcchar &= ~HCCHAR_CHENA;
1118 			}
1119 		}
1120 	} else {
1121 		if (dbg_hc(chan))
1122 			dev_vdbg(hsotg->dev, "DMA enabled\n");
1123 	}
1124 
1125 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1126 	chan->halt_status = halt_status;
1127 
1128 	if (hcchar & HCCHAR_CHENA) {
1129 		if (dbg_hc(chan))
1130 			dev_vdbg(hsotg->dev, "Channel enabled\n");
1131 		chan->halt_pending = 1;
1132 		chan->halt_on_queue = 0;
1133 	} else {
1134 		if (dbg_hc(chan))
1135 			dev_vdbg(hsotg->dev, "Channel disabled\n");
1136 		chan->halt_on_queue = 1;
1137 	}
1138 
1139 	if (dbg_hc(chan)) {
1140 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1141 			 chan->hc_num);
1142 		dev_vdbg(hsotg->dev, "	 hcchar: 0x%08x\n",
1143 			 hcchar);
1144 		dev_vdbg(hsotg->dev, "	 halt_pending: %d\n",
1145 			 chan->halt_pending);
1146 		dev_vdbg(hsotg->dev, "	 halt_on_queue: %d\n",
1147 			 chan->halt_on_queue);
1148 		dev_vdbg(hsotg->dev, "	 halt_status: %d\n",
1149 			 chan->halt_status);
1150 	}
1151 }
1152 
1153 /**
1154  * dwc2_hc_cleanup() - Clears the transfer state for a host channel
1155  *
1156  * @hsotg: Programming view of DWC_otg controller
1157  * @chan:  Identifies the host channel to clean up
1158  *
1159  * This function is normally called after a transfer is done and the host
1160  * channel is being released
1161  */
1162 void dwc2_hc_cleanup(struct dwc2_hsotg *hsotg, struct dwc2_host_chan *chan)
1163 {
1164 	u32 hcintmsk;
1165 
1166 	chan->xfer_started = 0;
1167 
1168 	list_del_init(&chan->split_order_list_entry);
1169 
1170 	/*
1171 	 * Clear channel interrupt enables and any unhandled channel interrupt
1172 	 * conditions
1173 	 */
1174 	dwc2_writel(0, hsotg->regs + HCINTMSK(chan->hc_num));
1175 	hcintmsk = 0xffffffff;
1176 	hcintmsk &= ~HCINTMSK_RESERVED14_31;
1177 	dwc2_writel(hcintmsk, hsotg->regs + HCINT(chan->hc_num));
1178 }
1179 
1180 /**
1181  * dwc2_hc_set_even_odd_frame() - Sets the channel property that indicates in
1182  * which frame a periodic transfer should occur
1183  *
1184  * @hsotg:  Programming view of DWC_otg controller
1185  * @chan:   Identifies the host channel to set up and its properties
1186  * @hcchar: Current value of the HCCHAR register for the specified host channel
1187  *
1188  * This function has no effect on non-periodic transfers
1189  */
1190 static void dwc2_hc_set_even_odd_frame(struct dwc2_hsotg *hsotg,
1191 				       struct dwc2_host_chan *chan, u32 *hcchar)
1192 {
1193 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1194 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1195 		int host_speed;
1196 		int xfer_ns;
1197 		int xfer_us;
1198 		int bytes_in_fifo;
1199 		u16 fifo_space;
1200 		u16 frame_number;
1201 		u16 wire_frame;
1202 
1203 		/*
1204 		 * Try to figure out if we're an even or odd frame. If we set
1205 		 * even and the current frame number is even the the transfer
1206 		 * will happen immediately.  Similar if both are odd. If one is
1207 		 * even and the other is odd then the transfer will happen when
1208 		 * the frame number ticks.
1209 		 *
1210 		 * There's a bit of a balancing act to get this right.
1211 		 * Sometimes we may want to send data in the current frame (AK
1212 		 * right away).  We might want to do this if the frame number
1213 		 * _just_ ticked, but we might also want to do this in order
1214 		 * to continue a split transaction that happened late in a
1215 		 * microframe (so we didn't know to queue the next transfer
1216 		 * until the frame number had ticked).  The problem is that we
1217 		 * need a lot of knowledge to know if there's actually still
1218 		 * time to send things or if it would be better to wait until
1219 		 * the next frame.
1220 		 *
1221 		 * We can look at how much time is left in the current frame
1222 		 * and make a guess about whether we'll have time to transfer.
1223 		 * We'll do that.
1224 		 */
1225 
1226 		/* Get speed host is running at */
1227 		host_speed = (chan->speed != USB_SPEED_HIGH &&
1228 			      !chan->do_split) ? chan->speed : USB_SPEED_HIGH;
1229 
1230 		/* See how many bytes are in the periodic FIFO right now */
1231 		fifo_space = (dwc2_readl(hsotg->regs + HPTXSTS) &
1232 			      TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT;
1233 		bytes_in_fifo = sizeof(u32) *
1234 				(hsotg->params.host_perio_tx_fifo_size -
1235 				 fifo_space);
1236 
1237 		/*
1238 		 * Roughly estimate bus time for everything in the periodic
1239 		 * queue + our new transfer.  This is "rough" because we're
1240 		 * using a function that makes takes into account IN/OUT
1241 		 * and INT/ISO and we're just slamming in one value for all
1242 		 * transfers.  This should be an over-estimate and that should
1243 		 * be OK, but we can probably tighten it.
1244 		 */
1245 		xfer_ns = usb_calc_bus_time(host_speed, false, false,
1246 					    chan->xfer_len + bytes_in_fifo);
1247 		xfer_us = NS_TO_US(xfer_ns);
1248 
1249 		/* See what frame number we'll be at by the time we finish */
1250 		frame_number = dwc2_hcd_get_future_frame_number(hsotg, xfer_us);
1251 
1252 		/* This is when we were scheduled to be on the wire */
1253 		wire_frame = dwc2_frame_num_inc(chan->qh->next_active_frame, 1);
1254 
1255 		/*
1256 		 * If we'd finish _after_ the frame we're scheduled in then
1257 		 * it's hopeless.  Just schedule right away and hope for the
1258 		 * best.  Note that it _might_ be wise to call back into the
1259 		 * scheduler to pick a better frame, but this is better than
1260 		 * nothing.
1261 		 */
1262 		if (dwc2_frame_num_gt(frame_number, wire_frame)) {
1263 			dwc2_sch_vdbg(hsotg,
1264 				      "QH=%p EO MISS fr=%04x=>%04x (%+d)\n",
1265 				      chan->qh, wire_frame, frame_number,
1266 				      dwc2_frame_num_dec(frame_number,
1267 							 wire_frame));
1268 			wire_frame = frame_number;
1269 
1270 			/*
1271 			 * We picked a different frame number; communicate this
1272 			 * back to the scheduler so it doesn't try to schedule
1273 			 * another in the same frame.
1274 			 *
1275 			 * Remember that next_active_frame is 1 before the wire
1276 			 * frame.
1277 			 */
1278 			chan->qh->next_active_frame =
1279 				dwc2_frame_num_dec(frame_number, 1);
1280 		}
1281 
1282 		if (wire_frame & 1)
1283 			*hcchar |= HCCHAR_ODDFRM;
1284 		else
1285 			*hcchar &= ~HCCHAR_ODDFRM;
1286 	}
1287 }
1288 
1289 static void dwc2_set_pid_isoc(struct dwc2_host_chan *chan)
1290 {
1291 	/* Set up the initial PID for the transfer */
1292 	if (chan->speed == USB_SPEED_HIGH) {
1293 		if (chan->ep_is_in) {
1294 			if (chan->multi_count == 1)
1295 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1296 			else if (chan->multi_count == 2)
1297 				chan->data_pid_start = DWC2_HC_PID_DATA1;
1298 			else
1299 				chan->data_pid_start = DWC2_HC_PID_DATA2;
1300 		} else {
1301 			if (chan->multi_count == 1)
1302 				chan->data_pid_start = DWC2_HC_PID_DATA0;
1303 			else
1304 				chan->data_pid_start = DWC2_HC_PID_MDATA;
1305 		}
1306 	} else {
1307 		chan->data_pid_start = DWC2_HC_PID_DATA0;
1308 	}
1309 }
1310 
1311 /**
1312  * dwc2_hc_write_packet() - Writes a packet into the Tx FIFO associated with
1313  * the Host Channel
1314  *
1315  * @hsotg: Programming view of DWC_otg controller
1316  * @chan:  Information needed to initialize the host channel
1317  *
1318  * This function should only be called in Slave mode. For a channel associated
1319  * with a non-periodic EP, the non-periodic Tx FIFO is written. For a channel
1320  * associated with a periodic EP, the periodic Tx FIFO is written.
1321  *
1322  * Upon return the xfer_buf and xfer_count fields in chan are incremented by
1323  * the number of bytes written to the Tx FIFO.
1324  */
1325 static void dwc2_hc_write_packet(struct dwc2_hsotg *hsotg,
1326 				 struct dwc2_host_chan *chan)
1327 {
1328 	u32 i;
1329 	u32 remaining_count;
1330 	u32 byte_count;
1331 	u32 dword_count;
1332 	u32 __iomem *data_fifo;
1333 	u32 *data_buf = (u32 *)chan->xfer_buf;
1334 
1335 	if (dbg_hc(chan))
1336 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1337 
1338 	data_fifo = (u32 __iomem *)(hsotg->regs + HCFIFO(chan->hc_num));
1339 
1340 	remaining_count = chan->xfer_len - chan->xfer_count;
1341 	if (remaining_count > chan->max_packet)
1342 		byte_count = chan->max_packet;
1343 	else
1344 		byte_count = remaining_count;
1345 
1346 	dword_count = (byte_count + 3) / 4;
1347 
1348 	if (((unsigned long)data_buf & 0x3) == 0) {
1349 		/* xfer_buf is DWORD aligned */
1350 		for (i = 0; i < dword_count; i++, data_buf++)
1351 			dwc2_writel(*data_buf, data_fifo);
1352 	} else {
1353 		/* xfer_buf is not DWORD aligned */
1354 		for (i = 0; i < dword_count; i++, data_buf++) {
1355 			u32 data = data_buf[0] | data_buf[1] << 8 |
1356 				   data_buf[2] << 16 | data_buf[3] << 24;
1357 			dwc2_writel(data, data_fifo);
1358 		}
1359 	}
1360 
1361 	chan->xfer_count += byte_count;
1362 	chan->xfer_buf += byte_count;
1363 }
1364 
1365 /**
1366  * dwc2_hc_do_ping() - Starts a PING transfer
1367  *
1368  * @hsotg: Programming view of DWC_otg controller
1369  * @chan:  Information needed to initialize the host channel
1370  *
1371  * This function should only be called in Slave mode. The Do Ping bit is set in
1372  * the HCTSIZ register, then the channel is enabled.
1373  */
1374 static void dwc2_hc_do_ping(struct dwc2_hsotg *hsotg,
1375 			    struct dwc2_host_chan *chan)
1376 {
1377 	u32 hcchar;
1378 	u32 hctsiz;
1379 
1380 	if (dbg_hc(chan))
1381 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1382 			 chan->hc_num);
1383 
1384 	hctsiz = TSIZ_DOPNG;
1385 	hctsiz |= 1 << TSIZ_PKTCNT_SHIFT;
1386 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1387 
1388 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1389 	hcchar |= HCCHAR_CHENA;
1390 	hcchar &= ~HCCHAR_CHDIS;
1391 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1392 }
1393 
1394 /**
1395  * dwc2_hc_start_transfer() - Does the setup for a data transfer for a host
1396  * channel and starts the transfer
1397  *
1398  * @hsotg: Programming view of DWC_otg controller
1399  * @chan:  Information needed to initialize the host channel. The xfer_len value
1400  *         may be reduced to accommodate the max widths of the XferSize and
1401  *         PktCnt fields in the HCTSIZn register. The multi_count value may be
1402  *         changed to reflect the final xfer_len value.
1403  *
1404  * This function may be called in either Slave mode or DMA mode. In Slave mode,
1405  * the caller must ensure that there is sufficient space in the request queue
1406  * and Tx Data FIFO.
1407  *
1408  * For an OUT transfer in Slave mode, it loads a data packet into the
1409  * appropriate FIFO. If necessary, additional data packets are loaded in the
1410  * Host ISR.
1411  *
1412  * For an IN transfer in Slave mode, a data packet is requested. The data
1413  * packets are unloaded from the Rx FIFO in the Host ISR. If necessary,
1414  * additional data packets are requested in the Host ISR.
1415  *
1416  * For a PING transfer in Slave mode, the Do Ping bit is set in the HCTSIZ
1417  * register along with a packet count of 1 and the channel is enabled. This
1418  * causes a single PING transaction to occur. Other fields in HCTSIZ are
1419  * simply set to 0 since no data transfer occurs in this case.
1420  *
1421  * For a PING transfer in DMA mode, the HCTSIZ register is initialized with
1422  * all the information required to perform the subsequent data transfer. In
1423  * addition, the Do Ping bit is set in the HCTSIZ register. In this case, the
1424  * controller performs the entire PING protocol, then starts the data
1425  * transfer.
1426  */
1427 static void dwc2_hc_start_transfer(struct dwc2_hsotg *hsotg,
1428 				   struct dwc2_host_chan *chan)
1429 {
1430 	u32 max_hc_xfer_size = hsotg->params.max_transfer_size;
1431 	u16 max_hc_pkt_count = hsotg->params.max_packet_count;
1432 	u32 hcchar;
1433 	u32 hctsiz = 0;
1434 	u16 num_packets;
1435 	u32 ec_mc;
1436 
1437 	if (dbg_hc(chan))
1438 		dev_vdbg(hsotg->dev, "%s()\n", __func__);
1439 
1440 	if (chan->do_ping) {
1441 		if (!hsotg->params.host_dma) {
1442 			if (dbg_hc(chan))
1443 				dev_vdbg(hsotg->dev, "ping, no DMA\n");
1444 			dwc2_hc_do_ping(hsotg, chan);
1445 			chan->xfer_started = 1;
1446 			return;
1447 		}
1448 
1449 		if (dbg_hc(chan))
1450 			dev_vdbg(hsotg->dev, "ping, DMA\n");
1451 
1452 		hctsiz |= TSIZ_DOPNG;
1453 	}
1454 
1455 	if (chan->do_split) {
1456 		if (dbg_hc(chan))
1457 			dev_vdbg(hsotg->dev, "split\n");
1458 		num_packets = 1;
1459 
1460 		if (chan->complete_split && !chan->ep_is_in)
1461 			/*
1462 			 * For CSPLIT OUT Transfer, set the size to 0 so the
1463 			 * core doesn't expect any data written to the FIFO
1464 			 */
1465 			chan->xfer_len = 0;
1466 		else if (chan->ep_is_in || chan->xfer_len > chan->max_packet)
1467 			chan->xfer_len = chan->max_packet;
1468 		else if (!chan->ep_is_in && chan->xfer_len > 188)
1469 			chan->xfer_len = 188;
1470 
1471 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1472 			  TSIZ_XFERSIZE_MASK;
1473 
1474 		/* For split set ec_mc for immediate retries */
1475 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1476 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1477 			ec_mc = 3;
1478 		else
1479 			ec_mc = 1;
1480 	} else {
1481 		if (dbg_hc(chan))
1482 			dev_vdbg(hsotg->dev, "no split\n");
1483 		/*
1484 		 * Ensure that the transfer length and packet count will fit
1485 		 * in the widths allocated for them in the HCTSIZn register
1486 		 */
1487 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1488 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1489 			/*
1490 			 * Make sure the transfer size is no larger than one
1491 			 * (micro)frame's worth of data. (A check was done
1492 			 * when the periodic transfer was accepted to ensure
1493 			 * that a (micro)frame's worth of data can be
1494 			 * programmed into a channel.)
1495 			 */
1496 			u32 max_periodic_len =
1497 				chan->multi_count * chan->max_packet;
1498 
1499 			if (chan->xfer_len > max_periodic_len)
1500 				chan->xfer_len = max_periodic_len;
1501 		} else if (chan->xfer_len > max_hc_xfer_size) {
1502 			/*
1503 			 * Make sure that xfer_len is a multiple of max packet
1504 			 * size
1505 			 */
1506 			chan->xfer_len =
1507 				max_hc_xfer_size - chan->max_packet + 1;
1508 		}
1509 
1510 		if (chan->xfer_len > 0) {
1511 			num_packets = (chan->xfer_len + chan->max_packet - 1) /
1512 					chan->max_packet;
1513 			if (num_packets > max_hc_pkt_count) {
1514 				num_packets = max_hc_pkt_count;
1515 				chan->xfer_len = num_packets * chan->max_packet;
1516 			}
1517 		} else {
1518 			/* Need 1 packet for transfer length of 0 */
1519 			num_packets = 1;
1520 		}
1521 
1522 		if (chan->ep_is_in)
1523 			/*
1524 			 * Always program an integral # of max packets for IN
1525 			 * transfers
1526 			 */
1527 			chan->xfer_len = num_packets * chan->max_packet;
1528 
1529 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1530 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1531 			/*
1532 			 * Make sure that the multi_count field matches the
1533 			 * actual transfer length
1534 			 */
1535 			chan->multi_count = num_packets;
1536 
1537 		if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1538 			dwc2_set_pid_isoc(chan);
1539 
1540 		hctsiz |= chan->xfer_len << TSIZ_XFERSIZE_SHIFT &
1541 			  TSIZ_XFERSIZE_MASK;
1542 
1543 		/* The ec_mc gets the multi_count for non-split */
1544 		ec_mc = chan->multi_count;
1545 	}
1546 
1547 	chan->start_pkt_count = num_packets;
1548 	hctsiz |= num_packets << TSIZ_PKTCNT_SHIFT & TSIZ_PKTCNT_MASK;
1549 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1550 		  TSIZ_SC_MC_PID_MASK;
1551 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1552 	if (dbg_hc(chan)) {
1553 		dev_vdbg(hsotg->dev, "Wrote %08x to HCTSIZ(%d)\n",
1554 			 hctsiz, chan->hc_num);
1555 
1556 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1557 			 chan->hc_num);
1558 		dev_vdbg(hsotg->dev, "	 Xfer Size: %d\n",
1559 			 (hctsiz & TSIZ_XFERSIZE_MASK) >>
1560 			 TSIZ_XFERSIZE_SHIFT);
1561 		dev_vdbg(hsotg->dev, "	 Num Pkts: %d\n",
1562 			 (hctsiz & TSIZ_PKTCNT_MASK) >>
1563 			 TSIZ_PKTCNT_SHIFT);
1564 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1565 			 (hctsiz & TSIZ_SC_MC_PID_MASK) >>
1566 			 TSIZ_SC_MC_PID_SHIFT);
1567 	}
1568 
1569 	if (hsotg->params.host_dma) {
1570 		dma_addr_t dma_addr;
1571 
1572 		if (chan->align_buf) {
1573 			if (dbg_hc(chan))
1574 				dev_vdbg(hsotg->dev, "align_buf\n");
1575 			dma_addr = chan->align_buf;
1576 		} else {
1577 			dma_addr = chan->xfer_dma;
1578 		}
1579 		dwc2_writel((u32)dma_addr, hsotg->regs + HCDMA(chan->hc_num));
1580 
1581 		if (dbg_hc(chan))
1582 			dev_vdbg(hsotg->dev, "Wrote %08lx to HCDMA(%d)\n",
1583 				 (unsigned long)dma_addr, chan->hc_num);
1584 	}
1585 
1586 	/* Start the split */
1587 	if (chan->do_split) {
1588 		u32 hcsplt = dwc2_readl(hsotg->regs + HCSPLT(chan->hc_num));
1589 
1590 		hcsplt |= HCSPLT_SPLTENA;
1591 		dwc2_writel(hcsplt, hsotg->regs + HCSPLT(chan->hc_num));
1592 	}
1593 
1594 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1595 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1596 	hcchar |= (ec_mc << HCCHAR_MULTICNT_SHIFT) & HCCHAR_MULTICNT_MASK;
1597 	dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1598 
1599 	if (hcchar & HCCHAR_CHDIS)
1600 		dev_warn(hsotg->dev,
1601 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1602 			 __func__, chan->hc_num, hcchar);
1603 
1604 	/* Set host channel enable after all other setup is complete */
1605 	hcchar |= HCCHAR_CHENA;
1606 	hcchar &= ~HCCHAR_CHDIS;
1607 
1608 	if (dbg_hc(chan))
1609 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1610 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1611 			 HCCHAR_MULTICNT_SHIFT);
1612 
1613 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1614 	if (dbg_hc(chan))
1615 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1616 			 chan->hc_num);
1617 
1618 	chan->xfer_started = 1;
1619 	chan->requests++;
1620 
1621 	if (!hsotg->params.host_dma &&
1622 	    !chan->ep_is_in && chan->xfer_len > 0)
1623 		/* Load OUT packet into the appropriate Tx FIFO */
1624 		dwc2_hc_write_packet(hsotg, chan);
1625 }
1626 
1627 /**
1628  * dwc2_hc_start_transfer_ddma() - Does the setup for a data transfer for a
1629  * host channel and starts the transfer in Descriptor DMA mode
1630  *
1631  * @hsotg: Programming view of DWC_otg controller
1632  * @chan:  Information needed to initialize the host channel
1633  *
1634  * Initializes HCTSIZ register. For a PING transfer the Do Ping bit is set.
1635  * Sets PID and NTD values. For periodic transfers initializes SCHED_INFO field
1636  * with micro-frame bitmap.
1637  *
1638  * Initializes HCDMA register with descriptor list address and CTD value then
1639  * starts the transfer via enabling the channel.
1640  */
1641 void dwc2_hc_start_transfer_ddma(struct dwc2_hsotg *hsotg,
1642 				 struct dwc2_host_chan *chan)
1643 {
1644 	u32 hcchar;
1645 	u32 hctsiz = 0;
1646 
1647 	if (chan->do_ping)
1648 		hctsiz |= TSIZ_DOPNG;
1649 
1650 	if (chan->ep_type == USB_ENDPOINT_XFER_ISOC)
1651 		dwc2_set_pid_isoc(chan);
1652 
1653 	/* Packet Count and Xfer Size are not used in Descriptor DMA mode */
1654 	hctsiz |= chan->data_pid_start << TSIZ_SC_MC_PID_SHIFT &
1655 		  TSIZ_SC_MC_PID_MASK;
1656 
1657 	/* 0 - 1 descriptor, 1 - 2 descriptors, etc */
1658 	hctsiz |= (chan->ntd - 1) << TSIZ_NTD_SHIFT & TSIZ_NTD_MASK;
1659 
1660 	/* Non-zero only for high-speed interrupt endpoints */
1661 	hctsiz |= chan->schinfo << TSIZ_SCHINFO_SHIFT & TSIZ_SCHINFO_MASK;
1662 
1663 	if (dbg_hc(chan)) {
1664 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1665 			 chan->hc_num);
1666 		dev_vdbg(hsotg->dev, "	 Start PID: %d\n",
1667 			 chan->data_pid_start);
1668 		dev_vdbg(hsotg->dev, "	 NTD: %d\n", chan->ntd - 1);
1669 	}
1670 
1671 	dwc2_writel(hctsiz, hsotg->regs + HCTSIZ(chan->hc_num));
1672 
1673 	dma_sync_single_for_device(hsotg->dev, chan->desc_list_addr,
1674 				   chan->desc_list_sz, DMA_TO_DEVICE);
1675 
1676 	dwc2_writel(chan->desc_list_addr, hsotg->regs + HCDMA(chan->hc_num));
1677 
1678 	if (dbg_hc(chan))
1679 		dev_vdbg(hsotg->dev, "Wrote %pad to HCDMA(%d)\n",
1680 			 &chan->desc_list_addr, chan->hc_num);
1681 
1682 	hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1683 	hcchar &= ~HCCHAR_MULTICNT_MASK;
1684 	hcchar |= chan->multi_count << HCCHAR_MULTICNT_SHIFT &
1685 		  HCCHAR_MULTICNT_MASK;
1686 
1687 	if (hcchar & HCCHAR_CHDIS)
1688 		dev_warn(hsotg->dev,
1689 			 "%s: chdis set, channel %d, hcchar 0x%08x\n",
1690 			 __func__, chan->hc_num, hcchar);
1691 
1692 	/* Set host channel enable after all other setup is complete */
1693 	hcchar |= HCCHAR_CHENA;
1694 	hcchar &= ~HCCHAR_CHDIS;
1695 
1696 	if (dbg_hc(chan))
1697 		dev_vdbg(hsotg->dev, "	 Multi Cnt: %d\n",
1698 			 (hcchar & HCCHAR_MULTICNT_MASK) >>
1699 			 HCCHAR_MULTICNT_SHIFT);
1700 
1701 	dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1702 	if (dbg_hc(chan))
1703 		dev_vdbg(hsotg->dev, "Wrote %08x to HCCHAR(%d)\n", hcchar,
1704 			 chan->hc_num);
1705 
1706 	chan->xfer_started = 1;
1707 	chan->requests++;
1708 }
1709 
1710 /**
1711  * dwc2_hc_continue_transfer() - Continues a data transfer that was started by
1712  * a previous call to dwc2_hc_start_transfer()
1713  *
1714  * @hsotg: Programming view of DWC_otg controller
1715  * @chan:  Information needed to initialize the host channel
1716  *
1717  * The caller must ensure there is sufficient space in the request queue and Tx
1718  * Data FIFO. This function should only be called in Slave mode. In DMA mode,
1719  * the controller acts autonomously to complete transfers programmed to a host
1720  * channel.
1721  *
1722  * For an OUT transfer, a new data packet is loaded into the appropriate FIFO
1723  * if there is any data remaining to be queued. For an IN transfer, another
1724  * data packet is always requested. For the SETUP phase of a control transfer,
1725  * this function does nothing.
1726  *
1727  * Return: 1 if a new request is queued, 0 if no more requests are required
1728  * for this transfer
1729  */
1730 static int dwc2_hc_continue_transfer(struct dwc2_hsotg *hsotg,
1731 				     struct dwc2_host_chan *chan)
1732 {
1733 	if (dbg_hc(chan))
1734 		dev_vdbg(hsotg->dev, "%s: Channel %d\n", __func__,
1735 			 chan->hc_num);
1736 
1737 	if (chan->do_split)
1738 		/* SPLITs always queue just once per channel */
1739 		return 0;
1740 
1741 	if (chan->data_pid_start == DWC2_HC_PID_SETUP)
1742 		/* SETUPs are queued only once since they can't be NAK'd */
1743 		return 0;
1744 
1745 	if (chan->ep_is_in) {
1746 		/*
1747 		 * Always queue another request for other IN transfers. If
1748 		 * back-to-back INs are issued and NAKs are received for both,
1749 		 * the driver may still be processing the first NAK when the
1750 		 * second NAK is received. When the interrupt handler clears
1751 		 * the NAK interrupt for the first NAK, the second NAK will
1752 		 * not be seen. So we can't depend on the NAK interrupt
1753 		 * handler to requeue a NAK'd request. Instead, IN requests
1754 		 * are issued each time this function is called. When the
1755 		 * transfer completes, the extra requests for the channel will
1756 		 * be flushed.
1757 		 */
1758 		u32 hcchar = dwc2_readl(hsotg->regs + HCCHAR(chan->hc_num));
1759 
1760 		dwc2_hc_set_even_odd_frame(hsotg, chan, &hcchar);
1761 		hcchar |= HCCHAR_CHENA;
1762 		hcchar &= ~HCCHAR_CHDIS;
1763 		if (dbg_hc(chan))
1764 			dev_vdbg(hsotg->dev, "	 IN xfer: hcchar = 0x%08x\n",
1765 				 hcchar);
1766 		dwc2_writel(hcchar, hsotg->regs + HCCHAR(chan->hc_num));
1767 		chan->requests++;
1768 		return 1;
1769 	}
1770 
1771 	/* OUT transfers */
1772 
1773 	if (chan->xfer_count < chan->xfer_len) {
1774 		if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
1775 		    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
1776 			u32 hcchar = dwc2_readl(hsotg->regs +
1777 						HCCHAR(chan->hc_num));
1778 
1779 			dwc2_hc_set_even_odd_frame(hsotg, chan,
1780 						   &hcchar);
1781 		}
1782 
1783 		/* Load OUT packet into the appropriate Tx FIFO */
1784 		dwc2_hc_write_packet(hsotg, chan);
1785 		chan->requests++;
1786 		return 1;
1787 	}
1788 
1789 	return 0;
1790 }
1791 
1792 /*
1793  * =========================================================================
1794  *  HCD
1795  * =========================================================================
1796  */
1797 
1798 /*
1799  * Processes all the URBs in a single list of QHs. Completes them with
1800  * -ETIMEDOUT and frees the QTD.
1801  *
1802  * Must be called with interrupt disabled and spinlock held
1803  */
1804 static void dwc2_kill_urbs_in_qh_list(struct dwc2_hsotg *hsotg,
1805 				      struct list_head *qh_list)
1806 {
1807 	struct dwc2_qh *qh, *qh_tmp;
1808 	struct dwc2_qtd *qtd, *qtd_tmp;
1809 
1810 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1811 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1812 					 qtd_list_entry) {
1813 			dwc2_host_complete(hsotg, qtd, -ECONNRESET);
1814 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1815 		}
1816 	}
1817 }
1818 
1819 static void dwc2_qh_list_free(struct dwc2_hsotg *hsotg,
1820 			      struct list_head *qh_list)
1821 {
1822 	struct dwc2_qtd *qtd, *qtd_tmp;
1823 	struct dwc2_qh *qh, *qh_tmp;
1824 	unsigned long flags;
1825 
1826 	if (!qh_list->next)
1827 		/* The list hasn't been initialized yet */
1828 		return;
1829 
1830 	spin_lock_irqsave(&hsotg->lock, flags);
1831 
1832 	/* Ensure there are no QTDs or URBs left */
1833 	dwc2_kill_urbs_in_qh_list(hsotg, qh_list);
1834 
1835 	list_for_each_entry_safe(qh, qh_tmp, qh_list, qh_list_entry) {
1836 		dwc2_hcd_qh_unlink(hsotg, qh);
1837 
1838 		/* Free each QTD in the QH's QTD list */
1839 		list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list,
1840 					 qtd_list_entry)
1841 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
1842 
1843 		if (qh->channel && qh->channel->qh == qh)
1844 			qh->channel->qh = NULL;
1845 
1846 		spin_unlock_irqrestore(&hsotg->lock, flags);
1847 		dwc2_hcd_qh_free(hsotg, qh);
1848 		spin_lock_irqsave(&hsotg->lock, flags);
1849 	}
1850 
1851 	spin_unlock_irqrestore(&hsotg->lock, flags);
1852 }
1853 
1854 /*
1855  * Responds with an error status of -ETIMEDOUT to all URBs in the non-periodic
1856  * and periodic schedules. The QTD associated with each URB is removed from
1857  * the schedule and freed. This function may be called when a disconnect is
1858  * detected or when the HCD is being stopped.
1859  *
1860  * Must be called with interrupt disabled and spinlock held
1861  */
1862 static void dwc2_kill_all_urbs(struct dwc2_hsotg *hsotg)
1863 {
1864 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_inactive);
1865 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_waiting);
1866 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->non_periodic_sched_active);
1867 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_inactive);
1868 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_ready);
1869 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_assigned);
1870 	dwc2_kill_urbs_in_qh_list(hsotg, &hsotg->periodic_sched_queued);
1871 }
1872 
1873 /**
1874  * dwc2_hcd_start() - Starts the HCD when switching to Host mode
1875  *
1876  * @hsotg: Pointer to struct dwc2_hsotg
1877  */
1878 void dwc2_hcd_start(struct dwc2_hsotg *hsotg)
1879 {
1880 	u32 hprt0;
1881 
1882 	if (hsotg->op_state == OTG_STATE_B_HOST) {
1883 		/*
1884 		 * Reset the port. During a HNP mode switch the reset
1885 		 * needs to occur within 1ms and have a duration of at
1886 		 * least 50ms.
1887 		 */
1888 		hprt0 = dwc2_read_hprt0(hsotg);
1889 		hprt0 |= HPRT0_RST;
1890 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
1891 	}
1892 
1893 	queue_delayed_work(hsotg->wq_otg, &hsotg->start_work,
1894 			   msecs_to_jiffies(50));
1895 }
1896 
1897 /* Must be called with interrupt disabled and spinlock held */
1898 static void dwc2_hcd_cleanup_channels(struct dwc2_hsotg *hsotg)
1899 {
1900 	int num_channels = hsotg->params.host_channels;
1901 	struct dwc2_host_chan *channel;
1902 	u32 hcchar;
1903 	int i;
1904 
1905 	if (!hsotg->params.host_dma) {
1906 		/* Flush out any channel requests in slave mode */
1907 		for (i = 0; i < num_channels; i++) {
1908 			channel = hsotg->hc_ptr_array[i];
1909 			if (!list_empty(&channel->hc_list_entry))
1910 				continue;
1911 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1912 			if (hcchar & HCCHAR_CHENA) {
1913 				hcchar &= ~(HCCHAR_CHENA | HCCHAR_EPDIR);
1914 				hcchar |= HCCHAR_CHDIS;
1915 				dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1916 			}
1917 		}
1918 	}
1919 
1920 	for (i = 0; i < num_channels; i++) {
1921 		channel = hsotg->hc_ptr_array[i];
1922 		if (!list_empty(&channel->hc_list_entry))
1923 			continue;
1924 		hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
1925 		if (hcchar & HCCHAR_CHENA) {
1926 			/* Halt the channel */
1927 			hcchar |= HCCHAR_CHDIS;
1928 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
1929 		}
1930 
1931 		dwc2_hc_cleanup(hsotg, channel);
1932 		list_add_tail(&channel->hc_list_entry, &hsotg->free_hc_list);
1933 		/*
1934 		 * Added for Descriptor DMA to prevent channel double cleanup in
1935 		 * release_channel_ddma(), which is called from ep_disable when
1936 		 * device disconnects
1937 		 */
1938 		channel->qh = NULL;
1939 	}
1940 	/* All channels have been freed, mark them available */
1941 	if (hsotg->params.uframe_sched) {
1942 		hsotg->available_host_channels =
1943 			hsotg->params.host_channels;
1944 	} else {
1945 		hsotg->non_periodic_channels = 0;
1946 		hsotg->periodic_channels = 0;
1947 	}
1948 }
1949 
1950 /**
1951  * dwc2_hcd_connect() - Handles connect of the HCD
1952  *
1953  * @hsotg: Pointer to struct dwc2_hsotg
1954  *
1955  * Must be called with interrupt disabled and spinlock held
1956  */
1957 void dwc2_hcd_connect(struct dwc2_hsotg *hsotg)
1958 {
1959 	if (hsotg->lx_state != DWC2_L0)
1960 		usb_hcd_resume_root_hub(hsotg->priv);
1961 
1962 	hsotg->flags.b.port_connect_status_change = 1;
1963 	hsotg->flags.b.port_connect_status = 1;
1964 }
1965 
1966 /**
1967  * dwc2_hcd_disconnect() - Handles disconnect of the HCD
1968  *
1969  * @hsotg: Pointer to struct dwc2_hsotg
1970  * @force: If true, we won't try to reconnect even if we see device connected.
1971  *
1972  * Must be called with interrupt disabled and spinlock held
1973  */
1974 void dwc2_hcd_disconnect(struct dwc2_hsotg *hsotg, bool force)
1975 {
1976 	u32 intr;
1977 	u32 hprt0;
1978 
1979 	/* Set status flags for the hub driver */
1980 	hsotg->flags.b.port_connect_status_change = 1;
1981 	hsotg->flags.b.port_connect_status = 0;
1982 
1983 	/*
1984 	 * Shutdown any transfers in process by clearing the Tx FIFO Empty
1985 	 * interrupt mask and status bits and disabling subsequent host
1986 	 * channel interrupts.
1987 	 */
1988 	intr = dwc2_readl(hsotg->regs + GINTMSK);
1989 	intr &= ~(GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT);
1990 	dwc2_writel(intr, hsotg->regs + GINTMSK);
1991 	intr = GINTSTS_NPTXFEMP | GINTSTS_PTXFEMP | GINTSTS_HCHINT;
1992 	dwc2_writel(intr, hsotg->regs + GINTSTS);
1993 
1994 	/*
1995 	 * Turn off the vbus power only if the core has transitioned to device
1996 	 * mode. If still in host mode, need to keep power on to detect a
1997 	 * reconnection.
1998 	 */
1999 	if (dwc2_is_device_mode(hsotg)) {
2000 		if (hsotg->op_state != OTG_STATE_A_SUSPEND) {
2001 			dev_dbg(hsotg->dev, "Disconnect: PortPower off\n");
2002 			dwc2_writel(0, hsotg->regs + HPRT0);
2003 		}
2004 
2005 		dwc2_disable_host_interrupts(hsotg);
2006 	}
2007 
2008 	/* Respond with an error status to all URBs in the schedule */
2009 	dwc2_kill_all_urbs(hsotg);
2010 
2011 	if (dwc2_is_host_mode(hsotg))
2012 		/* Clean up any host channels that were in use */
2013 		dwc2_hcd_cleanup_channels(hsotg);
2014 
2015 	dwc2_host_disconnect(hsotg);
2016 
2017 	/*
2018 	 * Add an extra check here to see if we're actually connected but
2019 	 * we don't have a detection interrupt pending.  This can happen if:
2020 	 *   1. hardware sees connect
2021 	 *   2. hardware sees disconnect
2022 	 *   3. hardware sees connect
2023 	 *   4. dwc2_port_intr() - clears connect interrupt
2024 	 *   5. dwc2_handle_common_intr() - calls here
2025 	 *
2026 	 * Without the extra check here we will end calling disconnect
2027 	 * and won't get any future interrupts to handle the connect.
2028 	 */
2029 	if (!force) {
2030 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2031 		if (!(hprt0 & HPRT0_CONNDET) && (hprt0 & HPRT0_CONNSTS))
2032 			dwc2_hcd_connect(hsotg);
2033 	}
2034 }
2035 
2036 /**
2037  * dwc2_hcd_rem_wakeup() - Handles Remote Wakeup
2038  *
2039  * @hsotg: Pointer to struct dwc2_hsotg
2040  */
2041 static void dwc2_hcd_rem_wakeup(struct dwc2_hsotg *hsotg)
2042 {
2043 	if (hsotg->bus_suspended) {
2044 		hsotg->flags.b.port_suspend_change = 1;
2045 		usb_hcd_resume_root_hub(hsotg->priv);
2046 	}
2047 
2048 	if (hsotg->lx_state == DWC2_L1)
2049 		hsotg->flags.b.port_l1_change = 1;
2050 }
2051 
2052 /**
2053  * dwc2_hcd_stop() - Halts the DWC_otg host mode operations in a clean manner
2054  *
2055  * @hsotg: Pointer to struct dwc2_hsotg
2056  *
2057  * Must be called with interrupt disabled and spinlock held
2058  */
2059 void dwc2_hcd_stop(struct dwc2_hsotg *hsotg)
2060 {
2061 	dev_dbg(hsotg->dev, "DWC OTG HCD STOP\n");
2062 
2063 	/*
2064 	 * The root hub should be disconnected before this function is called.
2065 	 * The disconnect will clear the QTD lists (via ..._hcd_urb_dequeue)
2066 	 * and the QH lists (via ..._hcd_endpoint_disable).
2067 	 */
2068 
2069 	/* Turn off all host-specific interrupts */
2070 	dwc2_disable_host_interrupts(hsotg);
2071 
2072 	/* Turn off the vbus power */
2073 	dev_dbg(hsotg->dev, "PortPower off\n");
2074 	dwc2_writel(0, hsotg->regs + HPRT0);
2075 }
2076 
2077 /* Caller must hold driver lock */
2078 static int dwc2_hcd_urb_enqueue(struct dwc2_hsotg *hsotg,
2079 				struct dwc2_hcd_urb *urb, struct dwc2_qh *qh,
2080 				struct dwc2_qtd *qtd)
2081 {
2082 	u32 intr_mask;
2083 	int retval;
2084 	int dev_speed;
2085 
2086 	if (!hsotg->flags.b.port_connect_status) {
2087 		/* No longer connected */
2088 		dev_err(hsotg->dev, "Not connected\n");
2089 		return -ENODEV;
2090 	}
2091 
2092 	dev_speed = dwc2_host_get_speed(hsotg, urb->priv);
2093 
2094 	/* Some configurations cannot support LS traffic on a FS root port */
2095 	if ((dev_speed == USB_SPEED_LOW) &&
2096 	    (hsotg->hw_params.fs_phy_type == GHWCFG2_FS_PHY_TYPE_DEDICATED) &&
2097 	    (hsotg->hw_params.hs_phy_type == GHWCFG2_HS_PHY_TYPE_UTMI)) {
2098 		u32 hprt0 = dwc2_readl(hsotg->regs + HPRT0);
2099 		u32 prtspd = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
2100 
2101 		if (prtspd == HPRT0_SPD_FULL_SPEED)
2102 			return -ENODEV;
2103 	}
2104 
2105 	if (!qtd)
2106 		return -EINVAL;
2107 
2108 	dwc2_hcd_qtd_init(qtd, urb);
2109 	retval = dwc2_hcd_qtd_add(hsotg, qtd, qh);
2110 	if (retval) {
2111 		dev_err(hsotg->dev,
2112 			"DWC OTG HCD URB Enqueue failed adding QTD. Error status %d\n",
2113 			retval);
2114 		return retval;
2115 	}
2116 
2117 	intr_mask = dwc2_readl(hsotg->regs + GINTMSK);
2118 	if (!(intr_mask & GINTSTS_SOF)) {
2119 		enum dwc2_transaction_type tr_type;
2120 
2121 		if (qtd->qh->ep_type == USB_ENDPOINT_XFER_BULK &&
2122 		    !(qtd->urb->flags & URB_GIVEBACK_ASAP))
2123 			/*
2124 			 * Do not schedule SG transactions until qtd has
2125 			 * URB_GIVEBACK_ASAP set
2126 			 */
2127 			return 0;
2128 
2129 		tr_type = dwc2_hcd_select_transactions(hsotg);
2130 		if (tr_type != DWC2_TRANSACTION_NONE)
2131 			dwc2_hcd_queue_transactions(hsotg, tr_type);
2132 	}
2133 
2134 	return 0;
2135 }
2136 
2137 /* Must be called with interrupt disabled and spinlock held */
2138 static int dwc2_hcd_urb_dequeue(struct dwc2_hsotg *hsotg,
2139 				struct dwc2_hcd_urb *urb)
2140 {
2141 	struct dwc2_qh *qh;
2142 	struct dwc2_qtd *urb_qtd;
2143 
2144 	urb_qtd = urb->qtd;
2145 	if (!urb_qtd) {
2146 		dev_dbg(hsotg->dev, "## Urb QTD is NULL ##\n");
2147 		return -EINVAL;
2148 	}
2149 
2150 	qh = urb_qtd->qh;
2151 	if (!qh) {
2152 		dev_dbg(hsotg->dev, "## Urb QTD QH is NULL ##\n");
2153 		return -EINVAL;
2154 	}
2155 
2156 	urb->priv = NULL;
2157 
2158 	if (urb_qtd->in_process && qh->channel) {
2159 		dwc2_dump_channel_info(hsotg, qh->channel);
2160 
2161 		/* The QTD is in process (it has been assigned to a channel) */
2162 		if (hsotg->flags.b.port_connect_status)
2163 			/*
2164 			 * If still connected (i.e. in host mode), halt the
2165 			 * channel so it can be used for other transfers. If
2166 			 * no longer connected, the host registers can't be
2167 			 * written to halt the channel since the core is in
2168 			 * device mode.
2169 			 */
2170 			dwc2_hc_halt(hsotg, qh->channel,
2171 				     DWC2_HC_XFER_URB_DEQUEUE);
2172 	}
2173 
2174 	/*
2175 	 * Free the QTD and clean up the associated QH. Leave the QH in the
2176 	 * schedule if it has any remaining QTDs.
2177 	 */
2178 	if (!hsotg->params.dma_desc_enable) {
2179 		u8 in_process = urb_qtd->in_process;
2180 
2181 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2182 		if (in_process) {
2183 			dwc2_hcd_qh_deactivate(hsotg, qh, 0);
2184 			qh->channel = NULL;
2185 		} else if (list_empty(&qh->qtd_list)) {
2186 			dwc2_hcd_qh_unlink(hsotg, qh);
2187 		}
2188 	} else {
2189 		dwc2_hcd_qtd_unlink_and_free(hsotg, urb_qtd, qh);
2190 	}
2191 
2192 	return 0;
2193 }
2194 
2195 /* Must NOT be called with interrupt disabled or spinlock held */
2196 static int dwc2_hcd_endpoint_disable(struct dwc2_hsotg *hsotg,
2197 				     struct usb_host_endpoint *ep, int retry)
2198 {
2199 	struct dwc2_qtd *qtd, *qtd_tmp;
2200 	struct dwc2_qh *qh;
2201 	unsigned long flags;
2202 	int rc;
2203 
2204 	spin_lock_irqsave(&hsotg->lock, flags);
2205 
2206 	qh = ep->hcpriv;
2207 	if (!qh) {
2208 		rc = -EINVAL;
2209 		goto err;
2210 	}
2211 
2212 	while (!list_empty(&qh->qtd_list) && retry--) {
2213 		if (retry == 0) {
2214 			dev_err(hsotg->dev,
2215 				"## timeout in dwc2_hcd_endpoint_disable() ##\n");
2216 			rc = -EBUSY;
2217 			goto err;
2218 		}
2219 
2220 		spin_unlock_irqrestore(&hsotg->lock, flags);
2221 		msleep(20);
2222 		spin_lock_irqsave(&hsotg->lock, flags);
2223 		qh = ep->hcpriv;
2224 		if (!qh) {
2225 			rc = -EINVAL;
2226 			goto err;
2227 		}
2228 	}
2229 
2230 	dwc2_hcd_qh_unlink(hsotg, qh);
2231 
2232 	/* Free each QTD in the QH's QTD list */
2233 	list_for_each_entry_safe(qtd, qtd_tmp, &qh->qtd_list, qtd_list_entry)
2234 		dwc2_hcd_qtd_unlink_and_free(hsotg, qtd, qh);
2235 
2236 	ep->hcpriv = NULL;
2237 
2238 	if (qh->channel && qh->channel->qh == qh)
2239 		qh->channel->qh = NULL;
2240 
2241 	spin_unlock_irqrestore(&hsotg->lock, flags);
2242 
2243 	dwc2_hcd_qh_free(hsotg, qh);
2244 
2245 	return 0;
2246 
2247 err:
2248 	ep->hcpriv = NULL;
2249 	spin_unlock_irqrestore(&hsotg->lock, flags);
2250 
2251 	return rc;
2252 }
2253 
2254 /* Must be called with interrupt disabled and spinlock held */
2255 static int dwc2_hcd_endpoint_reset(struct dwc2_hsotg *hsotg,
2256 				   struct usb_host_endpoint *ep)
2257 {
2258 	struct dwc2_qh *qh = ep->hcpriv;
2259 
2260 	if (!qh)
2261 		return -EINVAL;
2262 
2263 	qh->data_toggle = DWC2_HC_PID_DATA0;
2264 
2265 	return 0;
2266 }
2267 
2268 /**
2269  * dwc2_core_init() - Initializes the DWC_otg controller registers and
2270  * prepares the core for device mode or host mode operation
2271  *
2272  * @hsotg:         Programming view of the DWC_otg controller
2273  * @initial_setup: If true then this is the first init for this instance.
2274  */
2275 int dwc2_core_init(struct dwc2_hsotg *hsotg, bool initial_setup)
2276 {
2277 	u32 usbcfg, otgctl;
2278 	int retval;
2279 
2280 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2281 
2282 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2283 
2284 	/* Set ULPI External VBUS bit if needed */
2285 	usbcfg &= ~GUSBCFG_ULPI_EXT_VBUS_DRV;
2286 	if (hsotg->params.phy_ulpi_ext_vbus)
2287 		usbcfg |= GUSBCFG_ULPI_EXT_VBUS_DRV;
2288 
2289 	/* Set external TS Dline pulsing bit if needed */
2290 	usbcfg &= ~GUSBCFG_TERMSELDLPULSE;
2291 	if (hsotg->params.ts_dline)
2292 		usbcfg |= GUSBCFG_TERMSELDLPULSE;
2293 
2294 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2295 
2296 	/*
2297 	 * Reset the Controller
2298 	 *
2299 	 * We only need to reset the controller if this is a re-init.
2300 	 * For the first init we know for sure that earlier code reset us (it
2301 	 * needed to in order to properly detect various parameters).
2302 	 */
2303 	if (!initial_setup) {
2304 		retval = dwc2_core_reset(hsotg, false);
2305 		if (retval) {
2306 			dev_err(hsotg->dev, "%s(): Reset failed, aborting\n",
2307 				__func__);
2308 			return retval;
2309 		}
2310 	}
2311 
2312 	/*
2313 	 * This needs to happen in FS mode before any other programming occurs
2314 	 */
2315 	retval = dwc2_phy_init(hsotg, initial_setup);
2316 	if (retval)
2317 		return retval;
2318 
2319 	/* Program the GAHBCFG Register */
2320 	retval = dwc2_gahbcfg_init(hsotg);
2321 	if (retval)
2322 		return retval;
2323 
2324 	/* Program the GUSBCFG register */
2325 	dwc2_gusbcfg_init(hsotg);
2326 
2327 	/* Program the GOTGCTL register */
2328 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2329 	otgctl &= ~GOTGCTL_OTGVER;
2330 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2331 
2332 	/* Clear the SRP success bit for FS-I2c */
2333 	hsotg->srp_success = 0;
2334 
2335 	/* Enable common interrupts */
2336 	dwc2_enable_common_interrupts(hsotg);
2337 
2338 	/*
2339 	 * Do device or host initialization based on mode during PCD and
2340 	 * HCD initialization
2341 	 */
2342 	if (dwc2_is_host_mode(hsotg)) {
2343 		dev_dbg(hsotg->dev, "Host Mode\n");
2344 		hsotg->op_state = OTG_STATE_A_HOST;
2345 	} else {
2346 		dev_dbg(hsotg->dev, "Device Mode\n");
2347 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
2348 	}
2349 
2350 	return 0;
2351 }
2352 
2353 /**
2354  * dwc2_core_host_init() - Initializes the DWC_otg controller registers for
2355  * Host mode
2356  *
2357  * @hsotg: Programming view of DWC_otg controller
2358  *
2359  * This function flushes the Tx and Rx FIFOs and flushes any entries in the
2360  * request queues. Host channels are reset to ensure that they are ready for
2361  * performing transfers.
2362  */
2363 static void dwc2_core_host_init(struct dwc2_hsotg *hsotg)
2364 {
2365 	u32 hcfg, hfir, otgctl, usbcfg;
2366 
2367 	dev_dbg(hsotg->dev, "%s(%p)\n", __func__, hsotg);
2368 
2369 	/* Set HS/FS Timeout Calibration to 7 (max available value).
2370 	 * The number of PHY clocks that the application programs in
2371 	 * this field is added to the high/full speed interpacket timeout
2372 	 * duration in the core to account for any additional delays
2373 	 * introduced by the PHY. This can be required, because the delay
2374 	 * introduced by the PHY in generating the linestate condition
2375 	 * can vary from one PHY to another.
2376 	 */
2377 	usbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
2378 	usbcfg |= GUSBCFG_TOUTCAL(7);
2379 	dwc2_writel(usbcfg, hsotg->regs + GUSBCFG);
2380 
2381 	/* Restart the Phy Clock */
2382 	dwc2_writel(0, hsotg->regs + PCGCTL);
2383 
2384 	/* Initialize Host Configuration Register */
2385 	dwc2_init_fs_ls_pclk_sel(hsotg);
2386 	if (hsotg->params.speed == DWC2_SPEED_PARAM_FULL ||
2387 	    hsotg->params.speed == DWC2_SPEED_PARAM_LOW) {
2388 		hcfg = dwc2_readl(hsotg->regs + HCFG);
2389 		hcfg |= HCFG_FSLSSUPP;
2390 		dwc2_writel(hcfg, hsotg->regs + HCFG);
2391 	}
2392 
2393 	/*
2394 	 * This bit allows dynamic reloading of the HFIR register during
2395 	 * runtime. This bit needs to be programmed during initial configuration
2396 	 * and its value must not be changed during runtime.
2397 	 */
2398 	if (hsotg->params.reload_ctl) {
2399 		hfir = dwc2_readl(hsotg->regs + HFIR);
2400 		hfir |= HFIR_RLDCTRL;
2401 		dwc2_writel(hfir, hsotg->regs + HFIR);
2402 	}
2403 
2404 	if (hsotg->params.dma_desc_enable) {
2405 		u32 op_mode = hsotg->hw_params.op_mode;
2406 
2407 		if (hsotg->hw_params.snpsid < DWC2_CORE_REV_2_90a ||
2408 		    !hsotg->hw_params.dma_desc_enable ||
2409 		    op_mode == GHWCFG2_OP_MODE_SRP_CAPABLE_DEVICE ||
2410 		    op_mode == GHWCFG2_OP_MODE_NO_SRP_CAPABLE_DEVICE ||
2411 		    op_mode == GHWCFG2_OP_MODE_UNDEFINED) {
2412 			dev_err(hsotg->dev,
2413 				"Hardware does not support descriptor DMA mode -\n");
2414 			dev_err(hsotg->dev,
2415 				"falling back to buffer DMA mode.\n");
2416 			hsotg->params.dma_desc_enable = false;
2417 		} else {
2418 			hcfg = dwc2_readl(hsotg->regs + HCFG);
2419 			hcfg |= HCFG_DESCDMA;
2420 			dwc2_writel(hcfg, hsotg->regs + HCFG);
2421 		}
2422 	}
2423 
2424 	/* Configure data FIFO sizes */
2425 	dwc2_config_fifos(hsotg);
2426 
2427 	/* TODO - check this */
2428 	/* Clear Host Set HNP Enable in the OTG Control Register */
2429 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2430 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2431 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2432 
2433 	/* Make sure the FIFOs are flushed */
2434 	dwc2_flush_tx_fifo(hsotg, 0x10 /* all TX FIFOs */);
2435 	dwc2_flush_rx_fifo(hsotg);
2436 
2437 	/* Clear Host Set HNP Enable in the OTG Control Register */
2438 	otgctl = dwc2_readl(hsotg->regs + GOTGCTL);
2439 	otgctl &= ~GOTGCTL_HSTSETHNPEN;
2440 	dwc2_writel(otgctl, hsotg->regs + GOTGCTL);
2441 
2442 	if (!hsotg->params.dma_desc_enable) {
2443 		int num_channels, i;
2444 		u32 hcchar;
2445 
2446 		/* Flush out any leftover queued requests */
2447 		num_channels = hsotg->params.host_channels;
2448 		for (i = 0; i < num_channels; i++) {
2449 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2450 			hcchar &= ~HCCHAR_CHENA;
2451 			hcchar |= HCCHAR_CHDIS;
2452 			hcchar &= ~HCCHAR_EPDIR;
2453 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2454 		}
2455 
2456 		/* Halt all channels to put them into a known state */
2457 		for (i = 0; i < num_channels; i++) {
2458 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
2459 			hcchar |= HCCHAR_CHENA | HCCHAR_CHDIS;
2460 			hcchar &= ~HCCHAR_EPDIR;
2461 			dwc2_writel(hcchar, hsotg->regs + HCCHAR(i));
2462 			dev_dbg(hsotg->dev, "%s: Halt channel %d\n",
2463 				__func__, i);
2464 
2465 			if (dwc2_hsotg_wait_bit_clear(hsotg, HCCHAR(i),
2466 						      HCCHAR_CHENA, 1000)) {
2467 				dev_warn(hsotg->dev, "Unable to clear enable on channel %d\n",
2468 					 i);
2469 			}
2470 		}
2471 	}
2472 
2473 	/* Enable ACG feature in host mode, if supported */
2474 	dwc2_enable_acg(hsotg);
2475 
2476 	/* Turn on the vbus power */
2477 	dev_dbg(hsotg->dev, "Init: Port Power? op_state=%d\n", hsotg->op_state);
2478 	if (hsotg->op_state == OTG_STATE_A_HOST) {
2479 		u32 hprt0 = dwc2_read_hprt0(hsotg);
2480 
2481 		dev_dbg(hsotg->dev, "Init: Power Port (%d)\n",
2482 			!!(hprt0 & HPRT0_PWR));
2483 		if (!(hprt0 & HPRT0_PWR)) {
2484 			hprt0 |= HPRT0_PWR;
2485 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
2486 		}
2487 	}
2488 
2489 	dwc2_enable_host_interrupts(hsotg);
2490 }
2491 
2492 /*
2493  * Initializes dynamic portions of the DWC_otg HCD state
2494  *
2495  * Must be called with interrupt disabled and spinlock held
2496  */
2497 static void dwc2_hcd_reinit(struct dwc2_hsotg *hsotg)
2498 {
2499 	struct dwc2_host_chan *chan, *chan_tmp;
2500 	int num_channels;
2501 	int i;
2502 
2503 	hsotg->flags.d32 = 0;
2504 	hsotg->non_periodic_qh_ptr = &hsotg->non_periodic_sched_active;
2505 
2506 	if (hsotg->params.uframe_sched) {
2507 		hsotg->available_host_channels =
2508 			hsotg->params.host_channels;
2509 	} else {
2510 		hsotg->non_periodic_channels = 0;
2511 		hsotg->periodic_channels = 0;
2512 	}
2513 
2514 	/*
2515 	 * Put all channels in the free channel list and clean up channel
2516 	 * states
2517 	 */
2518 	list_for_each_entry_safe(chan, chan_tmp, &hsotg->free_hc_list,
2519 				 hc_list_entry)
2520 		list_del_init(&chan->hc_list_entry);
2521 
2522 	num_channels = hsotg->params.host_channels;
2523 	for (i = 0; i < num_channels; i++) {
2524 		chan = hsotg->hc_ptr_array[i];
2525 		list_add_tail(&chan->hc_list_entry, &hsotg->free_hc_list);
2526 		dwc2_hc_cleanup(hsotg, chan);
2527 	}
2528 
2529 	/* Initialize the DWC core for host mode operation */
2530 	dwc2_core_host_init(hsotg);
2531 }
2532 
2533 static void dwc2_hc_init_split(struct dwc2_hsotg *hsotg,
2534 			       struct dwc2_host_chan *chan,
2535 			       struct dwc2_qtd *qtd, struct dwc2_hcd_urb *urb)
2536 {
2537 	int hub_addr, hub_port;
2538 
2539 	chan->do_split = 1;
2540 	chan->xact_pos = qtd->isoc_split_pos;
2541 	chan->complete_split = qtd->complete_split;
2542 	dwc2_host_hub_info(hsotg, urb->priv, &hub_addr, &hub_port);
2543 	chan->hub_addr = (u8)hub_addr;
2544 	chan->hub_port = (u8)hub_port;
2545 }
2546 
2547 static void dwc2_hc_init_xfer(struct dwc2_hsotg *hsotg,
2548 			      struct dwc2_host_chan *chan,
2549 			      struct dwc2_qtd *qtd)
2550 {
2551 	struct dwc2_hcd_urb *urb = qtd->urb;
2552 	struct dwc2_hcd_iso_packet_desc *frame_desc;
2553 
2554 	switch (dwc2_hcd_get_pipe_type(&urb->pipe_info)) {
2555 	case USB_ENDPOINT_XFER_CONTROL:
2556 		chan->ep_type = USB_ENDPOINT_XFER_CONTROL;
2557 
2558 		switch (qtd->control_phase) {
2559 		case DWC2_CONTROL_SETUP:
2560 			dev_vdbg(hsotg->dev, "  Control setup transaction\n");
2561 			chan->do_ping = 0;
2562 			chan->ep_is_in = 0;
2563 			chan->data_pid_start = DWC2_HC_PID_SETUP;
2564 			if (hsotg->params.host_dma)
2565 				chan->xfer_dma = urb->setup_dma;
2566 			else
2567 				chan->xfer_buf = urb->setup_packet;
2568 			chan->xfer_len = 8;
2569 			break;
2570 
2571 		case DWC2_CONTROL_DATA:
2572 			dev_vdbg(hsotg->dev, "  Control data transaction\n");
2573 			chan->data_pid_start = qtd->data_toggle;
2574 			break;
2575 
2576 		case DWC2_CONTROL_STATUS:
2577 			/*
2578 			 * Direction is opposite of data direction or IN if no
2579 			 * data
2580 			 */
2581 			dev_vdbg(hsotg->dev, "  Control status transaction\n");
2582 			if (urb->length == 0)
2583 				chan->ep_is_in = 1;
2584 			else
2585 				chan->ep_is_in =
2586 					dwc2_hcd_is_pipe_out(&urb->pipe_info);
2587 			if (chan->ep_is_in)
2588 				chan->do_ping = 0;
2589 			chan->data_pid_start = DWC2_HC_PID_DATA1;
2590 			chan->xfer_len = 0;
2591 			if (hsotg->params.host_dma)
2592 				chan->xfer_dma = hsotg->status_buf_dma;
2593 			else
2594 				chan->xfer_buf = hsotg->status_buf;
2595 			break;
2596 		}
2597 		break;
2598 
2599 	case USB_ENDPOINT_XFER_BULK:
2600 		chan->ep_type = USB_ENDPOINT_XFER_BULK;
2601 		break;
2602 
2603 	case USB_ENDPOINT_XFER_INT:
2604 		chan->ep_type = USB_ENDPOINT_XFER_INT;
2605 		break;
2606 
2607 	case USB_ENDPOINT_XFER_ISOC:
2608 		chan->ep_type = USB_ENDPOINT_XFER_ISOC;
2609 		if (hsotg->params.dma_desc_enable)
2610 			break;
2611 
2612 		frame_desc = &urb->iso_descs[qtd->isoc_frame_index];
2613 		frame_desc->status = 0;
2614 
2615 		if (hsotg->params.host_dma) {
2616 			chan->xfer_dma = urb->dma;
2617 			chan->xfer_dma += frame_desc->offset +
2618 					qtd->isoc_split_offset;
2619 		} else {
2620 			chan->xfer_buf = urb->buf;
2621 			chan->xfer_buf += frame_desc->offset +
2622 					qtd->isoc_split_offset;
2623 		}
2624 
2625 		chan->xfer_len = frame_desc->length - qtd->isoc_split_offset;
2626 
2627 		if (chan->xact_pos == DWC2_HCSPLT_XACTPOS_ALL) {
2628 			if (chan->xfer_len <= 188)
2629 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_ALL;
2630 			else
2631 				chan->xact_pos = DWC2_HCSPLT_XACTPOS_BEGIN;
2632 		}
2633 		break;
2634 	}
2635 }
2636 
2637 static int dwc2_alloc_split_dma_aligned_buf(struct dwc2_hsotg *hsotg,
2638 					    struct dwc2_qh *qh,
2639 					    struct dwc2_host_chan *chan)
2640 {
2641 	if (!hsotg->unaligned_cache ||
2642 	    chan->max_packet > DWC2_KMEM_UNALIGNED_BUF_SIZE)
2643 		return -ENOMEM;
2644 
2645 	if (!qh->dw_align_buf) {
2646 		qh->dw_align_buf = kmem_cache_alloc(hsotg->unaligned_cache,
2647 						    GFP_ATOMIC | GFP_DMA);
2648 		if (!qh->dw_align_buf)
2649 			return -ENOMEM;
2650 	}
2651 
2652 	qh->dw_align_buf_dma = dma_map_single(hsotg->dev, qh->dw_align_buf,
2653 					      DWC2_KMEM_UNALIGNED_BUF_SIZE,
2654 					      DMA_FROM_DEVICE);
2655 
2656 	if (dma_mapping_error(hsotg->dev, qh->dw_align_buf_dma)) {
2657 		dev_err(hsotg->dev, "can't map align_buf\n");
2658 		chan->align_buf = 0;
2659 		return -EINVAL;
2660 	}
2661 
2662 	chan->align_buf = qh->dw_align_buf_dma;
2663 	return 0;
2664 }
2665 
2666 #define DWC2_USB_DMA_ALIGN 4
2667 
2668 struct dma_aligned_buffer {
2669 	void *kmalloc_ptr;
2670 	void *old_xfer_buffer;
2671 	u8 data[0];
2672 };
2673 
2674 static void dwc2_free_dma_aligned_buffer(struct urb *urb)
2675 {
2676 	struct dma_aligned_buffer *temp;
2677 
2678 	if (!(urb->transfer_flags & URB_ALIGNED_TEMP_BUFFER))
2679 		return;
2680 
2681 	temp = container_of(urb->transfer_buffer,
2682 			    struct dma_aligned_buffer, data);
2683 
2684 	if (usb_urb_dir_in(urb))
2685 		memcpy(temp->old_xfer_buffer, temp->data,
2686 		       urb->transfer_buffer_length);
2687 	urb->transfer_buffer = temp->old_xfer_buffer;
2688 	kfree(temp->kmalloc_ptr);
2689 
2690 	urb->transfer_flags &= ~URB_ALIGNED_TEMP_BUFFER;
2691 }
2692 
2693 static int dwc2_alloc_dma_aligned_buffer(struct urb *urb, gfp_t mem_flags)
2694 {
2695 	struct dma_aligned_buffer *temp, *kmalloc_ptr;
2696 	size_t kmalloc_size;
2697 
2698 	if (urb->num_sgs || urb->sg ||
2699 	    urb->transfer_buffer_length == 0 ||
2700 	    !((uintptr_t)urb->transfer_buffer & (DWC2_USB_DMA_ALIGN - 1)))
2701 		return 0;
2702 
2703 	/* Allocate a buffer with enough padding for alignment */
2704 	kmalloc_size = urb->transfer_buffer_length +
2705 		sizeof(struct dma_aligned_buffer) + DWC2_USB_DMA_ALIGN - 1;
2706 
2707 	kmalloc_ptr = kmalloc(kmalloc_size, mem_flags);
2708 	if (!kmalloc_ptr)
2709 		return -ENOMEM;
2710 
2711 	/* Position our struct dma_aligned_buffer such that data is aligned */
2712 	temp = PTR_ALIGN(kmalloc_ptr + 1, DWC2_USB_DMA_ALIGN) - 1;
2713 	temp->kmalloc_ptr = kmalloc_ptr;
2714 	temp->old_xfer_buffer = urb->transfer_buffer;
2715 	if (usb_urb_dir_out(urb))
2716 		memcpy(temp->data, urb->transfer_buffer,
2717 		       urb->transfer_buffer_length);
2718 	urb->transfer_buffer = temp->data;
2719 
2720 	urb->transfer_flags |= URB_ALIGNED_TEMP_BUFFER;
2721 
2722 	return 0;
2723 }
2724 
2725 static int dwc2_map_urb_for_dma(struct usb_hcd *hcd, struct urb *urb,
2726 				gfp_t mem_flags)
2727 {
2728 	int ret;
2729 
2730 	/* We assume setup_dma is always aligned; warn if not */
2731 	WARN_ON_ONCE(urb->setup_dma &&
2732 		     (urb->setup_dma & (DWC2_USB_DMA_ALIGN - 1)));
2733 
2734 	ret = dwc2_alloc_dma_aligned_buffer(urb, mem_flags);
2735 	if (ret)
2736 		return ret;
2737 
2738 	ret = usb_hcd_map_urb_for_dma(hcd, urb, mem_flags);
2739 	if (ret)
2740 		dwc2_free_dma_aligned_buffer(urb);
2741 
2742 	return ret;
2743 }
2744 
2745 static void dwc2_unmap_urb_for_dma(struct usb_hcd *hcd, struct urb *urb)
2746 {
2747 	usb_hcd_unmap_urb_for_dma(hcd, urb);
2748 	dwc2_free_dma_aligned_buffer(urb);
2749 }
2750 
2751 /**
2752  * dwc2_assign_and_init_hc() - Assigns transactions from a QTD to a free host
2753  * channel and initializes the host channel to perform the transactions. The
2754  * host channel is removed from the free list.
2755  *
2756  * @hsotg: The HCD state structure
2757  * @qh:    Transactions from the first QTD for this QH are selected and assigned
2758  *         to a free host channel
2759  */
2760 static int dwc2_assign_and_init_hc(struct dwc2_hsotg *hsotg, struct dwc2_qh *qh)
2761 {
2762 	struct dwc2_host_chan *chan;
2763 	struct dwc2_hcd_urb *urb;
2764 	struct dwc2_qtd *qtd;
2765 
2766 	if (dbg_qh(qh))
2767 		dev_vdbg(hsotg->dev, "%s(%p,%p)\n", __func__, hsotg, qh);
2768 
2769 	if (list_empty(&qh->qtd_list)) {
2770 		dev_dbg(hsotg->dev, "No QTDs in QH list\n");
2771 		return -ENOMEM;
2772 	}
2773 
2774 	if (list_empty(&hsotg->free_hc_list)) {
2775 		dev_dbg(hsotg->dev, "No free channel to assign\n");
2776 		return -ENOMEM;
2777 	}
2778 
2779 	chan = list_first_entry(&hsotg->free_hc_list, struct dwc2_host_chan,
2780 				hc_list_entry);
2781 
2782 	/* Remove host channel from free list */
2783 	list_del_init(&chan->hc_list_entry);
2784 
2785 	qtd = list_first_entry(&qh->qtd_list, struct dwc2_qtd, qtd_list_entry);
2786 	urb = qtd->urb;
2787 	qh->channel = chan;
2788 	qtd->in_process = 1;
2789 
2790 	/*
2791 	 * Use usb_pipedevice to determine device address. This address is
2792 	 * 0 before the SET_ADDRESS command and the correct address afterward.
2793 	 */
2794 	chan->dev_addr = dwc2_hcd_get_dev_addr(&urb->pipe_info);
2795 	chan->ep_num = dwc2_hcd_get_ep_num(&urb->pipe_info);
2796 	chan->speed = qh->dev_speed;
2797 	chan->max_packet = dwc2_max_packet(qh->maxp);
2798 
2799 	chan->xfer_started = 0;
2800 	chan->halt_status = DWC2_HC_XFER_NO_HALT_STATUS;
2801 	chan->error_state = (qtd->error_count > 0);
2802 	chan->halt_on_queue = 0;
2803 	chan->halt_pending = 0;
2804 	chan->requests = 0;
2805 
2806 	/*
2807 	 * The following values may be modified in the transfer type section
2808 	 * below. The xfer_len value may be reduced when the transfer is
2809 	 * started to accommodate the max widths of the XferSize and PktCnt
2810 	 * fields in the HCTSIZn register.
2811 	 */
2812 
2813 	chan->ep_is_in = (dwc2_hcd_is_pipe_in(&urb->pipe_info) != 0);
2814 	if (chan->ep_is_in)
2815 		chan->do_ping = 0;
2816 	else
2817 		chan->do_ping = qh->ping_state;
2818 
2819 	chan->data_pid_start = qh->data_toggle;
2820 	chan->multi_count = 1;
2821 
2822 	if (urb->actual_length > urb->length &&
2823 	    !dwc2_hcd_is_pipe_in(&urb->pipe_info))
2824 		urb->actual_length = urb->length;
2825 
2826 	if (hsotg->params.host_dma)
2827 		chan->xfer_dma = urb->dma + urb->actual_length;
2828 	else
2829 		chan->xfer_buf = (u8 *)urb->buf + urb->actual_length;
2830 
2831 	chan->xfer_len = urb->length - urb->actual_length;
2832 	chan->xfer_count = 0;
2833 
2834 	/* Set the split attributes if required */
2835 	if (qh->do_split)
2836 		dwc2_hc_init_split(hsotg, chan, qtd, urb);
2837 	else
2838 		chan->do_split = 0;
2839 
2840 	/* Set the transfer attributes */
2841 	dwc2_hc_init_xfer(hsotg, chan, qtd);
2842 
2843 	/* For non-dword aligned buffers */
2844 	if (hsotg->params.host_dma && qh->do_split &&
2845 	    chan->ep_is_in && (chan->xfer_dma & 0x3)) {
2846 		dev_vdbg(hsotg->dev, "Non-aligned buffer\n");
2847 		if (dwc2_alloc_split_dma_aligned_buf(hsotg, qh, chan)) {
2848 			dev_err(hsotg->dev,
2849 				"Failed to allocate memory to handle non-aligned buffer\n");
2850 			/* Add channel back to free list */
2851 			chan->align_buf = 0;
2852 			chan->multi_count = 0;
2853 			list_add_tail(&chan->hc_list_entry,
2854 				      &hsotg->free_hc_list);
2855 			qtd->in_process = 0;
2856 			qh->channel = NULL;
2857 			return -ENOMEM;
2858 		}
2859 	} else {
2860 		/*
2861 		 * We assume that DMA is always aligned in non-split
2862 		 * case or split out case. Warn if not.
2863 		 */
2864 		WARN_ON_ONCE(hsotg->params.host_dma &&
2865 			     (chan->xfer_dma & 0x3));
2866 		chan->align_buf = 0;
2867 	}
2868 
2869 	if (chan->ep_type == USB_ENDPOINT_XFER_INT ||
2870 	    chan->ep_type == USB_ENDPOINT_XFER_ISOC)
2871 		/*
2872 		 * This value may be modified when the transfer is started
2873 		 * to reflect the actual transfer length
2874 		 */
2875 		chan->multi_count = dwc2_hb_mult(qh->maxp);
2876 
2877 	if (hsotg->params.dma_desc_enable) {
2878 		chan->desc_list_addr = qh->desc_list_dma;
2879 		chan->desc_list_sz = qh->desc_list_sz;
2880 	}
2881 
2882 	dwc2_hc_init(hsotg, chan);
2883 	chan->qh = qh;
2884 
2885 	return 0;
2886 }
2887 
2888 /**
2889  * dwc2_hcd_select_transactions() - Selects transactions from the HCD transfer
2890  * schedule and assigns them to available host channels. Called from the HCD
2891  * interrupt handler functions.
2892  *
2893  * @hsotg: The HCD state structure
2894  *
2895  * Return: The types of new transactions that were assigned to host channels
2896  */
2897 enum dwc2_transaction_type dwc2_hcd_select_transactions(
2898 		struct dwc2_hsotg *hsotg)
2899 {
2900 	enum dwc2_transaction_type ret_val = DWC2_TRANSACTION_NONE;
2901 	struct list_head *qh_ptr;
2902 	struct dwc2_qh *qh;
2903 	int num_channels;
2904 
2905 #ifdef DWC2_DEBUG_SOF
2906 	dev_vdbg(hsotg->dev, "  Select Transactions\n");
2907 #endif
2908 
2909 	/* Process entries in the periodic ready list */
2910 	qh_ptr = hsotg->periodic_sched_ready.next;
2911 	while (qh_ptr != &hsotg->periodic_sched_ready) {
2912 		if (list_empty(&hsotg->free_hc_list))
2913 			break;
2914 		if (hsotg->params.uframe_sched) {
2915 			if (hsotg->available_host_channels <= 1)
2916 				break;
2917 			hsotg->available_host_channels--;
2918 		}
2919 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2920 		if (dwc2_assign_and_init_hc(hsotg, qh))
2921 			break;
2922 
2923 		/*
2924 		 * Move the QH from the periodic ready schedule to the
2925 		 * periodic assigned schedule
2926 		 */
2927 		qh_ptr = qh_ptr->next;
2928 		list_move_tail(&qh->qh_list_entry,
2929 			       &hsotg->periodic_sched_assigned);
2930 		ret_val = DWC2_TRANSACTION_PERIODIC;
2931 	}
2932 
2933 	/*
2934 	 * Process entries in the inactive portion of the non-periodic
2935 	 * schedule. Some free host channels may not be used if they are
2936 	 * reserved for periodic transfers.
2937 	 */
2938 	num_channels = hsotg->params.host_channels;
2939 	qh_ptr = hsotg->non_periodic_sched_inactive.next;
2940 	while (qh_ptr != &hsotg->non_periodic_sched_inactive) {
2941 		if (!hsotg->params.uframe_sched &&
2942 		    hsotg->non_periodic_channels >= num_channels -
2943 						hsotg->periodic_channels)
2944 			break;
2945 		if (list_empty(&hsotg->free_hc_list))
2946 			break;
2947 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
2948 		if (hsotg->params.uframe_sched) {
2949 			if (hsotg->available_host_channels < 1)
2950 				break;
2951 			hsotg->available_host_channels--;
2952 		}
2953 
2954 		if (dwc2_assign_and_init_hc(hsotg, qh))
2955 			break;
2956 
2957 		/*
2958 		 * Move the QH from the non-periodic inactive schedule to the
2959 		 * non-periodic active schedule
2960 		 */
2961 		qh_ptr = qh_ptr->next;
2962 		list_move_tail(&qh->qh_list_entry,
2963 			       &hsotg->non_periodic_sched_active);
2964 
2965 		if (ret_val == DWC2_TRANSACTION_NONE)
2966 			ret_val = DWC2_TRANSACTION_NON_PERIODIC;
2967 		else
2968 			ret_val = DWC2_TRANSACTION_ALL;
2969 
2970 		if (!hsotg->params.uframe_sched)
2971 			hsotg->non_periodic_channels++;
2972 	}
2973 
2974 	return ret_val;
2975 }
2976 
2977 /**
2978  * dwc2_queue_transaction() - Attempts to queue a single transaction request for
2979  * a host channel associated with either a periodic or non-periodic transfer
2980  *
2981  * @hsotg: The HCD state structure
2982  * @chan:  Host channel descriptor associated with either a periodic or
2983  *         non-periodic transfer
2984  * @fifo_dwords_avail: Number of DWORDs available in the periodic Tx FIFO
2985  *                     for periodic transfers or the non-periodic Tx FIFO
2986  *                     for non-periodic transfers
2987  *
2988  * Return: 1 if a request is queued and more requests may be needed to
2989  * complete the transfer, 0 if no more requests are required for this
2990  * transfer, -1 if there is insufficient space in the Tx FIFO
2991  *
2992  * This function assumes that there is space available in the appropriate
2993  * request queue. For an OUT transfer or SETUP transaction in Slave mode,
2994  * it checks whether space is available in the appropriate Tx FIFO.
2995  *
2996  * Must be called with interrupt disabled and spinlock held
2997  */
2998 static int dwc2_queue_transaction(struct dwc2_hsotg *hsotg,
2999 				  struct dwc2_host_chan *chan,
3000 				  u16 fifo_dwords_avail)
3001 {
3002 	int retval = 0;
3003 
3004 	if (chan->do_split)
3005 		/* Put ourselves on the list to keep order straight */
3006 		list_move_tail(&chan->split_order_list_entry,
3007 			       &hsotg->split_order);
3008 
3009 	if (hsotg->params.host_dma) {
3010 		if (hsotg->params.dma_desc_enable) {
3011 			if (!chan->xfer_started ||
3012 			    chan->ep_type == USB_ENDPOINT_XFER_ISOC) {
3013 				dwc2_hcd_start_xfer_ddma(hsotg, chan->qh);
3014 				chan->qh->ping_state = 0;
3015 			}
3016 		} else if (!chan->xfer_started) {
3017 			dwc2_hc_start_transfer(hsotg, chan);
3018 			chan->qh->ping_state = 0;
3019 		}
3020 	} else if (chan->halt_pending) {
3021 		/* Don't queue a request if the channel has been halted */
3022 	} else if (chan->halt_on_queue) {
3023 		dwc2_hc_halt(hsotg, chan, chan->halt_status);
3024 	} else if (chan->do_ping) {
3025 		if (!chan->xfer_started)
3026 			dwc2_hc_start_transfer(hsotg, chan);
3027 	} else if (!chan->ep_is_in ||
3028 		   chan->data_pid_start == DWC2_HC_PID_SETUP) {
3029 		if ((fifo_dwords_avail * 4) >= chan->max_packet) {
3030 			if (!chan->xfer_started) {
3031 				dwc2_hc_start_transfer(hsotg, chan);
3032 				retval = 1;
3033 			} else {
3034 				retval = dwc2_hc_continue_transfer(hsotg, chan);
3035 			}
3036 		} else {
3037 			retval = -1;
3038 		}
3039 	} else {
3040 		if (!chan->xfer_started) {
3041 			dwc2_hc_start_transfer(hsotg, chan);
3042 			retval = 1;
3043 		} else {
3044 			retval = dwc2_hc_continue_transfer(hsotg, chan);
3045 		}
3046 	}
3047 
3048 	return retval;
3049 }
3050 
3051 /*
3052  * Processes periodic channels for the next frame and queues transactions for
3053  * these channels to the DWC_otg controller. After queueing transactions, the
3054  * Periodic Tx FIFO Empty interrupt is enabled if there are more transactions
3055  * to queue as Periodic Tx FIFO or request queue space becomes available.
3056  * Otherwise, the Periodic Tx FIFO Empty interrupt is disabled.
3057  *
3058  * Must be called with interrupt disabled and spinlock held
3059  */
3060 static void dwc2_process_periodic_channels(struct dwc2_hsotg *hsotg)
3061 {
3062 	struct list_head *qh_ptr;
3063 	struct dwc2_qh *qh;
3064 	u32 tx_status;
3065 	u32 fspcavail;
3066 	u32 gintmsk;
3067 	int status;
3068 	bool no_queue_space = false;
3069 	bool no_fifo_space = false;
3070 	u32 qspcavail;
3071 
3072 	/* If empty list then just adjust interrupt enables */
3073 	if (list_empty(&hsotg->periodic_sched_assigned))
3074 		goto exit;
3075 
3076 	if (dbg_perio())
3077 		dev_vdbg(hsotg->dev, "Queue periodic transactions\n");
3078 
3079 	tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3080 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3081 		    TXSTS_QSPCAVAIL_SHIFT;
3082 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3083 		    TXSTS_FSPCAVAIL_SHIFT;
3084 
3085 	if (dbg_perio()) {
3086 		dev_vdbg(hsotg->dev, "  P Tx Req Queue Space Avail (before queue): %d\n",
3087 			 qspcavail);
3088 		dev_vdbg(hsotg->dev, "  P Tx FIFO Space Avail (before queue): %d\n",
3089 			 fspcavail);
3090 	}
3091 
3092 	qh_ptr = hsotg->periodic_sched_assigned.next;
3093 	while (qh_ptr != &hsotg->periodic_sched_assigned) {
3094 		tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
3095 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3096 			    TXSTS_QSPCAVAIL_SHIFT;
3097 		if (qspcavail == 0) {
3098 			no_queue_space = true;
3099 			break;
3100 		}
3101 
3102 		qh = list_entry(qh_ptr, struct dwc2_qh, qh_list_entry);
3103 		if (!qh->channel) {
3104 			qh_ptr = qh_ptr->next;
3105 			continue;
3106 		}
3107 
3108 		/* Make sure EP's TT buffer is clean before queueing qtds */
3109 		if (qh->tt_buffer_dirty) {
3110 			qh_ptr = qh_ptr->next;
3111 			continue;
3112 		}
3113 
3114 		/*
3115 		 * Set a flag if we're queuing high-bandwidth in slave mode.
3116 		 * The flag prevents any halts to get into the request queue in
3117 		 * the middle of multiple high-bandwidth packets getting queued.
3118 		 */
3119 		if (!hsotg->params.host_dma &&
3120 		    qh->channel->multi_count > 1)
3121 			hsotg->queuing_high_bandwidth = 1;
3122 
3123 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3124 			    TXSTS_FSPCAVAIL_SHIFT;
3125 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3126 		if (status < 0) {
3127 			no_fifo_space = true;
3128 			break;
3129 		}
3130 
3131 		/*
3132 		 * In Slave mode, stay on the current transfer until there is
3133 		 * nothing more to do or the high-bandwidth request count is
3134 		 * reached. In DMA mode, only need to queue one request. The
3135 		 * controller automatically handles multiple packets for
3136 		 * high-bandwidth transfers.
3137 		 */
3138 		if (hsotg->params.host_dma || status == 0 ||
3139 		    qh->channel->requests == qh->channel->multi_count) {
3140 			qh_ptr = qh_ptr->next;
3141 			/*
3142 			 * Move the QH from the periodic assigned schedule to
3143 			 * the periodic queued schedule
3144 			 */
3145 			list_move_tail(&qh->qh_list_entry,
3146 				       &hsotg->periodic_sched_queued);
3147 
3148 			/* done queuing high bandwidth */
3149 			hsotg->queuing_high_bandwidth = 0;
3150 		}
3151 	}
3152 
3153 exit:
3154 	if (no_queue_space || no_fifo_space ||
3155 	    (!hsotg->params.host_dma &&
3156 	     !list_empty(&hsotg->periodic_sched_assigned))) {
3157 		/*
3158 		 * May need to queue more transactions as the request
3159 		 * queue or Tx FIFO empties. Enable the periodic Tx
3160 		 * FIFO empty interrupt. (Always use the half-empty
3161 		 * level to ensure that new requests are loaded as
3162 		 * soon as possible.)
3163 		 */
3164 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3165 		if (!(gintmsk & GINTSTS_PTXFEMP)) {
3166 			gintmsk |= GINTSTS_PTXFEMP;
3167 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3168 		}
3169 	} else {
3170 		/*
3171 		 * Disable the Tx FIFO empty interrupt since there are
3172 		 * no more transactions that need to be queued right
3173 		 * now. This function is called from interrupt
3174 		 * handlers to queue more transactions as transfer
3175 		 * states change.
3176 		 */
3177 		gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3178 		if (gintmsk & GINTSTS_PTXFEMP) {
3179 			gintmsk &= ~GINTSTS_PTXFEMP;
3180 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3181 		}
3182 	}
3183 }
3184 
3185 /*
3186  * Processes active non-periodic channels and queues transactions for these
3187  * channels to the DWC_otg controller. After queueing transactions, the NP Tx
3188  * FIFO Empty interrupt is enabled if there are more transactions to queue as
3189  * NP Tx FIFO or request queue space becomes available. Otherwise, the NP Tx
3190  * FIFO Empty interrupt is disabled.
3191  *
3192  * Must be called with interrupt disabled and spinlock held
3193  */
3194 static void dwc2_process_non_periodic_channels(struct dwc2_hsotg *hsotg)
3195 {
3196 	struct list_head *orig_qh_ptr;
3197 	struct dwc2_qh *qh;
3198 	u32 tx_status;
3199 	u32 qspcavail;
3200 	u32 fspcavail;
3201 	u32 gintmsk;
3202 	int status;
3203 	int no_queue_space = 0;
3204 	int no_fifo_space = 0;
3205 	int more_to_do = 0;
3206 
3207 	dev_vdbg(hsotg->dev, "Queue non-periodic transactions\n");
3208 
3209 	tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3210 	qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3211 		    TXSTS_QSPCAVAIL_SHIFT;
3212 	fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3213 		    TXSTS_FSPCAVAIL_SHIFT;
3214 	dev_vdbg(hsotg->dev, "  NP Tx Req Queue Space Avail (before queue): %d\n",
3215 		 qspcavail);
3216 	dev_vdbg(hsotg->dev, "  NP Tx FIFO Space Avail (before queue): %d\n",
3217 		 fspcavail);
3218 
3219 	/*
3220 	 * Keep track of the starting point. Skip over the start-of-list
3221 	 * entry.
3222 	 */
3223 	if (hsotg->non_periodic_qh_ptr == &hsotg->non_periodic_sched_active)
3224 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3225 	orig_qh_ptr = hsotg->non_periodic_qh_ptr;
3226 
3227 	/*
3228 	 * Process once through the active list or until no more space is
3229 	 * available in the request queue or the Tx FIFO
3230 	 */
3231 	do {
3232 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3233 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3234 			    TXSTS_QSPCAVAIL_SHIFT;
3235 		if (!hsotg->params.host_dma && qspcavail == 0) {
3236 			no_queue_space = 1;
3237 			break;
3238 		}
3239 
3240 		qh = list_entry(hsotg->non_periodic_qh_ptr, struct dwc2_qh,
3241 				qh_list_entry);
3242 		if (!qh->channel)
3243 			goto next;
3244 
3245 		/* Make sure EP's TT buffer is clean before queueing qtds */
3246 		if (qh->tt_buffer_dirty)
3247 			goto next;
3248 
3249 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3250 			    TXSTS_FSPCAVAIL_SHIFT;
3251 		status = dwc2_queue_transaction(hsotg, qh->channel, fspcavail);
3252 
3253 		if (status > 0) {
3254 			more_to_do = 1;
3255 		} else if (status < 0) {
3256 			no_fifo_space = 1;
3257 			break;
3258 		}
3259 next:
3260 		/* Advance to next QH, skipping start-of-list entry */
3261 		hsotg->non_periodic_qh_ptr = hsotg->non_periodic_qh_ptr->next;
3262 		if (hsotg->non_periodic_qh_ptr ==
3263 				&hsotg->non_periodic_sched_active)
3264 			hsotg->non_periodic_qh_ptr =
3265 					hsotg->non_periodic_qh_ptr->next;
3266 	} while (hsotg->non_periodic_qh_ptr != orig_qh_ptr);
3267 
3268 	if (!hsotg->params.host_dma) {
3269 		tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
3270 		qspcavail = (tx_status & TXSTS_QSPCAVAIL_MASK) >>
3271 			    TXSTS_QSPCAVAIL_SHIFT;
3272 		fspcavail = (tx_status & TXSTS_FSPCAVAIL_MASK) >>
3273 			    TXSTS_FSPCAVAIL_SHIFT;
3274 		dev_vdbg(hsotg->dev,
3275 			 "  NP Tx Req Queue Space Avail (after queue): %d\n",
3276 			 qspcavail);
3277 		dev_vdbg(hsotg->dev,
3278 			 "  NP Tx FIFO Space Avail (after queue): %d\n",
3279 			 fspcavail);
3280 
3281 		if (more_to_do || no_queue_space || no_fifo_space) {
3282 			/*
3283 			 * May need to queue more transactions as the request
3284 			 * queue or Tx FIFO empties. Enable the non-periodic
3285 			 * Tx FIFO empty interrupt. (Always use the half-empty
3286 			 * level to ensure that new requests are loaded as
3287 			 * soon as possible.)
3288 			 */
3289 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3290 			gintmsk |= GINTSTS_NPTXFEMP;
3291 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3292 		} else {
3293 			/*
3294 			 * Disable the Tx FIFO empty interrupt since there are
3295 			 * no more transactions that need to be queued right
3296 			 * now. This function is called from interrupt
3297 			 * handlers to queue more transactions as transfer
3298 			 * states change.
3299 			 */
3300 			gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3301 			gintmsk &= ~GINTSTS_NPTXFEMP;
3302 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3303 		}
3304 	}
3305 }
3306 
3307 /**
3308  * dwc2_hcd_queue_transactions() - Processes the currently active host channels
3309  * and queues transactions for these channels to the DWC_otg controller. Called
3310  * from the HCD interrupt handler functions.
3311  *
3312  * @hsotg:   The HCD state structure
3313  * @tr_type: The type(s) of transactions to queue (non-periodic, periodic,
3314  *           or both)
3315  *
3316  * Must be called with interrupt disabled and spinlock held
3317  */
3318 void dwc2_hcd_queue_transactions(struct dwc2_hsotg *hsotg,
3319 				 enum dwc2_transaction_type tr_type)
3320 {
3321 #ifdef DWC2_DEBUG_SOF
3322 	dev_vdbg(hsotg->dev, "Queue Transactions\n");
3323 #endif
3324 	/* Process host channels associated with periodic transfers */
3325 	if (tr_type == DWC2_TRANSACTION_PERIODIC ||
3326 	    tr_type == DWC2_TRANSACTION_ALL)
3327 		dwc2_process_periodic_channels(hsotg);
3328 
3329 	/* Process host channels associated with non-periodic transfers */
3330 	if (tr_type == DWC2_TRANSACTION_NON_PERIODIC ||
3331 	    tr_type == DWC2_TRANSACTION_ALL) {
3332 		if (!list_empty(&hsotg->non_periodic_sched_active)) {
3333 			dwc2_process_non_periodic_channels(hsotg);
3334 		} else {
3335 			/*
3336 			 * Ensure NP Tx FIFO empty interrupt is disabled when
3337 			 * there are no non-periodic transfers to process
3338 			 */
3339 			u32 gintmsk = dwc2_readl(hsotg->regs + GINTMSK);
3340 
3341 			gintmsk &= ~GINTSTS_NPTXFEMP;
3342 			dwc2_writel(gintmsk, hsotg->regs + GINTMSK);
3343 		}
3344 	}
3345 }
3346 
3347 static void dwc2_conn_id_status_change(struct work_struct *work)
3348 {
3349 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
3350 						wf_otg);
3351 	u32 count = 0;
3352 	u32 gotgctl;
3353 	unsigned long flags;
3354 
3355 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3356 
3357 	gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3358 	dev_dbg(hsotg->dev, "gotgctl=%0x\n", gotgctl);
3359 	dev_dbg(hsotg->dev, "gotgctl.b.conidsts=%d\n",
3360 		!!(gotgctl & GOTGCTL_CONID_B));
3361 
3362 	/* B-Device connector (Device Mode) */
3363 	if (gotgctl & GOTGCTL_CONID_B) {
3364 		dwc2_vbus_supply_exit(hsotg);
3365 		/* Wait for switch to device mode */
3366 		dev_dbg(hsotg->dev, "connId B\n");
3367 		if (hsotg->bus_suspended) {
3368 			dev_info(hsotg->dev,
3369 				 "Do port resume before switching to device mode\n");
3370 			dwc2_port_resume(hsotg);
3371 		}
3372 		while (!dwc2_is_device_mode(hsotg)) {
3373 			dev_info(hsotg->dev,
3374 				 "Waiting for Peripheral Mode, Mode=%s\n",
3375 				 dwc2_is_host_mode(hsotg) ? "Host" :
3376 				 "Peripheral");
3377 			msleep(20);
3378 			/*
3379 			 * Sometimes the initial GOTGCTRL read is wrong, so
3380 			 * check it again and jump to host mode if that was
3381 			 * the case.
3382 			 */
3383 			gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3384 			if (!(gotgctl & GOTGCTL_CONID_B))
3385 				goto host;
3386 			if (++count > 250)
3387 				break;
3388 		}
3389 		if (count > 250)
3390 			dev_err(hsotg->dev,
3391 				"Connection id status change timed out\n");
3392 		hsotg->op_state = OTG_STATE_B_PERIPHERAL;
3393 		dwc2_core_init(hsotg, false);
3394 		dwc2_enable_global_interrupts(hsotg);
3395 		spin_lock_irqsave(&hsotg->lock, flags);
3396 		dwc2_hsotg_core_init_disconnected(hsotg, false);
3397 		spin_unlock_irqrestore(&hsotg->lock, flags);
3398 		/* Enable ACG feature in device mode,if supported */
3399 		dwc2_enable_acg(hsotg);
3400 		dwc2_hsotg_core_connect(hsotg);
3401 	} else {
3402 host:
3403 		/* A-Device connector (Host Mode) */
3404 		dev_dbg(hsotg->dev, "connId A\n");
3405 		while (!dwc2_is_host_mode(hsotg)) {
3406 			dev_info(hsotg->dev, "Waiting for Host Mode, Mode=%s\n",
3407 				 dwc2_is_host_mode(hsotg) ?
3408 				 "Host" : "Peripheral");
3409 			msleep(20);
3410 			if (++count > 250)
3411 				break;
3412 		}
3413 		if (count > 250)
3414 			dev_err(hsotg->dev,
3415 				"Connection id status change timed out\n");
3416 
3417 		spin_lock_irqsave(&hsotg->lock, flags);
3418 		dwc2_hsotg_disconnect(hsotg);
3419 		spin_unlock_irqrestore(&hsotg->lock, flags);
3420 
3421 		hsotg->op_state = OTG_STATE_A_HOST;
3422 		/* Initialize the Core for Host mode */
3423 		dwc2_core_init(hsotg, false);
3424 		dwc2_enable_global_interrupts(hsotg);
3425 		dwc2_hcd_start(hsotg);
3426 	}
3427 }
3428 
3429 static void dwc2_wakeup_detected(struct timer_list *t)
3430 {
3431 	struct dwc2_hsotg *hsotg = from_timer(hsotg, t, wkp_timer);
3432 	u32 hprt0;
3433 
3434 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3435 
3436 	/*
3437 	 * Clear the Resume after 70ms. (Need 20 ms minimum. Use 70 ms
3438 	 * so that OPT tests pass with all PHYs.)
3439 	 */
3440 	hprt0 = dwc2_read_hprt0(hsotg);
3441 	dev_dbg(hsotg->dev, "Resume: HPRT0=%0x\n", hprt0);
3442 	hprt0 &= ~HPRT0_RES;
3443 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3444 	dev_dbg(hsotg->dev, "Clear Resume: HPRT0=%0x\n",
3445 		dwc2_readl(hsotg->regs + HPRT0));
3446 
3447 	dwc2_hcd_rem_wakeup(hsotg);
3448 	hsotg->bus_suspended = false;
3449 
3450 	/* Change to L0 state */
3451 	hsotg->lx_state = DWC2_L0;
3452 }
3453 
3454 static int dwc2_host_is_b_hnp_enabled(struct dwc2_hsotg *hsotg)
3455 {
3456 	struct usb_hcd *hcd = dwc2_hsotg_to_hcd(hsotg);
3457 
3458 	return hcd->self.b_hnp_enable;
3459 }
3460 
3461 /* Must NOT be called with interrupt disabled or spinlock held */
3462 static void dwc2_port_suspend(struct dwc2_hsotg *hsotg, u16 windex)
3463 {
3464 	unsigned long flags;
3465 	u32 hprt0;
3466 	u32 pcgctl;
3467 	u32 gotgctl;
3468 
3469 	dev_dbg(hsotg->dev, "%s()\n", __func__);
3470 
3471 	spin_lock_irqsave(&hsotg->lock, flags);
3472 
3473 	if (windex == hsotg->otg_port && dwc2_host_is_b_hnp_enabled(hsotg)) {
3474 		gotgctl = dwc2_readl(hsotg->regs + GOTGCTL);
3475 		gotgctl |= GOTGCTL_HSTSETHNPEN;
3476 		dwc2_writel(gotgctl, hsotg->regs + GOTGCTL);
3477 		hsotg->op_state = OTG_STATE_A_SUSPEND;
3478 	}
3479 
3480 	hprt0 = dwc2_read_hprt0(hsotg);
3481 	hprt0 |= HPRT0_SUSP;
3482 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3483 
3484 	hsotg->bus_suspended = true;
3485 
3486 	/*
3487 	 * If power_down is supported, Phy clock will be suspended
3488 	 * after registers are backuped.
3489 	 */
3490 	if (!hsotg->params.power_down) {
3491 		/* Suspend the Phy Clock */
3492 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3493 		pcgctl |= PCGCTL_STOPPCLK;
3494 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3495 		udelay(10);
3496 	}
3497 
3498 	/* For HNP the bus must be suspended for at least 200ms */
3499 	if (dwc2_host_is_b_hnp_enabled(hsotg)) {
3500 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3501 		pcgctl &= ~PCGCTL_STOPPCLK;
3502 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3503 
3504 		spin_unlock_irqrestore(&hsotg->lock, flags);
3505 
3506 		msleep(200);
3507 	} else {
3508 		spin_unlock_irqrestore(&hsotg->lock, flags);
3509 	}
3510 }
3511 
3512 /* Must NOT be called with interrupt disabled or spinlock held */
3513 static void dwc2_port_resume(struct dwc2_hsotg *hsotg)
3514 {
3515 	unsigned long flags;
3516 	u32 hprt0;
3517 	u32 pcgctl;
3518 
3519 	spin_lock_irqsave(&hsotg->lock, flags);
3520 
3521 	/*
3522 	 * If power_down is supported, Phy clock is already resumed
3523 	 * after registers restore.
3524 	 */
3525 	if (!hsotg->params.power_down) {
3526 		pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3527 		pcgctl &= ~PCGCTL_STOPPCLK;
3528 		dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3529 		spin_unlock_irqrestore(&hsotg->lock, flags);
3530 		msleep(20);
3531 		spin_lock_irqsave(&hsotg->lock, flags);
3532 	}
3533 
3534 	hprt0 = dwc2_read_hprt0(hsotg);
3535 	hprt0 |= HPRT0_RES;
3536 	hprt0 &= ~HPRT0_SUSP;
3537 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3538 	spin_unlock_irqrestore(&hsotg->lock, flags);
3539 
3540 	msleep(USB_RESUME_TIMEOUT);
3541 
3542 	spin_lock_irqsave(&hsotg->lock, flags);
3543 	hprt0 = dwc2_read_hprt0(hsotg);
3544 	hprt0 &= ~(HPRT0_RES | HPRT0_SUSP);
3545 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
3546 	hsotg->bus_suspended = false;
3547 	spin_unlock_irqrestore(&hsotg->lock, flags);
3548 }
3549 
3550 /* Handles hub class-specific requests */
3551 static int dwc2_hcd_hub_control(struct dwc2_hsotg *hsotg, u16 typereq,
3552 				u16 wvalue, u16 windex, char *buf, u16 wlength)
3553 {
3554 	struct usb_hub_descriptor *hub_desc;
3555 	int retval = 0;
3556 	u32 hprt0;
3557 	u32 port_status;
3558 	u32 speed;
3559 	u32 pcgctl;
3560 
3561 	switch (typereq) {
3562 	case ClearHubFeature:
3563 		dev_dbg(hsotg->dev, "ClearHubFeature %1xh\n", wvalue);
3564 
3565 		switch (wvalue) {
3566 		case C_HUB_LOCAL_POWER:
3567 		case C_HUB_OVER_CURRENT:
3568 			/* Nothing required here */
3569 			break;
3570 
3571 		default:
3572 			retval = -EINVAL;
3573 			dev_err(hsotg->dev,
3574 				"ClearHubFeature request %1xh unknown\n",
3575 				wvalue);
3576 		}
3577 		break;
3578 
3579 	case ClearPortFeature:
3580 		if (wvalue != USB_PORT_FEAT_L1)
3581 			if (!windex || windex > 1)
3582 				goto error;
3583 		switch (wvalue) {
3584 		case USB_PORT_FEAT_ENABLE:
3585 			dev_dbg(hsotg->dev,
3586 				"ClearPortFeature USB_PORT_FEAT_ENABLE\n");
3587 			hprt0 = dwc2_read_hprt0(hsotg);
3588 			hprt0 |= HPRT0_ENA;
3589 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3590 			break;
3591 
3592 		case USB_PORT_FEAT_SUSPEND:
3593 			dev_dbg(hsotg->dev,
3594 				"ClearPortFeature USB_PORT_FEAT_SUSPEND\n");
3595 
3596 			if (hsotg->bus_suspended) {
3597 				if (hsotg->hibernated)
3598 					dwc2_exit_hibernation(hsotg, 0, 0, 1);
3599 				else
3600 					dwc2_port_resume(hsotg);
3601 			}
3602 			break;
3603 
3604 		case USB_PORT_FEAT_POWER:
3605 			dev_dbg(hsotg->dev,
3606 				"ClearPortFeature USB_PORT_FEAT_POWER\n");
3607 			hprt0 = dwc2_read_hprt0(hsotg);
3608 			hprt0 &= ~HPRT0_PWR;
3609 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3610 			break;
3611 
3612 		case USB_PORT_FEAT_INDICATOR:
3613 			dev_dbg(hsotg->dev,
3614 				"ClearPortFeature USB_PORT_FEAT_INDICATOR\n");
3615 			/* Port indicator not supported */
3616 			break;
3617 
3618 		case USB_PORT_FEAT_C_CONNECTION:
3619 			/*
3620 			 * Clears driver's internal Connect Status Change flag
3621 			 */
3622 			dev_dbg(hsotg->dev,
3623 				"ClearPortFeature USB_PORT_FEAT_C_CONNECTION\n");
3624 			hsotg->flags.b.port_connect_status_change = 0;
3625 			break;
3626 
3627 		case USB_PORT_FEAT_C_RESET:
3628 			/* Clears driver's internal Port Reset Change flag */
3629 			dev_dbg(hsotg->dev,
3630 				"ClearPortFeature USB_PORT_FEAT_C_RESET\n");
3631 			hsotg->flags.b.port_reset_change = 0;
3632 			break;
3633 
3634 		case USB_PORT_FEAT_C_ENABLE:
3635 			/*
3636 			 * Clears the driver's internal Port Enable/Disable
3637 			 * Change flag
3638 			 */
3639 			dev_dbg(hsotg->dev,
3640 				"ClearPortFeature USB_PORT_FEAT_C_ENABLE\n");
3641 			hsotg->flags.b.port_enable_change = 0;
3642 			break;
3643 
3644 		case USB_PORT_FEAT_C_SUSPEND:
3645 			/*
3646 			 * Clears the driver's internal Port Suspend Change
3647 			 * flag, which is set when resume signaling on the host
3648 			 * port is complete
3649 			 */
3650 			dev_dbg(hsotg->dev,
3651 				"ClearPortFeature USB_PORT_FEAT_C_SUSPEND\n");
3652 			hsotg->flags.b.port_suspend_change = 0;
3653 			break;
3654 
3655 		case USB_PORT_FEAT_C_PORT_L1:
3656 			dev_dbg(hsotg->dev,
3657 				"ClearPortFeature USB_PORT_FEAT_C_PORT_L1\n");
3658 			hsotg->flags.b.port_l1_change = 0;
3659 			break;
3660 
3661 		case USB_PORT_FEAT_C_OVER_CURRENT:
3662 			dev_dbg(hsotg->dev,
3663 				"ClearPortFeature USB_PORT_FEAT_C_OVER_CURRENT\n");
3664 			hsotg->flags.b.port_over_current_change = 0;
3665 			break;
3666 
3667 		default:
3668 			retval = -EINVAL;
3669 			dev_err(hsotg->dev,
3670 				"ClearPortFeature request %1xh unknown or unsupported\n",
3671 				wvalue);
3672 		}
3673 		break;
3674 
3675 	case GetHubDescriptor:
3676 		dev_dbg(hsotg->dev, "GetHubDescriptor\n");
3677 		hub_desc = (struct usb_hub_descriptor *)buf;
3678 		hub_desc->bDescLength = 9;
3679 		hub_desc->bDescriptorType = USB_DT_HUB;
3680 		hub_desc->bNbrPorts = 1;
3681 		hub_desc->wHubCharacteristics =
3682 			cpu_to_le16(HUB_CHAR_COMMON_LPSM |
3683 				    HUB_CHAR_INDV_PORT_OCPM);
3684 		hub_desc->bPwrOn2PwrGood = 1;
3685 		hub_desc->bHubContrCurrent = 0;
3686 		hub_desc->u.hs.DeviceRemovable[0] = 0;
3687 		hub_desc->u.hs.DeviceRemovable[1] = 0xff;
3688 		break;
3689 
3690 	case GetHubStatus:
3691 		dev_dbg(hsotg->dev, "GetHubStatus\n");
3692 		memset(buf, 0, 4);
3693 		break;
3694 
3695 	case GetPortStatus:
3696 		dev_vdbg(hsotg->dev,
3697 			 "GetPortStatus wIndex=0x%04x flags=0x%08x\n", windex,
3698 			 hsotg->flags.d32);
3699 		if (!windex || windex > 1)
3700 			goto error;
3701 
3702 		port_status = 0;
3703 		if (hsotg->flags.b.port_connect_status_change)
3704 			port_status |= USB_PORT_STAT_C_CONNECTION << 16;
3705 		if (hsotg->flags.b.port_enable_change)
3706 			port_status |= USB_PORT_STAT_C_ENABLE << 16;
3707 		if (hsotg->flags.b.port_suspend_change)
3708 			port_status |= USB_PORT_STAT_C_SUSPEND << 16;
3709 		if (hsotg->flags.b.port_l1_change)
3710 			port_status |= USB_PORT_STAT_C_L1 << 16;
3711 		if (hsotg->flags.b.port_reset_change)
3712 			port_status |= USB_PORT_STAT_C_RESET << 16;
3713 		if (hsotg->flags.b.port_over_current_change) {
3714 			dev_warn(hsotg->dev, "Overcurrent change detected\n");
3715 			port_status |= USB_PORT_STAT_C_OVERCURRENT << 16;
3716 		}
3717 
3718 		if (!hsotg->flags.b.port_connect_status) {
3719 			/*
3720 			 * The port is disconnected, which means the core is
3721 			 * either in device mode or it soon will be. Just
3722 			 * return 0's for the remainder of the port status
3723 			 * since the port register can't be read if the core
3724 			 * is in device mode.
3725 			 */
3726 			*(__le32 *)buf = cpu_to_le32(port_status);
3727 			break;
3728 		}
3729 
3730 		hprt0 = dwc2_readl(hsotg->regs + HPRT0);
3731 		dev_vdbg(hsotg->dev, "  HPRT0: 0x%08x\n", hprt0);
3732 
3733 		if (hprt0 & HPRT0_CONNSTS)
3734 			port_status |= USB_PORT_STAT_CONNECTION;
3735 		if (hprt0 & HPRT0_ENA)
3736 			port_status |= USB_PORT_STAT_ENABLE;
3737 		if (hprt0 & HPRT0_SUSP)
3738 			port_status |= USB_PORT_STAT_SUSPEND;
3739 		if (hprt0 & HPRT0_OVRCURRACT)
3740 			port_status |= USB_PORT_STAT_OVERCURRENT;
3741 		if (hprt0 & HPRT0_RST)
3742 			port_status |= USB_PORT_STAT_RESET;
3743 		if (hprt0 & HPRT0_PWR)
3744 			port_status |= USB_PORT_STAT_POWER;
3745 
3746 		speed = (hprt0 & HPRT0_SPD_MASK) >> HPRT0_SPD_SHIFT;
3747 		if (speed == HPRT0_SPD_HIGH_SPEED)
3748 			port_status |= USB_PORT_STAT_HIGH_SPEED;
3749 		else if (speed == HPRT0_SPD_LOW_SPEED)
3750 			port_status |= USB_PORT_STAT_LOW_SPEED;
3751 
3752 		if (hprt0 & HPRT0_TSTCTL_MASK)
3753 			port_status |= USB_PORT_STAT_TEST;
3754 		/* USB_PORT_FEAT_INDICATOR unsupported always 0 */
3755 
3756 		if (hsotg->params.dma_desc_fs_enable) {
3757 			/*
3758 			 * Enable descriptor DMA only if a full speed
3759 			 * device is connected.
3760 			 */
3761 			if (hsotg->new_connection &&
3762 			    ((port_status &
3763 			      (USB_PORT_STAT_CONNECTION |
3764 			       USB_PORT_STAT_HIGH_SPEED |
3765 			       USB_PORT_STAT_LOW_SPEED)) ==
3766 			       USB_PORT_STAT_CONNECTION)) {
3767 				u32 hcfg;
3768 
3769 				dev_info(hsotg->dev, "Enabling descriptor DMA mode\n");
3770 				hsotg->params.dma_desc_enable = true;
3771 				hcfg = dwc2_readl(hsotg->regs + HCFG);
3772 				hcfg |= HCFG_DESCDMA;
3773 				dwc2_writel(hcfg, hsotg->regs + HCFG);
3774 				hsotg->new_connection = false;
3775 			}
3776 		}
3777 
3778 		dev_vdbg(hsotg->dev, "port_status=%08x\n", port_status);
3779 		*(__le32 *)buf = cpu_to_le32(port_status);
3780 		break;
3781 
3782 	case SetHubFeature:
3783 		dev_dbg(hsotg->dev, "SetHubFeature\n");
3784 		/* No HUB features supported */
3785 		break;
3786 
3787 	case SetPortFeature:
3788 		dev_dbg(hsotg->dev, "SetPortFeature\n");
3789 		if (wvalue != USB_PORT_FEAT_TEST && (!windex || windex > 1))
3790 			goto error;
3791 
3792 		if (!hsotg->flags.b.port_connect_status) {
3793 			/*
3794 			 * The port is disconnected, which means the core is
3795 			 * either in device mode or it soon will be. Just
3796 			 * return without doing anything since the port
3797 			 * register can't be written if the core is in device
3798 			 * mode.
3799 			 */
3800 			break;
3801 		}
3802 
3803 		switch (wvalue) {
3804 		case USB_PORT_FEAT_SUSPEND:
3805 			dev_dbg(hsotg->dev,
3806 				"SetPortFeature - USB_PORT_FEAT_SUSPEND\n");
3807 			if (windex != hsotg->otg_port)
3808 				goto error;
3809 			if (hsotg->params.power_down == 2)
3810 				dwc2_enter_hibernation(hsotg, 1);
3811 			else
3812 				dwc2_port_suspend(hsotg, windex);
3813 			break;
3814 
3815 		case USB_PORT_FEAT_POWER:
3816 			dev_dbg(hsotg->dev,
3817 				"SetPortFeature - USB_PORT_FEAT_POWER\n");
3818 			hprt0 = dwc2_read_hprt0(hsotg);
3819 			hprt0 |= HPRT0_PWR;
3820 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3821 			break;
3822 
3823 		case USB_PORT_FEAT_RESET:
3824 			if (hsotg->params.power_down == 2 &&
3825 			    hsotg->hibernated)
3826 				dwc2_exit_hibernation(hsotg, 0, 1, 1);
3827 			hprt0 = dwc2_read_hprt0(hsotg);
3828 			dev_dbg(hsotg->dev,
3829 				"SetPortFeature - USB_PORT_FEAT_RESET\n");
3830 			pcgctl = dwc2_readl(hsotg->regs + PCGCTL);
3831 			pcgctl &= ~(PCGCTL_ENBL_SLEEP_GATING | PCGCTL_STOPPCLK);
3832 			dwc2_writel(pcgctl, hsotg->regs + PCGCTL);
3833 			/* ??? Original driver does this */
3834 			dwc2_writel(0, hsotg->regs + PCGCTL);
3835 
3836 			hprt0 = dwc2_read_hprt0(hsotg);
3837 			/* Clear suspend bit if resetting from suspend state */
3838 			hprt0 &= ~HPRT0_SUSP;
3839 
3840 			/*
3841 			 * When B-Host the Port reset bit is set in the Start
3842 			 * HCD Callback function, so that the reset is started
3843 			 * within 1ms of the HNP success interrupt
3844 			 */
3845 			if (!dwc2_hcd_is_b_host(hsotg)) {
3846 				hprt0 |= HPRT0_PWR | HPRT0_RST;
3847 				dev_dbg(hsotg->dev,
3848 					"In host mode, hprt0=%08x\n", hprt0);
3849 				dwc2_writel(hprt0, hsotg->regs + HPRT0);
3850 			}
3851 
3852 			/* Clear reset bit in 10ms (FS/LS) or 50ms (HS) */
3853 			msleep(50);
3854 			hprt0 &= ~HPRT0_RST;
3855 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3856 			hsotg->lx_state = DWC2_L0; /* Now back to On state */
3857 			break;
3858 
3859 		case USB_PORT_FEAT_INDICATOR:
3860 			dev_dbg(hsotg->dev,
3861 				"SetPortFeature - USB_PORT_FEAT_INDICATOR\n");
3862 			/* Not supported */
3863 			break;
3864 
3865 		case USB_PORT_FEAT_TEST:
3866 			hprt0 = dwc2_read_hprt0(hsotg);
3867 			dev_dbg(hsotg->dev,
3868 				"SetPortFeature - USB_PORT_FEAT_TEST\n");
3869 			hprt0 &= ~HPRT0_TSTCTL_MASK;
3870 			hprt0 |= (windex >> 8) << HPRT0_TSTCTL_SHIFT;
3871 			dwc2_writel(hprt0, hsotg->regs + HPRT0);
3872 			break;
3873 
3874 		default:
3875 			retval = -EINVAL;
3876 			dev_err(hsotg->dev,
3877 				"SetPortFeature %1xh unknown or unsupported\n",
3878 				wvalue);
3879 			break;
3880 		}
3881 		break;
3882 
3883 	default:
3884 error:
3885 		retval = -EINVAL;
3886 		dev_dbg(hsotg->dev,
3887 			"Unknown hub control request: %1xh wIndex: %1xh wValue: %1xh\n",
3888 			typereq, windex, wvalue);
3889 		break;
3890 	}
3891 
3892 	return retval;
3893 }
3894 
3895 static int dwc2_hcd_is_status_changed(struct dwc2_hsotg *hsotg, int port)
3896 {
3897 	int retval;
3898 
3899 	if (port != 1)
3900 		return -EINVAL;
3901 
3902 	retval = (hsotg->flags.b.port_connect_status_change ||
3903 		  hsotg->flags.b.port_reset_change ||
3904 		  hsotg->flags.b.port_enable_change ||
3905 		  hsotg->flags.b.port_suspend_change ||
3906 		  hsotg->flags.b.port_over_current_change);
3907 
3908 	if (retval) {
3909 		dev_dbg(hsotg->dev,
3910 			"DWC OTG HCD HUB STATUS DATA: Root port status changed\n");
3911 		dev_dbg(hsotg->dev, "  port_connect_status_change: %d\n",
3912 			hsotg->flags.b.port_connect_status_change);
3913 		dev_dbg(hsotg->dev, "  port_reset_change: %d\n",
3914 			hsotg->flags.b.port_reset_change);
3915 		dev_dbg(hsotg->dev, "  port_enable_change: %d\n",
3916 			hsotg->flags.b.port_enable_change);
3917 		dev_dbg(hsotg->dev, "  port_suspend_change: %d\n",
3918 			hsotg->flags.b.port_suspend_change);
3919 		dev_dbg(hsotg->dev, "  port_over_current_change: %d\n",
3920 			hsotg->flags.b.port_over_current_change);
3921 	}
3922 
3923 	return retval;
3924 }
3925 
3926 int dwc2_hcd_get_frame_number(struct dwc2_hsotg *hsotg)
3927 {
3928 	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3929 
3930 #ifdef DWC2_DEBUG_SOF
3931 	dev_vdbg(hsotg->dev, "DWC OTG HCD GET FRAME NUMBER %d\n",
3932 		 (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT);
3933 #endif
3934 	return (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3935 }
3936 
3937 int dwc2_hcd_get_future_frame_number(struct dwc2_hsotg *hsotg, int us)
3938 {
3939 	u32 hprt = dwc2_readl(hsotg->regs + HPRT0);
3940 	u32 hfir = dwc2_readl(hsotg->regs + HFIR);
3941 	u32 hfnum = dwc2_readl(hsotg->regs + HFNUM);
3942 	unsigned int us_per_frame;
3943 	unsigned int frame_number;
3944 	unsigned int remaining;
3945 	unsigned int interval;
3946 	unsigned int phy_clks;
3947 
3948 	/* High speed has 125 us per (micro) frame; others are 1 ms per */
3949 	us_per_frame = (hprt & HPRT0_SPD_MASK) ? 1000 : 125;
3950 
3951 	/* Extract fields */
3952 	frame_number = (hfnum & HFNUM_FRNUM_MASK) >> HFNUM_FRNUM_SHIFT;
3953 	remaining = (hfnum & HFNUM_FRREM_MASK) >> HFNUM_FRREM_SHIFT;
3954 	interval = (hfir & HFIR_FRINT_MASK) >> HFIR_FRINT_SHIFT;
3955 
3956 	/*
3957 	 * Number of phy clocks since the last tick of the frame number after
3958 	 * "us" has passed.
3959 	 */
3960 	phy_clks = (interval - remaining) +
3961 		   DIV_ROUND_UP(interval * us, us_per_frame);
3962 
3963 	return dwc2_frame_num_inc(frame_number, phy_clks / interval);
3964 }
3965 
3966 int dwc2_hcd_is_b_host(struct dwc2_hsotg *hsotg)
3967 {
3968 	return hsotg->op_state == OTG_STATE_B_HOST;
3969 }
3970 
3971 static struct dwc2_hcd_urb *dwc2_hcd_urb_alloc(struct dwc2_hsotg *hsotg,
3972 					       int iso_desc_count,
3973 					       gfp_t mem_flags)
3974 {
3975 	struct dwc2_hcd_urb *urb;
3976 	u32 size = sizeof(*urb) + iso_desc_count *
3977 		   sizeof(struct dwc2_hcd_iso_packet_desc);
3978 
3979 	urb = kzalloc(size, mem_flags);
3980 	if (urb)
3981 		urb->packet_count = iso_desc_count;
3982 	return urb;
3983 }
3984 
3985 static void dwc2_hcd_urb_set_pipeinfo(struct dwc2_hsotg *hsotg,
3986 				      struct dwc2_hcd_urb *urb, u8 dev_addr,
3987 				      u8 ep_num, u8 ep_type, u8 ep_dir, u16 mps)
3988 {
3989 	if (dbg_perio() ||
3990 	    ep_type == USB_ENDPOINT_XFER_BULK ||
3991 	    ep_type == USB_ENDPOINT_XFER_CONTROL)
3992 		dev_vdbg(hsotg->dev,
3993 			 "addr=%d, ep_num=%d, ep_dir=%1x, ep_type=%1x, mps=%d\n",
3994 			 dev_addr, ep_num, ep_dir, ep_type, mps);
3995 	urb->pipe_info.dev_addr = dev_addr;
3996 	urb->pipe_info.ep_num = ep_num;
3997 	urb->pipe_info.pipe_type = ep_type;
3998 	urb->pipe_info.pipe_dir = ep_dir;
3999 	urb->pipe_info.mps = mps;
4000 }
4001 
4002 /*
4003  * NOTE: This function will be removed once the peripheral controller code
4004  * is integrated and the driver is stable
4005  */
4006 void dwc2_hcd_dump_state(struct dwc2_hsotg *hsotg)
4007 {
4008 #ifdef DEBUG
4009 	struct dwc2_host_chan *chan;
4010 	struct dwc2_hcd_urb *urb;
4011 	struct dwc2_qtd *qtd;
4012 	int num_channels;
4013 	u32 np_tx_status;
4014 	u32 p_tx_status;
4015 	int i;
4016 
4017 	num_channels = hsotg->params.host_channels;
4018 	dev_dbg(hsotg->dev, "\n");
4019 	dev_dbg(hsotg->dev,
4020 		"************************************************************\n");
4021 	dev_dbg(hsotg->dev, "HCD State:\n");
4022 	dev_dbg(hsotg->dev, "  Num channels: %d\n", num_channels);
4023 
4024 	for (i = 0; i < num_channels; i++) {
4025 		chan = hsotg->hc_ptr_array[i];
4026 		dev_dbg(hsotg->dev, "  Channel %d:\n", i);
4027 		dev_dbg(hsotg->dev,
4028 			"    dev_addr: %d, ep_num: %d, ep_is_in: %d\n",
4029 			chan->dev_addr, chan->ep_num, chan->ep_is_in);
4030 		dev_dbg(hsotg->dev, "    speed: %d\n", chan->speed);
4031 		dev_dbg(hsotg->dev, "    ep_type: %d\n", chan->ep_type);
4032 		dev_dbg(hsotg->dev, "    max_packet: %d\n", chan->max_packet);
4033 		dev_dbg(hsotg->dev, "    data_pid_start: %d\n",
4034 			chan->data_pid_start);
4035 		dev_dbg(hsotg->dev, "    multi_count: %d\n", chan->multi_count);
4036 		dev_dbg(hsotg->dev, "    xfer_started: %d\n",
4037 			chan->xfer_started);
4038 		dev_dbg(hsotg->dev, "    xfer_buf: %p\n", chan->xfer_buf);
4039 		dev_dbg(hsotg->dev, "    xfer_dma: %08lx\n",
4040 			(unsigned long)chan->xfer_dma);
4041 		dev_dbg(hsotg->dev, "    xfer_len: %d\n", chan->xfer_len);
4042 		dev_dbg(hsotg->dev, "    xfer_count: %d\n", chan->xfer_count);
4043 		dev_dbg(hsotg->dev, "    halt_on_queue: %d\n",
4044 			chan->halt_on_queue);
4045 		dev_dbg(hsotg->dev, "    halt_pending: %d\n",
4046 			chan->halt_pending);
4047 		dev_dbg(hsotg->dev, "    halt_status: %d\n", chan->halt_status);
4048 		dev_dbg(hsotg->dev, "    do_split: %d\n", chan->do_split);
4049 		dev_dbg(hsotg->dev, "    complete_split: %d\n",
4050 			chan->complete_split);
4051 		dev_dbg(hsotg->dev, "    hub_addr: %d\n", chan->hub_addr);
4052 		dev_dbg(hsotg->dev, "    hub_port: %d\n", chan->hub_port);
4053 		dev_dbg(hsotg->dev, "    xact_pos: %d\n", chan->xact_pos);
4054 		dev_dbg(hsotg->dev, "    requests: %d\n", chan->requests);
4055 		dev_dbg(hsotg->dev, "    qh: %p\n", chan->qh);
4056 
4057 		if (chan->xfer_started) {
4058 			u32 hfnum, hcchar, hctsiz, hcint, hcintmsk;
4059 
4060 			hfnum = dwc2_readl(hsotg->regs + HFNUM);
4061 			hcchar = dwc2_readl(hsotg->regs + HCCHAR(i));
4062 			hctsiz = dwc2_readl(hsotg->regs + HCTSIZ(i));
4063 			hcint = dwc2_readl(hsotg->regs + HCINT(i));
4064 			hcintmsk = dwc2_readl(hsotg->regs + HCINTMSK(i));
4065 			dev_dbg(hsotg->dev, "    hfnum: 0x%08x\n", hfnum);
4066 			dev_dbg(hsotg->dev, "    hcchar: 0x%08x\n", hcchar);
4067 			dev_dbg(hsotg->dev, "    hctsiz: 0x%08x\n", hctsiz);
4068 			dev_dbg(hsotg->dev, "    hcint: 0x%08x\n", hcint);
4069 			dev_dbg(hsotg->dev, "    hcintmsk: 0x%08x\n", hcintmsk);
4070 		}
4071 
4072 		if (!(chan->xfer_started && chan->qh))
4073 			continue;
4074 
4075 		list_for_each_entry(qtd, &chan->qh->qtd_list, qtd_list_entry) {
4076 			if (!qtd->in_process)
4077 				break;
4078 			urb = qtd->urb;
4079 			dev_dbg(hsotg->dev, "    URB Info:\n");
4080 			dev_dbg(hsotg->dev, "      qtd: %p, urb: %p\n",
4081 				qtd, urb);
4082 			if (urb) {
4083 				dev_dbg(hsotg->dev,
4084 					"      Dev: %d, EP: %d %s\n",
4085 					dwc2_hcd_get_dev_addr(&urb->pipe_info),
4086 					dwc2_hcd_get_ep_num(&urb->pipe_info),
4087 					dwc2_hcd_is_pipe_in(&urb->pipe_info) ?
4088 					"IN" : "OUT");
4089 				dev_dbg(hsotg->dev,
4090 					"      Max packet size: %d\n",
4091 					dwc2_hcd_get_mps(&urb->pipe_info));
4092 				dev_dbg(hsotg->dev,
4093 					"      transfer_buffer: %p\n",
4094 					urb->buf);
4095 				dev_dbg(hsotg->dev,
4096 					"      transfer_dma: %08lx\n",
4097 					(unsigned long)urb->dma);
4098 				dev_dbg(hsotg->dev,
4099 					"      transfer_buffer_length: %d\n",
4100 					urb->length);
4101 				dev_dbg(hsotg->dev, "      actual_length: %d\n",
4102 					urb->actual_length);
4103 			}
4104 		}
4105 	}
4106 
4107 	dev_dbg(hsotg->dev, "  non_periodic_channels: %d\n",
4108 		hsotg->non_periodic_channels);
4109 	dev_dbg(hsotg->dev, "  periodic_channels: %d\n",
4110 		hsotg->periodic_channels);
4111 	dev_dbg(hsotg->dev, "  periodic_usecs: %d\n", hsotg->periodic_usecs);
4112 	np_tx_status = dwc2_readl(hsotg->regs + GNPTXSTS);
4113 	dev_dbg(hsotg->dev, "  NP Tx Req Queue Space Avail: %d\n",
4114 		(np_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4115 	dev_dbg(hsotg->dev, "  NP Tx FIFO Space Avail: %d\n",
4116 		(np_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4117 	p_tx_status = dwc2_readl(hsotg->regs + HPTXSTS);
4118 	dev_dbg(hsotg->dev, "  P Tx Req Queue Space Avail: %d\n",
4119 		(p_tx_status & TXSTS_QSPCAVAIL_MASK) >> TXSTS_QSPCAVAIL_SHIFT);
4120 	dev_dbg(hsotg->dev, "  P Tx FIFO Space Avail: %d\n",
4121 		(p_tx_status & TXSTS_FSPCAVAIL_MASK) >> TXSTS_FSPCAVAIL_SHIFT);
4122 	dwc2_dump_global_registers(hsotg);
4123 	dwc2_dump_host_registers(hsotg);
4124 	dev_dbg(hsotg->dev,
4125 		"************************************************************\n");
4126 	dev_dbg(hsotg->dev, "\n");
4127 #endif
4128 }
4129 
4130 struct wrapper_priv_data {
4131 	struct dwc2_hsotg *hsotg;
4132 };
4133 
4134 /* Gets the dwc2_hsotg from a usb_hcd */
4135 static struct dwc2_hsotg *dwc2_hcd_to_hsotg(struct usb_hcd *hcd)
4136 {
4137 	struct wrapper_priv_data *p;
4138 
4139 	p = (struct wrapper_priv_data *)&hcd->hcd_priv;
4140 	return p->hsotg;
4141 }
4142 
4143 /**
4144  * dwc2_host_get_tt_info() - Get the dwc2_tt associated with context
4145  *
4146  * This will get the dwc2_tt structure (and ttport) associated with the given
4147  * context (which is really just a struct urb pointer).
4148  *
4149  * The first time this is called for a given TT we allocate memory for our
4150  * structure.  When everyone is done and has called dwc2_host_put_tt_info()
4151  * then the refcount for the structure will go to 0 and we'll free it.
4152  *
4153  * @hsotg:     The HCD state structure for the DWC OTG controller.
4154  * @context:   The priv pointer from a struct dwc2_hcd_urb.
4155  * @mem_flags: Flags for allocating memory.
4156  * @ttport:    We'll return this device's port number here.  That's used to
4157  *             reference into the bitmap if we're on a multi_tt hub.
4158  *
4159  * Return: a pointer to a struct dwc2_tt.  Don't forget to call
4160  *         dwc2_host_put_tt_info()!  Returns NULL upon memory alloc failure.
4161  */
4162 
4163 struct dwc2_tt *dwc2_host_get_tt_info(struct dwc2_hsotg *hsotg, void *context,
4164 				      gfp_t mem_flags, int *ttport)
4165 {
4166 	struct urb *urb = context;
4167 	struct dwc2_tt *dwc_tt = NULL;
4168 
4169 	if (urb->dev->tt) {
4170 		*ttport = urb->dev->ttport;
4171 
4172 		dwc_tt = urb->dev->tt->hcpriv;
4173 		if (!dwc_tt) {
4174 			size_t bitmap_size;
4175 
4176 			/*
4177 			 * For single_tt we need one schedule.  For multi_tt
4178 			 * we need one per port.
4179 			 */
4180 			bitmap_size = DWC2_ELEMENTS_PER_LS_BITMAP *
4181 				      sizeof(dwc_tt->periodic_bitmaps[0]);
4182 			if (urb->dev->tt->multi)
4183 				bitmap_size *= urb->dev->tt->hub->maxchild;
4184 
4185 			dwc_tt = kzalloc(sizeof(*dwc_tt) + bitmap_size,
4186 					 mem_flags);
4187 			if (!dwc_tt)
4188 				return NULL;
4189 
4190 			dwc_tt->usb_tt = urb->dev->tt;
4191 			dwc_tt->usb_tt->hcpriv = dwc_tt;
4192 		}
4193 
4194 		dwc_tt->refcount++;
4195 	}
4196 
4197 	return dwc_tt;
4198 }
4199 
4200 /**
4201  * dwc2_host_put_tt_info() - Put the dwc2_tt from dwc2_host_get_tt_info()
4202  *
4203  * Frees resources allocated by dwc2_host_get_tt_info() if all current holders
4204  * of the structure are done.
4205  *
4206  * It's OK to call this with NULL.
4207  *
4208  * @hsotg:     The HCD state structure for the DWC OTG controller.
4209  * @dwc_tt:    The pointer returned by dwc2_host_get_tt_info.
4210  */
4211 void dwc2_host_put_tt_info(struct dwc2_hsotg *hsotg, struct dwc2_tt *dwc_tt)
4212 {
4213 	/* Model kfree and make put of NULL a no-op */
4214 	if (!dwc_tt)
4215 		return;
4216 
4217 	WARN_ON(dwc_tt->refcount < 1);
4218 
4219 	dwc_tt->refcount--;
4220 	if (!dwc_tt->refcount) {
4221 		dwc_tt->usb_tt->hcpriv = NULL;
4222 		kfree(dwc_tt);
4223 	}
4224 }
4225 
4226 int dwc2_host_get_speed(struct dwc2_hsotg *hsotg, void *context)
4227 {
4228 	struct urb *urb = context;
4229 
4230 	return urb->dev->speed;
4231 }
4232 
4233 static void dwc2_allocate_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4234 					struct urb *urb)
4235 {
4236 	struct usb_bus *bus = hcd_to_bus(hcd);
4237 
4238 	if (urb->interval)
4239 		bus->bandwidth_allocated += bw / urb->interval;
4240 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4241 		bus->bandwidth_isoc_reqs++;
4242 	else
4243 		bus->bandwidth_int_reqs++;
4244 }
4245 
4246 static void dwc2_free_bus_bandwidth(struct usb_hcd *hcd, u16 bw,
4247 				    struct urb *urb)
4248 {
4249 	struct usb_bus *bus = hcd_to_bus(hcd);
4250 
4251 	if (urb->interval)
4252 		bus->bandwidth_allocated -= bw / urb->interval;
4253 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS)
4254 		bus->bandwidth_isoc_reqs--;
4255 	else
4256 		bus->bandwidth_int_reqs--;
4257 }
4258 
4259 /*
4260  * Sets the final status of an URB and returns it to the upper layer. Any
4261  * required cleanup of the URB is performed.
4262  *
4263  * Must be called with interrupt disabled and spinlock held
4264  */
4265 void dwc2_host_complete(struct dwc2_hsotg *hsotg, struct dwc2_qtd *qtd,
4266 			int status)
4267 {
4268 	struct urb *urb;
4269 	int i;
4270 
4271 	if (!qtd) {
4272 		dev_dbg(hsotg->dev, "## %s: qtd is NULL ##\n", __func__);
4273 		return;
4274 	}
4275 
4276 	if (!qtd->urb) {
4277 		dev_dbg(hsotg->dev, "## %s: qtd->urb is NULL ##\n", __func__);
4278 		return;
4279 	}
4280 
4281 	urb = qtd->urb->priv;
4282 	if (!urb) {
4283 		dev_dbg(hsotg->dev, "## %s: urb->priv is NULL ##\n", __func__);
4284 		return;
4285 	}
4286 
4287 	urb->actual_length = dwc2_hcd_urb_get_actual_length(qtd->urb);
4288 
4289 	if (dbg_urb(urb))
4290 		dev_vdbg(hsotg->dev,
4291 			 "%s: urb %p device %d ep %d-%s status %d actual %d\n",
4292 			 __func__, urb, usb_pipedevice(urb->pipe),
4293 			 usb_pipeendpoint(urb->pipe),
4294 			 usb_pipein(urb->pipe) ? "IN" : "OUT", status,
4295 			 urb->actual_length);
4296 
4297 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4298 		urb->error_count = dwc2_hcd_urb_get_error_count(qtd->urb);
4299 		for (i = 0; i < urb->number_of_packets; ++i) {
4300 			urb->iso_frame_desc[i].actual_length =
4301 				dwc2_hcd_urb_get_iso_desc_actual_length(
4302 						qtd->urb, i);
4303 			urb->iso_frame_desc[i].status =
4304 				dwc2_hcd_urb_get_iso_desc_status(qtd->urb, i);
4305 		}
4306 	}
4307 
4308 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS && dbg_perio()) {
4309 		for (i = 0; i < urb->number_of_packets; i++)
4310 			dev_vdbg(hsotg->dev, " ISO Desc %d status %d\n",
4311 				 i, urb->iso_frame_desc[i].status);
4312 	}
4313 
4314 	urb->status = status;
4315 	if (!status) {
4316 		if ((urb->transfer_flags & URB_SHORT_NOT_OK) &&
4317 		    urb->actual_length < urb->transfer_buffer_length)
4318 			urb->status = -EREMOTEIO;
4319 	}
4320 
4321 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4322 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4323 		struct usb_host_endpoint *ep = urb->ep;
4324 
4325 		if (ep)
4326 			dwc2_free_bus_bandwidth(dwc2_hsotg_to_hcd(hsotg),
4327 					dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4328 					urb);
4329 	}
4330 
4331 	usb_hcd_unlink_urb_from_ep(dwc2_hsotg_to_hcd(hsotg), urb);
4332 	urb->hcpriv = NULL;
4333 	kfree(qtd->urb);
4334 	qtd->urb = NULL;
4335 
4336 	usb_hcd_giveback_urb(dwc2_hsotg_to_hcd(hsotg), urb, status);
4337 }
4338 
4339 /*
4340  * Work queue function for starting the HCD when A-Cable is connected
4341  */
4342 static void dwc2_hcd_start_func(struct work_struct *work)
4343 {
4344 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4345 						start_work.work);
4346 
4347 	dev_dbg(hsotg->dev, "%s() %p\n", __func__, hsotg);
4348 	dwc2_host_start(hsotg);
4349 }
4350 
4351 /*
4352  * Reset work queue function
4353  */
4354 static void dwc2_hcd_reset_func(struct work_struct *work)
4355 {
4356 	struct dwc2_hsotg *hsotg = container_of(work, struct dwc2_hsotg,
4357 						reset_work.work);
4358 	unsigned long flags;
4359 	u32 hprt0;
4360 
4361 	dev_dbg(hsotg->dev, "USB RESET function called\n");
4362 
4363 	spin_lock_irqsave(&hsotg->lock, flags);
4364 
4365 	hprt0 = dwc2_read_hprt0(hsotg);
4366 	hprt0 &= ~HPRT0_RST;
4367 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
4368 	hsotg->flags.b.port_reset_change = 1;
4369 
4370 	spin_unlock_irqrestore(&hsotg->lock, flags);
4371 }
4372 
4373 /*
4374  * =========================================================================
4375  *  Linux HC Driver Functions
4376  * =========================================================================
4377  */
4378 
4379 /*
4380  * Initializes the DWC_otg controller and its root hub and prepares it for host
4381  * mode operation. Activates the root port. Returns 0 on success and a negative
4382  * error code on failure.
4383  */
4384 static int _dwc2_hcd_start(struct usb_hcd *hcd)
4385 {
4386 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4387 	struct usb_bus *bus = hcd_to_bus(hcd);
4388 	unsigned long flags;
4389 
4390 	dev_dbg(hsotg->dev, "DWC OTG HCD START\n");
4391 
4392 	spin_lock_irqsave(&hsotg->lock, flags);
4393 	hsotg->lx_state = DWC2_L0;
4394 	hcd->state = HC_STATE_RUNNING;
4395 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4396 
4397 	if (dwc2_is_device_mode(hsotg)) {
4398 		spin_unlock_irqrestore(&hsotg->lock, flags);
4399 		return 0;	/* why 0 ?? */
4400 	}
4401 
4402 	dwc2_hcd_reinit(hsotg);
4403 
4404 	/* Initialize and connect root hub if one is not already attached */
4405 	if (bus->root_hub) {
4406 		dev_dbg(hsotg->dev, "DWC OTG HCD Has Root Hub\n");
4407 		/* Inform the HUB driver to resume */
4408 		usb_hcd_resume_root_hub(hcd);
4409 	}
4410 
4411 	spin_unlock_irqrestore(&hsotg->lock, flags);
4412 
4413 	return dwc2_vbus_supply_init(hsotg);
4414 }
4415 
4416 /*
4417  * Halts the DWC_otg host mode operations in a clean manner. USB transfers are
4418  * stopped.
4419  */
4420 static void _dwc2_hcd_stop(struct usb_hcd *hcd)
4421 {
4422 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4423 	unsigned long flags;
4424 
4425 	/* Turn off all host-specific interrupts */
4426 	dwc2_disable_host_interrupts(hsotg);
4427 
4428 	/* Wait for interrupt processing to finish */
4429 	synchronize_irq(hcd->irq);
4430 
4431 	spin_lock_irqsave(&hsotg->lock, flags);
4432 	/* Ensure hcd is disconnected */
4433 	dwc2_hcd_disconnect(hsotg, true);
4434 	dwc2_hcd_stop(hsotg);
4435 	hsotg->lx_state = DWC2_L3;
4436 	hcd->state = HC_STATE_HALT;
4437 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4438 	spin_unlock_irqrestore(&hsotg->lock, flags);
4439 
4440 	dwc2_vbus_supply_exit(hsotg);
4441 
4442 	usleep_range(1000, 3000);
4443 }
4444 
4445 static int _dwc2_hcd_suspend(struct usb_hcd *hcd)
4446 {
4447 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4448 	unsigned long flags;
4449 	int ret = 0;
4450 	u32 hprt0;
4451 
4452 	spin_lock_irqsave(&hsotg->lock, flags);
4453 
4454 	if (dwc2_is_device_mode(hsotg))
4455 		goto unlock;
4456 
4457 	if (hsotg->lx_state != DWC2_L0)
4458 		goto unlock;
4459 
4460 	if (!HCD_HW_ACCESSIBLE(hcd))
4461 		goto unlock;
4462 
4463 	if (hsotg->op_state == OTG_STATE_B_PERIPHERAL)
4464 		goto unlock;
4465 
4466 	if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL)
4467 		goto skip_power_saving;
4468 
4469 	/*
4470 	 * Drive USB suspend and disable port Power
4471 	 * if usb bus is not suspended.
4472 	 */
4473 	if (!hsotg->bus_suspended) {
4474 		hprt0 = dwc2_read_hprt0(hsotg);
4475 		hprt0 |= HPRT0_SUSP;
4476 		hprt0 &= ~HPRT0_PWR;
4477 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
4478 		dwc2_vbus_supply_exit(hsotg);
4479 	}
4480 
4481 	/* Enter partial_power_down */
4482 	ret = dwc2_enter_partial_power_down(hsotg);
4483 	if (ret) {
4484 		if (ret != -ENOTSUPP)
4485 			dev_err(hsotg->dev,
4486 				"enter partial_power_down failed\n");
4487 		goto skip_power_saving;
4488 	}
4489 
4490 	/* Ask phy to be suspended */
4491 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4492 		spin_unlock_irqrestore(&hsotg->lock, flags);
4493 		usb_phy_set_suspend(hsotg->uphy, true);
4494 		spin_lock_irqsave(&hsotg->lock, flags);
4495 	}
4496 
4497 	/* After entering partial_power_down, hardware is no more accessible */
4498 	clear_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4499 
4500 skip_power_saving:
4501 	hsotg->lx_state = DWC2_L2;
4502 unlock:
4503 	spin_unlock_irqrestore(&hsotg->lock, flags);
4504 
4505 	return ret;
4506 }
4507 
4508 static int _dwc2_hcd_resume(struct usb_hcd *hcd)
4509 {
4510 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4511 	unsigned long flags;
4512 	int ret = 0;
4513 
4514 	spin_lock_irqsave(&hsotg->lock, flags);
4515 
4516 	if (dwc2_is_device_mode(hsotg))
4517 		goto unlock;
4518 
4519 	if (hsotg->lx_state != DWC2_L2)
4520 		goto unlock;
4521 
4522 	if (hsotg->params.power_down != DWC2_POWER_DOWN_PARAM_PARTIAL) {
4523 		hsotg->lx_state = DWC2_L0;
4524 		goto unlock;
4525 	}
4526 
4527 	/*
4528 	 * Set HW accessible bit before powering on the controller
4529 	 * since an interrupt may rise.
4530 	 */
4531 	set_bit(HCD_FLAG_HW_ACCESSIBLE, &hcd->flags);
4532 
4533 	/*
4534 	 * Enable power if not already done.
4535 	 * This must not be spinlocked since duration
4536 	 * of this call is unknown.
4537 	 */
4538 	if (!IS_ERR_OR_NULL(hsotg->uphy)) {
4539 		spin_unlock_irqrestore(&hsotg->lock, flags);
4540 		usb_phy_set_suspend(hsotg->uphy, false);
4541 		spin_lock_irqsave(&hsotg->lock, flags);
4542 	}
4543 
4544 	/* Exit partial_power_down */
4545 	ret = dwc2_exit_partial_power_down(hsotg, true);
4546 	if (ret && (ret != -ENOTSUPP))
4547 		dev_err(hsotg->dev, "exit partial_power_down failed\n");
4548 
4549 	hsotg->lx_state = DWC2_L0;
4550 
4551 	spin_unlock_irqrestore(&hsotg->lock, flags);
4552 
4553 	if (hsotg->bus_suspended) {
4554 		spin_lock_irqsave(&hsotg->lock, flags);
4555 		hsotg->flags.b.port_suspend_change = 1;
4556 		spin_unlock_irqrestore(&hsotg->lock, flags);
4557 		dwc2_port_resume(hsotg);
4558 	} else {
4559 		dwc2_vbus_supply_init(hsotg);
4560 
4561 		/* Wait for controller to correctly update D+/D- level */
4562 		usleep_range(3000, 5000);
4563 
4564 		/*
4565 		 * Clear Port Enable and Port Status changes.
4566 		 * Enable Port Power.
4567 		 */
4568 		dwc2_writel(HPRT0_PWR | HPRT0_CONNDET |
4569 				HPRT0_ENACHG, hsotg->regs + HPRT0);
4570 		/* Wait for controller to detect Port Connect */
4571 		usleep_range(5000, 7000);
4572 	}
4573 
4574 	return ret;
4575 unlock:
4576 	spin_unlock_irqrestore(&hsotg->lock, flags);
4577 
4578 	return ret;
4579 }
4580 
4581 /* Returns the current frame number */
4582 static int _dwc2_hcd_get_frame_number(struct usb_hcd *hcd)
4583 {
4584 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4585 
4586 	return dwc2_hcd_get_frame_number(hsotg);
4587 }
4588 
4589 static void dwc2_dump_urb_info(struct usb_hcd *hcd, struct urb *urb,
4590 			       char *fn_name)
4591 {
4592 #ifdef VERBOSE_DEBUG
4593 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4594 	char *pipetype = NULL;
4595 	char *speed = NULL;
4596 
4597 	dev_vdbg(hsotg->dev, "%s, urb %p\n", fn_name, urb);
4598 	dev_vdbg(hsotg->dev, "  Device address: %d\n",
4599 		 usb_pipedevice(urb->pipe));
4600 	dev_vdbg(hsotg->dev, "  Endpoint: %d, %s\n",
4601 		 usb_pipeendpoint(urb->pipe),
4602 		 usb_pipein(urb->pipe) ? "IN" : "OUT");
4603 
4604 	switch (usb_pipetype(urb->pipe)) {
4605 	case PIPE_CONTROL:
4606 		pipetype = "CONTROL";
4607 		break;
4608 	case PIPE_BULK:
4609 		pipetype = "BULK";
4610 		break;
4611 	case PIPE_INTERRUPT:
4612 		pipetype = "INTERRUPT";
4613 		break;
4614 	case PIPE_ISOCHRONOUS:
4615 		pipetype = "ISOCHRONOUS";
4616 		break;
4617 	}
4618 
4619 	dev_vdbg(hsotg->dev, "  Endpoint type: %s %s (%s)\n", pipetype,
4620 		 usb_urb_dir_in(urb) ? "IN" : "OUT", usb_pipein(urb->pipe) ?
4621 		 "IN" : "OUT");
4622 
4623 	switch (urb->dev->speed) {
4624 	case USB_SPEED_HIGH:
4625 		speed = "HIGH";
4626 		break;
4627 	case USB_SPEED_FULL:
4628 		speed = "FULL";
4629 		break;
4630 	case USB_SPEED_LOW:
4631 		speed = "LOW";
4632 		break;
4633 	default:
4634 		speed = "UNKNOWN";
4635 		break;
4636 	}
4637 
4638 	dev_vdbg(hsotg->dev, "  Speed: %s\n", speed);
4639 	dev_vdbg(hsotg->dev, "  Max packet size: %d\n",
4640 		 usb_maxpacket(urb->dev, urb->pipe, usb_pipeout(urb->pipe)));
4641 	dev_vdbg(hsotg->dev, "  Data buffer length: %d\n",
4642 		 urb->transfer_buffer_length);
4643 	dev_vdbg(hsotg->dev, "  Transfer buffer: %p, Transfer DMA: %08lx\n",
4644 		 urb->transfer_buffer, (unsigned long)urb->transfer_dma);
4645 	dev_vdbg(hsotg->dev, "  Setup buffer: %p, Setup DMA: %08lx\n",
4646 		 urb->setup_packet, (unsigned long)urb->setup_dma);
4647 	dev_vdbg(hsotg->dev, "  Interval: %d\n", urb->interval);
4648 
4649 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS) {
4650 		int i;
4651 
4652 		for (i = 0; i < urb->number_of_packets; i++) {
4653 			dev_vdbg(hsotg->dev, "  ISO Desc %d:\n", i);
4654 			dev_vdbg(hsotg->dev, "    offset: %d, length %d\n",
4655 				 urb->iso_frame_desc[i].offset,
4656 				 urb->iso_frame_desc[i].length);
4657 		}
4658 	}
4659 #endif
4660 }
4661 
4662 /*
4663  * Starts processing a USB transfer request specified by a USB Request Block
4664  * (URB). mem_flags indicates the type of memory allocation to use while
4665  * processing this URB.
4666  */
4667 static int _dwc2_hcd_urb_enqueue(struct usb_hcd *hcd, struct urb *urb,
4668 				 gfp_t mem_flags)
4669 {
4670 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4671 	struct usb_host_endpoint *ep = urb->ep;
4672 	struct dwc2_hcd_urb *dwc2_urb;
4673 	int i;
4674 	int retval;
4675 	int alloc_bandwidth = 0;
4676 	u8 ep_type = 0;
4677 	u32 tflags = 0;
4678 	void *buf;
4679 	unsigned long flags;
4680 	struct dwc2_qh *qh;
4681 	bool qh_allocated = false;
4682 	struct dwc2_qtd *qtd;
4683 
4684 	if (dbg_urb(urb)) {
4685 		dev_vdbg(hsotg->dev, "DWC OTG HCD URB Enqueue\n");
4686 		dwc2_dump_urb_info(hcd, urb, "urb_enqueue");
4687 	}
4688 
4689 	if (!ep)
4690 		return -EINVAL;
4691 
4692 	if (usb_pipetype(urb->pipe) == PIPE_ISOCHRONOUS ||
4693 	    usb_pipetype(urb->pipe) == PIPE_INTERRUPT) {
4694 		spin_lock_irqsave(&hsotg->lock, flags);
4695 		if (!dwc2_hcd_is_bandwidth_allocated(hsotg, ep))
4696 			alloc_bandwidth = 1;
4697 		spin_unlock_irqrestore(&hsotg->lock, flags);
4698 	}
4699 
4700 	switch (usb_pipetype(urb->pipe)) {
4701 	case PIPE_CONTROL:
4702 		ep_type = USB_ENDPOINT_XFER_CONTROL;
4703 		break;
4704 	case PIPE_ISOCHRONOUS:
4705 		ep_type = USB_ENDPOINT_XFER_ISOC;
4706 		break;
4707 	case PIPE_BULK:
4708 		ep_type = USB_ENDPOINT_XFER_BULK;
4709 		break;
4710 	case PIPE_INTERRUPT:
4711 		ep_type = USB_ENDPOINT_XFER_INT;
4712 		break;
4713 	}
4714 
4715 	dwc2_urb = dwc2_hcd_urb_alloc(hsotg, urb->number_of_packets,
4716 				      mem_flags);
4717 	if (!dwc2_urb)
4718 		return -ENOMEM;
4719 
4720 	dwc2_hcd_urb_set_pipeinfo(hsotg, dwc2_urb, usb_pipedevice(urb->pipe),
4721 				  usb_pipeendpoint(urb->pipe), ep_type,
4722 				  usb_pipein(urb->pipe),
4723 				  usb_maxpacket(urb->dev, urb->pipe,
4724 						!(usb_pipein(urb->pipe))));
4725 
4726 	buf = urb->transfer_buffer;
4727 
4728 	if (hcd->self.uses_dma) {
4729 		if (!buf && (urb->transfer_dma & 3)) {
4730 			dev_err(hsotg->dev,
4731 				"%s: unaligned transfer with no transfer_buffer",
4732 				__func__);
4733 			retval = -EINVAL;
4734 			goto fail0;
4735 		}
4736 	}
4737 
4738 	if (!(urb->transfer_flags & URB_NO_INTERRUPT))
4739 		tflags |= URB_GIVEBACK_ASAP;
4740 	if (urb->transfer_flags & URB_ZERO_PACKET)
4741 		tflags |= URB_SEND_ZERO_PACKET;
4742 
4743 	dwc2_urb->priv = urb;
4744 	dwc2_urb->buf = buf;
4745 	dwc2_urb->dma = urb->transfer_dma;
4746 	dwc2_urb->length = urb->transfer_buffer_length;
4747 	dwc2_urb->setup_packet = urb->setup_packet;
4748 	dwc2_urb->setup_dma = urb->setup_dma;
4749 	dwc2_urb->flags = tflags;
4750 	dwc2_urb->interval = urb->interval;
4751 	dwc2_urb->status = -EINPROGRESS;
4752 
4753 	for (i = 0; i < urb->number_of_packets; ++i)
4754 		dwc2_hcd_urb_set_iso_desc_params(dwc2_urb, i,
4755 						 urb->iso_frame_desc[i].offset,
4756 						 urb->iso_frame_desc[i].length);
4757 
4758 	urb->hcpriv = dwc2_urb;
4759 	qh = (struct dwc2_qh *)ep->hcpriv;
4760 	/* Create QH for the endpoint if it doesn't exist */
4761 	if (!qh) {
4762 		qh = dwc2_hcd_qh_create(hsotg, dwc2_urb, mem_flags);
4763 		if (!qh) {
4764 			retval = -ENOMEM;
4765 			goto fail0;
4766 		}
4767 		ep->hcpriv = qh;
4768 		qh_allocated = true;
4769 	}
4770 
4771 	qtd = kzalloc(sizeof(*qtd), mem_flags);
4772 	if (!qtd) {
4773 		retval = -ENOMEM;
4774 		goto fail1;
4775 	}
4776 
4777 	spin_lock_irqsave(&hsotg->lock, flags);
4778 	retval = usb_hcd_link_urb_to_ep(hcd, urb);
4779 	if (retval)
4780 		goto fail2;
4781 
4782 	retval = dwc2_hcd_urb_enqueue(hsotg, dwc2_urb, qh, qtd);
4783 	if (retval)
4784 		goto fail3;
4785 
4786 	if (alloc_bandwidth) {
4787 		dwc2_allocate_bus_bandwidth(hcd,
4788 				dwc2_hcd_get_ep_bandwidth(hsotg, ep),
4789 				urb);
4790 	}
4791 
4792 	spin_unlock_irqrestore(&hsotg->lock, flags);
4793 
4794 	return 0;
4795 
4796 fail3:
4797 	dwc2_urb->priv = NULL;
4798 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4799 	if (qh_allocated && qh->channel && qh->channel->qh == qh)
4800 		qh->channel->qh = NULL;
4801 fail2:
4802 	spin_unlock_irqrestore(&hsotg->lock, flags);
4803 	urb->hcpriv = NULL;
4804 	kfree(qtd);
4805 	qtd = NULL;
4806 fail1:
4807 	if (qh_allocated) {
4808 		struct dwc2_qtd *qtd2, *qtd2_tmp;
4809 
4810 		ep->hcpriv = NULL;
4811 		dwc2_hcd_qh_unlink(hsotg, qh);
4812 		/* Free each QTD in the QH's QTD list */
4813 		list_for_each_entry_safe(qtd2, qtd2_tmp, &qh->qtd_list,
4814 					 qtd_list_entry)
4815 			dwc2_hcd_qtd_unlink_and_free(hsotg, qtd2, qh);
4816 		dwc2_hcd_qh_free(hsotg, qh);
4817 	}
4818 fail0:
4819 	kfree(dwc2_urb);
4820 
4821 	return retval;
4822 }
4823 
4824 /*
4825  * Aborts/cancels a USB transfer request. Always returns 0 to indicate success.
4826  */
4827 static int _dwc2_hcd_urb_dequeue(struct usb_hcd *hcd, struct urb *urb,
4828 				 int status)
4829 {
4830 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4831 	int rc;
4832 	unsigned long flags;
4833 
4834 	dev_dbg(hsotg->dev, "DWC OTG HCD URB Dequeue\n");
4835 	dwc2_dump_urb_info(hcd, urb, "urb_dequeue");
4836 
4837 	spin_lock_irqsave(&hsotg->lock, flags);
4838 
4839 	rc = usb_hcd_check_unlink_urb(hcd, urb, status);
4840 	if (rc)
4841 		goto out;
4842 
4843 	if (!urb->hcpriv) {
4844 		dev_dbg(hsotg->dev, "## urb->hcpriv is NULL ##\n");
4845 		goto out;
4846 	}
4847 
4848 	rc = dwc2_hcd_urb_dequeue(hsotg, urb->hcpriv);
4849 
4850 	usb_hcd_unlink_urb_from_ep(hcd, urb);
4851 
4852 	kfree(urb->hcpriv);
4853 	urb->hcpriv = NULL;
4854 
4855 	/* Higher layer software sets URB status */
4856 	spin_unlock(&hsotg->lock);
4857 	usb_hcd_giveback_urb(hcd, urb, status);
4858 	spin_lock(&hsotg->lock);
4859 
4860 	dev_dbg(hsotg->dev, "Called usb_hcd_giveback_urb()\n");
4861 	dev_dbg(hsotg->dev, "  urb->status = %d\n", urb->status);
4862 out:
4863 	spin_unlock_irqrestore(&hsotg->lock, flags);
4864 
4865 	return rc;
4866 }
4867 
4868 /*
4869  * Frees resources in the DWC_otg controller related to a given endpoint. Also
4870  * clears state in the HCD related to the endpoint. Any URBs for the endpoint
4871  * must already be dequeued.
4872  */
4873 static void _dwc2_hcd_endpoint_disable(struct usb_hcd *hcd,
4874 				       struct usb_host_endpoint *ep)
4875 {
4876 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4877 
4878 	dev_dbg(hsotg->dev,
4879 		"DWC OTG HCD EP DISABLE: bEndpointAddress=0x%02x, ep->hcpriv=%p\n",
4880 		ep->desc.bEndpointAddress, ep->hcpriv);
4881 	dwc2_hcd_endpoint_disable(hsotg, ep, 250);
4882 }
4883 
4884 /*
4885  * Resets endpoint specific parameter values, in current version used to reset
4886  * the data toggle (as a WA). This function can be called from usb_clear_halt
4887  * routine.
4888  */
4889 static void _dwc2_hcd_endpoint_reset(struct usb_hcd *hcd,
4890 				     struct usb_host_endpoint *ep)
4891 {
4892 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4893 	unsigned long flags;
4894 
4895 	dev_dbg(hsotg->dev,
4896 		"DWC OTG HCD EP RESET: bEndpointAddress=0x%02x\n",
4897 		ep->desc.bEndpointAddress);
4898 
4899 	spin_lock_irqsave(&hsotg->lock, flags);
4900 	dwc2_hcd_endpoint_reset(hsotg, ep);
4901 	spin_unlock_irqrestore(&hsotg->lock, flags);
4902 }
4903 
4904 /*
4905  * Handles host mode interrupts for the DWC_otg controller. Returns IRQ_NONE if
4906  * there was no interrupt to handle. Returns IRQ_HANDLED if there was a valid
4907  * interrupt.
4908  *
4909  * This function is called by the USB core when an interrupt occurs
4910  */
4911 static irqreturn_t _dwc2_hcd_irq(struct usb_hcd *hcd)
4912 {
4913 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4914 
4915 	return dwc2_handle_hcd_intr(hsotg);
4916 }
4917 
4918 /*
4919  * Creates Status Change bitmap for the root hub and root port. The bitmap is
4920  * returned in buf. Bit 0 is the status change indicator for the root hub. Bit 1
4921  * is the status change indicator for the single root port. Returns 1 if either
4922  * change indicator is 1, otherwise returns 0.
4923  */
4924 static int _dwc2_hcd_hub_status_data(struct usb_hcd *hcd, char *buf)
4925 {
4926 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4927 
4928 	buf[0] = dwc2_hcd_is_status_changed(hsotg, 1) << 1;
4929 	return buf[0] != 0;
4930 }
4931 
4932 /* Handles hub class-specific requests */
4933 static int _dwc2_hcd_hub_control(struct usb_hcd *hcd, u16 typereq, u16 wvalue,
4934 				 u16 windex, char *buf, u16 wlength)
4935 {
4936 	int retval = dwc2_hcd_hub_control(dwc2_hcd_to_hsotg(hcd), typereq,
4937 					  wvalue, windex, buf, wlength);
4938 	return retval;
4939 }
4940 
4941 /* Handles hub TT buffer clear completions */
4942 static void _dwc2_hcd_clear_tt_buffer_complete(struct usb_hcd *hcd,
4943 					       struct usb_host_endpoint *ep)
4944 {
4945 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4946 	struct dwc2_qh *qh;
4947 	unsigned long flags;
4948 
4949 	qh = ep->hcpriv;
4950 	if (!qh)
4951 		return;
4952 
4953 	spin_lock_irqsave(&hsotg->lock, flags);
4954 	qh->tt_buffer_dirty = 0;
4955 
4956 	if (hsotg->flags.b.port_connect_status)
4957 		dwc2_hcd_queue_transactions(hsotg, DWC2_TRANSACTION_ALL);
4958 
4959 	spin_unlock_irqrestore(&hsotg->lock, flags);
4960 }
4961 
4962 /*
4963  * HPRT0_SPD_HIGH_SPEED: high speed
4964  * HPRT0_SPD_FULL_SPEED: full speed
4965  */
4966 static void dwc2_change_bus_speed(struct usb_hcd *hcd, int speed)
4967 {
4968 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4969 
4970 	if (hsotg->params.speed == speed)
4971 		return;
4972 
4973 	hsotg->params.speed = speed;
4974 	queue_work(hsotg->wq_otg, &hsotg->wf_otg);
4975 }
4976 
4977 static void dwc2_free_dev(struct usb_hcd *hcd, struct usb_device *udev)
4978 {
4979 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4980 
4981 	if (!hsotg->params.change_speed_quirk)
4982 		return;
4983 
4984 	/*
4985 	 * On removal, set speed to default high-speed.
4986 	 */
4987 	if (udev->parent && udev->parent->speed > USB_SPEED_UNKNOWN &&
4988 	    udev->parent->speed < USB_SPEED_HIGH) {
4989 		dev_info(hsotg->dev, "Set speed to default high-speed\n");
4990 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
4991 	}
4992 }
4993 
4994 static int dwc2_reset_device(struct usb_hcd *hcd, struct usb_device *udev)
4995 {
4996 	struct dwc2_hsotg *hsotg = dwc2_hcd_to_hsotg(hcd);
4997 
4998 	if (!hsotg->params.change_speed_quirk)
4999 		return 0;
5000 
5001 	if (udev->speed == USB_SPEED_HIGH) {
5002 		dev_info(hsotg->dev, "Set speed to high-speed\n");
5003 		dwc2_change_bus_speed(hcd, HPRT0_SPD_HIGH_SPEED);
5004 	} else if ((udev->speed == USB_SPEED_FULL ||
5005 				udev->speed == USB_SPEED_LOW)) {
5006 		/*
5007 		 * Change speed setting to full-speed if there's
5008 		 * a full-speed or low-speed device plugged in.
5009 		 */
5010 		dev_info(hsotg->dev, "Set speed to full-speed\n");
5011 		dwc2_change_bus_speed(hcd, HPRT0_SPD_FULL_SPEED);
5012 	}
5013 
5014 	return 0;
5015 }
5016 
5017 static struct hc_driver dwc2_hc_driver = {
5018 	.description = "dwc2_hsotg",
5019 	.product_desc = "DWC OTG Controller",
5020 	.hcd_priv_size = sizeof(struct wrapper_priv_data),
5021 
5022 	.irq = _dwc2_hcd_irq,
5023 	.flags = HCD_MEMORY | HCD_USB2 | HCD_BH,
5024 
5025 	.start = _dwc2_hcd_start,
5026 	.stop = _dwc2_hcd_stop,
5027 	.urb_enqueue = _dwc2_hcd_urb_enqueue,
5028 	.urb_dequeue = _dwc2_hcd_urb_dequeue,
5029 	.endpoint_disable = _dwc2_hcd_endpoint_disable,
5030 	.endpoint_reset = _dwc2_hcd_endpoint_reset,
5031 	.get_frame_number = _dwc2_hcd_get_frame_number,
5032 
5033 	.hub_status_data = _dwc2_hcd_hub_status_data,
5034 	.hub_control = _dwc2_hcd_hub_control,
5035 	.clear_tt_buffer_complete = _dwc2_hcd_clear_tt_buffer_complete,
5036 
5037 	.bus_suspend = _dwc2_hcd_suspend,
5038 	.bus_resume = _dwc2_hcd_resume,
5039 
5040 	.map_urb_for_dma	= dwc2_map_urb_for_dma,
5041 	.unmap_urb_for_dma	= dwc2_unmap_urb_for_dma,
5042 };
5043 
5044 /*
5045  * Frees secondary storage associated with the dwc2_hsotg structure contained
5046  * in the struct usb_hcd field
5047  */
5048 static void dwc2_hcd_free(struct dwc2_hsotg *hsotg)
5049 {
5050 	u32 ahbcfg;
5051 	u32 dctl;
5052 	int i;
5053 
5054 	dev_dbg(hsotg->dev, "DWC OTG HCD FREE\n");
5055 
5056 	/* Free memory for QH/QTD lists */
5057 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_inactive);
5058 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_waiting);
5059 	dwc2_qh_list_free(hsotg, &hsotg->non_periodic_sched_active);
5060 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_inactive);
5061 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_ready);
5062 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_assigned);
5063 	dwc2_qh_list_free(hsotg, &hsotg->periodic_sched_queued);
5064 
5065 	/* Free memory for the host channels */
5066 	for (i = 0; i < MAX_EPS_CHANNELS; i++) {
5067 		struct dwc2_host_chan *chan = hsotg->hc_ptr_array[i];
5068 
5069 		if (chan) {
5070 			dev_dbg(hsotg->dev, "HCD Free channel #%i, chan=%p\n",
5071 				i, chan);
5072 			hsotg->hc_ptr_array[i] = NULL;
5073 			kfree(chan);
5074 		}
5075 	}
5076 
5077 	if (hsotg->params.host_dma) {
5078 		if (hsotg->status_buf) {
5079 			dma_free_coherent(hsotg->dev, DWC2_HCD_STATUS_BUF_SIZE,
5080 					  hsotg->status_buf,
5081 					  hsotg->status_buf_dma);
5082 			hsotg->status_buf = NULL;
5083 		}
5084 	} else {
5085 		kfree(hsotg->status_buf);
5086 		hsotg->status_buf = NULL;
5087 	}
5088 
5089 	ahbcfg = dwc2_readl(hsotg->regs + GAHBCFG);
5090 
5091 	/* Disable all interrupts */
5092 	ahbcfg &= ~GAHBCFG_GLBL_INTR_EN;
5093 	dwc2_writel(ahbcfg, hsotg->regs + GAHBCFG);
5094 	dwc2_writel(0, hsotg->regs + GINTMSK);
5095 
5096 	if (hsotg->hw_params.snpsid >= DWC2_CORE_REV_3_00a) {
5097 		dctl = dwc2_readl(hsotg->regs + DCTL);
5098 		dctl |= DCTL_SFTDISCON;
5099 		dwc2_writel(dctl, hsotg->regs + DCTL);
5100 	}
5101 
5102 	if (hsotg->wq_otg) {
5103 		if (!cancel_work_sync(&hsotg->wf_otg))
5104 			flush_workqueue(hsotg->wq_otg);
5105 		destroy_workqueue(hsotg->wq_otg);
5106 	}
5107 
5108 	del_timer(&hsotg->wkp_timer);
5109 }
5110 
5111 static void dwc2_hcd_release(struct dwc2_hsotg *hsotg)
5112 {
5113 	/* Turn off all host-specific interrupts */
5114 	dwc2_disable_host_interrupts(hsotg);
5115 
5116 	dwc2_hcd_free(hsotg);
5117 }
5118 
5119 /*
5120  * Initializes the HCD. This function allocates memory for and initializes the
5121  * static parts of the usb_hcd and dwc2_hsotg structures. It also registers the
5122  * USB bus with the core and calls the hc_driver->start() function. It returns
5123  * a negative error on failure.
5124  */
5125 int dwc2_hcd_init(struct dwc2_hsotg *hsotg)
5126 {
5127 	struct platform_device *pdev = to_platform_device(hsotg->dev);
5128 	struct resource *res;
5129 	struct usb_hcd *hcd;
5130 	struct dwc2_host_chan *channel;
5131 	u32 hcfg;
5132 	int i, num_channels;
5133 	int retval;
5134 
5135 	if (usb_disabled())
5136 		return -ENODEV;
5137 
5138 	dev_dbg(hsotg->dev, "DWC OTG HCD INIT\n");
5139 
5140 	retval = -ENOMEM;
5141 
5142 	hcfg = dwc2_readl(hsotg->regs + HCFG);
5143 	dev_dbg(hsotg->dev, "hcfg=%08x\n", hcfg);
5144 
5145 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5146 	hsotg->frame_num_array = kcalloc(FRAME_NUM_ARRAY_SIZE,
5147 					 sizeof(*hsotg->frame_num_array),
5148 					 GFP_KERNEL);
5149 	if (!hsotg->frame_num_array)
5150 		goto error1;
5151 	hsotg->last_frame_num_array =
5152 		kcalloc(FRAME_NUM_ARRAY_SIZE,
5153 			sizeof(*hsotg->last_frame_num_array), GFP_KERNEL);
5154 	if (!hsotg->last_frame_num_array)
5155 		goto error1;
5156 #endif
5157 	hsotg->last_frame_num = HFNUM_MAX_FRNUM;
5158 
5159 	/* Check if the bus driver or platform code has setup a dma_mask */
5160 	if (hsotg->params.host_dma &&
5161 	    !hsotg->dev->dma_mask) {
5162 		dev_warn(hsotg->dev,
5163 			 "dma_mask not set, disabling DMA\n");
5164 		hsotg->params.host_dma = false;
5165 		hsotg->params.dma_desc_enable = false;
5166 	}
5167 
5168 	/* Set device flags indicating whether the HCD supports DMA */
5169 	if (hsotg->params.host_dma) {
5170 		if (dma_set_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5171 			dev_warn(hsotg->dev, "can't set DMA mask\n");
5172 		if (dma_set_coherent_mask(hsotg->dev, DMA_BIT_MASK(32)) < 0)
5173 			dev_warn(hsotg->dev, "can't set coherent DMA mask\n");
5174 	}
5175 
5176 	if (hsotg->params.change_speed_quirk) {
5177 		dwc2_hc_driver.free_dev = dwc2_free_dev;
5178 		dwc2_hc_driver.reset_device = dwc2_reset_device;
5179 	}
5180 
5181 	hcd = usb_create_hcd(&dwc2_hc_driver, hsotg->dev, dev_name(hsotg->dev));
5182 	if (!hcd)
5183 		goto error1;
5184 
5185 	if (!hsotg->params.host_dma)
5186 		hcd->self.uses_dma = 0;
5187 
5188 	hcd->has_tt = 1;
5189 
5190 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
5191 	hcd->rsrc_start = res->start;
5192 	hcd->rsrc_len = resource_size(res);
5193 
5194 	((struct wrapper_priv_data *)&hcd->hcd_priv)->hsotg = hsotg;
5195 	hsotg->priv = hcd;
5196 
5197 	/*
5198 	 * Disable the global interrupt until all the interrupt handlers are
5199 	 * installed
5200 	 */
5201 	dwc2_disable_global_interrupts(hsotg);
5202 
5203 	/* Initialize the DWC_otg core, and select the Phy type */
5204 	retval = dwc2_core_init(hsotg, true);
5205 	if (retval)
5206 		goto error2;
5207 
5208 	/* Create new workqueue and init work */
5209 	retval = -ENOMEM;
5210 	hsotg->wq_otg = alloc_ordered_workqueue("dwc2", 0);
5211 	if (!hsotg->wq_otg) {
5212 		dev_err(hsotg->dev, "Failed to create workqueue\n");
5213 		goto error2;
5214 	}
5215 	INIT_WORK(&hsotg->wf_otg, dwc2_conn_id_status_change);
5216 
5217 	timer_setup(&hsotg->wkp_timer, dwc2_wakeup_detected, 0);
5218 
5219 	/* Initialize the non-periodic schedule */
5220 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_inactive);
5221 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_waiting);
5222 	INIT_LIST_HEAD(&hsotg->non_periodic_sched_active);
5223 
5224 	/* Initialize the periodic schedule */
5225 	INIT_LIST_HEAD(&hsotg->periodic_sched_inactive);
5226 	INIT_LIST_HEAD(&hsotg->periodic_sched_ready);
5227 	INIT_LIST_HEAD(&hsotg->periodic_sched_assigned);
5228 	INIT_LIST_HEAD(&hsotg->periodic_sched_queued);
5229 
5230 	INIT_LIST_HEAD(&hsotg->split_order);
5231 
5232 	/*
5233 	 * Create a host channel descriptor for each host channel implemented
5234 	 * in the controller. Initialize the channel descriptor array.
5235 	 */
5236 	INIT_LIST_HEAD(&hsotg->free_hc_list);
5237 	num_channels = hsotg->params.host_channels;
5238 	memset(&hsotg->hc_ptr_array[0], 0, sizeof(hsotg->hc_ptr_array));
5239 
5240 	for (i = 0; i < num_channels; i++) {
5241 		channel = kzalloc(sizeof(*channel), GFP_KERNEL);
5242 		if (!channel)
5243 			goto error3;
5244 		channel->hc_num = i;
5245 		INIT_LIST_HEAD(&channel->split_order_list_entry);
5246 		hsotg->hc_ptr_array[i] = channel;
5247 	}
5248 
5249 	/* Initialize hsotg start work */
5250 	INIT_DELAYED_WORK(&hsotg->start_work, dwc2_hcd_start_func);
5251 
5252 	/* Initialize port reset work */
5253 	INIT_DELAYED_WORK(&hsotg->reset_work, dwc2_hcd_reset_func);
5254 
5255 	/*
5256 	 * Allocate space for storing data on status transactions. Normally no
5257 	 * data is sent, but this space acts as a bit bucket. This must be
5258 	 * done after usb_add_hcd since that function allocates the DMA buffer
5259 	 * pool.
5260 	 */
5261 	if (hsotg->params.host_dma)
5262 		hsotg->status_buf = dma_alloc_coherent(hsotg->dev,
5263 					DWC2_HCD_STATUS_BUF_SIZE,
5264 					&hsotg->status_buf_dma, GFP_KERNEL);
5265 	else
5266 		hsotg->status_buf = kzalloc(DWC2_HCD_STATUS_BUF_SIZE,
5267 					  GFP_KERNEL);
5268 
5269 	if (!hsotg->status_buf)
5270 		goto error3;
5271 
5272 	/*
5273 	 * Create kmem caches to handle descriptor buffers in descriptor
5274 	 * DMA mode.
5275 	 * Alignment must be set to 512 bytes.
5276 	 */
5277 	if (hsotg->params.dma_desc_enable ||
5278 	    hsotg->params.dma_desc_fs_enable) {
5279 		hsotg->desc_gen_cache = kmem_cache_create("dwc2-gen-desc",
5280 				sizeof(struct dwc2_dma_desc) *
5281 				MAX_DMA_DESC_NUM_GENERIC, 512, SLAB_CACHE_DMA,
5282 				NULL);
5283 		if (!hsotg->desc_gen_cache) {
5284 			dev_err(hsotg->dev,
5285 				"unable to create dwc2 generic desc cache\n");
5286 
5287 			/*
5288 			 * Disable descriptor dma mode since it will not be
5289 			 * usable.
5290 			 */
5291 			hsotg->params.dma_desc_enable = false;
5292 			hsotg->params.dma_desc_fs_enable = false;
5293 		}
5294 
5295 		hsotg->desc_hsisoc_cache = kmem_cache_create("dwc2-hsisoc-desc",
5296 				sizeof(struct dwc2_dma_desc) *
5297 				MAX_DMA_DESC_NUM_HS_ISOC, 512, 0, NULL);
5298 		if (!hsotg->desc_hsisoc_cache) {
5299 			dev_err(hsotg->dev,
5300 				"unable to create dwc2 hs isoc desc cache\n");
5301 
5302 			kmem_cache_destroy(hsotg->desc_gen_cache);
5303 
5304 			/*
5305 			 * Disable descriptor dma mode since it will not be
5306 			 * usable.
5307 			 */
5308 			hsotg->params.dma_desc_enable = false;
5309 			hsotg->params.dma_desc_fs_enable = false;
5310 		}
5311 	}
5312 
5313 	if (hsotg->params.host_dma) {
5314 		/*
5315 		 * Create kmem caches to handle non-aligned buffer
5316 		 * in Buffer DMA mode.
5317 		 */
5318 		hsotg->unaligned_cache = kmem_cache_create("dwc2-unaligned-dma",
5319 						DWC2_KMEM_UNALIGNED_BUF_SIZE, 4,
5320 						SLAB_CACHE_DMA, NULL);
5321 		if (!hsotg->unaligned_cache)
5322 			dev_err(hsotg->dev,
5323 				"unable to create dwc2 unaligned cache\n");
5324 	}
5325 
5326 	hsotg->otg_port = 1;
5327 	hsotg->frame_list = NULL;
5328 	hsotg->frame_list_dma = 0;
5329 	hsotg->periodic_qh_count = 0;
5330 
5331 	/* Initiate lx_state to L3 disconnected state */
5332 	hsotg->lx_state = DWC2_L3;
5333 
5334 	hcd->self.otg_port = hsotg->otg_port;
5335 
5336 	/* Don't support SG list at this point */
5337 	hcd->self.sg_tablesize = 0;
5338 
5339 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5340 		otg_set_host(hsotg->uphy->otg, &hcd->self);
5341 
5342 	/*
5343 	 * Finish generic HCD initialization and start the HCD. This function
5344 	 * allocates the DMA buffer pool, registers the USB bus, requests the
5345 	 * IRQ line, and calls hcd_start method.
5346 	 */
5347 	retval = usb_add_hcd(hcd, hsotg->irq, IRQF_SHARED);
5348 	if (retval < 0)
5349 		goto error4;
5350 
5351 	device_wakeup_enable(hcd->self.controller);
5352 
5353 	dwc2_hcd_dump_state(hsotg);
5354 
5355 	dwc2_enable_global_interrupts(hsotg);
5356 
5357 	return 0;
5358 
5359 error4:
5360 	kmem_cache_destroy(hsotg->unaligned_cache);
5361 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5362 	kmem_cache_destroy(hsotg->desc_gen_cache);
5363 error3:
5364 	dwc2_hcd_release(hsotg);
5365 error2:
5366 	usb_put_hcd(hcd);
5367 error1:
5368 
5369 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5370 	kfree(hsotg->last_frame_num_array);
5371 	kfree(hsotg->frame_num_array);
5372 #endif
5373 
5374 	dev_err(hsotg->dev, "%s() FAILED, returning %d\n", __func__, retval);
5375 	return retval;
5376 }
5377 
5378 /*
5379  * Removes the HCD.
5380  * Frees memory and resources associated with the HCD and deregisters the bus.
5381  */
5382 void dwc2_hcd_remove(struct dwc2_hsotg *hsotg)
5383 {
5384 	struct usb_hcd *hcd;
5385 
5386 	dev_dbg(hsotg->dev, "DWC OTG HCD REMOVE\n");
5387 
5388 	hcd = dwc2_hsotg_to_hcd(hsotg);
5389 	dev_dbg(hsotg->dev, "hsotg->hcd = %p\n", hcd);
5390 
5391 	if (!hcd) {
5392 		dev_dbg(hsotg->dev, "%s: dwc2_hsotg_to_hcd(hsotg) NULL!\n",
5393 			__func__);
5394 		return;
5395 	}
5396 
5397 	if (!IS_ERR_OR_NULL(hsotg->uphy))
5398 		otg_set_host(hsotg->uphy->otg, NULL);
5399 
5400 	usb_remove_hcd(hcd);
5401 	hsotg->priv = NULL;
5402 
5403 	kmem_cache_destroy(hsotg->unaligned_cache);
5404 	kmem_cache_destroy(hsotg->desc_hsisoc_cache);
5405 	kmem_cache_destroy(hsotg->desc_gen_cache);
5406 
5407 	dwc2_hcd_release(hsotg);
5408 	usb_put_hcd(hcd);
5409 
5410 #ifdef CONFIG_USB_DWC2_TRACK_MISSED_SOFS
5411 	kfree(hsotg->last_frame_num_array);
5412 	kfree(hsotg->frame_num_array);
5413 #endif
5414 }
5415 
5416 /**
5417  * dwc2_backup_host_registers() - Backup controller host registers.
5418  * When suspending usb bus, registers needs to be backuped
5419  * if controller power is disabled once suspended.
5420  *
5421  * @hsotg: Programming view of the DWC_otg controller
5422  */
5423 int dwc2_backup_host_registers(struct dwc2_hsotg *hsotg)
5424 {
5425 	struct dwc2_hregs_backup *hr;
5426 	int i;
5427 
5428 	dev_dbg(hsotg->dev, "%s\n", __func__);
5429 
5430 	/* Backup Host regs */
5431 	hr = &hsotg->hr_backup;
5432 	hr->hcfg = dwc2_readl(hsotg->regs + HCFG);
5433 	hr->haintmsk = dwc2_readl(hsotg->regs + HAINTMSK);
5434 	for (i = 0; i < hsotg->params.host_channels; ++i)
5435 		hr->hcintmsk[i] = dwc2_readl(hsotg->regs + HCINTMSK(i));
5436 
5437 	hr->hprt0 = dwc2_read_hprt0(hsotg);
5438 	hr->hfir = dwc2_readl(hsotg->regs + HFIR);
5439 	hr->hptxfsiz = dwc2_readl(hsotg->regs + HPTXFSIZ);
5440 	hr->valid = true;
5441 
5442 	return 0;
5443 }
5444 
5445 /**
5446  * dwc2_restore_host_registers() - Restore controller host registers.
5447  * When resuming usb bus, device registers needs to be restored
5448  * if controller power were disabled.
5449  *
5450  * @hsotg: Programming view of the DWC_otg controller
5451  */
5452 int dwc2_restore_host_registers(struct dwc2_hsotg *hsotg)
5453 {
5454 	struct dwc2_hregs_backup *hr;
5455 	int i;
5456 
5457 	dev_dbg(hsotg->dev, "%s\n", __func__);
5458 
5459 	/* Restore host regs */
5460 	hr = &hsotg->hr_backup;
5461 	if (!hr->valid) {
5462 		dev_err(hsotg->dev, "%s: no host registers to restore\n",
5463 			__func__);
5464 		return -EINVAL;
5465 	}
5466 	hr->valid = false;
5467 
5468 	dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5469 	dwc2_writel(hr->haintmsk, hsotg->regs + HAINTMSK);
5470 
5471 	for (i = 0; i < hsotg->params.host_channels; ++i)
5472 		dwc2_writel(hr->hcintmsk[i], hsotg->regs + HCINTMSK(i));
5473 
5474 	dwc2_writel(hr->hprt0, hsotg->regs + HPRT0);
5475 	dwc2_writel(hr->hfir, hsotg->regs + HFIR);
5476 	dwc2_writel(hr->hptxfsiz, hsotg->regs + HPTXFSIZ);
5477 	hsotg->frame_number = 0;
5478 
5479 	return 0;
5480 }
5481 
5482 /**
5483  * dwc2_host_enter_hibernation() - Put controller in Hibernation.
5484  *
5485  * @hsotg: Programming view of the DWC_otg controller
5486  */
5487 int dwc2_host_enter_hibernation(struct dwc2_hsotg *hsotg)
5488 {
5489 	unsigned long flags;
5490 	int ret = 0;
5491 	u32 hprt0;
5492 	u32 pcgcctl;
5493 	u32 gusbcfg;
5494 	u32 gpwrdn;
5495 
5496 	dev_dbg(hsotg->dev, "Preparing host for hibernation\n");
5497 	ret = dwc2_backup_global_registers(hsotg);
5498 	if (ret) {
5499 		dev_err(hsotg->dev, "%s: failed to backup global registers\n",
5500 			__func__);
5501 		return ret;
5502 	}
5503 	ret = dwc2_backup_host_registers(hsotg);
5504 	if (ret) {
5505 		dev_err(hsotg->dev, "%s: failed to backup host registers\n",
5506 			__func__);
5507 		return ret;
5508 	}
5509 
5510 	/* Enter USB Suspend Mode */
5511 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5512 	hprt0 |= HPRT0_SUSP;
5513 	hprt0 &= ~HPRT0_ENA;
5514 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
5515 
5516 	/* Wait for the HPRT0.PrtSusp register field to be set */
5517 	if (dwc2_hsotg_wait_bit_set(hsotg, HPRT0, HPRT0_SUSP, 3000))
5518 		dev_warn(hsotg->dev, "Suspend wasn't generated\n");
5519 
5520 	/*
5521 	 * We need to disable interrupts to prevent servicing of any IRQ
5522 	 * during going to hibernation
5523 	 */
5524 	spin_lock_irqsave(&hsotg->lock, flags);
5525 	hsotg->lx_state = DWC2_L2;
5526 
5527 	gusbcfg = dwc2_readl(hsotg->regs + GUSBCFG);
5528 	if (gusbcfg & GUSBCFG_ULPI_UTMI_SEL) {
5529 		/* ULPI interface */
5530 		/* Suspend the Phy Clock */
5531 		pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5532 		pcgcctl |= PCGCTL_STOPPCLK;
5533 		dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5534 		udelay(10);
5535 
5536 		gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5537 		gpwrdn |= GPWRDN_PMUACTV;
5538 		dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5539 		udelay(10);
5540 	} else {
5541 		/* UTMI+ Interface */
5542 		gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5543 		gpwrdn |= GPWRDN_PMUACTV;
5544 		dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5545 		udelay(10);
5546 
5547 		pcgcctl = dwc2_readl(hsotg->regs + PCGCTL);
5548 		pcgcctl |= PCGCTL_STOPPCLK;
5549 		dwc2_writel(pcgcctl, hsotg->regs + PCGCTL);
5550 		udelay(10);
5551 	}
5552 
5553 	/* Enable interrupts from wake up logic */
5554 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5555 	gpwrdn |= GPWRDN_PMUINTSEL;
5556 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5557 	udelay(10);
5558 
5559 	/* Unmask host mode interrupts in GPWRDN */
5560 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5561 	gpwrdn |= GPWRDN_DISCONN_DET_MSK;
5562 	gpwrdn |= GPWRDN_LNSTSCHG_MSK;
5563 	gpwrdn |= GPWRDN_STS_CHGINT_MSK;
5564 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5565 	udelay(10);
5566 
5567 	/* Enable Power Down Clamp */
5568 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5569 	gpwrdn |= GPWRDN_PWRDNCLMP;
5570 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5571 	udelay(10);
5572 
5573 	/* Switch off VDD */
5574 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5575 	gpwrdn |= GPWRDN_PWRDNSWTCH;
5576 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5577 
5578 	hsotg->hibernated = 1;
5579 	hsotg->bus_suspended = 1;
5580 	dev_dbg(hsotg->dev, "Host hibernation completed\n");
5581 	spin_unlock_irqrestore(&hsotg->lock, flags);
5582 	return ret;
5583 }
5584 
5585 /*
5586  * dwc2_host_exit_hibernation()
5587  *
5588  * @hsotg: Programming view of the DWC_otg controller
5589  * @rem_wakeup: indicates whether resume is initiated by Device or Host.
5590  * @param reset: indicates whether resume is initiated by Reset.
5591  *
5592  * Return: non-zero if failed to enter to hibernation.
5593  *
5594  * This function is for exiting from Host mode hibernation by
5595  * Host Initiated Resume/Reset and Device Initiated Remote-Wakeup.
5596  */
5597 int dwc2_host_exit_hibernation(struct dwc2_hsotg *hsotg, int rem_wakeup,
5598 			       int reset)
5599 {
5600 	u32 gpwrdn;
5601 	u32 hprt0;
5602 	int ret = 0;
5603 	struct dwc2_gregs_backup *gr;
5604 	struct dwc2_hregs_backup *hr;
5605 
5606 	gr = &hsotg->gr_backup;
5607 	hr = &hsotg->hr_backup;
5608 
5609 	dev_dbg(hsotg->dev,
5610 		"%s: called with rem_wakeup = %d reset = %d\n",
5611 		__func__, rem_wakeup, reset);
5612 
5613 	dwc2_hib_restore_common(hsotg, rem_wakeup, 1);
5614 	hsotg->hibernated = 0;
5615 
5616 	/*
5617 	 * This step is not described in functional spec but if not wait for
5618 	 * this delay, mismatch interrupts occurred because just after restore
5619 	 * core is in Device mode(gintsts.curmode == 0)
5620 	 */
5621 	mdelay(100);
5622 
5623 	/* Clear all pending interupts */
5624 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5625 
5626 	/* De-assert Restore */
5627 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5628 	gpwrdn &= ~GPWRDN_RESTORE;
5629 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5630 	udelay(10);
5631 
5632 	/* Restore GUSBCFG, HCFG */
5633 	dwc2_writel(gr->gusbcfg, hsotg->regs + GUSBCFG);
5634 	dwc2_writel(hr->hcfg, hsotg->regs + HCFG);
5635 
5636 	/* De-assert Wakeup Logic */
5637 	gpwrdn = dwc2_readl(hsotg->regs + GPWRDN);
5638 	gpwrdn &= ~GPWRDN_PMUACTV;
5639 	dwc2_writel(gpwrdn, hsotg->regs + GPWRDN);
5640 	udelay(10);
5641 
5642 	hprt0 = hr->hprt0;
5643 	hprt0 |= HPRT0_PWR;
5644 	hprt0 &= ~HPRT0_ENA;
5645 	hprt0 &= ~HPRT0_SUSP;
5646 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
5647 
5648 	hprt0 = hr->hprt0;
5649 	hprt0 |= HPRT0_PWR;
5650 	hprt0 &= ~HPRT0_ENA;
5651 	hprt0 &= ~HPRT0_SUSP;
5652 
5653 	if (reset) {
5654 		hprt0 |= HPRT0_RST;
5655 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
5656 
5657 		/* Wait for Resume time and then program HPRT again */
5658 		mdelay(60);
5659 		hprt0 &= ~HPRT0_RST;
5660 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
5661 	} else {
5662 		hprt0 |= HPRT0_RES;
5663 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
5664 
5665 		/* Wait for Resume time and then program HPRT again */
5666 		mdelay(100);
5667 		hprt0 &= ~HPRT0_RES;
5668 		dwc2_writel(hprt0, hsotg->regs + HPRT0);
5669 	}
5670 	/* Clear all interrupt status */
5671 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5672 	hprt0 |= HPRT0_CONNDET;
5673 	hprt0 |= HPRT0_ENACHG;
5674 	hprt0 &= ~HPRT0_ENA;
5675 	dwc2_writel(hprt0, hsotg->regs + HPRT0);
5676 
5677 	hprt0 = dwc2_readl(hsotg->regs + HPRT0);
5678 
5679 	/* Clear all pending interupts */
5680 	dwc2_writel(0xffffffff, hsotg->regs + GINTSTS);
5681 
5682 	/* Restore global registers */
5683 	ret = dwc2_restore_global_registers(hsotg);
5684 	if (ret) {
5685 		dev_err(hsotg->dev, "%s: failed to restore registers\n",
5686 			__func__);
5687 		return ret;
5688 	}
5689 
5690 	/* Restore host registers */
5691 	ret = dwc2_restore_host_registers(hsotg);
5692 	if (ret) {
5693 		dev_err(hsotg->dev, "%s: failed to restore host registers\n",
5694 			__func__);
5695 		return ret;
5696 	}
5697 
5698 	dwc2_hcd_rem_wakeup(hsotg);
5699 
5700 	hsotg->hibernated = 0;
5701 	hsotg->bus_suspended = 0;
5702 	hsotg->lx_state = DWC2_L0;
5703 	dev_dbg(hsotg->dev, "Host hibernation restore complete\n");
5704 	return ret;
5705 }
5706