xref: /linux/drivers/staging/vt6656/card.c (revision a4cdb556cae05cd3e7b602b3a44c01420c4e2258)
1 /*
2  * Copyright (c) 1996, 2003 VIA Networking Technologies, Inc.
3  * All rights reserved.
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License along
16  * with this program; if not, write to the Free Software Foundation, Inc.,
17  * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
18  *
19  * File: card.c
20  * Purpose: Provide functions to setup NIC operation mode
21  * Functions:
22  *      vnt_set_rspinf - Set RSPINF
23  *      vnt_update_ifs - Update slotTime,SIFS,DIFS, and EIFS
24  *      vnt_update_top_rates - Update BasicTopRate
25  *      vnt_add_basic_rate - Add to BasicRateSet
26  *      vnt_ofdm_min_rate - Check if any OFDM rate is in BasicRateSet
27  *      vnt_get_tsf_offset - Calculate TSFOffset
28  *      vnt_get_current_tsf - Read Current NIC TSF counter
29  *      vnt_get_next_tbtt - Calculate Next Beacon TSF counter
30  *      vnt_reset_next_tbtt - Set NIC Beacon time
31  *      vnt_update_next_tbtt - Sync. NIC Beacon time
32  *      vnt_radio_power_off - Turn Off NIC Radio Power
33  *      vnt_radio_power_on - Turn On NIC Radio Power
34  *
35  * Revision History:
36  *      06-10-2003 Bryan YC Fan:  Re-write codes to support VT3253 spec.
37  *      08-26-2003 Kyle Hsu:      Modify the definition type of dwIoBase.
38  *      09-01-2003 Bryan YC Fan:  Add vnt_update_ifs().
39  *
40  */
41 
42 #include "device.h"
43 #include "card.h"
44 #include "baseband.h"
45 #include "mac.h"
46 #include "desc.h"
47 #include "rf.h"
48 #include "power.h"
49 #include "key.h"
50 #include "usbpipe.h"
51 
52 /* const u16 cwRXBCNTSFOff[MAX_RATE] =
53    {17, 34, 96, 192, 34, 23, 17, 11, 8, 5, 4, 3}; */
54 
55 static const u16 cwRXBCNTSFOff[MAX_RATE] = {
56 	192, 96, 34, 17, 34, 23, 17, 11, 8, 5, 4, 3
57 };
58 
59 /*
60  * Description: Set NIC media channel
61  *
62  * Parameters:
63  *  In:
64  *      pDevice             - The adapter to be set
65  *      connection_channel  - Channel to be set
66  *  Out:
67  *      none
68  */
69 void vnt_set_channel(struct vnt_private *priv, u32 connection_channel)
70 {
71 
72 	if (connection_channel > CB_MAX_CHANNEL || !connection_channel)
73 		return;
74 
75 	/* clear NAV */
76 	vnt_mac_reg_bits_on(priv, MAC_REG_MACCR, MACCR_CLRNAV);
77 
78 	/* Set Channel[7] = 0 to tell H/W channel is changing now. */
79 	vnt_mac_reg_bits_off(priv, MAC_REG_CHANNEL, 0xb0);
80 
81 	vnt_control_out(priv, MESSAGE_TYPE_SELECT_CHANNEL,
82 					connection_channel, 0, 0, NULL);
83 
84 	vnt_control_out_u8(priv, MESSAGE_REQUEST_MACREG, MAC_REG_CHANNEL,
85 		(u8)(connection_channel | 0x80));
86 }
87 
88 /*
89  * Description: Get CCK mode basic rate
90  *
91  * Parameters:
92  *  In:
93  *      priv		- The adapter to be set
94  *      rate_idx	- Receiving data rate
95  *  Out:
96  *      none
97  *
98  * Return Value: response Control frame rate
99  *
100  */
101 static u16 vnt_get_cck_rate(struct vnt_private *priv, u16 rate_idx)
102 {
103 	u16 ui = rate_idx;
104 
105 	while (ui > RATE_1M) {
106 		if (priv->basic_rates & (1 << ui))
107 			return ui;
108 		ui--;
109 	}
110 
111 	return RATE_1M;
112 }
113 
114 /*
115  * Description: Get OFDM mode basic rate
116  *
117  * Parameters:
118  *  In:
119  *      priv		- The adapter to be set
120  *      rate_idx	- Receiving data rate
121  *  Out:
122  *      none
123  *
124  * Return Value: response Control frame rate
125  *
126  */
127 static u16 vnt_get_ofdm_rate(struct vnt_private *priv, u16 rate_idx)
128 {
129 	u16 ui = rate_idx;
130 
131 	dev_dbg(&priv->usb->dev, "%s basic rate: %d\n",
132 					__func__,  priv->basic_rates);
133 
134 	if (!vnt_ofdm_min_rate(priv)) {
135 		dev_dbg(&priv->usb->dev, "%s (NO OFDM) %d\n",
136 						__func__, rate_idx);
137 		if (rate_idx > RATE_24M)
138 			rate_idx = RATE_24M;
139 		return rate_idx;
140 	}
141 
142 	while (ui > RATE_11M) {
143 		if (priv->basic_rates & (1 << ui)) {
144 			dev_dbg(&priv->usb->dev, "%s rate: %d\n",
145 							__func__, ui);
146 			return ui;
147 		}
148 		ui--;
149 	}
150 
151 	dev_dbg(&priv->usb->dev, "%s basic rate: 24M\n", __func__);
152 
153 	return RATE_24M;
154 }
155 
156 /*
157  * Description: Calculate TxRate and RsvTime fields for RSPINF in OFDM mode.
158  *
159  * Parameters:
160  * In:
161  *	rate	- Tx Rate
162  *	bb_type	- Tx Packet type
163  * Out:
164  *	tx_rate	- pointer to RSPINF TxRate field
165  *	rsv_time- pointer to RSPINF RsvTime field
166  *
167  * Return Value: none
168  *
169  */
170 static void vnt_calculate_ofdm_rate(u16 rate, u8 bb_type,
171 					u8 *tx_rate, u8 *rsv_time)
172 {
173 
174 	switch (rate) {
175 	case RATE_6M:
176 		if (bb_type == BB_TYPE_11A) {
177 			*tx_rate = 0x9b;
178 			*rsv_time = 24;
179 		} else {
180 			*tx_rate = 0x8b;
181 			*rsv_time = 30;
182 		}
183 			break;
184 	case RATE_9M:
185 		if (bb_type == BB_TYPE_11A) {
186 			*tx_rate = 0x9f;
187 			*rsv_time = 16;
188 		} else {
189 			*tx_rate = 0x8f;
190 			*rsv_time = 22;
191 		}
192 		break;
193 	case RATE_12M:
194 		if (bb_type == BB_TYPE_11A) {
195 			*tx_rate = 0x9a;
196 			*rsv_time = 12;
197 		} else {
198 			*tx_rate = 0x8a;
199 			*rsv_time = 18;
200 		}
201 		break;
202 	case RATE_18M:
203 		if (bb_type == BB_TYPE_11A) {
204 			*tx_rate = 0x9e;
205 			*rsv_time = 8;
206 		} else {
207 			*tx_rate = 0x8e;
208 			*rsv_time = 14;
209 		}
210 		break;
211 	case RATE_36M:
212 		if (bb_type == BB_TYPE_11A) {
213 			*tx_rate = 0x9d;
214 			*rsv_time = 4;
215 		} else {
216 			*tx_rate = 0x8d;
217 			*rsv_time = 10;
218 		}
219 		break;
220 	case RATE_48M:
221 		if (bb_type == BB_TYPE_11A) {
222 			*tx_rate = 0x98;
223 			*rsv_time = 4;
224 		} else {
225 			*tx_rate = 0x88;
226 			*rsv_time = 10;
227 		}
228 		break;
229 	case RATE_54M:
230 		if (bb_type == BB_TYPE_11A) {
231 			*tx_rate = 0x9c;
232 			*rsv_time = 4;
233 		} else {
234 			*tx_rate = 0x8c;
235 			*rsv_time = 10;
236 		}
237 		break;
238 	case RATE_24M:
239 	default:
240 		if (bb_type == BB_TYPE_11A) {
241 			*tx_rate = 0x99;
242 			*rsv_time = 8;
243 		} else {
244 			*tx_rate = 0x89;
245 			*rsv_time = 14;
246 		}
247 		break;
248 	}
249 }
250 
251 /*
252  * Description: Set RSPINF
253  *
254  * Parameters:
255  *  In:
256  *      pDevice             - The adapter to be set
257  *  Out:
258  *      none
259  *
260  * Return Value: None.
261  *
262  */
263 
264 void vnt_set_rspinf(struct vnt_private *priv, u8 bb_type)
265 {
266 	struct vnt_phy_field phy[4];
267 	u8 tx_rate[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0}; /* For OFDM */
268 	u8 rsv_time[9] = {0, 0, 0, 0, 0, 0, 0, 0, 0};
269 	u8 data[34];
270 	int i;
271 
272 	/*RSPINF_b_1*/
273 	vnt_get_phy_field(priv, 14,
274 		vnt_get_cck_rate(priv, RATE_1M), PK_TYPE_11B, &phy[0]);
275 
276 	/*RSPINF_b_2*/
277 	vnt_get_phy_field(priv, 14,
278 		vnt_get_cck_rate(priv, RATE_2M), PK_TYPE_11B, &phy[1]);
279 
280 	/*RSPINF_b_5*/
281 	vnt_get_phy_field(priv, 14,
282 		vnt_get_cck_rate(priv, RATE_5M), PK_TYPE_11B, &phy[2]);
283 
284 	/*RSPINF_b_11*/
285 	vnt_get_phy_field(priv, 14,
286 		vnt_get_cck_rate(priv, RATE_11M), PK_TYPE_11B, &phy[3]);
287 
288 	/*RSPINF_a_6*/
289 	vnt_calculate_ofdm_rate(RATE_6M, bb_type, &tx_rate[0], &rsv_time[0]);
290 
291 	/*RSPINF_a_9*/
292 	vnt_calculate_ofdm_rate(RATE_9M, bb_type, &tx_rate[1], &rsv_time[1]);
293 
294 	/*RSPINF_a_12*/
295 	vnt_calculate_ofdm_rate(RATE_12M, bb_type, &tx_rate[2], &rsv_time[2]);
296 
297 	/*RSPINF_a_18*/
298 	vnt_calculate_ofdm_rate(RATE_18M, bb_type, &tx_rate[3], &rsv_time[3]);
299 
300 	/*RSPINF_a_24*/
301 	vnt_calculate_ofdm_rate(RATE_24M, bb_type, &tx_rate[4], &rsv_time[4]);
302 
303 	/*RSPINF_a_36*/
304 	vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_36M),
305 					bb_type, &tx_rate[5], &rsv_time[5]);
306 
307 	/*RSPINF_a_48*/
308 	vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_48M),
309 					bb_type, &tx_rate[6], &rsv_time[6]);
310 
311 	/*RSPINF_a_54*/
312 	vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_54M),
313 					bb_type, &tx_rate[7], &rsv_time[7]);
314 
315 	/*RSPINF_a_72*/
316 	vnt_calculate_ofdm_rate(vnt_get_ofdm_rate(priv, RATE_54M),
317 					bb_type, &tx_rate[8], &rsv_time[8]);
318 
319 	put_unaligned(phy[0].len, (u16 *)&data[0]);
320 	data[2] = phy[0].signal;
321 	data[3] = phy[0].service;
322 
323 	put_unaligned(phy[1].len, (u16 *)&data[4]);
324 	data[6] = phy[1].signal;
325 	data[7] = phy[1].service;
326 
327 	put_unaligned(phy[2].len, (u16 *)&data[8]);
328 	data[10] = phy[2].signal;
329 	data[11] = phy[2].service;
330 
331 	put_unaligned(phy[3].len, (u16 *)&data[12]);
332 	data[14] = phy[3].signal;
333 	data[15] = phy[3].service;
334 
335 	for (i = 0; i < 9; i++) {
336 		data[16 + i * 2] = tx_rate[i];
337 		data[16 + i * 2 + 1] = rsv_time[i];
338 	}
339 
340 	vnt_control_out(priv, MESSAGE_TYPE_WRITE,
341 		MAC_REG_RSPINF_B_1, MESSAGE_REQUEST_MACREG, 34, &data[0]);
342 }
343 
344 /*
345  * Description: Update IFS
346  *
347  * Parameters:
348  *  In:
349  *	priv - The adapter to be set
350  * Out:
351  *	none
352  *
353  * Return Value: None.
354  *
355  */
356 void vnt_update_ifs(struct vnt_private *priv)
357 {
358 	u8 max_min = 0;
359 	u8 data[4];
360 
361 	if (priv->packet_type == PK_TYPE_11A) {
362 		priv->slot = C_SLOT_SHORT;
363 		priv->sifs = C_SIFS_A;
364 		priv->difs = C_SIFS_A + 2 * C_SLOT_SHORT;
365 		max_min = 4;
366 	} else if (priv->packet_type == PK_TYPE_11B) {
367 		priv->slot = C_SLOT_LONG;
368 		priv->sifs = C_SIFS_BG;
369 		priv->difs = C_SIFS_BG + 2 * C_SLOT_LONG;
370 		max_min = 5;
371 	} else {/* PK_TYPE_11GA & PK_TYPE_11GB */
372 		bool ofdm_rate = false;
373 		unsigned int ii = 0;
374 
375 		priv->sifs = C_SIFS_BG;
376 
377 		if (priv->short_slot_time)
378 			priv->slot = C_SLOT_SHORT;
379 		else
380 			priv->slot = C_SLOT_LONG;
381 
382 		priv->difs = C_SIFS_BG + 2 * priv->slot;
383 
384 		for (ii = RATE_54M; ii >= RATE_6M; ii--) {
385 			if (priv->basic_rates & ((u32)(0x1 << ii))) {
386 				ofdm_rate = true;
387 				break;
388 			}
389 		}
390 
391 		if (ofdm_rate)
392 			max_min = 4;
393 		else
394 			max_min = 5;
395 	}
396 
397 	priv->eifs = C_EIFS;
398 
399 	switch (priv->rf_type) {
400 	case RF_VT3226D0:
401 		if (priv->bb_type != BB_TYPE_11B) {
402 			priv->sifs -= 1;
403 			priv->difs -= 1;
404 			break;
405 		}
406 	case RF_AIROHA7230:
407 	case RF_AL2230:
408 	case RF_AL2230S:
409 		if (priv->bb_type != BB_TYPE_11B)
410 			break;
411 	case RF_RFMD2959:
412 	case RF_VT3226:
413 	case RF_VT3342A0:
414 		priv->sifs -= 3;
415 		priv->difs -= 3;
416 		break;
417 	case RF_MAXIM2829:
418 		if (priv->bb_type == BB_TYPE_11A) {
419 			priv->sifs -= 5;
420 			priv->difs -= 5;
421 		} else {
422 			priv->sifs -= 2;
423 			priv->difs -= 2;
424 		}
425 
426 		break;
427 	}
428 
429 	data[0] = (u8)priv->sifs;
430 	data[1] = (u8)priv->difs;
431 	data[2] = (u8)priv->eifs;
432 	data[3] = (u8)priv->slot;
433 
434 	vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_SIFS,
435 		MESSAGE_REQUEST_MACREG, 4, &data[0]);
436 
437 	max_min |= 0xa0;
438 
439 	vnt_control_out(priv, MESSAGE_TYPE_WRITE, MAC_REG_CWMAXMIN0,
440 		MESSAGE_REQUEST_MACREG, 1, &max_min);
441 }
442 
443 void vnt_update_top_rates(struct vnt_private *priv)
444 {
445 	u8 top_ofdm = RATE_24M, top_cck = RATE_1M;
446 	u8 i;
447 
448 	/*Determines the highest basic rate.*/
449 	for (i = RATE_54M; i >= RATE_6M; i--) {
450 		if (priv->basic_rates & (u16)(1 << i)) {
451 			top_ofdm = i;
452 			break;
453 		}
454 	}
455 
456 	priv->top_ofdm_basic_rate = top_ofdm;
457 
458 	for (i = RATE_11M;; i--) {
459 		if (priv->basic_rates & (u16)(1 << i)) {
460 			top_cck = i;
461 			break;
462 		}
463 		if (i == RATE_1M)
464 			break;
465 	}
466 
467 	priv->top_cck_basic_rate = top_cck;
468 }
469 
470 int vnt_ofdm_min_rate(struct vnt_private *priv)
471 {
472 	int ii;
473 
474 	for (ii = RATE_54M; ii >= RATE_6M; ii--) {
475 		if ((priv->basic_rates) & ((u16)BIT(ii)))
476 			return true;
477 	}
478 
479 	return false;
480 }
481 
482 u8 vnt_get_pkt_type(struct vnt_private *priv)
483 {
484 
485 	if (priv->bb_type == BB_TYPE_11A || priv->bb_type == BB_TYPE_11B)
486 		return (u8)priv->bb_type;
487 	else if (vnt_ofdm_min_rate(priv))
488 		return PK_TYPE_11GA;
489 	return PK_TYPE_11GB;
490 }
491 
492 /*
493  * Description: Calculate TSF offset of two TSF input
494  *              Get TSF Offset from RxBCN's TSF and local TSF
495  *
496  * Parameters:
497  *  In:
498  *      rx_rate	- rx rate.
499  *      tsf1	- Rx BCN's TSF
500  *      tsf2	- Local TSF
501  *  Out:
502  *      none
503  *
504  * Return Value: TSF Offset value
505  *
506  */
507 u64 vnt_get_tsf_offset(u8 rx_rate, u64 tsf1, u64 tsf2)
508 {
509 	u64 tsf_offset = 0;
510 	u16 rx_bcn_offset;
511 
512 	rx_bcn_offset = cwRXBCNTSFOff[rx_rate % MAX_RATE];
513 
514 	tsf2 += (u64)rx_bcn_offset;
515 
516 	tsf_offset = tsf1 - tsf2;
517 
518 	return tsf_offset;
519 }
520 
521 /*
522  * Description: Sync. TSF counter to BSS
523  *              Get TSF offset and write to HW
524  *
525  * Parameters:
526  *  In:
527  *      priv		- The adapter to be sync.
528  *      time_stamp	- Rx BCN's TSF
529  *      local_tsf	- Local TSF
530  *  Out:
531  *      none
532  *
533  * Return Value: none
534  *
535  */
536 void vnt_adjust_tsf(struct vnt_private *priv, u8 rx_rate,
537 		u64 time_stamp, u64 local_tsf)
538 {
539 	u64 tsf_offset = 0;
540 	u8 data[8];
541 
542 	tsf_offset = vnt_get_tsf_offset(rx_rate, time_stamp, local_tsf);
543 
544 	data[0] = (u8)tsf_offset;
545 	data[1] = (u8)(tsf_offset >> 8);
546 	data[2] = (u8)(tsf_offset >> 16);
547 	data[3] = (u8)(tsf_offset >> 24);
548 	data[4] = (u8)(tsf_offset >> 32);
549 	data[5] = (u8)(tsf_offset >> 40);
550 	data[6] = (u8)(tsf_offset >> 48);
551 	data[7] = (u8)(tsf_offset >> 56);
552 
553 	vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
554 		MESSAGE_REQUEST_TSF, 0, 8, data);
555 }
556 /*
557  * Description: Read NIC TSF counter
558  *              Get local TSF counter
559  *
560  * Parameters:
561  *  In:
562  *	priv		- The adapter to be read
563  *  Out:
564  *	current_tsf	- Current TSF counter
565  *
566  * Return Value: true if success; otherwise false
567  *
568  */
569 bool vnt_get_current_tsf(struct vnt_private *priv, u64 *current_tsf)
570 {
571 
572 	*current_tsf = priv->current_tsf;
573 
574 	return true;
575 }
576 
577 /*
578  * Description: Clear NIC TSF counter
579  *              Clear local TSF counter
580  *
581  * Parameters:
582  *  In:
583  *      priv	- The adapter to be read
584  *
585  * Return Value: true if success; otherwise false
586  *
587  */
588 bool vnt_clear_current_tsf(struct vnt_private *priv)
589 {
590 
591 	vnt_mac_reg_bits_on(priv, MAC_REG_TFTCTL, TFTCTL_TSFCNTRST);
592 
593 	priv->current_tsf = 0;
594 
595 	return true;
596 }
597 
598 /*
599  * Description: Read NIC TSF counter
600  *              Get NEXTTBTT from adjusted TSF and Beacon Interval
601  *
602  * Parameters:
603  *  In:
604  *      tsf		- Current TSF counter
605  *      beacon_interval - Beacon Interval
606  *  Out:
607  *      tsf		- Current TSF counter
608  *
609  * Return Value: TSF value of next Beacon
610  *
611  */
612 u64 vnt_get_next_tbtt(u64 tsf, u16 beacon_interval)
613 {
614 	u32 beacon_int;
615 
616 	beacon_int = beacon_interval * 1024;
617 
618 	/* Next TBTT =
619 	*	((local_current_TSF / beacon_interval) + 1) * beacon_interval
620 	*/
621 	if (beacon_int) {
622 		do_div(tsf, beacon_int);
623 		tsf += 1;
624 		tsf *= beacon_int;
625 	}
626 
627 	return tsf;
628 }
629 
630 /*
631  * Description: Set NIC TSF counter for first Beacon time
632  *              Get NEXTTBTT from adjusted TSF and Beacon Interval
633  *
634  * Parameters:
635  *  In:
636  *      dwIoBase        - IO Base
637  *	beacon_interval - Beacon Interval
638  *  Out:
639  *      none
640  *
641  * Return Value: none
642  *
643  */
644 void vnt_reset_next_tbtt(struct vnt_private *priv, u16 beacon_interval)
645 {
646 	u64 next_tbtt = 0;
647 	u8 data[8];
648 
649 	vnt_clear_current_tsf(priv);
650 
651 	next_tbtt = vnt_get_next_tbtt(next_tbtt, beacon_interval);
652 
653 	data[0] = (u8)next_tbtt;
654 	data[1] = (u8)(next_tbtt >> 8);
655 	data[2] = (u8)(next_tbtt >> 16);
656 	data[3] = (u8)(next_tbtt >> 24);
657 	data[4] = (u8)(next_tbtt >> 32);
658 	data[5] = (u8)(next_tbtt >> 40);
659 	data[6] = (u8)(next_tbtt >> 48);
660 	data[7] = (u8)(next_tbtt >> 56);
661 
662 	vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
663 		MESSAGE_REQUEST_TBTT, 0, 8, data);
664 }
665 
666 /*
667  * Description: Sync NIC TSF counter for Beacon time
668  *              Get NEXTTBTT and write to HW
669  *
670  * Parameters:
671  *  In:
672  *	priv		- The adapter to be set
673  *      tsf		- Current TSF counter
674  *      beacon_interval - Beacon Interval
675  *  Out:
676  *      none
677  *
678  * Return Value: none
679  *
680  */
681 void vnt_update_next_tbtt(struct vnt_private *priv, u64 tsf,
682 			u16 beacon_interval)
683 {
684 	u8 data[8];
685 
686 	tsf = vnt_get_next_tbtt(tsf, beacon_interval);
687 
688 	data[0] = (u8)tsf;
689 	data[1] = (u8)(tsf >> 8);
690 	data[2] = (u8)(tsf >> 16);
691 	data[3] = (u8)(tsf >> 24);
692 	data[4] = (u8)(tsf >> 32);
693 	data[5] = (u8)(tsf >> 40);
694 	data[6] = (u8)(tsf >> 48);
695 	data[7] = (u8)(tsf >> 56);
696 
697 	vnt_control_out(priv, MESSAGE_TYPE_SET_TSFTBTT,
698 			MESSAGE_REQUEST_TBTT, 0, 8, data);
699 
700 	dev_dbg(&priv->usb->dev, "%s TBTT: %8llx\n", __func__, tsf);
701 }
702 
703 /*
704  * Description: Turn off Radio power
705  *
706  * Parameters:
707  *  In:
708  *      priv         - The adapter to be turned off
709  *  Out:
710  *      none
711  *
712  * Return Value: true if success; otherwise false
713  *
714  */
715 int vnt_radio_power_off(struct vnt_private *priv)
716 {
717 	int ret = true;
718 
719 	switch (priv->rf_type) {
720 	case RF_AL2230:
721 	case RF_AL2230S:
722 	case RF_AIROHA7230:
723 	case RF_VT3226:
724 	case RF_VT3226D0:
725 	case RF_VT3342A0:
726 		vnt_mac_reg_bits_off(priv, MAC_REG_SOFTPWRCTL,
727 				(SOFTPWRCTL_SWPE2 | SOFTPWRCTL_SWPE3));
728 		break;
729 	}
730 
731 	vnt_mac_reg_bits_off(priv, MAC_REG_HOSTCR, HOSTCR_RXON);
732 
733 	vnt_set_deep_sleep(priv);
734 
735 	vnt_mac_reg_bits_on(priv, MAC_REG_GPIOCTL1, GPIO3_INTMD);
736 
737 	return ret;
738 }
739 
740 /*
741  * Description: Turn on Radio power
742  *
743  * Parameters:
744  *  In:
745  *      priv         - The adapter to be turned on
746  *  Out:
747  *      none
748  *
749  * Return Value: true if success; otherwise false
750  *
751  */
752 int vnt_radio_power_on(struct vnt_private *priv)
753 {
754 	int ret = true;
755 
756 	vnt_exit_deep_sleep(priv);
757 
758 	vnt_mac_reg_bits_on(priv, MAC_REG_HOSTCR, HOSTCR_RXON);
759 
760 	switch (priv->rf_type) {
761 	case RF_AL2230:
762 	case RF_AL2230S:
763 	case RF_AIROHA7230:
764 	case RF_VT3226:
765 	case RF_VT3226D0:
766 	case RF_VT3342A0:
767 		vnt_mac_reg_bits_on(priv, MAC_REG_SOFTPWRCTL,
768 			(SOFTPWRCTL_SWPE2 | SOFTPWRCTL_SWPE3));
769 		break;
770 	}
771 
772 	vnt_mac_reg_bits_off(priv, MAC_REG_GPIOCTL1, GPIO3_INTMD);
773 
774 	return ret;
775 }
776 
777 void vnt_set_bss_mode(struct vnt_private *priv)
778 {
779 	if (priv->rf_type == RF_AIROHA7230 && priv->bb_type == BB_TYPE_11A)
780 		vnt_mac_set_bb_type(priv, BB_TYPE_11G);
781 	else
782 		vnt_mac_set_bb_type(priv, priv->bb_type);
783 
784 	priv->packet_type = vnt_get_pkt_type(priv);
785 
786 	if (priv->bb_type == BB_TYPE_11A)
787 		vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x03);
788 	else if (priv->bb_type == BB_TYPE_11B)
789 		vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x02);
790 	else if (priv->bb_type == BB_TYPE_11G)
791 		vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG, 0x88, 0x08);
792 
793 	vnt_update_ifs(priv);
794 	vnt_set_rspinf(priv, (u8)priv->bb_type);
795 
796 	if (priv->bb_type == BB_TYPE_11A) {
797 		if (priv->rf_type == RF_AIROHA7230) {
798 			priv->bb_vga[0] = 0x20;
799 
800 			vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG,
801 						0xe7, priv->bb_vga[0]);
802 		}
803 
804 		priv->bb_vga[2] = 0x10;
805 		priv->bb_vga[3] = 0x10;
806 	} else {
807 		if (priv->rf_type == RF_AIROHA7230) {
808 			priv->bb_vga[0] = 0x1c;
809 
810 			vnt_control_out_u8(priv, MESSAGE_REQUEST_BBREG,
811 						0xe7, priv->bb_vga[0]);
812 		}
813 
814 		priv->bb_vga[2] = 0x0;
815 		priv->bb_vga[3] = 0x0;
816 	}
817 
818 	vnt_set_vga_gain_offset(priv, priv->bb_vga[0]);
819 }
820