xref: /linux/drivers/staging/nvec/nvec.c (revision 72503791edffe516848d0f01d377fa9cd0711970)
1 /*
2  * NVEC: NVIDIA compliant embedded controller interface
3  *
4  * Copyright (C) 2011 The AC100 Kernel Team <ac100@lists.lauchpad.net>
5  *
6  * Authors:  Pierre-Hugues Husson <phhusson@free.fr>
7  *           Ilya Petrov <ilya.muromec@gmail.com>
8  *           Marc Dietrich <marvin24@gmx.de>
9  *           Julian Andres Klode <jak@jak-linux.org>
10  *
11  * This file is subject to the terms and conditions of the GNU General Public
12  * License.  See the file "COPYING" in the main directory of this archive
13  * for more details.
14  *
15  */
16 
17 /* #define DEBUG */
18 
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/atomic.h>
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/gpio.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/irq.h>
30 #include <linux/of.h>
31 #include <linux/of_gpio.h>
32 #include <linux/list.h>
33 #include <linux/mfd/core.h>
34 #include <linux/mutex.h>
35 #include <linux/notifier.h>
36 #include <linux/platform_device.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 
41 #include <mach/clk.h>
42 #include <mach/iomap.h>
43 
44 #include "nvec.h"
45 
46 #define I2C_CNFG			0x00
47 #define I2C_CNFG_PACKET_MODE_EN		(1<<10)
48 #define I2C_CNFG_NEW_MASTER_SFM		(1<<11)
49 #define I2C_CNFG_DEBOUNCE_CNT_SHIFT	12
50 
51 #define I2C_SL_CNFG		0x20
52 #define I2C_SL_NEWSL		(1<<2)
53 #define I2C_SL_NACK		(1<<1)
54 #define I2C_SL_RESP		(1<<0)
55 #define I2C_SL_IRQ		(1<<3)
56 #define END_TRANS		(1<<4)
57 #define RCVD			(1<<2)
58 #define RNW			(1<<1)
59 
60 #define I2C_SL_RCVD		0x24
61 #define I2C_SL_STATUS		0x28
62 #define I2C_SL_ADDR1		0x2c
63 #define I2C_SL_ADDR2		0x30
64 #define I2C_SL_DELAY_COUNT	0x3c
65 
66 /**
67  * enum nvec_msg_category - Message categories for nvec_msg_alloc()
68  * @NVEC_MSG_RX: The message is an incoming message (from EC)
69  * @NVEC_MSG_TX: The message is an outgoing message (to EC)
70  */
71 enum nvec_msg_category  {
72 	NVEC_MSG_RX,
73 	NVEC_MSG_TX,
74 };
75 
76 static const unsigned char EC_DISABLE_EVENT_REPORTING[3] = "\x04\x00\x00";
77 static const unsigned char EC_ENABLE_EVENT_REPORTING[3]  = "\x04\x00\x01";
78 static const unsigned char EC_GET_FIRMWARE_VERSION[2]    = "\x07\x15";
79 
80 static struct nvec_chip *nvec_power_handle;
81 
82 static struct mfd_cell nvec_devices[] = {
83 	{
84 		.name = "nvec-kbd",
85 		.id = 1,
86 	},
87 	{
88 		.name = "nvec-mouse",
89 		.id = 1,
90 	},
91 	{
92 		.name = "nvec-power",
93 		.id = 1,
94 	},
95 	{
96 		.name = "nvec-power",
97 		.id = 2,
98 	},
99 	{
100 		.name = "nvec-paz00",
101 		.id = 1,
102 	},
103 };
104 
105 /**
106  * nvec_register_notifier - Register a notifier with nvec
107  * @nvec: A &struct nvec_chip
108  * @nb: The notifier block to register
109  *
110  * Registers a notifier with @nvec. The notifier will be added to an atomic
111  * notifier chain that is called for all received messages except those that
112  * correspond to a request initiated by nvec_write_sync().
113  */
114 int nvec_register_notifier(struct nvec_chip *nvec, struct notifier_block *nb,
115 			   unsigned int events)
116 {
117 	return atomic_notifier_chain_register(&nvec->notifier_list, nb);
118 }
119 EXPORT_SYMBOL_GPL(nvec_register_notifier);
120 
121 /**
122  * nvec_status_notifier - The final notifier
123  *
124  * Prints a message about control events not handled in the notifier
125  * chain.
126  */
127 static int nvec_status_notifier(struct notifier_block *nb,
128 				unsigned long event_type, void *data)
129 {
130 	struct nvec_chip *nvec = container_of(nb, struct nvec_chip,
131 						nvec_status_notifier);
132 	unsigned char *msg = (unsigned char *)data;
133 
134 	if (event_type != NVEC_CNTL)
135 		return NOTIFY_DONE;
136 
137 	dev_warn(nvec->dev, "unhandled msg type %ld\n", event_type);
138 	print_hex_dump(KERN_WARNING, "payload: ", DUMP_PREFIX_NONE, 16, 1,
139 		msg, msg[1] + 2, true);
140 
141 	return NOTIFY_OK;
142 }
143 
144 /**
145  * nvec_msg_alloc:
146  * @nvec: A &struct nvec_chip
147  * @category: Pool category, see &enum nvec_msg_category
148  *
149  * Allocate a single &struct nvec_msg object from the message pool of
150  * @nvec. The result shall be passed to nvec_msg_free() if no longer
151  * used.
152  *
153  * Outgoing messages are placed in the upper 75% of the pool, keeping the
154  * lower 25% available for RX buffers only. The reason is to prevent a
155  * situation where all buffers are full and a message is thus endlessly
156  * retried because the response could never be processed.
157  */
158 static struct nvec_msg *nvec_msg_alloc(struct nvec_chip *nvec,
159 				       enum nvec_msg_category category)
160 {
161 	int i = (category == NVEC_MSG_TX) ? (NVEC_POOL_SIZE / 4) : 0;
162 
163 	for (; i < NVEC_POOL_SIZE; i++) {
164 		if (atomic_xchg(&nvec->msg_pool[i].used, 1) == 0) {
165 			dev_vdbg(nvec->dev, "INFO: Allocate %i\n", i);
166 			return &nvec->msg_pool[i];
167 		}
168 	}
169 
170 	dev_err(nvec->dev, "could not allocate %s buffer\n",
171 		(category == NVEC_MSG_TX) ? "TX" : "RX");
172 
173 	return NULL;
174 }
175 
176 /**
177  * nvec_msg_free:
178  * @nvec: A &struct nvec_chip
179  * @msg:  A message (must be allocated by nvec_msg_alloc() and belong to @nvec)
180  *
181  * Free the given message
182  */
183 inline void nvec_msg_free(struct nvec_chip *nvec, struct nvec_msg *msg)
184 {
185 	if (msg != &nvec->tx_scratch)
186 		dev_vdbg(nvec->dev, "INFO: Free %ti\n", msg - nvec->msg_pool);
187 	atomic_set(&msg->used, 0);
188 }
189 EXPORT_SYMBOL_GPL(nvec_msg_free);
190 
191 /**
192  * nvec_msg_is_event - Return %true if @msg is an event
193  * @msg: A message
194  */
195 static bool nvec_msg_is_event(struct nvec_msg *msg)
196 {
197 	return msg->data[0] >> 7;
198 }
199 
200 /**
201  * nvec_msg_size - Get the size of a message
202  * @msg: The message to get the size for
203  *
204  * This only works for received messages, not for outgoing messages.
205  */
206 static size_t nvec_msg_size(struct nvec_msg *msg)
207 {
208 	bool is_event = nvec_msg_is_event(msg);
209 	int event_length = (msg->data[0] & 0x60) >> 5;
210 
211 	/* for variable size, payload size in byte 1 + count (1) + cmd (1) */
212 	if (!is_event || event_length == NVEC_VAR_SIZE)
213 		return (msg->pos || msg->size) ? (msg->data[1] + 2) : 0;
214 	else if (event_length == NVEC_2BYTES)
215 		return 2;
216 	else if (event_length == NVEC_3BYTES)
217 		return 3;
218 	else
219 		return 0;
220 }
221 
222 /**
223  * nvec_gpio_set_value - Set the GPIO value
224  * @nvec: A &struct nvec_chip
225  * @value: The value to write (0 or 1)
226  *
227  * Like gpio_set_value(), but generating debugging information
228  */
229 static void nvec_gpio_set_value(struct nvec_chip *nvec, int value)
230 {
231 	dev_dbg(nvec->dev, "GPIO changed from %u to %u\n",
232 		gpio_get_value(nvec->gpio), value);
233 	gpio_set_value(nvec->gpio, value);
234 }
235 
236 /**
237  * nvec_write_async - Asynchronously write a message to NVEC
238  * @nvec: An nvec_chip instance
239  * @data: The message data, starting with the request type
240  * @size: The size of @data
241  *
242  * Queue a single message to be transferred to the embedded controller
243  * and return immediately.
244  *
245  * Returns: 0 on success, a negative error code on failure. If a failure
246  * occured, the nvec driver may print an error.
247  */
248 int nvec_write_async(struct nvec_chip *nvec, const unsigned char *data,
249 			short size)
250 {
251 	struct nvec_msg *msg;
252 	unsigned long flags;
253 
254 	msg = nvec_msg_alloc(nvec, NVEC_MSG_TX);
255 
256 	if (msg == NULL)
257 		return -ENOMEM;
258 
259 	msg->data[0] = size;
260 	memcpy(msg->data + 1, data, size);
261 	msg->size = size + 1;
262 
263 	spin_lock_irqsave(&nvec->tx_lock, flags);
264 	list_add_tail(&msg->node, &nvec->tx_data);
265 	spin_unlock_irqrestore(&nvec->tx_lock, flags);
266 
267 	schedule_work(&nvec->tx_work);
268 
269 	return 0;
270 }
271 EXPORT_SYMBOL(nvec_write_async);
272 
273 /**
274  * nvec_write_sync - Write a message to nvec and read the response
275  * @nvec: An &struct nvec_chip
276  * @data: The data to write
277  * @size: The size of @data
278  *
279  * This is similar to nvec_write_async(), but waits for the
280  * request to be answered before returning. This function
281  * uses a mutex and can thus not be called from e.g.
282  * interrupt handlers.
283  *
284  * Returns: A pointer to the response message on success,
285  * %NULL on failure. Free with nvec_msg_free() once no longer
286  * used.
287  */
288 struct nvec_msg *nvec_write_sync(struct nvec_chip *nvec,
289 		const unsigned char *data, short size)
290 {
291 	struct nvec_msg *msg;
292 
293 	mutex_lock(&nvec->sync_write_mutex);
294 
295 	nvec->sync_write_pending = (data[1] << 8) + data[0];
296 
297 	if (nvec_write_async(nvec, data, size) < 0) {
298 		mutex_unlock(&nvec->sync_write_mutex);
299 		return NULL;
300 	}
301 
302 	dev_dbg(nvec->dev, "nvec_sync_write: 0x%04x\n",
303 					nvec->sync_write_pending);
304 	if (!(wait_for_completion_timeout(&nvec->sync_write,
305 				msecs_to_jiffies(2000)))) {
306 		dev_warn(nvec->dev, "timeout waiting for sync write to complete\n");
307 		mutex_unlock(&nvec->sync_write_mutex);
308 		return NULL;
309 	}
310 
311 	dev_dbg(nvec->dev, "nvec_sync_write: pong!\n");
312 
313 	msg = nvec->last_sync_msg;
314 
315 	mutex_unlock(&nvec->sync_write_mutex);
316 
317 	return msg;
318 }
319 EXPORT_SYMBOL(nvec_write_sync);
320 
321 /**
322  * nvec_request_master - Process outgoing messages
323  * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
324  *
325  * Processes all outgoing requests by sending the request and awaiting the
326  * response, then continuing with the next request. Once a request has a
327  * matching response, it will be freed and removed from the list.
328  */
329 static void nvec_request_master(struct work_struct *work)
330 {
331 	struct nvec_chip *nvec = container_of(work, struct nvec_chip, tx_work);
332 	unsigned long flags;
333 	long err;
334 	struct nvec_msg *msg;
335 
336 	spin_lock_irqsave(&nvec->tx_lock, flags);
337 	while (!list_empty(&nvec->tx_data)) {
338 		msg = list_first_entry(&nvec->tx_data, struct nvec_msg, node);
339 		spin_unlock_irqrestore(&nvec->tx_lock, flags);
340 		nvec_gpio_set_value(nvec, 0);
341 		err = wait_for_completion_interruptible_timeout(
342 				&nvec->ec_transfer, msecs_to_jiffies(5000));
343 
344 		if (err == 0) {
345 			dev_warn(nvec->dev, "timeout waiting for ec transfer\n");
346 			nvec_gpio_set_value(nvec, 1);
347 			msg->pos = 0;
348 		}
349 
350 		spin_lock_irqsave(&nvec->tx_lock, flags);
351 
352 		if (err > 0) {
353 			list_del_init(&msg->node);
354 			nvec_msg_free(nvec, msg);
355 		}
356 	}
357 	spin_unlock_irqrestore(&nvec->tx_lock, flags);
358 }
359 
360 /**
361  * parse_msg - Print some information and call the notifiers on an RX message
362  * @nvec: A &struct nvec_chip
363  * @msg: A message received by @nvec
364  *
365  * Paarse some pieces of the message and then call the chain of notifiers
366  * registered via nvec_register_notifier.
367  */
368 static int parse_msg(struct nvec_chip *nvec, struct nvec_msg *msg)
369 {
370 	if ((msg->data[0] & 1 << 7) == 0 && msg->data[3]) {
371 		dev_err(nvec->dev, "ec responded %*ph\n", 4, msg->data);
372 		return -EINVAL;
373 	}
374 
375 	if ((msg->data[0] >> 7) == 1 && (msg->data[0] & 0x0f) == 5)
376 		print_hex_dump(KERN_WARNING, "ec system event ",
377 				DUMP_PREFIX_NONE, 16, 1, msg->data,
378 				msg->data[1] + 2, true);
379 
380 	atomic_notifier_call_chain(&nvec->notifier_list, msg->data[0] & 0x8f,
381 				   msg->data);
382 
383 	return 0;
384 }
385 
386 /**
387  * nvec_dispatch - Process messages received from the EC
388  * @work: A &struct work_struct (the tx_worker member of &struct nvec_chip)
389  *
390  * Process messages previously received from the EC and put into the RX
391  * queue of the &struct nvec_chip instance associated with @work.
392  */
393 static void nvec_dispatch(struct work_struct *work)
394 {
395 	struct nvec_chip *nvec = container_of(work, struct nvec_chip, rx_work);
396 	unsigned long flags;
397 	struct nvec_msg *msg;
398 
399 	spin_lock_irqsave(&nvec->rx_lock, flags);
400 	while (!list_empty(&nvec->rx_data)) {
401 		msg = list_first_entry(&nvec->rx_data, struct nvec_msg, node);
402 		list_del_init(&msg->node);
403 		spin_unlock_irqrestore(&nvec->rx_lock, flags);
404 
405 		if (nvec->sync_write_pending ==
406 		      (msg->data[2] << 8) + msg->data[0]) {
407 			dev_dbg(nvec->dev, "sync write completed!\n");
408 			nvec->sync_write_pending = 0;
409 			nvec->last_sync_msg = msg;
410 			complete(&nvec->sync_write);
411 		} else {
412 			parse_msg(nvec, msg);
413 			nvec_msg_free(nvec, msg);
414 		}
415 		spin_lock_irqsave(&nvec->rx_lock, flags);
416 	}
417 	spin_unlock_irqrestore(&nvec->rx_lock, flags);
418 }
419 
420 /**
421  * nvec_tx_completed - Complete the current transfer
422  * @nvec: A &struct nvec_chip
423  *
424  * This is called when we have received an END_TRANS on a TX transfer.
425  */
426 static void nvec_tx_completed(struct nvec_chip *nvec)
427 {
428 	/* We got an END_TRANS, let's skip this, maybe there's an event */
429 	if (nvec->tx->pos != nvec->tx->size) {
430 		dev_err(nvec->dev, "premature END_TRANS, resending\n");
431 		nvec->tx->pos = 0;
432 		nvec_gpio_set_value(nvec, 0);
433 	} else {
434 		nvec->state = 0;
435 	}
436 }
437 
438 /**
439  * nvec_rx_completed - Complete the current transfer
440  * @nvec: A &struct nvec_chip
441  *
442  * This is called when we have received an END_TRANS on a RX transfer.
443  */
444 static void nvec_rx_completed(struct nvec_chip *nvec)
445 {
446 	if (nvec->rx->pos != nvec_msg_size(nvec->rx)) {
447 		dev_err(nvec->dev, "RX incomplete: Expected %u bytes, got %u\n",
448 			   (uint) nvec_msg_size(nvec->rx),
449 			   (uint) nvec->rx->pos);
450 
451 		nvec_msg_free(nvec, nvec->rx);
452 		nvec->state = 0;
453 
454 		/* Battery quirk - Often incomplete, and likes to crash */
455 		if (nvec->rx->data[0] == NVEC_BAT)
456 			complete(&nvec->ec_transfer);
457 
458 		return;
459 	}
460 
461 	spin_lock(&nvec->rx_lock);
462 
463 	/* add the received data to the work list
464 	   and move the ring buffer pointer to the next entry */
465 	list_add_tail(&nvec->rx->node, &nvec->rx_data);
466 
467 	spin_unlock(&nvec->rx_lock);
468 
469 	nvec->state = 0;
470 
471 	if (!nvec_msg_is_event(nvec->rx))
472 		complete(&nvec->ec_transfer);
473 
474 	schedule_work(&nvec->rx_work);
475 }
476 
477 /**
478  * nvec_invalid_flags - Send an error message about invalid flags and jump
479  * @nvec: The nvec device
480  * @status: The status flags
481  * @reset: Whether we shall jump to state 0.
482  */
483 static void nvec_invalid_flags(struct nvec_chip *nvec, unsigned int status,
484 			       bool reset)
485 {
486 	dev_err(nvec->dev, "unexpected status flags 0x%02x during state %i\n",
487 		status, nvec->state);
488 	if (reset)
489 		nvec->state = 0;
490 }
491 
492 /**
493  * nvec_tx_set - Set the message to transfer (nvec->tx)
494  * @nvec: A &struct nvec_chip
495  *
496  * Gets the first entry from the tx_data list of @nvec and sets the
497  * tx member to it. If the tx_data list is empty, this uses the
498  * tx_scratch message to send a no operation message.
499  */
500 static void nvec_tx_set(struct nvec_chip *nvec)
501 {
502 	spin_lock(&nvec->tx_lock);
503 	if (list_empty(&nvec->tx_data)) {
504 		dev_err(nvec->dev, "empty tx - sending no-op\n");
505 		memcpy(nvec->tx_scratch.data, "\x02\x07\x02", 3);
506 		nvec->tx_scratch.size = 3;
507 		nvec->tx_scratch.pos = 0;
508 		nvec->tx = &nvec->tx_scratch;
509 		list_add_tail(&nvec->tx->node, &nvec->tx_data);
510 	} else {
511 		nvec->tx = list_first_entry(&nvec->tx_data, struct nvec_msg,
512 					    node);
513 		nvec->tx->pos = 0;
514 	}
515 	spin_unlock(&nvec->tx_lock);
516 
517 	dev_dbg(nvec->dev, "Sending message of length %u, command 0x%x\n",
518 		(uint)nvec->tx->size, nvec->tx->data[1]);
519 }
520 
521 /**
522  * nvec_interrupt - Interrupt handler
523  * @irq: The IRQ
524  * @dev: The nvec device
525  *
526  * Interrupt handler that fills our RX buffers and empties our TX
527  * buffers. This uses a finite state machine with ridiculous amounts
528  * of error checking, in order to be fairly reliable.
529  */
530 static irqreturn_t nvec_interrupt(int irq, void *dev)
531 {
532 	unsigned long status;
533 	unsigned int received = 0;
534 	unsigned char to_send = 0xff;
535 	const unsigned long irq_mask = I2C_SL_IRQ | END_TRANS | RCVD | RNW;
536 	struct nvec_chip *nvec = dev;
537 	unsigned int state = nvec->state;
538 
539 	status = readl(nvec->base + I2C_SL_STATUS);
540 
541 	/* Filter out some errors */
542 	if ((status & irq_mask) == 0 && (status & ~irq_mask) != 0) {
543 		dev_err(nvec->dev, "unexpected irq mask %lx\n", status);
544 		return IRQ_HANDLED;
545 	}
546 	if ((status & I2C_SL_IRQ) == 0) {
547 		dev_err(nvec->dev, "Spurious IRQ\n");
548 		return IRQ_HANDLED;
549 	}
550 
551 	/* The EC did not request a read, so it send us something, read it */
552 	if ((status & RNW) == 0) {
553 		received = readl(nvec->base + I2C_SL_RCVD);
554 		if (status & RCVD)
555 			writel(0, nvec->base + I2C_SL_RCVD);
556 	}
557 
558 	if (status == (I2C_SL_IRQ | RCVD))
559 		nvec->state = 0;
560 
561 	switch (nvec->state) {
562 	case 0:		/* Verify that its a transfer start, the rest later */
563 		if (status != (I2C_SL_IRQ | RCVD))
564 			nvec_invalid_flags(nvec, status, false);
565 		break;
566 	case 1:		/* command byte */
567 		if (status != I2C_SL_IRQ) {
568 			nvec_invalid_flags(nvec, status, true);
569 		} else {
570 			nvec->rx = nvec_msg_alloc(nvec, NVEC_MSG_RX);
571 			/* Should not happen in a normal world */
572 			if (unlikely(nvec->rx == NULL)) {
573 				nvec->state = 0;
574 				break;
575 			}
576 			nvec->rx->data[0] = received;
577 			nvec->rx->pos = 1;
578 			nvec->state = 2;
579 		}
580 		break;
581 	case 2:		/* first byte after command */
582 		if (status == (I2C_SL_IRQ | RNW | RCVD)) {
583 			udelay(33);
584 			if (nvec->rx->data[0] != 0x01) {
585 				dev_err(nvec->dev,
586 					"Read without prior read command\n");
587 				nvec->state = 0;
588 				break;
589 			}
590 			nvec_msg_free(nvec, nvec->rx);
591 			nvec->state = 3;
592 			nvec_tx_set(nvec);
593 			BUG_ON(nvec->tx->size < 1);
594 			to_send = nvec->tx->data[0];
595 			nvec->tx->pos = 1;
596 		} else if (status == (I2C_SL_IRQ)) {
597 			BUG_ON(nvec->rx == NULL);
598 			nvec->rx->data[1] = received;
599 			nvec->rx->pos = 2;
600 			nvec->state = 4;
601 		} else {
602 			nvec_invalid_flags(nvec, status, true);
603 		}
604 		break;
605 	case 3:		/* EC does a block read, we transmit data */
606 		if (status & END_TRANS) {
607 			nvec_tx_completed(nvec);
608 		} else if ((status & RNW) == 0 || (status & RCVD)) {
609 			nvec_invalid_flags(nvec, status, true);
610 		} else if (nvec->tx && nvec->tx->pos < nvec->tx->size) {
611 			to_send = nvec->tx->data[nvec->tx->pos++];
612 		} else {
613 			dev_err(nvec->dev, "tx buffer underflow on %p (%u > %u)\n",
614 				nvec->tx,
615 				(uint) (nvec->tx ? nvec->tx->pos : 0),
616 				(uint) (nvec->tx ? nvec->tx->size : 0));
617 			nvec->state = 0;
618 		}
619 		break;
620 	case 4:		/* EC does some write, we read the data */
621 		if ((status & (END_TRANS | RNW)) == END_TRANS)
622 			nvec_rx_completed(nvec);
623 		else if (status & (RNW | RCVD))
624 			nvec_invalid_flags(nvec, status, true);
625 		else if (nvec->rx && nvec->rx->pos < NVEC_MSG_SIZE)
626 			nvec->rx->data[nvec->rx->pos++] = received;
627 		else
628 			dev_err(nvec->dev,
629 				"RX buffer overflow on %p: "
630 				"Trying to write byte %u of %u\n",
631 				nvec->rx, nvec->rx->pos, NVEC_MSG_SIZE);
632 		break;
633 	default:
634 		nvec->state = 0;
635 	}
636 
637 	/* If we are told that a new transfer starts, verify it */
638 	if ((status & (RCVD | RNW)) == RCVD) {
639 		if (received != nvec->i2c_addr)
640 			dev_err(nvec->dev,
641 			"received address 0x%02x, expected 0x%02x\n",
642 			received, nvec->i2c_addr);
643 		nvec->state = 1;
644 	}
645 
646 	/* Send data if requested, but not on end of transmission */
647 	if ((status & (RNW | END_TRANS)) == RNW)
648 		writel(to_send, nvec->base + I2C_SL_RCVD);
649 
650 	/* If we have send the first byte */
651 	if (status == (I2C_SL_IRQ | RNW | RCVD))
652 		nvec_gpio_set_value(nvec, 1);
653 
654 	dev_dbg(nvec->dev,
655 		"Handled: %s 0x%02x, %s 0x%02x in state %u [%s%s%s]\n",
656 		(status & RNW) == 0 ? "received" : "R=",
657 		received,
658 		(status & (RNW | END_TRANS)) ? "sent" : "S=",
659 		to_send,
660 		state,
661 		status & END_TRANS ? " END_TRANS" : "",
662 		status & RCVD ? " RCVD" : "",
663 		status & RNW ? " RNW" : "");
664 
665 
666 	/*
667 	 * TODO: A correct fix needs to be found for this.
668 	 *
669 	 * We experience less incomplete messages with this delay than without
670 	 * it, but we don't know why. Help is appreciated.
671 	 */
672 	udelay(100);
673 
674 	return IRQ_HANDLED;
675 }
676 
677 static void tegra_init_i2c_slave(struct nvec_chip *nvec)
678 {
679 	u32 val;
680 
681 	clk_prepare_enable(nvec->i2c_clk);
682 
683 	tegra_periph_reset_assert(nvec->i2c_clk);
684 	udelay(2);
685 	tegra_periph_reset_deassert(nvec->i2c_clk);
686 
687 	val = I2C_CNFG_NEW_MASTER_SFM | I2C_CNFG_PACKET_MODE_EN |
688 	    (0x2 << I2C_CNFG_DEBOUNCE_CNT_SHIFT);
689 	writel(val, nvec->base + I2C_CNFG);
690 
691 	clk_set_rate(nvec->i2c_clk, 8 * 80000);
692 
693 	writel(I2C_SL_NEWSL, nvec->base + I2C_SL_CNFG);
694 	writel(0x1E, nvec->base + I2C_SL_DELAY_COUNT);
695 
696 	writel(nvec->i2c_addr>>1, nvec->base + I2C_SL_ADDR1);
697 	writel(0, nvec->base + I2C_SL_ADDR2);
698 
699 	enable_irq(nvec->irq);
700 
701 	clk_disable_unprepare(nvec->i2c_clk);
702 }
703 
704 #ifdef CONFIG_PM_SLEEP
705 static void nvec_disable_i2c_slave(struct nvec_chip *nvec)
706 {
707 	disable_irq(nvec->irq);
708 	writel(I2C_SL_NEWSL | I2C_SL_NACK, nvec->base + I2C_SL_CNFG);
709 	clk_disable_unprepare(nvec->i2c_clk);
710 }
711 #endif
712 
713 static void nvec_power_off(void)
714 {
715 	nvec_write_async(nvec_power_handle, EC_DISABLE_EVENT_REPORTING, 3);
716 	nvec_write_async(nvec_power_handle, "\x04\x01", 2);
717 }
718 
719 static int __devinit tegra_nvec_probe(struct platform_device *pdev)
720 {
721 	int err, ret;
722 	struct clk *i2c_clk;
723 	struct nvec_platform_data *pdata = pdev->dev.platform_data;
724 	struct nvec_chip *nvec;
725 	struct nvec_msg *msg;
726 	struct resource *res;
727 	void __iomem *base;
728 
729 	nvec = devm_kzalloc(&pdev->dev, sizeof(struct nvec_chip), GFP_KERNEL);
730 	if (nvec == NULL) {
731 		dev_err(&pdev->dev, "failed to reserve memory\n");
732 		return -ENOMEM;
733 	}
734 	platform_set_drvdata(pdev, nvec);
735 	nvec->dev = &pdev->dev;
736 
737 	if (pdata) {
738 		nvec->gpio = pdata->gpio;
739 		nvec->i2c_addr = pdata->i2c_addr;
740 	} else if (nvec->dev->of_node) {
741 		nvec->gpio = of_get_named_gpio(nvec->dev->of_node,
742 					"request-gpios", 0);
743 		if (nvec->gpio < 0) {
744 			dev_err(&pdev->dev, "no gpio specified");
745 			return -ENODEV;
746 		}
747 		if (of_property_read_u32(nvec->dev->of_node,
748 					"slave-addr", &nvec->i2c_addr)) {
749 			dev_err(&pdev->dev, "no i2c address specified");
750 			return -ENODEV;
751 		}
752 	} else {
753 		dev_err(&pdev->dev, "no platform data\n");
754 		return -ENODEV;
755 	}
756 
757 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
758 	if (!res) {
759 		dev_err(&pdev->dev, "no mem resource?\n");
760 		return -ENODEV;
761 	}
762 
763 	base = devm_request_and_ioremap(&pdev->dev, res);
764 	if (!base) {
765 		dev_err(&pdev->dev, "Can't ioremap I2C region\n");
766 		return -ENOMEM;
767 	}
768 
769 	res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
770 	if (!res) {
771 		dev_err(&pdev->dev, "no irq resource?\n");
772 		return -ENODEV;
773 	}
774 
775 	i2c_clk = clk_get_sys("tegra-i2c.2", "div-clk");
776 	if (IS_ERR(i2c_clk)) {
777 		dev_err(nvec->dev, "failed to get controller clock\n");
778 		return -ENODEV;
779 	}
780 
781 	nvec->base = base;
782 	nvec->irq = res->start;
783 	nvec->i2c_clk = i2c_clk;
784 	nvec->rx = &nvec->msg_pool[0];
785 
786 	ATOMIC_INIT_NOTIFIER_HEAD(&nvec->notifier_list);
787 
788 	init_completion(&nvec->sync_write);
789 	init_completion(&nvec->ec_transfer);
790 	mutex_init(&nvec->sync_write_mutex);
791 	spin_lock_init(&nvec->tx_lock);
792 	spin_lock_init(&nvec->rx_lock);
793 	INIT_LIST_HEAD(&nvec->rx_data);
794 	INIT_LIST_HEAD(&nvec->tx_data);
795 	INIT_WORK(&nvec->rx_work, nvec_dispatch);
796 	INIT_WORK(&nvec->tx_work, nvec_request_master);
797 
798 	err = devm_gpio_request_one(&pdev->dev, nvec->gpio, GPIOF_OUT_INIT_HIGH,
799 					"nvec gpio");
800 	if (err < 0) {
801 		dev_err(nvec->dev, "couldn't request gpio\n");
802 		return -ENODEV;
803 	}
804 
805 	err = devm_request_irq(&pdev->dev, nvec->irq, nvec_interrupt, 0,
806 				"nvec", nvec);
807 	if (err) {
808 		dev_err(nvec->dev, "couldn't request irq\n");
809 		return -ENODEV;
810 	}
811 	disable_irq(nvec->irq);
812 
813 	tegra_init_i2c_slave(nvec);
814 
815 	clk_prepare_enable(i2c_clk);
816 
817 
818 	/* enable event reporting */
819 	nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING,
820 			 sizeof(EC_ENABLE_EVENT_REPORTING));
821 
822 	nvec->nvec_status_notifier.notifier_call = nvec_status_notifier;
823 	nvec_register_notifier(nvec, &nvec->nvec_status_notifier, 0);
824 
825 	nvec_power_handle = nvec;
826 	pm_power_off = nvec_power_off;
827 
828 	/* Get Firmware Version */
829 	msg = nvec_write_sync(nvec, EC_GET_FIRMWARE_VERSION,
830 		sizeof(EC_GET_FIRMWARE_VERSION));
831 
832 	if (msg) {
833 		dev_warn(nvec->dev, "ec firmware version %02x.%02x.%02x / %02x\n",
834 			msg->data[4], msg->data[5], msg->data[6], msg->data[7]);
835 
836 		nvec_msg_free(nvec, msg);
837 	}
838 
839 	ret = mfd_add_devices(nvec->dev, -1, nvec_devices,
840 			      ARRAY_SIZE(nvec_devices), base, 0, NULL);
841 	if (ret)
842 		dev_err(nvec->dev, "error adding subdevices\n");
843 
844 	/* unmute speakers? */
845 	nvec_write_async(nvec, "\x0d\x10\x59\x95", 4);
846 
847 	/* enable lid switch event */
848 	nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x02\x00", 7);
849 
850 	/* enable power button event */
851 	nvec_write_async(nvec, "\x01\x01\x01\x00\x00\x80\x00", 7);
852 
853 	return 0;
854 }
855 
856 static int __devexit tegra_nvec_remove(struct platform_device *pdev)
857 {
858 	struct nvec_chip *nvec = platform_get_drvdata(pdev);
859 
860 	nvec_write_async(nvec, EC_DISABLE_EVENT_REPORTING, 3);
861 	mfd_remove_devices(nvec->dev);
862 	cancel_work_sync(&nvec->rx_work);
863 	cancel_work_sync(&nvec->tx_work);
864 
865 	return 0;
866 }
867 
868 #ifdef CONFIG_PM_SLEEP
869 static int nvec_suspend(struct device *dev)
870 {
871 	struct platform_device *pdev = to_platform_device(dev);
872 	struct nvec_chip *nvec = platform_get_drvdata(pdev);
873 	struct nvec_msg *msg;
874 
875 	dev_dbg(nvec->dev, "suspending\n");
876 
877 	/* keep these sync or you'll break suspend */
878 	msg = nvec_write_sync(nvec, EC_DISABLE_EVENT_REPORTING, 3);
879 	nvec_msg_free(nvec, msg);
880 	msg = nvec_write_sync(nvec, "\x04\x02", 2);
881 	nvec_msg_free(nvec, msg);
882 
883 	nvec_disable_i2c_slave(nvec);
884 
885 	return 0;
886 }
887 
888 static int nvec_resume(struct device *dev)
889 {
890 	struct platform_device *pdev = to_platform_device(dev);
891 	struct nvec_chip *nvec = platform_get_drvdata(pdev);
892 
893 	dev_dbg(nvec->dev, "resuming\n");
894 	tegra_init_i2c_slave(nvec);
895 	nvec_write_async(nvec, EC_ENABLE_EVENT_REPORTING, 3);
896 
897 	return 0;
898 }
899 #endif
900 
901 static const SIMPLE_DEV_PM_OPS(nvec_pm_ops, nvec_suspend, nvec_resume);
902 
903 /* Match table for of_platform binding */
904 static const struct of_device_id nvidia_nvec_of_match[] __devinitconst = {
905 	{ .compatible = "nvidia,nvec", },
906 	{},
907 };
908 MODULE_DEVICE_TABLE(of, nvidia_nvec_of_match);
909 
910 static struct platform_driver nvec_device_driver = {
911 	.probe   = tegra_nvec_probe,
912 	.remove  = __devexit_p(tegra_nvec_remove),
913 	.driver  = {
914 		.name = "nvec",
915 		.owner = THIS_MODULE,
916 		.pm = &nvec_pm_ops,
917 		.of_match_table = nvidia_nvec_of_match,
918 	}
919 };
920 
921 module_platform_driver(nvec_device_driver);
922 
923 MODULE_ALIAS("platform:nvec");
924 MODULE_DESCRIPTION("NVIDIA compliant embedded controller interface");
925 MODULE_AUTHOR("Marc Dietrich <marvin24@gmx.de>");
926 MODULE_LICENSE("GPL");
927