xref: /linux/drivers/spi/spi.c (revision ab520be8cd5d56867fc95cfbc34b90880faf1f9d)
1 /*
2  * SPI init/core code
3  *
4  * Copyright (C) 2005 David Brownell
5  * Copyright (C) 2008 Secret Lab Technologies Ltd.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation; either version 2 of the License, or
10  * (at your option) any later version.
11  *
12  * This program is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
15  * GNU General Public License for more details.
16  */
17 
18 #include <linux/kernel.h>
19 #include <linux/device.h>
20 #include <linux/init.h>
21 #include <linux/cache.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/mutex.h>
25 #include <linux/of_device.h>
26 #include <linux/of_irq.h>
27 #include <linux/clk/clk-conf.h>
28 #include <linux/slab.h>
29 #include <linux/mod_devicetable.h>
30 #include <linux/spi/spi.h>
31 #include <linux/of_gpio.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/pm_domain.h>
34 #include <linux/export.h>
35 #include <linux/sched/rt.h>
36 #include <linux/delay.h>
37 #include <linux/kthread.h>
38 #include <linux/ioport.h>
39 #include <linux/acpi.h>
40 #include <linux/highmem.h>
41 
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/spi.h>
44 
45 static void spidev_release(struct device *dev)
46 {
47 	struct spi_device	*spi = to_spi_device(dev);
48 
49 	/* spi masters may cleanup for released devices */
50 	if (spi->master->cleanup)
51 		spi->master->cleanup(spi);
52 
53 	spi_master_put(spi->master);
54 	kfree(spi);
55 }
56 
57 static ssize_t
58 modalias_show(struct device *dev, struct device_attribute *a, char *buf)
59 {
60 	const struct spi_device	*spi = to_spi_device(dev);
61 	int len;
62 
63 	len = acpi_device_modalias(dev, buf, PAGE_SIZE - 1);
64 	if (len != -ENODEV)
65 		return len;
66 
67 	return sprintf(buf, "%s%s\n", SPI_MODULE_PREFIX, spi->modalias);
68 }
69 static DEVICE_ATTR_RO(modalias);
70 
71 #define SPI_STATISTICS_ATTRS(field, file)				\
72 static ssize_t spi_master_##field##_show(struct device *dev,		\
73 					 struct device_attribute *attr,	\
74 					 char *buf)			\
75 {									\
76 	struct spi_master *master = container_of(dev,			\
77 						 struct spi_master, dev); \
78 	return spi_statistics_##field##_show(&master->statistics, buf);	\
79 }									\
80 static struct device_attribute dev_attr_spi_master_##field = {		\
81 	.attr = { .name = file, .mode = S_IRUGO },			\
82 	.show = spi_master_##field##_show,				\
83 };									\
84 static ssize_t spi_device_##field##_show(struct device *dev,		\
85 					 struct device_attribute *attr,	\
86 					char *buf)			\
87 {									\
88 	struct spi_device *spi = to_spi_device(dev);			\
89 	return spi_statistics_##field##_show(&spi->statistics, buf);	\
90 }									\
91 static struct device_attribute dev_attr_spi_device_##field = {		\
92 	.attr = { .name = file, .mode = S_IRUGO },			\
93 	.show = spi_device_##field##_show,				\
94 }
95 
96 #define SPI_STATISTICS_SHOW_NAME(name, file, field, format_string)	\
97 static ssize_t spi_statistics_##name##_show(struct spi_statistics *stat, \
98 					    char *buf)			\
99 {									\
100 	unsigned long flags;						\
101 	ssize_t len;							\
102 	spin_lock_irqsave(&stat->lock, flags);				\
103 	len = sprintf(buf, format_string, stat->field);			\
104 	spin_unlock_irqrestore(&stat->lock, flags);			\
105 	return len;							\
106 }									\
107 SPI_STATISTICS_ATTRS(name, file)
108 
109 #define SPI_STATISTICS_SHOW(field, format_string)			\
110 	SPI_STATISTICS_SHOW_NAME(field, __stringify(field),		\
111 				 field, format_string)
112 
113 SPI_STATISTICS_SHOW(messages, "%lu");
114 SPI_STATISTICS_SHOW(transfers, "%lu");
115 SPI_STATISTICS_SHOW(errors, "%lu");
116 SPI_STATISTICS_SHOW(timedout, "%lu");
117 
118 SPI_STATISTICS_SHOW(spi_sync, "%lu");
119 SPI_STATISTICS_SHOW(spi_sync_immediate, "%lu");
120 SPI_STATISTICS_SHOW(spi_async, "%lu");
121 
122 SPI_STATISTICS_SHOW(bytes, "%llu");
123 SPI_STATISTICS_SHOW(bytes_rx, "%llu");
124 SPI_STATISTICS_SHOW(bytes_tx, "%llu");
125 
126 #define SPI_STATISTICS_TRANSFER_BYTES_HISTO(index, number)		\
127 	SPI_STATISTICS_SHOW_NAME(transfer_bytes_histo##index,		\
128 				 "transfer_bytes_histo_" number,	\
129 				 transfer_bytes_histo[index],  "%lu")
130 SPI_STATISTICS_TRANSFER_BYTES_HISTO(0,  "0-1");
131 SPI_STATISTICS_TRANSFER_BYTES_HISTO(1,  "2-3");
132 SPI_STATISTICS_TRANSFER_BYTES_HISTO(2,  "4-7");
133 SPI_STATISTICS_TRANSFER_BYTES_HISTO(3,  "8-15");
134 SPI_STATISTICS_TRANSFER_BYTES_HISTO(4,  "16-31");
135 SPI_STATISTICS_TRANSFER_BYTES_HISTO(5,  "32-63");
136 SPI_STATISTICS_TRANSFER_BYTES_HISTO(6,  "64-127");
137 SPI_STATISTICS_TRANSFER_BYTES_HISTO(7,  "128-255");
138 SPI_STATISTICS_TRANSFER_BYTES_HISTO(8,  "256-511");
139 SPI_STATISTICS_TRANSFER_BYTES_HISTO(9,  "512-1023");
140 SPI_STATISTICS_TRANSFER_BYTES_HISTO(10, "1024-2047");
141 SPI_STATISTICS_TRANSFER_BYTES_HISTO(11, "2048-4095");
142 SPI_STATISTICS_TRANSFER_BYTES_HISTO(12, "4096-8191");
143 SPI_STATISTICS_TRANSFER_BYTES_HISTO(13, "8192-16383");
144 SPI_STATISTICS_TRANSFER_BYTES_HISTO(14, "16384-32767");
145 SPI_STATISTICS_TRANSFER_BYTES_HISTO(15, "32768-65535");
146 SPI_STATISTICS_TRANSFER_BYTES_HISTO(16, "65536+");
147 
148 SPI_STATISTICS_SHOW(transfers_split_maxsize, "%lu");
149 
150 static struct attribute *spi_dev_attrs[] = {
151 	&dev_attr_modalias.attr,
152 	NULL,
153 };
154 
155 static const struct attribute_group spi_dev_group = {
156 	.attrs  = spi_dev_attrs,
157 };
158 
159 static struct attribute *spi_device_statistics_attrs[] = {
160 	&dev_attr_spi_device_messages.attr,
161 	&dev_attr_spi_device_transfers.attr,
162 	&dev_attr_spi_device_errors.attr,
163 	&dev_attr_spi_device_timedout.attr,
164 	&dev_attr_spi_device_spi_sync.attr,
165 	&dev_attr_spi_device_spi_sync_immediate.attr,
166 	&dev_attr_spi_device_spi_async.attr,
167 	&dev_attr_spi_device_bytes.attr,
168 	&dev_attr_spi_device_bytes_rx.attr,
169 	&dev_attr_spi_device_bytes_tx.attr,
170 	&dev_attr_spi_device_transfer_bytes_histo0.attr,
171 	&dev_attr_spi_device_transfer_bytes_histo1.attr,
172 	&dev_attr_spi_device_transfer_bytes_histo2.attr,
173 	&dev_attr_spi_device_transfer_bytes_histo3.attr,
174 	&dev_attr_spi_device_transfer_bytes_histo4.attr,
175 	&dev_attr_spi_device_transfer_bytes_histo5.attr,
176 	&dev_attr_spi_device_transfer_bytes_histo6.attr,
177 	&dev_attr_spi_device_transfer_bytes_histo7.attr,
178 	&dev_attr_spi_device_transfer_bytes_histo8.attr,
179 	&dev_attr_spi_device_transfer_bytes_histo9.attr,
180 	&dev_attr_spi_device_transfer_bytes_histo10.attr,
181 	&dev_attr_spi_device_transfer_bytes_histo11.attr,
182 	&dev_attr_spi_device_transfer_bytes_histo12.attr,
183 	&dev_attr_spi_device_transfer_bytes_histo13.attr,
184 	&dev_attr_spi_device_transfer_bytes_histo14.attr,
185 	&dev_attr_spi_device_transfer_bytes_histo15.attr,
186 	&dev_attr_spi_device_transfer_bytes_histo16.attr,
187 	&dev_attr_spi_device_transfers_split_maxsize.attr,
188 	NULL,
189 };
190 
191 static const struct attribute_group spi_device_statistics_group = {
192 	.name  = "statistics",
193 	.attrs  = spi_device_statistics_attrs,
194 };
195 
196 static const struct attribute_group *spi_dev_groups[] = {
197 	&spi_dev_group,
198 	&spi_device_statistics_group,
199 	NULL,
200 };
201 
202 static struct attribute *spi_master_statistics_attrs[] = {
203 	&dev_attr_spi_master_messages.attr,
204 	&dev_attr_spi_master_transfers.attr,
205 	&dev_attr_spi_master_errors.attr,
206 	&dev_attr_spi_master_timedout.attr,
207 	&dev_attr_spi_master_spi_sync.attr,
208 	&dev_attr_spi_master_spi_sync_immediate.attr,
209 	&dev_attr_spi_master_spi_async.attr,
210 	&dev_attr_spi_master_bytes.attr,
211 	&dev_attr_spi_master_bytes_rx.attr,
212 	&dev_attr_spi_master_bytes_tx.attr,
213 	&dev_attr_spi_master_transfer_bytes_histo0.attr,
214 	&dev_attr_spi_master_transfer_bytes_histo1.attr,
215 	&dev_attr_spi_master_transfer_bytes_histo2.attr,
216 	&dev_attr_spi_master_transfer_bytes_histo3.attr,
217 	&dev_attr_spi_master_transfer_bytes_histo4.attr,
218 	&dev_attr_spi_master_transfer_bytes_histo5.attr,
219 	&dev_attr_spi_master_transfer_bytes_histo6.attr,
220 	&dev_attr_spi_master_transfer_bytes_histo7.attr,
221 	&dev_attr_spi_master_transfer_bytes_histo8.attr,
222 	&dev_attr_spi_master_transfer_bytes_histo9.attr,
223 	&dev_attr_spi_master_transfer_bytes_histo10.attr,
224 	&dev_attr_spi_master_transfer_bytes_histo11.attr,
225 	&dev_attr_spi_master_transfer_bytes_histo12.attr,
226 	&dev_attr_spi_master_transfer_bytes_histo13.attr,
227 	&dev_attr_spi_master_transfer_bytes_histo14.attr,
228 	&dev_attr_spi_master_transfer_bytes_histo15.attr,
229 	&dev_attr_spi_master_transfer_bytes_histo16.attr,
230 	&dev_attr_spi_master_transfers_split_maxsize.attr,
231 	NULL,
232 };
233 
234 static const struct attribute_group spi_master_statistics_group = {
235 	.name  = "statistics",
236 	.attrs  = spi_master_statistics_attrs,
237 };
238 
239 static const struct attribute_group *spi_master_groups[] = {
240 	&spi_master_statistics_group,
241 	NULL,
242 };
243 
244 void spi_statistics_add_transfer_stats(struct spi_statistics *stats,
245 				       struct spi_transfer *xfer,
246 				       struct spi_master *master)
247 {
248 	unsigned long flags;
249 	int l2len = min(fls(xfer->len), SPI_STATISTICS_HISTO_SIZE) - 1;
250 
251 	if (l2len < 0)
252 		l2len = 0;
253 
254 	spin_lock_irqsave(&stats->lock, flags);
255 
256 	stats->transfers++;
257 	stats->transfer_bytes_histo[l2len]++;
258 
259 	stats->bytes += xfer->len;
260 	if ((xfer->tx_buf) &&
261 	    (xfer->tx_buf != master->dummy_tx))
262 		stats->bytes_tx += xfer->len;
263 	if ((xfer->rx_buf) &&
264 	    (xfer->rx_buf != master->dummy_rx))
265 		stats->bytes_rx += xfer->len;
266 
267 	spin_unlock_irqrestore(&stats->lock, flags);
268 }
269 EXPORT_SYMBOL_GPL(spi_statistics_add_transfer_stats);
270 
271 /* modalias support makes "modprobe $MODALIAS" new-style hotplug work,
272  * and the sysfs version makes coldplug work too.
273  */
274 
275 static const struct spi_device_id *spi_match_id(const struct spi_device_id *id,
276 						const struct spi_device *sdev)
277 {
278 	while (id->name[0]) {
279 		if (!strcmp(sdev->modalias, id->name))
280 			return id;
281 		id++;
282 	}
283 	return NULL;
284 }
285 
286 const struct spi_device_id *spi_get_device_id(const struct spi_device *sdev)
287 {
288 	const struct spi_driver *sdrv = to_spi_driver(sdev->dev.driver);
289 
290 	return spi_match_id(sdrv->id_table, sdev);
291 }
292 EXPORT_SYMBOL_GPL(spi_get_device_id);
293 
294 static int spi_match_device(struct device *dev, struct device_driver *drv)
295 {
296 	const struct spi_device	*spi = to_spi_device(dev);
297 	const struct spi_driver	*sdrv = to_spi_driver(drv);
298 
299 	/* Attempt an OF style match */
300 	if (of_driver_match_device(dev, drv))
301 		return 1;
302 
303 	/* Then try ACPI */
304 	if (acpi_driver_match_device(dev, drv))
305 		return 1;
306 
307 	if (sdrv->id_table)
308 		return !!spi_match_id(sdrv->id_table, spi);
309 
310 	return strcmp(spi->modalias, drv->name) == 0;
311 }
312 
313 static int spi_uevent(struct device *dev, struct kobj_uevent_env *env)
314 {
315 	const struct spi_device		*spi = to_spi_device(dev);
316 	int rc;
317 
318 	rc = acpi_device_uevent_modalias(dev, env);
319 	if (rc != -ENODEV)
320 		return rc;
321 
322 	add_uevent_var(env, "MODALIAS=%s%s", SPI_MODULE_PREFIX, spi->modalias);
323 	return 0;
324 }
325 
326 struct bus_type spi_bus_type = {
327 	.name		= "spi",
328 	.dev_groups	= spi_dev_groups,
329 	.match		= spi_match_device,
330 	.uevent		= spi_uevent,
331 };
332 EXPORT_SYMBOL_GPL(spi_bus_type);
333 
334 
335 static int spi_drv_probe(struct device *dev)
336 {
337 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
338 	struct spi_device		*spi = to_spi_device(dev);
339 	int ret;
340 
341 	ret = of_clk_set_defaults(dev->of_node, false);
342 	if (ret)
343 		return ret;
344 
345 	if (dev->of_node) {
346 		spi->irq = of_irq_get(dev->of_node, 0);
347 		if (spi->irq == -EPROBE_DEFER)
348 			return -EPROBE_DEFER;
349 		if (spi->irq < 0)
350 			spi->irq = 0;
351 	}
352 
353 	ret = dev_pm_domain_attach(dev, true);
354 	if (ret != -EPROBE_DEFER) {
355 		ret = sdrv->probe(spi);
356 		if (ret)
357 			dev_pm_domain_detach(dev, true);
358 	}
359 
360 	return ret;
361 }
362 
363 static int spi_drv_remove(struct device *dev)
364 {
365 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
366 	int ret;
367 
368 	ret = sdrv->remove(to_spi_device(dev));
369 	dev_pm_domain_detach(dev, true);
370 
371 	return ret;
372 }
373 
374 static void spi_drv_shutdown(struct device *dev)
375 {
376 	const struct spi_driver		*sdrv = to_spi_driver(dev->driver);
377 
378 	sdrv->shutdown(to_spi_device(dev));
379 }
380 
381 /**
382  * __spi_register_driver - register a SPI driver
383  * @owner: owner module of the driver to register
384  * @sdrv: the driver to register
385  * Context: can sleep
386  *
387  * Return: zero on success, else a negative error code.
388  */
389 int __spi_register_driver(struct module *owner, struct spi_driver *sdrv)
390 {
391 	sdrv->driver.owner = owner;
392 	sdrv->driver.bus = &spi_bus_type;
393 	if (sdrv->probe)
394 		sdrv->driver.probe = spi_drv_probe;
395 	if (sdrv->remove)
396 		sdrv->driver.remove = spi_drv_remove;
397 	if (sdrv->shutdown)
398 		sdrv->driver.shutdown = spi_drv_shutdown;
399 	return driver_register(&sdrv->driver);
400 }
401 EXPORT_SYMBOL_GPL(__spi_register_driver);
402 
403 /*-------------------------------------------------------------------------*/
404 
405 /* SPI devices should normally not be created by SPI device drivers; that
406  * would make them board-specific.  Similarly with SPI master drivers.
407  * Device registration normally goes into like arch/.../mach.../board-YYY.c
408  * with other readonly (flashable) information about mainboard devices.
409  */
410 
411 struct boardinfo {
412 	struct list_head	list;
413 	struct spi_board_info	board_info;
414 };
415 
416 static LIST_HEAD(board_list);
417 static LIST_HEAD(spi_master_list);
418 
419 /*
420  * Used to protect add/del opertion for board_info list and
421  * spi_master list, and their matching process
422  */
423 static DEFINE_MUTEX(board_lock);
424 
425 /**
426  * spi_alloc_device - Allocate a new SPI device
427  * @master: Controller to which device is connected
428  * Context: can sleep
429  *
430  * Allows a driver to allocate and initialize a spi_device without
431  * registering it immediately.  This allows a driver to directly
432  * fill the spi_device with device parameters before calling
433  * spi_add_device() on it.
434  *
435  * Caller is responsible to call spi_add_device() on the returned
436  * spi_device structure to add it to the SPI master.  If the caller
437  * needs to discard the spi_device without adding it, then it should
438  * call spi_dev_put() on it.
439  *
440  * Return: a pointer to the new device, or NULL.
441  */
442 struct spi_device *spi_alloc_device(struct spi_master *master)
443 {
444 	struct spi_device	*spi;
445 
446 	if (!spi_master_get(master))
447 		return NULL;
448 
449 	spi = kzalloc(sizeof(*spi), GFP_KERNEL);
450 	if (!spi) {
451 		spi_master_put(master);
452 		return NULL;
453 	}
454 
455 	spi->master = master;
456 	spi->dev.parent = &master->dev;
457 	spi->dev.bus = &spi_bus_type;
458 	spi->dev.release = spidev_release;
459 	spi->cs_gpio = -ENOENT;
460 
461 	spin_lock_init(&spi->statistics.lock);
462 
463 	device_initialize(&spi->dev);
464 	return spi;
465 }
466 EXPORT_SYMBOL_GPL(spi_alloc_device);
467 
468 static void spi_dev_set_name(struct spi_device *spi)
469 {
470 	struct acpi_device *adev = ACPI_COMPANION(&spi->dev);
471 
472 	if (adev) {
473 		dev_set_name(&spi->dev, "spi-%s", acpi_dev_name(adev));
474 		return;
475 	}
476 
477 	dev_set_name(&spi->dev, "%s.%u", dev_name(&spi->master->dev),
478 		     spi->chip_select);
479 }
480 
481 static int spi_dev_check(struct device *dev, void *data)
482 {
483 	struct spi_device *spi = to_spi_device(dev);
484 	struct spi_device *new_spi = data;
485 
486 	if (spi->master == new_spi->master &&
487 	    spi->chip_select == new_spi->chip_select)
488 		return -EBUSY;
489 	return 0;
490 }
491 
492 /**
493  * spi_add_device - Add spi_device allocated with spi_alloc_device
494  * @spi: spi_device to register
495  *
496  * Companion function to spi_alloc_device.  Devices allocated with
497  * spi_alloc_device can be added onto the spi bus with this function.
498  *
499  * Return: 0 on success; negative errno on failure
500  */
501 int spi_add_device(struct spi_device *spi)
502 {
503 	static DEFINE_MUTEX(spi_add_lock);
504 	struct spi_master *master = spi->master;
505 	struct device *dev = master->dev.parent;
506 	int status;
507 
508 	/* Chipselects are numbered 0..max; validate. */
509 	if (spi->chip_select >= master->num_chipselect) {
510 		dev_err(dev, "cs%d >= max %d\n",
511 			spi->chip_select,
512 			master->num_chipselect);
513 		return -EINVAL;
514 	}
515 
516 	/* Set the bus ID string */
517 	spi_dev_set_name(spi);
518 
519 	/* We need to make sure there's no other device with this
520 	 * chipselect **BEFORE** we call setup(), else we'll trash
521 	 * its configuration.  Lock against concurrent add() calls.
522 	 */
523 	mutex_lock(&spi_add_lock);
524 
525 	status = bus_for_each_dev(&spi_bus_type, NULL, spi, spi_dev_check);
526 	if (status) {
527 		dev_err(dev, "chipselect %d already in use\n",
528 				spi->chip_select);
529 		goto done;
530 	}
531 
532 	if (master->cs_gpios)
533 		spi->cs_gpio = master->cs_gpios[spi->chip_select];
534 
535 	/* Drivers may modify this initial i/o setup, but will
536 	 * normally rely on the device being setup.  Devices
537 	 * using SPI_CS_HIGH can't coexist well otherwise...
538 	 */
539 	status = spi_setup(spi);
540 	if (status < 0) {
541 		dev_err(dev, "can't setup %s, status %d\n",
542 				dev_name(&spi->dev), status);
543 		goto done;
544 	}
545 
546 	/* Device may be bound to an active driver when this returns */
547 	status = device_add(&spi->dev);
548 	if (status < 0)
549 		dev_err(dev, "can't add %s, status %d\n",
550 				dev_name(&spi->dev), status);
551 	else
552 		dev_dbg(dev, "registered child %s\n", dev_name(&spi->dev));
553 
554 done:
555 	mutex_unlock(&spi_add_lock);
556 	return status;
557 }
558 EXPORT_SYMBOL_GPL(spi_add_device);
559 
560 /**
561  * spi_new_device - instantiate one new SPI device
562  * @master: Controller to which device is connected
563  * @chip: Describes the SPI device
564  * Context: can sleep
565  *
566  * On typical mainboards, this is purely internal; and it's not needed
567  * after board init creates the hard-wired devices.  Some development
568  * platforms may not be able to use spi_register_board_info though, and
569  * this is exported so that for example a USB or parport based adapter
570  * driver could add devices (which it would learn about out-of-band).
571  *
572  * Return: the new device, or NULL.
573  */
574 struct spi_device *spi_new_device(struct spi_master *master,
575 				  struct spi_board_info *chip)
576 {
577 	struct spi_device	*proxy;
578 	int			status;
579 
580 	/* NOTE:  caller did any chip->bus_num checks necessary.
581 	 *
582 	 * Also, unless we change the return value convention to use
583 	 * error-or-pointer (not NULL-or-pointer), troubleshootability
584 	 * suggests syslogged diagnostics are best here (ugh).
585 	 */
586 
587 	proxy = spi_alloc_device(master);
588 	if (!proxy)
589 		return NULL;
590 
591 	WARN_ON(strlen(chip->modalias) >= sizeof(proxy->modalias));
592 
593 	proxy->chip_select = chip->chip_select;
594 	proxy->max_speed_hz = chip->max_speed_hz;
595 	proxy->mode = chip->mode;
596 	proxy->irq = chip->irq;
597 	strlcpy(proxy->modalias, chip->modalias, sizeof(proxy->modalias));
598 	proxy->dev.platform_data = (void *) chip->platform_data;
599 	proxy->controller_data = chip->controller_data;
600 	proxy->controller_state = NULL;
601 
602 	status = spi_add_device(proxy);
603 	if (status < 0) {
604 		spi_dev_put(proxy);
605 		return NULL;
606 	}
607 
608 	return proxy;
609 }
610 EXPORT_SYMBOL_GPL(spi_new_device);
611 
612 /**
613  * spi_unregister_device - unregister a single SPI device
614  * @spi: spi_device to unregister
615  *
616  * Start making the passed SPI device vanish. Normally this would be handled
617  * by spi_unregister_master().
618  */
619 void spi_unregister_device(struct spi_device *spi)
620 {
621 	if (!spi)
622 		return;
623 
624 	if (spi->dev.of_node)
625 		of_node_clear_flag(spi->dev.of_node, OF_POPULATED);
626 	if (ACPI_COMPANION(&spi->dev))
627 		acpi_device_clear_enumerated(ACPI_COMPANION(&spi->dev));
628 	device_unregister(&spi->dev);
629 }
630 EXPORT_SYMBOL_GPL(spi_unregister_device);
631 
632 static void spi_match_master_to_boardinfo(struct spi_master *master,
633 				struct spi_board_info *bi)
634 {
635 	struct spi_device *dev;
636 
637 	if (master->bus_num != bi->bus_num)
638 		return;
639 
640 	dev = spi_new_device(master, bi);
641 	if (!dev)
642 		dev_err(master->dev.parent, "can't create new device for %s\n",
643 			bi->modalias);
644 }
645 
646 /**
647  * spi_register_board_info - register SPI devices for a given board
648  * @info: array of chip descriptors
649  * @n: how many descriptors are provided
650  * Context: can sleep
651  *
652  * Board-specific early init code calls this (probably during arch_initcall)
653  * with segments of the SPI device table.  Any device nodes are created later,
654  * after the relevant parent SPI controller (bus_num) is defined.  We keep
655  * this table of devices forever, so that reloading a controller driver will
656  * not make Linux forget about these hard-wired devices.
657  *
658  * Other code can also call this, e.g. a particular add-on board might provide
659  * SPI devices through its expansion connector, so code initializing that board
660  * would naturally declare its SPI devices.
661  *
662  * The board info passed can safely be __initdata ... but be careful of
663  * any embedded pointers (platform_data, etc), they're copied as-is.
664  *
665  * Return: zero on success, else a negative error code.
666  */
667 int spi_register_board_info(struct spi_board_info const *info, unsigned n)
668 {
669 	struct boardinfo *bi;
670 	int i;
671 
672 	if (!n)
673 		return -EINVAL;
674 
675 	bi = kzalloc(n * sizeof(*bi), GFP_KERNEL);
676 	if (!bi)
677 		return -ENOMEM;
678 
679 	for (i = 0; i < n; i++, bi++, info++) {
680 		struct spi_master *master;
681 
682 		memcpy(&bi->board_info, info, sizeof(*info));
683 		mutex_lock(&board_lock);
684 		list_add_tail(&bi->list, &board_list);
685 		list_for_each_entry(master, &spi_master_list, list)
686 			spi_match_master_to_boardinfo(master, &bi->board_info);
687 		mutex_unlock(&board_lock);
688 	}
689 
690 	return 0;
691 }
692 
693 /*-------------------------------------------------------------------------*/
694 
695 static void spi_set_cs(struct spi_device *spi, bool enable)
696 {
697 	if (spi->mode & SPI_CS_HIGH)
698 		enable = !enable;
699 
700 	if (gpio_is_valid(spi->cs_gpio)) {
701 		gpio_set_value(spi->cs_gpio, !enable);
702 		/* Some SPI masters need both GPIO CS & slave_select */
703 		if ((spi->master->flags & SPI_MASTER_GPIO_SS) &&
704 		    spi->master->set_cs)
705 			spi->master->set_cs(spi, !enable);
706 	} else if (spi->master->set_cs) {
707 		spi->master->set_cs(spi, !enable);
708 	}
709 }
710 
711 #ifdef CONFIG_HAS_DMA
712 static int spi_map_buf(struct spi_master *master, struct device *dev,
713 		       struct sg_table *sgt, void *buf, size_t len,
714 		       enum dma_data_direction dir)
715 {
716 	const bool vmalloced_buf = is_vmalloc_addr(buf);
717 	unsigned int max_seg_size = dma_get_max_seg_size(dev);
718 #ifdef CONFIG_HIGHMEM
719 	const bool kmap_buf = ((unsigned long)buf >= PKMAP_BASE &&
720 				(unsigned long)buf < (PKMAP_BASE +
721 					(LAST_PKMAP * PAGE_SIZE)));
722 #else
723 	const bool kmap_buf = false;
724 #endif
725 	int desc_len;
726 	int sgs;
727 	struct page *vm_page;
728 	struct scatterlist *sg;
729 	void *sg_buf;
730 	size_t min;
731 	int i, ret;
732 
733 	if (vmalloced_buf || kmap_buf) {
734 		desc_len = min_t(int, max_seg_size, PAGE_SIZE);
735 		sgs = DIV_ROUND_UP(len + offset_in_page(buf), desc_len);
736 	} else if (virt_addr_valid(buf)) {
737 		desc_len = min_t(int, max_seg_size, master->max_dma_len);
738 		sgs = DIV_ROUND_UP(len, desc_len);
739 	} else {
740 		return -EINVAL;
741 	}
742 
743 	ret = sg_alloc_table(sgt, sgs, GFP_KERNEL);
744 	if (ret != 0)
745 		return ret;
746 
747 	sg = &sgt->sgl[0];
748 	for (i = 0; i < sgs; i++) {
749 
750 		if (vmalloced_buf || kmap_buf) {
751 			min = min_t(size_t,
752 				    len, desc_len - offset_in_page(buf));
753 			if (vmalloced_buf)
754 				vm_page = vmalloc_to_page(buf);
755 			else
756 				vm_page = kmap_to_page(buf);
757 			if (!vm_page) {
758 				sg_free_table(sgt);
759 				return -ENOMEM;
760 			}
761 			sg_set_page(sg, vm_page,
762 				    min, offset_in_page(buf));
763 		} else {
764 			min = min_t(size_t, len, desc_len);
765 			sg_buf = buf;
766 			sg_set_buf(sg, sg_buf, min);
767 		}
768 
769 		buf += min;
770 		len -= min;
771 		sg = sg_next(sg);
772 	}
773 
774 	ret = dma_map_sg(dev, sgt->sgl, sgt->nents, dir);
775 	if (!ret)
776 		ret = -ENOMEM;
777 	if (ret < 0) {
778 		sg_free_table(sgt);
779 		return ret;
780 	}
781 
782 	sgt->nents = ret;
783 
784 	return 0;
785 }
786 
787 static void spi_unmap_buf(struct spi_master *master, struct device *dev,
788 			  struct sg_table *sgt, enum dma_data_direction dir)
789 {
790 	if (sgt->orig_nents) {
791 		dma_unmap_sg(dev, sgt->sgl, sgt->orig_nents, dir);
792 		sg_free_table(sgt);
793 	}
794 }
795 
796 static int __spi_map_msg(struct spi_master *master, struct spi_message *msg)
797 {
798 	struct device *tx_dev, *rx_dev;
799 	struct spi_transfer *xfer;
800 	int ret;
801 
802 	if (!master->can_dma)
803 		return 0;
804 
805 	if (master->dma_tx)
806 		tx_dev = master->dma_tx->device->dev;
807 	else
808 		tx_dev = &master->dev;
809 
810 	if (master->dma_rx)
811 		rx_dev = master->dma_rx->device->dev;
812 	else
813 		rx_dev = &master->dev;
814 
815 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
816 		if (!master->can_dma(master, msg->spi, xfer))
817 			continue;
818 
819 		if (xfer->tx_buf != NULL) {
820 			ret = spi_map_buf(master, tx_dev, &xfer->tx_sg,
821 					  (void *)xfer->tx_buf, xfer->len,
822 					  DMA_TO_DEVICE);
823 			if (ret != 0)
824 				return ret;
825 		}
826 
827 		if (xfer->rx_buf != NULL) {
828 			ret = spi_map_buf(master, rx_dev, &xfer->rx_sg,
829 					  xfer->rx_buf, xfer->len,
830 					  DMA_FROM_DEVICE);
831 			if (ret != 0) {
832 				spi_unmap_buf(master, tx_dev, &xfer->tx_sg,
833 					      DMA_TO_DEVICE);
834 				return ret;
835 			}
836 		}
837 	}
838 
839 	master->cur_msg_mapped = true;
840 
841 	return 0;
842 }
843 
844 static int __spi_unmap_msg(struct spi_master *master, struct spi_message *msg)
845 {
846 	struct spi_transfer *xfer;
847 	struct device *tx_dev, *rx_dev;
848 
849 	if (!master->cur_msg_mapped || !master->can_dma)
850 		return 0;
851 
852 	if (master->dma_tx)
853 		tx_dev = master->dma_tx->device->dev;
854 	else
855 		tx_dev = &master->dev;
856 
857 	if (master->dma_rx)
858 		rx_dev = master->dma_rx->device->dev;
859 	else
860 		rx_dev = &master->dev;
861 
862 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
863 		if (!master->can_dma(master, msg->spi, xfer))
864 			continue;
865 
866 		spi_unmap_buf(master, rx_dev, &xfer->rx_sg, DMA_FROM_DEVICE);
867 		spi_unmap_buf(master, tx_dev, &xfer->tx_sg, DMA_TO_DEVICE);
868 	}
869 
870 	return 0;
871 }
872 #else /* !CONFIG_HAS_DMA */
873 static inline int spi_map_buf(struct spi_master *master,
874 			      struct device *dev, struct sg_table *sgt,
875 			      void *buf, size_t len,
876 			      enum dma_data_direction dir)
877 {
878 	return -EINVAL;
879 }
880 
881 static inline void spi_unmap_buf(struct spi_master *master,
882 				 struct device *dev, struct sg_table *sgt,
883 				 enum dma_data_direction dir)
884 {
885 }
886 
887 static inline int __spi_map_msg(struct spi_master *master,
888 				struct spi_message *msg)
889 {
890 	return 0;
891 }
892 
893 static inline int __spi_unmap_msg(struct spi_master *master,
894 				  struct spi_message *msg)
895 {
896 	return 0;
897 }
898 #endif /* !CONFIG_HAS_DMA */
899 
900 static inline int spi_unmap_msg(struct spi_master *master,
901 				struct spi_message *msg)
902 {
903 	struct spi_transfer *xfer;
904 
905 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
906 		/*
907 		 * Restore the original value of tx_buf or rx_buf if they are
908 		 * NULL.
909 		 */
910 		if (xfer->tx_buf == master->dummy_tx)
911 			xfer->tx_buf = NULL;
912 		if (xfer->rx_buf == master->dummy_rx)
913 			xfer->rx_buf = NULL;
914 	}
915 
916 	return __spi_unmap_msg(master, msg);
917 }
918 
919 static int spi_map_msg(struct spi_master *master, struct spi_message *msg)
920 {
921 	struct spi_transfer *xfer;
922 	void *tmp;
923 	unsigned int max_tx, max_rx;
924 
925 	if (master->flags & (SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX)) {
926 		max_tx = 0;
927 		max_rx = 0;
928 
929 		list_for_each_entry(xfer, &msg->transfers, transfer_list) {
930 			if ((master->flags & SPI_MASTER_MUST_TX) &&
931 			    !xfer->tx_buf)
932 				max_tx = max(xfer->len, max_tx);
933 			if ((master->flags & SPI_MASTER_MUST_RX) &&
934 			    !xfer->rx_buf)
935 				max_rx = max(xfer->len, max_rx);
936 		}
937 
938 		if (max_tx) {
939 			tmp = krealloc(master->dummy_tx, max_tx,
940 				       GFP_KERNEL | GFP_DMA);
941 			if (!tmp)
942 				return -ENOMEM;
943 			master->dummy_tx = tmp;
944 			memset(tmp, 0, max_tx);
945 		}
946 
947 		if (max_rx) {
948 			tmp = krealloc(master->dummy_rx, max_rx,
949 				       GFP_KERNEL | GFP_DMA);
950 			if (!tmp)
951 				return -ENOMEM;
952 			master->dummy_rx = tmp;
953 		}
954 
955 		if (max_tx || max_rx) {
956 			list_for_each_entry(xfer, &msg->transfers,
957 					    transfer_list) {
958 				if (!xfer->tx_buf)
959 					xfer->tx_buf = master->dummy_tx;
960 				if (!xfer->rx_buf)
961 					xfer->rx_buf = master->dummy_rx;
962 			}
963 		}
964 	}
965 
966 	return __spi_map_msg(master, msg);
967 }
968 
969 /*
970  * spi_transfer_one_message - Default implementation of transfer_one_message()
971  *
972  * This is a standard implementation of transfer_one_message() for
973  * drivers which implement a transfer_one() operation.  It provides
974  * standard handling of delays and chip select management.
975  */
976 static int spi_transfer_one_message(struct spi_master *master,
977 				    struct spi_message *msg)
978 {
979 	struct spi_transfer *xfer;
980 	bool keep_cs = false;
981 	int ret = 0;
982 	unsigned long long ms = 1;
983 	struct spi_statistics *statm = &master->statistics;
984 	struct spi_statistics *stats = &msg->spi->statistics;
985 
986 	spi_set_cs(msg->spi, true);
987 
988 	SPI_STATISTICS_INCREMENT_FIELD(statm, messages);
989 	SPI_STATISTICS_INCREMENT_FIELD(stats, messages);
990 
991 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
992 		trace_spi_transfer_start(msg, xfer);
993 
994 		spi_statistics_add_transfer_stats(statm, xfer, master);
995 		spi_statistics_add_transfer_stats(stats, xfer, master);
996 
997 		if (xfer->tx_buf || xfer->rx_buf) {
998 			reinit_completion(&master->xfer_completion);
999 
1000 			ret = master->transfer_one(master, msg->spi, xfer);
1001 			if (ret < 0) {
1002 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1003 							       errors);
1004 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1005 							       errors);
1006 				dev_err(&msg->spi->dev,
1007 					"SPI transfer failed: %d\n", ret);
1008 				goto out;
1009 			}
1010 
1011 			if (ret > 0) {
1012 				ret = 0;
1013 				ms = 8LL * 1000LL * xfer->len;
1014 				do_div(ms, xfer->speed_hz);
1015 				ms += ms + 100; /* some tolerance */
1016 
1017 				if (ms > UINT_MAX)
1018 					ms = UINT_MAX;
1019 
1020 				ms = wait_for_completion_timeout(&master->xfer_completion,
1021 								 msecs_to_jiffies(ms));
1022 			}
1023 
1024 			if (ms == 0) {
1025 				SPI_STATISTICS_INCREMENT_FIELD(statm,
1026 							       timedout);
1027 				SPI_STATISTICS_INCREMENT_FIELD(stats,
1028 							       timedout);
1029 				dev_err(&msg->spi->dev,
1030 					"SPI transfer timed out\n");
1031 				msg->status = -ETIMEDOUT;
1032 			}
1033 		} else {
1034 			if (xfer->len)
1035 				dev_err(&msg->spi->dev,
1036 					"Bufferless transfer has length %u\n",
1037 					xfer->len);
1038 		}
1039 
1040 		trace_spi_transfer_stop(msg, xfer);
1041 
1042 		if (msg->status != -EINPROGRESS)
1043 			goto out;
1044 
1045 		if (xfer->delay_usecs) {
1046 			u16 us = xfer->delay_usecs;
1047 
1048 			if (us <= 10)
1049 				udelay(us);
1050 			else
1051 				usleep_range(us, us + DIV_ROUND_UP(us, 10));
1052 		}
1053 
1054 		if (xfer->cs_change) {
1055 			if (list_is_last(&xfer->transfer_list,
1056 					 &msg->transfers)) {
1057 				keep_cs = true;
1058 			} else {
1059 				spi_set_cs(msg->spi, false);
1060 				udelay(10);
1061 				spi_set_cs(msg->spi, true);
1062 			}
1063 		}
1064 
1065 		msg->actual_length += xfer->len;
1066 	}
1067 
1068 out:
1069 	if (ret != 0 || !keep_cs)
1070 		spi_set_cs(msg->spi, false);
1071 
1072 	if (msg->status == -EINPROGRESS)
1073 		msg->status = ret;
1074 
1075 	if (msg->status && master->handle_err)
1076 		master->handle_err(master, msg);
1077 
1078 	spi_res_release(master, msg);
1079 
1080 	spi_finalize_current_message(master);
1081 
1082 	return ret;
1083 }
1084 
1085 /**
1086  * spi_finalize_current_transfer - report completion of a transfer
1087  * @master: the master reporting completion
1088  *
1089  * Called by SPI drivers using the core transfer_one_message()
1090  * implementation to notify it that the current interrupt driven
1091  * transfer has finished and the next one may be scheduled.
1092  */
1093 void spi_finalize_current_transfer(struct spi_master *master)
1094 {
1095 	complete(&master->xfer_completion);
1096 }
1097 EXPORT_SYMBOL_GPL(spi_finalize_current_transfer);
1098 
1099 /**
1100  * __spi_pump_messages - function which processes spi message queue
1101  * @master: master to process queue for
1102  * @in_kthread: true if we are in the context of the message pump thread
1103  *
1104  * This function checks if there is any spi message in the queue that
1105  * needs processing and if so call out to the driver to initialize hardware
1106  * and transfer each message.
1107  *
1108  * Note that it is called both from the kthread itself and also from
1109  * inside spi_sync(); the queue extraction handling at the top of the
1110  * function should deal with this safely.
1111  */
1112 static void __spi_pump_messages(struct spi_master *master, bool in_kthread)
1113 {
1114 	unsigned long flags;
1115 	bool was_busy = false;
1116 	int ret;
1117 
1118 	/* Lock queue */
1119 	spin_lock_irqsave(&master->queue_lock, flags);
1120 
1121 	/* Make sure we are not already running a message */
1122 	if (master->cur_msg) {
1123 		spin_unlock_irqrestore(&master->queue_lock, flags);
1124 		return;
1125 	}
1126 
1127 	/* If another context is idling the device then defer */
1128 	if (master->idling) {
1129 		kthread_queue_work(&master->kworker, &master->pump_messages);
1130 		spin_unlock_irqrestore(&master->queue_lock, flags);
1131 		return;
1132 	}
1133 
1134 	/* Check if the queue is idle */
1135 	if (list_empty(&master->queue) || !master->running) {
1136 		if (!master->busy) {
1137 			spin_unlock_irqrestore(&master->queue_lock, flags);
1138 			return;
1139 		}
1140 
1141 		/* Only do teardown in the thread */
1142 		if (!in_kthread) {
1143 			kthread_queue_work(&master->kworker,
1144 					   &master->pump_messages);
1145 			spin_unlock_irqrestore(&master->queue_lock, flags);
1146 			return;
1147 		}
1148 
1149 		master->busy = false;
1150 		master->idling = true;
1151 		spin_unlock_irqrestore(&master->queue_lock, flags);
1152 
1153 		kfree(master->dummy_rx);
1154 		master->dummy_rx = NULL;
1155 		kfree(master->dummy_tx);
1156 		master->dummy_tx = NULL;
1157 		if (master->unprepare_transfer_hardware &&
1158 		    master->unprepare_transfer_hardware(master))
1159 			dev_err(&master->dev,
1160 				"failed to unprepare transfer hardware\n");
1161 		if (master->auto_runtime_pm) {
1162 			pm_runtime_mark_last_busy(master->dev.parent);
1163 			pm_runtime_put_autosuspend(master->dev.parent);
1164 		}
1165 		trace_spi_master_idle(master);
1166 
1167 		spin_lock_irqsave(&master->queue_lock, flags);
1168 		master->idling = false;
1169 		spin_unlock_irqrestore(&master->queue_lock, flags);
1170 		return;
1171 	}
1172 
1173 	/* Extract head of queue */
1174 	master->cur_msg =
1175 		list_first_entry(&master->queue, struct spi_message, queue);
1176 
1177 	list_del_init(&master->cur_msg->queue);
1178 	if (master->busy)
1179 		was_busy = true;
1180 	else
1181 		master->busy = true;
1182 	spin_unlock_irqrestore(&master->queue_lock, flags);
1183 
1184 	mutex_lock(&master->io_mutex);
1185 
1186 	if (!was_busy && master->auto_runtime_pm) {
1187 		ret = pm_runtime_get_sync(master->dev.parent);
1188 		if (ret < 0) {
1189 			dev_err(&master->dev, "Failed to power device: %d\n",
1190 				ret);
1191 			mutex_unlock(&master->io_mutex);
1192 			return;
1193 		}
1194 	}
1195 
1196 	if (!was_busy)
1197 		trace_spi_master_busy(master);
1198 
1199 	if (!was_busy && master->prepare_transfer_hardware) {
1200 		ret = master->prepare_transfer_hardware(master);
1201 		if (ret) {
1202 			dev_err(&master->dev,
1203 				"failed to prepare transfer hardware\n");
1204 
1205 			if (master->auto_runtime_pm)
1206 				pm_runtime_put(master->dev.parent);
1207 			mutex_unlock(&master->io_mutex);
1208 			return;
1209 		}
1210 	}
1211 
1212 	trace_spi_message_start(master->cur_msg);
1213 
1214 	if (master->prepare_message) {
1215 		ret = master->prepare_message(master, master->cur_msg);
1216 		if (ret) {
1217 			dev_err(&master->dev,
1218 				"failed to prepare message: %d\n", ret);
1219 			master->cur_msg->status = ret;
1220 			spi_finalize_current_message(master);
1221 			goto out;
1222 		}
1223 		master->cur_msg_prepared = true;
1224 	}
1225 
1226 	ret = spi_map_msg(master, master->cur_msg);
1227 	if (ret) {
1228 		master->cur_msg->status = ret;
1229 		spi_finalize_current_message(master);
1230 		goto out;
1231 	}
1232 
1233 	ret = master->transfer_one_message(master, master->cur_msg);
1234 	if (ret) {
1235 		dev_err(&master->dev,
1236 			"failed to transfer one message from queue\n");
1237 		goto out;
1238 	}
1239 
1240 out:
1241 	mutex_unlock(&master->io_mutex);
1242 
1243 	/* Prod the scheduler in case transfer_one() was busy waiting */
1244 	if (!ret)
1245 		cond_resched();
1246 }
1247 
1248 /**
1249  * spi_pump_messages - kthread work function which processes spi message queue
1250  * @work: pointer to kthread work struct contained in the master struct
1251  */
1252 static void spi_pump_messages(struct kthread_work *work)
1253 {
1254 	struct spi_master *master =
1255 		container_of(work, struct spi_master, pump_messages);
1256 
1257 	__spi_pump_messages(master, true);
1258 }
1259 
1260 static int spi_init_queue(struct spi_master *master)
1261 {
1262 	struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
1263 
1264 	master->running = false;
1265 	master->busy = false;
1266 
1267 	kthread_init_worker(&master->kworker);
1268 	master->kworker_task = kthread_run(kthread_worker_fn,
1269 					   &master->kworker, "%s",
1270 					   dev_name(&master->dev));
1271 	if (IS_ERR(master->kworker_task)) {
1272 		dev_err(&master->dev, "failed to create message pump task\n");
1273 		return PTR_ERR(master->kworker_task);
1274 	}
1275 	kthread_init_work(&master->pump_messages, spi_pump_messages);
1276 
1277 	/*
1278 	 * Master config will indicate if this controller should run the
1279 	 * message pump with high (realtime) priority to reduce the transfer
1280 	 * latency on the bus by minimising the delay between a transfer
1281 	 * request and the scheduling of the message pump thread. Without this
1282 	 * setting the message pump thread will remain at default priority.
1283 	 */
1284 	if (master->rt) {
1285 		dev_info(&master->dev,
1286 			"will run message pump with realtime priority\n");
1287 		sched_setscheduler(master->kworker_task, SCHED_FIFO, &param);
1288 	}
1289 
1290 	return 0;
1291 }
1292 
1293 /**
1294  * spi_get_next_queued_message() - called by driver to check for queued
1295  * messages
1296  * @master: the master to check for queued messages
1297  *
1298  * If there are more messages in the queue, the next message is returned from
1299  * this call.
1300  *
1301  * Return: the next message in the queue, else NULL if the queue is empty.
1302  */
1303 struct spi_message *spi_get_next_queued_message(struct spi_master *master)
1304 {
1305 	struct spi_message *next;
1306 	unsigned long flags;
1307 
1308 	/* get a pointer to the next message, if any */
1309 	spin_lock_irqsave(&master->queue_lock, flags);
1310 	next = list_first_entry_or_null(&master->queue, struct spi_message,
1311 					queue);
1312 	spin_unlock_irqrestore(&master->queue_lock, flags);
1313 
1314 	return next;
1315 }
1316 EXPORT_SYMBOL_GPL(spi_get_next_queued_message);
1317 
1318 /**
1319  * spi_finalize_current_message() - the current message is complete
1320  * @master: the master to return the message to
1321  *
1322  * Called by the driver to notify the core that the message in the front of the
1323  * queue is complete and can be removed from the queue.
1324  */
1325 void spi_finalize_current_message(struct spi_master *master)
1326 {
1327 	struct spi_message *mesg;
1328 	unsigned long flags;
1329 	int ret;
1330 
1331 	spin_lock_irqsave(&master->queue_lock, flags);
1332 	mesg = master->cur_msg;
1333 	spin_unlock_irqrestore(&master->queue_lock, flags);
1334 
1335 	spi_unmap_msg(master, mesg);
1336 
1337 	if (master->cur_msg_prepared && master->unprepare_message) {
1338 		ret = master->unprepare_message(master, mesg);
1339 		if (ret) {
1340 			dev_err(&master->dev,
1341 				"failed to unprepare message: %d\n", ret);
1342 		}
1343 	}
1344 
1345 	spin_lock_irqsave(&master->queue_lock, flags);
1346 	master->cur_msg = NULL;
1347 	master->cur_msg_prepared = false;
1348 	kthread_queue_work(&master->kworker, &master->pump_messages);
1349 	spin_unlock_irqrestore(&master->queue_lock, flags);
1350 
1351 	trace_spi_message_done(mesg);
1352 
1353 	mesg->state = NULL;
1354 	if (mesg->complete)
1355 		mesg->complete(mesg->context);
1356 }
1357 EXPORT_SYMBOL_GPL(spi_finalize_current_message);
1358 
1359 static int spi_start_queue(struct spi_master *master)
1360 {
1361 	unsigned long flags;
1362 
1363 	spin_lock_irqsave(&master->queue_lock, flags);
1364 
1365 	if (master->running || master->busy) {
1366 		spin_unlock_irqrestore(&master->queue_lock, flags);
1367 		return -EBUSY;
1368 	}
1369 
1370 	master->running = true;
1371 	master->cur_msg = NULL;
1372 	spin_unlock_irqrestore(&master->queue_lock, flags);
1373 
1374 	kthread_queue_work(&master->kworker, &master->pump_messages);
1375 
1376 	return 0;
1377 }
1378 
1379 static int spi_stop_queue(struct spi_master *master)
1380 {
1381 	unsigned long flags;
1382 	unsigned limit = 500;
1383 	int ret = 0;
1384 
1385 	spin_lock_irqsave(&master->queue_lock, flags);
1386 
1387 	/*
1388 	 * This is a bit lame, but is optimized for the common execution path.
1389 	 * A wait_queue on the master->busy could be used, but then the common
1390 	 * execution path (pump_messages) would be required to call wake_up or
1391 	 * friends on every SPI message. Do this instead.
1392 	 */
1393 	while ((!list_empty(&master->queue) || master->busy) && limit--) {
1394 		spin_unlock_irqrestore(&master->queue_lock, flags);
1395 		usleep_range(10000, 11000);
1396 		spin_lock_irqsave(&master->queue_lock, flags);
1397 	}
1398 
1399 	if (!list_empty(&master->queue) || master->busy)
1400 		ret = -EBUSY;
1401 	else
1402 		master->running = false;
1403 
1404 	spin_unlock_irqrestore(&master->queue_lock, flags);
1405 
1406 	if (ret) {
1407 		dev_warn(&master->dev,
1408 			 "could not stop message queue\n");
1409 		return ret;
1410 	}
1411 	return ret;
1412 }
1413 
1414 static int spi_destroy_queue(struct spi_master *master)
1415 {
1416 	int ret;
1417 
1418 	ret = spi_stop_queue(master);
1419 
1420 	/*
1421 	 * kthread_flush_worker will block until all work is done.
1422 	 * If the reason that stop_queue timed out is that the work will never
1423 	 * finish, then it does no good to call flush/stop thread, so
1424 	 * return anyway.
1425 	 */
1426 	if (ret) {
1427 		dev_err(&master->dev, "problem destroying queue\n");
1428 		return ret;
1429 	}
1430 
1431 	kthread_flush_worker(&master->kworker);
1432 	kthread_stop(master->kworker_task);
1433 
1434 	return 0;
1435 }
1436 
1437 static int __spi_queued_transfer(struct spi_device *spi,
1438 				 struct spi_message *msg,
1439 				 bool need_pump)
1440 {
1441 	struct spi_master *master = spi->master;
1442 	unsigned long flags;
1443 
1444 	spin_lock_irqsave(&master->queue_lock, flags);
1445 
1446 	if (!master->running) {
1447 		spin_unlock_irqrestore(&master->queue_lock, flags);
1448 		return -ESHUTDOWN;
1449 	}
1450 	msg->actual_length = 0;
1451 	msg->status = -EINPROGRESS;
1452 
1453 	list_add_tail(&msg->queue, &master->queue);
1454 	if (!master->busy && need_pump)
1455 		kthread_queue_work(&master->kworker, &master->pump_messages);
1456 
1457 	spin_unlock_irqrestore(&master->queue_lock, flags);
1458 	return 0;
1459 }
1460 
1461 /**
1462  * spi_queued_transfer - transfer function for queued transfers
1463  * @spi: spi device which is requesting transfer
1464  * @msg: spi message which is to handled is queued to driver queue
1465  *
1466  * Return: zero on success, else a negative error code.
1467  */
1468 static int spi_queued_transfer(struct spi_device *spi, struct spi_message *msg)
1469 {
1470 	return __spi_queued_transfer(spi, msg, true);
1471 }
1472 
1473 static int spi_master_initialize_queue(struct spi_master *master)
1474 {
1475 	int ret;
1476 
1477 	master->transfer = spi_queued_transfer;
1478 	if (!master->transfer_one_message)
1479 		master->transfer_one_message = spi_transfer_one_message;
1480 
1481 	/* Initialize and start queue */
1482 	ret = spi_init_queue(master);
1483 	if (ret) {
1484 		dev_err(&master->dev, "problem initializing queue\n");
1485 		goto err_init_queue;
1486 	}
1487 	master->queued = true;
1488 	ret = spi_start_queue(master);
1489 	if (ret) {
1490 		dev_err(&master->dev, "problem starting queue\n");
1491 		goto err_start_queue;
1492 	}
1493 
1494 	return 0;
1495 
1496 err_start_queue:
1497 	spi_destroy_queue(master);
1498 err_init_queue:
1499 	return ret;
1500 }
1501 
1502 /*-------------------------------------------------------------------------*/
1503 
1504 #if defined(CONFIG_OF)
1505 static struct spi_device *
1506 of_register_spi_device(struct spi_master *master, struct device_node *nc)
1507 {
1508 	struct spi_device *spi;
1509 	int rc;
1510 	u32 value;
1511 
1512 	/* Alloc an spi_device */
1513 	spi = spi_alloc_device(master);
1514 	if (!spi) {
1515 		dev_err(&master->dev, "spi_device alloc error for %s\n",
1516 			nc->full_name);
1517 		rc = -ENOMEM;
1518 		goto err_out;
1519 	}
1520 
1521 	/* Select device driver */
1522 	rc = of_modalias_node(nc, spi->modalias,
1523 				sizeof(spi->modalias));
1524 	if (rc < 0) {
1525 		dev_err(&master->dev, "cannot find modalias for %s\n",
1526 			nc->full_name);
1527 		goto err_out;
1528 	}
1529 
1530 	/* Device address */
1531 	rc = of_property_read_u32(nc, "reg", &value);
1532 	if (rc) {
1533 		dev_err(&master->dev, "%s has no valid 'reg' property (%d)\n",
1534 			nc->full_name, rc);
1535 		goto err_out;
1536 	}
1537 	spi->chip_select = value;
1538 
1539 	/* Mode (clock phase/polarity/etc.) */
1540 	if (of_find_property(nc, "spi-cpha", NULL))
1541 		spi->mode |= SPI_CPHA;
1542 	if (of_find_property(nc, "spi-cpol", NULL))
1543 		spi->mode |= SPI_CPOL;
1544 	if (of_find_property(nc, "spi-cs-high", NULL))
1545 		spi->mode |= SPI_CS_HIGH;
1546 	if (of_find_property(nc, "spi-3wire", NULL))
1547 		spi->mode |= SPI_3WIRE;
1548 	if (of_find_property(nc, "spi-lsb-first", NULL))
1549 		spi->mode |= SPI_LSB_FIRST;
1550 
1551 	/* Device DUAL/QUAD mode */
1552 	if (!of_property_read_u32(nc, "spi-tx-bus-width", &value)) {
1553 		switch (value) {
1554 		case 1:
1555 			break;
1556 		case 2:
1557 			spi->mode |= SPI_TX_DUAL;
1558 			break;
1559 		case 4:
1560 			spi->mode |= SPI_TX_QUAD;
1561 			break;
1562 		default:
1563 			dev_warn(&master->dev,
1564 				"spi-tx-bus-width %d not supported\n",
1565 				value);
1566 			break;
1567 		}
1568 	}
1569 
1570 	if (!of_property_read_u32(nc, "spi-rx-bus-width", &value)) {
1571 		switch (value) {
1572 		case 1:
1573 			break;
1574 		case 2:
1575 			spi->mode |= SPI_RX_DUAL;
1576 			break;
1577 		case 4:
1578 			spi->mode |= SPI_RX_QUAD;
1579 			break;
1580 		default:
1581 			dev_warn(&master->dev,
1582 				"spi-rx-bus-width %d not supported\n",
1583 				value);
1584 			break;
1585 		}
1586 	}
1587 
1588 	/* Device speed */
1589 	rc = of_property_read_u32(nc, "spi-max-frequency", &value);
1590 	if (rc) {
1591 		dev_err(&master->dev, "%s has no valid 'spi-max-frequency' property (%d)\n",
1592 			nc->full_name, rc);
1593 		goto err_out;
1594 	}
1595 	spi->max_speed_hz = value;
1596 
1597 	/* Store a pointer to the node in the device structure */
1598 	of_node_get(nc);
1599 	spi->dev.of_node = nc;
1600 
1601 	/* Register the new device */
1602 	rc = spi_add_device(spi);
1603 	if (rc) {
1604 		dev_err(&master->dev, "spi_device register error %s\n",
1605 			nc->full_name);
1606 		goto err_out;
1607 	}
1608 
1609 	return spi;
1610 
1611 err_out:
1612 	spi_dev_put(spi);
1613 	return ERR_PTR(rc);
1614 }
1615 
1616 /**
1617  * of_register_spi_devices() - Register child devices onto the SPI bus
1618  * @master:	Pointer to spi_master device
1619  *
1620  * Registers an spi_device for each child node of master node which has a 'reg'
1621  * property.
1622  */
1623 static void of_register_spi_devices(struct spi_master *master)
1624 {
1625 	struct spi_device *spi;
1626 	struct device_node *nc;
1627 
1628 	if (!master->dev.of_node)
1629 		return;
1630 
1631 	for_each_available_child_of_node(master->dev.of_node, nc) {
1632 		if (of_node_test_and_set_flag(nc, OF_POPULATED))
1633 			continue;
1634 		spi = of_register_spi_device(master, nc);
1635 		if (IS_ERR(spi)) {
1636 			dev_warn(&master->dev, "Failed to create SPI device for %s\n",
1637 				nc->full_name);
1638 			of_node_clear_flag(nc, OF_POPULATED);
1639 		}
1640 	}
1641 }
1642 #else
1643 static void of_register_spi_devices(struct spi_master *master) { }
1644 #endif
1645 
1646 #ifdef CONFIG_ACPI
1647 static int acpi_spi_add_resource(struct acpi_resource *ares, void *data)
1648 {
1649 	struct spi_device *spi = data;
1650 	struct spi_master *master = spi->master;
1651 
1652 	if (ares->type == ACPI_RESOURCE_TYPE_SERIAL_BUS) {
1653 		struct acpi_resource_spi_serialbus *sb;
1654 
1655 		sb = &ares->data.spi_serial_bus;
1656 		if (sb->type == ACPI_RESOURCE_SERIAL_TYPE_SPI) {
1657 			/*
1658 			 * ACPI DeviceSelection numbering is handled by the
1659 			 * host controller driver in Windows and can vary
1660 			 * from driver to driver. In Linux we always expect
1661 			 * 0 .. max - 1 so we need to ask the driver to
1662 			 * translate between the two schemes.
1663 			 */
1664 			if (master->fw_translate_cs) {
1665 				int cs = master->fw_translate_cs(master,
1666 						sb->device_selection);
1667 				if (cs < 0)
1668 					return cs;
1669 				spi->chip_select = cs;
1670 			} else {
1671 				spi->chip_select = sb->device_selection;
1672 			}
1673 
1674 			spi->max_speed_hz = sb->connection_speed;
1675 
1676 			if (sb->clock_phase == ACPI_SPI_SECOND_PHASE)
1677 				spi->mode |= SPI_CPHA;
1678 			if (sb->clock_polarity == ACPI_SPI_START_HIGH)
1679 				spi->mode |= SPI_CPOL;
1680 			if (sb->device_polarity == ACPI_SPI_ACTIVE_HIGH)
1681 				spi->mode |= SPI_CS_HIGH;
1682 		}
1683 	} else if (spi->irq < 0) {
1684 		struct resource r;
1685 
1686 		if (acpi_dev_resource_interrupt(ares, 0, &r))
1687 			spi->irq = r.start;
1688 	}
1689 
1690 	/* Always tell the ACPI core to skip this resource */
1691 	return 1;
1692 }
1693 
1694 static acpi_status acpi_register_spi_device(struct spi_master *master,
1695 					    struct acpi_device *adev)
1696 {
1697 	struct list_head resource_list;
1698 	struct spi_device *spi;
1699 	int ret;
1700 
1701 	if (acpi_bus_get_status(adev) || !adev->status.present ||
1702 	    acpi_device_enumerated(adev))
1703 		return AE_OK;
1704 
1705 	spi = spi_alloc_device(master);
1706 	if (!spi) {
1707 		dev_err(&master->dev, "failed to allocate SPI device for %s\n",
1708 			dev_name(&adev->dev));
1709 		return AE_NO_MEMORY;
1710 	}
1711 
1712 	ACPI_COMPANION_SET(&spi->dev, adev);
1713 	spi->irq = -1;
1714 
1715 	INIT_LIST_HEAD(&resource_list);
1716 	ret = acpi_dev_get_resources(adev, &resource_list,
1717 				     acpi_spi_add_resource, spi);
1718 	acpi_dev_free_resource_list(&resource_list);
1719 
1720 	if (ret < 0 || !spi->max_speed_hz) {
1721 		spi_dev_put(spi);
1722 		return AE_OK;
1723 	}
1724 
1725 	if (spi->irq < 0)
1726 		spi->irq = acpi_dev_gpio_irq_get(adev, 0);
1727 
1728 	acpi_device_set_enumerated(adev);
1729 
1730 	adev->power.flags.ignore_parent = true;
1731 	strlcpy(spi->modalias, acpi_device_hid(adev), sizeof(spi->modalias));
1732 	if (spi_add_device(spi)) {
1733 		adev->power.flags.ignore_parent = false;
1734 		dev_err(&master->dev, "failed to add SPI device %s from ACPI\n",
1735 			dev_name(&adev->dev));
1736 		spi_dev_put(spi);
1737 	}
1738 
1739 	return AE_OK;
1740 }
1741 
1742 static acpi_status acpi_spi_add_device(acpi_handle handle, u32 level,
1743 				       void *data, void **return_value)
1744 {
1745 	struct spi_master *master = data;
1746 	struct acpi_device *adev;
1747 
1748 	if (acpi_bus_get_device(handle, &adev))
1749 		return AE_OK;
1750 
1751 	return acpi_register_spi_device(master, adev);
1752 }
1753 
1754 static void acpi_register_spi_devices(struct spi_master *master)
1755 {
1756 	acpi_status status;
1757 	acpi_handle handle;
1758 
1759 	handle = ACPI_HANDLE(master->dev.parent);
1760 	if (!handle)
1761 		return;
1762 
1763 	status = acpi_walk_namespace(ACPI_TYPE_DEVICE, handle, 1,
1764 				     acpi_spi_add_device, NULL,
1765 				     master, NULL);
1766 	if (ACPI_FAILURE(status))
1767 		dev_warn(&master->dev, "failed to enumerate SPI slaves\n");
1768 }
1769 #else
1770 static inline void acpi_register_spi_devices(struct spi_master *master) {}
1771 #endif /* CONFIG_ACPI */
1772 
1773 static void spi_master_release(struct device *dev)
1774 {
1775 	struct spi_master *master;
1776 
1777 	master = container_of(dev, struct spi_master, dev);
1778 	kfree(master);
1779 }
1780 
1781 static struct class spi_master_class = {
1782 	.name		= "spi_master",
1783 	.owner		= THIS_MODULE,
1784 	.dev_release	= spi_master_release,
1785 	.dev_groups	= spi_master_groups,
1786 };
1787 
1788 
1789 /**
1790  * spi_alloc_master - allocate SPI master controller
1791  * @dev: the controller, possibly using the platform_bus
1792  * @size: how much zeroed driver-private data to allocate; the pointer to this
1793  *	memory is in the driver_data field of the returned device,
1794  *	accessible with spi_master_get_devdata().
1795  * Context: can sleep
1796  *
1797  * This call is used only by SPI master controller drivers, which are the
1798  * only ones directly touching chip registers.  It's how they allocate
1799  * an spi_master structure, prior to calling spi_register_master().
1800  *
1801  * This must be called from context that can sleep.
1802  *
1803  * The caller is responsible for assigning the bus number and initializing
1804  * the master's methods before calling spi_register_master(); and (after errors
1805  * adding the device) calling spi_master_put() to prevent a memory leak.
1806  *
1807  * Return: the SPI master structure on success, else NULL.
1808  */
1809 struct spi_master *spi_alloc_master(struct device *dev, unsigned size)
1810 {
1811 	struct spi_master	*master;
1812 
1813 	if (!dev)
1814 		return NULL;
1815 
1816 	master = kzalloc(size + sizeof(*master), GFP_KERNEL);
1817 	if (!master)
1818 		return NULL;
1819 
1820 	device_initialize(&master->dev);
1821 	master->bus_num = -1;
1822 	master->num_chipselect = 1;
1823 	master->dev.class = &spi_master_class;
1824 	master->dev.parent = dev;
1825 	pm_suspend_ignore_children(&master->dev, true);
1826 	spi_master_set_devdata(master, &master[1]);
1827 
1828 	return master;
1829 }
1830 EXPORT_SYMBOL_GPL(spi_alloc_master);
1831 
1832 #ifdef CONFIG_OF
1833 static int of_spi_register_master(struct spi_master *master)
1834 {
1835 	int nb, i, *cs;
1836 	struct device_node *np = master->dev.of_node;
1837 
1838 	if (!np)
1839 		return 0;
1840 
1841 	nb = of_gpio_named_count(np, "cs-gpios");
1842 	master->num_chipselect = max_t(int, nb, master->num_chipselect);
1843 
1844 	/* Return error only for an incorrectly formed cs-gpios property */
1845 	if (nb == 0 || nb == -ENOENT)
1846 		return 0;
1847 	else if (nb < 0)
1848 		return nb;
1849 
1850 	cs = devm_kzalloc(&master->dev,
1851 			  sizeof(int) * master->num_chipselect,
1852 			  GFP_KERNEL);
1853 	master->cs_gpios = cs;
1854 
1855 	if (!master->cs_gpios)
1856 		return -ENOMEM;
1857 
1858 	for (i = 0; i < master->num_chipselect; i++)
1859 		cs[i] = -ENOENT;
1860 
1861 	for (i = 0; i < nb; i++)
1862 		cs[i] = of_get_named_gpio(np, "cs-gpios", i);
1863 
1864 	return 0;
1865 }
1866 #else
1867 static int of_spi_register_master(struct spi_master *master)
1868 {
1869 	return 0;
1870 }
1871 #endif
1872 
1873 /**
1874  * spi_register_master - register SPI master controller
1875  * @master: initialized master, originally from spi_alloc_master()
1876  * Context: can sleep
1877  *
1878  * SPI master controllers connect to their drivers using some non-SPI bus,
1879  * such as the platform bus.  The final stage of probe() in that code
1880  * includes calling spi_register_master() to hook up to this SPI bus glue.
1881  *
1882  * SPI controllers use board specific (often SOC specific) bus numbers,
1883  * and board-specific addressing for SPI devices combines those numbers
1884  * with chip select numbers.  Since SPI does not directly support dynamic
1885  * device identification, boards need configuration tables telling which
1886  * chip is at which address.
1887  *
1888  * This must be called from context that can sleep.  It returns zero on
1889  * success, else a negative error code (dropping the master's refcount).
1890  * After a successful return, the caller is responsible for calling
1891  * spi_unregister_master().
1892  *
1893  * Return: zero on success, else a negative error code.
1894  */
1895 int spi_register_master(struct spi_master *master)
1896 {
1897 	static atomic_t		dyn_bus_id = ATOMIC_INIT((1<<15) - 1);
1898 	struct device		*dev = master->dev.parent;
1899 	struct boardinfo	*bi;
1900 	int			status = -ENODEV;
1901 	int			dynamic = 0;
1902 
1903 	if (!dev)
1904 		return -ENODEV;
1905 
1906 	status = of_spi_register_master(master);
1907 	if (status)
1908 		return status;
1909 
1910 	/* even if it's just one always-selected device, there must
1911 	 * be at least one chipselect
1912 	 */
1913 	if (master->num_chipselect == 0)
1914 		return -EINVAL;
1915 
1916 	if ((master->bus_num < 0) && master->dev.of_node)
1917 		master->bus_num = of_alias_get_id(master->dev.of_node, "spi");
1918 
1919 	/* convention:  dynamically assigned bus IDs count down from the max */
1920 	if (master->bus_num < 0) {
1921 		/* FIXME switch to an IDR based scheme, something like
1922 		 * I2C now uses, so we can't run out of "dynamic" IDs
1923 		 */
1924 		master->bus_num = atomic_dec_return(&dyn_bus_id);
1925 		dynamic = 1;
1926 	}
1927 
1928 	INIT_LIST_HEAD(&master->queue);
1929 	spin_lock_init(&master->queue_lock);
1930 	spin_lock_init(&master->bus_lock_spinlock);
1931 	mutex_init(&master->bus_lock_mutex);
1932 	mutex_init(&master->io_mutex);
1933 	master->bus_lock_flag = 0;
1934 	init_completion(&master->xfer_completion);
1935 	if (!master->max_dma_len)
1936 		master->max_dma_len = INT_MAX;
1937 
1938 	/* register the device, then userspace will see it.
1939 	 * registration fails if the bus ID is in use.
1940 	 */
1941 	dev_set_name(&master->dev, "spi%u", master->bus_num);
1942 	status = device_add(&master->dev);
1943 	if (status < 0)
1944 		goto done;
1945 	dev_dbg(dev, "registered master %s%s\n", dev_name(&master->dev),
1946 			dynamic ? " (dynamic)" : "");
1947 
1948 	/* If we're using a queued driver, start the queue */
1949 	if (master->transfer)
1950 		dev_info(dev, "master is unqueued, this is deprecated\n");
1951 	else {
1952 		status = spi_master_initialize_queue(master);
1953 		if (status) {
1954 			device_del(&master->dev);
1955 			goto done;
1956 		}
1957 	}
1958 	/* add statistics */
1959 	spin_lock_init(&master->statistics.lock);
1960 
1961 	mutex_lock(&board_lock);
1962 	list_add_tail(&master->list, &spi_master_list);
1963 	list_for_each_entry(bi, &board_list, list)
1964 		spi_match_master_to_boardinfo(master, &bi->board_info);
1965 	mutex_unlock(&board_lock);
1966 
1967 	/* Register devices from the device tree and ACPI */
1968 	of_register_spi_devices(master);
1969 	acpi_register_spi_devices(master);
1970 done:
1971 	return status;
1972 }
1973 EXPORT_SYMBOL_GPL(spi_register_master);
1974 
1975 static void devm_spi_unregister(struct device *dev, void *res)
1976 {
1977 	spi_unregister_master(*(struct spi_master **)res);
1978 }
1979 
1980 /**
1981  * dev_spi_register_master - register managed SPI master controller
1982  * @dev:    device managing SPI master
1983  * @master: initialized master, originally from spi_alloc_master()
1984  * Context: can sleep
1985  *
1986  * Register a SPI device as with spi_register_master() which will
1987  * automatically be unregister
1988  *
1989  * Return: zero on success, else a negative error code.
1990  */
1991 int devm_spi_register_master(struct device *dev, struct spi_master *master)
1992 {
1993 	struct spi_master **ptr;
1994 	int ret;
1995 
1996 	ptr = devres_alloc(devm_spi_unregister, sizeof(*ptr), GFP_KERNEL);
1997 	if (!ptr)
1998 		return -ENOMEM;
1999 
2000 	ret = spi_register_master(master);
2001 	if (!ret) {
2002 		*ptr = master;
2003 		devres_add(dev, ptr);
2004 	} else {
2005 		devres_free(ptr);
2006 	}
2007 
2008 	return ret;
2009 }
2010 EXPORT_SYMBOL_GPL(devm_spi_register_master);
2011 
2012 static int __unregister(struct device *dev, void *null)
2013 {
2014 	spi_unregister_device(to_spi_device(dev));
2015 	return 0;
2016 }
2017 
2018 /**
2019  * spi_unregister_master - unregister SPI master controller
2020  * @master: the master being unregistered
2021  * Context: can sleep
2022  *
2023  * This call is used only by SPI master controller drivers, which are the
2024  * only ones directly touching chip registers.
2025  *
2026  * This must be called from context that can sleep.
2027  */
2028 void spi_unregister_master(struct spi_master *master)
2029 {
2030 	int dummy;
2031 
2032 	if (master->queued) {
2033 		if (spi_destroy_queue(master))
2034 			dev_err(&master->dev, "queue remove failed\n");
2035 	}
2036 
2037 	mutex_lock(&board_lock);
2038 	list_del(&master->list);
2039 	mutex_unlock(&board_lock);
2040 
2041 	dummy = device_for_each_child(&master->dev, NULL, __unregister);
2042 	device_unregister(&master->dev);
2043 }
2044 EXPORT_SYMBOL_GPL(spi_unregister_master);
2045 
2046 int spi_master_suspend(struct spi_master *master)
2047 {
2048 	int ret;
2049 
2050 	/* Basically no-ops for non-queued masters */
2051 	if (!master->queued)
2052 		return 0;
2053 
2054 	ret = spi_stop_queue(master);
2055 	if (ret)
2056 		dev_err(&master->dev, "queue stop failed\n");
2057 
2058 	return ret;
2059 }
2060 EXPORT_SYMBOL_GPL(spi_master_suspend);
2061 
2062 int spi_master_resume(struct spi_master *master)
2063 {
2064 	int ret;
2065 
2066 	if (!master->queued)
2067 		return 0;
2068 
2069 	ret = spi_start_queue(master);
2070 	if (ret)
2071 		dev_err(&master->dev, "queue restart failed\n");
2072 
2073 	return ret;
2074 }
2075 EXPORT_SYMBOL_GPL(spi_master_resume);
2076 
2077 static int __spi_master_match(struct device *dev, const void *data)
2078 {
2079 	struct spi_master *m;
2080 	const u16 *bus_num = data;
2081 
2082 	m = container_of(dev, struct spi_master, dev);
2083 	return m->bus_num == *bus_num;
2084 }
2085 
2086 /**
2087  * spi_busnum_to_master - look up master associated with bus_num
2088  * @bus_num: the master's bus number
2089  * Context: can sleep
2090  *
2091  * This call may be used with devices that are registered after
2092  * arch init time.  It returns a refcounted pointer to the relevant
2093  * spi_master (which the caller must release), or NULL if there is
2094  * no such master registered.
2095  *
2096  * Return: the SPI master structure on success, else NULL.
2097  */
2098 struct spi_master *spi_busnum_to_master(u16 bus_num)
2099 {
2100 	struct device		*dev;
2101 	struct spi_master	*master = NULL;
2102 
2103 	dev = class_find_device(&spi_master_class, NULL, &bus_num,
2104 				__spi_master_match);
2105 	if (dev)
2106 		master = container_of(dev, struct spi_master, dev);
2107 	/* reference got in class_find_device */
2108 	return master;
2109 }
2110 EXPORT_SYMBOL_GPL(spi_busnum_to_master);
2111 
2112 /*-------------------------------------------------------------------------*/
2113 
2114 /* Core methods for SPI resource management */
2115 
2116 /**
2117  * spi_res_alloc - allocate a spi resource that is life-cycle managed
2118  *                 during the processing of a spi_message while using
2119  *                 spi_transfer_one
2120  * @spi:     the spi device for which we allocate memory
2121  * @release: the release code to execute for this resource
2122  * @size:    size to alloc and return
2123  * @gfp:     GFP allocation flags
2124  *
2125  * Return: the pointer to the allocated data
2126  *
2127  * This may get enhanced in the future to allocate from a memory pool
2128  * of the @spi_device or @spi_master to avoid repeated allocations.
2129  */
2130 void *spi_res_alloc(struct spi_device *spi,
2131 		    spi_res_release_t release,
2132 		    size_t size, gfp_t gfp)
2133 {
2134 	struct spi_res *sres;
2135 
2136 	sres = kzalloc(sizeof(*sres) + size, gfp);
2137 	if (!sres)
2138 		return NULL;
2139 
2140 	INIT_LIST_HEAD(&sres->entry);
2141 	sres->release = release;
2142 
2143 	return sres->data;
2144 }
2145 EXPORT_SYMBOL_GPL(spi_res_alloc);
2146 
2147 /**
2148  * spi_res_free - free an spi resource
2149  * @res: pointer to the custom data of a resource
2150  *
2151  */
2152 void spi_res_free(void *res)
2153 {
2154 	struct spi_res *sres = container_of(res, struct spi_res, data);
2155 
2156 	if (!res)
2157 		return;
2158 
2159 	WARN_ON(!list_empty(&sres->entry));
2160 	kfree(sres);
2161 }
2162 EXPORT_SYMBOL_GPL(spi_res_free);
2163 
2164 /**
2165  * spi_res_add - add a spi_res to the spi_message
2166  * @message: the spi message
2167  * @res:     the spi_resource
2168  */
2169 void spi_res_add(struct spi_message *message, void *res)
2170 {
2171 	struct spi_res *sres = container_of(res, struct spi_res, data);
2172 
2173 	WARN_ON(!list_empty(&sres->entry));
2174 	list_add_tail(&sres->entry, &message->resources);
2175 }
2176 EXPORT_SYMBOL_GPL(spi_res_add);
2177 
2178 /**
2179  * spi_res_release - release all spi resources for this message
2180  * @master:  the @spi_master
2181  * @message: the @spi_message
2182  */
2183 void spi_res_release(struct spi_master *master,
2184 		     struct spi_message *message)
2185 {
2186 	struct spi_res *res;
2187 
2188 	while (!list_empty(&message->resources)) {
2189 		res = list_last_entry(&message->resources,
2190 				      struct spi_res, entry);
2191 
2192 		if (res->release)
2193 			res->release(master, message, res->data);
2194 
2195 		list_del(&res->entry);
2196 
2197 		kfree(res);
2198 	}
2199 }
2200 EXPORT_SYMBOL_GPL(spi_res_release);
2201 
2202 /*-------------------------------------------------------------------------*/
2203 
2204 /* Core methods for spi_message alterations */
2205 
2206 static void __spi_replace_transfers_release(struct spi_master *master,
2207 					    struct spi_message *msg,
2208 					    void *res)
2209 {
2210 	struct spi_replaced_transfers *rxfer = res;
2211 	size_t i;
2212 
2213 	/* call extra callback if requested */
2214 	if (rxfer->release)
2215 		rxfer->release(master, msg, res);
2216 
2217 	/* insert replaced transfers back into the message */
2218 	list_splice(&rxfer->replaced_transfers, rxfer->replaced_after);
2219 
2220 	/* remove the formerly inserted entries */
2221 	for (i = 0; i < rxfer->inserted; i++)
2222 		list_del(&rxfer->inserted_transfers[i].transfer_list);
2223 }
2224 
2225 /**
2226  * spi_replace_transfers - replace transfers with several transfers
2227  *                         and register change with spi_message.resources
2228  * @msg:           the spi_message we work upon
2229  * @xfer_first:    the first spi_transfer we want to replace
2230  * @remove:        number of transfers to remove
2231  * @insert:        the number of transfers we want to insert instead
2232  * @release:       extra release code necessary in some circumstances
2233  * @extradatasize: extra data to allocate (with alignment guarantees
2234  *                 of struct @spi_transfer)
2235  * @gfp:           gfp flags
2236  *
2237  * Returns: pointer to @spi_replaced_transfers,
2238  *          PTR_ERR(...) in case of errors.
2239  */
2240 struct spi_replaced_transfers *spi_replace_transfers(
2241 	struct spi_message *msg,
2242 	struct spi_transfer *xfer_first,
2243 	size_t remove,
2244 	size_t insert,
2245 	spi_replaced_release_t release,
2246 	size_t extradatasize,
2247 	gfp_t gfp)
2248 {
2249 	struct spi_replaced_transfers *rxfer;
2250 	struct spi_transfer *xfer;
2251 	size_t i;
2252 
2253 	/* allocate the structure using spi_res */
2254 	rxfer = spi_res_alloc(msg->spi, __spi_replace_transfers_release,
2255 			      insert * sizeof(struct spi_transfer)
2256 			      + sizeof(struct spi_replaced_transfers)
2257 			      + extradatasize,
2258 			      gfp);
2259 	if (!rxfer)
2260 		return ERR_PTR(-ENOMEM);
2261 
2262 	/* the release code to invoke before running the generic release */
2263 	rxfer->release = release;
2264 
2265 	/* assign extradata */
2266 	if (extradatasize)
2267 		rxfer->extradata =
2268 			&rxfer->inserted_transfers[insert];
2269 
2270 	/* init the replaced_transfers list */
2271 	INIT_LIST_HEAD(&rxfer->replaced_transfers);
2272 
2273 	/* assign the list_entry after which we should reinsert
2274 	 * the @replaced_transfers - it may be spi_message.messages!
2275 	 */
2276 	rxfer->replaced_after = xfer_first->transfer_list.prev;
2277 
2278 	/* remove the requested number of transfers */
2279 	for (i = 0; i < remove; i++) {
2280 		/* if the entry after replaced_after it is msg->transfers
2281 		 * then we have been requested to remove more transfers
2282 		 * than are in the list
2283 		 */
2284 		if (rxfer->replaced_after->next == &msg->transfers) {
2285 			dev_err(&msg->spi->dev,
2286 				"requested to remove more spi_transfers than are available\n");
2287 			/* insert replaced transfers back into the message */
2288 			list_splice(&rxfer->replaced_transfers,
2289 				    rxfer->replaced_after);
2290 
2291 			/* free the spi_replace_transfer structure */
2292 			spi_res_free(rxfer);
2293 
2294 			/* and return with an error */
2295 			return ERR_PTR(-EINVAL);
2296 		}
2297 
2298 		/* remove the entry after replaced_after from list of
2299 		 * transfers and add it to list of replaced_transfers
2300 		 */
2301 		list_move_tail(rxfer->replaced_after->next,
2302 			       &rxfer->replaced_transfers);
2303 	}
2304 
2305 	/* create copy of the given xfer with identical settings
2306 	 * based on the first transfer to get removed
2307 	 */
2308 	for (i = 0; i < insert; i++) {
2309 		/* we need to run in reverse order */
2310 		xfer = &rxfer->inserted_transfers[insert - 1 - i];
2311 
2312 		/* copy all spi_transfer data */
2313 		memcpy(xfer, xfer_first, sizeof(*xfer));
2314 
2315 		/* add to list */
2316 		list_add(&xfer->transfer_list, rxfer->replaced_after);
2317 
2318 		/* clear cs_change and delay_usecs for all but the last */
2319 		if (i) {
2320 			xfer->cs_change = false;
2321 			xfer->delay_usecs = 0;
2322 		}
2323 	}
2324 
2325 	/* set up inserted */
2326 	rxfer->inserted = insert;
2327 
2328 	/* and register it with spi_res/spi_message */
2329 	spi_res_add(msg, rxfer);
2330 
2331 	return rxfer;
2332 }
2333 EXPORT_SYMBOL_GPL(spi_replace_transfers);
2334 
2335 static int __spi_split_transfer_maxsize(struct spi_master *master,
2336 					struct spi_message *msg,
2337 					struct spi_transfer **xferp,
2338 					size_t maxsize,
2339 					gfp_t gfp)
2340 {
2341 	struct spi_transfer *xfer = *xferp, *xfers;
2342 	struct spi_replaced_transfers *srt;
2343 	size_t offset;
2344 	size_t count, i;
2345 
2346 	/* warn once about this fact that we are splitting a transfer */
2347 	dev_warn_once(&msg->spi->dev,
2348 		      "spi_transfer of length %i exceed max length of %zu - needed to split transfers\n",
2349 		      xfer->len, maxsize);
2350 
2351 	/* calculate how many we have to replace */
2352 	count = DIV_ROUND_UP(xfer->len, maxsize);
2353 
2354 	/* create replacement */
2355 	srt = spi_replace_transfers(msg, xfer, 1, count, NULL, 0, gfp);
2356 	if (IS_ERR(srt))
2357 		return PTR_ERR(srt);
2358 	xfers = srt->inserted_transfers;
2359 
2360 	/* now handle each of those newly inserted spi_transfers
2361 	 * note that the replacements spi_transfers all are preset
2362 	 * to the same values as *xferp, so tx_buf, rx_buf and len
2363 	 * are all identical (as well as most others)
2364 	 * so we just have to fix up len and the pointers.
2365 	 *
2366 	 * this also includes support for the depreciated
2367 	 * spi_message.is_dma_mapped interface
2368 	 */
2369 
2370 	/* the first transfer just needs the length modified, so we
2371 	 * run it outside the loop
2372 	 */
2373 	xfers[0].len = min_t(size_t, maxsize, xfer[0].len);
2374 
2375 	/* all the others need rx_buf/tx_buf also set */
2376 	for (i = 1, offset = maxsize; i < count; offset += maxsize, i++) {
2377 		/* update rx_buf, tx_buf and dma */
2378 		if (xfers[i].rx_buf)
2379 			xfers[i].rx_buf += offset;
2380 		if (xfers[i].rx_dma)
2381 			xfers[i].rx_dma += offset;
2382 		if (xfers[i].tx_buf)
2383 			xfers[i].tx_buf += offset;
2384 		if (xfers[i].tx_dma)
2385 			xfers[i].tx_dma += offset;
2386 
2387 		/* update length */
2388 		xfers[i].len = min(maxsize, xfers[i].len - offset);
2389 	}
2390 
2391 	/* we set up xferp to the last entry we have inserted,
2392 	 * so that we skip those already split transfers
2393 	 */
2394 	*xferp = &xfers[count - 1];
2395 
2396 	/* increment statistics counters */
2397 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2398 				       transfers_split_maxsize);
2399 	SPI_STATISTICS_INCREMENT_FIELD(&msg->spi->statistics,
2400 				       transfers_split_maxsize);
2401 
2402 	return 0;
2403 }
2404 
2405 /**
2406  * spi_split_tranfers_maxsize - split spi transfers into multiple transfers
2407  *                              when an individual transfer exceeds a
2408  *                              certain size
2409  * @master:    the @spi_master for this transfer
2410  * @msg:   the @spi_message to transform
2411  * @maxsize:  the maximum when to apply this
2412  * @gfp: GFP allocation flags
2413  *
2414  * Return: status of transformation
2415  */
2416 int spi_split_transfers_maxsize(struct spi_master *master,
2417 				struct spi_message *msg,
2418 				size_t maxsize,
2419 				gfp_t gfp)
2420 {
2421 	struct spi_transfer *xfer;
2422 	int ret;
2423 
2424 	/* iterate over the transfer_list,
2425 	 * but note that xfer is advanced to the last transfer inserted
2426 	 * to avoid checking sizes again unnecessarily (also xfer does
2427 	 * potentiall belong to a different list by the time the
2428 	 * replacement has happened
2429 	 */
2430 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
2431 		if (xfer->len > maxsize) {
2432 			ret = __spi_split_transfer_maxsize(
2433 				master, msg, &xfer, maxsize, gfp);
2434 			if (ret)
2435 				return ret;
2436 		}
2437 	}
2438 
2439 	return 0;
2440 }
2441 EXPORT_SYMBOL_GPL(spi_split_transfers_maxsize);
2442 
2443 /*-------------------------------------------------------------------------*/
2444 
2445 /* Core methods for SPI master protocol drivers.  Some of the
2446  * other core methods are currently defined as inline functions.
2447  */
2448 
2449 static int __spi_validate_bits_per_word(struct spi_master *master, u8 bits_per_word)
2450 {
2451 	if (master->bits_per_word_mask) {
2452 		/* Only 32 bits fit in the mask */
2453 		if (bits_per_word > 32)
2454 			return -EINVAL;
2455 		if (!(master->bits_per_word_mask &
2456 				SPI_BPW_MASK(bits_per_word)))
2457 			return -EINVAL;
2458 	}
2459 
2460 	return 0;
2461 }
2462 
2463 /**
2464  * spi_setup - setup SPI mode and clock rate
2465  * @spi: the device whose settings are being modified
2466  * Context: can sleep, and no requests are queued to the device
2467  *
2468  * SPI protocol drivers may need to update the transfer mode if the
2469  * device doesn't work with its default.  They may likewise need
2470  * to update clock rates or word sizes from initial values.  This function
2471  * changes those settings, and must be called from a context that can sleep.
2472  * Except for SPI_CS_HIGH, which takes effect immediately, the changes take
2473  * effect the next time the device is selected and data is transferred to
2474  * or from it.  When this function returns, the spi device is deselected.
2475  *
2476  * Note that this call will fail if the protocol driver specifies an option
2477  * that the underlying controller or its driver does not support.  For
2478  * example, not all hardware supports wire transfers using nine bit words,
2479  * LSB-first wire encoding, or active-high chipselects.
2480  *
2481  * Return: zero on success, else a negative error code.
2482  */
2483 int spi_setup(struct spi_device *spi)
2484 {
2485 	unsigned	bad_bits, ugly_bits;
2486 	int		status;
2487 
2488 	/* check mode to prevent that DUAL and QUAD set at the same time
2489 	 */
2490 	if (((spi->mode & SPI_TX_DUAL) && (spi->mode & SPI_TX_QUAD)) ||
2491 		((spi->mode & SPI_RX_DUAL) && (spi->mode & SPI_RX_QUAD))) {
2492 		dev_err(&spi->dev,
2493 		"setup: can not select dual and quad at the same time\n");
2494 		return -EINVAL;
2495 	}
2496 	/* if it is SPI_3WIRE mode, DUAL and QUAD should be forbidden
2497 	 */
2498 	if ((spi->mode & SPI_3WIRE) && (spi->mode &
2499 		(SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)))
2500 		return -EINVAL;
2501 	/* help drivers fail *cleanly* when they need options
2502 	 * that aren't supported with their current master
2503 	 */
2504 	bad_bits = spi->mode & ~spi->master->mode_bits;
2505 	ugly_bits = bad_bits &
2506 		    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD);
2507 	if (ugly_bits) {
2508 		dev_warn(&spi->dev,
2509 			 "setup: ignoring unsupported mode bits %x\n",
2510 			 ugly_bits);
2511 		spi->mode &= ~ugly_bits;
2512 		bad_bits &= ~ugly_bits;
2513 	}
2514 	if (bad_bits) {
2515 		dev_err(&spi->dev, "setup: unsupported mode bits %x\n",
2516 			bad_bits);
2517 		return -EINVAL;
2518 	}
2519 
2520 	if (!spi->bits_per_word)
2521 		spi->bits_per_word = 8;
2522 
2523 	status = __spi_validate_bits_per_word(spi->master, spi->bits_per_word);
2524 	if (status)
2525 		return status;
2526 
2527 	if (!spi->max_speed_hz)
2528 		spi->max_speed_hz = spi->master->max_speed_hz;
2529 
2530 	if (spi->master->setup)
2531 		status = spi->master->setup(spi);
2532 
2533 	spi_set_cs(spi, false);
2534 
2535 	dev_dbg(&spi->dev, "setup mode %d, %s%s%s%s%u bits/w, %u Hz max --> %d\n",
2536 			(int) (spi->mode & (SPI_CPOL | SPI_CPHA)),
2537 			(spi->mode & SPI_CS_HIGH) ? "cs_high, " : "",
2538 			(spi->mode & SPI_LSB_FIRST) ? "lsb, " : "",
2539 			(spi->mode & SPI_3WIRE) ? "3wire, " : "",
2540 			(spi->mode & SPI_LOOP) ? "loopback, " : "",
2541 			spi->bits_per_word, spi->max_speed_hz,
2542 			status);
2543 
2544 	return status;
2545 }
2546 EXPORT_SYMBOL_GPL(spi_setup);
2547 
2548 static int __spi_validate(struct spi_device *spi, struct spi_message *message)
2549 {
2550 	struct spi_master *master = spi->master;
2551 	struct spi_transfer *xfer;
2552 	int w_size;
2553 
2554 	if (list_empty(&message->transfers))
2555 		return -EINVAL;
2556 
2557 	/* Half-duplex links include original MicroWire, and ones with
2558 	 * only one data pin like SPI_3WIRE (switches direction) or where
2559 	 * either MOSI or MISO is missing.  They can also be caused by
2560 	 * software limitations.
2561 	 */
2562 	if ((master->flags & SPI_MASTER_HALF_DUPLEX)
2563 			|| (spi->mode & SPI_3WIRE)) {
2564 		unsigned flags = master->flags;
2565 
2566 		list_for_each_entry(xfer, &message->transfers, transfer_list) {
2567 			if (xfer->rx_buf && xfer->tx_buf)
2568 				return -EINVAL;
2569 			if ((flags & SPI_MASTER_NO_TX) && xfer->tx_buf)
2570 				return -EINVAL;
2571 			if ((flags & SPI_MASTER_NO_RX) && xfer->rx_buf)
2572 				return -EINVAL;
2573 		}
2574 	}
2575 
2576 	/**
2577 	 * Set transfer bits_per_word and max speed as spi device default if
2578 	 * it is not set for this transfer.
2579 	 * Set transfer tx_nbits and rx_nbits as single transfer default
2580 	 * (SPI_NBITS_SINGLE) if it is not set for this transfer.
2581 	 */
2582 	message->frame_length = 0;
2583 	list_for_each_entry(xfer, &message->transfers, transfer_list) {
2584 		message->frame_length += xfer->len;
2585 		if (!xfer->bits_per_word)
2586 			xfer->bits_per_word = spi->bits_per_word;
2587 
2588 		if (!xfer->speed_hz)
2589 			xfer->speed_hz = spi->max_speed_hz;
2590 		if (!xfer->speed_hz)
2591 			xfer->speed_hz = master->max_speed_hz;
2592 
2593 		if (master->max_speed_hz &&
2594 		    xfer->speed_hz > master->max_speed_hz)
2595 			xfer->speed_hz = master->max_speed_hz;
2596 
2597 		if (__spi_validate_bits_per_word(master, xfer->bits_per_word))
2598 			return -EINVAL;
2599 
2600 		/*
2601 		 * SPI transfer length should be multiple of SPI word size
2602 		 * where SPI word size should be power-of-two multiple
2603 		 */
2604 		if (xfer->bits_per_word <= 8)
2605 			w_size = 1;
2606 		else if (xfer->bits_per_word <= 16)
2607 			w_size = 2;
2608 		else
2609 			w_size = 4;
2610 
2611 		/* No partial transfers accepted */
2612 		if (xfer->len % w_size)
2613 			return -EINVAL;
2614 
2615 		if (xfer->speed_hz && master->min_speed_hz &&
2616 		    xfer->speed_hz < master->min_speed_hz)
2617 			return -EINVAL;
2618 
2619 		if (xfer->tx_buf && !xfer->tx_nbits)
2620 			xfer->tx_nbits = SPI_NBITS_SINGLE;
2621 		if (xfer->rx_buf && !xfer->rx_nbits)
2622 			xfer->rx_nbits = SPI_NBITS_SINGLE;
2623 		/* check transfer tx/rx_nbits:
2624 		 * 1. check the value matches one of single, dual and quad
2625 		 * 2. check tx/rx_nbits match the mode in spi_device
2626 		 */
2627 		if (xfer->tx_buf) {
2628 			if (xfer->tx_nbits != SPI_NBITS_SINGLE &&
2629 				xfer->tx_nbits != SPI_NBITS_DUAL &&
2630 				xfer->tx_nbits != SPI_NBITS_QUAD)
2631 				return -EINVAL;
2632 			if ((xfer->tx_nbits == SPI_NBITS_DUAL) &&
2633 				!(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2634 				return -EINVAL;
2635 			if ((xfer->tx_nbits == SPI_NBITS_QUAD) &&
2636 				!(spi->mode & SPI_TX_QUAD))
2637 				return -EINVAL;
2638 		}
2639 		/* check transfer rx_nbits */
2640 		if (xfer->rx_buf) {
2641 			if (xfer->rx_nbits != SPI_NBITS_SINGLE &&
2642 				xfer->rx_nbits != SPI_NBITS_DUAL &&
2643 				xfer->rx_nbits != SPI_NBITS_QUAD)
2644 				return -EINVAL;
2645 			if ((xfer->rx_nbits == SPI_NBITS_DUAL) &&
2646 				!(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2647 				return -EINVAL;
2648 			if ((xfer->rx_nbits == SPI_NBITS_QUAD) &&
2649 				!(spi->mode & SPI_RX_QUAD))
2650 				return -EINVAL;
2651 		}
2652 	}
2653 
2654 	message->status = -EINPROGRESS;
2655 
2656 	return 0;
2657 }
2658 
2659 static int __spi_async(struct spi_device *spi, struct spi_message *message)
2660 {
2661 	struct spi_master *master = spi->master;
2662 
2663 	message->spi = spi;
2664 
2665 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_async);
2666 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_async);
2667 
2668 	trace_spi_message_submit(message);
2669 
2670 	return master->transfer(spi, message);
2671 }
2672 
2673 /**
2674  * spi_async - asynchronous SPI transfer
2675  * @spi: device with which data will be exchanged
2676  * @message: describes the data transfers, including completion callback
2677  * Context: any (irqs may be blocked, etc)
2678  *
2679  * This call may be used in_irq and other contexts which can't sleep,
2680  * as well as from task contexts which can sleep.
2681  *
2682  * The completion callback is invoked in a context which can't sleep.
2683  * Before that invocation, the value of message->status is undefined.
2684  * When the callback is issued, message->status holds either zero (to
2685  * indicate complete success) or a negative error code.  After that
2686  * callback returns, the driver which issued the transfer request may
2687  * deallocate the associated memory; it's no longer in use by any SPI
2688  * core or controller driver code.
2689  *
2690  * Note that although all messages to a spi_device are handled in
2691  * FIFO order, messages may go to different devices in other orders.
2692  * Some device might be higher priority, or have various "hard" access
2693  * time requirements, for example.
2694  *
2695  * On detection of any fault during the transfer, processing of
2696  * the entire message is aborted, and the device is deselected.
2697  * Until returning from the associated message completion callback,
2698  * no other spi_message queued to that device will be processed.
2699  * (This rule applies equally to all the synchronous transfer calls,
2700  * which are wrappers around this core asynchronous primitive.)
2701  *
2702  * Return: zero on success, else a negative error code.
2703  */
2704 int spi_async(struct spi_device *spi, struct spi_message *message)
2705 {
2706 	struct spi_master *master = spi->master;
2707 	int ret;
2708 	unsigned long flags;
2709 
2710 	ret = __spi_validate(spi, message);
2711 	if (ret != 0)
2712 		return ret;
2713 
2714 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2715 
2716 	if (master->bus_lock_flag)
2717 		ret = -EBUSY;
2718 	else
2719 		ret = __spi_async(spi, message);
2720 
2721 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2722 
2723 	return ret;
2724 }
2725 EXPORT_SYMBOL_GPL(spi_async);
2726 
2727 /**
2728  * spi_async_locked - version of spi_async with exclusive bus usage
2729  * @spi: device with which data will be exchanged
2730  * @message: describes the data transfers, including completion callback
2731  * Context: any (irqs may be blocked, etc)
2732  *
2733  * This call may be used in_irq and other contexts which can't sleep,
2734  * as well as from task contexts which can sleep.
2735  *
2736  * The completion callback is invoked in a context which can't sleep.
2737  * Before that invocation, the value of message->status is undefined.
2738  * When the callback is issued, message->status holds either zero (to
2739  * indicate complete success) or a negative error code.  After that
2740  * callback returns, the driver which issued the transfer request may
2741  * deallocate the associated memory; it's no longer in use by any SPI
2742  * core or controller driver code.
2743  *
2744  * Note that although all messages to a spi_device are handled in
2745  * FIFO order, messages may go to different devices in other orders.
2746  * Some device might be higher priority, or have various "hard" access
2747  * time requirements, for example.
2748  *
2749  * On detection of any fault during the transfer, processing of
2750  * the entire message is aborted, and the device is deselected.
2751  * Until returning from the associated message completion callback,
2752  * no other spi_message queued to that device will be processed.
2753  * (This rule applies equally to all the synchronous transfer calls,
2754  * which are wrappers around this core asynchronous primitive.)
2755  *
2756  * Return: zero on success, else a negative error code.
2757  */
2758 int spi_async_locked(struct spi_device *spi, struct spi_message *message)
2759 {
2760 	struct spi_master *master = spi->master;
2761 	int ret;
2762 	unsigned long flags;
2763 
2764 	ret = __spi_validate(spi, message);
2765 	if (ret != 0)
2766 		return ret;
2767 
2768 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2769 
2770 	ret = __spi_async(spi, message);
2771 
2772 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2773 
2774 	return ret;
2775 
2776 }
2777 EXPORT_SYMBOL_GPL(spi_async_locked);
2778 
2779 
2780 int spi_flash_read(struct spi_device *spi,
2781 		   struct spi_flash_read_message *msg)
2782 
2783 {
2784 	struct spi_master *master = spi->master;
2785 	struct device *rx_dev = NULL;
2786 	int ret;
2787 
2788 	if ((msg->opcode_nbits == SPI_NBITS_DUAL ||
2789 	     msg->addr_nbits == SPI_NBITS_DUAL) &&
2790 	    !(spi->mode & (SPI_TX_DUAL | SPI_TX_QUAD)))
2791 		return -EINVAL;
2792 	if ((msg->opcode_nbits == SPI_NBITS_QUAD ||
2793 	     msg->addr_nbits == SPI_NBITS_QUAD) &&
2794 	    !(spi->mode & SPI_TX_QUAD))
2795 		return -EINVAL;
2796 	if (msg->data_nbits == SPI_NBITS_DUAL &&
2797 	    !(spi->mode & (SPI_RX_DUAL | SPI_RX_QUAD)))
2798 		return -EINVAL;
2799 	if (msg->data_nbits == SPI_NBITS_QUAD &&
2800 	    !(spi->mode &  SPI_RX_QUAD))
2801 		return -EINVAL;
2802 
2803 	if (master->auto_runtime_pm) {
2804 		ret = pm_runtime_get_sync(master->dev.parent);
2805 		if (ret < 0) {
2806 			dev_err(&master->dev, "Failed to power device: %d\n",
2807 				ret);
2808 			return ret;
2809 		}
2810 	}
2811 
2812 	mutex_lock(&master->bus_lock_mutex);
2813 	mutex_lock(&master->io_mutex);
2814 	if (master->dma_rx) {
2815 		rx_dev = master->dma_rx->device->dev;
2816 		ret = spi_map_buf(master, rx_dev, &msg->rx_sg,
2817 				  msg->buf, msg->len,
2818 				  DMA_FROM_DEVICE);
2819 		if (!ret)
2820 			msg->cur_msg_mapped = true;
2821 	}
2822 	ret = master->spi_flash_read(spi, msg);
2823 	if (msg->cur_msg_mapped)
2824 		spi_unmap_buf(master, rx_dev, &msg->rx_sg,
2825 			      DMA_FROM_DEVICE);
2826 	mutex_unlock(&master->io_mutex);
2827 	mutex_unlock(&master->bus_lock_mutex);
2828 
2829 	if (master->auto_runtime_pm)
2830 		pm_runtime_put(master->dev.parent);
2831 
2832 	return ret;
2833 }
2834 EXPORT_SYMBOL_GPL(spi_flash_read);
2835 
2836 /*-------------------------------------------------------------------------*/
2837 
2838 /* Utility methods for SPI master protocol drivers, layered on
2839  * top of the core.  Some other utility methods are defined as
2840  * inline functions.
2841  */
2842 
2843 static void spi_complete(void *arg)
2844 {
2845 	complete(arg);
2846 }
2847 
2848 static int __spi_sync(struct spi_device *spi, struct spi_message *message)
2849 {
2850 	DECLARE_COMPLETION_ONSTACK(done);
2851 	int status;
2852 	struct spi_master *master = spi->master;
2853 	unsigned long flags;
2854 
2855 	status = __spi_validate(spi, message);
2856 	if (status != 0)
2857 		return status;
2858 
2859 	message->complete = spi_complete;
2860 	message->context = &done;
2861 	message->spi = spi;
2862 
2863 	SPI_STATISTICS_INCREMENT_FIELD(&master->statistics, spi_sync);
2864 	SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics, spi_sync);
2865 
2866 	/* If we're not using the legacy transfer method then we will
2867 	 * try to transfer in the calling context so special case.
2868 	 * This code would be less tricky if we could remove the
2869 	 * support for driver implemented message queues.
2870 	 */
2871 	if (master->transfer == spi_queued_transfer) {
2872 		spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2873 
2874 		trace_spi_message_submit(message);
2875 
2876 		status = __spi_queued_transfer(spi, message, false);
2877 
2878 		spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2879 	} else {
2880 		status = spi_async_locked(spi, message);
2881 	}
2882 
2883 	if (status == 0) {
2884 		/* Push out the messages in the calling context if we
2885 		 * can.
2886 		 */
2887 		if (master->transfer == spi_queued_transfer) {
2888 			SPI_STATISTICS_INCREMENT_FIELD(&master->statistics,
2889 						       spi_sync_immediate);
2890 			SPI_STATISTICS_INCREMENT_FIELD(&spi->statistics,
2891 						       spi_sync_immediate);
2892 			__spi_pump_messages(master, false);
2893 		}
2894 
2895 		wait_for_completion(&done);
2896 		status = message->status;
2897 	}
2898 	message->context = NULL;
2899 	return status;
2900 }
2901 
2902 /**
2903  * spi_sync - blocking/synchronous SPI data transfers
2904  * @spi: device with which data will be exchanged
2905  * @message: describes the data transfers
2906  * Context: can sleep
2907  *
2908  * This call may only be used from a context that may sleep.  The sleep
2909  * is non-interruptible, and has no timeout.  Low-overhead controller
2910  * drivers may DMA directly into and out of the message buffers.
2911  *
2912  * Note that the SPI device's chip select is active during the message,
2913  * and then is normally disabled between messages.  Drivers for some
2914  * frequently-used devices may want to minimize costs of selecting a chip,
2915  * by leaving it selected in anticipation that the next message will go
2916  * to the same chip.  (That may increase power usage.)
2917  *
2918  * Also, the caller is guaranteeing that the memory associated with the
2919  * message will not be freed before this call returns.
2920  *
2921  * Return: zero on success, else a negative error code.
2922  */
2923 int spi_sync(struct spi_device *spi, struct spi_message *message)
2924 {
2925 	int ret;
2926 
2927 	mutex_lock(&spi->master->bus_lock_mutex);
2928 	ret = __spi_sync(spi, message);
2929 	mutex_unlock(&spi->master->bus_lock_mutex);
2930 
2931 	return ret;
2932 }
2933 EXPORT_SYMBOL_GPL(spi_sync);
2934 
2935 /**
2936  * spi_sync_locked - version of spi_sync with exclusive bus usage
2937  * @spi: device with which data will be exchanged
2938  * @message: describes the data transfers
2939  * Context: can sleep
2940  *
2941  * This call may only be used from a context that may sleep.  The sleep
2942  * is non-interruptible, and has no timeout.  Low-overhead controller
2943  * drivers may DMA directly into and out of the message buffers.
2944  *
2945  * This call should be used by drivers that require exclusive access to the
2946  * SPI bus. It has to be preceded by a spi_bus_lock call. The SPI bus must
2947  * be released by a spi_bus_unlock call when the exclusive access is over.
2948  *
2949  * Return: zero on success, else a negative error code.
2950  */
2951 int spi_sync_locked(struct spi_device *spi, struct spi_message *message)
2952 {
2953 	return __spi_sync(spi, message);
2954 }
2955 EXPORT_SYMBOL_GPL(spi_sync_locked);
2956 
2957 /**
2958  * spi_bus_lock - obtain a lock for exclusive SPI bus usage
2959  * @master: SPI bus master that should be locked for exclusive bus access
2960  * Context: can sleep
2961  *
2962  * This call may only be used from a context that may sleep.  The sleep
2963  * is non-interruptible, and has no timeout.
2964  *
2965  * This call should be used by drivers that require exclusive access to the
2966  * SPI bus. The SPI bus must be released by a spi_bus_unlock call when the
2967  * exclusive access is over. Data transfer must be done by spi_sync_locked
2968  * and spi_async_locked calls when the SPI bus lock is held.
2969  *
2970  * Return: always zero.
2971  */
2972 int spi_bus_lock(struct spi_master *master)
2973 {
2974 	unsigned long flags;
2975 
2976 	mutex_lock(&master->bus_lock_mutex);
2977 
2978 	spin_lock_irqsave(&master->bus_lock_spinlock, flags);
2979 	master->bus_lock_flag = 1;
2980 	spin_unlock_irqrestore(&master->bus_lock_spinlock, flags);
2981 
2982 	/* mutex remains locked until spi_bus_unlock is called */
2983 
2984 	return 0;
2985 }
2986 EXPORT_SYMBOL_GPL(spi_bus_lock);
2987 
2988 /**
2989  * spi_bus_unlock - release the lock for exclusive SPI bus usage
2990  * @master: SPI bus master that was locked for exclusive bus access
2991  * Context: can sleep
2992  *
2993  * This call may only be used from a context that may sleep.  The sleep
2994  * is non-interruptible, and has no timeout.
2995  *
2996  * This call releases an SPI bus lock previously obtained by an spi_bus_lock
2997  * call.
2998  *
2999  * Return: always zero.
3000  */
3001 int spi_bus_unlock(struct spi_master *master)
3002 {
3003 	master->bus_lock_flag = 0;
3004 
3005 	mutex_unlock(&master->bus_lock_mutex);
3006 
3007 	return 0;
3008 }
3009 EXPORT_SYMBOL_GPL(spi_bus_unlock);
3010 
3011 /* portable code must never pass more than 32 bytes */
3012 #define	SPI_BUFSIZ	max(32, SMP_CACHE_BYTES)
3013 
3014 static u8	*buf;
3015 
3016 /**
3017  * spi_write_then_read - SPI synchronous write followed by read
3018  * @spi: device with which data will be exchanged
3019  * @txbuf: data to be written (need not be dma-safe)
3020  * @n_tx: size of txbuf, in bytes
3021  * @rxbuf: buffer into which data will be read (need not be dma-safe)
3022  * @n_rx: size of rxbuf, in bytes
3023  * Context: can sleep
3024  *
3025  * This performs a half duplex MicroWire style transaction with the
3026  * device, sending txbuf and then reading rxbuf.  The return value
3027  * is zero for success, else a negative errno status code.
3028  * This call may only be used from a context that may sleep.
3029  *
3030  * Parameters to this routine are always copied using a small buffer;
3031  * portable code should never use this for more than 32 bytes.
3032  * Performance-sensitive or bulk transfer code should instead use
3033  * spi_{async,sync}() calls with dma-safe buffers.
3034  *
3035  * Return: zero on success, else a negative error code.
3036  */
3037 int spi_write_then_read(struct spi_device *spi,
3038 		const void *txbuf, unsigned n_tx,
3039 		void *rxbuf, unsigned n_rx)
3040 {
3041 	static DEFINE_MUTEX(lock);
3042 
3043 	int			status;
3044 	struct spi_message	message;
3045 	struct spi_transfer	x[2];
3046 	u8			*local_buf;
3047 
3048 	/* Use preallocated DMA-safe buffer if we can.  We can't avoid
3049 	 * copying here, (as a pure convenience thing), but we can
3050 	 * keep heap costs out of the hot path unless someone else is
3051 	 * using the pre-allocated buffer or the transfer is too large.
3052 	 */
3053 	if ((n_tx + n_rx) > SPI_BUFSIZ || !mutex_trylock(&lock)) {
3054 		local_buf = kmalloc(max((unsigned)SPI_BUFSIZ, n_tx + n_rx),
3055 				    GFP_KERNEL | GFP_DMA);
3056 		if (!local_buf)
3057 			return -ENOMEM;
3058 	} else {
3059 		local_buf = buf;
3060 	}
3061 
3062 	spi_message_init(&message);
3063 	memset(x, 0, sizeof(x));
3064 	if (n_tx) {
3065 		x[0].len = n_tx;
3066 		spi_message_add_tail(&x[0], &message);
3067 	}
3068 	if (n_rx) {
3069 		x[1].len = n_rx;
3070 		spi_message_add_tail(&x[1], &message);
3071 	}
3072 
3073 	memcpy(local_buf, txbuf, n_tx);
3074 	x[0].tx_buf = local_buf;
3075 	x[1].rx_buf = local_buf + n_tx;
3076 
3077 	/* do the i/o */
3078 	status = spi_sync(spi, &message);
3079 	if (status == 0)
3080 		memcpy(rxbuf, x[1].rx_buf, n_rx);
3081 
3082 	if (x[0].tx_buf == buf)
3083 		mutex_unlock(&lock);
3084 	else
3085 		kfree(local_buf);
3086 
3087 	return status;
3088 }
3089 EXPORT_SYMBOL_GPL(spi_write_then_read);
3090 
3091 /*-------------------------------------------------------------------------*/
3092 
3093 #if IS_ENABLED(CONFIG_OF_DYNAMIC)
3094 static int __spi_of_device_match(struct device *dev, void *data)
3095 {
3096 	return dev->of_node == data;
3097 }
3098 
3099 /* must call put_device() when done with returned spi_device device */
3100 static struct spi_device *of_find_spi_device_by_node(struct device_node *node)
3101 {
3102 	struct device *dev = bus_find_device(&spi_bus_type, NULL, node,
3103 						__spi_of_device_match);
3104 	return dev ? to_spi_device(dev) : NULL;
3105 }
3106 
3107 static int __spi_of_master_match(struct device *dev, const void *data)
3108 {
3109 	return dev->of_node == data;
3110 }
3111 
3112 /* the spi masters are not using spi_bus, so we find it with another way */
3113 static struct spi_master *of_find_spi_master_by_node(struct device_node *node)
3114 {
3115 	struct device *dev;
3116 
3117 	dev = class_find_device(&spi_master_class, NULL, node,
3118 				__spi_of_master_match);
3119 	if (!dev)
3120 		return NULL;
3121 
3122 	/* reference got in class_find_device */
3123 	return container_of(dev, struct spi_master, dev);
3124 }
3125 
3126 static int of_spi_notify(struct notifier_block *nb, unsigned long action,
3127 			 void *arg)
3128 {
3129 	struct of_reconfig_data *rd = arg;
3130 	struct spi_master *master;
3131 	struct spi_device *spi;
3132 
3133 	switch (of_reconfig_get_state_change(action, arg)) {
3134 	case OF_RECONFIG_CHANGE_ADD:
3135 		master = of_find_spi_master_by_node(rd->dn->parent);
3136 		if (master == NULL)
3137 			return NOTIFY_OK;	/* not for us */
3138 
3139 		if (of_node_test_and_set_flag(rd->dn, OF_POPULATED)) {
3140 			put_device(&master->dev);
3141 			return NOTIFY_OK;
3142 		}
3143 
3144 		spi = of_register_spi_device(master, rd->dn);
3145 		put_device(&master->dev);
3146 
3147 		if (IS_ERR(spi)) {
3148 			pr_err("%s: failed to create for '%s'\n",
3149 					__func__, rd->dn->full_name);
3150 			of_node_clear_flag(rd->dn, OF_POPULATED);
3151 			return notifier_from_errno(PTR_ERR(spi));
3152 		}
3153 		break;
3154 
3155 	case OF_RECONFIG_CHANGE_REMOVE:
3156 		/* already depopulated? */
3157 		if (!of_node_check_flag(rd->dn, OF_POPULATED))
3158 			return NOTIFY_OK;
3159 
3160 		/* find our device by node */
3161 		spi = of_find_spi_device_by_node(rd->dn);
3162 		if (spi == NULL)
3163 			return NOTIFY_OK;	/* no? not meant for us */
3164 
3165 		/* unregister takes one ref away */
3166 		spi_unregister_device(spi);
3167 
3168 		/* and put the reference of the find */
3169 		put_device(&spi->dev);
3170 		break;
3171 	}
3172 
3173 	return NOTIFY_OK;
3174 }
3175 
3176 static struct notifier_block spi_of_notifier = {
3177 	.notifier_call = of_spi_notify,
3178 };
3179 #else /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3180 extern struct notifier_block spi_of_notifier;
3181 #endif /* IS_ENABLED(CONFIG_OF_DYNAMIC) */
3182 
3183 #if IS_ENABLED(CONFIG_ACPI)
3184 static int spi_acpi_master_match(struct device *dev, const void *data)
3185 {
3186 	return ACPI_COMPANION(dev->parent) == data;
3187 }
3188 
3189 static int spi_acpi_device_match(struct device *dev, void *data)
3190 {
3191 	return ACPI_COMPANION(dev) == data;
3192 }
3193 
3194 static struct spi_master *acpi_spi_find_master_by_adev(struct acpi_device *adev)
3195 {
3196 	struct device *dev;
3197 
3198 	dev = class_find_device(&spi_master_class, NULL, adev,
3199 				spi_acpi_master_match);
3200 	if (!dev)
3201 		return NULL;
3202 
3203 	return container_of(dev, struct spi_master, dev);
3204 }
3205 
3206 static struct spi_device *acpi_spi_find_device_by_adev(struct acpi_device *adev)
3207 {
3208 	struct device *dev;
3209 
3210 	dev = bus_find_device(&spi_bus_type, NULL, adev, spi_acpi_device_match);
3211 
3212 	return dev ? to_spi_device(dev) : NULL;
3213 }
3214 
3215 static int acpi_spi_notify(struct notifier_block *nb, unsigned long value,
3216 			   void *arg)
3217 {
3218 	struct acpi_device *adev = arg;
3219 	struct spi_master *master;
3220 	struct spi_device *spi;
3221 
3222 	switch (value) {
3223 	case ACPI_RECONFIG_DEVICE_ADD:
3224 		master = acpi_spi_find_master_by_adev(adev->parent);
3225 		if (!master)
3226 			break;
3227 
3228 		acpi_register_spi_device(master, adev);
3229 		put_device(&master->dev);
3230 		break;
3231 	case ACPI_RECONFIG_DEVICE_REMOVE:
3232 		if (!acpi_device_enumerated(adev))
3233 			break;
3234 
3235 		spi = acpi_spi_find_device_by_adev(adev);
3236 		if (!spi)
3237 			break;
3238 
3239 		spi_unregister_device(spi);
3240 		put_device(&spi->dev);
3241 		break;
3242 	}
3243 
3244 	return NOTIFY_OK;
3245 }
3246 
3247 static struct notifier_block spi_acpi_notifier = {
3248 	.notifier_call = acpi_spi_notify,
3249 };
3250 #else
3251 extern struct notifier_block spi_acpi_notifier;
3252 #endif
3253 
3254 static int __init spi_init(void)
3255 {
3256 	int	status;
3257 
3258 	buf = kmalloc(SPI_BUFSIZ, GFP_KERNEL);
3259 	if (!buf) {
3260 		status = -ENOMEM;
3261 		goto err0;
3262 	}
3263 
3264 	status = bus_register(&spi_bus_type);
3265 	if (status < 0)
3266 		goto err1;
3267 
3268 	status = class_register(&spi_master_class);
3269 	if (status < 0)
3270 		goto err2;
3271 
3272 	if (IS_ENABLED(CONFIG_OF_DYNAMIC))
3273 		WARN_ON(of_reconfig_notifier_register(&spi_of_notifier));
3274 	if (IS_ENABLED(CONFIG_ACPI))
3275 		WARN_ON(acpi_reconfig_notifier_register(&spi_acpi_notifier));
3276 
3277 	return 0;
3278 
3279 err2:
3280 	bus_unregister(&spi_bus_type);
3281 err1:
3282 	kfree(buf);
3283 	buf = NULL;
3284 err0:
3285 	return status;
3286 }
3287 
3288 /* board_info is normally registered in arch_initcall(),
3289  * but even essential drivers wait till later
3290  *
3291  * REVISIT only boardinfo really needs static linking. the rest (device and
3292  * driver registration) _could_ be dynamically linked (modular) ... costs
3293  * include needing to have boardinfo data structures be much more public.
3294  */
3295 postcore_initcall(spi_init);
3296 
3297