xref: /linux/drivers/scsi/scsi_lib.c (revision 307797159ac25fe5a2048bf5c6a5718298edca57)
1 /*
2  * Copyright (C) 1999 Eric Youngdale
3  * Copyright (C) 2014 Christoph Hellwig
4  *
5  *  SCSI queueing library.
6  *      Initial versions: Eric Youngdale (eric@andante.org).
7  *                        Based upon conversations with large numbers
8  *                        of people at Linux Expo.
9  */
10 
11 #include <linux/bio.h>
12 #include <linux/bitops.h>
13 #include <linux/blkdev.h>
14 #include <linux/completion.h>
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/pci.h>
19 #include <linux/delay.h>
20 #include <linux/hardirq.h>
21 #include <linux/scatterlist.h>
22 #include <linux/blk-mq.h>
23 #include <linux/ratelimit.h>
24 #include <asm/unaligned.h>
25 
26 #include <scsi/scsi.h>
27 #include <scsi/scsi_cmnd.h>
28 #include <scsi/scsi_dbg.h>
29 #include <scsi/scsi_device.h>
30 #include <scsi/scsi_driver.h>
31 #include <scsi/scsi_eh.h>
32 #include <scsi/scsi_host.h>
33 #include <scsi/scsi_transport.h> /* __scsi_init_queue() */
34 #include <scsi/scsi_dh.h>
35 
36 #include <trace/events/scsi.h>
37 
38 #include "scsi_debugfs.h"
39 #include "scsi_priv.h"
40 #include "scsi_logging.h"
41 
42 static struct kmem_cache *scsi_sdb_cache;
43 static struct kmem_cache *scsi_sense_cache;
44 static struct kmem_cache *scsi_sense_isadma_cache;
45 static DEFINE_MUTEX(scsi_sense_cache_mutex);
46 
47 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd);
48 
49 static inline struct kmem_cache *
50 scsi_select_sense_cache(bool unchecked_isa_dma)
51 {
52 	return unchecked_isa_dma ? scsi_sense_isadma_cache : scsi_sense_cache;
53 }
54 
55 static void scsi_free_sense_buffer(bool unchecked_isa_dma,
56 				   unsigned char *sense_buffer)
57 {
58 	kmem_cache_free(scsi_select_sense_cache(unchecked_isa_dma),
59 			sense_buffer);
60 }
61 
62 static unsigned char *scsi_alloc_sense_buffer(bool unchecked_isa_dma,
63 	gfp_t gfp_mask, int numa_node)
64 {
65 	return kmem_cache_alloc_node(scsi_select_sense_cache(unchecked_isa_dma),
66 				     gfp_mask, numa_node);
67 }
68 
69 int scsi_init_sense_cache(struct Scsi_Host *shost)
70 {
71 	struct kmem_cache *cache;
72 	int ret = 0;
73 
74 	cache = scsi_select_sense_cache(shost->unchecked_isa_dma);
75 	if (cache)
76 		return 0;
77 
78 	mutex_lock(&scsi_sense_cache_mutex);
79 	if (shost->unchecked_isa_dma) {
80 		scsi_sense_isadma_cache =
81 			kmem_cache_create("scsi_sense_cache(DMA)",
82 				SCSI_SENSE_BUFFERSIZE, 0,
83 				SLAB_HWCACHE_ALIGN | SLAB_CACHE_DMA, NULL);
84 		if (!scsi_sense_isadma_cache)
85 			ret = -ENOMEM;
86 	} else {
87 		scsi_sense_cache =
88 			kmem_cache_create_usercopy("scsi_sense_cache",
89 				SCSI_SENSE_BUFFERSIZE, 0, SLAB_HWCACHE_ALIGN,
90 				0, SCSI_SENSE_BUFFERSIZE, NULL);
91 		if (!scsi_sense_cache)
92 			ret = -ENOMEM;
93 	}
94 
95 	mutex_unlock(&scsi_sense_cache_mutex);
96 	return ret;
97 }
98 
99 /*
100  * When to reinvoke queueing after a resource shortage. It's 3 msecs to
101  * not change behaviour from the previous unplug mechanism, experimentation
102  * may prove this needs changing.
103  */
104 #define SCSI_QUEUE_DELAY	3
105 
106 static void
107 scsi_set_blocked(struct scsi_cmnd *cmd, int reason)
108 {
109 	struct Scsi_Host *host = cmd->device->host;
110 	struct scsi_device *device = cmd->device;
111 	struct scsi_target *starget = scsi_target(device);
112 
113 	/*
114 	 * Set the appropriate busy bit for the device/host.
115 	 *
116 	 * If the host/device isn't busy, assume that something actually
117 	 * completed, and that we should be able to queue a command now.
118 	 *
119 	 * Note that the prior mid-layer assumption that any host could
120 	 * always queue at least one command is now broken.  The mid-layer
121 	 * will implement a user specifiable stall (see
122 	 * scsi_host.max_host_blocked and scsi_device.max_device_blocked)
123 	 * if a command is requeued with no other commands outstanding
124 	 * either for the device or for the host.
125 	 */
126 	switch (reason) {
127 	case SCSI_MLQUEUE_HOST_BUSY:
128 		atomic_set(&host->host_blocked, host->max_host_blocked);
129 		break;
130 	case SCSI_MLQUEUE_DEVICE_BUSY:
131 	case SCSI_MLQUEUE_EH_RETRY:
132 		atomic_set(&device->device_blocked,
133 			   device->max_device_blocked);
134 		break;
135 	case SCSI_MLQUEUE_TARGET_BUSY:
136 		atomic_set(&starget->target_blocked,
137 			   starget->max_target_blocked);
138 		break;
139 	}
140 }
141 
142 static void scsi_mq_requeue_cmd(struct scsi_cmnd *cmd)
143 {
144 	struct scsi_device *sdev = cmd->device;
145 
146 	if (cmd->request->rq_flags & RQF_DONTPREP) {
147 		cmd->request->rq_flags &= ~RQF_DONTPREP;
148 		scsi_mq_uninit_cmd(cmd);
149 	} else {
150 		WARN_ON_ONCE(true);
151 	}
152 	blk_mq_requeue_request(cmd->request, true);
153 	put_device(&sdev->sdev_gendev);
154 }
155 
156 /**
157  * __scsi_queue_insert - private queue insertion
158  * @cmd: The SCSI command being requeued
159  * @reason:  The reason for the requeue
160  * @unbusy: Whether the queue should be unbusied
161  *
162  * This is a private queue insertion.  The public interface
163  * scsi_queue_insert() always assumes the queue should be unbusied
164  * because it's always called before the completion.  This function is
165  * for a requeue after completion, which should only occur in this
166  * file.
167  */
168 static void __scsi_queue_insert(struct scsi_cmnd *cmd, int reason, bool unbusy)
169 {
170 	struct scsi_device *device = cmd->device;
171 	struct request_queue *q = device->request_queue;
172 	unsigned long flags;
173 
174 	SCSI_LOG_MLQUEUE(1, scmd_printk(KERN_INFO, cmd,
175 		"Inserting command %p into mlqueue\n", cmd));
176 
177 	scsi_set_blocked(cmd, reason);
178 
179 	/*
180 	 * Decrement the counters, since these commands are no longer
181 	 * active on the host/device.
182 	 */
183 	if (unbusy)
184 		scsi_device_unbusy(device);
185 
186 	/*
187 	 * Requeue this command.  It will go before all other commands
188 	 * that are already in the queue. Schedule requeue work under
189 	 * lock such that the kblockd_schedule_work() call happens
190 	 * before blk_cleanup_queue() finishes.
191 	 */
192 	cmd->result = 0;
193 	if (q->mq_ops) {
194 		/*
195 		 * Before a SCSI command is dispatched,
196 		 * get_device(&sdev->sdev_gendev) is called and the host,
197 		 * target and device busy counters are increased. Since
198 		 * requeuing a request causes these actions to be repeated and
199 		 * since scsi_device_unbusy() has already been called,
200 		 * put_device(&device->sdev_gendev) must still be called. Call
201 		 * put_device() after blk_mq_requeue_request() to avoid that
202 		 * removal of the SCSI device can start before requeueing has
203 		 * happened.
204 		 */
205 		blk_mq_requeue_request(cmd->request, true);
206 		put_device(&device->sdev_gendev);
207 		return;
208 	}
209 	spin_lock_irqsave(q->queue_lock, flags);
210 	blk_requeue_request(q, cmd->request);
211 	kblockd_schedule_work(&device->requeue_work);
212 	spin_unlock_irqrestore(q->queue_lock, flags);
213 }
214 
215 /*
216  * Function:    scsi_queue_insert()
217  *
218  * Purpose:     Insert a command in the midlevel queue.
219  *
220  * Arguments:   cmd    - command that we are adding to queue.
221  *              reason - why we are inserting command to queue.
222  *
223  * Lock status: Assumed that lock is not held upon entry.
224  *
225  * Returns:     Nothing.
226  *
227  * Notes:       We do this for one of two cases.  Either the host is busy
228  *              and it cannot accept any more commands for the time being,
229  *              or the device returned QUEUE_FULL and can accept no more
230  *              commands.
231  * Notes:       This could be called either from an interrupt context or a
232  *              normal process context.
233  */
234 void scsi_queue_insert(struct scsi_cmnd *cmd, int reason)
235 {
236 	__scsi_queue_insert(cmd, reason, true);
237 }
238 
239 
240 /**
241  * __scsi_execute - insert request and wait for the result
242  * @sdev:	scsi device
243  * @cmd:	scsi command
244  * @data_direction: data direction
245  * @buffer:	data buffer
246  * @bufflen:	len of buffer
247  * @sense:	optional sense buffer
248  * @sshdr:	optional decoded sense header
249  * @timeout:	request timeout in seconds
250  * @retries:	number of times to retry request
251  * @flags:	flags for ->cmd_flags
252  * @rq_flags:	flags for ->rq_flags
253  * @resid:	optional residual length
254  *
255  * Returns the scsi_cmnd result field if a command was executed, or a negative
256  * Linux error code if we didn't get that far.
257  */
258 int __scsi_execute(struct scsi_device *sdev, const unsigned char *cmd,
259 		 int data_direction, void *buffer, unsigned bufflen,
260 		 unsigned char *sense, struct scsi_sense_hdr *sshdr,
261 		 int timeout, int retries, u64 flags, req_flags_t rq_flags,
262 		 int *resid)
263 {
264 	struct request *req;
265 	struct scsi_request *rq;
266 	int ret = DRIVER_ERROR << 24;
267 
268 	req = blk_get_request(sdev->request_queue,
269 			data_direction == DMA_TO_DEVICE ?
270 			REQ_OP_SCSI_OUT : REQ_OP_SCSI_IN, BLK_MQ_REQ_PREEMPT);
271 	if (IS_ERR(req))
272 		return ret;
273 	rq = scsi_req(req);
274 
275 	if (bufflen &&	blk_rq_map_kern(sdev->request_queue, req,
276 					buffer, bufflen, GFP_NOIO))
277 		goto out;
278 
279 	rq->cmd_len = COMMAND_SIZE(cmd[0]);
280 	memcpy(rq->cmd, cmd, rq->cmd_len);
281 	rq->retries = retries;
282 	req->timeout = timeout;
283 	req->cmd_flags |= flags;
284 	req->rq_flags |= rq_flags | RQF_QUIET;
285 
286 	/*
287 	 * head injection *required* here otherwise quiesce won't work
288 	 */
289 	blk_execute_rq(req->q, NULL, req, 1);
290 
291 	/*
292 	 * Some devices (USB mass-storage in particular) may transfer
293 	 * garbage data together with a residue indicating that the data
294 	 * is invalid.  Prevent the garbage from being misinterpreted
295 	 * and prevent security leaks by zeroing out the excess data.
296 	 */
297 	if (unlikely(rq->resid_len > 0 && rq->resid_len <= bufflen))
298 		memset(buffer + (bufflen - rq->resid_len), 0, rq->resid_len);
299 
300 	if (resid)
301 		*resid = rq->resid_len;
302 	if (sense && rq->sense_len)
303 		memcpy(sense, rq->sense, SCSI_SENSE_BUFFERSIZE);
304 	if (sshdr)
305 		scsi_normalize_sense(rq->sense, rq->sense_len, sshdr);
306 	ret = rq->result;
307  out:
308 	blk_put_request(req);
309 
310 	return ret;
311 }
312 EXPORT_SYMBOL(__scsi_execute);
313 
314 /*
315  * Function:    scsi_init_cmd_errh()
316  *
317  * Purpose:     Initialize cmd fields related to error handling.
318  *
319  * Arguments:   cmd	- command that is ready to be queued.
320  *
321  * Notes:       This function has the job of initializing a number of
322  *              fields related to error handling.   Typically this will
323  *              be called once for each command, as required.
324  */
325 static void scsi_init_cmd_errh(struct scsi_cmnd *cmd)
326 {
327 	cmd->serial_number = 0;
328 	scsi_set_resid(cmd, 0);
329 	memset(cmd->sense_buffer, 0, SCSI_SENSE_BUFFERSIZE);
330 	if (cmd->cmd_len == 0)
331 		cmd->cmd_len = scsi_command_size(cmd->cmnd);
332 }
333 
334 /*
335  * Decrement the host_busy counter and wake up the error handler if necessary.
336  * Avoid as follows that the error handler is not woken up if shost->host_busy
337  * == shost->host_failed: use call_rcu() in scsi_eh_scmd_add() in combination
338  * with an RCU read lock in this function to ensure that this function in its
339  * entirety either finishes before scsi_eh_scmd_add() increases the
340  * host_failed counter or that it notices the shost state change made by
341  * scsi_eh_scmd_add().
342  */
343 static void scsi_dec_host_busy(struct Scsi_Host *shost)
344 {
345 	unsigned long flags;
346 
347 	rcu_read_lock();
348 	if (!shost->use_blk_mq)
349 		atomic_dec(&shost->host_busy);
350 	if (unlikely(scsi_host_in_recovery(shost))) {
351 		spin_lock_irqsave(shost->host_lock, flags);
352 		if (shost->host_failed || shost->host_eh_scheduled)
353 			scsi_eh_wakeup(shost);
354 		spin_unlock_irqrestore(shost->host_lock, flags);
355 	}
356 	rcu_read_unlock();
357 }
358 
359 void scsi_device_unbusy(struct scsi_device *sdev)
360 {
361 	struct Scsi_Host *shost = sdev->host;
362 	struct scsi_target *starget = scsi_target(sdev);
363 
364 	scsi_dec_host_busy(shost);
365 
366 	if (starget->can_queue > 0)
367 		atomic_dec(&starget->target_busy);
368 
369 	atomic_dec(&sdev->device_busy);
370 }
371 
372 static void scsi_kick_queue(struct request_queue *q)
373 {
374 	if (q->mq_ops)
375 		blk_mq_run_hw_queues(q, false);
376 	else
377 		blk_run_queue(q);
378 }
379 
380 /*
381  * Called for single_lun devices on IO completion. Clear starget_sdev_user,
382  * and call blk_run_queue for all the scsi_devices on the target -
383  * including current_sdev first.
384  *
385  * Called with *no* scsi locks held.
386  */
387 static void scsi_single_lun_run(struct scsi_device *current_sdev)
388 {
389 	struct Scsi_Host *shost = current_sdev->host;
390 	struct scsi_device *sdev, *tmp;
391 	struct scsi_target *starget = scsi_target(current_sdev);
392 	unsigned long flags;
393 
394 	spin_lock_irqsave(shost->host_lock, flags);
395 	starget->starget_sdev_user = NULL;
396 	spin_unlock_irqrestore(shost->host_lock, flags);
397 
398 	/*
399 	 * Call blk_run_queue for all LUNs on the target, starting with
400 	 * current_sdev. We race with others (to set starget_sdev_user),
401 	 * but in most cases, we will be first. Ideally, each LU on the
402 	 * target would get some limited time or requests on the target.
403 	 */
404 	scsi_kick_queue(current_sdev->request_queue);
405 
406 	spin_lock_irqsave(shost->host_lock, flags);
407 	if (starget->starget_sdev_user)
408 		goto out;
409 	list_for_each_entry_safe(sdev, tmp, &starget->devices,
410 			same_target_siblings) {
411 		if (sdev == current_sdev)
412 			continue;
413 		if (scsi_device_get(sdev))
414 			continue;
415 
416 		spin_unlock_irqrestore(shost->host_lock, flags);
417 		scsi_kick_queue(sdev->request_queue);
418 		spin_lock_irqsave(shost->host_lock, flags);
419 
420 		scsi_device_put(sdev);
421 	}
422  out:
423 	spin_unlock_irqrestore(shost->host_lock, flags);
424 }
425 
426 static inline bool scsi_device_is_busy(struct scsi_device *sdev)
427 {
428 	if (atomic_read(&sdev->device_busy) >= sdev->queue_depth)
429 		return true;
430 	if (atomic_read(&sdev->device_blocked) > 0)
431 		return true;
432 	return false;
433 }
434 
435 static inline bool scsi_target_is_busy(struct scsi_target *starget)
436 {
437 	if (starget->can_queue > 0) {
438 		if (atomic_read(&starget->target_busy) >= starget->can_queue)
439 			return true;
440 		if (atomic_read(&starget->target_blocked) > 0)
441 			return true;
442 	}
443 	return false;
444 }
445 
446 static inline bool scsi_host_is_busy(struct Scsi_Host *shost)
447 {
448 	/*
449 	 * blk-mq can handle host queue busy efficiently via host-wide driver
450 	 * tag allocation
451 	 */
452 
453 	if (!shost->use_blk_mq && shost->can_queue > 0 &&
454 	    atomic_read(&shost->host_busy) >= shost->can_queue)
455 		return true;
456 	if (atomic_read(&shost->host_blocked) > 0)
457 		return true;
458 	if (shost->host_self_blocked)
459 		return true;
460 	return false;
461 }
462 
463 static void scsi_starved_list_run(struct Scsi_Host *shost)
464 {
465 	LIST_HEAD(starved_list);
466 	struct scsi_device *sdev;
467 	unsigned long flags;
468 
469 	spin_lock_irqsave(shost->host_lock, flags);
470 	list_splice_init(&shost->starved_list, &starved_list);
471 
472 	while (!list_empty(&starved_list)) {
473 		struct request_queue *slq;
474 
475 		/*
476 		 * As long as shost is accepting commands and we have
477 		 * starved queues, call blk_run_queue. scsi_request_fn
478 		 * drops the queue_lock and can add us back to the
479 		 * starved_list.
480 		 *
481 		 * host_lock protects the starved_list and starved_entry.
482 		 * scsi_request_fn must get the host_lock before checking
483 		 * or modifying starved_list or starved_entry.
484 		 */
485 		if (scsi_host_is_busy(shost))
486 			break;
487 
488 		sdev = list_entry(starved_list.next,
489 				  struct scsi_device, starved_entry);
490 		list_del_init(&sdev->starved_entry);
491 		if (scsi_target_is_busy(scsi_target(sdev))) {
492 			list_move_tail(&sdev->starved_entry,
493 				       &shost->starved_list);
494 			continue;
495 		}
496 
497 		/*
498 		 * Once we drop the host lock, a racing scsi_remove_device()
499 		 * call may remove the sdev from the starved list and destroy
500 		 * it and the queue.  Mitigate by taking a reference to the
501 		 * queue and never touching the sdev again after we drop the
502 		 * host lock.  Note: if __scsi_remove_device() invokes
503 		 * blk_cleanup_queue() before the queue is run from this
504 		 * function then blk_run_queue() will return immediately since
505 		 * blk_cleanup_queue() marks the queue with QUEUE_FLAG_DYING.
506 		 */
507 		slq = sdev->request_queue;
508 		if (!blk_get_queue(slq))
509 			continue;
510 		spin_unlock_irqrestore(shost->host_lock, flags);
511 
512 		scsi_kick_queue(slq);
513 		blk_put_queue(slq);
514 
515 		spin_lock_irqsave(shost->host_lock, flags);
516 	}
517 	/* put any unprocessed entries back */
518 	list_splice(&starved_list, &shost->starved_list);
519 	spin_unlock_irqrestore(shost->host_lock, flags);
520 }
521 
522 /*
523  * Function:   scsi_run_queue()
524  *
525  * Purpose:    Select a proper request queue to serve next
526  *
527  * Arguments:  q       - last request's queue
528  *
529  * Returns:     Nothing
530  *
531  * Notes:      The previous command was completely finished, start
532  *             a new one if possible.
533  */
534 static void scsi_run_queue(struct request_queue *q)
535 {
536 	struct scsi_device *sdev = q->queuedata;
537 
538 	if (scsi_target(sdev)->single_lun)
539 		scsi_single_lun_run(sdev);
540 	if (!list_empty(&sdev->host->starved_list))
541 		scsi_starved_list_run(sdev->host);
542 
543 	if (q->mq_ops)
544 		blk_mq_run_hw_queues(q, false);
545 	else
546 		blk_run_queue(q);
547 }
548 
549 void scsi_requeue_run_queue(struct work_struct *work)
550 {
551 	struct scsi_device *sdev;
552 	struct request_queue *q;
553 
554 	sdev = container_of(work, struct scsi_device, requeue_work);
555 	q = sdev->request_queue;
556 	scsi_run_queue(q);
557 }
558 
559 /*
560  * Function:	scsi_requeue_command()
561  *
562  * Purpose:	Handle post-processing of completed commands.
563  *
564  * Arguments:	q	- queue to operate on
565  *		cmd	- command that may need to be requeued.
566  *
567  * Returns:	Nothing
568  *
569  * Notes:	After command completion, there may be blocks left
570  *		over which weren't finished by the previous command
571  *		this can be for a number of reasons - the main one is
572  *		I/O errors in the middle of the request, in which case
573  *		we need to request the blocks that come after the bad
574  *		sector.
575  * Notes:	Upon return, cmd is a stale pointer.
576  */
577 static void scsi_requeue_command(struct request_queue *q, struct scsi_cmnd *cmd)
578 {
579 	struct scsi_device *sdev = cmd->device;
580 	struct request *req = cmd->request;
581 	unsigned long flags;
582 
583 	spin_lock_irqsave(q->queue_lock, flags);
584 	blk_unprep_request(req);
585 	req->special = NULL;
586 	scsi_put_command(cmd);
587 	blk_requeue_request(q, req);
588 	spin_unlock_irqrestore(q->queue_lock, flags);
589 
590 	scsi_run_queue(q);
591 
592 	put_device(&sdev->sdev_gendev);
593 }
594 
595 void scsi_run_host_queues(struct Scsi_Host *shost)
596 {
597 	struct scsi_device *sdev;
598 
599 	shost_for_each_device(sdev, shost)
600 		scsi_run_queue(sdev->request_queue);
601 }
602 
603 static void scsi_uninit_cmd(struct scsi_cmnd *cmd)
604 {
605 	if (!blk_rq_is_passthrough(cmd->request)) {
606 		struct scsi_driver *drv = scsi_cmd_to_driver(cmd);
607 
608 		if (drv->uninit_command)
609 			drv->uninit_command(cmd);
610 	}
611 }
612 
613 static void scsi_mq_free_sgtables(struct scsi_cmnd *cmd)
614 {
615 	struct scsi_data_buffer *sdb;
616 
617 	if (cmd->sdb.table.nents)
618 		sg_free_table_chained(&cmd->sdb.table, true);
619 	if (cmd->request->next_rq) {
620 		sdb = cmd->request->next_rq->special;
621 		if (sdb)
622 			sg_free_table_chained(&sdb->table, true);
623 	}
624 	if (scsi_prot_sg_count(cmd))
625 		sg_free_table_chained(&cmd->prot_sdb->table, true);
626 }
627 
628 static void scsi_mq_uninit_cmd(struct scsi_cmnd *cmd)
629 {
630 	scsi_mq_free_sgtables(cmd);
631 	scsi_uninit_cmd(cmd);
632 	scsi_del_cmd_from_list(cmd);
633 }
634 
635 /*
636  * Function:    scsi_release_buffers()
637  *
638  * Purpose:     Free resources allocate for a scsi_command.
639  *
640  * Arguments:   cmd	- command that we are bailing.
641  *
642  * Lock status: Assumed that no lock is held upon entry.
643  *
644  * Returns:     Nothing
645  *
646  * Notes:       In the event that an upper level driver rejects a
647  *		command, we must release resources allocated during
648  *		the __init_io() function.  Primarily this would involve
649  *		the scatter-gather table.
650  */
651 static void scsi_release_buffers(struct scsi_cmnd *cmd)
652 {
653 	if (cmd->sdb.table.nents)
654 		sg_free_table_chained(&cmd->sdb.table, false);
655 
656 	memset(&cmd->sdb, 0, sizeof(cmd->sdb));
657 
658 	if (scsi_prot_sg_count(cmd))
659 		sg_free_table_chained(&cmd->prot_sdb->table, false);
660 }
661 
662 static void scsi_release_bidi_buffers(struct scsi_cmnd *cmd)
663 {
664 	struct scsi_data_buffer *bidi_sdb = cmd->request->next_rq->special;
665 
666 	sg_free_table_chained(&bidi_sdb->table, false);
667 	kmem_cache_free(scsi_sdb_cache, bidi_sdb);
668 	cmd->request->next_rq->special = NULL;
669 }
670 
671 /* Returns false when no more bytes to process, true if there are more */
672 static bool scsi_end_request(struct request *req, blk_status_t error,
673 		unsigned int bytes, unsigned int bidi_bytes)
674 {
675 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
676 	struct scsi_device *sdev = cmd->device;
677 	struct request_queue *q = sdev->request_queue;
678 
679 	if (blk_update_request(req, error, bytes))
680 		return true;
681 
682 	/* Bidi request must be completed as a whole */
683 	if (unlikely(bidi_bytes) &&
684 	    blk_update_request(req->next_rq, error, bidi_bytes))
685 		return true;
686 
687 	if (blk_queue_add_random(q))
688 		add_disk_randomness(req->rq_disk);
689 
690 	if (!blk_rq_is_scsi(req)) {
691 		WARN_ON_ONCE(!(cmd->flags & SCMD_INITIALIZED));
692 		cmd->flags &= ~SCMD_INITIALIZED;
693 		destroy_rcu_head(&cmd->rcu);
694 	}
695 
696 	if (req->mq_ctx) {
697 		/*
698 		 * In the MQ case the command gets freed by __blk_mq_end_request,
699 		 * so we have to do all cleanup that depends on it earlier.
700 		 *
701 		 * We also can't kick the queues from irq context, so we
702 		 * will have to defer it to a workqueue.
703 		 */
704 		scsi_mq_uninit_cmd(cmd);
705 
706 		__blk_mq_end_request(req, error);
707 
708 		if (scsi_target(sdev)->single_lun ||
709 		    !list_empty(&sdev->host->starved_list))
710 			kblockd_schedule_work(&sdev->requeue_work);
711 		else
712 			blk_mq_run_hw_queues(q, true);
713 	} else {
714 		unsigned long flags;
715 
716 		if (bidi_bytes)
717 			scsi_release_bidi_buffers(cmd);
718 		scsi_release_buffers(cmd);
719 		scsi_put_command(cmd);
720 
721 		spin_lock_irqsave(q->queue_lock, flags);
722 		blk_finish_request(req, error);
723 		spin_unlock_irqrestore(q->queue_lock, flags);
724 
725 		scsi_run_queue(q);
726 	}
727 
728 	put_device(&sdev->sdev_gendev);
729 	return false;
730 }
731 
732 /**
733  * scsi_result_to_blk_status - translate a SCSI result code into blk_status_t
734  * @cmd:	SCSI command
735  * @result:	scsi error code
736  *
737  * Translate a SCSI result code into a blk_status_t value. May reset the host
738  * byte of @cmd->result.
739  */
740 static blk_status_t scsi_result_to_blk_status(struct scsi_cmnd *cmd, int result)
741 {
742 	switch (host_byte(result)) {
743 	case DID_OK:
744 		/*
745 		 * Also check the other bytes than the status byte in result
746 		 * to handle the case when a SCSI LLD sets result to
747 		 * DRIVER_SENSE << 24 without setting SAM_STAT_CHECK_CONDITION.
748 		 */
749 		if (scsi_status_is_good(result) && (result & ~0xff) == 0)
750 			return BLK_STS_OK;
751 		return BLK_STS_IOERR;
752 	case DID_TRANSPORT_FAILFAST:
753 		return BLK_STS_TRANSPORT;
754 	case DID_TARGET_FAILURE:
755 		set_host_byte(cmd, DID_OK);
756 		return BLK_STS_TARGET;
757 	case DID_NEXUS_FAILURE:
758 		return BLK_STS_NEXUS;
759 	case DID_ALLOC_FAILURE:
760 		set_host_byte(cmd, DID_OK);
761 		return BLK_STS_NOSPC;
762 	case DID_MEDIUM_ERROR:
763 		set_host_byte(cmd, DID_OK);
764 		return BLK_STS_MEDIUM;
765 	default:
766 		return BLK_STS_IOERR;
767 	}
768 }
769 
770 /* Helper for scsi_io_completion() when "reprep" action required. */
771 static void scsi_io_completion_reprep(struct scsi_cmnd *cmd,
772 				      struct request_queue *q)
773 {
774 	/* A new command will be prepared and issued. */
775 	if (q->mq_ops) {
776 		scsi_mq_requeue_cmd(cmd);
777 	} else {
778 		/* Unprep request and put it back at head of the queue. */
779 		scsi_release_buffers(cmd);
780 		scsi_requeue_command(q, cmd);
781 	}
782 }
783 
784 /* Helper for scsi_io_completion() when special action required. */
785 static void scsi_io_completion_action(struct scsi_cmnd *cmd, int result)
786 {
787 	struct request_queue *q = cmd->device->request_queue;
788 	struct request *req = cmd->request;
789 	int level = 0;
790 	enum {ACTION_FAIL, ACTION_REPREP, ACTION_RETRY,
791 	      ACTION_DELAYED_RETRY} action;
792 	unsigned long wait_for = (cmd->allowed + 1) * req->timeout;
793 	struct scsi_sense_hdr sshdr;
794 	bool sense_valid;
795 	bool sense_current = true;      /* false implies "deferred sense" */
796 	blk_status_t blk_stat;
797 
798 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
799 	if (sense_valid)
800 		sense_current = !scsi_sense_is_deferred(&sshdr);
801 
802 	blk_stat = scsi_result_to_blk_status(cmd, result);
803 
804 	if (host_byte(result) == DID_RESET) {
805 		/* Third party bus reset or reset for error recovery
806 		 * reasons.  Just retry the command and see what
807 		 * happens.
808 		 */
809 		action = ACTION_RETRY;
810 	} else if (sense_valid && sense_current) {
811 		switch (sshdr.sense_key) {
812 		case UNIT_ATTENTION:
813 			if (cmd->device->removable) {
814 				/* Detected disc change.  Set a bit
815 				 * and quietly refuse further access.
816 				 */
817 				cmd->device->changed = 1;
818 				action = ACTION_FAIL;
819 			} else {
820 				/* Must have been a power glitch, or a
821 				 * bus reset.  Could not have been a
822 				 * media change, so we just retry the
823 				 * command and see what happens.
824 				 */
825 				action = ACTION_RETRY;
826 			}
827 			break;
828 		case ILLEGAL_REQUEST:
829 			/* If we had an ILLEGAL REQUEST returned, then
830 			 * we may have performed an unsupported
831 			 * command.  The only thing this should be
832 			 * would be a ten byte read where only a six
833 			 * byte read was supported.  Also, on a system
834 			 * where READ CAPACITY failed, we may have
835 			 * read past the end of the disk.
836 			 */
837 			if ((cmd->device->use_10_for_rw &&
838 			    sshdr.asc == 0x20 && sshdr.ascq == 0x00) &&
839 			    (cmd->cmnd[0] == READ_10 ||
840 			     cmd->cmnd[0] == WRITE_10)) {
841 				/* This will issue a new 6-byte command. */
842 				cmd->device->use_10_for_rw = 0;
843 				action = ACTION_REPREP;
844 			} else if (sshdr.asc == 0x10) /* DIX */ {
845 				action = ACTION_FAIL;
846 				blk_stat = BLK_STS_PROTECTION;
847 			/* INVALID COMMAND OPCODE or INVALID FIELD IN CDB */
848 			} else if (sshdr.asc == 0x20 || sshdr.asc == 0x24) {
849 				action = ACTION_FAIL;
850 				blk_stat = BLK_STS_TARGET;
851 			} else
852 				action = ACTION_FAIL;
853 			break;
854 		case ABORTED_COMMAND:
855 			action = ACTION_FAIL;
856 			if (sshdr.asc == 0x10) /* DIF */
857 				blk_stat = BLK_STS_PROTECTION;
858 			break;
859 		case NOT_READY:
860 			/* If the device is in the process of becoming
861 			 * ready, or has a temporary blockage, retry.
862 			 */
863 			if (sshdr.asc == 0x04) {
864 				switch (sshdr.ascq) {
865 				case 0x01: /* becoming ready */
866 				case 0x04: /* format in progress */
867 				case 0x05: /* rebuild in progress */
868 				case 0x06: /* recalculation in progress */
869 				case 0x07: /* operation in progress */
870 				case 0x08: /* Long write in progress */
871 				case 0x09: /* self test in progress */
872 				case 0x14: /* space allocation in progress */
873 				case 0x1a: /* start stop unit in progress */
874 				case 0x1b: /* sanitize in progress */
875 				case 0x1d: /* configuration in progress */
876 				case 0x24: /* depopulation in progress */
877 					action = ACTION_DELAYED_RETRY;
878 					break;
879 				default:
880 					action = ACTION_FAIL;
881 					break;
882 				}
883 			} else
884 				action = ACTION_FAIL;
885 			break;
886 		case VOLUME_OVERFLOW:
887 			/* See SSC3rXX or current. */
888 			action = ACTION_FAIL;
889 			break;
890 		default:
891 			action = ACTION_FAIL;
892 			break;
893 		}
894 	} else
895 		action = ACTION_FAIL;
896 
897 	if (action != ACTION_FAIL &&
898 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies))
899 		action = ACTION_FAIL;
900 
901 	switch (action) {
902 	case ACTION_FAIL:
903 		/* Give up and fail the remainder of the request */
904 		if (!(req->rq_flags & RQF_QUIET)) {
905 			static DEFINE_RATELIMIT_STATE(_rs,
906 					DEFAULT_RATELIMIT_INTERVAL,
907 					DEFAULT_RATELIMIT_BURST);
908 
909 			if (unlikely(scsi_logging_level))
910 				level =
911 				     SCSI_LOG_LEVEL(SCSI_LOG_MLCOMPLETE_SHIFT,
912 						    SCSI_LOG_MLCOMPLETE_BITS);
913 
914 			/*
915 			 * if logging is enabled the failure will be printed
916 			 * in scsi_log_completion(), so avoid duplicate messages
917 			 */
918 			if (!level && __ratelimit(&_rs)) {
919 				scsi_print_result(cmd, NULL, FAILED);
920 				if (driver_byte(result) == DRIVER_SENSE)
921 					scsi_print_sense(cmd);
922 				scsi_print_command(cmd);
923 			}
924 		}
925 		if (!scsi_end_request(req, blk_stat, blk_rq_err_bytes(req), 0))
926 			return;
927 		/*FALLTHRU*/
928 	case ACTION_REPREP:
929 		scsi_io_completion_reprep(cmd, q);
930 		break;
931 	case ACTION_RETRY:
932 		/* Retry the same command immediately */
933 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY, false);
934 		break;
935 	case ACTION_DELAYED_RETRY:
936 		/* Retry the same command after a delay */
937 		__scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY, false);
938 		break;
939 	}
940 }
941 
942 /*
943  * Helper for scsi_io_completion() when cmd->result is non-zero. Returns a
944  * new result that may suppress further error checking. Also modifies
945  * *blk_statp in some cases.
946  */
947 static int scsi_io_completion_nz_result(struct scsi_cmnd *cmd, int result,
948 					blk_status_t *blk_statp)
949 {
950 	bool sense_valid;
951 	bool sense_current = true;	/* false implies "deferred sense" */
952 	struct request *req = cmd->request;
953 	struct scsi_sense_hdr sshdr;
954 
955 	sense_valid = scsi_command_normalize_sense(cmd, &sshdr);
956 	if (sense_valid)
957 		sense_current = !scsi_sense_is_deferred(&sshdr);
958 
959 	if (blk_rq_is_passthrough(req)) {
960 		if (sense_valid) {
961 			/*
962 			 * SG_IO wants current and deferred errors
963 			 */
964 			scsi_req(req)->sense_len =
965 				min(8 + cmd->sense_buffer[7],
966 				    SCSI_SENSE_BUFFERSIZE);
967 		}
968 		if (sense_current)
969 			*blk_statp = scsi_result_to_blk_status(cmd, result);
970 	} else if (blk_rq_bytes(req) == 0 && sense_current) {
971 		/*
972 		 * Flush commands do not transfers any data, and thus cannot use
973 		 * good_bytes != blk_rq_bytes(req) as the signal for an error.
974 		 * This sets *blk_statp explicitly for the problem case.
975 		 */
976 		*blk_statp = scsi_result_to_blk_status(cmd, result);
977 	}
978 	/*
979 	 * Recovered errors need reporting, but they're always treated as
980 	 * success, so fiddle the result code here.  For passthrough requests
981 	 * we already took a copy of the original into sreq->result which
982 	 * is what gets returned to the user
983 	 */
984 	if (sense_valid && (sshdr.sense_key == RECOVERED_ERROR)) {
985 		bool do_print = true;
986 		/*
987 		 * if ATA PASS-THROUGH INFORMATION AVAILABLE [0x0, 0x1d]
988 		 * skip print since caller wants ATA registers. Only occurs
989 		 * on SCSI ATA PASS_THROUGH commands when CK_COND=1
990 		 */
991 		if ((sshdr.asc == 0x0) && (sshdr.ascq == 0x1d))
992 			do_print = false;
993 		else if (req->rq_flags & RQF_QUIET)
994 			do_print = false;
995 		if (do_print)
996 			scsi_print_sense(cmd);
997 		result = 0;
998 		/* for passthrough, *blk_statp may be set */
999 		*blk_statp = BLK_STS_OK;
1000 	}
1001 	/*
1002 	 * Another corner case: the SCSI status byte is non-zero but 'good'.
1003 	 * Example: PRE-FETCH command returns SAM_STAT_CONDITION_MET when
1004 	 * it is able to fit nominated LBs in its cache (and SAM_STAT_GOOD
1005 	 * if it can't fit). Treat SAM_STAT_CONDITION_MET and the related
1006 	 * intermediate statuses (both obsolete in SAM-4) as good.
1007 	 */
1008 	if (status_byte(result) && scsi_status_is_good(result)) {
1009 		result = 0;
1010 		*blk_statp = BLK_STS_OK;
1011 	}
1012 	return result;
1013 }
1014 
1015 /*
1016  * Function:    scsi_io_completion()
1017  *
1018  * Purpose:     Completion processing for block device I/O requests.
1019  *
1020  * Arguments:   cmd   - command that is finished.
1021  *
1022  * Lock status: Assumed that no lock is held upon entry.
1023  *
1024  * Returns:     Nothing
1025  *
1026  * Notes:       We will finish off the specified number of sectors.  If we
1027  *		are done, the command block will be released and the queue
1028  *		function will be goosed.  If we are not done then we have to
1029  *		figure out what to do next:
1030  *
1031  *		a) We can call scsi_requeue_command().  The request
1032  *		   will be unprepared and put back on the queue.  Then
1033  *		   a new command will be created for it.  This should
1034  *		   be used if we made forward progress, or if we want
1035  *		   to switch from READ(10) to READ(6) for example.
1036  *
1037  *		b) We can call __scsi_queue_insert().  The request will
1038  *		   be put back on the queue and retried using the same
1039  *		   command as before, possibly after a delay.
1040  *
1041  *		c) We can call scsi_end_request() with blk_stat other than
1042  *		   BLK_STS_OK, to fail the remainder of the request.
1043  */
1044 void scsi_io_completion(struct scsi_cmnd *cmd, unsigned int good_bytes)
1045 {
1046 	int result = cmd->result;
1047 	struct request_queue *q = cmd->device->request_queue;
1048 	struct request *req = cmd->request;
1049 	blk_status_t blk_stat = BLK_STS_OK;
1050 
1051 	if (unlikely(result))	/* a nz result may or may not be an error */
1052 		result = scsi_io_completion_nz_result(cmd, result, &blk_stat);
1053 
1054 	if (unlikely(blk_rq_is_passthrough(req))) {
1055 		/*
1056 		 * scsi_result_to_blk_status may have reset the host_byte
1057 		 */
1058 		scsi_req(req)->result = cmd->result;
1059 		scsi_req(req)->resid_len = scsi_get_resid(cmd);
1060 
1061 		if (unlikely(scsi_bidi_cmnd(cmd))) {
1062 			/*
1063 			 * Bidi commands Must be complete as a whole,
1064 			 * both sides at once.
1065 			 */
1066 			scsi_req(req->next_rq)->resid_len = scsi_in(cmd)->resid;
1067 			if (scsi_end_request(req, BLK_STS_OK, blk_rq_bytes(req),
1068 					blk_rq_bytes(req->next_rq)))
1069 				WARN_ONCE(true,
1070 					  "Bidi command with remaining bytes");
1071 			return;
1072 		}
1073 	}
1074 
1075 	/* no bidi support yet, other than in pass-through */
1076 	if (unlikely(blk_bidi_rq(req))) {
1077 		WARN_ONCE(true, "Only support bidi command in passthrough");
1078 		scmd_printk(KERN_ERR, cmd, "Killing bidi command\n");
1079 		if (scsi_end_request(req, BLK_STS_IOERR, blk_rq_bytes(req),
1080 				     blk_rq_bytes(req->next_rq)))
1081 			WARN_ONCE(true, "Bidi command with remaining bytes");
1082 		return;
1083 	}
1084 
1085 	/*
1086 	 * Next deal with any sectors which we were able to correctly
1087 	 * handle.
1088 	 */
1089 	SCSI_LOG_HLCOMPLETE(1, scmd_printk(KERN_INFO, cmd,
1090 		"%u sectors total, %d bytes done.\n",
1091 		blk_rq_sectors(req), good_bytes));
1092 
1093 	/*
1094 	 * Next deal with any sectors which we were able to correctly
1095 	 * handle. Failed, zero length commands always need to drop down
1096 	 * to retry code. Fast path should return in this block.
1097 	 */
1098 	if (likely(blk_rq_bytes(req) > 0 || blk_stat == BLK_STS_OK)) {
1099 		if (likely(!scsi_end_request(req, blk_stat, good_bytes, 0)))
1100 			return; /* no bytes remaining */
1101 	}
1102 
1103 	/* Kill remainder if no retries. */
1104 	if (unlikely(blk_stat && scsi_noretry_cmd(cmd))) {
1105 		if (scsi_end_request(req, blk_stat, blk_rq_bytes(req), 0))
1106 			WARN_ONCE(true,
1107 			    "Bytes remaining after failed, no-retry command");
1108 		return;
1109 	}
1110 
1111 	/*
1112 	 * If there had been no error, but we have leftover bytes in the
1113 	 * requeues just queue the command up again.
1114 	 */
1115 	if (likely(result == 0))
1116 		scsi_io_completion_reprep(cmd, q);
1117 	else
1118 		scsi_io_completion_action(cmd, result);
1119 }
1120 
1121 static int scsi_init_sgtable(struct request *req, struct scsi_data_buffer *sdb)
1122 {
1123 	int count;
1124 
1125 	/*
1126 	 * If sg table allocation fails, requeue request later.
1127 	 */
1128 	if (unlikely(sg_alloc_table_chained(&sdb->table,
1129 			blk_rq_nr_phys_segments(req), sdb->table.sgl)))
1130 		return BLKPREP_DEFER;
1131 
1132 	/*
1133 	 * Next, walk the list, and fill in the addresses and sizes of
1134 	 * each segment.
1135 	 */
1136 	count = blk_rq_map_sg(req->q, req, sdb->table.sgl);
1137 	BUG_ON(count > sdb->table.nents);
1138 	sdb->table.nents = count;
1139 	sdb->length = blk_rq_payload_bytes(req);
1140 	return BLKPREP_OK;
1141 }
1142 
1143 /*
1144  * Function:    scsi_init_io()
1145  *
1146  * Purpose:     SCSI I/O initialize function.
1147  *
1148  * Arguments:   cmd   - Command descriptor we wish to initialize
1149  *
1150  * Returns:     0 on success
1151  *		BLKPREP_DEFER if the failure is retryable
1152  *		BLKPREP_KILL if the failure is fatal
1153  */
1154 int scsi_init_io(struct scsi_cmnd *cmd)
1155 {
1156 	struct scsi_device *sdev = cmd->device;
1157 	struct request *rq = cmd->request;
1158 	bool is_mq = (rq->mq_ctx != NULL);
1159 	int error = BLKPREP_KILL;
1160 
1161 	if (WARN_ON_ONCE(!blk_rq_nr_phys_segments(rq)))
1162 		goto err_exit;
1163 
1164 	error = scsi_init_sgtable(rq, &cmd->sdb);
1165 	if (error)
1166 		goto err_exit;
1167 
1168 	if (blk_bidi_rq(rq)) {
1169 		if (!rq->q->mq_ops) {
1170 			struct scsi_data_buffer *bidi_sdb =
1171 				kmem_cache_zalloc(scsi_sdb_cache, GFP_ATOMIC);
1172 			if (!bidi_sdb) {
1173 				error = BLKPREP_DEFER;
1174 				goto err_exit;
1175 			}
1176 
1177 			rq->next_rq->special = bidi_sdb;
1178 		}
1179 
1180 		error = scsi_init_sgtable(rq->next_rq, rq->next_rq->special);
1181 		if (error)
1182 			goto err_exit;
1183 	}
1184 
1185 	if (blk_integrity_rq(rq)) {
1186 		struct scsi_data_buffer *prot_sdb = cmd->prot_sdb;
1187 		int ivecs, count;
1188 
1189 		if (prot_sdb == NULL) {
1190 			/*
1191 			 * This can happen if someone (e.g. multipath)
1192 			 * queues a command to a device on an adapter
1193 			 * that does not support DIX.
1194 			 */
1195 			WARN_ON_ONCE(1);
1196 			error = BLKPREP_KILL;
1197 			goto err_exit;
1198 		}
1199 
1200 		ivecs = blk_rq_count_integrity_sg(rq->q, rq->bio);
1201 
1202 		if (sg_alloc_table_chained(&prot_sdb->table, ivecs,
1203 				prot_sdb->table.sgl)) {
1204 			error = BLKPREP_DEFER;
1205 			goto err_exit;
1206 		}
1207 
1208 		count = blk_rq_map_integrity_sg(rq->q, rq->bio,
1209 						prot_sdb->table.sgl);
1210 		BUG_ON(unlikely(count > ivecs));
1211 		BUG_ON(unlikely(count > queue_max_integrity_segments(rq->q)));
1212 
1213 		cmd->prot_sdb = prot_sdb;
1214 		cmd->prot_sdb->table.nents = count;
1215 	}
1216 
1217 	return BLKPREP_OK;
1218 err_exit:
1219 	if (is_mq) {
1220 		scsi_mq_free_sgtables(cmd);
1221 	} else {
1222 		scsi_release_buffers(cmd);
1223 		cmd->request->special = NULL;
1224 		scsi_put_command(cmd);
1225 		put_device(&sdev->sdev_gendev);
1226 	}
1227 	return error;
1228 }
1229 EXPORT_SYMBOL(scsi_init_io);
1230 
1231 /**
1232  * scsi_initialize_rq - initialize struct scsi_cmnd partially
1233  * @rq: Request associated with the SCSI command to be initialized.
1234  *
1235  * This function initializes the members of struct scsi_cmnd that must be
1236  * initialized before request processing starts and that won't be
1237  * reinitialized if a SCSI command is requeued.
1238  *
1239  * Called from inside blk_get_request() for pass-through requests and from
1240  * inside scsi_init_command() for filesystem requests.
1241  */
1242 static void scsi_initialize_rq(struct request *rq)
1243 {
1244 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1245 
1246 	scsi_req_init(&cmd->req);
1247 	init_rcu_head(&cmd->rcu);
1248 	cmd->jiffies_at_alloc = jiffies;
1249 	cmd->retries = 0;
1250 }
1251 
1252 /* Add a command to the list used by the aacraid and dpt_i2o drivers */
1253 void scsi_add_cmd_to_list(struct scsi_cmnd *cmd)
1254 {
1255 	struct scsi_device *sdev = cmd->device;
1256 	struct Scsi_Host *shost = sdev->host;
1257 	unsigned long flags;
1258 
1259 	if (shost->use_cmd_list) {
1260 		spin_lock_irqsave(&sdev->list_lock, flags);
1261 		list_add_tail(&cmd->list, &sdev->cmd_list);
1262 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1263 	}
1264 }
1265 
1266 /* Remove a command from the list used by the aacraid and dpt_i2o drivers */
1267 void scsi_del_cmd_from_list(struct scsi_cmnd *cmd)
1268 {
1269 	struct scsi_device *sdev = cmd->device;
1270 	struct Scsi_Host *shost = sdev->host;
1271 	unsigned long flags;
1272 
1273 	if (shost->use_cmd_list) {
1274 		spin_lock_irqsave(&sdev->list_lock, flags);
1275 		BUG_ON(list_empty(&cmd->list));
1276 		list_del_init(&cmd->list);
1277 		spin_unlock_irqrestore(&sdev->list_lock, flags);
1278 	}
1279 }
1280 
1281 /* Called after a request has been started. */
1282 void scsi_init_command(struct scsi_device *dev, struct scsi_cmnd *cmd)
1283 {
1284 	void *buf = cmd->sense_buffer;
1285 	void *prot = cmd->prot_sdb;
1286 	struct request *rq = blk_mq_rq_from_pdu(cmd);
1287 	unsigned int flags = cmd->flags & SCMD_PRESERVED_FLAGS;
1288 	unsigned long jiffies_at_alloc;
1289 	int retries;
1290 
1291 	if (!blk_rq_is_scsi(rq) && !(flags & SCMD_INITIALIZED)) {
1292 		flags |= SCMD_INITIALIZED;
1293 		scsi_initialize_rq(rq);
1294 	}
1295 
1296 	jiffies_at_alloc = cmd->jiffies_at_alloc;
1297 	retries = cmd->retries;
1298 	/* zero out the cmd, except for the embedded scsi_request */
1299 	memset((char *)cmd + sizeof(cmd->req), 0,
1300 		sizeof(*cmd) - sizeof(cmd->req) + dev->host->hostt->cmd_size);
1301 
1302 	cmd->device = dev;
1303 	cmd->sense_buffer = buf;
1304 	cmd->prot_sdb = prot;
1305 	cmd->flags = flags;
1306 	INIT_DELAYED_WORK(&cmd->abort_work, scmd_eh_abort_handler);
1307 	cmd->jiffies_at_alloc = jiffies_at_alloc;
1308 	cmd->retries = retries;
1309 
1310 	scsi_add_cmd_to_list(cmd);
1311 }
1312 
1313 static int scsi_setup_scsi_cmnd(struct scsi_device *sdev, struct request *req)
1314 {
1315 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1316 
1317 	/*
1318 	 * Passthrough requests may transfer data, in which case they must
1319 	 * a bio attached to them.  Or they might contain a SCSI command
1320 	 * that does not transfer data, in which case they may optionally
1321 	 * submit a request without an attached bio.
1322 	 */
1323 	if (req->bio) {
1324 		int ret = scsi_init_io(cmd);
1325 		if (unlikely(ret))
1326 			return ret;
1327 	} else {
1328 		BUG_ON(blk_rq_bytes(req));
1329 
1330 		memset(&cmd->sdb, 0, sizeof(cmd->sdb));
1331 	}
1332 
1333 	cmd->cmd_len = scsi_req(req)->cmd_len;
1334 	cmd->cmnd = scsi_req(req)->cmd;
1335 	cmd->transfersize = blk_rq_bytes(req);
1336 	cmd->allowed = scsi_req(req)->retries;
1337 	return BLKPREP_OK;
1338 }
1339 
1340 /*
1341  * Setup a normal block command.  These are simple request from filesystems
1342  * that still need to be translated to SCSI CDBs from the ULD.
1343  */
1344 static int scsi_setup_fs_cmnd(struct scsi_device *sdev, struct request *req)
1345 {
1346 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1347 
1348 	if (unlikely(sdev->handler && sdev->handler->prep_fn)) {
1349 		int ret = sdev->handler->prep_fn(sdev, req);
1350 		if (ret != BLKPREP_OK)
1351 			return ret;
1352 	}
1353 
1354 	cmd->cmnd = scsi_req(req)->cmd = scsi_req(req)->__cmd;
1355 	memset(cmd->cmnd, 0, BLK_MAX_CDB);
1356 	return scsi_cmd_to_driver(cmd)->init_command(cmd);
1357 }
1358 
1359 static int scsi_setup_cmnd(struct scsi_device *sdev, struct request *req)
1360 {
1361 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1362 
1363 	if (!blk_rq_bytes(req))
1364 		cmd->sc_data_direction = DMA_NONE;
1365 	else if (rq_data_dir(req) == WRITE)
1366 		cmd->sc_data_direction = DMA_TO_DEVICE;
1367 	else
1368 		cmd->sc_data_direction = DMA_FROM_DEVICE;
1369 
1370 	if (blk_rq_is_scsi(req))
1371 		return scsi_setup_scsi_cmnd(sdev, req);
1372 	else
1373 		return scsi_setup_fs_cmnd(sdev, req);
1374 }
1375 
1376 static int
1377 scsi_prep_state_check(struct scsi_device *sdev, struct request *req)
1378 {
1379 	int ret = BLKPREP_OK;
1380 
1381 	/*
1382 	 * If the device is not in running state we will reject some
1383 	 * or all commands.
1384 	 */
1385 	if (unlikely(sdev->sdev_state != SDEV_RUNNING)) {
1386 		switch (sdev->sdev_state) {
1387 		case SDEV_OFFLINE:
1388 		case SDEV_TRANSPORT_OFFLINE:
1389 			/*
1390 			 * If the device is offline we refuse to process any
1391 			 * commands.  The device must be brought online
1392 			 * before trying any recovery commands.
1393 			 */
1394 			sdev_printk(KERN_ERR, sdev,
1395 				    "rejecting I/O to offline device\n");
1396 			ret = BLKPREP_KILL;
1397 			break;
1398 		case SDEV_DEL:
1399 			/*
1400 			 * If the device is fully deleted, we refuse to
1401 			 * process any commands as well.
1402 			 */
1403 			sdev_printk(KERN_ERR, sdev,
1404 				    "rejecting I/O to dead device\n");
1405 			ret = BLKPREP_KILL;
1406 			break;
1407 		case SDEV_BLOCK:
1408 		case SDEV_CREATED_BLOCK:
1409 			ret = BLKPREP_DEFER;
1410 			break;
1411 		case SDEV_QUIESCE:
1412 			/*
1413 			 * If the devices is blocked we defer normal commands.
1414 			 */
1415 			if (req && !(req->rq_flags & RQF_PREEMPT))
1416 				ret = BLKPREP_DEFER;
1417 			break;
1418 		default:
1419 			/*
1420 			 * For any other not fully online state we only allow
1421 			 * special commands.  In particular any user initiated
1422 			 * command is not allowed.
1423 			 */
1424 			if (req && !(req->rq_flags & RQF_PREEMPT))
1425 				ret = BLKPREP_KILL;
1426 			break;
1427 		}
1428 	}
1429 	return ret;
1430 }
1431 
1432 static int
1433 scsi_prep_return(struct request_queue *q, struct request *req, int ret)
1434 {
1435 	struct scsi_device *sdev = q->queuedata;
1436 
1437 	switch (ret) {
1438 	case BLKPREP_KILL:
1439 	case BLKPREP_INVALID:
1440 		scsi_req(req)->result = DID_NO_CONNECT << 16;
1441 		/* release the command and kill it */
1442 		if (req->special) {
1443 			struct scsi_cmnd *cmd = req->special;
1444 			scsi_release_buffers(cmd);
1445 			scsi_put_command(cmd);
1446 			put_device(&sdev->sdev_gendev);
1447 			req->special = NULL;
1448 		}
1449 		break;
1450 	case BLKPREP_DEFER:
1451 		/*
1452 		 * If we defer, the blk_peek_request() returns NULL, but the
1453 		 * queue must be restarted, so we schedule a callback to happen
1454 		 * shortly.
1455 		 */
1456 		if (atomic_read(&sdev->device_busy) == 0)
1457 			blk_delay_queue(q, SCSI_QUEUE_DELAY);
1458 		break;
1459 	default:
1460 		req->rq_flags |= RQF_DONTPREP;
1461 	}
1462 
1463 	return ret;
1464 }
1465 
1466 static int scsi_prep_fn(struct request_queue *q, struct request *req)
1467 {
1468 	struct scsi_device *sdev = q->queuedata;
1469 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1470 	int ret;
1471 
1472 	ret = scsi_prep_state_check(sdev, req);
1473 	if (ret != BLKPREP_OK)
1474 		goto out;
1475 
1476 	if (!req->special) {
1477 		/* Bail if we can't get a reference to the device */
1478 		if (unlikely(!get_device(&sdev->sdev_gendev))) {
1479 			ret = BLKPREP_DEFER;
1480 			goto out;
1481 		}
1482 
1483 		scsi_init_command(sdev, cmd);
1484 		req->special = cmd;
1485 	}
1486 
1487 	cmd->tag = req->tag;
1488 	cmd->request = req;
1489 	cmd->prot_op = SCSI_PROT_NORMAL;
1490 
1491 	ret = scsi_setup_cmnd(sdev, req);
1492 out:
1493 	return scsi_prep_return(q, req, ret);
1494 }
1495 
1496 static void scsi_unprep_fn(struct request_queue *q, struct request *req)
1497 {
1498 	scsi_uninit_cmd(blk_mq_rq_to_pdu(req));
1499 }
1500 
1501 /*
1502  * scsi_dev_queue_ready: if we can send requests to sdev, return 1 else
1503  * return 0.
1504  *
1505  * Called with the queue_lock held.
1506  */
1507 static inline int scsi_dev_queue_ready(struct request_queue *q,
1508 				  struct scsi_device *sdev)
1509 {
1510 	unsigned int busy;
1511 
1512 	busy = atomic_inc_return(&sdev->device_busy) - 1;
1513 	if (atomic_read(&sdev->device_blocked)) {
1514 		if (busy)
1515 			goto out_dec;
1516 
1517 		/*
1518 		 * unblock after device_blocked iterates to zero
1519 		 */
1520 		if (atomic_dec_return(&sdev->device_blocked) > 0) {
1521 			/*
1522 			 * For the MQ case we take care of this in the caller.
1523 			 */
1524 			if (!q->mq_ops)
1525 				blk_delay_queue(q, SCSI_QUEUE_DELAY);
1526 			goto out_dec;
1527 		}
1528 		SCSI_LOG_MLQUEUE(3, sdev_printk(KERN_INFO, sdev,
1529 				   "unblocking device at zero depth\n"));
1530 	}
1531 
1532 	if (busy >= sdev->queue_depth)
1533 		goto out_dec;
1534 
1535 	return 1;
1536 out_dec:
1537 	atomic_dec(&sdev->device_busy);
1538 	return 0;
1539 }
1540 
1541 /*
1542  * scsi_target_queue_ready: checks if there we can send commands to target
1543  * @sdev: scsi device on starget to check.
1544  */
1545 static inline int scsi_target_queue_ready(struct Scsi_Host *shost,
1546 					   struct scsi_device *sdev)
1547 {
1548 	struct scsi_target *starget = scsi_target(sdev);
1549 	unsigned int busy;
1550 
1551 	if (starget->single_lun) {
1552 		spin_lock_irq(shost->host_lock);
1553 		if (starget->starget_sdev_user &&
1554 		    starget->starget_sdev_user != sdev) {
1555 			spin_unlock_irq(shost->host_lock);
1556 			return 0;
1557 		}
1558 		starget->starget_sdev_user = sdev;
1559 		spin_unlock_irq(shost->host_lock);
1560 	}
1561 
1562 	if (starget->can_queue <= 0)
1563 		return 1;
1564 
1565 	busy = atomic_inc_return(&starget->target_busy) - 1;
1566 	if (atomic_read(&starget->target_blocked) > 0) {
1567 		if (busy)
1568 			goto starved;
1569 
1570 		/*
1571 		 * unblock after target_blocked iterates to zero
1572 		 */
1573 		if (atomic_dec_return(&starget->target_blocked) > 0)
1574 			goto out_dec;
1575 
1576 		SCSI_LOG_MLQUEUE(3, starget_printk(KERN_INFO, starget,
1577 				 "unblocking target at zero depth\n"));
1578 	}
1579 
1580 	if (busy >= starget->can_queue)
1581 		goto starved;
1582 
1583 	return 1;
1584 
1585 starved:
1586 	spin_lock_irq(shost->host_lock);
1587 	list_move_tail(&sdev->starved_entry, &shost->starved_list);
1588 	spin_unlock_irq(shost->host_lock);
1589 out_dec:
1590 	if (starget->can_queue > 0)
1591 		atomic_dec(&starget->target_busy);
1592 	return 0;
1593 }
1594 
1595 /*
1596  * scsi_host_queue_ready: if we can send requests to shost, return 1 else
1597  * return 0. We must end up running the queue again whenever 0 is
1598  * returned, else IO can hang.
1599  */
1600 static inline int scsi_host_queue_ready(struct request_queue *q,
1601 				   struct Scsi_Host *shost,
1602 				   struct scsi_device *sdev)
1603 {
1604 	unsigned int busy;
1605 
1606 	if (scsi_host_in_recovery(shost))
1607 		return 0;
1608 
1609 	if (!shost->use_blk_mq)
1610 		busy = atomic_inc_return(&shost->host_busy) - 1;
1611 	else
1612 		busy = 0;
1613 	if (atomic_read(&shost->host_blocked) > 0) {
1614 		if (busy)
1615 			goto starved;
1616 
1617 		/*
1618 		 * unblock after host_blocked iterates to zero
1619 		 */
1620 		if (atomic_dec_return(&shost->host_blocked) > 0)
1621 			goto out_dec;
1622 
1623 		SCSI_LOG_MLQUEUE(3,
1624 			shost_printk(KERN_INFO, shost,
1625 				     "unblocking host at zero depth\n"));
1626 	}
1627 
1628 	if (!shost->use_blk_mq && shost->can_queue > 0 && busy >= shost->can_queue)
1629 		goto starved;
1630 	if (shost->host_self_blocked)
1631 		goto starved;
1632 
1633 	/* We're OK to process the command, so we can't be starved */
1634 	if (!list_empty(&sdev->starved_entry)) {
1635 		spin_lock_irq(shost->host_lock);
1636 		if (!list_empty(&sdev->starved_entry))
1637 			list_del_init(&sdev->starved_entry);
1638 		spin_unlock_irq(shost->host_lock);
1639 	}
1640 
1641 	return 1;
1642 
1643 starved:
1644 	spin_lock_irq(shost->host_lock);
1645 	if (list_empty(&sdev->starved_entry))
1646 		list_add_tail(&sdev->starved_entry, &shost->starved_list);
1647 	spin_unlock_irq(shost->host_lock);
1648 out_dec:
1649 	scsi_dec_host_busy(shost);
1650 	return 0;
1651 }
1652 
1653 /*
1654  * Busy state exporting function for request stacking drivers.
1655  *
1656  * For efficiency, no lock is taken to check the busy state of
1657  * shost/starget/sdev, since the returned value is not guaranteed and
1658  * may be changed after request stacking drivers call the function,
1659  * regardless of taking lock or not.
1660  *
1661  * When scsi can't dispatch I/Os anymore and needs to kill I/Os scsi
1662  * needs to return 'not busy'. Otherwise, request stacking drivers
1663  * may hold requests forever.
1664  */
1665 static int scsi_lld_busy(struct request_queue *q)
1666 {
1667 	struct scsi_device *sdev = q->queuedata;
1668 	struct Scsi_Host *shost;
1669 
1670 	if (blk_queue_dying(q))
1671 		return 0;
1672 
1673 	shost = sdev->host;
1674 
1675 	/*
1676 	 * Ignore host/starget busy state.
1677 	 * Since block layer does not have a concept of fairness across
1678 	 * multiple queues, congestion of host/starget needs to be handled
1679 	 * in SCSI layer.
1680 	 */
1681 	if (scsi_host_in_recovery(shost) || scsi_device_is_busy(sdev))
1682 		return 1;
1683 
1684 	return 0;
1685 }
1686 
1687 /*
1688  * Kill a request for a dead device
1689  */
1690 static void scsi_kill_request(struct request *req, struct request_queue *q)
1691 {
1692 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
1693 	struct scsi_device *sdev;
1694 	struct scsi_target *starget;
1695 	struct Scsi_Host *shost;
1696 
1697 	blk_start_request(req);
1698 
1699 	scmd_printk(KERN_INFO, cmd, "killing request\n");
1700 
1701 	sdev = cmd->device;
1702 	starget = scsi_target(sdev);
1703 	shost = sdev->host;
1704 	scsi_init_cmd_errh(cmd);
1705 	cmd->result = DID_NO_CONNECT << 16;
1706 	atomic_inc(&cmd->device->iorequest_cnt);
1707 
1708 	/*
1709 	 * SCSI request completion path will do scsi_device_unbusy(),
1710 	 * bump busy counts.  To bump the counters, we need to dance
1711 	 * with the locks as normal issue path does.
1712 	 */
1713 	atomic_inc(&sdev->device_busy);
1714 
1715 	if (!shost->use_blk_mq)
1716 		atomic_inc(&shost->host_busy);
1717 	if (starget->can_queue > 0)
1718 		atomic_inc(&starget->target_busy);
1719 
1720 	blk_complete_request(req);
1721 }
1722 
1723 static void scsi_softirq_done(struct request *rq)
1724 {
1725 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
1726 	unsigned long wait_for = (cmd->allowed + 1) * rq->timeout;
1727 	int disposition;
1728 
1729 	INIT_LIST_HEAD(&cmd->eh_entry);
1730 
1731 	atomic_inc(&cmd->device->iodone_cnt);
1732 	if (cmd->result)
1733 		atomic_inc(&cmd->device->ioerr_cnt);
1734 
1735 	disposition = scsi_decide_disposition(cmd);
1736 	if (disposition != SUCCESS &&
1737 	    time_before(cmd->jiffies_at_alloc + wait_for, jiffies)) {
1738 		sdev_printk(KERN_ERR, cmd->device,
1739 			    "timing out command, waited %lus\n",
1740 			    wait_for/HZ);
1741 		disposition = SUCCESS;
1742 	}
1743 
1744 	scsi_log_completion(cmd, disposition);
1745 
1746 	switch (disposition) {
1747 		case SUCCESS:
1748 			scsi_finish_command(cmd);
1749 			break;
1750 		case NEEDS_RETRY:
1751 			scsi_queue_insert(cmd, SCSI_MLQUEUE_EH_RETRY);
1752 			break;
1753 		case ADD_TO_MLQUEUE:
1754 			scsi_queue_insert(cmd, SCSI_MLQUEUE_DEVICE_BUSY);
1755 			break;
1756 		default:
1757 			scsi_eh_scmd_add(cmd);
1758 			break;
1759 	}
1760 }
1761 
1762 /**
1763  * scsi_dispatch_command - Dispatch a command to the low-level driver.
1764  * @cmd: command block we are dispatching.
1765  *
1766  * Return: nonzero return request was rejected and device's queue needs to be
1767  * plugged.
1768  */
1769 static int scsi_dispatch_cmd(struct scsi_cmnd *cmd)
1770 {
1771 	struct Scsi_Host *host = cmd->device->host;
1772 	int rtn = 0;
1773 
1774 	atomic_inc(&cmd->device->iorequest_cnt);
1775 
1776 	/* check if the device is still usable */
1777 	if (unlikely(cmd->device->sdev_state == SDEV_DEL)) {
1778 		/* in SDEV_DEL we error all commands. DID_NO_CONNECT
1779 		 * returns an immediate error upwards, and signals
1780 		 * that the device is no longer present */
1781 		cmd->result = DID_NO_CONNECT << 16;
1782 		goto done;
1783 	}
1784 
1785 	/* Check to see if the scsi lld made this device blocked. */
1786 	if (unlikely(scsi_device_blocked(cmd->device))) {
1787 		/*
1788 		 * in blocked state, the command is just put back on
1789 		 * the device queue.  The suspend state has already
1790 		 * blocked the queue so future requests should not
1791 		 * occur until the device transitions out of the
1792 		 * suspend state.
1793 		 */
1794 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1795 			"queuecommand : device blocked\n"));
1796 		return SCSI_MLQUEUE_DEVICE_BUSY;
1797 	}
1798 
1799 	/* Store the LUN value in cmnd, if needed. */
1800 	if (cmd->device->lun_in_cdb)
1801 		cmd->cmnd[1] = (cmd->cmnd[1] & 0x1f) |
1802 			       (cmd->device->lun << 5 & 0xe0);
1803 
1804 	scsi_log_send(cmd);
1805 
1806 	/*
1807 	 * Before we queue this command, check if the command
1808 	 * length exceeds what the host adapter can handle.
1809 	 */
1810 	if (cmd->cmd_len > cmd->device->host->max_cmd_len) {
1811 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1812 			       "queuecommand : command too long. "
1813 			       "cdb_size=%d host->max_cmd_len=%d\n",
1814 			       cmd->cmd_len, cmd->device->host->max_cmd_len));
1815 		cmd->result = (DID_ABORT << 16);
1816 		goto done;
1817 	}
1818 
1819 	if (unlikely(host->shost_state == SHOST_DEL)) {
1820 		cmd->result = (DID_NO_CONNECT << 16);
1821 		goto done;
1822 
1823 	}
1824 
1825 	trace_scsi_dispatch_cmd_start(cmd);
1826 	rtn = host->hostt->queuecommand(host, cmd);
1827 	if (rtn) {
1828 		trace_scsi_dispatch_cmd_error(cmd, rtn);
1829 		if (rtn != SCSI_MLQUEUE_DEVICE_BUSY &&
1830 		    rtn != SCSI_MLQUEUE_TARGET_BUSY)
1831 			rtn = SCSI_MLQUEUE_HOST_BUSY;
1832 
1833 		SCSI_LOG_MLQUEUE(3, scmd_printk(KERN_INFO, cmd,
1834 			"queuecommand : request rejected\n"));
1835 	}
1836 
1837 	return rtn;
1838  done:
1839 	cmd->scsi_done(cmd);
1840 	return 0;
1841 }
1842 
1843 /**
1844  * scsi_done - Invoke completion on finished SCSI command.
1845  * @cmd: The SCSI Command for which a low-level device driver (LLDD) gives
1846  * ownership back to SCSI Core -- i.e. the LLDD has finished with it.
1847  *
1848  * Description: This function is the mid-level's (SCSI Core) interrupt routine,
1849  * which regains ownership of the SCSI command (de facto) from a LLDD, and
1850  * calls blk_complete_request() for further processing.
1851  *
1852  * This function is interrupt context safe.
1853  */
1854 static void scsi_done(struct scsi_cmnd *cmd)
1855 {
1856 	trace_scsi_dispatch_cmd_done(cmd);
1857 	blk_complete_request(cmd->request);
1858 }
1859 
1860 /*
1861  * Function:    scsi_request_fn()
1862  *
1863  * Purpose:     Main strategy routine for SCSI.
1864  *
1865  * Arguments:   q       - Pointer to actual queue.
1866  *
1867  * Returns:     Nothing
1868  *
1869  * Lock status: request queue lock assumed to be held when called.
1870  *
1871  * Note: See sd_zbc.c sd_zbc_write_lock_zone() for write order
1872  * protection for ZBC disks.
1873  */
1874 static void scsi_request_fn(struct request_queue *q)
1875 	__releases(q->queue_lock)
1876 	__acquires(q->queue_lock)
1877 {
1878 	struct scsi_device *sdev = q->queuedata;
1879 	struct Scsi_Host *shost;
1880 	struct scsi_cmnd *cmd;
1881 	struct request *req;
1882 
1883 	/*
1884 	 * To start with, we keep looping until the queue is empty, or until
1885 	 * the host is no longer able to accept any more requests.
1886 	 */
1887 	shost = sdev->host;
1888 	for (;;) {
1889 		int rtn;
1890 		/*
1891 		 * get next queueable request.  We do this early to make sure
1892 		 * that the request is fully prepared even if we cannot
1893 		 * accept it.
1894 		 */
1895 		req = blk_peek_request(q);
1896 		if (!req)
1897 			break;
1898 
1899 		if (unlikely(!scsi_device_online(sdev))) {
1900 			sdev_printk(KERN_ERR, sdev,
1901 				    "rejecting I/O to offline device\n");
1902 			scsi_kill_request(req, q);
1903 			continue;
1904 		}
1905 
1906 		if (!scsi_dev_queue_ready(q, sdev))
1907 			break;
1908 
1909 		/*
1910 		 * Remove the request from the request list.
1911 		 */
1912 		if (!(blk_queue_tagged(q) && !blk_queue_start_tag(q, req)))
1913 			blk_start_request(req);
1914 
1915 		spin_unlock_irq(q->queue_lock);
1916 		cmd = blk_mq_rq_to_pdu(req);
1917 		if (cmd != req->special) {
1918 			printk(KERN_CRIT "impossible request in %s.\n"
1919 					 "please mail a stack trace to "
1920 					 "linux-scsi@vger.kernel.org\n",
1921 					 __func__);
1922 			blk_dump_rq_flags(req, "foo");
1923 			BUG();
1924 		}
1925 
1926 		/*
1927 		 * We hit this when the driver is using a host wide
1928 		 * tag map. For device level tag maps the queue_depth check
1929 		 * in the device ready fn would prevent us from trying
1930 		 * to allocate a tag. Since the map is a shared host resource
1931 		 * we add the dev to the starved list so it eventually gets
1932 		 * a run when a tag is freed.
1933 		 */
1934 		if (blk_queue_tagged(q) && !(req->rq_flags & RQF_QUEUED)) {
1935 			spin_lock_irq(shost->host_lock);
1936 			if (list_empty(&sdev->starved_entry))
1937 				list_add_tail(&sdev->starved_entry,
1938 					      &shost->starved_list);
1939 			spin_unlock_irq(shost->host_lock);
1940 			goto not_ready;
1941 		}
1942 
1943 		if (!scsi_target_queue_ready(shost, sdev))
1944 			goto not_ready;
1945 
1946 		if (!scsi_host_queue_ready(q, shost, sdev))
1947 			goto host_not_ready;
1948 
1949 		if (sdev->simple_tags)
1950 			cmd->flags |= SCMD_TAGGED;
1951 		else
1952 			cmd->flags &= ~SCMD_TAGGED;
1953 
1954 		/*
1955 		 * Finally, initialize any error handling parameters, and set up
1956 		 * the timers for timeouts.
1957 		 */
1958 		scsi_init_cmd_errh(cmd);
1959 
1960 		/*
1961 		 * Dispatch the command to the low-level driver.
1962 		 */
1963 		cmd->scsi_done = scsi_done;
1964 		rtn = scsi_dispatch_cmd(cmd);
1965 		if (rtn) {
1966 			scsi_queue_insert(cmd, rtn);
1967 			spin_lock_irq(q->queue_lock);
1968 			goto out_delay;
1969 		}
1970 		spin_lock_irq(q->queue_lock);
1971 	}
1972 
1973 	return;
1974 
1975  host_not_ready:
1976 	if (scsi_target(sdev)->can_queue > 0)
1977 		atomic_dec(&scsi_target(sdev)->target_busy);
1978  not_ready:
1979 	/*
1980 	 * lock q, handle tag, requeue req, and decrement device_busy. We
1981 	 * must return with queue_lock held.
1982 	 *
1983 	 * Decrementing device_busy without checking it is OK, as all such
1984 	 * cases (host limits or settings) should run the queue at some
1985 	 * later time.
1986 	 */
1987 	spin_lock_irq(q->queue_lock);
1988 	blk_requeue_request(q, req);
1989 	atomic_dec(&sdev->device_busy);
1990 out_delay:
1991 	if (!atomic_read(&sdev->device_busy) && !scsi_device_blocked(sdev))
1992 		blk_delay_queue(q, SCSI_QUEUE_DELAY);
1993 }
1994 
1995 static inline blk_status_t prep_to_mq(int ret)
1996 {
1997 	switch (ret) {
1998 	case BLKPREP_OK:
1999 		return BLK_STS_OK;
2000 	case BLKPREP_DEFER:
2001 		return BLK_STS_RESOURCE;
2002 	default:
2003 		return BLK_STS_IOERR;
2004 	}
2005 }
2006 
2007 /* Size in bytes of the sg-list stored in the scsi-mq command-private data. */
2008 static unsigned int scsi_mq_sgl_size(struct Scsi_Host *shost)
2009 {
2010 	return min_t(unsigned int, shost->sg_tablesize, SG_CHUNK_SIZE) *
2011 		sizeof(struct scatterlist);
2012 }
2013 
2014 static int scsi_mq_prep_fn(struct request *req)
2015 {
2016 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2017 	struct scsi_device *sdev = req->q->queuedata;
2018 	struct Scsi_Host *shost = sdev->host;
2019 	struct scatterlist *sg;
2020 
2021 	scsi_init_command(sdev, cmd);
2022 
2023 	req->special = cmd;
2024 
2025 	cmd->request = req;
2026 
2027 	cmd->tag = req->tag;
2028 	cmd->prot_op = SCSI_PROT_NORMAL;
2029 
2030 	sg = (void *)cmd + sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2031 	cmd->sdb.table.sgl = sg;
2032 
2033 	if (scsi_host_get_prot(shost)) {
2034 		memset(cmd->prot_sdb, 0, sizeof(struct scsi_data_buffer));
2035 
2036 		cmd->prot_sdb->table.sgl =
2037 			(struct scatterlist *)(cmd->prot_sdb + 1);
2038 	}
2039 
2040 	if (blk_bidi_rq(req)) {
2041 		struct request *next_rq = req->next_rq;
2042 		struct scsi_data_buffer *bidi_sdb = blk_mq_rq_to_pdu(next_rq);
2043 
2044 		memset(bidi_sdb, 0, sizeof(struct scsi_data_buffer));
2045 		bidi_sdb->table.sgl =
2046 			(struct scatterlist *)(bidi_sdb + 1);
2047 
2048 		next_rq->special = bidi_sdb;
2049 	}
2050 
2051 	blk_mq_start_request(req);
2052 
2053 	return scsi_setup_cmnd(sdev, req);
2054 }
2055 
2056 static void scsi_mq_done(struct scsi_cmnd *cmd)
2057 {
2058 	trace_scsi_dispatch_cmd_done(cmd);
2059 	blk_mq_complete_request(cmd->request);
2060 }
2061 
2062 static void scsi_mq_put_budget(struct blk_mq_hw_ctx *hctx)
2063 {
2064 	struct request_queue *q = hctx->queue;
2065 	struct scsi_device *sdev = q->queuedata;
2066 
2067 	atomic_dec(&sdev->device_busy);
2068 	put_device(&sdev->sdev_gendev);
2069 }
2070 
2071 static bool scsi_mq_get_budget(struct blk_mq_hw_ctx *hctx)
2072 {
2073 	struct request_queue *q = hctx->queue;
2074 	struct scsi_device *sdev = q->queuedata;
2075 
2076 	if (!get_device(&sdev->sdev_gendev))
2077 		goto out;
2078 	if (!scsi_dev_queue_ready(q, sdev))
2079 		goto out_put_device;
2080 
2081 	return true;
2082 
2083 out_put_device:
2084 	put_device(&sdev->sdev_gendev);
2085 out:
2086 	if (atomic_read(&sdev->device_busy) == 0 && !scsi_device_blocked(sdev))
2087 		blk_mq_delay_run_hw_queue(hctx, SCSI_QUEUE_DELAY);
2088 	return false;
2089 }
2090 
2091 static blk_status_t scsi_queue_rq(struct blk_mq_hw_ctx *hctx,
2092 			 const struct blk_mq_queue_data *bd)
2093 {
2094 	struct request *req = bd->rq;
2095 	struct request_queue *q = req->q;
2096 	struct scsi_device *sdev = q->queuedata;
2097 	struct Scsi_Host *shost = sdev->host;
2098 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(req);
2099 	blk_status_t ret;
2100 	int reason;
2101 
2102 	ret = prep_to_mq(scsi_prep_state_check(sdev, req));
2103 	if (ret != BLK_STS_OK)
2104 		goto out_put_budget;
2105 
2106 	ret = BLK_STS_RESOURCE;
2107 	if (!scsi_target_queue_ready(shost, sdev))
2108 		goto out_put_budget;
2109 	if (!scsi_host_queue_ready(q, shost, sdev))
2110 		goto out_dec_target_busy;
2111 
2112 	if (!(req->rq_flags & RQF_DONTPREP)) {
2113 		ret = prep_to_mq(scsi_mq_prep_fn(req));
2114 		if (ret != BLK_STS_OK)
2115 			goto out_dec_host_busy;
2116 		req->rq_flags |= RQF_DONTPREP;
2117 	} else {
2118 		blk_mq_start_request(req);
2119 	}
2120 
2121 	if (sdev->simple_tags)
2122 		cmd->flags |= SCMD_TAGGED;
2123 	else
2124 		cmd->flags &= ~SCMD_TAGGED;
2125 
2126 	scsi_init_cmd_errh(cmd);
2127 	cmd->scsi_done = scsi_mq_done;
2128 
2129 	reason = scsi_dispatch_cmd(cmd);
2130 	if (reason) {
2131 		scsi_set_blocked(cmd, reason);
2132 		ret = BLK_STS_RESOURCE;
2133 		goto out_dec_host_busy;
2134 	}
2135 
2136 	return BLK_STS_OK;
2137 
2138 out_dec_host_busy:
2139 	scsi_dec_host_busy(shost);
2140 out_dec_target_busy:
2141 	if (scsi_target(sdev)->can_queue > 0)
2142 		atomic_dec(&scsi_target(sdev)->target_busy);
2143 out_put_budget:
2144 	scsi_mq_put_budget(hctx);
2145 	switch (ret) {
2146 	case BLK_STS_OK:
2147 		break;
2148 	case BLK_STS_RESOURCE:
2149 		if (atomic_read(&sdev->device_busy) ||
2150 		    scsi_device_blocked(sdev))
2151 			ret = BLK_STS_DEV_RESOURCE;
2152 		break;
2153 	default:
2154 		/*
2155 		 * Make sure to release all allocated ressources when
2156 		 * we hit an error, as we will never see this command
2157 		 * again.
2158 		 */
2159 		if (req->rq_flags & RQF_DONTPREP)
2160 			scsi_mq_uninit_cmd(cmd);
2161 		break;
2162 	}
2163 	return ret;
2164 }
2165 
2166 static enum blk_eh_timer_return scsi_timeout(struct request *req,
2167 		bool reserved)
2168 {
2169 	if (reserved)
2170 		return BLK_EH_RESET_TIMER;
2171 	return scsi_times_out(req);
2172 }
2173 
2174 static int scsi_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2175 				unsigned int hctx_idx, unsigned int numa_node)
2176 {
2177 	struct Scsi_Host *shost = set->driver_data;
2178 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2179 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2180 	struct scatterlist *sg;
2181 
2182 	if (unchecked_isa_dma)
2183 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2184 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma,
2185 						    GFP_KERNEL, numa_node);
2186 	if (!cmd->sense_buffer)
2187 		return -ENOMEM;
2188 	cmd->req.sense = cmd->sense_buffer;
2189 
2190 	if (scsi_host_get_prot(shost)) {
2191 		sg = (void *)cmd + sizeof(struct scsi_cmnd) +
2192 			shost->hostt->cmd_size;
2193 		cmd->prot_sdb = (void *)sg + scsi_mq_sgl_size(shost);
2194 	}
2195 
2196 	return 0;
2197 }
2198 
2199 static void scsi_mq_exit_request(struct blk_mq_tag_set *set, struct request *rq,
2200 				 unsigned int hctx_idx)
2201 {
2202 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2203 
2204 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2205 			       cmd->sense_buffer);
2206 }
2207 
2208 static int scsi_map_queues(struct blk_mq_tag_set *set)
2209 {
2210 	struct Scsi_Host *shost = container_of(set, struct Scsi_Host, tag_set);
2211 
2212 	if (shost->hostt->map_queues)
2213 		return shost->hostt->map_queues(shost);
2214 	return blk_mq_map_queues(set);
2215 }
2216 
2217 void __scsi_init_queue(struct Scsi_Host *shost, struct request_queue *q)
2218 {
2219 	struct device *dev = shost->dma_dev;
2220 
2221 	/*
2222 	 * this limit is imposed by hardware restrictions
2223 	 */
2224 	blk_queue_max_segments(q, min_t(unsigned short, shost->sg_tablesize,
2225 					SG_MAX_SEGMENTS));
2226 
2227 	if (scsi_host_prot_dma(shost)) {
2228 		shost->sg_prot_tablesize =
2229 			min_not_zero(shost->sg_prot_tablesize,
2230 				     (unsigned short)SCSI_MAX_PROT_SG_SEGMENTS);
2231 		BUG_ON(shost->sg_prot_tablesize < shost->sg_tablesize);
2232 		blk_queue_max_integrity_segments(q, shost->sg_prot_tablesize);
2233 	}
2234 
2235 	blk_queue_max_hw_sectors(q, shost->max_sectors);
2236 	if (shost->unchecked_isa_dma)
2237 		blk_queue_bounce_limit(q, BLK_BOUNCE_ISA);
2238 	blk_queue_segment_boundary(q, shost->dma_boundary);
2239 	dma_set_seg_boundary(dev, shost->dma_boundary);
2240 
2241 	blk_queue_max_segment_size(q, dma_get_max_seg_size(dev));
2242 
2243 	if (!shost->use_clustering)
2244 		q->limits.cluster = 0;
2245 
2246 	/*
2247 	 * Set a reasonable default alignment:  The larger of 32-byte (dword),
2248 	 * which is a common minimum for HBAs, and the minimum DMA alignment,
2249 	 * which is set by the platform.
2250 	 *
2251 	 * Devices that require a bigger alignment can increase it later.
2252 	 */
2253 	blk_queue_dma_alignment(q, max(4, dma_get_cache_alignment()) - 1);
2254 }
2255 EXPORT_SYMBOL_GPL(__scsi_init_queue);
2256 
2257 static int scsi_old_init_rq(struct request_queue *q, struct request *rq,
2258 			    gfp_t gfp)
2259 {
2260 	struct Scsi_Host *shost = q->rq_alloc_data;
2261 	const bool unchecked_isa_dma = shost->unchecked_isa_dma;
2262 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2263 
2264 	memset(cmd, 0, sizeof(*cmd));
2265 
2266 	if (unchecked_isa_dma)
2267 		cmd->flags |= SCMD_UNCHECKED_ISA_DMA;
2268 	cmd->sense_buffer = scsi_alloc_sense_buffer(unchecked_isa_dma, gfp,
2269 						    NUMA_NO_NODE);
2270 	if (!cmd->sense_buffer)
2271 		goto fail;
2272 	cmd->req.sense = cmd->sense_buffer;
2273 
2274 	if (scsi_host_get_prot(shost) >= SHOST_DIX_TYPE0_PROTECTION) {
2275 		cmd->prot_sdb = kmem_cache_zalloc(scsi_sdb_cache, gfp);
2276 		if (!cmd->prot_sdb)
2277 			goto fail_free_sense;
2278 	}
2279 
2280 	return 0;
2281 
2282 fail_free_sense:
2283 	scsi_free_sense_buffer(unchecked_isa_dma, cmd->sense_buffer);
2284 fail:
2285 	return -ENOMEM;
2286 }
2287 
2288 static void scsi_old_exit_rq(struct request_queue *q, struct request *rq)
2289 {
2290 	struct scsi_cmnd *cmd = blk_mq_rq_to_pdu(rq);
2291 
2292 	if (cmd->prot_sdb)
2293 		kmem_cache_free(scsi_sdb_cache, cmd->prot_sdb);
2294 	scsi_free_sense_buffer(cmd->flags & SCMD_UNCHECKED_ISA_DMA,
2295 			       cmd->sense_buffer);
2296 }
2297 
2298 struct request_queue *scsi_old_alloc_queue(struct scsi_device *sdev)
2299 {
2300 	struct Scsi_Host *shost = sdev->host;
2301 	struct request_queue *q;
2302 
2303 	q = blk_alloc_queue_node(GFP_KERNEL, NUMA_NO_NODE, NULL);
2304 	if (!q)
2305 		return NULL;
2306 	q->cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size;
2307 	q->rq_alloc_data = shost;
2308 	q->request_fn = scsi_request_fn;
2309 	q->init_rq_fn = scsi_old_init_rq;
2310 	q->exit_rq_fn = scsi_old_exit_rq;
2311 	q->initialize_rq_fn = scsi_initialize_rq;
2312 
2313 	if (blk_init_allocated_queue(q) < 0) {
2314 		blk_cleanup_queue(q);
2315 		return NULL;
2316 	}
2317 
2318 	__scsi_init_queue(shost, q);
2319 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, q);
2320 	blk_queue_prep_rq(q, scsi_prep_fn);
2321 	blk_queue_unprep_rq(q, scsi_unprep_fn);
2322 	blk_queue_softirq_done(q, scsi_softirq_done);
2323 	blk_queue_rq_timed_out(q, scsi_times_out);
2324 	blk_queue_lld_busy(q, scsi_lld_busy);
2325 	return q;
2326 }
2327 
2328 static const struct blk_mq_ops scsi_mq_ops = {
2329 	.get_budget	= scsi_mq_get_budget,
2330 	.put_budget	= scsi_mq_put_budget,
2331 	.queue_rq	= scsi_queue_rq,
2332 	.complete	= scsi_softirq_done,
2333 	.timeout	= scsi_timeout,
2334 #ifdef CONFIG_BLK_DEBUG_FS
2335 	.show_rq	= scsi_show_rq,
2336 #endif
2337 	.init_request	= scsi_mq_init_request,
2338 	.exit_request	= scsi_mq_exit_request,
2339 	.initialize_rq_fn = scsi_initialize_rq,
2340 	.map_queues	= scsi_map_queues,
2341 };
2342 
2343 struct request_queue *scsi_mq_alloc_queue(struct scsi_device *sdev)
2344 {
2345 	sdev->request_queue = blk_mq_init_queue(&sdev->host->tag_set);
2346 	if (IS_ERR(sdev->request_queue))
2347 		return NULL;
2348 
2349 	sdev->request_queue->queuedata = sdev;
2350 	__scsi_init_queue(sdev->host, sdev->request_queue);
2351 	blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, sdev->request_queue);
2352 	return sdev->request_queue;
2353 }
2354 
2355 int scsi_mq_setup_tags(struct Scsi_Host *shost)
2356 {
2357 	unsigned int cmd_size, sgl_size;
2358 
2359 	sgl_size = scsi_mq_sgl_size(shost);
2360 	cmd_size = sizeof(struct scsi_cmnd) + shost->hostt->cmd_size + sgl_size;
2361 	if (scsi_host_get_prot(shost))
2362 		cmd_size += sizeof(struct scsi_data_buffer) + sgl_size;
2363 
2364 	memset(&shost->tag_set, 0, sizeof(shost->tag_set));
2365 	shost->tag_set.ops = &scsi_mq_ops;
2366 	shost->tag_set.nr_hw_queues = shost->nr_hw_queues ? : 1;
2367 	shost->tag_set.queue_depth = shost->can_queue;
2368 	shost->tag_set.cmd_size = cmd_size;
2369 	shost->tag_set.numa_node = NUMA_NO_NODE;
2370 	shost->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_SG_MERGE;
2371 	shost->tag_set.flags |=
2372 		BLK_ALLOC_POLICY_TO_MQ_FLAG(shost->hostt->tag_alloc_policy);
2373 	shost->tag_set.driver_data = shost;
2374 
2375 	return blk_mq_alloc_tag_set(&shost->tag_set);
2376 }
2377 
2378 void scsi_mq_destroy_tags(struct Scsi_Host *shost)
2379 {
2380 	blk_mq_free_tag_set(&shost->tag_set);
2381 }
2382 
2383 /**
2384  * scsi_device_from_queue - return sdev associated with a request_queue
2385  * @q: The request queue to return the sdev from
2386  *
2387  * Return the sdev associated with a request queue or NULL if the
2388  * request_queue does not reference a SCSI device.
2389  */
2390 struct scsi_device *scsi_device_from_queue(struct request_queue *q)
2391 {
2392 	struct scsi_device *sdev = NULL;
2393 
2394 	if (q->mq_ops) {
2395 		if (q->mq_ops == &scsi_mq_ops)
2396 			sdev = q->queuedata;
2397 	} else if (q->request_fn == scsi_request_fn)
2398 		sdev = q->queuedata;
2399 	if (!sdev || !get_device(&sdev->sdev_gendev))
2400 		sdev = NULL;
2401 
2402 	return sdev;
2403 }
2404 EXPORT_SYMBOL_GPL(scsi_device_from_queue);
2405 
2406 /*
2407  * Function:    scsi_block_requests()
2408  *
2409  * Purpose:     Utility function used by low-level drivers to prevent further
2410  *		commands from being queued to the device.
2411  *
2412  * Arguments:   shost       - Host in question
2413  *
2414  * Returns:     Nothing
2415  *
2416  * Lock status: No locks are assumed held.
2417  *
2418  * Notes:       There is no timer nor any other means by which the requests
2419  *		get unblocked other than the low-level driver calling
2420  *		scsi_unblock_requests().
2421  */
2422 void scsi_block_requests(struct Scsi_Host *shost)
2423 {
2424 	shost->host_self_blocked = 1;
2425 }
2426 EXPORT_SYMBOL(scsi_block_requests);
2427 
2428 /*
2429  * Function:    scsi_unblock_requests()
2430  *
2431  * Purpose:     Utility function used by low-level drivers to allow further
2432  *		commands from being queued to the device.
2433  *
2434  * Arguments:   shost       - Host in question
2435  *
2436  * Returns:     Nothing
2437  *
2438  * Lock status: No locks are assumed held.
2439  *
2440  * Notes:       There is no timer nor any other means by which the requests
2441  *		get unblocked other than the low-level driver calling
2442  *		scsi_unblock_requests().
2443  *
2444  *		This is done as an API function so that changes to the
2445  *		internals of the scsi mid-layer won't require wholesale
2446  *		changes to drivers that use this feature.
2447  */
2448 void scsi_unblock_requests(struct Scsi_Host *shost)
2449 {
2450 	shost->host_self_blocked = 0;
2451 	scsi_run_host_queues(shost);
2452 }
2453 EXPORT_SYMBOL(scsi_unblock_requests);
2454 
2455 int __init scsi_init_queue(void)
2456 {
2457 	scsi_sdb_cache = kmem_cache_create("scsi_data_buffer",
2458 					   sizeof(struct scsi_data_buffer),
2459 					   0, 0, NULL);
2460 	if (!scsi_sdb_cache) {
2461 		printk(KERN_ERR "SCSI: can't init scsi sdb cache\n");
2462 		return -ENOMEM;
2463 	}
2464 
2465 	return 0;
2466 }
2467 
2468 void scsi_exit_queue(void)
2469 {
2470 	kmem_cache_destroy(scsi_sense_cache);
2471 	kmem_cache_destroy(scsi_sense_isadma_cache);
2472 	kmem_cache_destroy(scsi_sdb_cache);
2473 }
2474 
2475 /**
2476  *	scsi_mode_select - issue a mode select
2477  *	@sdev:	SCSI device to be queried
2478  *	@pf:	Page format bit (1 == standard, 0 == vendor specific)
2479  *	@sp:	Save page bit (0 == don't save, 1 == save)
2480  *	@modepage: mode page being requested
2481  *	@buffer: request buffer (may not be smaller than eight bytes)
2482  *	@len:	length of request buffer.
2483  *	@timeout: command timeout
2484  *	@retries: number of retries before failing
2485  *	@data: returns a structure abstracting the mode header data
2486  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2487  *		must be SCSI_SENSE_BUFFERSIZE big.
2488  *
2489  *	Returns zero if successful; negative error number or scsi
2490  *	status on error
2491  *
2492  */
2493 int
2494 scsi_mode_select(struct scsi_device *sdev, int pf, int sp, int modepage,
2495 		 unsigned char *buffer, int len, int timeout, int retries,
2496 		 struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2497 {
2498 	unsigned char cmd[10];
2499 	unsigned char *real_buffer;
2500 	int ret;
2501 
2502 	memset(cmd, 0, sizeof(cmd));
2503 	cmd[1] = (pf ? 0x10 : 0) | (sp ? 0x01 : 0);
2504 
2505 	if (sdev->use_10_for_ms) {
2506 		if (len > 65535)
2507 			return -EINVAL;
2508 		real_buffer = kmalloc(8 + len, GFP_KERNEL);
2509 		if (!real_buffer)
2510 			return -ENOMEM;
2511 		memcpy(real_buffer + 8, buffer, len);
2512 		len += 8;
2513 		real_buffer[0] = 0;
2514 		real_buffer[1] = 0;
2515 		real_buffer[2] = data->medium_type;
2516 		real_buffer[3] = data->device_specific;
2517 		real_buffer[4] = data->longlba ? 0x01 : 0;
2518 		real_buffer[5] = 0;
2519 		real_buffer[6] = data->block_descriptor_length >> 8;
2520 		real_buffer[7] = data->block_descriptor_length;
2521 
2522 		cmd[0] = MODE_SELECT_10;
2523 		cmd[7] = len >> 8;
2524 		cmd[8] = len;
2525 	} else {
2526 		if (len > 255 || data->block_descriptor_length > 255 ||
2527 		    data->longlba)
2528 			return -EINVAL;
2529 
2530 		real_buffer = kmalloc(4 + len, GFP_KERNEL);
2531 		if (!real_buffer)
2532 			return -ENOMEM;
2533 		memcpy(real_buffer + 4, buffer, len);
2534 		len += 4;
2535 		real_buffer[0] = 0;
2536 		real_buffer[1] = data->medium_type;
2537 		real_buffer[2] = data->device_specific;
2538 		real_buffer[3] = data->block_descriptor_length;
2539 
2540 
2541 		cmd[0] = MODE_SELECT;
2542 		cmd[4] = len;
2543 	}
2544 
2545 	ret = scsi_execute_req(sdev, cmd, DMA_TO_DEVICE, real_buffer, len,
2546 			       sshdr, timeout, retries, NULL);
2547 	kfree(real_buffer);
2548 	return ret;
2549 }
2550 EXPORT_SYMBOL_GPL(scsi_mode_select);
2551 
2552 /**
2553  *	scsi_mode_sense - issue a mode sense, falling back from 10 to six bytes if necessary.
2554  *	@sdev:	SCSI device to be queried
2555  *	@dbd:	set if mode sense will allow block descriptors to be returned
2556  *	@modepage: mode page being requested
2557  *	@buffer: request buffer (may not be smaller than eight bytes)
2558  *	@len:	length of request buffer.
2559  *	@timeout: command timeout
2560  *	@retries: number of retries before failing
2561  *	@data: returns a structure abstracting the mode header data
2562  *	@sshdr: place to put sense data (or NULL if no sense to be collected).
2563  *		must be SCSI_SENSE_BUFFERSIZE big.
2564  *
2565  *	Returns zero if unsuccessful, or the header offset (either 4
2566  *	or 8 depending on whether a six or ten byte command was
2567  *	issued) if successful.
2568  */
2569 int
2570 scsi_mode_sense(struct scsi_device *sdev, int dbd, int modepage,
2571 		  unsigned char *buffer, int len, int timeout, int retries,
2572 		  struct scsi_mode_data *data, struct scsi_sense_hdr *sshdr)
2573 {
2574 	unsigned char cmd[12];
2575 	int use_10_for_ms;
2576 	int header_length;
2577 	int result, retry_count = retries;
2578 	struct scsi_sense_hdr my_sshdr;
2579 
2580 	memset(data, 0, sizeof(*data));
2581 	memset(&cmd[0], 0, 12);
2582 	cmd[1] = dbd & 0x18;	/* allows DBD and LLBA bits */
2583 	cmd[2] = modepage;
2584 
2585 	/* caller might not be interested in sense, but we need it */
2586 	if (!sshdr)
2587 		sshdr = &my_sshdr;
2588 
2589  retry:
2590 	use_10_for_ms = sdev->use_10_for_ms;
2591 
2592 	if (use_10_for_ms) {
2593 		if (len < 8)
2594 			len = 8;
2595 
2596 		cmd[0] = MODE_SENSE_10;
2597 		cmd[8] = len;
2598 		header_length = 8;
2599 	} else {
2600 		if (len < 4)
2601 			len = 4;
2602 
2603 		cmd[0] = MODE_SENSE;
2604 		cmd[4] = len;
2605 		header_length = 4;
2606 	}
2607 
2608 	memset(buffer, 0, len);
2609 
2610 	result = scsi_execute_req(sdev, cmd, DMA_FROM_DEVICE, buffer, len,
2611 				  sshdr, timeout, retries, NULL);
2612 
2613 	/* This code looks awful: what it's doing is making sure an
2614 	 * ILLEGAL REQUEST sense return identifies the actual command
2615 	 * byte as the problem.  MODE_SENSE commands can return
2616 	 * ILLEGAL REQUEST if the code page isn't supported */
2617 
2618 	if (use_10_for_ms && !scsi_status_is_good(result) &&
2619 	    driver_byte(result) == DRIVER_SENSE) {
2620 		if (scsi_sense_valid(sshdr)) {
2621 			if ((sshdr->sense_key == ILLEGAL_REQUEST) &&
2622 			    (sshdr->asc == 0x20) && (sshdr->ascq == 0)) {
2623 				/*
2624 				 * Invalid command operation code
2625 				 */
2626 				sdev->use_10_for_ms = 0;
2627 				goto retry;
2628 			}
2629 		}
2630 	}
2631 
2632 	if(scsi_status_is_good(result)) {
2633 		if (unlikely(buffer[0] == 0x86 && buffer[1] == 0x0b &&
2634 			     (modepage == 6 || modepage == 8))) {
2635 			/* Initio breakage? */
2636 			header_length = 0;
2637 			data->length = 13;
2638 			data->medium_type = 0;
2639 			data->device_specific = 0;
2640 			data->longlba = 0;
2641 			data->block_descriptor_length = 0;
2642 		} else if(use_10_for_ms) {
2643 			data->length = buffer[0]*256 + buffer[1] + 2;
2644 			data->medium_type = buffer[2];
2645 			data->device_specific = buffer[3];
2646 			data->longlba = buffer[4] & 0x01;
2647 			data->block_descriptor_length = buffer[6]*256
2648 				+ buffer[7];
2649 		} else {
2650 			data->length = buffer[0] + 1;
2651 			data->medium_type = buffer[1];
2652 			data->device_specific = buffer[2];
2653 			data->block_descriptor_length = buffer[3];
2654 		}
2655 		data->header_length = header_length;
2656 	} else if ((status_byte(result) == CHECK_CONDITION) &&
2657 		   scsi_sense_valid(sshdr) &&
2658 		   sshdr->sense_key == UNIT_ATTENTION && retry_count) {
2659 		retry_count--;
2660 		goto retry;
2661 	}
2662 
2663 	return result;
2664 }
2665 EXPORT_SYMBOL(scsi_mode_sense);
2666 
2667 /**
2668  *	scsi_test_unit_ready - test if unit is ready
2669  *	@sdev:	scsi device to change the state of.
2670  *	@timeout: command timeout
2671  *	@retries: number of retries before failing
2672  *	@sshdr: outpout pointer for decoded sense information.
2673  *
2674  *	Returns zero if unsuccessful or an error if TUR failed.  For
2675  *	removable media, UNIT_ATTENTION sets ->changed flag.
2676  **/
2677 int
2678 scsi_test_unit_ready(struct scsi_device *sdev, int timeout, int retries,
2679 		     struct scsi_sense_hdr *sshdr)
2680 {
2681 	char cmd[] = {
2682 		TEST_UNIT_READY, 0, 0, 0, 0, 0,
2683 	};
2684 	int result;
2685 
2686 	/* try to eat the UNIT_ATTENTION if there are enough retries */
2687 	do {
2688 		result = scsi_execute_req(sdev, cmd, DMA_NONE, NULL, 0, sshdr,
2689 					  timeout, 1, NULL);
2690 		if (sdev->removable && scsi_sense_valid(sshdr) &&
2691 		    sshdr->sense_key == UNIT_ATTENTION)
2692 			sdev->changed = 1;
2693 	} while (scsi_sense_valid(sshdr) &&
2694 		 sshdr->sense_key == UNIT_ATTENTION && --retries);
2695 
2696 	return result;
2697 }
2698 EXPORT_SYMBOL(scsi_test_unit_ready);
2699 
2700 /**
2701  *	scsi_device_set_state - Take the given device through the device state model.
2702  *	@sdev:	scsi device to change the state of.
2703  *	@state:	state to change to.
2704  *
2705  *	Returns zero if successful or an error if the requested
2706  *	transition is illegal.
2707  */
2708 int
2709 scsi_device_set_state(struct scsi_device *sdev, enum scsi_device_state state)
2710 {
2711 	enum scsi_device_state oldstate = sdev->sdev_state;
2712 
2713 	if (state == oldstate)
2714 		return 0;
2715 
2716 	switch (state) {
2717 	case SDEV_CREATED:
2718 		switch (oldstate) {
2719 		case SDEV_CREATED_BLOCK:
2720 			break;
2721 		default:
2722 			goto illegal;
2723 		}
2724 		break;
2725 
2726 	case SDEV_RUNNING:
2727 		switch (oldstate) {
2728 		case SDEV_CREATED:
2729 		case SDEV_OFFLINE:
2730 		case SDEV_TRANSPORT_OFFLINE:
2731 		case SDEV_QUIESCE:
2732 		case SDEV_BLOCK:
2733 			break;
2734 		default:
2735 			goto illegal;
2736 		}
2737 		break;
2738 
2739 	case SDEV_QUIESCE:
2740 		switch (oldstate) {
2741 		case SDEV_RUNNING:
2742 		case SDEV_OFFLINE:
2743 		case SDEV_TRANSPORT_OFFLINE:
2744 			break;
2745 		default:
2746 			goto illegal;
2747 		}
2748 		break;
2749 
2750 	case SDEV_OFFLINE:
2751 	case SDEV_TRANSPORT_OFFLINE:
2752 		switch (oldstate) {
2753 		case SDEV_CREATED:
2754 		case SDEV_RUNNING:
2755 		case SDEV_QUIESCE:
2756 		case SDEV_BLOCK:
2757 			break;
2758 		default:
2759 			goto illegal;
2760 		}
2761 		break;
2762 
2763 	case SDEV_BLOCK:
2764 		switch (oldstate) {
2765 		case SDEV_RUNNING:
2766 		case SDEV_CREATED_BLOCK:
2767 			break;
2768 		default:
2769 			goto illegal;
2770 		}
2771 		break;
2772 
2773 	case SDEV_CREATED_BLOCK:
2774 		switch (oldstate) {
2775 		case SDEV_CREATED:
2776 			break;
2777 		default:
2778 			goto illegal;
2779 		}
2780 		break;
2781 
2782 	case SDEV_CANCEL:
2783 		switch (oldstate) {
2784 		case SDEV_CREATED:
2785 		case SDEV_RUNNING:
2786 		case SDEV_QUIESCE:
2787 		case SDEV_OFFLINE:
2788 		case SDEV_TRANSPORT_OFFLINE:
2789 			break;
2790 		default:
2791 			goto illegal;
2792 		}
2793 		break;
2794 
2795 	case SDEV_DEL:
2796 		switch (oldstate) {
2797 		case SDEV_CREATED:
2798 		case SDEV_RUNNING:
2799 		case SDEV_OFFLINE:
2800 		case SDEV_TRANSPORT_OFFLINE:
2801 		case SDEV_CANCEL:
2802 		case SDEV_BLOCK:
2803 		case SDEV_CREATED_BLOCK:
2804 			break;
2805 		default:
2806 			goto illegal;
2807 		}
2808 		break;
2809 
2810 	}
2811 	sdev->sdev_state = state;
2812 	return 0;
2813 
2814  illegal:
2815 	SCSI_LOG_ERROR_RECOVERY(1,
2816 				sdev_printk(KERN_ERR, sdev,
2817 					    "Illegal state transition %s->%s",
2818 					    scsi_device_state_name(oldstate),
2819 					    scsi_device_state_name(state))
2820 				);
2821 	return -EINVAL;
2822 }
2823 EXPORT_SYMBOL(scsi_device_set_state);
2824 
2825 /**
2826  * 	sdev_evt_emit - emit a single SCSI device uevent
2827  *	@sdev: associated SCSI device
2828  *	@evt: event to emit
2829  *
2830  *	Send a single uevent (scsi_event) to the associated scsi_device.
2831  */
2832 static void scsi_evt_emit(struct scsi_device *sdev, struct scsi_event *evt)
2833 {
2834 	int idx = 0;
2835 	char *envp[3];
2836 
2837 	switch (evt->evt_type) {
2838 	case SDEV_EVT_MEDIA_CHANGE:
2839 		envp[idx++] = "SDEV_MEDIA_CHANGE=1";
2840 		break;
2841 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2842 		scsi_rescan_device(&sdev->sdev_gendev);
2843 		envp[idx++] = "SDEV_UA=INQUIRY_DATA_HAS_CHANGED";
2844 		break;
2845 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2846 		envp[idx++] = "SDEV_UA=CAPACITY_DATA_HAS_CHANGED";
2847 		break;
2848 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2849 	       envp[idx++] = "SDEV_UA=THIN_PROVISIONING_SOFT_THRESHOLD_REACHED";
2850 		break;
2851 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2852 		envp[idx++] = "SDEV_UA=MODE_PARAMETERS_CHANGED";
2853 		break;
2854 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2855 		envp[idx++] = "SDEV_UA=REPORTED_LUNS_DATA_HAS_CHANGED";
2856 		break;
2857 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2858 		envp[idx++] = "SDEV_UA=ASYMMETRIC_ACCESS_STATE_CHANGED";
2859 		break;
2860 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2861 		envp[idx++] = "SDEV_UA=POWER_ON_RESET_OCCURRED";
2862 		break;
2863 	default:
2864 		/* do nothing */
2865 		break;
2866 	}
2867 
2868 	envp[idx++] = NULL;
2869 
2870 	kobject_uevent_env(&sdev->sdev_gendev.kobj, KOBJ_CHANGE, envp);
2871 }
2872 
2873 /**
2874  * 	sdev_evt_thread - send a uevent for each scsi event
2875  *	@work: work struct for scsi_device
2876  *
2877  *	Dispatch queued events to their associated scsi_device kobjects
2878  *	as uevents.
2879  */
2880 void scsi_evt_thread(struct work_struct *work)
2881 {
2882 	struct scsi_device *sdev;
2883 	enum scsi_device_event evt_type;
2884 	LIST_HEAD(event_list);
2885 
2886 	sdev = container_of(work, struct scsi_device, event_work);
2887 
2888 	for (evt_type = SDEV_EVT_FIRST; evt_type <= SDEV_EVT_LAST; evt_type++)
2889 		if (test_and_clear_bit(evt_type, sdev->pending_events))
2890 			sdev_evt_send_simple(sdev, evt_type, GFP_KERNEL);
2891 
2892 	while (1) {
2893 		struct scsi_event *evt;
2894 		struct list_head *this, *tmp;
2895 		unsigned long flags;
2896 
2897 		spin_lock_irqsave(&sdev->list_lock, flags);
2898 		list_splice_init(&sdev->event_list, &event_list);
2899 		spin_unlock_irqrestore(&sdev->list_lock, flags);
2900 
2901 		if (list_empty(&event_list))
2902 			break;
2903 
2904 		list_for_each_safe(this, tmp, &event_list) {
2905 			evt = list_entry(this, struct scsi_event, node);
2906 			list_del(&evt->node);
2907 			scsi_evt_emit(sdev, evt);
2908 			kfree(evt);
2909 		}
2910 	}
2911 }
2912 
2913 /**
2914  * 	sdev_evt_send - send asserted event to uevent thread
2915  *	@sdev: scsi_device event occurred on
2916  *	@evt: event to send
2917  *
2918  *	Assert scsi device event asynchronously.
2919  */
2920 void sdev_evt_send(struct scsi_device *sdev, struct scsi_event *evt)
2921 {
2922 	unsigned long flags;
2923 
2924 #if 0
2925 	/* FIXME: currently this check eliminates all media change events
2926 	 * for polled devices.  Need to update to discriminate between AN
2927 	 * and polled events */
2928 	if (!test_bit(evt->evt_type, sdev->supported_events)) {
2929 		kfree(evt);
2930 		return;
2931 	}
2932 #endif
2933 
2934 	spin_lock_irqsave(&sdev->list_lock, flags);
2935 	list_add_tail(&evt->node, &sdev->event_list);
2936 	schedule_work(&sdev->event_work);
2937 	spin_unlock_irqrestore(&sdev->list_lock, flags);
2938 }
2939 EXPORT_SYMBOL_GPL(sdev_evt_send);
2940 
2941 /**
2942  * 	sdev_evt_alloc - allocate a new scsi event
2943  *	@evt_type: type of event to allocate
2944  *	@gfpflags: GFP flags for allocation
2945  *
2946  *	Allocates and returns a new scsi_event.
2947  */
2948 struct scsi_event *sdev_evt_alloc(enum scsi_device_event evt_type,
2949 				  gfp_t gfpflags)
2950 {
2951 	struct scsi_event *evt = kzalloc(sizeof(struct scsi_event), gfpflags);
2952 	if (!evt)
2953 		return NULL;
2954 
2955 	evt->evt_type = evt_type;
2956 	INIT_LIST_HEAD(&evt->node);
2957 
2958 	/* evt_type-specific initialization, if any */
2959 	switch (evt_type) {
2960 	case SDEV_EVT_MEDIA_CHANGE:
2961 	case SDEV_EVT_INQUIRY_CHANGE_REPORTED:
2962 	case SDEV_EVT_CAPACITY_CHANGE_REPORTED:
2963 	case SDEV_EVT_SOFT_THRESHOLD_REACHED_REPORTED:
2964 	case SDEV_EVT_MODE_PARAMETER_CHANGE_REPORTED:
2965 	case SDEV_EVT_LUN_CHANGE_REPORTED:
2966 	case SDEV_EVT_ALUA_STATE_CHANGE_REPORTED:
2967 	case SDEV_EVT_POWER_ON_RESET_OCCURRED:
2968 	default:
2969 		/* do nothing */
2970 		break;
2971 	}
2972 
2973 	return evt;
2974 }
2975 EXPORT_SYMBOL_GPL(sdev_evt_alloc);
2976 
2977 /**
2978  * 	sdev_evt_send_simple - send asserted event to uevent thread
2979  *	@sdev: scsi_device event occurred on
2980  *	@evt_type: type of event to send
2981  *	@gfpflags: GFP flags for allocation
2982  *
2983  *	Assert scsi device event asynchronously, given an event type.
2984  */
2985 void sdev_evt_send_simple(struct scsi_device *sdev,
2986 			  enum scsi_device_event evt_type, gfp_t gfpflags)
2987 {
2988 	struct scsi_event *evt = sdev_evt_alloc(evt_type, gfpflags);
2989 	if (!evt) {
2990 		sdev_printk(KERN_ERR, sdev, "event %d eaten due to OOM\n",
2991 			    evt_type);
2992 		return;
2993 	}
2994 
2995 	sdev_evt_send(sdev, evt);
2996 }
2997 EXPORT_SYMBOL_GPL(sdev_evt_send_simple);
2998 
2999 /**
3000  * scsi_request_fn_active() - number of kernel threads inside scsi_request_fn()
3001  * @sdev: SCSI device to count the number of scsi_request_fn() callers for.
3002  */
3003 static int scsi_request_fn_active(struct scsi_device *sdev)
3004 {
3005 	struct request_queue *q = sdev->request_queue;
3006 	int request_fn_active;
3007 
3008 	WARN_ON_ONCE(sdev->host->use_blk_mq);
3009 
3010 	spin_lock_irq(q->queue_lock);
3011 	request_fn_active = q->request_fn_active;
3012 	spin_unlock_irq(q->queue_lock);
3013 
3014 	return request_fn_active;
3015 }
3016 
3017 /**
3018  * scsi_wait_for_queuecommand() - wait for ongoing queuecommand() calls
3019  * @sdev: SCSI device pointer.
3020  *
3021  * Wait until the ongoing shost->hostt->queuecommand() calls that are
3022  * invoked from scsi_request_fn() have finished.
3023  */
3024 static void scsi_wait_for_queuecommand(struct scsi_device *sdev)
3025 {
3026 	WARN_ON_ONCE(sdev->host->use_blk_mq);
3027 
3028 	while (scsi_request_fn_active(sdev))
3029 		msleep(20);
3030 }
3031 
3032 /**
3033  *	scsi_device_quiesce - Block user issued commands.
3034  *	@sdev:	scsi device to quiesce.
3035  *
3036  *	This works by trying to transition to the SDEV_QUIESCE state
3037  *	(which must be a legal transition).  When the device is in this
3038  *	state, only special requests will be accepted, all others will
3039  *	be deferred.  Since special requests may also be requeued requests,
3040  *	a successful return doesn't guarantee the device will be
3041  *	totally quiescent.
3042  *
3043  *	Must be called with user context, may sleep.
3044  *
3045  *	Returns zero if unsuccessful or an error if not.
3046  */
3047 int
3048 scsi_device_quiesce(struct scsi_device *sdev)
3049 {
3050 	struct request_queue *q = sdev->request_queue;
3051 	int err;
3052 
3053 	/*
3054 	 * It is allowed to call scsi_device_quiesce() multiple times from
3055 	 * the same context but concurrent scsi_device_quiesce() calls are
3056 	 * not allowed.
3057 	 */
3058 	WARN_ON_ONCE(sdev->quiesced_by && sdev->quiesced_by != current);
3059 
3060 	blk_set_preempt_only(q);
3061 
3062 	blk_mq_freeze_queue(q);
3063 	/*
3064 	 * Ensure that the effect of blk_set_preempt_only() will be visible
3065 	 * for percpu_ref_tryget() callers that occur after the queue
3066 	 * unfreeze even if the queue was already frozen before this function
3067 	 * was called. See also https://lwn.net/Articles/573497/.
3068 	 */
3069 	synchronize_rcu();
3070 	blk_mq_unfreeze_queue(q);
3071 
3072 	mutex_lock(&sdev->state_mutex);
3073 	err = scsi_device_set_state(sdev, SDEV_QUIESCE);
3074 	if (err == 0)
3075 		sdev->quiesced_by = current;
3076 	else
3077 		blk_clear_preempt_only(q);
3078 	mutex_unlock(&sdev->state_mutex);
3079 
3080 	return err;
3081 }
3082 EXPORT_SYMBOL(scsi_device_quiesce);
3083 
3084 /**
3085  *	scsi_device_resume - Restart user issued commands to a quiesced device.
3086  *	@sdev:	scsi device to resume.
3087  *
3088  *	Moves the device from quiesced back to running and restarts the
3089  *	queues.
3090  *
3091  *	Must be called with user context, may sleep.
3092  */
3093 void scsi_device_resume(struct scsi_device *sdev)
3094 {
3095 	/* check if the device state was mutated prior to resume, and if
3096 	 * so assume the state is being managed elsewhere (for example
3097 	 * device deleted during suspend)
3098 	 */
3099 	mutex_lock(&sdev->state_mutex);
3100 	WARN_ON_ONCE(!sdev->quiesced_by);
3101 	sdev->quiesced_by = NULL;
3102 	blk_clear_preempt_only(sdev->request_queue);
3103 	if (sdev->sdev_state == SDEV_QUIESCE)
3104 		scsi_device_set_state(sdev, SDEV_RUNNING);
3105 	mutex_unlock(&sdev->state_mutex);
3106 }
3107 EXPORT_SYMBOL(scsi_device_resume);
3108 
3109 static void
3110 device_quiesce_fn(struct scsi_device *sdev, void *data)
3111 {
3112 	scsi_device_quiesce(sdev);
3113 }
3114 
3115 void
3116 scsi_target_quiesce(struct scsi_target *starget)
3117 {
3118 	starget_for_each_device(starget, NULL, device_quiesce_fn);
3119 }
3120 EXPORT_SYMBOL(scsi_target_quiesce);
3121 
3122 static void
3123 device_resume_fn(struct scsi_device *sdev, void *data)
3124 {
3125 	scsi_device_resume(sdev);
3126 }
3127 
3128 void
3129 scsi_target_resume(struct scsi_target *starget)
3130 {
3131 	starget_for_each_device(starget, NULL, device_resume_fn);
3132 }
3133 EXPORT_SYMBOL(scsi_target_resume);
3134 
3135 /**
3136  * scsi_internal_device_block_nowait - try to transition to the SDEV_BLOCK state
3137  * @sdev: device to block
3138  *
3139  * Pause SCSI command processing on the specified device. Does not sleep.
3140  *
3141  * Returns zero if successful or a negative error code upon failure.
3142  *
3143  * Notes:
3144  * This routine transitions the device to the SDEV_BLOCK state (which must be
3145  * a legal transition). When the device is in this state, command processing
3146  * is paused until the device leaves the SDEV_BLOCK state. See also
3147  * scsi_internal_device_unblock_nowait().
3148  */
3149 int scsi_internal_device_block_nowait(struct scsi_device *sdev)
3150 {
3151 	struct request_queue *q = sdev->request_queue;
3152 	unsigned long flags;
3153 	int err = 0;
3154 
3155 	err = scsi_device_set_state(sdev, SDEV_BLOCK);
3156 	if (err) {
3157 		err = scsi_device_set_state(sdev, SDEV_CREATED_BLOCK);
3158 
3159 		if (err)
3160 			return err;
3161 	}
3162 
3163 	/*
3164 	 * The device has transitioned to SDEV_BLOCK.  Stop the
3165 	 * block layer from calling the midlayer with this device's
3166 	 * request queue.
3167 	 */
3168 	if (q->mq_ops) {
3169 		blk_mq_quiesce_queue_nowait(q);
3170 	} else {
3171 		spin_lock_irqsave(q->queue_lock, flags);
3172 		blk_stop_queue(q);
3173 		spin_unlock_irqrestore(q->queue_lock, flags);
3174 	}
3175 
3176 	return 0;
3177 }
3178 EXPORT_SYMBOL_GPL(scsi_internal_device_block_nowait);
3179 
3180 /**
3181  * scsi_internal_device_block - try to transition to the SDEV_BLOCK state
3182  * @sdev: device to block
3183  *
3184  * Pause SCSI command processing on the specified device and wait until all
3185  * ongoing scsi_request_fn() / scsi_queue_rq() calls have finished. May sleep.
3186  *
3187  * Returns zero if successful or a negative error code upon failure.
3188  *
3189  * Note:
3190  * This routine transitions the device to the SDEV_BLOCK state (which must be
3191  * a legal transition). When the device is in this state, command processing
3192  * is paused until the device leaves the SDEV_BLOCK state. See also
3193  * scsi_internal_device_unblock().
3194  *
3195  * To do: avoid that scsi_send_eh_cmnd() calls queuecommand() after
3196  * scsi_internal_device_block() has blocked a SCSI device and also
3197  * remove the rport mutex lock and unlock calls from srp_queuecommand().
3198  */
3199 static int scsi_internal_device_block(struct scsi_device *sdev)
3200 {
3201 	struct request_queue *q = sdev->request_queue;
3202 	int err;
3203 
3204 	mutex_lock(&sdev->state_mutex);
3205 	err = scsi_internal_device_block_nowait(sdev);
3206 	if (err == 0) {
3207 		if (q->mq_ops)
3208 			blk_mq_quiesce_queue(q);
3209 		else
3210 			scsi_wait_for_queuecommand(sdev);
3211 	}
3212 	mutex_unlock(&sdev->state_mutex);
3213 
3214 	return err;
3215 }
3216 
3217 void scsi_start_queue(struct scsi_device *sdev)
3218 {
3219 	struct request_queue *q = sdev->request_queue;
3220 	unsigned long flags;
3221 
3222 	if (q->mq_ops) {
3223 		blk_mq_unquiesce_queue(q);
3224 	} else {
3225 		spin_lock_irqsave(q->queue_lock, flags);
3226 		blk_start_queue(q);
3227 		spin_unlock_irqrestore(q->queue_lock, flags);
3228 	}
3229 }
3230 
3231 /**
3232  * scsi_internal_device_unblock_nowait - resume a device after a block request
3233  * @sdev:	device to resume
3234  * @new_state:	state to set the device to after unblocking
3235  *
3236  * Restart the device queue for a previously suspended SCSI device. Does not
3237  * sleep.
3238  *
3239  * Returns zero if successful or a negative error code upon failure.
3240  *
3241  * Notes:
3242  * This routine transitions the device to the SDEV_RUNNING state or to one of
3243  * the offline states (which must be a legal transition) allowing the midlayer
3244  * to goose the queue for this device.
3245  */
3246 int scsi_internal_device_unblock_nowait(struct scsi_device *sdev,
3247 					enum scsi_device_state new_state)
3248 {
3249 	/*
3250 	 * Try to transition the scsi device to SDEV_RUNNING or one of the
3251 	 * offlined states and goose the device queue if successful.
3252 	 */
3253 	switch (sdev->sdev_state) {
3254 	case SDEV_BLOCK:
3255 	case SDEV_TRANSPORT_OFFLINE:
3256 		sdev->sdev_state = new_state;
3257 		break;
3258 	case SDEV_CREATED_BLOCK:
3259 		if (new_state == SDEV_TRANSPORT_OFFLINE ||
3260 		    new_state == SDEV_OFFLINE)
3261 			sdev->sdev_state = new_state;
3262 		else
3263 			sdev->sdev_state = SDEV_CREATED;
3264 		break;
3265 	case SDEV_CANCEL:
3266 	case SDEV_OFFLINE:
3267 		break;
3268 	default:
3269 		return -EINVAL;
3270 	}
3271 	scsi_start_queue(sdev);
3272 
3273 	return 0;
3274 }
3275 EXPORT_SYMBOL_GPL(scsi_internal_device_unblock_nowait);
3276 
3277 /**
3278  * scsi_internal_device_unblock - resume a device after a block request
3279  * @sdev:	device to resume
3280  * @new_state:	state to set the device to after unblocking
3281  *
3282  * Restart the device queue for a previously suspended SCSI device. May sleep.
3283  *
3284  * Returns zero if successful or a negative error code upon failure.
3285  *
3286  * Notes:
3287  * This routine transitions the device to the SDEV_RUNNING state or to one of
3288  * the offline states (which must be a legal transition) allowing the midlayer
3289  * to goose the queue for this device.
3290  */
3291 static int scsi_internal_device_unblock(struct scsi_device *sdev,
3292 					enum scsi_device_state new_state)
3293 {
3294 	int ret;
3295 
3296 	mutex_lock(&sdev->state_mutex);
3297 	ret = scsi_internal_device_unblock_nowait(sdev, new_state);
3298 	mutex_unlock(&sdev->state_mutex);
3299 
3300 	return ret;
3301 }
3302 
3303 static void
3304 device_block(struct scsi_device *sdev, void *data)
3305 {
3306 	scsi_internal_device_block(sdev);
3307 }
3308 
3309 static int
3310 target_block(struct device *dev, void *data)
3311 {
3312 	if (scsi_is_target_device(dev))
3313 		starget_for_each_device(to_scsi_target(dev), NULL,
3314 					device_block);
3315 	return 0;
3316 }
3317 
3318 void
3319 scsi_target_block(struct device *dev)
3320 {
3321 	if (scsi_is_target_device(dev))
3322 		starget_for_each_device(to_scsi_target(dev), NULL,
3323 					device_block);
3324 	else
3325 		device_for_each_child(dev, NULL, target_block);
3326 }
3327 EXPORT_SYMBOL_GPL(scsi_target_block);
3328 
3329 static void
3330 device_unblock(struct scsi_device *sdev, void *data)
3331 {
3332 	scsi_internal_device_unblock(sdev, *(enum scsi_device_state *)data);
3333 }
3334 
3335 static int
3336 target_unblock(struct device *dev, void *data)
3337 {
3338 	if (scsi_is_target_device(dev))
3339 		starget_for_each_device(to_scsi_target(dev), data,
3340 					device_unblock);
3341 	return 0;
3342 }
3343 
3344 void
3345 scsi_target_unblock(struct device *dev, enum scsi_device_state new_state)
3346 {
3347 	if (scsi_is_target_device(dev))
3348 		starget_for_each_device(to_scsi_target(dev), &new_state,
3349 					device_unblock);
3350 	else
3351 		device_for_each_child(dev, &new_state, target_unblock);
3352 }
3353 EXPORT_SYMBOL_GPL(scsi_target_unblock);
3354 
3355 /**
3356  * scsi_kmap_atomic_sg - find and atomically map an sg-elemnt
3357  * @sgl:	scatter-gather list
3358  * @sg_count:	number of segments in sg
3359  * @offset:	offset in bytes into sg, on return offset into the mapped area
3360  * @len:	bytes to map, on return number of bytes mapped
3361  *
3362  * Returns virtual address of the start of the mapped page
3363  */
3364 void *scsi_kmap_atomic_sg(struct scatterlist *sgl, int sg_count,
3365 			  size_t *offset, size_t *len)
3366 {
3367 	int i;
3368 	size_t sg_len = 0, len_complete = 0;
3369 	struct scatterlist *sg;
3370 	struct page *page;
3371 
3372 	WARN_ON(!irqs_disabled());
3373 
3374 	for_each_sg(sgl, sg, sg_count, i) {
3375 		len_complete = sg_len; /* Complete sg-entries */
3376 		sg_len += sg->length;
3377 		if (sg_len > *offset)
3378 			break;
3379 	}
3380 
3381 	if (unlikely(i == sg_count)) {
3382 		printk(KERN_ERR "%s: Bytes in sg: %zu, requested offset %zu, "
3383 			"elements %d\n",
3384 		       __func__, sg_len, *offset, sg_count);
3385 		WARN_ON(1);
3386 		return NULL;
3387 	}
3388 
3389 	/* Offset starting from the beginning of first page in this sg-entry */
3390 	*offset = *offset - len_complete + sg->offset;
3391 
3392 	/* Assumption: contiguous pages can be accessed as "page + i" */
3393 	page = nth_page(sg_page(sg), (*offset >> PAGE_SHIFT));
3394 	*offset &= ~PAGE_MASK;
3395 
3396 	/* Bytes in this sg-entry from *offset to the end of the page */
3397 	sg_len = PAGE_SIZE - *offset;
3398 	if (*len > sg_len)
3399 		*len = sg_len;
3400 
3401 	return kmap_atomic(page);
3402 }
3403 EXPORT_SYMBOL(scsi_kmap_atomic_sg);
3404 
3405 /**
3406  * scsi_kunmap_atomic_sg - atomically unmap a virtual address, previously mapped with scsi_kmap_atomic_sg
3407  * @virt:	virtual address to be unmapped
3408  */
3409 void scsi_kunmap_atomic_sg(void *virt)
3410 {
3411 	kunmap_atomic(virt);
3412 }
3413 EXPORT_SYMBOL(scsi_kunmap_atomic_sg);
3414 
3415 void sdev_disable_disk_events(struct scsi_device *sdev)
3416 {
3417 	atomic_inc(&sdev->disk_events_disable_depth);
3418 }
3419 EXPORT_SYMBOL(sdev_disable_disk_events);
3420 
3421 void sdev_enable_disk_events(struct scsi_device *sdev)
3422 {
3423 	if (WARN_ON_ONCE(atomic_read(&sdev->disk_events_disable_depth) <= 0))
3424 		return;
3425 	atomic_dec(&sdev->disk_events_disable_depth);
3426 }
3427 EXPORT_SYMBOL(sdev_enable_disk_events);
3428 
3429 /**
3430  * scsi_vpd_lun_id - return a unique device identification
3431  * @sdev: SCSI device
3432  * @id:   buffer for the identification
3433  * @id_len:  length of the buffer
3434  *
3435  * Copies a unique device identification into @id based
3436  * on the information in the VPD page 0x83 of the device.
3437  * The string will be formatted as a SCSI name string.
3438  *
3439  * Returns the length of the identification or error on failure.
3440  * If the identifier is longer than the supplied buffer the actual
3441  * identifier length is returned and the buffer is not zero-padded.
3442  */
3443 int scsi_vpd_lun_id(struct scsi_device *sdev, char *id, size_t id_len)
3444 {
3445 	u8 cur_id_type = 0xff;
3446 	u8 cur_id_size = 0;
3447 	const unsigned char *d, *cur_id_str;
3448 	const struct scsi_vpd *vpd_pg83;
3449 	int id_size = -EINVAL;
3450 
3451 	rcu_read_lock();
3452 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3453 	if (!vpd_pg83) {
3454 		rcu_read_unlock();
3455 		return -ENXIO;
3456 	}
3457 
3458 	/*
3459 	 * Look for the correct descriptor.
3460 	 * Order of preference for lun descriptor:
3461 	 * - SCSI name string
3462 	 * - NAA IEEE Registered Extended
3463 	 * - EUI-64 based 16-byte
3464 	 * - EUI-64 based 12-byte
3465 	 * - NAA IEEE Registered
3466 	 * - NAA IEEE Extended
3467 	 * - T10 Vendor ID
3468 	 * as longer descriptors reduce the likelyhood
3469 	 * of identification clashes.
3470 	 */
3471 
3472 	/* The id string must be at least 20 bytes + terminating NULL byte */
3473 	if (id_len < 21) {
3474 		rcu_read_unlock();
3475 		return -EINVAL;
3476 	}
3477 
3478 	memset(id, 0, id_len);
3479 	d = vpd_pg83->data + 4;
3480 	while (d < vpd_pg83->data + vpd_pg83->len) {
3481 		/* Skip designators not referring to the LUN */
3482 		if ((d[1] & 0x30) != 0x00)
3483 			goto next_desig;
3484 
3485 		switch (d[1] & 0xf) {
3486 		case 0x1:
3487 			/* T10 Vendor ID */
3488 			if (cur_id_size > d[3])
3489 				break;
3490 			/* Prefer anything */
3491 			if (cur_id_type > 0x01 && cur_id_type != 0xff)
3492 				break;
3493 			cur_id_size = d[3];
3494 			if (cur_id_size + 4 > id_len)
3495 				cur_id_size = id_len - 4;
3496 			cur_id_str = d + 4;
3497 			cur_id_type = d[1] & 0xf;
3498 			id_size = snprintf(id, id_len, "t10.%*pE",
3499 					   cur_id_size, cur_id_str);
3500 			break;
3501 		case 0x2:
3502 			/* EUI-64 */
3503 			if (cur_id_size > d[3])
3504 				break;
3505 			/* Prefer NAA IEEE Registered Extended */
3506 			if (cur_id_type == 0x3 &&
3507 			    cur_id_size == d[3])
3508 				break;
3509 			cur_id_size = d[3];
3510 			cur_id_str = d + 4;
3511 			cur_id_type = d[1] & 0xf;
3512 			switch (cur_id_size) {
3513 			case 8:
3514 				id_size = snprintf(id, id_len,
3515 						   "eui.%8phN",
3516 						   cur_id_str);
3517 				break;
3518 			case 12:
3519 				id_size = snprintf(id, id_len,
3520 						   "eui.%12phN",
3521 						   cur_id_str);
3522 				break;
3523 			case 16:
3524 				id_size = snprintf(id, id_len,
3525 						   "eui.%16phN",
3526 						   cur_id_str);
3527 				break;
3528 			default:
3529 				cur_id_size = 0;
3530 				break;
3531 			}
3532 			break;
3533 		case 0x3:
3534 			/* NAA */
3535 			if (cur_id_size > d[3])
3536 				break;
3537 			cur_id_size = d[3];
3538 			cur_id_str = d + 4;
3539 			cur_id_type = d[1] & 0xf;
3540 			switch (cur_id_size) {
3541 			case 8:
3542 				id_size = snprintf(id, id_len,
3543 						   "naa.%8phN",
3544 						   cur_id_str);
3545 				break;
3546 			case 16:
3547 				id_size = snprintf(id, id_len,
3548 						   "naa.%16phN",
3549 						   cur_id_str);
3550 				break;
3551 			default:
3552 				cur_id_size = 0;
3553 				break;
3554 			}
3555 			break;
3556 		case 0x8:
3557 			/* SCSI name string */
3558 			if (cur_id_size + 4 > d[3])
3559 				break;
3560 			/* Prefer others for truncated descriptor */
3561 			if (cur_id_size && d[3] > id_len)
3562 				break;
3563 			cur_id_size = id_size = d[3];
3564 			cur_id_str = d + 4;
3565 			cur_id_type = d[1] & 0xf;
3566 			if (cur_id_size >= id_len)
3567 				cur_id_size = id_len - 1;
3568 			memcpy(id, cur_id_str, cur_id_size);
3569 			/* Decrease priority for truncated descriptor */
3570 			if (cur_id_size != id_size)
3571 				cur_id_size = 6;
3572 			break;
3573 		default:
3574 			break;
3575 		}
3576 next_desig:
3577 		d += d[3] + 4;
3578 	}
3579 	rcu_read_unlock();
3580 
3581 	return id_size;
3582 }
3583 EXPORT_SYMBOL(scsi_vpd_lun_id);
3584 
3585 /*
3586  * scsi_vpd_tpg_id - return a target port group identifier
3587  * @sdev: SCSI device
3588  *
3589  * Returns the Target Port Group identifier from the information
3590  * froom VPD page 0x83 of the device.
3591  *
3592  * Returns the identifier or error on failure.
3593  */
3594 int scsi_vpd_tpg_id(struct scsi_device *sdev, int *rel_id)
3595 {
3596 	const unsigned char *d;
3597 	const struct scsi_vpd *vpd_pg83;
3598 	int group_id = -EAGAIN, rel_port = -1;
3599 
3600 	rcu_read_lock();
3601 	vpd_pg83 = rcu_dereference(sdev->vpd_pg83);
3602 	if (!vpd_pg83) {
3603 		rcu_read_unlock();
3604 		return -ENXIO;
3605 	}
3606 
3607 	d = vpd_pg83->data + 4;
3608 	while (d < vpd_pg83->data + vpd_pg83->len) {
3609 		switch (d[1] & 0xf) {
3610 		case 0x4:
3611 			/* Relative target port */
3612 			rel_port = get_unaligned_be16(&d[6]);
3613 			break;
3614 		case 0x5:
3615 			/* Target port group */
3616 			group_id = get_unaligned_be16(&d[6]);
3617 			break;
3618 		default:
3619 			break;
3620 		}
3621 		d += d[3] + 4;
3622 	}
3623 	rcu_read_unlock();
3624 
3625 	if (group_id >= 0 && rel_id && rel_port != -1)
3626 		*rel_id = rel_port;
3627 
3628 	return group_id;
3629 }
3630 EXPORT_SYMBOL(scsi_vpd_tpg_id);
3631