xref: /linux/drivers/scsi/csiostor/csio_hw.c (revision 6ed7ffddcf61f668114edb676417e5fb33773b59)
1 /*
2  * This file is part of the Chelsio FCoE driver for Linux.
3  *
4  * Copyright (c) 2008-2012 Chelsio Communications, Inc. All rights reserved.
5  *
6  * This software is available to you under a choice of one of two
7  * licenses.  You may choose to be licensed under the terms of the GNU
8  * General Public License (GPL) Version 2, available from the file
9  * COPYING in the main directory of this source tree, or the
10  * OpenIB.org BSD license below:
11  *
12  *     Redistribution and use in source and binary forms, with or
13  *     without modification, are permitted provided that the following
14  *     conditions are met:
15  *
16  *      - Redistributions of source code must retain the above
17  *        copyright notice, this list of conditions and the following
18  *        disclaimer.
19  *
20  *      - Redistributions in binary form must reproduce the above
21  *        copyright notice, this list of conditions and the following
22  *        disclaimer in the documentation and/or other materials
23  *        provided with the distribution.
24  *
25  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
26  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
27  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
28  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
29  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
30  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
31  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
32  * SOFTWARE.
33  */
34 
35 #include <linux/pci.h>
36 #include <linux/pci_regs.h>
37 #include <linux/firmware.h>
38 #include <linux/stddef.h>
39 #include <linux/delay.h>
40 #include <linux/string.h>
41 #include <linux/compiler.h>
42 #include <linux/jiffies.h>
43 #include <linux/kernel.h>
44 #include <linux/log2.h>
45 
46 #include "csio_hw.h"
47 #include "csio_lnode.h"
48 #include "csio_rnode.h"
49 
50 int csio_force_master;
51 int csio_dbg_level = 0xFEFF;
52 unsigned int csio_port_mask = 0xf;
53 
54 /* Default FW event queue entries. */
55 static uint32_t csio_evtq_sz = CSIO_EVTQ_SIZE;
56 
57 /* Default MSI param level */
58 int csio_msi = 2;
59 
60 /* FCoE function instances */
61 static int dev_num;
62 
63 /* FCoE Adapter types & its description */
64 static const struct csio_adap_desc csio_fcoe_adapters[] = {
65 	{"T440-Dbg 10G", "Chelsio T440-Dbg 10G [FCoE]"},
66 	{"T420-CR 10G", "Chelsio T420-CR 10G [FCoE]"},
67 	{"T422-CR 10G/1G", "Chelsio T422-CR 10G/1G [FCoE]"},
68 	{"T440-CR 10G", "Chelsio T440-CR 10G [FCoE]"},
69 	{"T420-BCH 10G", "Chelsio T420-BCH 10G [FCoE]"},
70 	{"T440-BCH 10G", "Chelsio T440-BCH 10G [FCoE]"},
71 	{"T440-CH 10G", "Chelsio T440-CH 10G [FCoE]"},
72 	{"T420-SO 10G", "Chelsio T420-SO 10G [FCoE]"},
73 	{"T420-CX4 10G", "Chelsio T420-CX4 10G [FCoE]"},
74 	{"T420-BT 10G", "Chelsio T420-BT 10G [FCoE]"},
75 	{"T404-BT 1G", "Chelsio T404-BT 1G [FCoE]"},
76 	{"B420-SR 10G", "Chelsio B420-SR 10G [FCoE]"},
77 	{"B404-BT 1G", "Chelsio B404-BT 1G [FCoE]"},
78 	{"T480-CR 10G", "Chelsio T480-CR 10G [FCoE]"},
79 	{"T440-LP-CR 10G", "Chelsio T440-LP-CR 10G [FCoE]"},
80 	{"T4 FPGA", "Chelsio T4 FPGA [FCoE]"}
81 };
82 
83 static void csio_mgmtm_cleanup(struct csio_mgmtm *);
84 static void csio_hw_mbm_cleanup(struct csio_hw *);
85 
86 /* State machine forward declarations */
87 static void csio_hws_uninit(struct csio_hw *, enum csio_hw_ev);
88 static void csio_hws_configuring(struct csio_hw *, enum csio_hw_ev);
89 static void csio_hws_initializing(struct csio_hw *, enum csio_hw_ev);
90 static void csio_hws_ready(struct csio_hw *, enum csio_hw_ev);
91 static void csio_hws_quiescing(struct csio_hw *, enum csio_hw_ev);
92 static void csio_hws_quiesced(struct csio_hw *, enum csio_hw_ev);
93 static void csio_hws_resetting(struct csio_hw *, enum csio_hw_ev);
94 static void csio_hws_removing(struct csio_hw *, enum csio_hw_ev);
95 static void csio_hws_pcierr(struct csio_hw *, enum csio_hw_ev);
96 
97 static void csio_hw_initialize(struct csio_hw *hw);
98 static void csio_evtq_stop(struct csio_hw *hw);
99 static void csio_evtq_start(struct csio_hw *hw);
100 
101 int csio_is_hw_ready(struct csio_hw *hw)
102 {
103 	return csio_match_state(hw, csio_hws_ready);
104 }
105 
106 int csio_is_hw_removing(struct csio_hw *hw)
107 {
108 	return csio_match_state(hw, csio_hws_removing);
109 }
110 
111 
112 /*
113  *	csio_hw_wait_op_done_val - wait until an operation is completed
114  *	@hw: the HW module
115  *	@reg: the register to check for completion
116  *	@mask: a single-bit field within @reg that indicates completion
117  *	@polarity: the value of the field when the operation is completed
118  *	@attempts: number of check iterations
119  *	@delay: delay in usecs between iterations
120  *	@valp: where to store the value of the register at completion time
121  *
122  *	Wait until an operation is completed by checking a bit in a register
123  *	up to @attempts times.  If @valp is not NULL the value of the register
124  *	at the time it indicated completion is stored there.  Returns 0 if the
125  *	operation completes and	-EAGAIN	otherwise.
126  */
127 static int
128 csio_hw_wait_op_done_val(struct csio_hw *hw, int reg, uint32_t mask,
129 			 int polarity, int attempts, int delay, uint32_t *valp)
130 {
131 	uint32_t val;
132 	while (1) {
133 		val = csio_rd_reg32(hw, reg);
134 
135 		if (!!(val & mask) == polarity) {
136 			if (valp)
137 				*valp = val;
138 			return 0;
139 		}
140 
141 		if (--attempts == 0)
142 			return -EAGAIN;
143 		if (delay)
144 			udelay(delay);
145 	}
146 }
147 
148 void
149 csio_set_reg_field(struct csio_hw *hw, uint32_t reg, uint32_t mask,
150 		   uint32_t value)
151 {
152 	uint32_t val = csio_rd_reg32(hw, reg) & ~mask;
153 
154 	csio_wr_reg32(hw, val | value, reg);
155 	/* Flush */
156 	csio_rd_reg32(hw, reg);
157 
158 }
159 
160 /*
161  *	csio_hw_mc_read - read from MC through backdoor accesses
162  *	@hw: the hw module
163  *	@addr: address of first byte requested
164  *	@data: 64 bytes of data containing the requested address
165  *	@ecc: where to store the corresponding 64-bit ECC word
166  *
167  *	Read 64 bytes of data from MC starting at a 64-byte-aligned address
168  *	that covers the requested address @addr.  If @parity is not %NULL it
169  *	is assigned the 64-bit ECC word for the read data.
170  */
171 int
172 csio_hw_mc_read(struct csio_hw *hw, uint32_t addr, __be32 *data,
173 		uint64_t *ecc)
174 {
175 	int i;
176 
177 	if (csio_rd_reg32(hw, MC_BIST_CMD) & START_BIST)
178 		return -EBUSY;
179 	csio_wr_reg32(hw, addr & ~0x3fU, MC_BIST_CMD_ADDR);
180 	csio_wr_reg32(hw, 64, MC_BIST_CMD_LEN);
181 	csio_wr_reg32(hw, 0xc, MC_BIST_DATA_PATTERN);
182 	csio_wr_reg32(hw, BIST_OPCODE(1) | START_BIST |  BIST_CMD_GAP(1),
183 		      MC_BIST_CMD);
184 	i = csio_hw_wait_op_done_val(hw, MC_BIST_CMD, START_BIST,
185 		 0, 10, 1, NULL);
186 	if (i)
187 		return i;
188 
189 #define MC_DATA(i) MC_BIST_STATUS_REG(MC_BIST_STATUS_RDATA, i)
190 
191 	for (i = 15; i >= 0; i--)
192 		*data++ = htonl(csio_rd_reg32(hw, MC_DATA(i)));
193 	if (ecc)
194 		*ecc = csio_rd_reg64(hw, MC_DATA(16));
195 #undef MC_DATA
196 	return 0;
197 }
198 
199 /*
200  *	csio_hw_edc_read - read from EDC through backdoor accesses
201  *	@hw: the hw module
202  *	@idx: which EDC to access
203  *	@addr: address of first byte requested
204  *	@data: 64 bytes of data containing the requested address
205  *	@ecc: where to store the corresponding 64-bit ECC word
206  *
207  *	Read 64 bytes of data from EDC starting at a 64-byte-aligned address
208  *	that covers the requested address @addr.  If @parity is not %NULL it
209  *	is assigned the 64-bit ECC word for the read data.
210  */
211 int
212 csio_hw_edc_read(struct csio_hw *hw, int idx, uint32_t addr, __be32 *data,
213 		uint64_t *ecc)
214 {
215 	int i;
216 
217 	idx *= EDC_STRIDE;
218 	if (csio_rd_reg32(hw, EDC_BIST_CMD + idx) & START_BIST)
219 		return -EBUSY;
220 	csio_wr_reg32(hw, addr & ~0x3fU, EDC_BIST_CMD_ADDR + idx);
221 	csio_wr_reg32(hw, 64, EDC_BIST_CMD_LEN + idx);
222 	csio_wr_reg32(hw, 0xc, EDC_BIST_DATA_PATTERN + idx);
223 	csio_wr_reg32(hw, BIST_OPCODE(1) | BIST_CMD_GAP(1) | START_BIST,
224 		     EDC_BIST_CMD + idx);
225 	i = csio_hw_wait_op_done_val(hw, EDC_BIST_CMD + idx, START_BIST,
226 		 0, 10, 1, NULL);
227 	if (i)
228 		return i;
229 
230 #define EDC_DATA(i) (EDC_BIST_STATUS_REG(EDC_BIST_STATUS_RDATA, i) + idx)
231 
232 	for (i = 15; i >= 0; i--)
233 		*data++ = htonl(csio_rd_reg32(hw, EDC_DATA(i)));
234 	if (ecc)
235 		*ecc = csio_rd_reg64(hw, EDC_DATA(16));
236 #undef EDC_DATA
237 	return 0;
238 }
239 
240 /*
241  *      csio_mem_win_rw - read/write memory through PCIE memory window
242  *      @hw: the adapter
243  *      @addr: address of first byte requested
244  *      @data: MEMWIN0_APERTURE bytes of data containing the requested address
245  *      @dir: direction of transfer 1 => read, 0 => write
246  *
247  *      Read/write MEMWIN0_APERTURE bytes of data from MC starting at a
248  *      MEMWIN0_APERTURE-byte-aligned address that covers the requested
249  *      address @addr.
250  */
251 static int
252 csio_mem_win_rw(struct csio_hw *hw, u32 addr, u32 *data, int dir)
253 {
254 	int i;
255 
256 	/*
257 	 * Setup offset into PCIE memory window.  Address must be a
258 	 * MEMWIN0_APERTURE-byte-aligned address.  (Read back MA register to
259 	 * ensure that changes propagate before we attempt to use the new
260 	 * values.)
261 	 */
262 	csio_wr_reg32(hw, addr & ~(MEMWIN0_APERTURE - 1),
263 			PCIE_MEM_ACCESS_OFFSET);
264 	csio_rd_reg32(hw, PCIE_MEM_ACCESS_OFFSET);
265 
266 	/* Collecting data 4 bytes at a time upto MEMWIN0_APERTURE */
267 	for (i = 0; i < MEMWIN0_APERTURE; i = i + sizeof(__be32)) {
268 		if (dir)
269 			*data++ = csio_rd_reg32(hw, (MEMWIN0_BASE + i));
270 		else
271 			csio_wr_reg32(hw, *data++, (MEMWIN0_BASE + i));
272 	}
273 
274 	return 0;
275 }
276 
277 /*
278  *      csio_memory_rw - read/write EDC 0, EDC 1 or MC via PCIE memory window
279  *      @hw: the csio_hw
280  *      @mtype: memory type: MEM_EDC0, MEM_EDC1 or MEM_MC
281  *      @addr: address within indicated memory type
282  *      @len: amount of memory to transfer
283  *      @buf: host memory buffer
284  *      @dir: direction of transfer 1 => read, 0 => write
285  *
286  *      Reads/writes an [almost] arbitrary memory region in the firmware: the
287  *      firmware memory address, length and host buffer must be aligned on
288  *      32-bit boudaries.  The memory is transferred as a raw byte sequence
289  *      from/to the firmware's memory.  If this memory contains data
290  *      structures which contain multi-byte integers, it's the callers
291  *      responsibility to perform appropriate byte order conversions.
292  */
293 static int
294 csio_memory_rw(struct csio_hw *hw, int mtype, u32 addr, u32 len,
295 		uint32_t *buf, int dir)
296 {
297 	uint32_t pos, start, end, offset, memoffset;
298 	int ret;
299 	uint32_t *data;
300 
301 	/*
302 	 * Argument sanity checks ...
303 	 */
304 	if ((addr & 0x3) || (len & 0x3))
305 		return -EINVAL;
306 
307 	data = kzalloc(MEMWIN0_APERTURE, GFP_KERNEL);
308 	if (!data)
309 		return -ENOMEM;
310 
311 	/* Offset into the region of memory which is being accessed
312 	 * MEM_EDC0 = 0
313 	 * MEM_EDC1 = 1
314 	 * MEM_MC   = 2
315 	 */
316 	memoffset = (mtype * (5 * 1024 * 1024));
317 
318 	/* Determine the PCIE_MEM_ACCESS_OFFSET */
319 	addr = addr + memoffset;
320 
321 	/*
322 	 * The underlaying EDC/MC read routines read MEMWIN0_APERTURE bytes
323 	 * at a time so we need to round down the start and round up the end.
324 	 * We'll start copying out of the first line at (addr - start) a word
325 	 * at a time.
326 	 */
327 	start = addr & ~(MEMWIN0_APERTURE-1);
328 	end = (addr + len + MEMWIN0_APERTURE-1) & ~(MEMWIN0_APERTURE-1);
329 	offset = (addr - start)/sizeof(__be32);
330 
331 	for (pos = start; pos < end; pos += MEMWIN0_APERTURE, offset = 0) {
332 		/*
333 		 * If we're writing, copy the data from the caller's memory
334 		 * buffer
335 		 */
336 		if (!dir) {
337 			/*
338 			 * If we're doing a partial write, then we need to do
339 			 * a read-modify-write ...
340 			 */
341 			if (offset || len < MEMWIN0_APERTURE) {
342 				ret = csio_mem_win_rw(hw, pos, data, 1);
343 				if (ret) {
344 					kfree(data);
345 					return ret;
346 				}
347 			}
348 			while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
349 								len > 0) {
350 				data[offset++] = *buf++;
351 				len -= sizeof(__be32);
352 			}
353 		}
354 
355 		/*
356 		 * Transfer a block of memory and bail if there's an error.
357 		 */
358 		ret = csio_mem_win_rw(hw, pos, data, dir);
359 		if (ret) {
360 			kfree(data);
361 			return ret;
362 		}
363 
364 		/*
365 		 * If we're reading, copy the data into the caller's memory
366 		 * buffer.
367 		 */
368 		if (dir)
369 			while (offset < (MEMWIN0_APERTURE/sizeof(__be32)) &&
370 								len > 0) {
371 				*buf++ = data[offset++];
372 				len -= sizeof(__be32);
373 			}
374 	}
375 
376 	kfree(data);
377 
378 	return 0;
379 }
380 
381 static int
382 csio_memory_write(struct csio_hw *hw, int mtype, u32 addr, u32 len, u32 *buf)
383 {
384 	return csio_memory_rw(hw, mtype, addr, len, buf, 0);
385 }
386 
387 /*
388  * EEPROM reads take a few tens of us while writes can take a bit over 5 ms.
389  */
390 #define EEPROM_MAX_RD_POLL 40
391 #define EEPROM_MAX_WR_POLL 6
392 #define EEPROM_STAT_ADDR   0x7bfc
393 #define VPD_BASE           0x400
394 #define VPD_BASE_OLD	   0
395 #define VPD_LEN            512
396 #define VPD_INFO_FLD_HDR_SIZE	3
397 
398 /*
399  *	csio_hw_seeprom_read - read a serial EEPROM location
400  *	@hw: hw to read
401  *	@addr: EEPROM virtual address
402  *	@data: where to store the read data
403  *
404  *	Read a 32-bit word from a location in serial EEPROM using the card's PCI
405  *	VPD capability.  Note that this function must be called with a virtual
406  *	address.
407  */
408 static int
409 csio_hw_seeprom_read(struct csio_hw *hw, uint32_t addr, uint32_t *data)
410 {
411 	uint16_t val = 0;
412 	int attempts = EEPROM_MAX_RD_POLL;
413 	uint32_t base = hw->params.pci.vpd_cap_addr;
414 
415 	if (addr >= EEPROMVSIZE || (addr & 3))
416 		return -EINVAL;
417 
418 	pci_write_config_word(hw->pdev, base + PCI_VPD_ADDR, (uint16_t)addr);
419 
420 	do {
421 		udelay(10);
422 		pci_read_config_word(hw->pdev, base + PCI_VPD_ADDR, &val);
423 	} while (!(val & PCI_VPD_ADDR_F) && --attempts);
424 
425 	if (!(val & PCI_VPD_ADDR_F)) {
426 		csio_err(hw, "reading EEPROM address 0x%x failed\n", addr);
427 		return -EINVAL;
428 	}
429 
430 	pci_read_config_dword(hw->pdev, base + PCI_VPD_DATA, data);
431 	*data = le32_to_cpu(*data);
432 
433 	return 0;
434 }
435 
436 /*
437  * Partial EEPROM Vital Product Data structure.  Includes only the ID and
438  * VPD-R sections.
439  */
440 struct t4_vpd_hdr {
441 	u8  id_tag;
442 	u8  id_len[2];
443 	u8  id_data[ID_LEN];
444 	u8  vpdr_tag;
445 	u8  vpdr_len[2];
446 };
447 
448 /*
449  *	csio_hw_get_vpd_keyword_val - Locates an information field keyword in
450  *				      the VPD
451  *	@v: Pointer to buffered vpd data structure
452  *	@kw: The keyword to search for
453  *
454  *	Returns the value of the information field keyword or
455  *	-EINVAL otherwise.
456  */
457 static int
458 csio_hw_get_vpd_keyword_val(const struct t4_vpd_hdr *v, const char *kw)
459 {
460 	int32_t i;
461 	int32_t offset , len;
462 	const uint8_t *buf = &v->id_tag;
463 	const uint8_t *vpdr_len = &v->vpdr_tag;
464 	offset = sizeof(struct t4_vpd_hdr);
465 	len =  (uint16_t)vpdr_len[1] + ((uint16_t)vpdr_len[2] << 8);
466 
467 	if (len + sizeof(struct t4_vpd_hdr) > VPD_LEN)
468 		return -EINVAL;
469 
470 	for (i = offset; (i + VPD_INFO_FLD_HDR_SIZE) <= (offset + len);) {
471 		if (memcmp(buf + i , kw, 2) == 0) {
472 			i += VPD_INFO_FLD_HDR_SIZE;
473 			return i;
474 		}
475 
476 		i += VPD_INFO_FLD_HDR_SIZE + buf[i+2];
477 	}
478 
479 	return -EINVAL;
480 }
481 
482 static int
483 csio_pci_capability(struct pci_dev *pdev, int cap, int *pos)
484 {
485 	*pos = pci_find_capability(pdev, cap);
486 	if (*pos)
487 		return 0;
488 
489 	return -1;
490 }
491 
492 /*
493  *	csio_hw_get_vpd_params - read VPD parameters from VPD EEPROM
494  *	@hw: HW module
495  *	@p: where to store the parameters
496  *
497  *	Reads card parameters stored in VPD EEPROM.
498  */
499 static int
500 csio_hw_get_vpd_params(struct csio_hw *hw, struct csio_vpd *p)
501 {
502 	int i, ret, ec, sn, addr;
503 	uint8_t *vpd, csum;
504 	const struct t4_vpd_hdr *v;
505 	/* To get around compilation warning from strstrip */
506 	char *s;
507 
508 	if (csio_is_valid_vpd(hw))
509 		return 0;
510 
511 	ret = csio_pci_capability(hw->pdev, PCI_CAP_ID_VPD,
512 				  &hw->params.pci.vpd_cap_addr);
513 	if (ret)
514 		return -EINVAL;
515 
516 	vpd = kzalloc(VPD_LEN, GFP_ATOMIC);
517 	if (vpd == NULL)
518 		return -ENOMEM;
519 
520 	/*
521 	 * Card information normally starts at VPD_BASE but early cards had
522 	 * it at 0.
523 	 */
524 	ret = csio_hw_seeprom_read(hw, VPD_BASE, (uint32_t *)(vpd));
525 	addr = *vpd == 0x82 ? VPD_BASE : VPD_BASE_OLD;
526 
527 	for (i = 0; i < VPD_LEN; i += 4) {
528 		ret = csio_hw_seeprom_read(hw, addr + i, (uint32_t *)(vpd + i));
529 		if (ret) {
530 			kfree(vpd);
531 			return ret;
532 		}
533 	}
534 
535 	/* Reset the VPD flag! */
536 	hw->flags &= (~CSIO_HWF_VPD_VALID);
537 
538 	v = (const struct t4_vpd_hdr *)vpd;
539 
540 #define FIND_VPD_KW(var, name) do { \
541 	var = csio_hw_get_vpd_keyword_val(v, name); \
542 	if (var < 0) { \
543 		csio_err(hw, "missing VPD keyword " name "\n"); \
544 		kfree(vpd); \
545 		return -EINVAL; \
546 	} \
547 } while (0)
548 
549 	FIND_VPD_KW(i, "RV");
550 	for (csum = 0; i >= 0; i--)
551 		csum += vpd[i];
552 
553 	if (csum) {
554 		csio_err(hw, "corrupted VPD EEPROM, actual csum %u\n", csum);
555 		kfree(vpd);
556 		return -EINVAL;
557 	}
558 	FIND_VPD_KW(ec, "EC");
559 	FIND_VPD_KW(sn, "SN");
560 #undef FIND_VPD_KW
561 
562 	memcpy(p->id, v->id_data, ID_LEN);
563 	s = strstrip(p->id);
564 	memcpy(p->ec, vpd + ec, EC_LEN);
565 	s = strstrip(p->ec);
566 	i = vpd[sn - VPD_INFO_FLD_HDR_SIZE + 2];
567 	memcpy(p->sn, vpd + sn, min(i, SERNUM_LEN));
568 	s = strstrip(p->sn);
569 
570 	csio_valid_vpd_copied(hw);
571 
572 	kfree(vpd);
573 	return 0;
574 }
575 
576 /*
577  *	csio_hw_sf1_read - read data from the serial flash
578  *	@hw: the HW module
579  *	@byte_cnt: number of bytes to read
580  *	@cont: whether another operation will be chained
581  *      @lock: whether to lock SF for PL access only
582  *	@valp: where to store the read data
583  *
584  *	Reads up to 4 bytes of data from the serial flash.  The location of
585  *	the read needs to be specified prior to calling this by issuing the
586  *	appropriate commands to the serial flash.
587  */
588 static int
589 csio_hw_sf1_read(struct csio_hw *hw, uint32_t byte_cnt, int32_t cont,
590 		 int32_t lock, uint32_t *valp)
591 {
592 	int ret;
593 
594 	if (!byte_cnt || byte_cnt > 4)
595 		return -EINVAL;
596 	if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
597 		return -EBUSY;
598 
599 	cont = cont ? SF_CONT : 0;
600 	lock = lock ? SF_LOCK : 0;
601 
602 	csio_wr_reg32(hw, lock | cont | BYTECNT(byte_cnt - 1), SF_OP);
603 	ret = csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
604 					 10, NULL);
605 	if (!ret)
606 		*valp = csio_rd_reg32(hw, SF_DATA);
607 	return ret;
608 }
609 
610 /*
611  *	csio_hw_sf1_write - write data to the serial flash
612  *	@hw: the HW module
613  *	@byte_cnt: number of bytes to write
614  *	@cont: whether another operation will be chained
615  *      @lock: whether to lock SF for PL access only
616  *	@val: value to write
617  *
618  *	Writes up to 4 bytes of data to the serial flash.  The location of
619  *	the write needs to be specified prior to calling this by issuing the
620  *	appropriate commands to the serial flash.
621  */
622 static int
623 csio_hw_sf1_write(struct csio_hw *hw, uint32_t byte_cnt, uint32_t cont,
624 		  int32_t lock, uint32_t val)
625 {
626 	if (!byte_cnt || byte_cnt > 4)
627 		return -EINVAL;
628 	if (csio_rd_reg32(hw, SF_OP) & SF_BUSY)
629 		return -EBUSY;
630 
631 	cont = cont ? SF_CONT : 0;
632 	lock = lock ? SF_LOCK : 0;
633 
634 	csio_wr_reg32(hw, val, SF_DATA);
635 	csio_wr_reg32(hw, cont | BYTECNT(byte_cnt - 1) | OP_WR | lock, SF_OP);
636 
637 	return csio_hw_wait_op_done_val(hw, SF_OP, SF_BUSY, 0, SF_ATTEMPTS,
638 					10, NULL);
639 }
640 
641 /*
642  *	csio_hw_flash_wait_op - wait for a flash operation to complete
643  *	@hw: the HW module
644  *	@attempts: max number of polls of the status register
645  *	@delay: delay between polls in ms
646  *
647  *	Wait for a flash operation to complete by polling the status register.
648  */
649 static int
650 csio_hw_flash_wait_op(struct csio_hw *hw, int32_t attempts, int32_t delay)
651 {
652 	int ret;
653 	uint32_t status;
654 
655 	while (1) {
656 		ret = csio_hw_sf1_write(hw, 1, 1, 1, SF_RD_STATUS);
657 		if (ret != 0)
658 			return ret;
659 
660 		ret = csio_hw_sf1_read(hw, 1, 0, 1, &status);
661 		if (ret != 0)
662 			return ret;
663 
664 		if (!(status & 1))
665 			return 0;
666 		if (--attempts == 0)
667 			return -EAGAIN;
668 		if (delay)
669 			msleep(delay);
670 	}
671 }
672 
673 /*
674  *	csio_hw_read_flash - read words from serial flash
675  *	@hw: the HW module
676  *	@addr: the start address for the read
677  *	@nwords: how many 32-bit words to read
678  *	@data: where to store the read data
679  *	@byte_oriented: whether to store data as bytes or as words
680  *
681  *	Read the specified number of 32-bit words from the serial flash.
682  *	If @byte_oriented is set the read data is stored as a byte array
683  *	(i.e., big-endian), otherwise as 32-bit words in the platform's
684  *	natural endianess.
685  */
686 static int
687 csio_hw_read_flash(struct csio_hw *hw, uint32_t addr, uint32_t nwords,
688 		  uint32_t *data, int32_t byte_oriented)
689 {
690 	int ret;
691 
692 	if (addr + nwords * sizeof(uint32_t) > hw->params.sf_size || (addr & 3))
693 		return -EINVAL;
694 
695 	addr = swab32(addr) | SF_RD_DATA_FAST;
696 
697 	ret = csio_hw_sf1_write(hw, 4, 1, 0, addr);
698 	if (ret != 0)
699 		return ret;
700 
701 	ret = csio_hw_sf1_read(hw, 1, 1, 0, data);
702 	if (ret != 0)
703 		return ret;
704 
705 	for ( ; nwords; nwords--, data++) {
706 		ret = csio_hw_sf1_read(hw, 4, nwords > 1, nwords == 1, data);
707 		if (nwords == 1)
708 			csio_wr_reg32(hw, 0, SF_OP);    /* unlock SF */
709 		if (ret)
710 			return ret;
711 		if (byte_oriented)
712 			*data = htonl(*data);
713 	}
714 	return 0;
715 }
716 
717 /*
718  *	csio_hw_write_flash - write up to a page of data to the serial flash
719  *	@hw: the hw
720  *	@addr: the start address to write
721  *	@n: length of data to write in bytes
722  *	@data: the data to write
723  *
724  *	Writes up to a page of data (256 bytes) to the serial flash starting
725  *	at the given address.  All the data must be written to the same page.
726  */
727 static int
728 csio_hw_write_flash(struct csio_hw *hw, uint32_t addr,
729 		    uint32_t n, const uint8_t *data)
730 {
731 	int ret = -EINVAL;
732 	uint32_t buf[64];
733 	uint32_t i, c, left, val, offset = addr & 0xff;
734 
735 	if (addr >= hw->params.sf_size || offset + n > SF_PAGE_SIZE)
736 		return -EINVAL;
737 
738 	val = swab32(addr) | SF_PROG_PAGE;
739 
740 	ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
741 	if (ret != 0)
742 		goto unlock;
743 
744 	ret = csio_hw_sf1_write(hw, 4, 1, 1, val);
745 	if (ret != 0)
746 		goto unlock;
747 
748 	for (left = n; left; left -= c) {
749 		c = min(left, 4U);
750 		for (val = 0, i = 0; i < c; ++i)
751 			val = (val << 8) + *data++;
752 
753 		ret = csio_hw_sf1_write(hw, c, c != left, 1, val);
754 		if (ret)
755 			goto unlock;
756 	}
757 	ret = csio_hw_flash_wait_op(hw, 8, 1);
758 	if (ret)
759 		goto unlock;
760 
761 	csio_wr_reg32(hw, 0, SF_OP);    /* unlock SF */
762 
763 	/* Read the page to verify the write succeeded */
764 	ret = csio_hw_read_flash(hw, addr & ~0xff, ARRAY_SIZE(buf), buf, 1);
765 	if (ret)
766 		return ret;
767 
768 	if (memcmp(data - n, (uint8_t *)buf + offset, n)) {
769 		csio_err(hw,
770 			 "failed to correctly write the flash page at %#x\n",
771 			 addr);
772 		return -EINVAL;
773 	}
774 
775 	return 0;
776 
777 unlock:
778 	csio_wr_reg32(hw, 0, SF_OP);    /* unlock SF */
779 	return ret;
780 }
781 
782 /*
783  *	csio_hw_flash_erase_sectors - erase a range of flash sectors
784  *	@hw: the HW module
785  *	@start: the first sector to erase
786  *	@end: the last sector to erase
787  *
788  *	Erases the sectors in the given inclusive range.
789  */
790 static int
791 csio_hw_flash_erase_sectors(struct csio_hw *hw, int32_t start, int32_t end)
792 {
793 	int ret = 0;
794 
795 	while (start <= end) {
796 
797 		ret = csio_hw_sf1_write(hw, 1, 0, 1, SF_WR_ENABLE);
798 		if (ret != 0)
799 			goto out;
800 
801 		ret = csio_hw_sf1_write(hw, 4, 0, 1,
802 					SF_ERASE_SECTOR | (start << 8));
803 		if (ret != 0)
804 			goto out;
805 
806 		ret = csio_hw_flash_wait_op(hw, 14, 500);
807 		if (ret != 0)
808 			goto out;
809 
810 		start++;
811 	}
812 out:
813 	if (ret)
814 		csio_err(hw, "erase of flash sector %d failed, error %d\n",
815 			 start, ret);
816 	csio_wr_reg32(hw, 0, SF_OP);    /* unlock SF */
817 	return 0;
818 }
819 
820 /*
821  *	csio_hw_flash_cfg_addr - return the address of the flash
822  *				configuration file
823  *	@hw: the HW module
824  *
825  *	Return the address within the flash where the Firmware Configuration
826  *	File is stored.
827  */
828 static unsigned int
829 csio_hw_flash_cfg_addr(struct csio_hw *hw)
830 {
831 	if (hw->params.sf_size == 0x100000)
832 		return FPGA_FLASH_CFG_OFFSET;
833 	else
834 		return FLASH_CFG_OFFSET;
835 }
836 
837 static void
838 csio_hw_print_fw_version(struct csio_hw *hw, char *str)
839 {
840 	csio_info(hw, "%s: %u.%u.%u.%u\n", str,
841 		    FW_HDR_FW_VER_MAJOR_GET(hw->fwrev),
842 		    FW_HDR_FW_VER_MINOR_GET(hw->fwrev),
843 		    FW_HDR_FW_VER_MICRO_GET(hw->fwrev),
844 		    FW_HDR_FW_VER_BUILD_GET(hw->fwrev));
845 }
846 
847 /*
848  * csio_hw_get_fw_version - read the firmware version
849  * @hw: HW module
850  * @vers: where to place the version
851  *
852  * Reads the FW version from flash.
853  */
854 static int
855 csio_hw_get_fw_version(struct csio_hw *hw, uint32_t *vers)
856 {
857 	return csio_hw_read_flash(hw, FW_IMG_START +
858 				  offsetof(struct fw_hdr, fw_ver), 1,
859 				  vers, 0);
860 }
861 
862 /*
863  *	csio_hw_get_tp_version - read the TP microcode version
864  *	@hw: HW module
865  *	@vers: where to place the version
866  *
867  *	Reads the TP microcode version from flash.
868  */
869 static int
870 csio_hw_get_tp_version(struct csio_hw *hw, u32 *vers)
871 {
872 	return csio_hw_read_flash(hw, FLASH_FW_START +
873 			offsetof(struct fw_hdr, tp_microcode_ver), 1,
874 			vers, 0);
875 }
876 
877 /*
878  *	csio_hw_check_fw_version - check if the FW is compatible with
879  *				   this driver
880  *	@hw: HW module
881  *
882  *	Checks if an adapter's FW is compatible with the driver.  Returns 0
883  *	if there's exact match, a negative error if the version could not be
884  *	read or there's a major/minor version mismatch/minor.
885  */
886 static int
887 csio_hw_check_fw_version(struct csio_hw *hw)
888 {
889 	int ret, major, minor, micro;
890 
891 	ret = csio_hw_get_fw_version(hw, &hw->fwrev);
892 	if (!ret)
893 		ret = csio_hw_get_tp_version(hw, &hw->tp_vers);
894 	if (ret)
895 		return ret;
896 
897 	major = FW_HDR_FW_VER_MAJOR_GET(hw->fwrev);
898 	minor = FW_HDR_FW_VER_MINOR_GET(hw->fwrev);
899 	micro = FW_HDR_FW_VER_MICRO_GET(hw->fwrev);
900 
901 	if (major != FW_VERSION_MAJOR) {            /* major mismatch - fail */
902 		csio_err(hw, "card FW has major version %u, driver wants %u\n",
903 			 major, FW_VERSION_MAJOR);
904 		return -EINVAL;
905 	}
906 
907 	if (minor == FW_VERSION_MINOR && micro == FW_VERSION_MICRO)
908 		return 0;        /* perfect match */
909 
910 	/* Minor/micro version mismatch */
911 	return -EINVAL;
912 }
913 
914 /*
915  * csio_hw_fw_dload - download firmware.
916  * @hw: HW module
917  * @fw_data: firmware image to write.
918  * @size: image size
919  *
920  * Write the supplied firmware image to the card's serial flash.
921  */
922 static int
923 csio_hw_fw_dload(struct csio_hw *hw, uint8_t *fw_data, uint32_t size)
924 {
925 	uint32_t csum;
926 	int32_t addr;
927 	int ret;
928 	uint32_t i;
929 	uint8_t first_page[SF_PAGE_SIZE];
930 	const __be32 *p = (const __be32 *)fw_data;
931 	struct fw_hdr *hdr = (struct fw_hdr *)fw_data;
932 	uint32_t sf_sec_size;
933 
934 	if ((!hw->params.sf_size) || (!hw->params.sf_nsec)) {
935 		csio_err(hw, "Serial Flash data invalid\n");
936 		return -EINVAL;
937 	}
938 
939 	if (!size) {
940 		csio_err(hw, "FW image has no data\n");
941 		return -EINVAL;
942 	}
943 
944 	if (size & 511) {
945 		csio_err(hw, "FW image size not multiple of 512 bytes\n");
946 		return -EINVAL;
947 	}
948 
949 	if (ntohs(hdr->len512) * 512 != size) {
950 		csio_err(hw, "FW image size differs from size in FW header\n");
951 		return -EINVAL;
952 	}
953 
954 	if (size > FW_MAX_SIZE) {
955 		csio_err(hw, "FW image too large, max is %u bytes\n",
956 			    FW_MAX_SIZE);
957 		return -EINVAL;
958 	}
959 
960 	for (csum = 0, i = 0; i < size / sizeof(csum); i++)
961 		csum += ntohl(p[i]);
962 
963 	if (csum != 0xffffffff) {
964 		csio_err(hw, "corrupted firmware image, checksum %#x\n", csum);
965 		return -EINVAL;
966 	}
967 
968 	sf_sec_size = hw->params.sf_size / hw->params.sf_nsec;
969 	i = DIV_ROUND_UP(size, sf_sec_size);        /* # of sectors spanned */
970 
971 	csio_dbg(hw, "Erasing sectors... start:%d end:%d\n",
972 			  FW_START_SEC, FW_START_SEC + i - 1);
973 
974 	ret = csio_hw_flash_erase_sectors(hw, FW_START_SEC,
975 					  FW_START_SEC + i - 1);
976 	if (ret) {
977 		csio_err(hw, "Flash Erase failed\n");
978 		goto out;
979 	}
980 
981 	/*
982 	 * We write the correct version at the end so the driver can see a bad
983 	 * version if the FW write fails.  Start by writing a copy of the
984 	 * first page with a bad version.
985 	 */
986 	memcpy(first_page, fw_data, SF_PAGE_SIZE);
987 	((struct fw_hdr *)first_page)->fw_ver = htonl(0xffffffff);
988 	ret = csio_hw_write_flash(hw, FW_IMG_START, SF_PAGE_SIZE, first_page);
989 	if (ret)
990 		goto out;
991 
992 	csio_dbg(hw, "Writing Flash .. start:%d end:%d\n",
993 		    FW_IMG_START, FW_IMG_START + size);
994 
995 	addr = FW_IMG_START;
996 	for (size -= SF_PAGE_SIZE; size; size -= SF_PAGE_SIZE) {
997 		addr += SF_PAGE_SIZE;
998 		fw_data += SF_PAGE_SIZE;
999 		ret = csio_hw_write_flash(hw, addr, SF_PAGE_SIZE, fw_data);
1000 		if (ret)
1001 			goto out;
1002 	}
1003 
1004 	ret = csio_hw_write_flash(hw,
1005 				  FW_IMG_START +
1006 					offsetof(struct fw_hdr, fw_ver),
1007 				  sizeof(hdr->fw_ver),
1008 				  (const uint8_t *)&hdr->fw_ver);
1009 
1010 out:
1011 	if (ret)
1012 		csio_err(hw, "firmware download failed, error %d\n", ret);
1013 	return ret;
1014 }
1015 
1016 static int
1017 csio_hw_get_flash_params(struct csio_hw *hw)
1018 {
1019 	int ret;
1020 	uint32_t info = 0;
1021 
1022 	ret = csio_hw_sf1_write(hw, 1, 1, 0, SF_RD_ID);
1023 	if (!ret)
1024 		ret = csio_hw_sf1_read(hw, 3, 0, 1, &info);
1025 	csio_wr_reg32(hw, 0, SF_OP);    /* unlock SF */
1026 	if (ret != 0)
1027 		return ret;
1028 
1029 	if ((info & 0xff) != 0x20)		/* not a Numonix flash */
1030 		return -EINVAL;
1031 	info >>= 16;				/* log2 of size */
1032 	if (info >= 0x14 && info < 0x18)
1033 		hw->params.sf_nsec = 1 << (info - 16);
1034 	else if (info == 0x18)
1035 		hw->params.sf_nsec = 64;
1036 	else
1037 		return -EINVAL;
1038 	hw->params.sf_size = 1 << info;
1039 
1040 	return 0;
1041 }
1042 
1043 static void
1044 csio_set_pcie_completion_timeout(struct csio_hw *hw, u8 range)
1045 {
1046 	uint16_t val;
1047 	uint32_t pcie_cap;
1048 
1049 	if (!csio_pci_capability(hw->pdev, PCI_CAP_ID_EXP, &pcie_cap)) {
1050 		pci_read_config_word(hw->pdev,
1051 				     pcie_cap + PCI_EXP_DEVCTL2, &val);
1052 		val &= 0xfff0;
1053 		val |= range ;
1054 		pci_write_config_word(hw->pdev,
1055 				      pcie_cap + PCI_EXP_DEVCTL2, val);
1056 	}
1057 }
1058 
1059 
1060 /*
1061  * Return the specified PCI-E Configuration Space register from our Physical
1062  * Function.  We try first via a Firmware LDST Command since we prefer to let
1063  * the firmware own all of these registers, but if that fails we go for it
1064  * directly ourselves.
1065  */
1066 static uint32_t
1067 csio_read_pcie_cfg4(struct csio_hw *hw, int reg)
1068 {
1069 	u32 val = 0;
1070 	struct csio_mb *mbp;
1071 	int rv;
1072 	struct fw_ldst_cmd *ldst_cmd;
1073 
1074 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1075 	if (!mbp) {
1076 		CSIO_INC_STATS(hw, n_err_nomem);
1077 		pci_read_config_dword(hw->pdev, reg, &val);
1078 		return val;
1079 	}
1080 
1081 	csio_mb_ldst(hw, mbp, CSIO_MB_DEFAULT_TMO, reg);
1082 
1083 	rv = csio_mb_issue(hw, mbp);
1084 
1085 	/*
1086 	 * If the LDST Command suucceeded, exctract the returned register
1087 	 * value.  Otherwise read it directly ourself.
1088 	 */
1089 	if (rv == 0) {
1090 		ldst_cmd = (struct fw_ldst_cmd *)(mbp->mb);
1091 		val = ntohl(ldst_cmd->u.pcie.data[0]);
1092 	} else
1093 		pci_read_config_dword(hw->pdev, reg, &val);
1094 
1095 	mempool_free(mbp, hw->mb_mempool);
1096 
1097 	return val;
1098 } /* csio_read_pcie_cfg4 */
1099 
1100 static int
1101 csio_hw_set_mem_win(struct csio_hw *hw)
1102 {
1103 	u32 bar0;
1104 
1105 	/*
1106 	 * Truncation intentional: we only read the bottom 32-bits of the
1107 	 * 64-bit BAR0/BAR1 ...  We use the hardware backdoor mechanism to
1108 	 * read BAR0 instead of using pci_resource_start() because we could be
1109 	 * operating from within a Virtual Machine which is trapping our
1110 	 * accesses to our Configuration Space and we need to set up the PCI-E
1111 	 * Memory Window decoders with the actual addresses which will be
1112 	 * coming across the PCI-E link.
1113 	 */
1114 	bar0 = csio_read_pcie_cfg4(hw, PCI_BASE_ADDRESS_0);
1115 	bar0 &= PCI_BASE_ADDRESS_MEM_MASK;
1116 
1117 	/*
1118 	 * Set up memory window for accessing adapter memory ranges.  (Read
1119 	 * back MA register to ensure that changes propagate before we attempt
1120 	 * to use the new values.)
1121 	 */
1122 	csio_wr_reg32(hw, (bar0 + MEMWIN0_BASE) | BIR(0) |
1123 		WINDOW(ilog2(MEMWIN0_APERTURE) - 10),
1124 		PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 0));
1125 	csio_wr_reg32(hw, (bar0 + MEMWIN1_BASE) | BIR(0) |
1126 		WINDOW(ilog2(MEMWIN1_APERTURE) - 10),
1127 		PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 1));
1128 	csio_wr_reg32(hw, (bar0 + MEMWIN2_BASE) | BIR(0) |
1129 		WINDOW(ilog2(MEMWIN2_APERTURE) - 10),
1130 		PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
1131 	csio_rd_reg32(hw, PCIE_MEM_ACCESS_REG(PCIE_MEM_ACCESS_BASE_WIN, 2));
1132 	return 0;
1133 } /* csio_hw_set_mem_win */
1134 
1135 
1136 
1137 /*****************************************************************************/
1138 /* HW State machine assists                                                  */
1139 /*****************************************************************************/
1140 
1141 static int
1142 csio_hw_dev_ready(struct csio_hw *hw)
1143 {
1144 	uint32_t reg;
1145 	int cnt = 6;
1146 
1147 	while (((reg = csio_rd_reg32(hw, PL_WHOAMI)) == 0xFFFFFFFF) &&
1148 								(--cnt != 0))
1149 		mdelay(100);
1150 
1151 	if ((cnt == 0) && (((int32_t)(SOURCEPF_GET(reg)) < 0) ||
1152 			    (SOURCEPF_GET(reg) >= CSIO_MAX_PFN))) {
1153 		csio_err(hw, "PL_WHOAMI returned 0x%x, cnt:%d\n", reg, cnt);
1154 		return -EIO;
1155 	}
1156 
1157 	hw->pfn = SOURCEPF_GET(reg);
1158 
1159 	return 0;
1160 }
1161 
1162 /*
1163  * csio_do_hello - Perform the HELLO FW Mailbox command and process response.
1164  * @hw: HW module
1165  * @state: Device state
1166  *
1167  * FW_HELLO_CMD has to be polled for completion.
1168  */
1169 static int
1170 csio_do_hello(struct csio_hw *hw, enum csio_dev_state *state)
1171 {
1172 	struct csio_mb	*mbp;
1173 	int	rv = 0;
1174 	enum csio_dev_master master;
1175 	enum fw_retval retval;
1176 	uint8_t mpfn;
1177 	char state_str[16];
1178 	int retries = FW_CMD_HELLO_RETRIES;
1179 
1180 	memset(state_str, 0, sizeof(state_str));
1181 
1182 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1183 	if (!mbp) {
1184 		rv = -ENOMEM;
1185 		CSIO_INC_STATS(hw, n_err_nomem);
1186 		goto out;
1187 	}
1188 
1189 	master = csio_force_master ? CSIO_MASTER_MUST : CSIO_MASTER_MAY;
1190 
1191 retry:
1192 	csio_mb_hello(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn,
1193 		      hw->pfn, master, NULL);
1194 
1195 	rv = csio_mb_issue(hw, mbp);
1196 	if (rv) {
1197 		csio_err(hw, "failed to issue HELLO cmd. ret:%d.\n", rv);
1198 		goto out_free_mb;
1199 	}
1200 
1201 	csio_mb_process_hello_rsp(hw, mbp, &retval, state, &mpfn);
1202 	if (retval != FW_SUCCESS) {
1203 		csio_err(hw, "HELLO cmd failed with ret: %d\n", retval);
1204 		rv = -EINVAL;
1205 		goto out_free_mb;
1206 	}
1207 
1208 	/* Firmware has designated us to be master */
1209 	if (hw->pfn == mpfn) {
1210 		hw->flags |= CSIO_HWF_MASTER;
1211 	} else if (*state == CSIO_DEV_STATE_UNINIT) {
1212 		/*
1213 		 * If we're not the Master PF then we need to wait around for
1214 		 * the Master PF Driver to finish setting up the adapter.
1215 		 *
1216 		 * Note that we also do this wait if we're a non-Master-capable
1217 		 * PF and there is no current Master PF; a Master PF may show up
1218 		 * momentarily and we wouldn't want to fail pointlessly.  (This
1219 		 * can happen when an OS loads lots of different drivers rapidly
1220 		 * at the same time). In this case, the Master PF returned by
1221 		 * the firmware will be PCIE_FW_MASTER_MASK so the test below
1222 		 * will work ...
1223 		 */
1224 
1225 		int waiting = FW_CMD_HELLO_TIMEOUT;
1226 
1227 		/*
1228 		 * Wait for the firmware to either indicate an error or
1229 		 * initialized state.  If we see either of these we bail out
1230 		 * and report the issue to the caller.  If we exhaust the
1231 		 * "hello timeout" and we haven't exhausted our retries, try
1232 		 * again.  Otherwise bail with a timeout error.
1233 		 */
1234 		for (;;) {
1235 			uint32_t pcie_fw;
1236 
1237 			msleep(50);
1238 			waiting -= 50;
1239 
1240 			/*
1241 			 * If neither Error nor Initialialized are indicated
1242 			 * by the firmware keep waiting till we exaust our
1243 			 * timeout ... and then retry if we haven't exhausted
1244 			 * our retries ...
1245 			 */
1246 			pcie_fw = csio_rd_reg32(hw, PCIE_FW);
1247 			if (!(pcie_fw & (PCIE_FW_ERR|PCIE_FW_INIT))) {
1248 				if (waiting <= 0) {
1249 					if (retries-- > 0)
1250 						goto retry;
1251 
1252 					rv = -ETIMEDOUT;
1253 					break;
1254 				}
1255 				continue;
1256 			}
1257 
1258 			/*
1259 			 * We either have an Error or Initialized condition
1260 			 * report errors preferentially.
1261 			 */
1262 			if (state) {
1263 				if (pcie_fw & PCIE_FW_ERR) {
1264 					*state = CSIO_DEV_STATE_ERR;
1265 					rv = -ETIMEDOUT;
1266 				} else if (pcie_fw & PCIE_FW_INIT)
1267 					*state = CSIO_DEV_STATE_INIT;
1268 			}
1269 
1270 			/*
1271 			 * If we arrived before a Master PF was selected and
1272 			 * there's not a valid Master PF, grab its identity
1273 			 * for our caller.
1274 			 */
1275 			if (mpfn == PCIE_FW_MASTER_MASK &&
1276 			    (pcie_fw & PCIE_FW_MASTER_VLD))
1277 				mpfn = PCIE_FW_MASTER_GET(pcie_fw);
1278 			break;
1279 		}
1280 		hw->flags &= ~CSIO_HWF_MASTER;
1281 	}
1282 
1283 	switch (*state) {
1284 	case CSIO_DEV_STATE_UNINIT:
1285 		strcpy(state_str, "Initializing");
1286 		break;
1287 	case CSIO_DEV_STATE_INIT:
1288 		strcpy(state_str, "Initialized");
1289 		break;
1290 	case CSIO_DEV_STATE_ERR:
1291 		strcpy(state_str, "Error");
1292 		break;
1293 	default:
1294 		strcpy(state_str, "Unknown");
1295 		break;
1296 	}
1297 
1298 	if (hw->pfn == mpfn)
1299 		csio_info(hw, "PF: %d, Coming up as MASTER, HW state: %s\n",
1300 			hw->pfn, state_str);
1301 	else
1302 		csio_info(hw,
1303 		    "PF: %d, Coming up as SLAVE, Master PF: %d, HW state: %s\n",
1304 		    hw->pfn, mpfn, state_str);
1305 
1306 out_free_mb:
1307 	mempool_free(mbp, hw->mb_mempool);
1308 out:
1309 	return rv;
1310 }
1311 
1312 /*
1313  * csio_do_bye - Perform the BYE FW Mailbox command and process response.
1314  * @hw: HW module
1315  *
1316  */
1317 static int
1318 csio_do_bye(struct csio_hw *hw)
1319 {
1320 	struct csio_mb	*mbp;
1321 	enum fw_retval retval;
1322 
1323 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1324 	if (!mbp) {
1325 		CSIO_INC_STATS(hw, n_err_nomem);
1326 		return -ENOMEM;
1327 	}
1328 
1329 	csio_mb_bye(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
1330 
1331 	if (csio_mb_issue(hw, mbp)) {
1332 		csio_err(hw, "Issue of BYE command failed\n");
1333 		mempool_free(mbp, hw->mb_mempool);
1334 		return -EINVAL;
1335 	}
1336 
1337 	retval = csio_mb_fw_retval(mbp);
1338 	if (retval != FW_SUCCESS) {
1339 		mempool_free(mbp, hw->mb_mempool);
1340 		return -EINVAL;
1341 	}
1342 
1343 	mempool_free(mbp, hw->mb_mempool);
1344 
1345 	return 0;
1346 }
1347 
1348 /*
1349  * csio_do_reset- Perform the device reset.
1350  * @hw: HW module
1351  * @fw_rst: FW reset
1352  *
1353  * If fw_rst is set, issues FW reset mbox cmd otherwise
1354  * does PIO reset.
1355  * Performs reset of the function.
1356  */
1357 static int
1358 csio_do_reset(struct csio_hw *hw, bool fw_rst)
1359 {
1360 	struct csio_mb	*mbp;
1361 	enum fw_retval retval;
1362 
1363 	if (!fw_rst) {
1364 		/* PIO reset */
1365 		csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
1366 		mdelay(2000);
1367 		return 0;
1368 	}
1369 
1370 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1371 	if (!mbp) {
1372 		CSIO_INC_STATS(hw, n_err_nomem);
1373 		return -ENOMEM;
1374 	}
1375 
1376 	csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1377 		      PIORSTMODE | PIORST, 0, NULL);
1378 
1379 	if (csio_mb_issue(hw, mbp)) {
1380 		csio_err(hw, "Issue of RESET command failed.n");
1381 		mempool_free(mbp, hw->mb_mempool);
1382 		return -EINVAL;
1383 	}
1384 
1385 	retval = csio_mb_fw_retval(mbp);
1386 	if (retval != FW_SUCCESS) {
1387 		csio_err(hw, "RESET cmd failed with ret:0x%x.\n", retval);
1388 		mempool_free(mbp, hw->mb_mempool);
1389 		return -EINVAL;
1390 	}
1391 
1392 	mempool_free(mbp, hw->mb_mempool);
1393 
1394 	return 0;
1395 }
1396 
1397 static int
1398 csio_hw_validate_caps(struct csio_hw *hw, struct csio_mb *mbp)
1399 {
1400 	struct fw_caps_config_cmd *rsp = (struct fw_caps_config_cmd *)mbp->mb;
1401 	uint16_t caps;
1402 
1403 	caps = ntohs(rsp->fcoecaps);
1404 
1405 	if (!(caps & FW_CAPS_CONFIG_FCOE_INITIATOR)) {
1406 		csio_err(hw, "No FCoE Initiator capability in the firmware.\n");
1407 		return -EINVAL;
1408 	}
1409 
1410 	if (!(caps & FW_CAPS_CONFIG_FCOE_CTRL_OFLD)) {
1411 		csio_err(hw, "No FCoE Control Offload capability\n");
1412 		return -EINVAL;
1413 	}
1414 
1415 	return 0;
1416 }
1417 
1418 /*
1419  *	csio_hw_fw_halt - issue a reset/halt to FW and put uP into RESET
1420  *	@hw: the HW module
1421  *	@mbox: mailbox to use for the FW RESET command (if desired)
1422  *	@force: force uP into RESET even if FW RESET command fails
1423  *
1424  *	Issues a RESET command to firmware (if desired) with a HALT indication
1425  *	and then puts the microprocessor into RESET state.  The RESET command
1426  *	will only be issued if a legitimate mailbox is provided (mbox <=
1427  *	PCIE_FW_MASTER_MASK).
1428  *
1429  *	This is generally used in order for the host to safely manipulate the
1430  *	adapter without fear of conflicting with whatever the firmware might
1431  *	be doing.  The only way out of this state is to RESTART the firmware
1432  *	...
1433  */
1434 static int
1435 csio_hw_fw_halt(struct csio_hw *hw, uint32_t mbox, int32_t force)
1436 {
1437 	enum fw_retval retval = 0;
1438 
1439 	/*
1440 	 * If a legitimate mailbox is provided, issue a RESET command
1441 	 * with a HALT indication.
1442 	 */
1443 	if (mbox <= PCIE_FW_MASTER_MASK) {
1444 		struct csio_mb	*mbp;
1445 
1446 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1447 		if (!mbp) {
1448 			CSIO_INC_STATS(hw, n_err_nomem);
1449 			return -ENOMEM;
1450 		}
1451 
1452 		csio_mb_reset(hw, mbp, CSIO_MB_DEFAULT_TMO,
1453 			      PIORSTMODE | PIORST, FW_RESET_CMD_HALT(1),
1454 			      NULL);
1455 
1456 		if (csio_mb_issue(hw, mbp)) {
1457 			csio_err(hw, "Issue of RESET command failed!\n");
1458 			mempool_free(mbp, hw->mb_mempool);
1459 			return -EINVAL;
1460 		}
1461 
1462 		retval = csio_mb_fw_retval(mbp);
1463 		mempool_free(mbp, hw->mb_mempool);
1464 	}
1465 
1466 	/*
1467 	 * Normally we won't complete the operation if the firmware RESET
1468 	 * command fails but if our caller insists we'll go ahead and put the
1469 	 * uP into RESET.  This can be useful if the firmware is hung or even
1470 	 * missing ...  We'll have to take the risk of putting the uP into
1471 	 * RESET without the cooperation of firmware in that case.
1472 	 *
1473 	 * We also force the firmware's HALT flag to be on in case we bypassed
1474 	 * the firmware RESET command above or we're dealing with old firmware
1475 	 * which doesn't have the HALT capability.  This will serve as a flag
1476 	 * for the incoming firmware to know that it's coming out of a HALT
1477 	 * rather than a RESET ... if it's new enough to understand that ...
1478 	 */
1479 	if (retval == 0 || force) {
1480 		csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, UPCRST);
1481 		csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, PCIE_FW_HALT);
1482 	}
1483 
1484 	/*
1485 	 * And we always return the result of the firmware RESET command
1486 	 * even when we force the uP into RESET ...
1487 	 */
1488 	return retval ? -EINVAL : 0;
1489 }
1490 
1491 /*
1492  *	csio_hw_fw_restart - restart the firmware by taking the uP out of RESET
1493  *	@hw: the HW module
1494  *	@reset: if we want to do a RESET to restart things
1495  *
1496  *	Restart firmware previously halted by csio_hw_fw_halt().  On successful
1497  *	return the previous PF Master remains as the new PF Master and there
1498  *	is no need to issue a new HELLO command, etc.
1499  *
1500  *	We do this in two ways:
1501  *
1502  *	 1. If we're dealing with newer firmware we'll simply want to take
1503  *	    the chip's microprocessor out of RESET.  This will cause the
1504  *	    firmware to start up from its start vector.  And then we'll loop
1505  *	    until the firmware indicates it's started again (PCIE_FW.HALT
1506  *	    reset to 0) or we timeout.
1507  *
1508  *	 2. If we're dealing with older firmware then we'll need to RESET
1509  *	    the chip since older firmware won't recognize the PCIE_FW.HALT
1510  *	    flag and automatically RESET itself on startup.
1511  */
1512 static int
1513 csio_hw_fw_restart(struct csio_hw *hw, uint32_t mbox, int32_t reset)
1514 {
1515 	if (reset) {
1516 		/*
1517 		 * Since we're directing the RESET instead of the firmware
1518 		 * doing it automatically, we need to clear the PCIE_FW.HALT
1519 		 * bit.
1520 		 */
1521 		csio_set_reg_field(hw, PCIE_FW, PCIE_FW_HALT, 0);
1522 
1523 		/*
1524 		 * If we've been given a valid mailbox, first try to get the
1525 		 * firmware to do the RESET.  If that works, great and we can
1526 		 * return success.  Otherwise, if we haven't been given a
1527 		 * valid mailbox or the RESET command failed, fall back to
1528 		 * hitting the chip with a hammer.
1529 		 */
1530 		if (mbox <= PCIE_FW_MASTER_MASK) {
1531 			csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
1532 			msleep(100);
1533 			if (csio_do_reset(hw, true) == 0)
1534 				return 0;
1535 		}
1536 
1537 		csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
1538 		msleep(2000);
1539 	} else {
1540 		int ms;
1541 
1542 		csio_set_reg_field(hw, CIM_BOOT_CFG, UPCRST, 0);
1543 		for (ms = 0; ms < FW_CMD_MAX_TIMEOUT; ) {
1544 			if (!(csio_rd_reg32(hw, PCIE_FW) & PCIE_FW_HALT))
1545 				return 0;
1546 			msleep(100);
1547 			ms += 100;
1548 		}
1549 		return -ETIMEDOUT;
1550 	}
1551 	return 0;
1552 }
1553 
1554 /*
1555  *	csio_hw_fw_upgrade - perform all of the steps necessary to upgrade FW
1556  *	@hw: the HW module
1557  *	@mbox: mailbox to use for the FW RESET command (if desired)
1558  *	@fw_data: the firmware image to write
1559  *	@size: image size
1560  *	@force: force upgrade even if firmware doesn't cooperate
1561  *
1562  *	Perform all of the steps necessary for upgrading an adapter's
1563  *	firmware image.  Normally this requires the cooperation of the
1564  *	existing firmware in order to halt all existing activities
1565  *	but if an invalid mailbox token is passed in we skip that step
1566  *	(though we'll still put the adapter microprocessor into RESET in
1567  *	that case).
1568  *
1569  *	On successful return the new firmware will have been loaded and
1570  *	the adapter will have been fully RESET losing all previous setup
1571  *	state.  On unsuccessful return the adapter may be completely hosed ...
1572  *	positive errno indicates that the adapter is ~probably~ intact, a
1573  *	negative errno indicates that things are looking bad ...
1574  */
1575 static int
1576 csio_hw_fw_upgrade(struct csio_hw *hw, uint32_t mbox,
1577 		  const u8 *fw_data, uint32_t size, int32_t force)
1578 {
1579 	const struct fw_hdr *fw_hdr = (const struct fw_hdr *)fw_data;
1580 	int reset, ret;
1581 
1582 	ret = csio_hw_fw_halt(hw, mbox, force);
1583 	if (ret != 0 && !force)
1584 		return ret;
1585 
1586 	ret = csio_hw_fw_dload(hw, (uint8_t *) fw_data, size);
1587 	if (ret != 0)
1588 		return ret;
1589 
1590 	/*
1591 	 * Older versions of the firmware don't understand the new
1592 	 * PCIE_FW.HALT flag and so won't know to perform a RESET when they
1593 	 * restart.  So for newly loaded older firmware we'll have to do the
1594 	 * RESET for it so it starts up on a clean slate.  We can tell if
1595 	 * the newly loaded firmware will handle this right by checking
1596 	 * its header flags to see if it advertises the capability.
1597 	 */
1598 	reset = ((ntohl(fw_hdr->flags) & FW_HDR_FLAGS_RESET_HALT) == 0);
1599 	return csio_hw_fw_restart(hw, mbox, reset);
1600 }
1601 
1602 
1603 /*
1604  *	csio_hw_fw_config_file - setup an adapter via a Configuration File
1605  *	@hw: the HW module
1606  *	@mbox: mailbox to use for the FW command
1607  *	@mtype: the memory type where the Configuration File is located
1608  *	@maddr: the memory address where the Configuration File is located
1609  *	@finiver: return value for CF [fini] version
1610  *	@finicsum: return value for CF [fini] checksum
1611  *	@cfcsum: return value for CF computed checksum
1612  *
1613  *	Issue a command to get the firmware to process the Configuration
1614  *	File located at the specified mtype/maddress.  If the Configuration
1615  *	File is processed successfully and return value pointers are
1616  *	provided, the Configuration File "[fini] section version and
1617  *	checksum values will be returned along with the computed checksum.
1618  *	It's up to the caller to decide how it wants to respond to the
1619  *	checksums not matching but it recommended that a prominant warning
1620  *	be emitted in order to help people rapidly identify changed or
1621  *	corrupted Configuration Files.
1622  *
1623  *	Also note that it's possible to modify things like "niccaps",
1624  *	"toecaps",etc. between processing the Configuration File and telling
1625  *	the firmware to use the new configuration.  Callers which want to
1626  *	do this will need to "hand-roll" their own CAPS_CONFIGS commands for
1627  *	Configuration Files if they want to do this.
1628  */
1629 static int
1630 csio_hw_fw_config_file(struct csio_hw *hw,
1631 		      unsigned int mtype, unsigned int maddr,
1632 		      uint32_t *finiver, uint32_t *finicsum, uint32_t *cfcsum)
1633 {
1634 	struct csio_mb	*mbp;
1635 	struct fw_caps_config_cmd *caps_cmd;
1636 	int rv = -EINVAL;
1637 	enum fw_retval ret;
1638 
1639 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1640 	if (!mbp) {
1641 		CSIO_INC_STATS(hw, n_err_nomem);
1642 		return -ENOMEM;
1643 	}
1644 	/*
1645 	 * Tell the firmware to process the indicated Configuration File.
1646 	 * If there are no errors and the caller has provided return value
1647 	 * pointers for the [fini] section version, checksum and computed
1648 	 * checksum, pass those back to the caller.
1649 	 */
1650 	caps_cmd = (struct fw_caps_config_cmd *)(mbp->mb);
1651 	CSIO_INIT_MBP(mbp, caps_cmd, CSIO_MB_DEFAULT_TMO, hw, NULL, 1);
1652 	caps_cmd->op_to_write =
1653 		htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1654 		      FW_CMD_REQUEST |
1655 		      FW_CMD_READ);
1656 	caps_cmd->cfvalid_to_len16 =
1657 		htonl(FW_CAPS_CONFIG_CMD_CFVALID |
1658 		      FW_CAPS_CONFIG_CMD_MEMTYPE_CF(mtype) |
1659 		      FW_CAPS_CONFIG_CMD_MEMADDR64K_CF(maddr >> 16) |
1660 		      FW_LEN16(*caps_cmd));
1661 
1662 	if (csio_mb_issue(hw, mbp)) {
1663 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
1664 		goto out;
1665 	}
1666 
1667 	ret = csio_mb_fw_retval(mbp);
1668 	if (ret != FW_SUCCESS) {
1669 		csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1670 		goto out;
1671 	}
1672 
1673 	if (finiver)
1674 		*finiver = ntohl(caps_cmd->finiver);
1675 	if (finicsum)
1676 		*finicsum = ntohl(caps_cmd->finicsum);
1677 	if (cfcsum)
1678 		*cfcsum = ntohl(caps_cmd->cfcsum);
1679 
1680 	/* Validate device capabilities */
1681 	if (csio_hw_validate_caps(hw, mbp)) {
1682 		rv = -ENOENT;
1683 		goto out;
1684 	}
1685 
1686 	/*
1687 	 * And now tell the firmware to use the configuration we just loaded.
1688 	 */
1689 	caps_cmd->op_to_write =
1690 		htonl(FW_CMD_OP(FW_CAPS_CONFIG_CMD) |
1691 		      FW_CMD_REQUEST |
1692 		      FW_CMD_WRITE);
1693 	caps_cmd->cfvalid_to_len16 = htonl(FW_LEN16(*caps_cmd));
1694 
1695 	if (csio_mb_issue(hw, mbp)) {
1696 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD failed!\n");
1697 		goto out;
1698 	}
1699 
1700 	ret = csio_mb_fw_retval(mbp);
1701 	if (ret != FW_SUCCESS) {
1702 		csio_dbg(hw, "FW_CAPS_CONFIG_CMD returned %d!\n", rv);
1703 		goto out;
1704 	}
1705 
1706 	rv = 0;
1707 out:
1708 	mempool_free(mbp, hw->mb_mempool);
1709 	return rv;
1710 }
1711 
1712 /*
1713  * csio_get_device_params - Get device parameters.
1714  * @hw: HW module
1715  *
1716  */
1717 static int
1718 csio_get_device_params(struct csio_hw *hw)
1719 {
1720 	struct csio_wrm *wrm	= csio_hw_to_wrm(hw);
1721 	struct csio_mb	*mbp;
1722 	enum fw_retval retval;
1723 	u32 param[6];
1724 	int i, j = 0;
1725 
1726 	/* Initialize portids to -1 */
1727 	for (i = 0; i < CSIO_MAX_PPORTS; i++)
1728 		hw->pport[i].portid = -1;
1729 
1730 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1731 	if (!mbp) {
1732 		CSIO_INC_STATS(hw, n_err_nomem);
1733 		return -ENOMEM;
1734 	}
1735 
1736 	/* Get port vec information. */
1737 	param[0] = FW_PARAM_DEV(PORTVEC);
1738 
1739 	/* Get Core clock. */
1740 	param[1] = FW_PARAM_DEV(CCLK);
1741 
1742 	/* Get EQ id start and end. */
1743 	param[2] = FW_PARAM_PFVF(EQ_START);
1744 	param[3] = FW_PARAM_PFVF(EQ_END);
1745 
1746 	/* Get IQ id start and end. */
1747 	param[4] = FW_PARAM_PFVF(IQFLINT_START);
1748 	param[5] = FW_PARAM_PFVF(IQFLINT_END);
1749 
1750 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
1751 		       ARRAY_SIZE(param), param, NULL, false, NULL);
1752 	if (csio_mb_issue(hw, mbp)) {
1753 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
1754 		mempool_free(mbp, hw->mb_mempool);
1755 		return -EINVAL;
1756 	}
1757 
1758 	csio_mb_process_read_params_rsp(hw, mbp, &retval,
1759 			ARRAY_SIZE(param), param);
1760 	if (retval != FW_SUCCESS) {
1761 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
1762 				retval);
1763 		mempool_free(mbp, hw->mb_mempool);
1764 		return -EINVAL;
1765 	}
1766 
1767 	/* cache the information. */
1768 	hw->port_vec = param[0];
1769 	hw->vpd.cclk = param[1];
1770 	wrm->fw_eq_start = param[2];
1771 	wrm->fw_iq_start = param[4];
1772 
1773 	/* Using FW configured max iqs & eqs */
1774 	if ((hw->flags & CSIO_HWF_USING_SOFT_PARAMS) ||
1775 		!csio_is_hw_master(hw)) {
1776 		hw->cfg_niq = param[5] - param[4] + 1;
1777 		hw->cfg_neq = param[3] - param[2] + 1;
1778 		csio_dbg(hw, "Using fwconfig max niqs %d neqs %d\n",
1779 			hw->cfg_niq, hw->cfg_neq);
1780 	}
1781 
1782 	hw->port_vec &= csio_port_mask;
1783 
1784 	hw->num_pports	= hweight32(hw->port_vec);
1785 
1786 	csio_dbg(hw, "Port vector: 0x%x, #ports: %d\n",
1787 		    hw->port_vec, hw->num_pports);
1788 
1789 	for (i = 0; i < hw->num_pports; i++) {
1790 		while ((hw->port_vec & (1 << j)) == 0)
1791 			j++;
1792 		hw->pport[i].portid = j++;
1793 		csio_dbg(hw, "Found Port:%d\n", hw->pport[i].portid);
1794 	}
1795 	mempool_free(mbp, hw->mb_mempool);
1796 
1797 	return 0;
1798 }
1799 
1800 
1801 /*
1802  * csio_config_device_caps - Get and set device capabilities.
1803  * @hw: HW module
1804  *
1805  */
1806 static int
1807 csio_config_device_caps(struct csio_hw *hw)
1808 {
1809 	struct csio_mb	*mbp;
1810 	enum fw_retval retval;
1811 	int rv = -EINVAL;
1812 
1813 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1814 	if (!mbp) {
1815 		CSIO_INC_STATS(hw, n_err_nomem);
1816 		return -ENOMEM;
1817 	}
1818 
1819 	/* Get device capabilities */
1820 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, 0, 0, 0, 0, NULL);
1821 
1822 	if (csio_mb_issue(hw, mbp)) {
1823 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(r) failed!\n");
1824 		goto out;
1825 	}
1826 
1827 	retval = csio_mb_fw_retval(mbp);
1828 	if (retval != FW_SUCCESS) {
1829 		csio_err(hw, "FW_CAPS_CONFIG_CMD(r) returned %d!\n", retval);
1830 		goto out;
1831 	}
1832 
1833 	/* Validate device capabilities */
1834 	if (csio_hw_validate_caps(hw, mbp))
1835 		goto out;
1836 
1837 	/* Don't config device capabilities if already configured */
1838 	if (hw->fw_state == CSIO_DEV_STATE_INIT) {
1839 		rv = 0;
1840 		goto out;
1841 	}
1842 
1843 	/* Write back desired device capabilities */
1844 	csio_mb_caps_config(hw, mbp, CSIO_MB_DEFAULT_TMO, true, true,
1845 			    false, true, NULL);
1846 
1847 	if (csio_mb_issue(hw, mbp)) {
1848 		csio_err(hw, "Issue of FW_CAPS_CONFIG_CMD(w) failed!\n");
1849 		goto out;
1850 	}
1851 
1852 	retval = csio_mb_fw_retval(mbp);
1853 	if (retval != FW_SUCCESS) {
1854 		csio_err(hw, "FW_CAPS_CONFIG_CMD(w) returned %d!\n", retval);
1855 		goto out;
1856 	}
1857 
1858 	rv = 0;
1859 out:
1860 	mempool_free(mbp, hw->mb_mempool);
1861 	return rv;
1862 }
1863 
1864 static int
1865 csio_config_global_rss(struct csio_hw *hw)
1866 {
1867 	struct csio_mb	*mbp;
1868 	enum fw_retval retval;
1869 
1870 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1871 	if (!mbp) {
1872 		CSIO_INC_STATS(hw, n_err_nomem);
1873 		return -ENOMEM;
1874 	}
1875 
1876 	csio_rss_glb_config(hw, mbp, CSIO_MB_DEFAULT_TMO,
1877 			    FW_RSS_GLB_CONFIG_CMD_MODE_BASICVIRTUAL,
1878 			    FW_RSS_GLB_CONFIG_CMD_TNLMAPEN |
1879 			    FW_RSS_GLB_CONFIG_CMD_HASHTOEPLITZ |
1880 			    FW_RSS_GLB_CONFIG_CMD_TNLALLLKP,
1881 			    NULL);
1882 
1883 	if (csio_mb_issue(hw, mbp)) {
1884 		csio_err(hw, "Issue of FW_RSS_GLB_CONFIG_CMD failed!\n");
1885 		mempool_free(mbp, hw->mb_mempool);
1886 		return -EINVAL;
1887 	}
1888 
1889 	retval = csio_mb_fw_retval(mbp);
1890 	if (retval != FW_SUCCESS) {
1891 		csio_err(hw, "FW_RSS_GLB_CONFIG_CMD returned 0x%x!\n", retval);
1892 		mempool_free(mbp, hw->mb_mempool);
1893 		return -EINVAL;
1894 	}
1895 
1896 	mempool_free(mbp, hw->mb_mempool);
1897 
1898 	return 0;
1899 }
1900 
1901 /*
1902  * csio_config_pfvf - Configure Physical/Virtual functions settings.
1903  * @hw: HW module
1904  *
1905  */
1906 static int
1907 csio_config_pfvf(struct csio_hw *hw)
1908 {
1909 	struct csio_mb	*mbp;
1910 	enum fw_retval retval;
1911 
1912 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1913 	if (!mbp) {
1914 		CSIO_INC_STATS(hw, n_err_nomem);
1915 		return -ENOMEM;
1916 	}
1917 
1918 	/*
1919 	 * For now, allow all PFs to access to all ports using a pmask
1920 	 * value of 0xF (M_FW_PFVF_CMD_PMASK). Once we have VFs, we will
1921 	 * need to provide access based on some rule.
1922 	 */
1923 	csio_mb_pfvf(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0, CSIO_NEQ,
1924 		     CSIO_NETH_CTRL, CSIO_NIQ_FLINT, 0, 0, CSIO_NVI, CSIO_CMASK,
1925 		     CSIO_PMASK, CSIO_NEXACTF, CSIO_R_CAPS, CSIO_WX_CAPS, NULL);
1926 
1927 	if (csio_mb_issue(hw, mbp)) {
1928 		csio_err(hw, "Issue of FW_PFVF_CMD failed!\n");
1929 		mempool_free(mbp, hw->mb_mempool);
1930 		return -EINVAL;
1931 	}
1932 
1933 	retval = csio_mb_fw_retval(mbp);
1934 	if (retval != FW_SUCCESS) {
1935 		csio_err(hw, "FW_PFVF_CMD returned 0x%x!\n", retval);
1936 		mempool_free(mbp, hw->mb_mempool);
1937 		return -EINVAL;
1938 	}
1939 
1940 	mempool_free(mbp, hw->mb_mempool);
1941 
1942 	return 0;
1943 }
1944 
1945 /*
1946  * csio_enable_ports - Bring up all available ports.
1947  * @hw: HW module.
1948  *
1949  */
1950 static int
1951 csio_enable_ports(struct csio_hw *hw)
1952 {
1953 	struct csio_mb  *mbp;
1954 	enum fw_retval retval;
1955 	uint8_t portid;
1956 	int i;
1957 
1958 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
1959 	if (!mbp) {
1960 		CSIO_INC_STATS(hw, n_err_nomem);
1961 		return -ENOMEM;
1962 	}
1963 
1964 	for (i = 0; i < hw->num_pports; i++) {
1965 		portid = hw->pport[i].portid;
1966 
1967 		/* Read PORT information */
1968 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid,
1969 			     false, 0, 0, NULL);
1970 
1971 		if (csio_mb_issue(hw, mbp)) {
1972 			csio_err(hw, "failed to issue FW_PORT_CMD(r) port:%d\n",
1973 				 portid);
1974 			mempool_free(mbp, hw->mb_mempool);
1975 			return -EINVAL;
1976 		}
1977 
1978 		csio_mb_process_read_port_rsp(hw, mbp, &retval,
1979 					      &hw->pport[i].pcap);
1980 		if (retval != FW_SUCCESS) {
1981 			csio_err(hw, "FW_PORT_CMD(r) port:%d failed: 0x%x\n",
1982 				 portid, retval);
1983 			mempool_free(mbp, hw->mb_mempool);
1984 			return -EINVAL;
1985 		}
1986 
1987 		/* Write back PORT information */
1988 		csio_mb_port(hw, mbp, CSIO_MB_DEFAULT_TMO, portid, true,
1989 			     (PAUSE_RX | PAUSE_TX), hw->pport[i].pcap, NULL);
1990 
1991 		if (csio_mb_issue(hw, mbp)) {
1992 			csio_err(hw, "failed to issue FW_PORT_CMD(w) port:%d\n",
1993 				 portid);
1994 			mempool_free(mbp, hw->mb_mempool);
1995 			return -EINVAL;
1996 		}
1997 
1998 		retval = csio_mb_fw_retval(mbp);
1999 		if (retval != FW_SUCCESS) {
2000 			csio_err(hw, "FW_PORT_CMD(w) port:%d failed :0x%x\n",
2001 				 portid, retval);
2002 			mempool_free(mbp, hw->mb_mempool);
2003 			return -EINVAL;
2004 		}
2005 
2006 	} /* For all ports */
2007 
2008 	mempool_free(mbp, hw->mb_mempool);
2009 
2010 	return 0;
2011 }
2012 
2013 /*
2014  * csio_get_fcoe_resinfo - Read fcoe fw resource info.
2015  * @hw: HW module
2016  * Issued with lock held.
2017  */
2018 static int
2019 csio_get_fcoe_resinfo(struct csio_hw *hw)
2020 {
2021 	struct csio_fcoe_res_info *res_info = &hw->fres_info;
2022 	struct fw_fcoe_res_info_cmd *rsp;
2023 	struct csio_mb  *mbp;
2024 	enum fw_retval retval;
2025 
2026 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2027 	if (!mbp) {
2028 		CSIO_INC_STATS(hw, n_err_nomem);
2029 		return -ENOMEM;
2030 	}
2031 
2032 	/* Get FCoE FW resource information */
2033 	csio_fcoe_read_res_info_init_mb(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2034 
2035 	if (csio_mb_issue(hw, mbp)) {
2036 		csio_err(hw, "failed to issue FW_FCOE_RES_INFO_CMD\n");
2037 		mempool_free(mbp, hw->mb_mempool);
2038 		return -EINVAL;
2039 	}
2040 
2041 	rsp = (struct fw_fcoe_res_info_cmd *)(mbp->mb);
2042 	retval = FW_CMD_RETVAL_GET(ntohl(rsp->retval_len16));
2043 	if (retval != FW_SUCCESS) {
2044 		csio_err(hw, "FW_FCOE_RES_INFO_CMD failed with ret x%x\n",
2045 			 retval);
2046 		mempool_free(mbp, hw->mb_mempool);
2047 		return -EINVAL;
2048 	}
2049 
2050 	res_info->e_d_tov = ntohs(rsp->e_d_tov);
2051 	res_info->r_a_tov_seq = ntohs(rsp->r_a_tov_seq);
2052 	res_info->r_a_tov_els = ntohs(rsp->r_a_tov_els);
2053 	res_info->r_r_tov = ntohs(rsp->r_r_tov);
2054 	res_info->max_xchgs = ntohl(rsp->max_xchgs);
2055 	res_info->max_ssns = ntohl(rsp->max_ssns);
2056 	res_info->used_xchgs = ntohl(rsp->used_xchgs);
2057 	res_info->used_ssns = ntohl(rsp->used_ssns);
2058 	res_info->max_fcfs = ntohl(rsp->max_fcfs);
2059 	res_info->max_vnps = ntohl(rsp->max_vnps);
2060 	res_info->used_fcfs = ntohl(rsp->used_fcfs);
2061 	res_info->used_vnps = ntohl(rsp->used_vnps);
2062 
2063 	csio_dbg(hw, "max ssns:%d max xchgs:%d\n", res_info->max_ssns,
2064 						  res_info->max_xchgs);
2065 	mempool_free(mbp, hw->mb_mempool);
2066 
2067 	return 0;
2068 }
2069 
2070 static int
2071 csio_hw_check_fwconfig(struct csio_hw *hw, u32 *param)
2072 {
2073 	struct csio_mb	*mbp;
2074 	enum fw_retval retval;
2075 	u32 _param[1];
2076 
2077 	mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2078 	if (!mbp) {
2079 		CSIO_INC_STATS(hw, n_err_nomem);
2080 		return -ENOMEM;
2081 	}
2082 
2083 	/*
2084 	 * Find out whether we're dealing with a version of
2085 	 * the firmware which has configuration file support.
2086 	 */
2087 	_param[0] = (FW_PARAMS_MNEM(FW_PARAMS_MNEM_DEV) |
2088 		     FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DEV_CF));
2089 
2090 	csio_mb_params(hw, mbp, CSIO_MB_DEFAULT_TMO, hw->pfn, 0,
2091 		       ARRAY_SIZE(_param), _param, NULL, false, NULL);
2092 	if (csio_mb_issue(hw, mbp)) {
2093 		csio_err(hw, "Issue of FW_PARAMS_CMD(read) failed!\n");
2094 		mempool_free(mbp, hw->mb_mempool);
2095 		return -EINVAL;
2096 	}
2097 
2098 	csio_mb_process_read_params_rsp(hw, mbp, &retval,
2099 			ARRAY_SIZE(_param), _param);
2100 	if (retval != FW_SUCCESS) {
2101 		csio_err(hw, "FW_PARAMS_CMD(read) failed with ret:0x%x!\n",
2102 				retval);
2103 		mempool_free(mbp, hw->mb_mempool);
2104 		return -EINVAL;
2105 	}
2106 
2107 	mempool_free(mbp, hw->mb_mempool);
2108 	*param = _param[0];
2109 
2110 	return 0;
2111 }
2112 
2113 static int
2114 csio_hw_flash_config(struct csio_hw *hw, u32 *fw_cfg_param, char *path)
2115 {
2116 	int ret = 0;
2117 	const struct firmware *cf;
2118 	struct pci_dev *pci_dev = hw->pdev;
2119 	struct device *dev = &pci_dev->dev;
2120 	unsigned int mtype = 0, maddr = 0;
2121 	uint32_t *cfg_data;
2122 	int value_to_add = 0;
2123 
2124 	if (request_firmware(&cf, CSIO_CF_FNAME, dev) < 0) {
2125 		csio_err(hw, "could not find config file " CSIO_CF_FNAME
2126 			 ",err: %d\n", ret);
2127 		return -ENOENT;
2128 	}
2129 
2130 	if (cf->size%4 != 0)
2131 		value_to_add = 4 - (cf->size % 4);
2132 
2133 	cfg_data = kzalloc(cf->size+value_to_add, GFP_KERNEL);
2134 	if (cfg_data == NULL) {
2135 		ret = -ENOMEM;
2136 		goto leave;
2137 	}
2138 
2139 	memcpy((void *)cfg_data, (const void *)cf->data, cf->size);
2140 	if (csio_hw_check_fwconfig(hw, fw_cfg_param) != 0) {
2141 		ret = -EINVAL;
2142 		goto leave;
2143 	}
2144 
2145 	mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param);
2146 	maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16;
2147 
2148 	ret = csio_memory_write(hw, mtype, maddr,
2149 				cf->size + value_to_add, cfg_data);
2150 	if (ret == 0) {
2151 		csio_info(hw, "config file upgraded to " CSIO_CF_FNAME "\n");
2152 		strncpy(path, "/lib/firmware/" CSIO_CF_FNAME, 64);
2153 	}
2154 
2155 leave:
2156 	kfree(cfg_data);
2157 	release_firmware(cf);
2158 	return ret;
2159 }
2160 
2161 /*
2162  * HW initialization: contact FW, obtain config, perform basic init.
2163  *
2164  * If the firmware we're dealing with has Configuration File support, then
2165  * we use that to perform all configuration -- either using the configuration
2166  * file stored in flash on the adapter or using a filesystem-local file
2167  * if available.
2168  *
2169  * If we don't have configuration file support in the firmware, then we'll
2170  * have to set things up the old fashioned way with hard-coded register
2171  * writes and firmware commands ...
2172  */
2173 
2174 /*
2175  * Attempt to initialize the HW via a Firmware Configuration File.
2176  */
2177 static int
2178 csio_hw_use_fwconfig(struct csio_hw *hw, int reset, u32 *fw_cfg_param)
2179 {
2180 	unsigned int mtype, maddr;
2181 	int rv;
2182 	uint32_t finiver, finicsum, cfcsum;
2183 	int using_flash;
2184 	char path[64];
2185 
2186 	/*
2187 	 * Reset device if necessary
2188 	 */
2189 	if (reset) {
2190 		rv = csio_do_reset(hw, true);
2191 		if (rv != 0)
2192 			goto bye;
2193 	}
2194 
2195 	/*
2196 	 * If we have a configuration file in host ,
2197 	 * then use that.  Otherwise, use the configuration file stored
2198 	 * in the HW flash ...
2199 	 */
2200 	spin_unlock_irq(&hw->lock);
2201 	rv = csio_hw_flash_config(hw, fw_cfg_param, path);
2202 	spin_lock_irq(&hw->lock);
2203 	if (rv != 0) {
2204 		if (rv == -ENOENT) {
2205 			/*
2206 			 * config file was not found. Use default
2207 			 * config file from flash.
2208 			 */
2209 			mtype = FW_MEMTYPE_CF_FLASH;
2210 			maddr = csio_hw_flash_cfg_addr(hw);
2211 			using_flash = 1;
2212 		} else {
2213 			/*
2214 			 * we revert back to the hardwired config if
2215 			 * flashing failed.
2216 			 */
2217 			goto bye;
2218 		}
2219 	} else {
2220 		mtype = FW_PARAMS_PARAM_Y_GET(*fw_cfg_param);
2221 		maddr = FW_PARAMS_PARAM_Z_GET(*fw_cfg_param) << 16;
2222 		using_flash = 0;
2223 	}
2224 
2225 	hw->cfg_store = (uint8_t)mtype;
2226 
2227 	/*
2228 	 * Issue a Capability Configuration command to the firmware to get it
2229 	 * to parse the Configuration File.
2230 	 */
2231 	rv = csio_hw_fw_config_file(hw, mtype, maddr, &finiver,
2232 		&finicsum, &cfcsum);
2233 	if (rv != 0)
2234 		goto bye;
2235 
2236 	hw->cfg_finiver		= finiver;
2237 	hw->cfg_finicsum	= finicsum;
2238 	hw->cfg_cfcsum		= cfcsum;
2239 	hw->cfg_csum_status	= true;
2240 
2241 	if (finicsum != cfcsum) {
2242 		csio_warn(hw,
2243 		      "Config File checksum mismatch: csum=%#x, computed=%#x\n",
2244 		      finicsum, cfcsum);
2245 
2246 		hw->cfg_csum_status = false;
2247 	}
2248 
2249 	/*
2250 	 * Note that we're operating with parameters
2251 	 * not supplied by the driver, rather than from hard-wired
2252 	 * initialization constants buried in the driver.
2253 	 */
2254 	hw->flags |= CSIO_HWF_USING_SOFT_PARAMS;
2255 
2256 	/* device parameters */
2257 	rv = csio_get_device_params(hw);
2258 	if (rv != 0)
2259 		goto bye;
2260 
2261 	/* Configure SGE */
2262 	csio_wr_sge_init(hw);
2263 
2264 	/*
2265 	 * And finally tell the firmware to initialize itself using the
2266 	 * parameters from the Configuration File.
2267 	 */
2268 	/* Post event to notify completion of configuration */
2269 	csio_post_event(&hw->sm, CSIO_HWE_INIT);
2270 
2271 	csio_info(hw,
2272 	 "Firmware Configuration File %s, version %#x, computed checksum %#x\n",
2273 		  (using_flash ? "in device FLASH" : path), finiver, cfcsum);
2274 
2275 	return 0;
2276 
2277 	/*
2278 	 * Something bad happened.  Return the error ...
2279 	 */
2280 bye:
2281 	hw->flags &= ~CSIO_HWF_USING_SOFT_PARAMS;
2282 	csio_dbg(hw, "Configuration file error %d\n", rv);
2283 	return rv;
2284 }
2285 
2286 /*
2287  * Attempt to initialize the adapter via hard-coded, driver supplied
2288  * parameters ...
2289  */
2290 static int
2291 csio_hw_no_fwconfig(struct csio_hw *hw, int reset)
2292 {
2293 	int		rv;
2294 	/*
2295 	 * Reset device if necessary
2296 	 */
2297 	if (reset) {
2298 		rv = csio_do_reset(hw, true);
2299 		if (rv != 0)
2300 			goto out;
2301 	}
2302 
2303 	/* Get and set device capabilities */
2304 	rv = csio_config_device_caps(hw);
2305 	if (rv != 0)
2306 		goto out;
2307 
2308 	/* Config Global RSS command */
2309 	rv = csio_config_global_rss(hw);
2310 	if (rv != 0)
2311 		goto out;
2312 
2313 	/* Configure PF/VF capabilities of device */
2314 	rv = csio_config_pfvf(hw);
2315 	if (rv != 0)
2316 		goto out;
2317 
2318 	/* device parameters */
2319 	rv = csio_get_device_params(hw);
2320 	if (rv != 0)
2321 		goto out;
2322 
2323 	/* Configure SGE */
2324 	csio_wr_sge_init(hw);
2325 
2326 	/* Post event to notify completion of configuration */
2327 	csio_post_event(&hw->sm, CSIO_HWE_INIT);
2328 
2329 out:
2330 	return rv;
2331 }
2332 
2333 /*
2334  * Returns -EINVAL if attempts to flash the firmware failed
2335  * else returns 0,
2336  * if flashing was not attempted because the card had the
2337  * latest firmware ECANCELED is returned
2338  */
2339 static int
2340 csio_hw_flash_fw(struct csio_hw *hw)
2341 {
2342 	int ret = -ECANCELED;
2343 	const struct firmware *fw;
2344 	const struct fw_hdr *hdr;
2345 	u32 fw_ver;
2346 	struct pci_dev *pci_dev = hw->pdev;
2347 	struct device *dev = &pci_dev->dev ;
2348 
2349 	if (request_firmware(&fw, CSIO_FW_FNAME, dev) < 0) {
2350 		csio_err(hw, "could not find firmware image " CSIO_FW_FNAME
2351 		",err: %d\n", ret);
2352 		return -EINVAL;
2353 	}
2354 
2355 	hdr = (const struct fw_hdr *)fw->data;
2356 	fw_ver = ntohl(hdr->fw_ver);
2357 	if (FW_HDR_FW_VER_MAJOR_GET(fw_ver) != FW_VERSION_MAJOR)
2358 		return -EINVAL;      /* wrong major version, won't do */
2359 
2360 	/*
2361 	 * If the flash FW is unusable or we found something newer, load it.
2362 	 */
2363 	if (FW_HDR_FW_VER_MAJOR_GET(hw->fwrev) != FW_VERSION_MAJOR ||
2364 	    fw_ver > hw->fwrev) {
2365 		ret = csio_hw_fw_upgrade(hw, hw->pfn, fw->data, fw->size,
2366 				    /*force=*/false);
2367 		if (!ret)
2368 			csio_info(hw, "firmware upgraded to version %pI4 from "
2369 				  CSIO_FW_FNAME "\n", &hdr->fw_ver);
2370 		else
2371 			csio_err(hw, "firmware upgrade failed! err=%d\n", ret);
2372 	}
2373 
2374 	release_firmware(fw);
2375 
2376 	return ret;
2377 }
2378 
2379 
2380 /*
2381  * csio_hw_configure - Configure HW
2382  * @hw - HW module
2383  *
2384  */
2385 static void
2386 csio_hw_configure(struct csio_hw *hw)
2387 {
2388 	int reset = 1;
2389 	int rv;
2390 	u32 param[1];
2391 
2392 	rv = csio_hw_dev_ready(hw);
2393 	if (rv != 0) {
2394 		CSIO_INC_STATS(hw, n_err_fatal);
2395 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2396 		goto out;
2397 	}
2398 
2399 	/* HW version */
2400 	hw->chip_ver = (char)csio_rd_reg32(hw, PL_REV);
2401 
2402 	/* Needed for FW download */
2403 	rv = csio_hw_get_flash_params(hw);
2404 	if (rv != 0) {
2405 		csio_err(hw, "Failed to get serial flash params rv:%d\n", rv);
2406 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2407 		goto out;
2408 	}
2409 
2410 	/* Set pci completion timeout value to 4 seconds. */
2411 	csio_set_pcie_completion_timeout(hw, 0xd);
2412 
2413 	csio_hw_set_mem_win(hw);
2414 
2415 	rv = csio_hw_get_fw_version(hw, &hw->fwrev);
2416 	if (rv != 0)
2417 		goto out;
2418 
2419 	csio_hw_print_fw_version(hw, "Firmware revision");
2420 
2421 	rv = csio_do_hello(hw, &hw->fw_state);
2422 	if (rv != 0) {
2423 		CSIO_INC_STATS(hw, n_err_fatal);
2424 		csio_post_event(&hw->sm, CSIO_HWE_FATAL);
2425 		goto out;
2426 	}
2427 
2428 	/* Read vpd */
2429 	rv = csio_hw_get_vpd_params(hw, &hw->vpd);
2430 	if (rv != 0)
2431 		goto out;
2432 
2433 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2434 		rv = csio_hw_check_fw_version(hw);
2435 		if (rv == -EINVAL) {
2436 
2437 			/* Do firmware update */
2438 			spin_unlock_irq(&hw->lock);
2439 			rv = csio_hw_flash_fw(hw);
2440 			spin_lock_irq(&hw->lock);
2441 
2442 			if (rv == 0) {
2443 				reset = 0;
2444 				/*
2445 				 * Note that the chip was reset as part of the
2446 				 * firmware upgrade so we don't reset it again
2447 				 * below and grab the new firmware version.
2448 				 */
2449 				rv = csio_hw_check_fw_version(hw);
2450 			}
2451 		}
2452 		/*
2453 		 * If the firmware doesn't support Configuration
2454 		 * Files, use the old Driver-based, hard-wired
2455 		 * initialization.  Otherwise, try using the
2456 		 * Configuration File support and fall back to the
2457 		 * Driver-based initialization if there's no
2458 		 * Configuration File found.
2459 		 */
2460 		if (csio_hw_check_fwconfig(hw, param) == 0) {
2461 			rv = csio_hw_use_fwconfig(hw, reset, param);
2462 			if (rv == -ENOENT)
2463 				goto out;
2464 			if (rv != 0) {
2465 				csio_info(hw,
2466 				    "No Configuration File present "
2467 				    "on adapter.  Using hard-wired "
2468 				    "configuration parameters.\n");
2469 				rv = csio_hw_no_fwconfig(hw, reset);
2470 			}
2471 		} else {
2472 			rv = csio_hw_no_fwconfig(hw, reset);
2473 		}
2474 
2475 		if (rv != 0)
2476 			goto out;
2477 
2478 	} else {
2479 		if (hw->fw_state == CSIO_DEV_STATE_INIT) {
2480 
2481 			/* device parameters */
2482 			rv = csio_get_device_params(hw);
2483 			if (rv != 0)
2484 				goto out;
2485 
2486 			/* Get device capabilities */
2487 			rv = csio_config_device_caps(hw);
2488 			if (rv != 0)
2489 				goto out;
2490 
2491 			/* Configure SGE */
2492 			csio_wr_sge_init(hw);
2493 
2494 			/* Post event to notify completion of configuration */
2495 			csio_post_event(&hw->sm, CSIO_HWE_INIT);
2496 			goto out;
2497 		}
2498 	} /* if not master */
2499 
2500 out:
2501 	return;
2502 }
2503 
2504 /*
2505  * csio_hw_initialize - Initialize HW
2506  * @hw - HW module
2507  *
2508  */
2509 static void
2510 csio_hw_initialize(struct csio_hw *hw)
2511 {
2512 	struct csio_mb	*mbp;
2513 	enum fw_retval retval;
2514 	int rv;
2515 	int i;
2516 
2517 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2518 		mbp = mempool_alloc(hw->mb_mempool, GFP_ATOMIC);
2519 		if (!mbp)
2520 			goto out;
2521 
2522 		csio_mb_initialize(hw, mbp, CSIO_MB_DEFAULT_TMO, NULL);
2523 
2524 		if (csio_mb_issue(hw, mbp)) {
2525 			csio_err(hw, "Issue of FW_INITIALIZE_CMD failed!\n");
2526 			goto free_and_out;
2527 		}
2528 
2529 		retval = csio_mb_fw_retval(mbp);
2530 		if (retval != FW_SUCCESS) {
2531 			csio_err(hw, "FW_INITIALIZE_CMD returned 0x%x!\n",
2532 				 retval);
2533 			goto free_and_out;
2534 		}
2535 
2536 		mempool_free(mbp, hw->mb_mempool);
2537 	}
2538 
2539 	rv = csio_get_fcoe_resinfo(hw);
2540 	if (rv != 0) {
2541 		csio_err(hw, "Failed to read fcoe resource info: %d\n", rv);
2542 		goto out;
2543 	}
2544 
2545 	spin_unlock_irq(&hw->lock);
2546 	rv = csio_config_queues(hw);
2547 	spin_lock_irq(&hw->lock);
2548 
2549 	if (rv != 0) {
2550 		csio_err(hw, "Config of queues failed!: %d\n", rv);
2551 		goto out;
2552 	}
2553 
2554 	for (i = 0; i < hw->num_pports; i++)
2555 		hw->pport[i].mod_type = FW_PORT_MOD_TYPE_NA;
2556 
2557 	if (csio_is_hw_master(hw) && hw->fw_state != CSIO_DEV_STATE_INIT) {
2558 		rv = csio_enable_ports(hw);
2559 		if (rv != 0) {
2560 			csio_err(hw, "Failed to enable ports: %d\n", rv);
2561 			goto out;
2562 		}
2563 	}
2564 
2565 	csio_post_event(&hw->sm, CSIO_HWE_INIT_DONE);
2566 	return;
2567 
2568 free_and_out:
2569 	mempool_free(mbp, hw->mb_mempool);
2570 out:
2571 	return;
2572 }
2573 
2574 #define PF_INTR_MASK (PFSW | PFCIM)
2575 
2576 /*
2577  * csio_hw_intr_enable - Enable HW interrupts
2578  * @hw: Pointer to HW module.
2579  *
2580  * Enable interrupts in HW registers.
2581  */
2582 static void
2583 csio_hw_intr_enable(struct csio_hw *hw)
2584 {
2585 	uint16_t vec = (uint16_t)csio_get_mb_intr_idx(csio_hw_to_mbm(hw));
2586 	uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
2587 	uint32_t pl = csio_rd_reg32(hw, PL_INT_ENABLE);
2588 
2589 	/*
2590 	 * Set aivec for MSI/MSIX. PCIE_PF_CFG.INTXType is set up
2591 	 * by FW, so do nothing for INTX.
2592 	 */
2593 	if (hw->intr_mode == CSIO_IM_MSIX)
2594 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
2595 				   AIVEC(AIVEC_MASK), vec);
2596 	else if (hw->intr_mode == CSIO_IM_MSI)
2597 		csio_set_reg_field(hw, MYPF_REG(PCIE_PF_CFG),
2598 				   AIVEC(AIVEC_MASK), 0);
2599 
2600 	csio_wr_reg32(hw, PF_INTR_MASK, MYPF_REG(PL_PF_INT_ENABLE));
2601 
2602 	/* Turn on MB interrupts - this will internally flush PIO as well */
2603 	csio_mb_intr_enable(hw);
2604 
2605 	/* These are common registers - only a master can modify them */
2606 	if (csio_is_hw_master(hw)) {
2607 		/*
2608 		 * Disable the Serial FLASH interrupt, if enabled!
2609 		 */
2610 		pl &= (~SF);
2611 		csio_wr_reg32(hw, pl, PL_INT_ENABLE);
2612 
2613 		csio_wr_reg32(hw, ERR_CPL_EXCEED_IQE_SIZE |
2614 			      EGRESS_SIZE_ERR | ERR_INVALID_CIDX_INC |
2615 			      ERR_CPL_OPCODE_0 | ERR_DROPPED_DB |
2616 			      ERR_DATA_CPL_ON_HIGH_QID1 |
2617 			      ERR_DATA_CPL_ON_HIGH_QID0 | ERR_BAD_DB_PIDX3 |
2618 			      ERR_BAD_DB_PIDX2 | ERR_BAD_DB_PIDX1 |
2619 			      ERR_BAD_DB_PIDX0 | ERR_ING_CTXT_PRIO |
2620 			      ERR_EGR_CTXT_PRIO | INGRESS_SIZE_ERR,
2621 			      SGE_INT_ENABLE3);
2622 		csio_set_reg_field(hw, PL_INT_MAP0, 0, 1 << pf);
2623 	}
2624 
2625 	hw->flags |= CSIO_HWF_HW_INTR_ENABLED;
2626 
2627 }
2628 
2629 /*
2630  * csio_hw_intr_disable - Disable HW interrupts
2631  * @hw: Pointer to HW module.
2632  *
2633  * Turn off Mailbox and PCI_PF_CFG interrupts.
2634  */
2635 void
2636 csio_hw_intr_disable(struct csio_hw *hw)
2637 {
2638 	uint32_t pf = SOURCEPF_GET(csio_rd_reg32(hw, PL_WHOAMI));
2639 
2640 	if (!(hw->flags & CSIO_HWF_HW_INTR_ENABLED))
2641 		return;
2642 
2643 	hw->flags &= ~CSIO_HWF_HW_INTR_ENABLED;
2644 
2645 	csio_wr_reg32(hw, 0, MYPF_REG(PL_PF_INT_ENABLE));
2646 	if (csio_is_hw_master(hw))
2647 		csio_set_reg_field(hw, PL_INT_MAP0, 1 << pf, 0);
2648 
2649 	/* Turn off MB interrupts */
2650 	csio_mb_intr_disable(hw);
2651 
2652 }
2653 
2654 static void
2655 csio_hw_fatal_err(struct csio_hw *hw)
2656 {
2657 	csio_set_reg_field(hw, SGE_CONTROL, GLOBALENABLE, 0);
2658 	csio_hw_intr_disable(hw);
2659 
2660 	/* Do not reset HW, we may need FW state for debugging */
2661 	csio_fatal(hw, "HW Fatal error encountered!\n");
2662 }
2663 
2664 /*****************************************************************************/
2665 /* START: HW SM                                                              */
2666 /*****************************************************************************/
2667 /*
2668  * csio_hws_uninit - Uninit state
2669  * @hw - HW module
2670  * @evt - Event
2671  *
2672  */
2673 static void
2674 csio_hws_uninit(struct csio_hw *hw, enum csio_hw_ev evt)
2675 {
2676 	hw->prev_evt = hw->cur_evt;
2677 	hw->cur_evt = evt;
2678 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2679 
2680 	switch (evt) {
2681 	case CSIO_HWE_CFG:
2682 		csio_set_state(&hw->sm, csio_hws_configuring);
2683 		csio_hw_configure(hw);
2684 		break;
2685 
2686 	default:
2687 		CSIO_INC_STATS(hw, n_evt_unexp);
2688 		break;
2689 	}
2690 }
2691 
2692 /*
2693  * csio_hws_configuring - Configuring state
2694  * @hw - HW module
2695  * @evt - Event
2696  *
2697  */
2698 static void
2699 csio_hws_configuring(struct csio_hw *hw, enum csio_hw_ev evt)
2700 {
2701 	hw->prev_evt = hw->cur_evt;
2702 	hw->cur_evt = evt;
2703 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2704 
2705 	switch (evt) {
2706 	case CSIO_HWE_INIT:
2707 		csio_set_state(&hw->sm, csio_hws_initializing);
2708 		csio_hw_initialize(hw);
2709 		break;
2710 
2711 	case CSIO_HWE_INIT_DONE:
2712 		csio_set_state(&hw->sm, csio_hws_ready);
2713 		/* Fan out event to all lnode SMs */
2714 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2715 		break;
2716 
2717 	case CSIO_HWE_FATAL:
2718 		csio_set_state(&hw->sm, csio_hws_uninit);
2719 		break;
2720 
2721 	case CSIO_HWE_PCI_REMOVE:
2722 		csio_do_bye(hw);
2723 		break;
2724 	default:
2725 		CSIO_INC_STATS(hw, n_evt_unexp);
2726 		break;
2727 	}
2728 }
2729 
2730 /*
2731  * csio_hws_initializing - Initialiazing state
2732  * @hw - HW module
2733  * @evt - Event
2734  *
2735  */
2736 static void
2737 csio_hws_initializing(struct csio_hw *hw, enum csio_hw_ev evt)
2738 {
2739 	hw->prev_evt = hw->cur_evt;
2740 	hw->cur_evt = evt;
2741 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2742 
2743 	switch (evt) {
2744 	case CSIO_HWE_INIT_DONE:
2745 		csio_set_state(&hw->sm, csio_hws_ready);
2746 
2747 		/* Fan out event to all lnode SMs */
2748 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREADY);
2749 
2750 		/* Enable interrupts */
2751 		csio_hw_intr_enable(hw);
2752 		break;
2753 
2754 	case CSIO_HWE_FATAL:
2755 		csio_set_state(&hw->sm, csio_hws_uninit);
2756 		break;
2757 
2758 	case CSIO_HWE_PCI_REMOVE:
2759 		csio_do_bye(hw);
2760 		break;
2761 
2762 	default:
2763 		CSIO_INC_STATS(hw, n_evt_unexp);
2764 		break;
2765 	}
2766 }
2767 
2768 /*
2769  * csio_hws_ready - Ready state
2770  * @hw - HW module
2771  * @evt - Event
2772  *
2773  */
2774 static void
2775 csio_hws_ready(struct csio_hw *hw, enum csio_hw_ev evt)
2776 {
2777 	/* Remember the event */
2778 	hw->evtflag = evt;
2779 
2780 	hw->prev_evt = hw->cur_evt;
2781 	hw->cur_evt = evt;
2782 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2783 
2784 	switch (evt) {
2785 	case CSIO_HWE_HBA_RESET:
2786 	case CSIO_HWE_FW_DLOAD:
2787 	case CSIO_HWE_SUSPEND:
2788 	case CSIO_HWE_PCI_REMOVE:
2789 	case CSIO_HWE_PCIERR_DETECTED:
2790 		csio_set_state(&hw->sm, csio_hws_quiescing);
2791 		/* cleanup all outstanding cmds */
2792 		if (evt == CSIO_HWE_HBA_RESET ||
2793 		    evt == CSIO_HWE_PCIERR_DETECTED)
2794 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), false);
2795 		else
2796 			csio_scsim_cleanup_io(csio_hw_to_scsim(hw), true);
2797 
2798 		csio_hw_intr_disable(hw);
2799 		csio_hw_mbm_cleanup(hw);
2800 		csio_evtq_stop(hw);
2801 		csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWSTOP);
2802 		csio_evtq_flush(hw);
2803 		csio_mgmtm_cleanup(csio_hw_to_mgmtm(hw));
2804 		csio_post_event(&hw->sm, CSIO_HWE_QUIESCED);
2805 		break;
2806 
2807 	case CSIO_HWE_FATAL:
2808 		csio_set_state(&hw->sm, csio_hws_uninit);
2809 		break;
2810 
2811 	default:
2812 		CSIO_INC_STATS(hw, n_evt_unexp);
2813 		break;
2814 	}
2815 }
2816 
2817 /*
2818  * csio_hws_quiescing - Quiescing state
2819  * @hw - HW module
2820  * @evt - Event
2821  *
2822  */
2823 static void
2824 csio_hws_quiescing(struct csio_hw *hw, enum csio_hw_ev evt)
2825 {
2826 	hw->prev_evt = hw->cur_evt;
2827 	hw->cur_evt = evt;
2828 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2829 
2830 	switch (evt) {
2831 	case CSIO_HWE_QUIESCED:
2832 		switch (hw->evtflag) {
2833 		case CSIO_HWE_FW_DLOAD:
2834 			csio_set_state(&hw->sm, csio_hws_resetting);
2835 			/* Download firmware */
2836 			/* Fall through */
2837 
2838 		case CSIO_HWE_HBA_RESET:
2839 			csio_set_state(&hw->sm, csio_hws_resetting);
2840 			/* Start reset of the HBA */
2841 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWRESET);
2842 			csio_wr_destroy_queues(hw, false);
2843 			csio_do_reset(hw, false);
2844 			csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET_DONE);
2845 			break;
2846 
2847 		case CSIO_HWE_PCI_REMOVE:
2848 			csio_set_state(&hw->sm, csio_hws_removing);
2849 			csio_notify_lnodes(hw, CSIO_LN_NOTIFY_HWREMOVE);
2850 			csio_wr_destroy_queues(hw, true);
2851 			/* Now send the bye command */
2852 			csio_do_bye(hw);
2853 			break;
2854 
2855 		case CSIO_HWE_SUSPEND:
2856 			csio_set_state(&hw->sm, csio_hws_quiesced);
2857 			break;
2858 
2859 		case CSIO_HWE_PCIERR_DETECTED:
2860 			csio_set_state(&hw->sm, csio_hws_pcierr);
2861 			csio_wr_destroy_queues(hw, false);
2862 			break;
2863 
2864 		default:
2865 			CSIO_INC_STATS(hw, n_evt_unexp);
2866 			break;
2867 
2868 		}
2869 		break;
2870 
2871 	default:
2872 		CSIO_INC_STATS(hw, n_evt_unexp);
2873 		break;
2874 	}
2875 }
2876 
2877 /*
2878  * csio_hws_quiesced - Quiesced state
2879  * @hw - HW module
2880  * @evt - Event
2881  *
2882  */
2883 static void
2884 csio_hws_quiesced(struct csio_hw *hw, enum csio_hw_ev evt)
2885 {
2886 	hw->prev_evt = hw->cur_evt;
2887 	hw->cur_evt = evt;
2888 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2889 
2890 	switch (evt) {
2891 	case CSIO_HWE_RESUME:
2892 		csio_set_state(&hw->sm, csio_hws_configuring);
2893 		csio_hw_configure(hw);
2894 		break;
2895 
2896 	default:
2897 		CSIO_INC_STATS(hw, n_evt_unexp);
2898 		break;
2899 	}
2900 }
2901 
2902 /*
2903  * csio_hws_resetting - HW Resetting state
2904  * @hw - HW module
2905  * @evt - Event
2906  *
2907  */
2908 static void
2909 csio_hws_resetting(struct csio_hw *hw, enum csio_hw_ev evt)
2910 {
2911 	hw->prev_evt = hw->cur_evt;
2912 	hw->cur_evt = evt;
2913 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2914 
2915 	switch (evt) {
2916 	case CSIO_HWE_HBA_RESET_DONE:
2917 		csio_evtq_start(hw);
2918 		csio_set_state(&hw->sm, csio_hws_configuring);
2919 		csio_hw_configure(hw);
2920 		break;
2921 
2922 	default:
2923 		CSIO_INC_STATS(hw, n_evt_unexp);
2924 		break;
2925 	}
2926 }
2927 
2928 /*
2929  * csio_hws_removing - PCI Hotplug removing state
2930  * @hw - HW module
2931  * @evt - Event
2932  *
2933  */
2934 static void
2935 csio_hws_removing(struct csio_hw *hw, enum csio_hw_ev evt)
2936 {
2937 	hw->prev_evt = hw->cur_evt;
2938 	hw->cur_evt = evt;
2939 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2940 
2941 	switch (evt) {
2942 	case CSIO_HWE_HBA_RESET:
2943 		if (!csio_is_hw_master(hw))
2944 			break;
2945 		/*
2946 		 * The BYE should have alerady been issued, so we cant
2947 		 * use the mailbox interface. Hence we use the PL_RST
2948 		 * register directly.
2949 		 */
2950 		csio_err(hw, "Resetting HW and waiting 2 seconds...\n");
2951 		csio_wr_reg32(hw, PIORSTMODE | PIORST, PL_RST);
2952 		mdelay(2000);
2953 		break;
2954 
2955 	/* Should never receive any new events */
2956 	default:
2957 		CSIO_INC_STATS(hw, n_evt_unexp);
2958 		break;
2959 
2960 	}
2961 }
2962 
2963 /*
2964  * csio_hws_pcierr - PCI Error state
2965  * @hw - HW module
2966  * @evt - Event
2967  *
2968  */
2969 static void
2970 csio_hws_pcierr(struct csio_hw *hw, enum csio_hw_ev evt)
2971 {
2972 	hw->prev_evt = hw->cur_evt;
2973 	hw->cur_evt = evt;
2974 	CSIO_INC_STATS(hw, n_evt_sm[evt]);
2975 
2976 	switch (evt) {
2977 	case CSIO_HWE_PCIERR_SLOT_RESET:
2978 		csio_evtq_start(hw);
2979 		csio_set_state(&hw->sm, csio_hws_configuring);
2980 		csio_hw_configure(hw);
2981 		break;
2982 
2983 	default:
2984 		CSIO_INC_STATS(hw, n_evt_unexp);
2985 		break;
2986 	}
2987 }
2988 
2989 /*****************************************************************************/
2990 /* END: HW SM                                                                */
2991 /*****************************************************************************/
2992 
2993 /* Slow path handlers */
2994 struct intr_info {
2995 	unsigned int mask;       /* bits to check in interrupt status */
2996 	const char *msg;         /* message to print or NULL */
2997 	short stat_idx;          /* stat counter to increment or -1 */
2998 	unsigned short fatal;    /* whether the condition reported is fatal */
2999 };
3000 
3001 /*
3002  *	csio_handle_intr_status - table driven interrupt handler
3003  *	@hw: HW instance
3004  *	@reg: the interrupt status register to process
3005  *	@acts: table of interrupt actions
3006  *
3007  *	A table driven interrupt handler that applies a set of masks to an
3008  *	interrupt status word and performs the corresponding actions if the
3009  *	interrupts described by the mask have occured.  The actions include
3010  *	optionally emitting a warning or alert message. The table is terminated
3011  *	by an entry specifying mask 0.  Returns the number of fatal interrupt
3012  *	conditions.
3013  */
3014 static int
3015 csio_handle_intr_status(struct csio_hw *hw, unsigned int reg,
3016 				 const struct intr_info *acts)
3017 {
3018 	int fatal = 0;
3019 	unsigned int mask = 0;
3020 	unsigned int status = csio_rd_reg32(hw, reg);
3021 
3022 	for ( ; acts->mask; ++acts) {
3023 		if (!(status & acts->mask))
3024 			continue;
3025 		if (acts->fatal) {
3026 			fatal++;
3027 			csio_fatal(hw, "Fatal %s (0x%x)\n",
3028 				    acts->msg, status & acts->mask);
3029 		} else if (acts->msg)
3030 			csio_info(hw, "%s (0x%x)\n",
3031 				    acts->msg, status & acts->mask);
3032 		mask |= acts->mask;
3033 	}
3034 	status &= mask;
3035 	if (status)                           /* clear processed interrupts */
3036 		csio_wr_reg32(hw, status, reg);
3037 	return fatal;
3038 }
3039 
3040 /*
3041  * Interrupt handler for the PCIE module.
3042  */
3043 static void
3044 csio_pcie_intr_handler(struct csio_hw *hw)
3045 {
3046 	static struct intr_info sysbus_intr_info[] = {
3047 		{ RNPP, "RXNP array parity error", -1, 1 },
3048 		{ RPCP, "RXPC array parity error", -1, 1 },
3049 		{ RCIP, "RXCIF array parity error", -1, 1 },
3050 		{ RCCP, "Rx completions control array parity error", -1, 1 },
3051 		{ RFTP, "RXFT array parity error", -1, 1 },
3052 		{ 0, NULL, 0, 0 }
3053 	};
3054 	static struct intr_info pcie_port_intr_info[] = {
3055 		{ TPCP, "TXPC array parity error", -1, 1 },
3056 		{ TNPP, "TXNP array parity error", -1, 1 },
3057 		{ TFTP, "TXFT array parity error", -1, 1 },
3058 		{ TCAP, "TXCA array parity error", -1, 1 },
3059 		{ TCIP, "TXCIF array parity error", -1, 1 },
3060 		{ RCAP, "RXCA array parity error", -1, 1 },
3061 		{ OTDD, "outbound request TLP discarded", -1, 1 },
3062 		{ RDPE, "Rx data parity error", -1, 1 },
3063 		{ TDUE, "Tx uncorrectable data error", -1, 1 },
3064 		{ 0, NULL, 0, 0 }
3065 	};
3066 	static struct intr_info pcie_intr_info[] = {
3067 		{ MSIADDRLPERR, "MSI AddrL parity error", -1, 1 },
3068 		{ MSIADDRHPERR, "MSI AddrH parity error", -1, 1 },
3069 		{ MSIDATAPERR, "MSI data parity error", -1, 1 },
3070 		{ MSIXADDRLPERR, "MSI-X AddrL parity error", -1, 1 },
3071 		{ MSIXADDRHPERR, "MSI-X AddrH parity error", -1, 1 },
3072 		{ MSIXDATAPERR, "MSI-X data parity error", -1, 1 },
3073 		{ MSIXDIPERR, "MSI-X DI parity error", -1, 1 },
3074 		{ PIOCPLPERR, "PCI PIO completion FIFO parity error", -1, 1 },
3075 		{ PIOREQPERR, "PCI PIO request FIFO parity error", -1, 1 },
3076 		{ TARTAGPERR, "PCI PCI target tag FIFO parity error", -1, 1 },
3077 		{ CCNTPERR, "PCI CMD channel count parity error", -1, 1 },
3078 		{ CREQPERR, "PCI CMD channel request parity error", -1, 1 },
3079 		{ CRSPPERR, "PCI CMD channel response parity error", -1, 1 },
3080 		{ DCNTPERR, "PCI DMA channel count parity error", -1, 1 },
3081 		{ DREQPERR, "PCI DMA channel request parity error", -1, 1 },
3082 		{ DRSPPERR, "PCI DMA channel response parity error", -1, 1 },
3083 		{ HCNTPERR, "PCI HMA channel count parity error", -1, 1 },
3084 		{ HREQPERR, "PCI HMA channel request parity error", -1, 1 },
3085 		{ HRSPPERR, "PCI HMA channel response parity error", -1, 1 },
3086 		{ CFGSNPPERR, "PCI config snoop FIFO parity error", -1, 1 },
3087 		{ FIDPERR, "PCI FID parity error", -1, 1 },
3088 		{ INTXCLRPERR, "PCI INTx clear parity error", -1, 1 },
3089 		{ MATAGPERR, "PCI MA tag parity error", -1, 1 },
3090 		{ PIOTAGPERR, "PCI PIO tag parity error", -1, 1 },
3091 		{ RXCPLPERR, "PCI Rx completion parity error", -1, 1 },
3092 		{ RXWRPERR, "PCI Rx write parity error", -1, 1 },
3093 		{ RPLPERR, "PCI replay buffer parity error", -1, 1 },
3094 		{ PCIESINT, "PCI core secondary fault", -1, 1 },
3095 		{ PCIEPINT, "PCI core primary fault", -1, 1 },
3096 		{ UNXSPLCPLERR, "PCI unexpected split completion error", -1,
3097 		  0 },
3098 		{ 0, NULL, 0, 0 }
3099 	};
3100 
3101 	int fat;
3102 
3103 	fat = csio_handle_intr_status(hw,
3104 				    PCIE_CORE_UTL_SYSTEM_BUS_AGENT_STATUS,
3105 				    sysbus_intr_info) +
3106 	      csio_handle_intr_status(hw,
3107 				    PCIE_CORE_UTL_PCI_EXPRESS_PORT_STATUS,
3108 				    pcie_port_intr_info) +
3109 	      csio_handle_intr_status(hw, PCIE_INT_CAUSE, pcie_intr_info);
3110 	if (fat)
3111 		csio_hw_fatal_err(hw);
3112 }
3113 
3114 /*
3115  * TP interrupt handler.
3116  */
3117 static void csio_tp_intr_handler(struct csio_hw *hw)
3118 {
3119 	static struct intr_info tp_intr_info[] = {
3120 		{ 0x3fffffff, "TP parity error", -1, 1 },
3121 		{ FLMTXFLSTEMPTY, "TP out of Tx pages", -1, 1 },
3122 		{ 0, NULL, 0, 0 }
3123 	};
3124 
3125 	if (csio_handle_intr_status(hw, TP_INT_CAUSE, tp_intr_info))
3126 		csio_hw_fatal_err(hw);
3127 }
3128 
3129 /*
3130  * SGE interrupt handler.
3131  */
3132 static void csio_sge_intr_handler(struct csio_hw *hw)
3133 {
3134 	uint64_t v;
3135 
3136 	static struct intr_info sge_intr_info[] = {
3137 		{ ERR_CPL_EXCEED_IQE_SIZE,
3138 		  "SGE received CPL exceeding IQE size", -1, 1 },
3139 		{ ERR_INVALID_CIDX_INC,
3140 		  "SGE GTS CIDX increment too large", -1, 0 },
3141 		{ ERR_CPL_OPCODE_0, "SGE received 0-length CPL", -1, 0 },
3142 		{ ERR_DROPPED_DB, "SGE doorbell dropped", -1, 0 },
3143 		{ ERR_DATA_CPL_ON_HIGH_QID1 | ERR_DATA_CPL_ON_HIGH_QID0,
3144 		  "SGE IQID > 1023 received CPL for FL", -1, 0 },
3145 		{ ERR_BAD_DB_PIDX3, "SGE DBP 3 pidx increment too large", -1,
3146 		  0 },
3147 		{ ERR_BAD_DB_PIDX2, "SGE DBP 2 pidx increment too large", -1,
3148 		  0 },
3149 		{ ERR_BAD_DB_PIDX1, "SGE DBP 1 pidx increment too large", -1,
3150 		  0 },
3151 		{ ERR_BAD_DB_PIDX0, "SGE DBP 0 pidx increment too large", -1,
3152 		  0 },
3153 		{ ERR_ING_CTXT_PRIO,
3154 		  "SGE too many priority ingress contexts", -1, 0 },
3155 		{ ERR_EGR_CTXT_PRIO,
3156 		  "SGE too many priority egress contexts", -1, 0 },
3157 		{ INGRESS_SIZE_ERR, "SGE illegal ingress QID", -1, 0 },
3158 		{ EGRESS_SIZE_ERR, "SGE illegal egress QID", -1, 0 },
3159 		{ 0, NULL, 0, 0 }
3160 	};
3161 
3162 	v = (uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE1) |
3163 	    ((uint64_t)csio_rd_reg32(hw, SGE_INT_CAUSE2) << 32);
3164 	if (v) {
3165 		csio_fatal(hw, "SGE parity error (%#llx)\n",
3166 			    (unsigned long long)v);
3167 		csio_wr_reg32(hw, (uint32_t)(v & 0xFFFFFFFF),
3168 						SGE_INT_CAUSE1);
3169 		csio_wr_reg32(hw, (uint32_t)(v >> 32), SGE_INT_CAUSE2);
3170 	}
3171 
3172 	v |= csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info);
3173 
3174 	if (csio_handle_intr_status(hw, SGE_INT_CAUSE3, sge_intr_info) ||
3175 	    v != 0)
3176 		csio_hw_fatal_err(hw);
3177 }
3178 
3179 #define CIM_OBQ_INTR (OBQULP0PARERR | OBQULP1PARERR | OBQULP2PARERR |\
3180 		      OBQULP3PARERR | OBQSGEPARERR | OBQNCSIPARERR)
3181 #define CIM_IBQ_INTR (IBQTP0PARERR | IBQTP1PARERR | IBQULPPARERR |\
3182 		      IBQSGEHIPARERR | IBQSGELOPARERR | IBQNCSIPARERR)
3183 
3184 /*
3185  * CIM interrupt handler.
3186  */
3187 static void csio_cim_intr_handler(struct csio_hw *hw)
3188 {
3189 	static struct intr_info cim_intr_info[] = {
3190 		{ PREFDROPINT, "CIM control register prefetch drop", -1, 1 },
3191 		{ CIM_OBQ_INTR, "CIM OBQ parity error", -1, 1 },
3192 		{ CIM_IBQ_INTR, "CIM IBQ parity error", -1, 1 },
3193 		{ MBUPPARERR, "CIM mailbox uP parity error", -1, 1 },
3194 		{ MBHOSTPARERR, "CIM mailbox host parity error", -1, 1 },
3195 		{ TIEQINPARERRINT, "CIM TIEQ outgoing parity error", -1, 1 },
3196 		{ TIEQOUTPARERRINT, "CIM TIEQ incoming parity error", -1, 1 },
3197 		{ 0, NULL, 0, 0 }
3198 	};
3199 	static struct intr_info cim_upintr_info[] = {
3200 		{ RSVDSPACEINT, "CIM reserved space access", -1, 1 },
3201 		{ ILLTRANSINT, "CIM illegal transaction", -1, 1 },
3202 		{ ILLWRINT, "CIM illegal write", -1, 1 },
3203 		{ ILLRDINT, "CIM illegal read", -1, 1 },
3204 		{ ILLRDBEINT, "CIM illegal read BE", -1, 1 },
3205 		{ ILLWRBEINT, "CIM illegal write BE", -1, 1 },
3206 		{ SGLRDBOOTINT, "CIM single read from boot space", -1, 1 },
3207 		{ SGLWRBOOTINT, "CIM single write to boot space", -1, 1 },
3208 		{ BLKWRBOOTINT, "CIM block write to boot space", -1, 1 },
3209 		{ SGLRDFLASHINT, "CIM single read from flash space", -1, 1 },
3210 		{ SGLWRFLASHINT, "CIM single write to flash space", -1, 1 },
3211 		{ BLKWRFLASHINT, "CIM block write to flash space", -1, 1 },
3212 		{ SGLRDEEPROMINT, "CIM single EEPROM read", -1, 1 },
3213 		{ SGLWREEPROMINT, "CIM single EEPROM write", -1, 1 },
3214 		{ BLKRDEEPROMINT, "CIM block EEPROM read", -1, 1 },
3215 		{ BLKWREEPROMINT, "CIM block EEPROM write", -1, 1 },
3216 		{ SGLRDCTLINT , "CIM single read from CTL space", -1, 1 },
3217 		{ SGLWRCTLINT , "CIM single write to CTL space", -1, 1 },
3218 		{ BLKRDCTLINT , "CIM block read from CTL space", -1, 1 },
3219 		{ BLKWRCTLINT , "CIM block write to CTL space", -1, 1 },
3220 		{ SGLRDPLINT , "CIM single read from PL space", -1, 1 },
3221 		{ SGLWRPLINT , "CIM single write to PL space", -1, 1 },
3222 		{ BLKRDPLINT , "CIM block read from PL space", -1, 1 },
3223 		{ BLKWRPLINT , "CIM block write to PL space", -1, 1 },
3224 		{ REQOVRLOOKUPINT , "CIM request FIFO overwrite", -1, 1 },
3225 		{ RSPOVRLOOKUPINT , "CIM response FIFO overwrite", -1, 1 },
3226 		{ TIMEOUTINT , "CIM PIF timeout", -1, 1 },
3227 		{ TIMEOUTMAINT , "CIM PIF MA timeout", -1, 1 },
3228 		{ 0, NULL, 0, 0 }
3229 	};
3230 
3231 	int fat;
3232 
3233 	fat = csio_handle_intr_status(hw, CIM_HOST_INT_CAUSE,
3234 				    cim_intr_info) +
3235 	      csio_handle_intr_status(hw, CIM_HOST_UPACC_INT_CAUSE,
3236 				    cim_upintr_info);
3237 	if (fat)
3238 		csio_hw_fatal_err(hw);
3239 }
3240 
3241 /*
3242  * ULP RX interrupt handler.
3243  */
3244 static void csio_ulprx_intr_handler(struct csio_hw *hw)
3245 {
3246 	static struct intr_info ulprx_intr_info[] = {
3247 		{ 0x1800000, "ULPRX context error", -1, 1 },
3248 		{ 0x7fffff, "ULPRX parity error", -1, 1 },
3249 		{ 0, NULL, 0, 0 }
3250 	};
3251 
3252 	if (csio_handle_intr_status(hw, ULP_RX_INT_CAUSE, ulprx_intr_info))
3253 		csio_hw_fatal_err(hw);
3254 }
3255 
3256 /*
3257  * ULP TX interrupt handler.
3258  */
3259 static void csio_ulptx_intr_handler(struct csio_hw *hw)
3260 {
3261 	static struct intr_info ulptx_intr_info[] = {
3262 		{ PBL_BOUND_ERR_CH3, "ULPTX channel 3 PBL out of bounds", -1,
3263 		  0 },
3264 		{ PBL_BOUND_ERR_CH2, "ULPTX channel 2 PBL out of bounds", -1,
3265 		  0 },
3266 		{ PBL_BOUND_ERR_CH1, "ULPTX channel 1 PBL out of bounds", -1,
3267 		  0 },
3268 		{ PBL_BOUND_ERR_CH0, "ULPTX channel 0 PBL out of bounds", -1,
3269 		  0 },
3270 		{ 0xfffffff, "ULPTX parity error", -1, 1 },
3271 		{ 0, NULL, 0, 0 }
3272 	};
3273 
3274 	if (csio_handle_intr_status(hw, ULP_TX_INT_CAUSE, ulptx_intr_info))
3275 		csio_hw_fatal_err(hw);
3276 }
3277 
3278 /*
3279  * PM TX interrupt handler.
3280  */
3281 static void csio_pmtx_intr_handler(struct csio_hw *hw)
3282 {
3283 	static struct intr_info pmtx_intr_info[] = {
3284 		{ PCMD_LEN_OVFL0, "PMTX channel 0 pcmd too large", -1, 1 },
3285 		{ PCMD_LEN_OVFL1, "PMTX channel 1 pcmd too large", -1, 1 },
3286 		{ PCMD_LEN_OVFL2, "PMTX channel 2 pcmd too large", -1, 1 },
3287 		{ ZERO_C_CMD_ERROR, "PMTX 0-length pcmd", -1, 1 },
3288 		{ 0xffffff0, "PMTX framing error", -1, 1 },
3289 		{ OESPI_PAR_ERROR, "PMTX oespi parity error", -1, 1 },
3290 		{ DB_OPTIONS_PAR_ERROR, "PMTX db_options parity error", -1,
3291 		  1 },
3292 		{ ICSPI_PAR_ERROR, "PMTX icspi parity error", -1, 1 },
3293 		{ C_PCMD_PAR_ERROR, "PMTX c_pcmd parity error", -1, 1},
3294 		{ 0, NULL, 0, 0 }
3295 	};
3296 
3297 	if (csio_handle_intr_status(hw, PM_TX_INT_CAUSE, pmtx_intr_info))
3298 		csio_hw_fatal_err(hw);
3299 }
3300 
3301 /*
3302  * PM RX interrupt handler.
3303  */
3304 static void csio_pmrx_intr_handler(struct csio_hw *hw)
3305 {
3306 	static struct intr_info pmrx_intr_info[] = {
3307 		{ ZERO_E_CMD_ERROR, "PMRX 0-length pcmd", -1, 1 },
3308 		{ 0x3ffff0, "PMRX framing error", -1, 1 },
3309 		{ OCSPI_PAR_ERROR, "PMRX ocspi parity error", -1, 1 },
3310 		{ DB_OPTIONS_PAR_ERROR, "PMRX db_options parity error", -1,
3311 		  1 },
3312 		{ IESPI_PAR_ERROR, "PMRX iespi parity error", -1, 1 },
3313 		{ E_PCMD_PAR_ERROR, "PMRX e_pcmd parity error", -1, 1},
3314 		{ 0, NULL, 0, 0 }
3315 	};
3316 
3317 	if (csio_handle_intr_status(hw, PM_RX_INT_CAUSE, pmrx_intr_info))
3318 		csio_hw_fatal_err(hw);
3319 }
3320 
3321 /*
3322  * CPL switch interrupt handler.
3323  */
3324 static void csio_cplsw_intr_handler(struct csio_hw *hw)
3325 {
3326 	static struct intr_info cplsw_intr_info[] = {
3327 		{ CIM_OP_MAP_PERR, "CPLSW CIM op_map parity error", -1, 1 },
3328 		{ CIM_OVFL_ERROR, "CPLSW CIM overflow", -1, 1 },
3329 		{ TP_FRAMING_ERROR, "CPLSW TP framing error", -1, 1 },
3330 		{ SGE_FRAMING_ERROR, "CPLSW SGE framing error", -1, 1 },
3331 		{ CIM_FRAMING_ERROR, "CPLSW CIM framing error", -1, 1 },
3332 		{ ZERO_SWITCH_ERROR, "CPLSW no-switch error", -1, 1 },
3333 		{ 0, NULL, 0, 0 }
3334 	};
3335 
3336 	if (csio_handle_intr_status(hw, CPL_INTR_CAUSE, cplsw_intr_info))
3337 		csio_hw_fatal_err(hw);
3338 }
3339 
3340 /*
3341  * LE interrupt handler.
3342  */
3343 static void csio_le_intr_handler(struct csio_hw *hw)
3344 {
3345 	static struct intr_info le_intr_info[] = {
3346 		{ LIPMISS, "LE LIP miss", -1, 0 },
3347 		{ LIP0, "LE 0 LIP error", -1, 0 },
3348 		{ PARITYERR, "LE parity error", -1, 1 },
3349 		{ UNKNOWNCMD, "LE unknown command", -1, 1 },
3350 		{ REQQPARERR, "LE request queue parity error", -1, 1 },
3351 		{ 0, NULL, 0, 0 }
3352 	};
3353 
3354 	if (csio_handle_intr_status(hw, LE_DB_INT_CAUSE, le_intr_info))
3355 		csio_hw_fatal_err(hw);
3356 }
3357 
3358 /*
3359  * MPS interrupt handler.
3360  */
3361 static void csio_mps_intr_handler(struct csio_hw *hw)
3362 {
3363 	static struct intr_info mps_rx_intr_info[] = {
3364 		{ 0xffffff, "MPS Rx parity error", -1, 1 },
3365 		{ 0, NULL, 0, 0 }
3366 	};
3367 	static struct intr_info mps_tx_intr_info[] = {
3368 		{ TPFIFO, "MPS Tx TP FIFO parity error", -1, 1 },
3369 		{ NCSIFIFO, "MPS Tx NC-SI FIFO parity error", -1, 1 },
3370 		{ TXDATAFIFO, "MPS Tx data FIFO parity error", -1, 1 },
3371 		{ TXDESCFIFO, "MPS Tx desc FIFO parity error", -1, 1 },
3372 		{ BUBBLE, "MPS Tx underflow", -1, 1 },
3373 		{ SECNTERR, "MPS Tx SOP/EOP error", -1, 1 },
3374 		{ FRMERR, "MPS Tx framing error", -1, 1 },
3375 		{ 0, NULL, 0, 0 }
3376 	};
3377 	static struct intr_info mps_trc_intr_info[] = {
3378 		{ FILTMEM, "MPS TRC filter parity error", -1, 1 },
3379 		{ PKTFIFO, "MPS TRC packet FIFO parity error", -1, 1 },
3380 		{ MISCPERR, "MPS TRC misc parity error", -1, 1 },
3381 		{ 0, NULL, 0, 0 }
3382 	};
3383 	static struct intr_info mps_stat_sram_intr_info[] = {
3384 		{ 0x1fffff, "MPS statistics SRAM parity error", -1, 1 },
3385 		{ 0, NULL, 0, 0 }
3386 	};
3387 	static struct intr_info mps_stat_tx_intr_info[] = {
3388 		{ 0xfffff, "MPS statistics Tx FIFO parity error", -1, 1 },
3389 		{ 0, NULL, 0, 0 }
3390 	};
3391 	static struct intr_info mps_stat_rx_intr_info[] = {
3392 		{ 0xffffff, "MPS statistics Rx FIFO parity error", -1, 1 },
3393 		{ 0, NULL, 0, 0 }
3394 	};
3395 	static struct intr_info mps_cls_intr_info[] = {
3396 		{ MATCHSRAM, "MPS match SRAM parity error", -1, 1 },
3397 		{ MATCHTCAM, "MPS match TCAM parity error", -1, 1 },
3398 		{ HASHSRAM, "MPS hash SRAM parity error", -1, 1 },
3399 		{ 0, NULL, 0, 0 }
3400 	};
3401 
3402 	int fat;
3403 
3404 	fat = csio_handle_intr_status(hw, MPS_RX_PERR_INT_CAUSE,
3405 				    mps_rx_intr_info) +
3406 	      csio_handle_intr_status(hw, MPS_TX_INT_CAUSE,
3407 				    mps_tx_intr_info) +
3408 	      csio_handle_intr_status(hw, MPS_TRC_INT_CAUSE,
3409 				    mps_trc_intr_info) +
3410 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_SRAM,
3411 				    mps_stat_sram_intr_info) +
3412 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_TX_FIFO,
3413 				    mps_stat_tx_intr_info) +
3414 	      csio_handle_intr_status(hw, MPS_STAT_PERR_INT_CAUSE_RX_FIFO,
3415 				    mps_stat_rx_intr_info) +
3416 	      csio_handle_intr_status(hw, MPS_CLS_INT_CAUSE,
3417 				    mps_cls_intr_info);
3418 
3419 	csio_wr_reg32(hw, 0, MPS_INT_CAUSE);
3420 	csio_rd_reg32(hw, MPS_INT_CAUSE);                    /* flush */
3421 	if (fat)
3422 		csio_hw_fatal_err(hw);
3423 }
3424 
3425 #define MEM_INT_MASK (PERR_INT_CAUSE | ECC_CE_INT_CAUSE | ECC_UE_INT_CAUSE)
3426 
3427 /*
3428  * EDC/MC interrupt handler.
3429  */
3430 static void csio_mem_intr_handler(struct csio_hw *hw, int idx)
3431 {
3432 	static const char name[3][5] = { "EDC0", "EDC1", "MC" };
3433 
3434 	unsigned int addr, cnt_addr, v;
3435 
3436 	if (idx <= MEM_EDC1) {
3437 		addr = EDC_REG(EDC_INT_CAUSE, idx);
3438 		cnt_addr = EDC_REG(EDC_ECC_STATUS, idx);
3439 	} else {
3440 		addr = MC_INT_CAUSE;
3441 		cnt_addr = MC_ECC_STATUS;
3442 	}
3443 
3444 	v = csio_rd_reg32(hw, addr) & MEM_INT_MASK;
3445 	if (v & PERR_INT_CAUSE)
3446 		csio_fatal(hw, "%s FIFO parity error\n", name[idx]);
3447 	if (v & ECC_CE_INT_CAUSE) {
3448 		uint32_t cnt = ECC_CECNT_GET(csio_rd_reg32(hw, cnt_addr));
3449 
3450 		csio_wr_reg32(hw, ECC_CECNT_MASK, cnt_addr);
3451 		csio_warn(hw, "%u %s correctable ECC data error%s\n",
3452 			    cnt, name[idx], cnt > 1 ? "s" : "");
3453 	}
3454 	if (v & ECC_UE_INT_CAUSE)
3455 		csio_fatal(hw, "%s uncorrectable ECC data error\n", name[idx]);
3456 
3457 	csio_wr_reg32(hw, v, addr);
3458 	if (v & (PERR_INT_CAUSE | ECC_UE_INT_CAUSE))
3459 		csio_hw_fatal_err(hw);
3460 }
3461 
3462 /*
3463  * MA interrupt handler.
3464  */
3465 static void csio_ma_intr_handler(struct csio_hw *hw)
3466 {
3467 	uint32_t v, status = csio_rd_reg32(hw, MA_INT_CAUSE);
3468 
3469 	if (status & MEM_PERR_INT_CAUSE)
3470 		csio_fatal(hw, "MA parity error, parity status %#x\n",
3471 			    csio_rd_reg32(hw, MA_PARITY_ERROR_STATUS));
3472 	if (status & MEM_WRAP_INT_CAUSE) {
3473 		v = csio_rd_reg32(hw, MA_INT_WRAP_STATUS);
3474 		csio_fatal(hw,
3475 		   "MA address wrap-around error by client %u to address %#x\n",
3476 		   MEM_WRAP_CLIENT_NUM_GET(v), MEM_WRAP_ADDRESS_GET(v) << 4);
3477 	}
3478 	csio_wr_reg32(hw, status, MA_INT_CAUSE);
3479 	csio_hw_fatal_err(hw);
3480 }
3481 
3482 /*
3483  * SMB interrupt handler.
3484  */
3485 static void csio_smb_intr_handler(struct csio_hw *hw)
3486 {
3487 	static struct intr_info smb_intr_info[] = {
3488 		{ MSTTXFIFOPARINT, "SMB master Tx FIFO parity error", -1, 1 },
3489 		{ MSTRXFIFOPARINT, "SMB master Rx FIFO parity error", -1, 1 },
3490 		{ SLVFIFOPARINT, "SMB slave FIFO parity error", -1, 1 },
3491 		{ 0, NULL, 0, 0 }
3492 	};
3493 
3494 	if (csio_handle_intr_status(hw, SMB_INT_CAUSE, smb_intr_info))
3495 		csio_hw_fatal_err(hw);
3496 }
3497 
3498 /*
3499  * NC-SI interrupt handler.
3500  */
3501 static void csio_ncsi_intr_handler(struct csio_hw *hw)
3502 {
3503 	static struct intr_info ncsi_intr_info[] = {
3504 		{ CIM_DM_PRTY_ERR, "NC-SI CIM parity error", -1, 1 },
3505 		{ MPS_DM_PRTY_ERR, "NC-SI MPS parity error", -1, 1 },
3506 		{ TXFIFO_PRTY_ERR, "NC-SI Tx FIFO parity error", -1, 1 },
3507 		{ RXFIFO_PRTY_ERR, "NC-SI Rx FIFO parity error", -1, 1 },
3508 		{ 0, NULL, 0, 0 }
3509 	};
3510 
3511 	if (csio_handle_intr_status(hw, NCSI_INT_CAUSE, ncsi_intr_info))
3512 		csio_hw_fatal_err(hw);
3513 }
3514 
3515 /*
3516  * XGMAC interrupt handler.
3517  */
3518 static void csio_xgmac_intr_handler(struct csio_hw *hw, int port)
3519 {
3520 	uint32_t v = csio_rd_reg32(hw, PORT_REG(port, XGMAC_PORT_INT_CAUSE));
3521 
3522 	v &= TXFIFO_PRTY_ERR | RXFIFO_PRTY_ERR;
3523 	if (!v)
3524 		return;
3525 
3526 	if (v & TXFIFO_PRTY_ERR)
3527 		csio_fatal(hw, "XGMAC %d Tx FIFO parity error\n", port);
3528 	if (v & RXFIFO_PRTY_ERR)
3529 		csio_fatal(hw, "XGMAC %d Rx FIFO parity error\n", port);
3530 	csio_wr_reg32(hw, v, PORT_REG(port, XGMAC_PORT_INT_CAUSE));
3531 	csio_hw_fatal_err(hw);
3532 }
3533 
3534 /*
3535  * PL interrupt handler.
3536  */
3537 static void csio_pl_intr_handler(struct csio_hw *hw)
3538 {
3539 	static struct intr_info pl_intr_info[] = {
3540 		{ FATALPERR, "T4 fatal parity error", -1, 1 },
3541 		{ PERRVFID, "PL VFID_MAP parity error", -1, 1 },
3542 		{ 0, NULL, 0, 0 }
3543 	};
3544 
3545 	if (csio_handle_intr_status(hw, PL_PL_INT_CAUSE, pl_intr_info))
3546 		csio_hw_fatal_err(hw);
3547 }
3548 
3549 /*
3550  *	csio_hw_slow_intr_handler - control path interrupt handler
3551  *	@hw: HW module
3552  *
3553  *	Interrupt handler for non-data global interrupt events, e.g., errors.
3554  *	The designation 'slow' is because it involves register reads, while
3555  *	data interrupts typically don't involve any MMIOs.
3556  */
3557 int
3558 csio_hw_slow_intr_handler(struct csio_hw *hw)
3559 {
3560 	uint32_t cause = csio_rd_reg32(hw, PL_INT_CAUSE);
3561 
3562 	if (!(cause & CSIO_GLBL_INTR_MASK)) {
3563 		CSIO_INC_STATS(hw, n_plint_unexp);
3564 		return 0;
3565 	}
3566 
3567 	csio_dbg(hw, "Slow interrupt! cause: 0x%x\n", cause);
3568 
3569 	CSIO_INC_STATS(hw, n_plint_cnt);
3570 
3571 	if (cause & CIM)
3572 		csio_cim_intr_handler(hw);
3573 
3574 	if (cause & MPS)
3575 		csio_mps_intr_handler(hw);
3576 
3577 	if (cause & NCSI)
3578 		csio_ncsi_intr_handler(hw);
3579 
3580 	if (cause & PL)
3581 		csio_pl_intr_handler(hw);
3582 
3583 	if (cause & SMB)
3584 		csio_smb_intr_handler(hw);
3585 
3586 	if (cause & XGMAC0)
3587 		csio_xgmac_intr_handler(hw, 0);
3588 
3589 	if (cause & XGMAC1)
3590 		csio_xgmac_intr_handler(hw, 1);
3591 
3592 	if (cause & XGMAC_KR0)
3593 		csio_xgmac_intr_handler(hw, 2);
3594 
3595 	if (cause & XGMAC_KR1)
3596 		csio_xgmac_intr_handler(hw, 3);
3597 
3598 	if (cause & PCIE)
3599 		csio_pcie_intr_handler(hw);
3600 
3601 	if (cause & MC)
3602 		csio_mem_intr_handler(hw, MEM_MC);
3603 
3604 	if (cause & EDC0)
3605 		csio_mem_intr_handler(hw, MEM_EDC0);
3606 
3607 	if (cause & EDC1)
3608 		csio_mem_intr_handler(hw, MEM_EDC1);
3609 
3610 	if (cause & LE)
3611 		csio_le_intr_handler(hw);
3612 
3613 	if (cause & TP)
3614 		csio_tp_intr_handler(hw);
3615 
3616 	if (cause & MA)
3617 		csio_ma_intr_handler(hw);
3618 
3619 	if (cause & PM_TX)
3620 		csio_pmtx_intr_handler(hw);
3621 
3622 	if (cause & PM_RX)
3623 		csio_pmrx_intr_handler(hw);
3624 
3625 	if (cause & ULP_RX)
3626 		csio_ulprx_intr_handler(hw);
3627 
3628 	if (cause & CPL_SWITCH)
3629 		csio_cplsw_intr_handler(hw);
3630 
3631 	if (cause & SGE)
3632 		csio_sge_intr_handler(hw);
3633 
3634 	if (cause & ULP_TX)
3635 		csio_ulptx_intr_handler(hw);
3636 
3637 	/* Clear the interrupts just processed for which we are the master. */
3638 	csio_wr_reg32(hw, cause & CSIO_GLBL_INTR_MASK, PL_INT_CAUSE);
3639 	csio_rd_reg32(hw, PL_INT_CAUSE); /* flush */
3640 
3641 	return 1;
3642 }
3643 
3644 /*****************************************************************************
3645  * HW <--> mailbox interfacing routines.
3646  ****************************************************************************/
3647 /*
3648  * csio_mberr_worker - Worker thread (dpc) for mailbox/error completions
3649  *
3650  * @data: Private data pointer.
3651  *
3652  * Called from worker thread context.
3653  */
3654 static void
3655 csio_mberr_worker(void *data)
3656 {
3657 	struct csio_hw *hw = (struct csio_hw *)data;
3658 	struct csio_mbm *mbm = &hw->mbm;
3659 	LIST_HEAD(cbfn_q);
3660 	struct csio_mb *mbp_next;
3661 	int rv;
3662 
3663 	del_timer_sync(&mbm->timer);
3664 
3665 	spin_lock_irq(&hw->lock);
3666 	if (list_empty(&mbm->cbfn_q)) {
3667 		spin_unlock_irq(&hw->lock);
3668 		return;
3669 	}
3670 
3671 	list_splice_tail_init(&mbm->cbfn_q, &cbfn_q);
3672 	mbm->stats.n_cbfnq = 0;
3673 
3674 	/* Try to start waiting mailboxes */
3675 	if (!list_empty(&mbm->req_q)) {
3676 		mbp_next = list_first_entry(&mbm->req_q, struct csio_mb, list);
3677 		list_del_init(&mbp_next->list);
3678 
3679 		rv = csio_mb_issue(hw, mbp_next);
3680 		if (rv != 0)
3681 			list_add_tail(&mbp_next->list, &mbm->req_q);
3682 		else
3683 			CSIO_DEC_STATS(mbm, n_activeq);
3684 	}
3685 	spin_unlock_irq(&hw->lock);
3686 
3687 	/* Now callback completions */
3688 	csio_mb_completions(hw, &cbfn_q);
3689 }
3690 
3691 /*
3692  * csio_hw_mb_timer - Top-level Mailbox timeout handler.
3693  *
3694  * @data: private data pointer
3695  *
3696  **/
3697 static void
3698 csio_hw_mb_timer(uintptr_t data)
3699 {
3700 	struct csio_hw *hw = (struct csio_hw *)data;
3701 	struct csio_mb *mbp = NULL;
3702 
3703 	spin_lock_irq(&hw->lock);
3704 	mbp = csio_mb_tmo_handler(hw);
3705 	spin_unlock_irq(&hw->lock);
3706 
3707 	/* Call back the function for the timed-out Mailbox */
3708 	if (mbp)
3709 		mbp->mb_cbfn(hw, mbp);
3710 
3711 }
3712 
3713 /*
3714  * csio_hw_mbm_cleanup - Cleanup Mailbox module.
3715  * @hw: HW module
3716  *
3717  * Called with lock held, should exit with lock held.
3718  * Cancels outstanding mailboxes (waiting, in-flight) and gathers them
3719  * into a local queue. Drops lock and calls the completions. Holds
3720  * lock and returns.
3721  */
3722 static void
3723 csio_hw_mbm_cleanup(struct csio_hw *hw)
3724 {
3725 	LIST_HEAD(cbfn_q);
3726 
3727 	csio_mb_cancel_all(hw, &cbfn_q);
3728 
3729 	spin_unlock_irq(&hw->lock);
3730 	csio_mb_completions(hw, &cbfn_q);
3731 	spin_lock_irq(&hw->lock);
3732 }
3733 
3734 /*****************************************************************************
3735  * Event handling
3736  ****************************************************************************/
3737 int
3738 csio_enqueue_evt(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3739 			uint16_t len)
3740 {
3741 	struct csio_evt_msg *evt_entry = NULL;
3742 
3743 	if (type >= CSIO_EVT_MAX)
3744 		return -EINVAL;
3745 
3746 	if (len > CSIO_EVT_MSG_SIZE)
3747 		return -EINVAL;
3748 
3749 	if (hw->flags & CSIO_HWF_FWEVT_STOP)
3750 		return -EINVAL;
3751 
3752 	if (list_empty(&hw->evt_free_q)) {
3753 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3754 			 type, len);
3755 		return -ENOMEM;
3756 	}
3757 
3758 	evt_entry = list_first_entry(&hw->evt_free_q,
3759 				     struct csio_evt_msg, list);
3760 	list_del_init(&evt_entry->list);
3761 
3762 	/* copy event msg and queue the event */
3763 	evt_entry->type = type;
3764 	memcpy((void *)evt_entry->data, evt_msg, len);
3765 	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3766 
3767 	CSIO_DEC_STATS(hw, n_evt_freeq);
3768 	CSIO_INC_STATS(hw, n_evt_activeq);
3769 
3770 	return 0;
3771 }
3772 
3773 static int
3774 csio_enqueue_evt_lock(struct csio_hw *hw, enum csio_evt type, void *evt_msg,
3775 			uint16_t len, bool msg_sg)
3776 {
3777 	struct csio_evt_msg *evt_entry = NULL;
3778 	struct csio_fl_dma_buf *fl_sg;
3779 	uint32_t off = 0;
3780 	unsigned long flags;
3781 	int n, ret = 0;
3782 
3783 	if (type >= CSIO_EVT_MAX)
3784 		return -EINVAL;
3785 
3786 	if (len > CSIO_EVT_MSG_SIZE)
3787 		return -EINVAL;
3788 
3789 	spin_lock_irqsave(&hw->lock, flags);
3790 	if (hw->flags & CSIO_HWF_FWEVT_STOP) {
3791 		ret = -EINVAL;
3792 		goto out;
3793 	}
3794 
3795 	if (list_empty(&hw->evt_free_q)) {
3796 		csio_err(hw, "Failed to alloc evt entry, msg type %d len %d\n",
3797 			 type, len);
3798 		ret = -ENOMEM;
3799 		goto out;
3800 	}
3801 
3802 	evt_entry = list_first_entry(&hw->evt_free_q,
3803 				     struct csio_evt_msg, list);
3804 	list_del_init(&evt_entry->list);
3805 
3806 	/* copy event msg and queue the event */
3807 	evt_entry->type = type;
3808 
3809 	/* If Payload in SG list*/
3810 	if (msg_sg) {
3811 		fl_sg = (struct csio_fl_dma_buf *) evt_msg;
3812 		for (n = 0; (n < CSIO_MAX_FLBUF_PER_IQWR && off < len); n++) {
3813 			memcpy((void *)((uintptr_t)evt_entry->data + off),
3814 				fl_sg->flbufs[n].vaddr,
3815 				fl_sg->flbufs[n].len);
3816 			off += fl_sg->flbufs[n].len;
3817 		}
3818 	} else
3819 		memcpy((void *)evt_entry->data, evt_msg, len);
3820 
3821 	list_add_tail(&evt_entry->list, &hw->evt_active_q);
3822 	CSIO_DEC_STATS(hw, n_evt_freeq);
3823 	CSIO_INC_STATS(hw, n_evt_activeq);
3824 out:
3825 	spin_unlock_irqrestore(&hw->lock, flags);
3826 	return ret;
3827 }
3828 
3829 static void
3830 csio_free_evt(struct csio_hw *hw, struct csio_evt_msg *evt_entry)
3831 {
3832 	if (evt_entry) {
3833 		spin_lock_irq(&hw->lock);
3834 		list_del_init(&evt_entry->list);
3835 		list_add_tail(&evt_entry->list, &hw->evt_free_q);
3836 		CSIO_DEC_STATS(hw, n_evt_activeq);
3837 		CSIO_INC_STATS(hw, n_evt_freeq);
3838 		spin_unlock_irq(&hw->lock);
3839 	}
3840 }
3841 
3842 void
3843 csio_evtq_flush(struct csio_hw *hw)
3844 {
3845 	uint32_t count;
3846 	count = 30;
3847 	while (hw->flags & CSIO_HWF_FWEVT_PENDING && count--) {
3848 		spin_unlock_irq(&hw->lock);
3849 		msleep(2000);
3850 		spin_lock_irq(&hw->lock);
3851 	}
3852 
3853 	CSIO_DB_ASSERT(!(hw->flags & CSIO_HWF_FWEVT_PENDING));
3854 }
3855 
3856 static void
3857 csio_evtq_stop(struct csio_hw *hw)
3858 {
3859 	hw->flags |= CSIO_HWF_FWEVT_STOP;
3860 }
3861 
3862 static void
3863 csio_evtq_start(struct csio_hw *hw)
3864 {
3865 	hw->flags &= ~CSIO_HWF_FWEVT_STOP;
3866 }
3867 
3868 static void
3869 csio_evtq_cleanup(struct csio_hw *hw)
3870 {
3871 	struct list_head *evt_entry, *next_entry;
3872 
3873 	/* Release outstanding events from activeq to freeq*/
3874 	if (!list_empty(&hw->evt_active_q))
3875 		list_splice_tail_init(&hw->evt_active_q, &hw->evt_free_q);
3876 
3877 	hw->stats.n_evt_activeq = 0;
3878 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
3879 
3880 	/* Freeup event entry */
3881 	list_for_each_safe(evt_entry, next_entry, &hw->evt_free_q) {
3882 		kfree(evt_entry);
3883 		CSIO_DEC_STATS(hw, n_evt_freeq);
3884 	}
3885 
3886 	hw->stats.n_evt_freeq = 0;
3887 }
3888 
3889 
3890 static void
3891 csio_process_fwevtq_entry(struct csio_hw *hw, void *wr, uint32_t len,
3892 			  struct csio_fl_dma_buf *flb, void *priv)
3893 {
3894 	__u8 op;
3895 	__be64 *data;
3896 	void *msg = NULL;
3897 	uint32_t msg_len = 0;
3898 	bool msg_sg = 0;
3899 
3900 	op = ((struct rss_header *) wr)->opcode;
3901 	if (op == CPL_FW6_PLD) {
3902 		CSIO_INC_STATS(hw, n_cpl_fw6_pld);
3903 		if (!flb || !flb->totlen) {
3904 			CSIO_INC_STATS(hw, n_cpl_unexp);
3905 			return;
3906 		}
3907 
3908 		msg = (void *) flb;
3909 		msg_len = flb->totlen;
3910 		msg_sg = 1;
3911 
3912 		data = (__be64 *) msg;
3913 	} else if (op == CPL_FW6_MSG || op == CPL_FW4_MSG) {
3914 
3915 		CSIO_INC_STATS(hw, n_cpl_fw6_msg);
3916 		/* skip RSS header */
3917 		msg = (void *)((uintptr_t)wr + sizeof(__be64));
3918 		msg_len = (op == CPL_FW6_MSG) ? sizeof(struct cpl_fw6_msg) :
3919 			   sizeof(struct cpl_fw4_msg);
3920 
3921 		data = (__be64 *) msg;
3922 	} else {
3923 		csio_warn(hw, "unexpected CPL %#x on FW event queue\n", op);
3924 		CSIO_INC_STATS(hw, n_cpl_unexp);
3925 		return;
3926 	}
3927 
3928 	/*
3929 	 * Enqueue event to EventQ. Events processing happens
3930 	 * in Event worker thread context
3931 	 */
3932 	if (csio_enqueue_evt_lock(hw, CSIO_EVT_FW, msg,
3933 				  (uint16_t)msg_len, msg_sg))
3934 		CSIO_INC_STATS(hw, n_evt_drop);
3935 }
3936 
3937 void
3938 csio_evtq_worker(struct work_struct *work)
3939 {
3940 	struct csio_hw *hw = container_of(work, struct csio_hw, evtq_work);
3941 	struct list_head *evt_entry, *next_entry;
3942 	LIST_HEAD(evt_q);
3943 	struct csio_evt_msg	*evt_msg;
3944 	struct cpl_fw6_msg *msg;
3945 	struct csio_rnode *rn;
3946 	int rv = 0;
3947 	uint8_t evtq_stop = 0;
3948 
3949 	csio_dbg(hw, "event worker thread active evts#%d\n",
3950 		 hw->stats.n_evt_activeq);
3951 
3952 	spin_lock_irq(&hw->lock);
3953 	while (!list_empty(&hw->evt_active_q)) {
3954 		list_splice_tail_init(&hw->evt_active_q, &evt_q);
3955 		spin_unlock_irq(&hw->lock);
3956 
3957 		list_for_each_safe(evt_entry, next_entry, &evt_q) {
3958 			evt_msg = (struct csio_evt_msg *) evt_entry;
3959 
3960 			/* Drop events if queue is STOPPED */
3961 			spin_lock_irq(&hw->lock);
3962 			if (hw->flags & CSIO_HWF_FWEVT_STOP)
3963 				evtq_stop = 1;
3964 			spin_unlock_irq(&hw->lock);
3965 			if (evtq_stop) {
3966 				CSIO_INC_STATS(hw, n_evt_drop);
3967 				goto free_evt;
3968 			}
3969 
3970 			switch (evt_msg->type) {
3971 			case CSIO_EVT_FW:
3972 				msg = (struct cpl_fw6_msg *)(evt_msg->data);
3973 
3974 				if ((msg->opcode == CPL_FW6_MSG ||
3975 				     msg->opcode == CPL_FW4_MSG) &&
3976 				    !msg->type) {
3977 					rv = csio_mb_fwevt_handler(hw,
3978 								msg->data);
3979 					if (!rv)
3980 						break;
3981 					/* Handle any remaining fw events */
3982 					csio_fcoe_fwevt_handler(hw,
3983 							msg->opcode, msg->data);
3984 				} else if (msg->opcode == CPL_FW6_PLD) {
3985 
3986 					csio_fcoe_fwevt_handler(hw,
3987 							msg->opcode, msg->data);
3988 				} else {
3989 					csio_warn(hw,
3990 					     "Unhandled FW msg op %x type %x\n",
3991 						  msg->opcode, msg->type);
3992 					CSIO_INC_STATS(hw, n_evt_drop);
3993 				}
3994 				break;
3995 
3996 			case CSIO_EVT_MBX:
3997 				csio_mberr_worker(hw);
3998 				break;
3999 
4000 			case CSIO_EVT_DEV_LOSS:
4001 				memcpy(&rn, evt_msg->data, sizeof(rn));
4002 				csio_rnode_devloss_handler(rn);
4003 				break;
4004 
4005 			default:
4006 				csio_warn(hw, "Unhandled event %x on evtq\n",
4007 					  evt_msg->type);
4008 				CSIO_INC_STATS(hw, n_evt_unexp);
4009 				break;
4010 			}
4011 free_evt:
4012 			csio_free_evt(hw, evt_msg);
4013 		}
4014 
4015 		spin_lock_irq(&hw->lock);
4016 	}
4017 	hw->flags &= ~CSIO_HWF_FWEVT_PENDING;
4018 	spin_unlock_irq(&hw->lock);
4019 }
4020 
4021 int
4022 csio_fwevtq_handler(struct csio_hw *hw)
4023 {
4024 	int rv;
4025 
4026 	if (csio_q_iqid(hw, hw->fwevt_iq_idx) == CSIO_MAX_QID) {
4027 		CSIO_INC_STATS(hw, n_int_stray);
4028 		return -EINVAL;
4029 	}
4030 
4031 	rv = csio_wr_process_iq_idx(hw, hw->fwevt_iq_idx,
4032 			   csio_process_fwevtq_entry, NULL);
4033 	return rv;
4034 }
4035 
4036 /****************************************************************************
4037  * Entry points
4038  ****************************************************************************/
4039 
4040 /* Management module */
4041 /*
4042  * csio_mgmt_req_lookup - Lookup the given IO req exist in Active Q.
4043  * mgmt - mgmt module
4044  * @io_req - io request
4045  *
4046  * Return - 0:if given IO Req exists in active Q.
4047  *          -EINVAL  :if lookup fails.
4048  */
4049 int
4050 csio_mgmt_req_lookup(struct csio_mgmtm *mgmtm, struct csio_ioreq *io_req)
4051 {
4052 	struct list_head *tmp;
4053 
4054 	/* Lookup ioreq in the ACTIVEQ */
4055 	list_for_each(tmp, &mgmtm->active_q) {
4056 		if (io_req == (struct csio_ioreq *)tmp)
4057 			return 0;
4058 	}
4059 	return -EINVAL;
4060 }
4061 
4062 #define	ECM_MIN_TMO	1000	/* Minimum timeout value for req */
4063 
4064 /*
4065  * csio_mgmts_tmo_handler - MGMT IO Timeout handler.
4066  * @data - Event data.
4067  *
4068  * Return - none.
4069  */
4070 static void
4071 csio_mgmt_tmo_handler(uintptr_t data)
4072 {
4073 	struct csio_mgmtm *mgmtm = (struct csio_mgmtm *) data;
4074 	struct list_head *tmp;
4075 	struct csio_ioreq *io_req;
4076 
4077 	csio_dbg(mgmtm->hw, "Mgmt timer invoked!\n");
4078 
4079 	spin_lock_irq(&mgmtm->hw->lock);
4080 
4081 	list_for_each(tmp, &mgmtm->active_q) {
4082 		io_req = (struct csio_ioreq *) tmp;
4083 		io_req->tmo -= min_t(uint32_t, io_req->tmo, ECM_MIN_TMO);
4084 
4085 		if (!io_req->tmo) {
4086 			/* Dequeue the request from retry Q. */
4087 			tmp = csio_list_prev(tmp);
4088 			list_del_init(&io_req->sm.sm_list);
4089 			if (io_req->io_cbfn) {
4090 				/* io_req will be freed by completion handler */
4091 				io_req->wr_status = -ETIMEDOUT;
4092 				io_req->io_cbfn(mgmtm->hw, io_req);
4093 			} else {
4094 				CSIO_DB_ASSERT(0);
4095 			}
4096 		}
4097 	}
4098 
4099 	/* If retry queue is not empty, re-arm timer */
4100 	if (!list_empty(&mgmtm->active_q))
4101 		mod_timer(&mgmtm->mgmt_timer,
4102 			  jiffies + msecs_to_jiffies(ECM_MIN_TMO));
4103 	spin_unlock_irq(&mgmtm->hw->lock);
4104 }
4105 
4106 static void
4107 csio_mgmtm_cleanup(struct csio_mgmtm *mgmtm)
4108 {
4109 	struct csio_hw *hw = mgmtm->hw;
4110 	struct csio_ioreq *io_req;
4111 	struct list_head *tmp;
4112 	uint32_t count;
4113 
4114 	count = 30;
4115 	/* Wait for all outstanding req to complete gracefully */
4116 	while ((!list_empty(&mgmtm->active_q)) && count--) {
4117 		spin_unlock_irq(&hw->lock);
4118 		msleep(2000);
4119 		spin_lock_irq(&hw->lock);
4120 	}
4121 
4122 	/* release outstanding req from ACTIVEQ */
4123 	list_for_each(tmp, &mgmtm->active_q) {
4124 		io_req = (struct csio_ioreq *) tmp;
4125 		tmp = csio_list_prev(tmp);
4126 		list_del_init(&io_req->sm.sm_list);
4127 		mgmtm->stats.n_active--;
4128 		if (io_req->io_cbfn) {
4129 			/* io_req will be freed by completion handler */
4130 			io_req->wr_status = -ETIMEDOUT;
4131 			io_req->io_cbfn(mgmtm->hw, io_req);
4132 		}
4133 	}
4134 }
4135 
4136 /*
4137  * csio_mgmt_init - Mgmt module init entry point
4138  * @mgmtsm - mgmt module
4139  * @hw	 - HW module
4140  *
4141  * Initialize mgmt timer, resource wait queue, active queue,
4142  * completion q. Allocate Egress and Ingress
4143  * WR queues and save off the queue index returned by the WR
4144  * module for future use. Allocate and save off mgmt reqs in the
4145  * mgmt_req_freelist for future use. Make sure their SM is initialized
4146  * to uninit state.
4147  * Returns: 0 - on success
4148  *          -ENOMEM   - on error.
4149  */
4150 static int
4151 csio_mgmtm_init(struct csio_mgmtm *mgmtm, struct csio_hw *hw)
4152 {
4153 	struct timer_list *timer = &mgmtm->mgmt_timer;
4154 
4155 	init_timer(timer);
4156 	timer->function = csio_mgmt_tmo_handler;
4157 	timer->data = (unsigned long)mgmtm;
4158 
4159 	INIT_LIST_HEAD(&mgmtm->active_q);
4160 	INIT_LIST_HEAD(&mgmtm->cbfn_q);
4161 
4162 	mgmtm->hw = hw;
4163 	/*mgmtm->iq_idx = hw->fwevt_iq_idx;*/
4164 
4165 	return 0;
4166 }
4167 
4168 /*
4169  * csio_mgmtm_exit - MGMT module exit entry point
4170  * @mgmtsm - mgmt module
4171  *
4172  * This function called during MGMT module uninit.
4173  * Stop timers, free ioreqs allocated.
4174  * Returns: None
4175  *
4176  */
4177 static void
4178 csio_mgmtm_exit(struct csio_mgmtm *mgmtm)
4179 {
4180 	del_timer_sync(&mgmtm->mgmt_timer);
4181 }
4182 
4183 
4184 /**
4185  * csio_hw_start - Kicks off the HW State machine
4186  * @hw:		Pointer to HW module.
4187  *
4188  * It is assumed that the initialization is a synchronous operation.
4189  * So when we return afer posting the event, the HW SM should be in
4190  * the ready state, if there were no errors during init.
4191  */
4192 int
4193 csio_hw_start(struct csio_hw *hw)
4194 {
4195 	spin_lock_irq(&hw->lock);
4196 	csio_post_event(&hw->sm, CSIO_HWE_CFG);
4197 	spin_unlock_irq(&hw->lock);
4198 
4199 	if (csio_is_hw_ready(hw))
4200 		return 0;
4201 	else
4202 		return -EINVAL;
4203 }
4204 
4205 int
4206 csio_hw_stop(struct csio_hw *hw)
4207 {
4208 	csio_post_event(&hw->sm, CSIO_HWE_PCI_REMOVE);
4209 
4210 	if (csio_is_hw_removing(hw))
4211 		return 0;
4212 	else
4213 		return -EINVAL;
4214 }
4215 
4216 /* Max reset retries */
4217 #define CSIO_MAX_RESET_RETRIES	3
4218 
4219 /**
4220  * csio_hw_reset - Reset the hardware
4221  * @hw:		HW module.
4222  *
4223  * Caller should hold lock across this function.
4224  */
4225 int
4226 csio_hw_reset(struct csio_hw *hw)
4227 {
4228 	if (!csio_is_hw_master(hw))
4229 		return -EPERM;
4230 
4231 	if (hw->rst_retries >= CSIO_MAX_RESET_RETRIES) {
4232 		csio_dbg(hw, "Max hw reset attempts reached..");
4233 		return -EINVAL;
4234 	}
4235 
4236 	hw->rst_retries++;
4237 	csio_post_event(&hw->sm, CSIO_HWE_HBA_RESET);
4238 
4239 	if (csio_is_hw_ready(hw)) {
4240 		hw->rst_retries = 0;
4241 		hw->stats.n_reset_start = jiffies_to_msecs(jiffies);
4242 		return 0;
4243 	} else
4244 		return -EINVAL;
4245 }
4246 
4247 /*
4248  * csio_hw_get_device_id - Caches the Adapter's vendor & device id.
4249  * @hw: HW module.
4250  */
4251 static void
4252 csio_hw_get_device_id(struct csio_hw *hw)
4253 {
4254 	/* Is the adapter device id cached already ?*/
4255 	if (csio_is_dev_id_cached(hw))
4256 		return;
4257 
4258 	/* Get the PCI vendor & device id */
4259 	pci_read_config_word(hw->pdev, PCI_VENDOR_ID,
4260 			     &hw->params.pci.vendor_id);
4261 	pci_read_config_word(hw->pdev, PCI_DEVICE_ID,
4262 			     &hw->params.pci.device_id);
4263 
4264 	csio_dev_id_cached(hw);
4265 
4266 } /* csio_hw_get_device_id */
4267 
4268 /*
4269  * csio_hw_set_description - Set the model, description of the hw.
4270  * @hw: HW module.
4271  * @ven_id: PCI Vendor ID
4272  * @dev_id: PCI Device ID
4273  */
4274 static void
4275 csio_hw_set_description(struct csio_hw *hw, uint16_t ven_id, uint16_t dev_id)
4276 {
4277 	uint32_t adap_type, prot_type;
4278 
4279 	if (ven_id == CSIO_VENDOR_ID) {
4280 		prot_type = (dev_id & CSIO_ASIC_DEVID_PROTO_MASK);
4281 		adap_type = (dev_id & CSIO_ASIC_DEVID_TYPE_MASK);
4282 
4283 		if (prot_type == CSIO_FPGA) {
4284 			memcpy(hw->model_desc,
4285 				csio_fcoe_adapters[13].description, 32);
4286 		} else if (prot_type == CSIO_T4_FCOE_ASIC) {
4287 			memcpy(hw->hw_ver,
4288 			       csio_fcoe_adapters[adap_type].model_no, 16);
4289 			memcpy(hw->model_desc,
4290 				csio_fcoe_adapters[adap_type].description, 32);
4291 		} else {
4292 			char tempName[32] = "Chelsio FCoE Controller";
4293 			memcpy(hw->model_desc, tempName, 32);
4294 
4295 			CSIO_DB_ASSERT(0);
4296 		}
4297 	}
4298 } /* csio_hw_set_description */
4299 
4300 /**
4301  * csio_hw_init - Initialize HW module.
4302  * @hw:		Pointer to HW module.
4303  *
4304  * Initialize the members of the HW module.
4305  */
4306 int
4307 csio_hw_init(struct csio_hw *hw)
4308 {
4309 	int rv = -EINVAL;
4310 	uint32_t i;
4311 	uint16_t ven_id, dev_id;
4312 	struct csio_evt_msg	*evt_entry;
4313 
4314 	INIT_LIST_HEAD(&hw->sm.sm_list);
4315 	csio_init_state(&hw->sm, csio_hws_uninit);
4316 	spin_lock_init(&hw->lock);
4317 	INIT_LIST_HEAD(&hw->sln_head);
4318 
4319 	/* Get the PCI vendor & device id */
4320 	csio_hw_get_device_id(hw);
4321 
4322 	strcpy(hw->name, CSIO_HW_NAME);
4323 
4324 	/* Set the model & its description */
4325 
4326 	ven_id = hw->params.pci.vendor_id;
4327 	dev_id = hw->params.pci.device_id;
4328 
4329 	csio_hw_set_description(hw, ven_id, dev_id);
4330 
4331 	/* Initialize default log level */
4332 	hw->params.log_level = (uint32_t) csio_dbg_level;
4333 
4334 	csio_set_fwevt_intr_idx(hw, -1);
4335 	csio_set_nondata_intr_idx(hw, -1);
4336 
4337 	/* Init all the modules: Mailbox, WorkRequest and Transport */
4338 	if (csio_mbm_init(csio_hw_to_mbm(hw), hw, csio_hw_mb_timer))
4339 		goto err;
4340 
4341 	rv = csio_wrm_init(csio_hw_to_wrm(hw), hw);
4342 	if (rv)
4343 		goto err_mbm_exit;
4344 
4345 	rv = csio_scsim_init(csio_hw_to_scsim(hw), hw);
4346 	if (rv)
4347 		goto err_wrm_exit;
4348 
4349 	rv = csio_mgmtm_init(csio_hw_to_mgmtm(hw), hw);
4350 	if (rv)
4351 		goto err_scsim_exit;
4352 	/* Pre-allocate evtq and initialize them */
4353 	INIT_LIST_HEAD(&hw->evt_active_q);
4354 	INIT_LIST_HEAD(&hw->evt_free_q);
4355 	for (i = 0; i < csio_evtq_sz; i++) {
4356 
4357 		evt_entry = kzalloc(sizeof(struct csio_evt_msg), GFP_KERNEL);
4358 		if (!evt_entry) {
4359 			csio_err(hw, "Failed to initialize eventq");
4360 			goto err_evtq_cleanup;
4361 		}
4362 
4363 		list_add_tail(&evt_entry->list, &hw->evt_free_q);
4364 		CSIO_INC_STATS(hw, n_evt_freeq);
4365 	}
4366 
4367 	hw->dev_num = dev_num;
4368 	dev_num++;
4369 
4370 	return 0;
4371 
4372 err_evtq_cleanup:
4373 	csio_evtq_cleanup(hw);
4374 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4375 err_scsim_exit:
4376 	csio_scsim_exit(csio_hw_to_scsim(hw));
4377 err_wrm_exit:
4378 	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4379 err_mbm_exit:
4380 	csio_mbm_exit(csio_hw_to_mbm(hw));
4381 err:
4382 	return rv;
4383 }
4384 
4385 /**
4386  * csio_hw_exit - Un-initialize HW module.
4387  * @hw:		Pointer to HW module.
4388  *
4389  */
4390 void
4391 csio_hw_exit(struct csio_hw *hw)
4392 {
4393 	csio_evtq_cleanup(hw);
4394 	csio_mgmtm_exit(csio_hw_to_mgmtm(hw));
4395 	csio_scsim_exit(csio_hw_to_scsim(hw));
4396 	csio_wrm_exit(csio_hw_to_wrm(hw), hw);
4397 	csio_mbm_exit(csio_hw_to_mbm(hw));
4398 }
4399