xref: /linux/drivers/scsi/bnx2fc/bnx2fc_hwi.c (revision a460513ed4b6994bfeb7bd86f72853140bc1ac12)
1 /* bnx2fc_hwi.c: QLogic Linux FCoE offload driver.
2  * This file contains the code that low level functions that interact
3  * with 57712 FCoE firmware.
4  *
5  * Copyright (c) 2008-2013 Broadcom Corporation
6  * Copyright (c) 2014-2016 QLogic Corporation
7  * Copyright (c) 2016-2017 Cavium Inc.
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation.
12  *
13  * Written by: Bhanu Prakash Gollapudi (bprakash@broadcom.com)
14  */
15 
16 #include "bnx2fc.h"
17 
18 DECLARE_PER_CPU(struct bnx2fc_percpu_s, bnx2fc_percpu);
19 
20 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
21 					struct fcoe_kcqe *new_cqe_kcqe);
22 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
23 					struct fcoe_kcqe *ofld_kcqe);
24 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
25 						struct fcoe_kcqe *ofld_kcqe);
26 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code);
27 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
28 					struct fcoe_kcqe *destroy_kcqe);
29 
30 int bnx2fc_send_stat_req(struct bnx2fc_hba *hba)
31 {
32 	struct fcoe_kwqe_stat stat_req;
33 	struct kwqe *kwqe_arr[2];
34 	int num_kwqes = 1;
35 	int rc = 0;
36 
37 	memset(&stat_req, 0x00, sizeof(struct fcoe_kwqe_stat));
38 	stat_req.hdr.op_code = FCOE_KWQE_OPCODE_STAT;
39 	stat_req.hdr.flags =
40 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
41 
42 	stat_req.stat_params_addr_lo = (u32) hba->stats_buf_dma;
43 	stat_req.stat_params_addr_hi = (u32) ((u64)hba->stats_buf_dma >> 32);
44 
45 	kwqe_arr[0] = (struct kwqe *) &stat_req;
46 
47 	if (hba->cnic && hba->cnic->submit_kwqes)
48 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
49 
50 	return rc;
51 }
52 
53 /**
54  * bnx2fc_send_fw_fcoe_init_msg - initiates initial handshake with FCoE f/w
55  *
56  * @hba:	adapter structure pointer
57  *
58  * Send down FCoE firmware init KWQEs which initiates the initial handshake
59  *	with the f/w.
60  *
61  */
62 int bnx2fc_send_fw_fcoe_init_msg(struct bnx2fc_hba *hba)
63 {
64 	struct fcoe_kwqe_init1 fcoe_init1;
65 	struct fcoe_kwqe_init2 fcoe_init2;
66 	struct fcoe_kwqe_init3 fcoe_init3;
67 	struct kwqe *kwqe_arr[3];
68 	int num_kwqes = 3;
69 	int rc = 0;
70 
71 	if (!hba->cnic) {
72 		printk(KERN_ERR PFX "hba->cnic NULL during fcoe fw init\n");
73 		return -ENODEV;
74 	}
75 
76 	/* fill init1 KWQE */
77 	memset(&fcoe_init1, 0x00, sizeof(struct fcoe_kwqe_init1));
78 	fcoe_init1.hdr.op_code = FCOE_KWQE_OPCODE_INIT1;
79 	fcoe_init1.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
80 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
81 
82 	fcoe_init1.num_tasks = hba->max_tasks;
83 	fcoe_init1.sq_num_wqes = BNX2FC_SQ_WQES_MAX;
84 	fcoe_init1.rq_num_wqes = BNX2FC_RQ_WQES_MAX;
85 	fcoe_init1.rq_buffer_log_size = BNX2FC_RQ_BUF_LOG_SZ;
86 	fcoe_init1.cq_num_wqes = BNX2FC_CQ_WQES_MAX;
87 	fcoe_init1.dummy_buffer_addr_lo = (u32) hba->dummy_buf_dma;
88 	fcoe_init1.dummy_buffer_addr_hi = (u32) ((u64)hba->dummy_buf_dma >> 32);
89 	fcoe_init1.task_list_pbl_addr_lo = (u32) hba->task_ctx_bd_dma;
90 	fcoe_init1.task_list_pbl_addr_hi =
91 				(u32) ((u64) hba->task_ctx_bd_dma >> 32);
92 	fcoe_init1.mtu = BNX2FC_MINI_JUMBO_MTU;
93 
94 	fcoe_init1.flags = (PAGE_SHIFT <<
95 				FCOE_KWQE_INIT1_LOG_PAGE_SIZE_SHIFT);
96 
97 	fcoe_init1.num_sessions_log = BNX2FC_NUM_MAX_SESS_LOG;
98 
99 	/* fill init2 KWQE */
100 	memset(&fcoe_init2, 0x00, sizeof(struct fcoe_kwqe_init2));
101 	fcoe_init2.hdr.op_code = FCOE_KWQE_OPCODE_INIT2;
102 	fcoe_init2.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
103 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
104 
105 	fcoe_init2.hsi_major_version = FCOE_HSI_MAJOR_VERSION;
106 	fcoe_init2.hsi_minor_version = FCOE_HSI_MINOR_VERSION;
107 
108 
109 	fcoe_init2.hash_tbl_pbl_addr_lo = (u32) hba->hash_tbl_pbl_dma;
110 	fcoe_init2.hash_tbl_pbl_addr_hi = (u32)
111 					   ((u64) hba->hash_tbl_pbl_dma >> 32);
112 
113 	fcoe_init2.t2_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_dma;
114 	fcoe_init2.t2_hash_tbl_addr_hi = (u32)
115 					  ((u64) hba->t2_hash_tbl_dma >> 32);
116 
117 	fcoe_init2.t2_ptr_hash_tbl_addr_lo = (u32) hba->t2_hash_tbl_ptr_dma;
118 	fcoe_init2.t2_ptr_hash_tbl_addr_hi = (u32)
119 					((u64) hba->t2_hash_tbl_ptr_dma >> 32);
120 
121 	fcoe_init2.free_list_count = BNX2FC_NUM_MAX_SESS;
122 
123 	/* fill init3 KWQE */
124 	memset(&fcoe_init3, 0x00, sizeof(struct fcoe_kwqe_init3));
125 	fcoe_init3.hdr.op_code = FCOE_KWQE_OPCODE_INIT3;
126 	fcoe_init3.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
127 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
128 	fcoe_init3.error_bit_map_lo = 0xffffffff;
129 	fcoe_init3.error_bit_map_hi = 0xffffffff;
130 
131 	/*
132 	 * enable both cached connection and cached tasks
133 	 * 0 = none, 1 = cached connection, 2 = cached tasks, 3 = both
134 	 */
135 	fcoe_init3.perf_config = 3;
136 
137 	kwqe_arr[0] = (struct kwqe *) &fcoe_init1;
138 	kwqe_arr[1] = (struct kwqe *) &fcoe_init2;
139 	kwqe_arr[2] = (struct kwqe *) &fcoe_init3;
140 
141 	if (hba->cnic && hba->cnic->submit_kwqes)
142 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
143 
144 	return rc;
145 }
146 int bnx2fc_send_fw_fcoe_destroy_msg(struct bnx2fc_hba *hba)
147 {
148 	struct fcoe_kwqe_destroy fcoe_destroy;
149 	struct kwqe *kwqe_arr[2];
150 	int num_kwqes = 1;
151 	int rc = -1;
152 
153 	/* fill destroy KWQE */
154 	memset(&fcoe_destroy, 0x00, sizeof(struct fcoe_kwqe_destroy));
155 	fcoe_destroy.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY;
156 	fcoe_destroy.hdr.flags = (FCOE_KWQE_LAYER_CODE <<
157 					FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
158 	kwqe_arr[0] = (struct kwqe *) &fcoe_destroy;
159 
160 	if (hba->cnic && hba->cnic->submit_kwqes)
161 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
162 	return rc;
163 }
164 
165 /**
166  * bnx2fc_send_session_ofld_req - initiates FCoE Session offload process
167  *
168  * @port:		port structure pointer
169  * @tgt:		bnx2fc_rport structure pointer
170  */
171 int bnx2fc_send_session_ofld_req(struct fcoe_port *port,
172 					struct bnx2fc_rport *tgt)
173 {
174 	struct fc_lport *lport = port->lport;
175 	struct bnx2fc_interface *interface = port->priv;
176 	struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
177 	struct bnx2fc_hba *hba = interface->hba;
178 	struct kwqe *kwqe_arr[4];
179 	struct fcoe_kwqe_conn_offload1 ofld_req1;
180 	struct fcoe_kwqe_conn_offload2 ofld_req2;
181 	struct fcoe_kwqe_conn_offload3 ofld_req3;
182 	struct fcoe_kwqe_conn_offload4 ofld_req4;
183 	struct fc_rport_priv *rdata = tgt->rdata;
184 	struct fc_rport *rport = tgt->rport;
185 	int num_kwqes = 4;
186 	u32 port_id;
187 	int rc = 0;
188 	u16 conn_id;
189 
190 	/* Initialize offload request 1 structure */
191 	memset(&ofld_req1, 0x00, sizeof(struct fcoe_kwqe_conn_offload1));
192 
193 	ofld_req1.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN1;
194 	ofld_req1.hdr.flags =
195 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
196 
197 
198 	conn_id = (u16)tgt->fcoe_conn_id;
199 	ofld_req1.fcoe_conn_id = conn_id;
200 
201 
202 	ofld_req1.sq_addr_lo = (u32) tgt->sq_dma;
203 	ofld_req1.sq_addr_hi = (u32)((u64) tgt->sq_dma >> 32);
204 
205 	ofld_req1.rq_pbl_addr_lo = (u32) tgt->rq_pbl_dma;
206 	ofld_req1.rq_pbl_addr_hi = (u32)((u64) tgt->rq_pbl_dma >> 32);
207 
208 	ofld_req1.rq_first_pbe_addr_lo = (u32) tgt->rq_dma;
209 	ofld_req1.rq_first_pbe_addr_hi =
210 				(u32)((u64) tgt->rq_dma >> 32);
211 
212 	ofld_req1.rq_prod = 0x8000;
213 
214 	/* Initialize offload request 2 structure */
215 	memset(&ofld_req2, 0x00, sizeof(struct fcoe_kwqe_conn_offload2));
216 
217 	ofld_req2.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN2;
218 	ofld_req2.hdr.flags =
219 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
220 
221 	ofld_req2.tx_max_fc_pay_len = rdata->maxframe_size;
222 
223 	ofld_req2.cq_addr_lo = (u32) tgt->cq_dma;
224 	ofld_req2.cq_addr_hi = (u32)((u64)tgt->cq_dma >> 32);
225 
226 	ofld_req2.xferq_addr_lo = (u32) tgt->xferq_dma;
227 	ofld_req2.xferq_addr_hi = (u32)((u64)tgt->xferq_dma >> 32);
228 
229 	ofld_req2.conn_db_addr_lo = (u32)tgt->conn_db_dma;
230 	ofld_req2.conn_db_addr_hi = (u32)((u64)tgt->conn_db_dma >> 32);
231 
232 	/* Initialize offload request 3 structure */
233 	memset(&ofld_req3, 0x00, sizeof(struct fcoe_kwqe_conn_offload3));
234 
235 	ofld_req3.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN3;
236 	ofld_req3.hdr.flags =
237 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
238 
239 	ofld_req3.vlan_tag = interface->vlan_id <<
240 				FCOE_KWQE_CONN_OFFLOAD3_VLAN_ID_SHIFT;
241 	ofld_req3.vlan_tag |= 3 << FCOE_KWQE_CONN_OFFLOAD3_PRIORITY_SHIFT;
242 
243 	port_id = fc_host_port_id(lport->host);
244 	if (port_id == 0) {
245 		BNX2FC_HBA_DBG(lport, "ofld_req: port_id = 0, link down?\n");
246 		return -EINVAL;
247 	}
248 
249 	/*
250 	 * Store s_id of the initiator for further reference. This will
251 	 * be used during disable/destroy during linkdown processing as
252 	 * when the lport is reset, the port_id also is reset to 0
253 	 */
254 	tgt->sid = port_id;
255 	ofld_req3.s_id[0] = (port_id & 0x000000FF);
256 	ofld_req3.s_id[1] = (port_id & 0x0000FF00) >> 8;
257 	ofld_req3.s_id[2] = (port_id & 0x00FF0000) >> 16;
258 
259 	port_id = rport->port_id;
260 	ofld_req3.d_id[0] = (port_id & 0x000000FF);
261 	ofld_req3.d_id[1] = (port_id & 0x0000FF00) >> 8;
262 	ofld_req3.d_id[2] = (port_id & 0x00FF0000) >> 16;
263 
264 	ofld_req3.tx_total_conc_seqs = rdata->max_seq;
265 
266 	ofld_req3.tx_max_conc_seqs_c3 = rdata->max_seq;
267 	ofld_req3.rx_max_fc_pay_len  = lport->mfs;
268 
269 	ofld_req3.rx_total_conc_seqs = BNX2FC_MAX_SEQS;
270 	ofld_req3.rx_max_conc_seqs_c3 = BNX2FC_MAX_SEQS;
271 	ofld_req3.rx_open_seqs_exch_c3 = 1;
272 
273 	ofld_req3.confq_first_pbe_addr_lo = tgt->confq_dma;
274 	ofld_req3.confq_first_pbe_addr_hi = (u32)((u64) tgt->confq_dma >> 32);
275 
276 	/* set mul_n_port_ids supported flag to 0, until it is supported */
277 	ofld_req3.flags = 0;
278 	/*
279 	ofld_req3.flags |= (((lport->send_sp_features & FC_SP_FT_MNA) ? 1:0) <<
280 			    FCOE_KWQE_CONN_OFFLOAD3_B_MUL_N_PORT_IDS_SHIFT);
281 	*/
282 	/* Info from PLOGI response */
283 	ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_EDTR) ? 1 : 0) <<
284 			     FCOE_KWQE_CONN_OFFLOAD3_B_E_D_TOV_RES_SHIFT);
285 
286 	ofld_req3.flags |= (((rdata->sp_features & FC_SP_FT_SEQC) ? 1 : 0) <<
287 			     FCOE_KWQE_CONN_OFFLOAD3_B_CONT_INCR_SEQ_CNT_SHIFT);
288 
289 	/*
290 	 * Info from PRLI response, this info is used for sequence level error
291 	 * recovery support
292 	 */
293 	if (tgt->dev_type == TYPE_TAPE) {
294 		ofld_req3.flags |= 1 <<
295 				    FCOE_KWQE_CONN_OFFLOAD3_B_CONF_REQ_SHIFT;
296 		ofld_req3.flags |= (((rdata->flags & FC_RP_FLAGS_REC_SUPPORTED)
297 				    ? 1 : 0) <<
298 				    FCOE_KWQE_CONN_OFFLOAD3_B_REC_VALID_SHIFT);
299 	}
300 
301 	/* vlan flag */
302 	ofld_req3.flags |= (interface->vlan_enabled <<
303 			    FCOE_KWQE_CONN_OFFLOAD3_B_VLAN_FLAG_SHIFT);
304 
305 	/* C2_VALID and ACK flags are not set as they are not supported */
306 
307 
308 	/* Initialize offload request 4 structure */
309 	memset(&ofld_req4, 0x00, sizeof(struct fcoe_kwqe_conn_offload4));
310 	ofld_req4.hdr.op_code = FCOE_KWQE_OPCODE_OFFLOAD_CONN4;
311 	ofld_req4.hdr.flags =
312 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
313 
314 	ofld_req4.e_d_tov_timer_val = lport->e_d_tov / 20;
315 
316 
317 	ofld_req4.src_mac_addr_lo[0] =  port->data_src_addr[5];
318 							/* local mac */
319 	ofld_req4.src_mac_addr_lo[1] =  port->data_src_addr[4];
320 	ofld_req4.src_mac_addr_mid[0] =  port->data_src_addr[3];
321 	ofld_req4.src_mac_addr_mid[1] =  port->data_src_addr[2];
322 	ofld_req4.src_mac_addr_hi[0] =  port->data_src_addr[1];
323 	ofld_req4.src_mac_addr_hi[1] =  port->data_src_addr[0];
324 	ofld_req4.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
325 							/* fcf mac */
326 	ofld_req4.dst_mac_addr_lo[1] = ctlr->dest_addr[4];
327 	ofld_req4.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
328 	ofld_req4.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
329 	ofld_req4.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
330 	ofld_req4.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
331 
332 	ofld_req4.lcq_addr_lo = (u32) tgt->lcq_dma;
333 	ofld_req4.lcq_addr_hi = (u32)((u64) tgt->lcq_dma >> 32);
334 
335 	ofld_req4.confq_pbl_base_addr_lo = (u32) tgt->confq_pbl_dma;
336 	ofld_req4.confq_pbl_base_addr_hi =
337 					(u32)((u64) tgt->confq_pbl_dma >> 32);
338 
339 	kwqe_arr[0] = (struct kwqe *) &ofld_req1;
340 	kwqe_arr[1] = (struct kwqe *) &ofld_req2;
341 	kwqe_arr[2] = (struct kwqe *) &ofld_req3;
342 	kwqe_arr[3] = (struct kwqe *) &ofld_req4;
343 
344 	if (hba->cnic && hba->cnic->submit_kwqes)
345 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
346 
347 	return rc;
348 }
349 
350 /**
351  * bnx2fc_send_session_enable_req - initiates FCoE Session enablement
352  *
353  * @port:		port structure pointer
354  * @tgt:		bnx2fc_rport structure pointer
355  */
356 int bnx2fc_send_session_enable_req(struct fcoe_port *port,
357 					struct bnx2fc_rport *tgt)
358 {
359 	struct kwqe *kwqe_arr[2];
360 	struct bnx2fc_interface *interface = port->priv;
361 	struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
362 	struct bnx2fc_hba *hba = interface->hba;
363 	struct fcoe_kwqe_conn_enable_disable enbl_req;
364 	struct fc_lport *lport = port->lport;
365 	struct fc_rport *rport = tgt->rport;
366 	int num_kwqes = 1;
367 	int rc = 0;
368 	u32 port_id;
369 
370 	memset(&enbl_req, 0x00,
371 	       sizeof(struct fcoe_kwqe_conn_enable_disable));
372 	enbl_req.hdr.op_code = FCOE_KWQE_OPCODE_ENABLE_CONN;
373 	enbl_req.hdr.flags =
374 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
375 
376 	enbl_req.src_mac_addr_lo[0] =  port->data_src_addr[5];
377 							/* local mac */
378 	enbl_req.src_mac_addr_lo[1] =  port->data_src_addr[4];
379 	enbl_req.src_mac_addr_mid[0] =  port->data_src_addr[3];
380 	enbl_req.src_mac_addr_mid[1] =  port->data_src_addr[2];
381 	enbl_req.src_mac_addr_hi[0] =  port->data_src_addr[1];
382 	enbl_req.src_mac_addr_hi[1] =  port->data_src_addr[0];
383 	memcpy(tgt->src_addr, port->data_src_addr, ETH_ALEN);
384 
385 	enbl_req.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
386 	enbl_req.dst_mac_addr_lo[1] =  ctlr->dest_addr[4];
387 	enbl_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
388 	enbl_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
389 	enbl_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
390 	enbl_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
391 
392 	port_id = fc_host_port_id(lport->host);
393 	if (port_id != tgt->sid) {
394 		printk(KERN_ERR PFX "WARN: enable_req port_id = 0x%x,"
395 				"sid = 0x%x\n", port_id, tgt->sid);
396 		port_id = tgt->sid;
397 	}
398 	enbl_req.s_id[0] = (port_id & 0x000000FF);
399 	enbl_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
400 	enbl_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
401 
402 	port_id = rport->port_id;
403 	enbl_req.d_id[0] = (port_id & 0x000000FF);
404 	enbl_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
405 	enbl_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
406 	enbl_req.vlan_tag = interface->vlan_id <<
407 				FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
408 	enbl_req.vlan_tag |= 3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
409 	enbl_req.vlan_flag = interface->vlan_enabled;
410 	enbl_req.context_id = tgt->context_id;
411 	enbl_req.conn_id = tgt->fcoe_conn_id;
412 
413 	kwqe_arr[0] = (struct kwqe *) &enbl_req;
414 
415 	if (hba->cnic && hba->cnic->submit_kwqes)
416 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
417 	return rc;
418 }
419 
420 /**
421  * bnx2fc_send_session_disable_req - initiates FCoE Session disable
422  *
423  * @port:		port structure pointer
424  * @tgt:		bnx2fc_rport structure pointer
425  */
426 int bnx2fc_send_session_disable_req(struct fcoe_port *port,
427 				    struct bnx2fc_rport *tgt)
428 {
429 	struct bnx2fc_interface *interface = port->priv;
430 	struct fcoe_ctlr *ctlr = bnx2fc_to_ctlr(interface);
431 	struct bnx2fc_hba *hba = interface->hba;
432 	struct fcoe_kwqe_conn_enable_disable disable_req;
433 	struct kwqe *kwqe_arr[2];
434 	struct fc_rport *rport = tgt->rport;
435 	int num_kwqes = 1;
436 	int rc = 0;
437 	u32 port_id;
438 
439 	memset(&disable_req, 0x00,
440 	       sizeof(struct fcoe_kwqe_conn_enable_disable));
441 	disable_req.hdr.op_code = FCOE_KWQE_OPCODE_DISABLE_CONN;
442 	disable_req.hdr.flags =
443 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
444 
445 	disable_req.src_mac_addr_lo[0] =  tgt->src_addr[5];
446 	disable_req.src_mac_addr_lo[1] =  tgt->src_addr[4];
447 	disable_req.src_mac_addr_mid[0] =  tgt->src_addr[3];
448 	disable_req.src_mac_addr_mid[1] =  tgt->src_addr[2];
449 	disable_req.src_mac_addr_hi[0] =  tgt->src_addr[1];
450 	disable_req.src_mac_addr_hi[1] =  tgt->src_addr[0];
451 
452 	disable_req.dst_mac_addr_lo[0] =  ctlr->dest_addr[5];
453 	disable_req.dst_mac_addr_lo[1] =  ctlr->dest_addr[4];
454 	disable_req.dst_mac_addr_mid[0] = ctlr->dest_addr[3];
455 	disable_req.dst_mac_addr_mid[1] = ctlr->dest_addr[2];
456 	disable_req.dst_mac_addr_hi[0] = ctlr->dest_addr[1];
457 	disable_req.dst_mac_addr_hi[1] = ctlr->dest_addr[0];
458 
459 	port_id = tgt->sid;
460 	disable_req.s_id[0] = (port_id & 0x000000FF);
461 	disable_req.s_id[1] = (port_id & 0x0000FF00) >> 8;
462 	disable_req.s_id[2] = (port_id & 0x00FF0000) >> 16;
463 
464 
465 	port_id = rport->port_id;
466 	disable_req.d_id[0] = (port_id & 0x000000FF);
467 	disable_req.d_id[1] = (port_id & 0x0000FF00) >> 8;
468 	disable_req.d_id[2] = (port_id & 0x00FF0000) >> 16;
469 	disable_req.context_id = tgt->context_id;
470 	disable_req.conn_id = tgt->fcoe_conn_id;
471 	disable_req.vlan_tag = interface->vlan_id <<
472 				FCOE_KWQE_CONN_ENABLE_DISABLE_VLAN_ID_SHIFT;
473 	disable_req.vlan_tag |=
474 			3 << FCOE_KWQE_CONN_ENABLE_DISABLE_PRIORITY_SHIFT;
475 	disable_req.vlan_flag = interface->vlan_enabled;
476 
477 	kwqe_arr[0] = (struct kwqe *) &disable_req;
478 
479 	if (hba->cnic && hba->cnic->submit_kwqes)
480 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
481 
482 	return rc;
483 }
484 
485 /**
486  * bnx2fc_send_session_destroy_req - initiates FCoE Session destroy
487  *
488  * @hba:		adapter structure pointer
489  * @tgt:		bnx2fc_rport structure pointer
490  */
491 int bnx2fc_send_session_destroy_req(struct bnx2fc_hba *hba,
492 					struct bnx2fc_rport *tgt)
493 {
494 	struct fcoe_kwqe_conn_destroy destroy_req;
495 	struct kwqe *kwqe_arr[2];
496 	int num_kwqes = 1;
497 	int rc = 0;
498 
499 	memset(&destroy_req, 0x00, sizeof(struct fcoe_kwqe_conn_destroy));
500 	destroy_req.hdr.op_code = FCOE_KWQE_OPCODE_DESTROY_CONN;
501 	destroy_req.hdr.flags =
502 		(FCOE_KWQE_LAYER_CODE << FCOE_KWQE_HEADER_LAYER_CODE_SHIFT);
503 
504 	destroy_req.context_id = tgt->context_id;
505 	destroy_req.conn_id = tgt->fcoe_conn_id;
506 
507 	kwqe_arr[0] = (struct kwqe *) &destroy_req;
508 
509 	if (hba->cnic && hba->cnic->submit_kwqes)
510 		rc = hba->cnic->submit_kwqes(hba->cnic, kwqe_arr, num_kwqes);
511 
512 	return rc;
513 }
514 
515 static bool is_valid_lport(struct bnx2fc_hba *hba, struct fc_lport *lport)
516 {
517 	struct bnx2fc_lport *blport;
518 
519 	spin_lock_bh(&hba->hba_lock);
520 	list_for_each_entry(blport, &hba->vports, list) {
521 		if (blport->lport == lport) {
522 			spin_unlock_bh(&hba->hba_lock);
523 			return true;
524 		}
525 	}
526 	spin_unlock_bh(&hba->hba_lock);
527 	return false;
528 
529 }
530 
531 
532 static void bnx2fc_unsol_els_work(struct work_struct *work)
533 {
534 	struct bnx2fc_unsol_els *unsol_els;
535 	struct fc_lport *lport;
536 	struct bnx2fc_hba *hba;
537 	struct fc_frame *fp;
538 
539 	unsol_els = container_of(work, struct bnx2fc_unsol_els, unsol_els_work);
540 	lport = unsol_els->lport;
541 	fp = unsol_els->fp;
542 	hba = unsol_els->hba;
543 	if (is_valid_lport(hba, lport))
544 		fc_exch_recv(lport, fp);
545 	kfree(unsol_els);
546 }
547 
548 void bnx2fc_process_l2_frame_compl(struct bnx2fc_rport *tgt,
549 				   unsigned char *buf,
550 				   u32 frame_len, u16 l2_oxid)
551 {
552 	struct fcoe_port *port = tgt->port;
553 	struct fc_lport *lport = port->lport;
554 	struct bnx2fc_interface *interface = port->priv;
555 	struct bnx2fc_unsol_els *unsol_els;
556 	struct fc_frame_header *fh;
557 	struct fc_frame *fp;
558 	struct sk_buff *skb;
559 	u32 payload_len;
560 	u32 crc;
561 	u8 op;
562 
563 
564 	unsol_els = kzalloc(sizeof(*unsol_els), GFP_ATOMIC);
565 	if (!unsol_els) {
566 		BNX2FC_TGT_DBG(tgt, "Unable to allocate unsol_work\n");
567 		return;
568 	}
569 
570 	BNX2FC_TGT_DBG(tgt, "l2_frame_compl l2_oxid = 0x%x, frame_len = %d\n",
571 		l2_oxid, frame_len);
572 
573 	payload_len = frame_len - sizeof(struct fc_frame_header);
574 
575 	fp = fc_frame_alloc(lport, payload_len);
576 	if (!fp) {
577 		printk(KERN_ERR PFX "fc_frame_alloc failure\n");
578 		kfree(unsol_els);
579 		return;
580 	}
581 
582 	fh = (struct fc_frame_header *) fc_frame_header_get(fp);
583 	/* Copy FC Frame header and payload into the frame */
584 	memcpy(fh, buf, frame_len);
585 
586 	if (l2_oxid != FC_XID_UNKNOWN)
587 		fh->fh_ox_id = htons(l2_oxid);
588 
589 	skb = fp_skb(fp);
590 
591 	if ((fh->fh_r_ctl == FC_RCTL_ELS_REQ) ||
592 	    (fh->fh_r_ctl == FC_RCTL_ELS_REP)) {
593 
594 		if (fh->fh_type == FC_TYPE_ELS) {
595 			op = fc_frame_payload_op(fp);
596 			if ((op == ELS_TEST) ||	(op == ELS_ESTC) ||
597 			    (op == ELS_FAN) || (op == ELS_CSU)) {
598 				/*
599 				 * No need to reply for these
600 				 * ELS requests
601 				 */
602 				printk(KERN_ERR PFX "dropping ELS 0x%x\n", op);
603 				kfree_skb(skb);
604 				kfree(unsol_els);
605 				return;
606 			}
607 		}
608 		crc = fcoe_fc_crc(fp);
609 		fc_frame_init(fp);
610 		fr_dev(fp) = lport;
611 		fr_sof(fp) = FC_SOF_I3;
612 		fr_eof(fp) = FC_EOF_T;
613 		fr_crc(fp) = cpu_to_le32(~crc);
614 		unsol_els->lport = lport;
615 		unsol_els->hba = interface->hba;
616 		unsol_els->fp = fp;
617 		INIT_WORK(&unsol_els->unsol_els_work, bnx2fc_unsol_els_work);
618 		queue_work(bnx2fc_wq, &unsol_els->unsol_els_work);
619 	} else {
620 		BNX2FC_HBA_DBG(lport, "fh_r_ctl = 0x%x\n", fh->fh_r_ctl);
621 		kfree_skb(skb);
622 		kfree(unsol_els);
623 	}
624 }
625 
626 static void bnx2fc_process_unsol_compl(struct bnx2fc_rport *tgt, u16 wqe)
627 {
628 	u8 num_rq;
629 	struct fcoe_err_report_entry *err_entry;
630 	unsigned char *rq_data;
631 	unsigned char *buf = NULL, *buf1;
632 	int i;
633 	u16 xid;
634 	u32 frame_len, len;
635 	struct bnx2fc_cmd *io_req = NULL;
636 	struct bnx2fc_interface *interface = tgt->port->priv;
637 	struct bnx2fc_hba *hba = interface->hba;
638 	int rc = 0;
639 	u64 err_warn_bit_map;
640 	u8 err_warn = 0xff;
641 
642 
643 	BNX2FC_TGT_DBG(tgt, "Entered UNSOL COMPLETION wqe = 0x%x\n", wqe);
644 	switch (wqe & FCOE_UNSOLICITED_CQE_SUBTYPE) {
645 	case FCOE_UNSOLICITED_FRAME_CQE_TYPE:
646 		frame_len = (wqe & FCOE_UNSOLICITED_CQE_PKT_LEN) >>
647 			     FCOE_UNSOLICITED_CQE_PKT_LEN_SHIFT;
648 
649 		num_rq = (frame_len + BNX2FC_RQ_BUF_SZ - 1) / BNX2FC_RQ_BUF_SZ;
650 
651 		spin_lock_bh(&tgt->tgt_lock);
652 		rq_data = (unsigned char *)bnx2fc_get_next_rqe(tgt, num_rq);
653 		spin_unlock_bh(&tgt->tgt_lock);
654 
655 		if (rq_data) {
656 			buf = rq_data;
657 		} else {
658 			buf1 = buf = kmalloc((num_rq * BNX2FC_RQ_BUF_SZ),
659 					      GFP_ATOMIC);
660 
661 			if (!buf1) {
662 				BNX2FC_TGT_DBG(tgt, "Memory alloc failure\n");
663 				break;
664 			}
665 
666 			for (i = 0; i < num_rq; i++) {
667 				spin_lock_bh(&tgt->tgt_lock);
668 				rq_data = (unsigned char *)
669 					   bnx2fc_get_next_rqe(tgt, 1);
670 				spin_unlock_bh(&tgt->tgt_lock);
671 				len = BNX2FC_RQ_BUF_SZ;
672 				memcpy(buf1, rq_data, len);
673 				buf1 += len;
674 			}
675 		}
676 		bnx2fc_process_l2_frame_compl(tgt, buf, frame_len,
677 					      FC_XID_UNKNOWN);
678 
679 		if (buf != rq_data)
680 			kfree(buf);
681 		spin_lock_bh(&tgt->tgt_lock);
682 		bnx2fc_return_rqe(tgt, num_rq);
683 		spin_unlock_bh(&tgt->tgt_lock);
684 		break;
685 
686 	case FCOE_ERROR_DETECTION_CQE_TYPE:
687 		/*
688 		 * In case of error reporting CQE a single RQ entry
689 		 * is consumed.
690 		 */
691 		spin_lock_bh(&tgt->tgt_lock);
692 		num_rq = 1;
693 		err_entry = (struct fcoe_err_report_entry *)
694 			     bnx2fc_get_next_rqe(tgt, 1);
695 		xid = err_entry->fc_hdr.ox_id;
696 		BNX2FC_TGT_DBG(tgt, "Unsol Error Frame OX_ID = 0x%x\n", xid);
697 		BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x\n",
698 			err_entry->data.err_warn_bitmap_hi,
699 			err_entry->data.err_warn_bitmap_lo);
700 		BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x\n",
701 			err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
702 
703 		if (xid > hba->max_xid) {
704 			BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n",
705 				   xid);
706 			goto ret_err_rqe;
707 		}
708 
709 
710 		io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
711 		if (!io_req)
712 			goto ret_err_rqe;
713 
714 		if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
715 			printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
716 			goto ret_err_rqe;
717 		}
718 
719 		if (test_and_clear_bit(BNX2FC_FLAG_IO_CLEANUP,
720 				       &io_req->req_flags)) {
721 			BNX2FC_IO_DBG(io_req, "unsol_err: cleanup in "
722 					    "progress.. ignore unsol err\n");
723 			goto ret_err_rqe;
724 		}
725 
726 		err_warn_bit_map = (u64)
727 			((u64)err_entry->data.err_warn_bitmap_hi << 32) |
728 			(u64)err_entry->data.err_warn_bitmap_lo;
729 		for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
730 			if (err_warn_bit_map & (u64)((u64)1 << i)) {
731 				err_warn = i;
732 				break;
733 			}
734 		}
735 
736 		/*
737 		 * If ABTS is already in progress, and FW error is
738 		 * received after that, do not cancel the timeout_work
739 		 * and let the error recovery continue by explicitly
740 		 * logging out the target, when the ABTS eventually
741 		 * times out.
742 		 */
743 		if (test_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags)) {
744 			printk(KERN_ERR PFX "err_warn: io_req (0x%x) already "
745 					    "in ABTS processing\n", xid);
746 			goto ret_err_rqe;
747 		}
748 		BNX2FC_TGT_DBG(tgt, "err = 0x%x\n", err_warn);
749 		if (tgt->dev_type != TYPE_TAPE)
750 			goto skip_rec;
751 		switch (err_warn) {
752 		case FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION:
753 		case FCOE_ERROR_CODE_DATA_OOO_RO:
754 		case FCOE_ERROR_CODE_COMMON_INCORRECT_SEQ_CNT:
755 		case FCOE_ERROR_CODE_DATA_SOFI3_SEQ_ACTIVE_SET:
756 		case FCOE_ERROR_CODE_FCP_RSP_OPENED_SEQ:
757 		case FCOE_ERROR_CODE_DATA_SOFN_SEQ_ACTIVE_RESET:
758 			BNX2FC_TGT_DBG(tgt, "REC TOV popped for xid - 0x%x\n",
759 				   xid);
760 			memcpy(&io_req->err_entry, err_entry,
761 			       sizeof(struct fcoe_err_report_entry));
762 			if (!test_bit(BNX2FC_FLAG_SRR_SENT,
763 				      &io_req->req_flags)) {
764 				spin_unlock_bh(&tgt->tgt_lock);
765 				rc = bnx2fc_send_rec(io_req);
766 				spin_lock_bh(&tgt->tgt_lock);
767 
768 				if (rc)
769 					goto skip_rec;
770 			} else
771 				printk(KERN_ERR PFX "SRR in progress\n");
772 			goto ret_err_rqe;
773 		default:
774 			break;
775 		}
776 
777 skip_rec:
778 		set_bit(BNX2FC_FLAG_ISSUE_ABTS, &io_req->req_flags);
779 		/*
780 		 * Cancel the timeout_work, as we received IO
781 		 * completion with FW error.
782 		 */
783 		if (cancel_delayed_work(&io_req->timeout_work))
784 			kref_put(&io_req->refcount, bnx2fc_cmd_release);
785 
786 		rc = bnx2fc_initiate_abts(io_req);
787 		if (rc != SUCCESS) {
788 			printk(KERN_ERR PFX "err_warn: initiate_abts "
789 				"failed xid = 0x%x. issue cleanup\n",
790 				io_req->xid);
791 			bnx2fc_initiate_cleanup(io_req);
792 		}
793 ret_err_rqe:
794 		bnx2fc_return_rqe(tgt, 1);
795 		spin_unlock_bh(&tgt->tgt_lock);
796 		break;
797 
798 	case FCOE_WARNING_DETECTION_CQE_TYPE:
799 		/*
800 		 *In case of warning reporting CQE a single RQ entry
801 		 * is consumes.
802 		 */
803 		spin_lock_bh(&tgt->tgt_lock);
804 		num_rq = 1;
805 		err_entry = (struct fcoe_err_report_entry *)
806 			     bnx2fc_get_next_rqe(tgt, 1);
807 		xid = cpu_to_be16(err_entry->fc_hdr.ox_id);
808 		BNX2FC_TGT_DBG(tgt, "Unsol Warning Frame OX_ID = 0x%x\n", xid);
809 		BNX2FC_TGT_DBG(tgt, "err_warn_bitmap = %08x:%08x",
810 			err_entry->data.err_warn_bitmap_hi,
811 			err_entry->data.err_warn_bitmap_lo);
812 		BNX2FC_TGT_DBG(tgt, "buf_offsets - tx = 0x%x, rx = 0x%x",
813 			err_entry->data.tx_buf_off, err_entry->data.rx_buf_off);
814 
815 		if (xid > hba->max_xid) {
816 			BNX2FC_TGT_DBG(tgt, "xid(0x%x) out of FW range\n", xid);
817 			goto ret_warn_rqe;
818 		}
819 
820 		err_warn_bit_map = (u64)
821 			((u64)err_entry->data.err_warn_bitmap_hi << 32) |
822 			(u64)err_entry->data.err_warn_bitmap_lo;
823 		for (i = 0; i < BNX2FC_NUM_ERR_BITS; i++) {
824 			if (err_warn_bit_map & ((u64)1 << i)) {
825 				err_warn = i;
826 				break;
827 			}
828 		}
829 		BNX2FC_TGT_DBG(tgt, "warn = 0x%x\n", err_warn);
830 
831 		io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
832 		if (!io_req)
833 			goto ret_warn_rqe;
834 
835 		if (io_req->cmd_type != BNX2FC_SCSI_CMD) {
836 			printk(KERN_ERR PFX "err_warn: Not a SCSI cmd\n");
837 			goto ret_warn_rqe;
838 		}
839 
840 		memcpy(&io_req->err_entry, err_entry,
841 		       sizeof(struct fcoe_err_report_entry));
842 
843 		if (err_warn == FCOE_ERROR_CODE_REC_TOV_TIMER_EXPIRATION)
844 			/* REC_TOV is not a warning code */
845 			BUG_ON(1);
846 		else
847 			BNX2FC_TGT_DBG(tgt, "Unsolicited warning\n");
848 ret_warn_rqe:
849 		bnx2fc_return_rqe(tgt, 1);
850 		spin_unlock_bh(&tgt->tgt_lock);
851 		break;
852 
853 	default:
854 		printk(KERN_ERR PFX "Unsol Compl: Invalid CQE Subtype\n");
855 		break;
856 	}
857 }
858 
859 void bnx2fc_process_cq_compl(struct bnx2fc_rport *tgt, u16 wqe,
860 			     unsigned char *rq_data, u8 num_rq,
861 			     struct fcoe_task_ctx_entry *task)
862 {
863 	struct fcoe_port *port = tgt->port;
864 	struct bnx2fc_interface *interface = port->priv;
865 	struct bnx2fc_hba *hba = interface->hba;
866 	struct bnx2fc_cmd *io_req;
867 
868 	u16 xid;
869 	u8  cmd_type;
870 	u8 rx_state = 0;
871 
872 	spin_lock_bh(&tgt->tgt_lock);
873 
874 	xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID;
875 	io_req = (struct bnx2fc_cmd *)hba->cmd_mgr->cmds[xid];
876 
877 	if (io_req == NULL) {
878 		printk(KERN_ERR PFX "ERROR? cq_compl - io_req is NULL\n");
879 		spin_unlock_bh(&tgt->tgt_lock);
880 		return;
881 	}
882 
883 	/* Timestamp IO completion time */
884 	cmd_type = io_req->cmd_type;
885 
886 	rx_state = ((task->rxwr_txrd.var_ctx.rx_flags &
887 		    FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE) >>
888 		    FCOE_TCE_RX_WR_TX_RD_VAR_RX_STATE_SHIFT);
889 
890 	/* Process other IO completion types */
891 	switch (cmd_type) {
892 	case BNX2FC_SCSI_CMD:
893 		if (rx_state == FCOE_TASK_RX_STATE_COMPLETED) {
894 			bnx2fc_process_scsi_cmd_compl(io_req, task, num_rq,
895 						      rq_data);
896 			spin_unlock_bh(&tgt->tgt_lock);
897 			return;
898 		}
899 
900 		if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
901 			bnx2fc_process_abts_compl(io_req, task, num_rq);
902 		else if (rx_state ==
903 			 FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
904 			bnx2fc_process_cleanup_compl(io_req, task, num_rq);
905 		else
906 			printk(KERN_ERR PFX "Invalid rx state - %d\n",
907 				rx_state);
908 		break;
909 
910 	case BNX2FC_TASK_MGMT_CMD:
911 		BNX2FC_IO_DBG(io_req, "Processing TM complete\n");
912 		bnx2fc_process_tm_compl(io_req, task, num_rq, rq_data);
913 		break;
914 
915 	case BNX2FC_ABTS:
916 		/*
917 		 * ABTS request received by firmware. ABTS response
918 		 * will be delivered to the task belonging to the IO
919 		 * that was aborted
920 		 */
921 		BNX2FC_IO_DBG(io_req, "cq_compl- ABTS sent out by fw\n");
922 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
923 		break;
924 
925 	case BNX2FC_ELS:
926 		if (rx_state == FCOE_TASK_RX_STATE_COMPLETED)
927 			bnx2fc_process_els_compl(io_req, task, num_rq);
928 		else if (rx_state == FCOE_TASK_RX_STATE_ABTS_COMPLETED)
929 			bnx2fc_process_abts_compl(io_req, task, num_rq);
930 		else if (rx_state ==
931 			 FCOE_TASK_RX_STATE_EXCHANGE_CLEANUP_COMPLETED)
932 			bnx2fc_process_cleanup_compl(io_req, task, num_rq);
933 		else
934 			printk(KERN_ERR PFX "Invalid rx state =  %d\n",
935 				rx_state);
936 		break;
937 
938 	case BNX2FC_CLEANUP:
939 		BNX2FC_IO_DBG(io_req, "cq_compl- cleanup resp rcvd\n");
940 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
941 		break;
942 
943 	case BNX2FC_SEQ_CLEANUP:
944 		BNX2FC_IO_DBG(io_req, "cq_compl(0x%x) - seq cleanup resp\n",
945 			      io_req->xid);
946 		bnx2fc_process_seq_cleanup_compl(io_req, task, rx_state);
947 		kref_put(&io_req->refcount, bnx2fc_cmd_release);
948 		break;
949 
950 	default:
951 		printk(KERN_ERR PFX "Invalid cmd_type %d\n", cmd_type);
952 		break;
953 	}
954 	spin_unlock_bh(&tgt->tgt_lock);
955 }
956 
957 void bnx2fc_arm_cq(struct bnx2fc_rport *tgt)
958 {
959 	struct b577xx_fcoe_rx_doorbell *rx_db = &tgt->rx_db;
960 	u32 msg;
961 
962 	wmb();
963 	rx_db->doorbell_cq_cons = tgt->cq_cons_idx | (tgt->cq_curr_toggle_bit <<
964 			FCOE_CQE_TOGGLE_BIT_SHIFT);
965 	msg = *((u32 *)rx_db);
966 	writel(cpu_to_le32(msg), tgt->ctx_base);
967 
968 }
969 
970 static struct bnx2fc_work *bnx2fc_alloc_work(struct bnx2fc_rport *tgt, u16 wqe,
971 					     unsigned char *rq_data, u8 num_rq,
972 					     struct fcoe_task_ctx_entry *task)
973 {
974 	struct bnx2fc_work *work;
975 	work = kzalloc(sizeof(struct bnx2fc_work), GFP_ATOMIC);
976 	if (!work)
977 		return NULL;
978 
979 	INIT_LIST_HEAD(&work->list);
980 	work->tgt = tgt;
981 	work->wqe = wqe;
982 	work->num_rq = num_rq;
983 	work->task = task;
984 	if (rq_data)
985 		memcpy(work->rq_data, rq_data, BNX2FC_RQ_BUF_SZ);
986 
987 	return work;
988 }
989 
990 /* Pending work request completion */
991 static bool bnx2fc_pending_work(struct bnx2fc_rport *tgt, unsigned int wqe)
992 {
993 	unsigned int cpu = wqe % num_possible_cpus();
994 	struct bnx2fc_percpu_s *fps;
995 	struct bnx2fc_work *work;
996 	struct fcoe_task_ctx_entry *task;
997 	struct fcoe_task_ctx_entry *task_page;
998 	struct fcoe_port *port = tgt->port;
999 	struct bnx2fc_interface *interface = port->priv;
1000 	struct bnx2fc_hba *hba = interface->hba;
1001 	unsigned char *rq_data = NULL;
1002 	unsigned char rq_data_buff[BNX2FC_RQ_BUF_SZ];
1003 	int task_idx, index;
1004 	u16 xid;
1005 	u8 num_rq;
1006 	int i;
1007 
1008 	xid = wqe & FCOE_PEND_WQ_CQE_TASK_ID;
1009 	if (xid >= hba->max_tasks) {
1010 		pr_err(PFX "ERROR:xid out of range\n");
1011 		return false;
1012 	}
1013 
1014 	task_idx = xid / BNX2FC_TASKS_PER_PAGE;
1015 	index = xid % BNX2FC_TASKS_PER_PAGE;
1016 	task_page = (struct fcoe_task_ctx_entry *)hba->task_ctx[task_idx];
1017 	task = &task_page[index];
1018 
1019 	num_rq = ((task->rxwr_txrd.var_ctx.rx_flags &
1020 		   FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE) >>
1021 		  FCOE_TCE_RX_WR_TX_RD_VAR_NUM_RQ_WQE_SHIFT);
1022 
1023 	memset(rq_data_buff, 0, BNX2FC_RQ_BUF_SZ);
1024 
1025 	if (!num_rq)
1026 		goto num_rq_zero;
1027 
1028 	rq_data = bnx2fc_get_next_rqe(tgt, 1);
1029 
1030 	if (num_rq > 1) {
1031 		/* We do not need extra sense data */
1032 		for (i = 1; i < num_rq; i++)
1033 			bnx2fc_get_next_rqe(tgt, 1);
1034 	}
1035 
1036 	if (rq_data)
1037 		memcpy(rq_data_buff, rq_data, BNX2FC_RQ_BUF_SZ);
1038 
1039 	/* return RQ entries */
1040 	for (i = 0; i < num_rq; i++)
1041 		bnx2fc_return_rqe(tgt, 1);
1042 
1043 num_rq_zero:
1044 
1045 	fps = &per_cpu(bnx2fc_percpu, cpu);
1046 	spin_lock_bh(&fps->fp_work_lock);
1047 	if (fps->iothread) {
1048 		work = bnx2fc_alloc_work(tgt, wqe, rq_data_buff,
1049 					 num_rq, task);
1050 		if (work) {
1051 			list_add_tail(&work->list, &fps->work_list);
1052 			wake_up_process(fps->iothread);
1053 			spin_unlock_bh(&fps->fp_work_lock);
1054 			return true;
1055 		}
1056 	}
1057 	spin_unlock_bh(&fps->fp_work_lock);
1058 	bnx2fc_process_cq_compl(tgt, wqe,
1059 				rq_data_buff, num_rq, task);
1060 
1061 	return true;
1062 }
1063 
1064 int bnx2fc_process_new_cqes(struct bnx2fc_rport *tgt)
1065 {
1066 	struct fcoe_cqe *cq;
1067 	u32 cq_cons;
1068 	struct fcoe_cqe *cqe;
1069 	u32 num_free_sqes = 0;
1070 	u32 num_cqes = 0;
1071 	u16 wqe;
1072 
1073 	/*
1074 	 * cq_lock is a low contention lock used to protect
1075 	 * the CQ data structure from being freed up during
1076 	 * the upload operation
1077 	 */
1078 	spin_lock_bh(&tgt->cq_lock);
1079 
1080 	if (!tgt->cq) {
1081 		printk(KERN_ERR PFX "process_new_cqes: cq is NULL\n");
1082 		spin_unlock_bh(&tgt->cq_lock);
1083 		return 0;
1084 	}
1085 	cq = tgt->cq;
1086 	cq_cons = tgt->cq_cons_idx;
1087 	cqe = &cq[cq_cons];
1088 
1089 	while (((wqe = cqe->wqe) & FCOE_CQE_TOGGLE_BIT) ==
1090 	       (tgt->cq_curr_toggle_bit <<
1091 	       FCOE_CQE_TOGGLE_BIT_SHIFT)) {
1092 
1093 		/* new entry on the cq */
1094 		if (wqe & FCOE_CQE_CQE_TYPE) {
1095 			/* Unsolicited event notification */
1096 			bnx2fc_process_unsol_compl(tgt, wqe);
1097 		} else {
1098 			if (bnx2fc_pending_work(tgt, wqe))
1099 				num_free_sqes++;
1100 		}
1101 		cqe++;
1102 		tgt->cq_cons_idx++;
1103 		num_cqes++;
1104 
1105 		if (tgt->cq_cons_idx == BNX2FC_CQ_WQES_MAX) {
1106 			tgt->cq_cons_idx = 0;
1107 			cqe = cq;
1108 			tgt->cq_curr_toggle_bit =
1109 				1 - tgt->cq_curr_toggle_bit;
1110 		}
1111 	}
1112 	if (num_cqes) {
1113 		/* Arm CQ only if doorbell is mapped */
1114 		if (tgt->ctx_base)
1115 			bnx2fc_arm_cq(tgt);
1116 		atomic_add(num_free_sqes, &tgt->free_sqes);
1117 	}
1118 	spin_unlock_bh(&tgt->cq_lock);
1119 	return 0;
1120 }
1121 
1122 /**
1123  * bnx2fc_fastpath_notification - process global event queue (KCQ)
1124  *
1125  * @hba:		adapter structure pointer
1126  * @new_cqe_kcqe:	pointer to newly DMA'd KCQ entry
1127  *
1128  * Fast path event notification handler
1129  */
1130 static void bnx2fc_fastpath_notification(struct bnx2fc_hba *hba,
1131 					struct fcoe_kcqe *new_cqe_kcqe)
1132 {
1133 	u32 conn_id = new_cqe_kcqe->fcoe_conn_id;
1134 	struct bnx2fc_rport *tgt = hba->tgt_ofld_list[conn_id];
1135 
1136 	if (!tgt) {
1137 		printk(KERN_ERR PFX "conn_id 0x%x not valid\n", conn_id);
1138 		return;
1139 	}
1140 
1141 	bnx2fc_process_new_cqes(tgt);
1142 }
1143 
1144 /**
1145  * bnx2fc_process_ofld_cmpl - process FCoE session offload completion
1146  *
1147  * @hba:	adapter structure pointer
1148  * @ofld_kcqe:	connection offload kcqe pointer
1149  *
1150  * handle session offload completion, enable the session if offload is
1151  * successful.
1152  */
1153 static void bnx2fc_process_ofld_cmpl(struct bnx2fc_hba *hba,
1154 					struct fcoe_kcqe *ofld_kcqe)
1155 {
1156 	struct bnx2fc_rport		*tgt;
1157 	struct bnx2fc_interface		*interface;
1158 	u32				conn_id;
1159 	u32				context_id;
1160 
1161 	conn_id = ofld_kcqe->fcoe_conn_id;
1162 	context_id = ofld_kcqe->fcoe_conn_context_id;
1163 	tgt = hba->tgt_ofld_list[conn_id];
1164 	if (!tgt) {
1165 		printk(KERN_ALERT PFX "ERROR:ofld_cmpl: No pending ofld req\n");
1166 		return;
1167 	}
1168 	BNX2FC_TGT_DBG(tgt, "Entered ofld compl - context_id = 0x%x\n",
1169 		ofld_kcqe->fcoe_conn_context_id);
1170 	interface = tgt->port->priv;
1171 	if (hba != interface->hba) {
1172 		printk(KERN_ERR PFX "ERROR:ofld_cmpl: HBA mis-match\n");
1173 		goto ofld_cmpl_err;
1174 	}
1175 	/*
1176 	 * cnic has allocated a context_id for this session; use this
1177 	 * while enabling the session.
1178 	 */
1179 	tgt->context_id = context_id;
1180 	if (ofld_kcqe->completion_status) {
1181 		if (ofld_kcqe->completion_status ==
1182 				FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE) {
1183 			printk(KERN_ERR PFX "unable to allocate FCoE context "
1184 				"resources\n");
1185 			set_bit(BNX2FC_FLAG_CTX_ALLOC_FAILURE, &tgt->flags);
1186 		}
1187 	} else {
1188 		/* FW offload request successfully completed */
1189 		set_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
1190 	}
1191 ofld_cmpl_err:
1192 	set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
1193 	wake_up_interruptible(&tgt->ofld_wait);
1194 }
1195 
1196 /**
1197  * bnx2fc_process_enable_conn_cmpl - process FCoE session enable completion
1198  *
1199  * @hba:	adapter structure pointer
1200  * @ofld_kcqe:	connection offload kcqe pointer
1201  *
1202  * handle session enable completion, mark the rport as ready
1203  */
1204 
1205 static void bnx2fc_process_enable_conn_cmpl(struct bnx2fc_hba *hba,
1206 						struct fcoe_kcqe *ofld_kcqe)
1207 {
1208 	struct bnx2fc_rport		*tgt;
1209 	struct bnx2fc_interface		*interface;
1210 	u32				conn_id;
1211 	u32				context_id;
1212 
1213 	context_id = ofld_kcqe->fcoe_conn_context_id;
1214 	conn_id = ofld_kcqe->fcoe_conn_id;
1215 	tgt = hba->tgt_ofld_list[conn_id];
1216 	if (!tgt) {
1217 		printk(KERN_ERR PFX "ERROR:enbl_cmpl: No pending ofld req\n");
1218 		return;
1219 	}
1220 
1221 	BNX2FC_TGT_DBG(tgt, "Enable compl - context_id = 0x%x\n",
1222 		ofld_kcqe->fcoe_conn_context_id);
1223 
1224 	/*
1225 	 * context_id should be the same for this target during offload
1226 	 * and enable
1227 	 */
1228 	if (tgt->context_id != context_id) {
1229 		printk(KERN_ERR PFX "context id mis-match\n");
1230 		return;
1231 	}
1232 	interface = tgt->port->priv;
1233 	if (hba != interface->hba) {
1234 		printk(KERN_ERR PFX "bnx2fc-enbl_cmpl: HBA mis-match\n");
1235 		goto enbl_cmpl_err;
1236 	}
1237 	if (!ofld_kcqe->completion_status)
1238 		/* enable successful - rport ready for issuing IOs */
1239 		set_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
1240 
1241 enbl_cmpl_err:
1242 	set_bit(BNX2FC_FLAG_OFLD_REQ_CMPL, &tgt->flags);
1243 	wake_up_interruptible(&tgt->ofld_wait);
1244 }
1245 
1246 static void bnx2fc_process_conn_disable_cmpl(struct bnx2fc_hba *hba,
1247 					struct fcoe_kcqe *disable_kcqe)
1248 {
1249 
1250 	struct bnx2fc_rport		*tgt;
1251 	u32				conn_id;
1252 
1253 	conn_id = disable_kcqe->fcoe_conn_id;
1254 	tgt = hba->tgt_ofld_list[conn_id];
1255 	if (!tgt) {
1256 		printk(KERN_ERR PFX "ERROR: disable_cmpl: No disable req\n");
1257 		return;
1258 	}
1259 
1260 	BNX2FC_TGT_DBG(tgt, PFX "disable_cmpl: conn_id %d\n", conn_id);
1261 
1262 	if (disable_kcqe->completion_status) {
1263 		printk(KERN_ERR PFX "Disable failed with cmpl status %d\n",
1264 			disable_kcqe->completion_status);
1265 		set_bit(BNX2FC_FLAG_DISABLE_FAILED, &tgt->flags);
1266 		set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1267 		wake_up_interruptible(&tgt->upld_wait);
1268 	} else {
1269 		/* disable successful */
1270 		BNX2FC_TGT_DBG(tgt, "disable successful\n");
1271 		clear_bit(BNX2FC_FLAG_OFFLOADED, &tgt->flags);
1272 		clear_bit(BNX2FC_FLAG_ENABLED, &tgt->flags);
1273 		set_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
1274 		set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1275 		wake_up_interruptible(&tgt->upld_wait);
1276 	}
1277 }
1278 
1279 static void bnx2fc_process_conn_destroy_cmpl(struct bnx2fc_hba *hba,
1280 					struct fcoe_kcqe *destroy_kcqe)
1281 {
1282 	struct bnx2fc_rport		*tgt;
1283 	u32				conn_id;
1284 
1285 	conn_id = destroy_kcqe->fcoe_conn_id;
1286 	tgt = hba->tgt_ofld_list[conn_id];
1287 	if (!tgt) {
1288 		printk(KERN_ERR PFX "destroy_cmpl: No destroy req\n");
1289 		return;
1290 	}
1291 
1292 	BNX2FC_TGT_DBG(tgt, "destroy_cmpl: conn_id %d\n", conn_id);
1293 
1294 	if (destroy_kcqe->completion_status) {
1295 		printk(KERN_ERR PFX "Destroy conn failed, cmpl status %d\n",
1296 			destroy_kcqe->completion_status);
1297 		return;
1298 	} else {
1299 		/* destroy successful */
1300 		BNX2FC_TGT_DBG(tgt, "upload successful\n");
1301 		clear_bit(BNX2FC_FLAG_DISABLED, &tgt->flags);
1302 		set_bit(BNX2FC_FLAG_DESTROYED, &tgt->flags);
1303 		set_bit(BNX2FC_FLAG_UPLD_REQ_COMPL, &tgt->flags);
1304 		wake_up_interruptible(&tgt->upld_wait);
1305 	}
1306 }
1307 
1308 static void bnx2fc_init_failure(struct bnx2fc_hba *hba, u32 err_code)
1309 {
1310 	switch (err_code) {
1311 	case FCOE_KCQE_COMPLETION_STATUS_INVALID_OPCODE:
1312 		printk(KERN_ERR PFX "init_failure due to invalid opcode\n");
1313 		break;
1314 
1315 	case FCOE_KCQE_COMPLETION_STATUS_CTX_ALLOC_FAILURE:
1316 		printk(KERN_ERR PFX "init failed due to ctx alloc failure\n");
1317 		break;
1318 
1319 	case FCOE_KCQE_COMPLETION_STATUS_NIC_ERROR:
1320 		printk(KERN_ERR PFX "init_failure due to NIC error\n");
1321 		break;
1322 	case FCOE_KCQE_COMPLETION_STATUS_ERROR:
1323 		printk(KERN_ERR PFX "init failure due to compl status err\n");
1324 		break;
1325 	case FCOE_KCQE_COMPLETION_STATUS_WRONG_HSI_VERSION:
1326 		printk(KERN_ERR PFX "init failure due to HSI mismatch\n");
1327 		break;
1328 	default:
1329 		printk(KERN_ERR PFX "Unknown Error code %d\n", err_code);
1330 	}
1331 }
1332 
1333 /**
1334  * bnx2fc_indicae_kcqe - process KCQE
1335  *
1336  * @context:	adapter structure pointer
1337  * @kcq:	kcqe pointer
1338  * @num_cqe:	Number of completion queue elements
1339  *
1340  * Generic KCQ event handler
1341  */
1342 void bnx2fc_indicate_kcqe(void *context, struct kcqe *kcq[],
1343 					u32 num_cqe)
1344 {
1345 	struct bnx2fc_hba *hba = (struct bnx2fc_hba *)context;
1346 	int i = 0;
1347 	struct fcoe_kcqe *kcqe = NULL;
1348 
1349 	while (i < num_cqe) {
1350 		kcqe = (struct fcoe_kcqe *) kcq[i++];
1351 
1352 		switch (kcqe->op_code) {
1353 		case FCOE_KCQE_OPCODE_CQ_EVENT_NOTIFICATION:
1354 			bnx2fc_fastpath_notification(hba, kcqe);
1355 			break;
1356 
1357 		case FCOE_KCQE_OPCODE_OFFLOAD_CONN:
1358 			bnx2fc_process_ofld_cmpl(hba, kcqe);
1359 			break;
1360 
1361 		case FCOE_KCQE_OPCODE_ENABLE_CONN:
1362 			bnx2fc_process_enable_conn_cmpl(hba, kcqe);
1363 			break;
1364 
1365 		case FCOE_KCQE_OPCODE_INIT_FUNC:
1366 			if (kcqe->completion_status !=
1367 					FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
1368 				bnx2fc_init_failure(hba,
1369 						kcqe->completion_status);
1370 			} else {
1371 				set_bit(ADAPTER_STATE_UP, &hba->adapter_state);
1372 				bnx2fc_get_link_state(hba);
1373 				printk(KERN_INFO PFX "[%.2x]: FCOE_INIT passed\n",
1374 					(u8)hba->pcidev->bus->number);
1375 			}
1376 			break;
1377 
1378 		case FCOE_KCQE_OPCODE_DESTROY_FUNC:
1379 			if (kcqe->completion_status !=
1380 					FCOE_KCQE_COMPLETION_STATUS_SUCCESS) {
1381 
1382 				printk(KERN_ERR PFX "DESTROY failed\n");
1383 			} else {
1384 				printk(KERN_ERR PFX "DESTROY success\n");
1385 			}
1386 			set_bit(BNX2FC_FLAG_DESTROY_CMPL, &hba->flags);
1387 			wake_up_interruptible(&hba->destroy_wait);
1388 			break;
1389 
1390 		case FCOE_KCQE_OPCODE_DISABLE_CONN:
1391 			bnx2fc_process_conn_disable_cmpl(hba, kcqe);
1392 			break;
1393 
1394 		case FCOE_KCQE_OPCODE_DESTROY_CONN:
1395 			bnx2fc_process_conn_destroy_cmpl(hba, kcqe);
1396 			break;
1397 
1398 		case FCOE_KCQE_OPCODE_STAT_FUNC:
1399 			if (kcqe->completion_status !=
1400 			    FCOE_KCQE_COMPLETION_STATUS_SUCCESS)
1401 				printk(KERN_ERR PFX "STAT failed\n");
1402 			complete(&hba->stat_req_done);
1403 			break;
1404 
1405 		case FCOE_KCQE_OPCODE_FCOE_ERROR:
1406 		default:
1407 			printk(KERN_ERR PFX "unknown opcode 0x%x\n",
1408 								kcqe->op_code);
1409 		}
1410 	}
1411 }
1412 
1413 void bnx2fc_add_2_sq(struct bnx2fc_rport *tgt, u16 xid)
1414 {
1415 	struct fcoe_sqe *sqe;
1416 
1417 	sqe = &tgt->sq[tgt->sq_prod_idx];
1418 
1419 	/* Fill SQ WQE */
1420 	sqe->wqe = xid << FCOE_SQE_TASK_ID_SHIFT;
1421 	sqe->wqe |= tgt->sq_curr_toggle_bit << FCOE_SQE_TOGGLE_BIT_SHIFT;
1422 
1423 	/* Advance SQ Prod Idx */
1424 	if (++tgt->sq_prod_idx == BNX2FC_SQ_WQES_MAX) {
1425 		tgt->sq_prod_idx = 0;
1426 		tgt->sq_curr_toggle_bit = 1 - tgt->sq_curr_toggle_bit;
1427 	}
1428 }
1429 
1430 void bnx2fc_ring_doorbell(struct bnx2fc_rport *tgt)
1431 {
1432 	struct b577xx_doorbell_set_prod *sq_db = &tgt->sq_db;
1433 	u32 msg;
1434 
1435 	wmb();
1436 	sq_db->prod = tgt->sq_prod_idx |
1437 				(tgt->sq_curr_toggle_bit << 15);
1438 	msg = *((u32 *)sq_db);
1439 	writel(cpu_to_le32(msg), tgt->ctx_base);
1440 
1441 }
1442 
1443 int bnx2fc_map_doorbell(struct bnx2fc_rport *tgt)
1444 {
1445 	u32 context_id = tgt->context_id;
1446 	struct fcoe_port *port = tgt->port;
1447 	u32 reg_off;
1448 	resource_size_t reg_base;
1449 	struct bnx2fc_interface *interface = port->priv;
1450 	struct bnx2fc_hba *hba = interface->hba;
1451 
1452 	reg_base = pci_resource_start(hba->pcidev,
1453 					BNX2X_DOORBELL_PCI_BAR);
1454 	reg_off = (1 << BNX2X_DB_SHIFT) * (context_id & 0x1FFFF);
1455 	tgt->ctx_base = ioremap(reg_base + reg_off, 4);
1456 	if (!tgt->ctx_base)
1457 		return -ENOMEM;
1458 	return 0;
1459 }
1460 
1461 char *bnx2fc_get_next_rqe(struct bnx2fc_rport *tgt, u8 num_items)
1462 {
1463 	char *buf = (char *)tgt->rq + (tgt->rq_cons_idx * BNX2FC_RQ_BUF_SZ);
1464 
1465 	if (tgt->rq_cons_idx + num_items > BNX2FC_RQ_WQES_MAX)
1466 		return NULL;
1467 
1468 	tgt->rq_cons_idx += num_items;
1469 
1470 	if (tgt->rq_cons_idx >= BNX2FC_RQ_WQES_MAX)
1471 		tgt->rq_cons_idx -= BNX2FC_RQ_WQES_MAX;
1472 
1473 	return buf;
1474 }
1475 
1476 void bnx2fc_return_rqe(struct bnx2fc_rport *tgt, u8 num_items)
1477 {
1478 	/* return the rq buffer */
1479 	u32 next_prod_idx = tgt->rq_prod_idx + num_items;
1480 	if ((next_prod_idx & 0x7fff) == BNX2FC_RQ_WQES_MAX) {
1481 		/* Wrap around RQ */
1482 		next_prod_idx += 0x8000 - BNX2FC_RQ_WQES_MAX;
1483 	}
1484 	tgt->rq_prod_idx = next_prod_idx;
1485 	tgt->conn_db->rq_prod = tgt->rq_prod_idx;
1486 }
1487 
1488 void bnx2fc_init_seq_cleanup_task(struct bnx2fc_cmd *seq_clnp_req,
1489 				  struct fcoe_task_ctx_entry *task,
1490 				  struct bnx2fc_cmd *orig_io_req,
1491 				  u32 offset)
1492 {
1493 	struct scsi_cmnd *sc_cmd = orig_io_req->sc_cmd;
1494 	struct bnx2fc_rport *tgt = seq_clnp_req->tgt;
1495 	struct fcoe_bd_ctx *bd = orig_io_req->bd_tbl->bd_tbl;
1496 	struct fcoe_ext_mul_sges_ctx *sgl;
1497 	u8 task_type = FCOE_TASK_TYPE_SEQUENCE_CLEANUP;
1498 	u8 orig_task_type;
1499 	u16 orig_xid = orig_io_req->xid;
1500 	u32 context_id = tgt->context_id;
1501 	u64 phys_addr = (u64)orig_io_req->bd_tbl->bd_tbl_dma;
1502 	u32 orig_offset = offset;
1503 	int bd_count;
1504 	int i;
1505 
1506 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1507 
1508 	if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
1509 		orig_task_type = FCOE_TASK_TYPE_WRITE;
1510 	else
1511 		orig_task_type = FCOE_TASK_TYPE_READ;
1512 
1513 	/* Tx flags */
1514 	task->txwr_rxrd.const_ctx.tx_flags =
1515 				FCOE_TASK_TX_STATE_SEQUENCE_CLEANUP <<
1516 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1517 	/* init flags */
1518 	task->txwr_rxrd.const_ctx.init_flags = task_type <<
1519 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1520 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1521 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1522 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1523 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1524 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1525 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1526 
1527 	task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
1528 
1529 	task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_seq_cnt = 0;
1530 	task->txwr_rxrd.union_ctx.cleanup.ctx.rolled_tx_data_offset = offset;
1531 
1532 	bd_count = orig_io_req->bd_tbl->bd_valid;
1533 
1534 	/* obtain the appropriate bd entry from relative offset */
1535 	for (i = 0; i < bd_count; i++) {
1536 		if (offset < bd[i].buf_len)
1537 			break;
1538 		offset -= bd[i].buf_len;
1539 	}
1540 	phys_addr += (i * sizeof(struct fcoe_bd_ctx));
1541 
1542 	if (orig_task_type == FCOE_TASK_TYPE_WRITE) {
1543 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1544 				(u32)phys_addr;
1545 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1546 				(u32)((u64)phys_addr >> 32);
1547 		task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
1548 				bd_count;
1549 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_off =
1550 				offset; /* adjusted offset */
1551 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_idx = i;
1552 	} else {
1553 
1554 		/* Multiple SGEs were used for this IO */
1555 		sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1556 		sgl->mul_sgl.cur_sge_addr.lo = (u32)phys_addr;
1557 		sgl->mul_sgl.cur_sge_addr.hi = (u32)((u64)phys_addr >> 32);
1558 		sgl->mul_sgl.sgl_size = bd_count;
1559 		sgl->mul_sgl.cur_sge_off = offset; /*adjusted offset */
1560 		sgl->mul_sgl.cur_sge_idx = i;
1561 
1562 		memset(&task->rxwr_only.rx_seq_ctx, 0,
1563 		       sizeof(struct fcoe_rx_seq_ctx));
1564 		task->rxwr_only.rx_seq_ctx.low_exp_ro = orig_offset;
1565 		task->rxwr_only.rx_seq_ctx.high_exp_ro = orig_offset;
1566 	}
1567 }
1568 void bnx2fc_init_cleanup_task(struct bnx2fc_cmd *io_req,
1569 			      struct fcoe_task_ctx_entry *task,
1570 			      u16 orig_xid)
1571 {
1572 	u8 task_type = FCOE_TASK_TYPE_EXCHANGE_CLEANUP;
1573 	struct bnx2fc_rport *tgt = io_req->tgt;
1574 	u32 context_id = tgt->context_id;
1575 
1576 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1577 
1578 	/* Tx Write Rx Read */
1579 	/* init flags */
1580 	task->txwr_rxrd.const_ctx.init_flags = task_type <<
1581 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1582 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1583 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1584 	if (tgt->dev_type == TYPE_TAPE)
1585 		task->txwr_rxrd.const_ctx.init_flags |=
1586 				FCOE_TASK_DEV_TYPE_TAPE <<
1587 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1588 	else
1589 		task->txwr_rxrd.const_ctx.init_flags |=
1590 				FCOE_TASK_DEV_TYPE_DISK <<
1591 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1592 	task->txwr_rxrd.union_ctx.cleanup.ctx.cleaned_task_id = orig_xid;
1593 
1594 	/* Tx flags */
1595 	task->txwr_rxrd.const_ctx.tx_flags =
1596 				FCOE_TASK_TX_STATE_EXCHANGE_CLEANUP <<
1597 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1598 
1599 	/* Rx Read Tx Write */
1600 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1601 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1602 	task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1603 				FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1604 }
1605 
1606 void bnx2fc_init_mp_task(struct bnx2fc_cmd *io_req,
1607 				struct fcoe_task_ctx_entry *task)
1608 {
1609 	struct bnx2fc_mp_req *mp_req = &(io_req->mp_req);
1610 	struct bnx2fc_rport *tgt = io_req->tgt;
1611 	struct fc_frame_header *fc_hdr;
1612 	struct fcoe_ext_mul_sges_ctx *sgl;
1613 	u8 task_type = 0;
1614 	u64 *hdr;
1615 	u64 temp_hdr[3];
1616 	u32 context_id;
1617 
1618 
1619 	/* Obtain task_type */
1620 	if ((io_req->cmd_type == BNX2FC_TASK_MGMT_CMD) ||
1621 	    (io_req->cmd_type == BNX2FC_ELS)) {
1622 		task_type = FCOE_TASK_TYPE_MIDPATH;
1623 	} else if (io_req->cmd_type == BNX2FC_ABTS) {
1624 		task_type = FCOE_TASK_TYPE_ABTS;
1625 	}
1626 
1627 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1628 
1629 	/* Setup the task from io_req for easy reference */
1630 	io_req->task = task;
1631 
1632 	BNX2FC_IO_DBG(io_req, "Init MP task for cmd_type = %d task_type = %d\n",
1633 		io_req->cmd_type, task_type);
1634 
1635 	/* Tx only */
1636 	if ((task_type == FCOE_TASK_TYPE_MIDPATH) ||
1637 	    (task_type == FCOE_TASK_TYPE_UNSOLICITED)) {
1638 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1639 				(u32)mp_req->mp_req_bd_dma;
1640 		task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1641 				(u32)((u64)mp_req->mp_req_bd_dma >> 32);
1642 		task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size = 1;
1643 	}
1644 
1645 	/* Tx Write Rx Read */
1646 	/* init flags */
1647 	task->txwr_rxrd.const_ctx.init_flags = task_type <<
1648 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1649 	if (tgt->dev_type == TYPE_TAPE)
1650 		task->txwr_rxrd.const_ctx.init_flags |=
1651 				FCOE_TASK_DEV_TYPE_TAPE <<
1652 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1653 	else
1654 		task->txwr_rxrd.const_ctx.init_flags |=
1655 				FCOE_TASK_DEV_TYPE_DISK <<
1656 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1657 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1658 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1659 
1660 	/* tx flags */
1661 	task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_INIT <<
1662 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1663 
1664 	/* Rx Write Tx Read */
1665 	task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
1666 
1667 	/* rx flags */
1668 	task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1669 				FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1670 
1671 	context_id = tgt->context_id;
1672 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1673 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1674 
1675 	fc_hdr = &(mp_req->req_fc_hdr);
1676 	if (task_type == FCOE_TASK_TYPE_MIDPATH) {
1677 		fc_hdr->fh_ox_id = cpu_to_be16(io_req->xid);
1678 		fc_hdr->fh_rx_id = htons(0xffff);
1679 		task->rxwr_txrd.var_ctx.rx_id = 0xffff;
1680 	} else if (task_type == FCOE_TASK_TYPE_UNSOLICITED) {
1681 		fc_hdr->fh_rx_id = cpu_to_be16(io_req->xid);
1682 	}
1683 
1684 	/* Fill FC Header into middle path buffer */
1685 	hdr = (u64 *) &task->txwr_rxrd.union_ctx.tx_frame.fc_hdr;
1686 	memcpy(temp_hdr, fc_hdr, sizeof(temp_hdr));
1687 	hdr[0] = cpu_to_be64(temp_hdr[0]);
1688 	hdr[1] = cpu_to_be64(temp_hdr[1]);
1689 	hdr[2] = cpu_to_be64(temp_hdr[2]);
1690 
1691 	/* Rx Only */
1692 	if (task_type == FCOE_TASK_TYPE_MIDPATH) {
1693 		sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1694 
1695 		sgl->mul_sgl.cur_sge_addr.lo = (u32)mp_req->mp_resp_bd_dma;
1696 		sgl->mul_sgl.cur_sge_addr.hi =
1697 				(u32)((u64)mp_req->mp_resp_bd_dma >> 32);
1698 		sgl->mul_sgl.sgl_size = 1;
1699 	}
1700 }
1701 
1702 void bnx2fc_init_task(struct bnx2fc_cmd *io_req,
1703 			     struct fcoe_task_ctx_entry *task)
1704 {
1705 	u8 task_type;
1706 	struct scsi_cmnd *sc_cmd = io_req->sc_cmd;
1707 	struct io_bdt *bd_tbl = io_req->bd_tbl;
1708 	struct bnx2fc_rport *tgt = io_req->tgt;
1709 	struct fcoe_cached_sge_ctx *cached_sge;
1710 	struct fcoe_ext_mul_sges_ctx *sgl;
1711 	int dev_type = tgt->dev_type;
1712 	u64 *fcp_cmnd;
1713 	u64 tmp_fcp_cmnd[4];
1714 	u32 context_id;
1715 	int cnt, i;
1716 	int bd_count;
1717 
1718 	memset(task, 0, sizeof(struct fcoe_task_ctx_entry));
1719 
1720 	/* Setup the task from io_req for easy reference */
1721 	io_req->task = task;
1722 
1723 	if (sc_cmd->sc_data_direction == DMA_TO_DEVICE)
1724 		task_type = FCOE_TASK_TYPE_WRITE;
1725 	else
1726 		task_type = FCOE_TASK_TYPE_READ;
1727 
1728 	/* Tx only */
1729 	bd_count = bd_tbl->bd_valid;
1730 	cached_sge = &task->rxwr_only.union_ctx.read_info.sgl_ctx.cached_sge;
1731 	if (task_type == FCOE_TASK_TYPE_WRITE) {
1732 		if ((dev_type == TYPE_DISK) && (bd_count == 1)) {
1733 			struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1734 
1735 			task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.lo =
1736 			cached_sge->cur_buf_addr.lo =
1737 					fcoe_bd_tbl->buf_addr_lo;
1738 			task->txwr_only.sgl_ctx.cached_sge.cur_buf_addr.hi =
1739 			cached_sge->cur_buf_addr.hi =
1740 					fcoe_bd_tbl->buf_addr_hi;
1741 			task->txwr_only.sgl_ctx.cached_sge.cur_buf_rem =
1742 			cached_sge->cur_buf_rem =
1743 					fcoe_bd_tbl->buf_len;
1744 
1745 			task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1746 				FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1747 		} else {
1748 			task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.lo =
1749 					(u32)bd_tbl->bd_tbl_dma;
1750 			task->txwr_only.sgl_ctx.sgl.mul_sgl.cur_sge_addr.hi =
1751 					(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1752 			task->txwr_only.sgl_ctx.sgl.mul_sgl.sgl_size =
1753 					bd_tbl->bd_valid;
1754 		}
1755 	}
1756 
1757 	/*Tx Write Rx Read */
1758 	/* Init state to NORMAL */
1759 	task->txwr_rxrd.const_ctx.init_flags |= task_type <<
1760 				FCOE_TCE_TX_WR_RX_RD_CONST_TASK_TYPE_SHIFT;
1761 	if (dev_type == TYPE_TAPE) {
1762 		task->txwr_rxrd.const_ctx.init_flags |=
1763 				FCOE_TASK_DEV_TYPE_TAPE <<
1764 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1765 		io_req->rec_retry = 0;
1766 		io_req->rec_retry = 0;
1767 	} else
1768 		task->txwr_rxrd.const_ctx.init_flags |=
1769 				FCOE_TASK_DEV_TYPE_DISK <<
1770 				FCOE_TCE_TX_WR_RX_RD_CONST_DEV_TYPE_SHIFT;
1771 	task->txwr_rxrd.const_ctx.init_flags |= FCOE_TASK_CLASS_TYPE_3 <<
1772 				FCOE_TCE_TX_WR_RX_RD_CONST_CLASS_TYPE_SHIFT;
1773 	/* tx flags */
1774 	task->txwr_rxrd.const_ctx.tx_flags = FCOE_TASK_TX_STATE_NORMAL <<
1775 				FCOE_TCE_TX_WR_RX_RD_CONST_TX_STATE_SHIFT;
1776 
1777 	/* Set initial seq counter */
1778 	task->txwr_rxrd.union_ctx.tx_seq.ctx.seq_cnt = 1;
1779 
1780 	/* Fill FCP_CMND IU */
1781 	fcp_cmnd = (u64 *)
1782 		    task->txwr_rxrd.union_ctx.fcp_cmd.opaque;
1783 	bnx2fc_build_fcp_cmnd(io_req, (struct fcp_cmnd *)&tmp_fcp_cmnd);
1784 
1785 	/* swap fcp_cmnd */
1786 	cnt = sizeof(struct fcp_cmnd) / sizeof(u64);
1787 
1788 	for (i = 0; i < cnt; i++) {
1789 		*fcp_cmnd = cpu_to_be64(tmp_fcp_cmnd[i]);
1790 		fcp_cmnd++;
1791 	}
1792 
1793 	/* Rx Write Tx Read */
1794 	task->rxwr_txrd.const_ctx.data_2_trns = io_req->data_xfer_len;
1795 
1796 	context_id = tgt->context_id;
1797 	task->rxwr_txrd.const_ctx.init_flags = context_id <<
1798 				FCOE_TCE_RX_WR_TX_RD_CONST_CID_SHIFT;
1799 
1800 	/* rx flags */
1801 	/* Set state to "waiting for the first packet" */
1802 	task->rxwr_txrd.var_ctx.rx_flags |= 1 <<
1803 				FCOE_TCE_RX_WR_TX_RD_VAR_EXP_FIRST_FRAME_SHIFT;
1804 
1805 	task->rxwr_txrd.var_ctx.rx_id = 0xffff;
1806 
1807 	/* Rx Only */
1808 	if (task_type != FCOE_TASK_TYPE_READ)
1809 		return;
1810 
1811 	sgl = &task->rxwr_only.union_ctx.read_info.sgl_ctx.sgl;
1812 	bd_count = bd_tbl->bd_valid;
1813 
1814 	if (dev_type == TYPE_DISK) {
1815 		if (bd_count == 1) {
1816 
1817 			struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1818 
1819 			cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
1820 			cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
1821 			cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
1822 			task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1823 				FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1824 		} else if (bd_count == 2) {
1825 			struct fcoe_bd_ctx *fcoe_bd_tbl = bd_tbl->bd_tbl;
1826 
1827 			cached_sge->cur_buf_addr.lo = fcoe_bd_tbl->buf_addr_lo;
1828 			cached_sge->cur_buf_addr.hi = fcoe_bd_tbl->buf_addr_hi;
1829 			cached_sge->cur_buf_rem = fcoe_bd_tbl->buf_len;
1830 
1831 			fcoe_bd_tbl++;
1832 			cached_sge->second_buf_addr.lo =
1833 						 fcoe_bd_tbl->buf_addr_lo;
1834 			cached_sge->second_buf_addr.hi =
1835 						fcoe_bd_tbl->buf_addr_hi;
1836 			cached_sge->second_buf_rem = fcoe_bd_tbl->buf_len;
1837 			task->txwr_rxrd.const_ctx.init_flags |= 1 <<
1838 				FCOE_TCE_TX_WR_RX_RD_CONST_CACHED_SGE_SHIFT;
1839 		} else {
1840 
1841 			sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
1842 			sgl->mul_sgl.cur_sge_addr.hi =
1843 					(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1844 			sgl->mul_sgl.sgl_size = bd_count;
1845 		}
1846 	} else {
1847 		sgl->mul_sgl.cur_sge_addr.lo = (u32)bd_tbl->bd_tbl_dma;
1848 		sgl->mul_sgl.cur_sge_addr.hi =
1849 				(u32)((u64)bd_tbl->bd_tbl_dma >> 32);
1850 		sgl->mul_sgl.sgl_size = bd_count;
1851 	}
1852 }
1853 
1854 /**
1855  * bnx2fc_setup_task_ctx - allocate and map task context
1856  *
1857  * @hba:	pointer to adapter structure
1858  *
1859  * allocate memory for task context, and associated BD table to be used
1860  * by firmware
1861  *
1862  */
1863 int bnx2fc_setup_task_ctx(struct bnx2fc_hba *hba)
1864 {
1865 	int rc = 0;
1866 	struct regpair *task_ctx_bdt;
1867 	dma_addr_t addr;
1868 	int task_ctx_arr_sz;
1869 	int i;
1870 
1871 	/*
1872 	 * Allocate task context bd table. A page size of bd table
1873 	 * can map 256 buffers. Each buffer contains 32 task context
1874 	 * entries. Hence the limit with one page is 8192 task context
1875 	 * entries.
1876 	 */
1877 	hba->task_ctx_bd_tbl = dma_alloc_coherent(&hba->pcidev->dev,
1878 						  PAGE_SIZE,
1879 						  &hba->task_ctx_bd_dma,
1880 						  GFP_KERNEL);
1881 	if (!hba->task_ctx_bd_tbl) {
1882 		printk(KERN_ERR PFX "unable to allocate task context BDT\n");
1883 		rc = -1;
1884 		goto out;
1885 	}
1886 
1887 	/*
1888 	 * Allocate task_ctx which is an array of pointers pointing to
1889 	 * a page containing 32 task contexts
1890 	 */
1891 	task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE);
1892 	hba->task_ctx = kzalloc((task_ctx_arr_sz * sizeof(void *)),
1893 				 GFP_KERNEL);
1894 	if (!hba->task_ctx) {
1895 		printk(KERN_ERR PFX "unable to allocate task context array\n");
1896 		rc = -1;
1897 		goto out1;
1898 	}
1899 
1900 	/*
1901 	 * Allocate task_ctx_dma which is an array of dma addresses
1902 	 */
1903 	hba->task_ctx_dma = kmalloc((task_ctx_arr_sz *
1904 					sizeof(dma_addr_t)), GFP_KERNEL);
1905 	if (!hba->task_ctx_dma) {
1906 		printk(KERN_ERR PFX "unable to alloc context mapping array\n");
1907 		rc = -1;
1908 		goto out2;
1909 	}
1910 
1911 	task_ctx_bdt = (struct regpair *)hba->task_ctx_bd_tbl;
1912 	for (i = 0; i < task_ctx_arr_sz; i++) {
1913 
1914 		hba->task_ctx[i] = dma_alloc_coherent(&hba->pcidev->dev,
1915 						      PAGE_SIZE,
1916 						      &hba->task_ctx_dma[i],
1917 						      GFP_KERNEL);
1918 		if (!hba->task_ctx[i]) {
1919 			printk(KERN_ERR PFX "unable to alloc task context\n");
1920 			rc = -1;
1921 			goto out3;
1922 		}
1923 		addr = (u64)hba->task_ctx_dma[i];
1924 		task_ctx_bdt->hi = cpu_to_le32((u64)addr >> 32);
1925 		task_ctx_bdt->lo = cpu_to_le32((u32)addr);
1926 		task_ctx_bdt++;
1927 	}
1928 	return 0;
1929 
1930 out3:
1931 	for (i = 0; i < task_ctx_arr_sz; i++) {
1932 		if (hba->task_ctx[i]) {
1933 
1934 			dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1935 				hba->task_ctx[i], hba->task_ctx_dma[i]);
1936 			hba->task_ctx[i] = NULL;
1937 		}
1938 	}
1939 
1940 	kfree(hba->task_ctx_dma);
1941 	hba->task_ctx_dma = NULL;
1942 out2:
1943 	kfree(hba->task_ctx);
1944 	hba->task_ctx = NULL;
1945 out1:
1946 	dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1947 			hba->task_ctx_bd_tbl, hba->task_ctx_bd_dma);
1948 	hba->task_ctx_bd_tbl = NULL;
1949 out:
1950 	return rc;
1951 }
1952 
1953 void bnx2fc_free_task_ctx(struct bnx2fc_hba *hba)
1954 {
1955 	int task_ctx_arr_sz;
1956 	int i;
1957 
1958 	if (hba->task_ctx_bd_tbl) {
1959 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1960 				    hba->task_ctx_bd_tbl,
1961 				    hba->task_ctx_bd_dma);
1962 		hba->task_ctx_bd_tbl = NULL;
1963 	}
1964 
1965 	task_ctx_arr_sz = (hba->max_tasks / BNX2FC_TASKS_PER_PAGE);
1966 	if (hba->task_ctx) {
1967 		for (i = 0; i < task_ctx_arr_sz; i++) {
1968 			if (hba->task_ctx[i]) {
1969 				dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
1970 						    hba->task_ctx[i],
1971 						    hba->task_ctx_dma[i]);
1972 				hba->task_ctx[i] = NULL;
1973 			}
1974 		}
1975 		kfree(hba->task_ctx);
1976 		hba->task_ctx = NULL;
1977 	}
1978 
1979 	kfree(hba->task_ctx_dma);
1980 	hba->task_ctx_dma = NULL;
1981 }
1982 
1983 static void bnx2fc_free_hash_table(struct bnx2fc_hba *hba)
1984 {
1985 	int i;
1986 	int segment_count;
1987 	u32 *pbl;
1988 
1989 	if (hba->hash_tbl_segments) {
1990 
1991 		pbl = hba->hash_tbl_pbl;
1992 		if (pbl) {
1993 			segment_count = hba->hash_tbl_segment_count;
1994 			for (i = 0; i < segment_count; ++i) {
1995 				dma_addr_t dma_address;
1996 
1997 				dma_address = le32_to_cpu(*pbl);
1998 				++pbl;
1999 				dma_address += ((u64)le32_to_cpu(*pbl)) << 32;
2000 				++pbl;
2001 				dma_free_coherent(&hba->pcidev->dev,
2002 						  BNX2FC_HASH_TBL_CHUNK_SIZE,
2003 						  hba->hash_tbl_segments[i],
2004 						  dma_address);
2005 			}
2006 		}
2007 
2008 		kfree(hba->hash_tbl_segments);
2009 		hba->hash_tbl_segments = NULL;
2010 	}
2011 
2012 	if (hba->hash_tbl_pbl) {
2013 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2014 				    hba->hash_tbl_pbl,
2015 				    hba->hash_tbl_pbl_dma);
2016 		hba->hash_tbl_pbl = NULL;
2017 	}
2018 }
2019 
2020 static int bnx2fc_allocate_hash_table(struct bnx2fc_hba *hba)
2021 {
2022 	int i;
2023 	int hash_table_size;
2024 	int segment_count;
2025 	int segment_array_size;
2026 	int dma_segment_array_size;
2027 	dma_addr_t *dma_segment_array;
2028 	u32 *pbl;
2029 
2030 	hash_table_size = BNX2FC_NUM_MAX_SESS * BNX2FC_MAX_ROWS_IN_HASH_TBL *
2031 		sizeof(struct fcoe_hash_table_entry);
2032 
2033 	segment_count = hash_table_size + BNX2FC_HASH_TBL_CHUNK_SIZE - 1;
2034 	segment_count /= BNX2FC_HASH_TBL_CHUNK_SIZE;
2035 	hba->hash_tbl_segment_count = segment_count;
2036 
2037 	segment_array_size = segment_count * sizeof(*hba->hash_tbl_segments);
2038 	hba->hash_tbl_segments = kzalloc(segment_array_size, GFP_KERNEL);
2039 	if (!hba->hash_tbl_segments) {
2040 		printk(KERN_ERR PFX "hash table pointers alloc failed\n");
2041 		return -ENOMEM;
2042 	}
2043 	dma_segment_array_size = segment_count * sizeof(*dma_segment_array);
2044 	dma_segment_array = kzalloc(dma_segment_array_size, GFP_KERNEL);
2045 	if (!dma_segment_array) {
2046 		printk(KERN_ERR PFX "hash table pointers (dma) alloc failed\n");
2047 		goto cleanup_ht;
2048 	}
2049 
2050 	for (i = 0; i < segment_count; ++i) {
2051 		hba->hash_tbl_segments[i] = dma_alloc_coherent(&hba->pcidev->dev,
2052 							       BNX2FC_HASH_TBL_CHUNK_SIZE,
2053 							       &dma_segment_array[i],
2054 							       GFP_KERNEL);
2055 		if (!hba->hash_tbl_segments[i]) {
2056 			printk(KERN_ERR PFX "hash segment alloc failed\n");
2057 			goto cleanup_dma;
2058 		}
2059 	}
2060 
2061 	hba->hash_tbl_pbl = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
2062 					       &hba->hash_tbl_pbl_dma,
2063 					       GFP_KERNEL);
2064 	if (!hba->hash_tbl_pbl) {
2065 		printk(KERN_ERR PFX "hash table pbl alloc failed\n");
2066 		goto cleanup_dma;
2067 	}
2068 
2069 	pbl = hba->hash_tbl_pbl;
2070 	for (i = 0; i < segment_count; ++i) {
2071 		u64 paddr = dma_segment_array[i];
2072 		*pbl = cpu_to_le32((u32) paddr);
2073 		++pbl;
2074 		*pbl = cpu_to_le32((u32) (paddr >> 32));
2075 		++pbl;
2076 	}
2077 	pbl = hba->hash_tbl_pbl;
2078 	i = 0;
2079 	while (*pbl && *(pbl + 1)) {
2080 		++pbl;
2081 		++pbl;
2082 		++i;
2083 	}
2084 	kfree(dma_segment_array);
2085 	return 0;
2086 
2087 cleanup_dma:
2088 	for (i = 0; i < segment_count; ++i) {
2089 		if (hba->hash_tbl_segments[i])
2090 			dma_free_coherent(&hba->pcidev->dev,
2091 					    BNX2FC_HASH_TBL_CHUNK_SIZE,
2092 					    hba->hash_tbl_segments[i],
2093 					    dma_segment_array[i]);
2094 	}
2095 
2096 	kfree(dma_segment_array);
2097 
2098 cleanup_ht:
2099 	kfree(hba->hash_tbl_segments);
2100 	hba->hash_tbl_segments = NULL;
2101 	return -ENOMEM;
2102 }
2103 
2104 /**
2105  * bnx2fc_setup_fw_resc - Allocate and map hash table and dummy buffer
2106  *
2107  * @hba:	Pointer to adapter structure
2108  *
2109  */
2110 int bnx2fc_setup_fw_resc(struct bnx2fc_hba *hba)
2111 {
2112 	u64 addr;
2113 	u32 mem_size;
2114 	int i;
2115 
2116 	if (bnx2fc_allocate_hash_table(hba))
2117 		return -ENOMEM;
2118 
2119 	mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
2120 	hba->t2_hash_tbl_ptr = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
2121 						  &hba->t2_hash_tbl_ptr_dma,
2122 						  GFP_KERNEL);
2123 	if (!hba->t2_hash_tbl_ptr) {
2124 		printk(KERN_ERR PFX "unable to allocate t2 hash table ptr\n");
2125 		bnx2fc_free_fw_resc(hba);
2126 		return -ENOMEM;
2127 	}
2128 
2129 	mem_size = BNX2FC_NUM_MAX_SESS *
2130 				sizeof(struct fcoe_t2_hash_table_entry);
2131 	hba->t2_hash_tbl = dma_alloc_coherent(&hba->pcidev->dev, mem_size,
2132 					      &hba->t2_hash_tbl_dma,
2133 					      GFP_KERNEL);
2134 	if (!hba->t2_hash_tbl) {
2135 		printk(KERN_ERR PFX "unable to allocate t2 hash table\n");
2136 		bnx2fc_free_fw_resc(hba);
2137 		return -ENOMEM;
2138 	}
2139 	for (i = 0; i < BNX2FC_NUM_MAX_SESS; i++) {
2140 		addr = (unsigned long) hba->t2_hash_tbl_dma +
2141 			 ((i+1) * sizeof(struct fcoe_t2_hash_table_entry));
2142 		hba->t2_hash_tbl[i].next.lo = addr & 0xffffffff;
2143 		hba->t2_hash_tbl[i].next.hi = addr >> 32;
2144 	}
2145 
2146 	hba->dummy_buffer = dma_alloc_coherent(&hba->pcidev->dev,
2147 					       PAGE_SIZE, &hba->dummy_buf_dma,
2148 					       GFP_KERNEL);
2149 	if (!hba->dummy_buffer) {
2150 		printk(KERN_ERR PFX "unable to alloc MP Dummy Buffer\n");
2151 		bnx2fc_free_fw_resc(hba);
2152 		return -ENOMEM;
2153 	}
2154 
2155 	hba->stats_buffer = dma_alloc_coherent(&hba->pcidev->dev, PAGE_SIZE,
2156 					       &hba->stats_buf_dma,
2157 					       GFP_KERNEL);
2158 	if (!hba->stats_buffer) {
2159 		printk(KERN_ERR PFX "unable to alloc Stats Buffer\n");
2160 		bnx2fc_free_fw_resc(hba);
2161 		return -ENOMEM;
2162 	}
2163 
2164 	return 0;
2165 }
2166 
2167 void bnx2fc_free_fw_resc(struct bnx2fc_hba *hba)
2168 {
2169 	u32 mem_size;
2170 
2171 	if (hba->stats_buffer) {
2172 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2173 				  hba->stats_buffer, hba->stats_buf_dma);
2174 		hba->stats_buffer = NULL;
2175 	}
2176 
2177 	if (hba->dummy_buffer) {
2178 		dma_free_coherent(&hba->pcidev->dev, PAGE_SIZE,
2179 				  hba->dummy_buffer, hba->dummy_buf_dma);
2180 		hba->dummy_buffer = NULL;
2181 	}
2182 
2183 	if (hba->t2_hash_tbl_ptr) {
2184 		mem_size = BNX2FC_NUM_MAX_SESS * sizeof(struct regpair);
2185 		dma_free_coherent(&hba->pcidev->dev, mem_size,
2186 				    hba->t2_hash_tbl_ptr,
2187 				    hba->t2_hash_tbl_ptr_dma);
2188 		hba->t2_hash_tbl_ptr = NULL;
2189 	}
2190 
2191 	if (hba->t2_hash_tbl) {
2192 		mem_size = BNX2FC_NUM_MAX_SESS *
2193 			    sizeof(struct fcoe_t2_hash_table_entry);
2194 		dma_free_coherent(&hba->pcidev->dev, mem_size,
2195 				    hba->t2_hash_tbl, hba->t2_hash_tbl_dma);
2196 		hba->t2_hash_tbl = NULL;
2197 	}
2198 	bnx2fc_free_hash_table(hba);
2199 }
2200