xref: /linux/drivers/remoteproc/pru_rproc.c (revision 8dd765a5d769c521d73931850d1c8708fbc490cb)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * PRU-ICSS remoteproc driver for various TI SoCs
4  *
5  * Copyright (C) 2014-2022 Texas Instruments Incorporated - https://www.ti.com/
6  *
7  * Author(s):
8  *	Suman Anna <s-anna@ti.com>
9  *	Andrew F. Davis <afd@ti.com>
10  *	Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org> for Texas Instruments
11  *	Puranjay Mohan <p-mohan@ti.com>
12  *	Md Danish Anwar <danishanwar@ti.com>
13  */
14 
15 #include <linux/bitops.h>
16 #include <linux/debugfs.h>
17 #include <linux/irqdomain.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_irq.h>
21 #include <linux/platform_device.h>
22 #include <linux/remoteproc/pruss.h>
23 #include <linux/pruss_driver.h>
24 #include <linux/remoteproc.h>
25 
26 #include "remoteproc_internal.h"
27 #include "remoteproc_elf_helpers.h"
28 #include "pru_rproc.h"
29 
30 /* PRU_ICSS_PRU_CTRL registers */
31 #define PRU_CTRL_CTRL		0x0000
32 #define PRU_CTRL_STS		0x0004
33 #define PRU_CTRL_WAKEUP_EN	0x0008
34 #define PRU_CTRL_CYCLE		0x000C
35 #define PRU_CTRL_STALL		0x0010
36 #define PRU_CTRL_CTBIR0		0x0020
37 #define PRU_CTRL_CTBIR1		0x0024
38 #define PRU_CTRL_CTPPR0		0x0028
39 #define PRU_CTRL_CTPPR1		0x002C
40 
41 /* CTRL register bit-fields */
42 #define CTRL_CTRL_SOFT_RST_N	BIT(0)
43 #define CTRL_CTRL_EN		BIT(1)
44 #define CTRL_CTRL_SLEEPING	BIT(2)
45 #define CTRL_CTRL_CTR_EN	BIT(3)
46 #define CTRL_CTRL_SINGLE_STEP	BIT(8)
47 #define CTRL_CTRL_RUNSTATE	BIT(15)
48 
49 /* PRU_ICSS_PRU_DEBUG registers */
50 #define PRU_DEBUG_GPREG(x)	(0x0000 + (x) * 4)
51 #define PRU_DEBUG_CT_REG(x)	(0x0080 + (x) * 4)
52 
53 /* PRU/RTU/Tx_PRU Core IRAM address masks */
54 #define PRU_IRAM_ADDR_MASK	0x3ffff
55 #define PRU0_IRAM_ADDR_MASK	0x34000
56 #define PRU1_IRAM_ADDR_MASK	0x38000
57 #define RTU0_IRAM_ADDR_MASK	0x4000
58 #define RTU1_IRAM_ADDR_MASK	0x6000
59 #define TX_PRU0_IRAM_ADDR_MASK	0xa000
60 #define TX_PRU1_IRAM_ADDR_MASK	0xc000
61 
62 /* PRU device addresses for various type of PRU RAMs */
63 #define PRU_IRAM_DA	0	/* Instruction RAM */
64 #define PRU_PDRAM_DA	0	/* Primary Data RAM */
65 #define PRU_SDRAM_DA	0x2000	/* Secondary Data RAM */
66 #define PRU_SHRDRAM_DA	0x10000 /* Shared Data RAM */
67 
68 #define MAX_PRU_SYS_EVENTS 160
69 
70 /**
71  * enum pru_iomem - PRU core memory/register range identifiers
72  *
73  * @PRU_IOMEM_IRAM: PRU Instruction RAM range
74  * @PRU_IOMEM_CTRL: PRU Control register range
75  * @PRU_IOMEM_DEBUG: PRU Debug register range
76  * @PRU_IOMEM_MAX: just keep this one at the end
77  */
78 enum pru_iomem {
79 	PRU_IOMEM_IRAM = 0,
80 	PRU_IOMEM_CTRL,
81 	PRU_IOMEM_DEBUG,
82 	PRU_IOMEM_MAX,
83 };
84 
85 /**
86  * struct pru_private_data - device data for a PRU core
87  * @type: type of the PRU core (PRU, RTU, Tx_PRU)
88  * @is_k3: flag used to identify the need for special load handling
89  */
90 struct pru_private_data {
91 	enum pru_type type;
92 	unsigned int is_k3 : 1;
93 };
94 
95 /**
96  * struct pru_rproc - PRU remoteproc structure
97  * @id: id of the PRU core within the PRUSS
98  * @dev: PRU core device pointer
99  * @pruss: back-reference to parent PRUSS structure
100  * @rproc: remoteproc pointer for this PRU core
101  * @data: PRU core specific data
102  * @mem_regions: data for each of the PRU memory regions
103  * @client_np: client device node
104  * @lock: mutex to protect client usage
105  * @fw_name: name of firmware image used during loading
106  * @mapped_irq: virtual interrupt numbers of created fw specific mapping
107  * @pru_interrupt_map: pointer to interrupt mapping description (firmware)
108  * @pru_interrupt_map_sz: pru_interrupt_map size
109  * @rmw_lock: lock for read, modify, write operations on registers
110  * @dbg_single_step: debug state variable to set PRU into single step mode
111  * @dbg_continuous: debug state variable to restore PRU execution mode
112  * @evt_count: number of mapped events
113  * @gpmux_save: saved value for gpmux config
114  */
115 struct pru_rproc {
116 	int id;
117 	struct device *dev;
118 	struct pruss *pruss;
119 	struct rproc *rproc;
120 	const struct pru_private_data *data;
121 	struct pruss_mem_region mem_regions[PRU_IOMEM_MAX];
122 	struct device_node *client_np;
123 	struct mutex lock;
124 	const char *fw_name;
125 	unsigned int *mapped_irq;
126 	struct pru_irq_rsc *pru_interrupt_map;
127 	size_t pru_interrupt_map_sz;
128 	spinlock_t rmw_lock;
129 	u32 dbg_single_step;
130 	u32 dbg_continuous;
131 	u8 evt_count;
132 	u8 gpmux_save;
133 };
134 
135 static inline u32 pru_control_read_reg(struct pru_rproc *pru, unsigned int reg)
136 {
137 	return readl_relaxed(pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
138 }
139 
140 static inline
141 void pru_control_write_reg(struct pru_rproc *pru, unsigned int reg, u32 val)
142 {
143 	writel_relaxed(val, pru->mem_regions[PRU_IOMEM_CTRL].va + reg);
144 }
145 
146 static inline
147 void pru_control_set_reg(struct pru_rproc *pru, unsigned int reg,
148 			 u32 mask, u32 set)
149 {
150 	u32 val;
151 	unsigned long flags;
152 
153 	spin_lock_irqsave(&pru->rmw_lock, flags);
154 
155 	val = pru_control_read_reg(pru, reg);
156 	val &= ~mask;
157 	val |= (set & mask);
158 	pru_control_write_reg(pru, reg, val);
159 
160 	spin_unlock_irqrestore(&pru->rmw_lock, flags);
161 }
162 
163 /**
164  * pru_rproc_set_firmware() - set firmware for a PRU core
165  * @rproc: the rproc instance of the PRU
166  * @fw_name: the new firmware name, or NULL if default is desired
167  *
168  * Return: 0 on success, or errno in error case.
169  */
170 static int pru_rproc_set_firmware(struct rproc *rproc, const char *fw_name)
171 {
172 	struct pru_rproc *pru = rproc->priv;
173 
174 	if (!fw_name)
175 		fw_name = pru->fw_name;
176 
177 	return rproc_set_firmware(rproc, fw_name);
178 }
179 
180 static struct rproc *__pru_rproc_get(struct device_node *np, int index)
181 {
182 	struct rproc *rproc;
183 	phandle rproc_phandle;
184 	int ret;
185 
186 	ret = of_property_read_u32_index(np, "ti,prus", index, &rproc_phandle);
187 	if (ret)
188 		return ERR_PTR(ret);
189 
190 	rproc = rproc_get_by_phandle(rproc_phandle);
191 	if (!rproc) {
192 		ret = -EPROBE_DEFER;
193 		return ERR_PTR(ret);
194 	}
195 
196 	/* make sure it is PRU rproc */
197 	if (!is_pru_rproc(rproc->dev.parent)) {
198 		rproc_put(rproc);
199 		return ERR_PTR(-ENODEV);
200 	}
201 
202 	return rproc;
203 }
204 
205 /**
206  * pru_rproc_get() - get the PRU rproc instance from a device node
207  * @np: the user/client device node
208  * @index: index to use for the ti,prus property
209  * @pru_id: optional pointer to return the PRU remoteproc processor id
210  *
211  * This function looks through a client device node's "ti,prus" property at
212  * index @index and returns the rproc handle for a valid PRU remote processor if
213  * found. The function allows only one user to own the PRU rproc resource at a
214  * time. Caller must call pru_rproc_put() when done with using the rproc, not
215  * required if the function returns a failure.
216  *
217  * When optional @pru_id pointer is passed the PRU remoteproc processor id is
218  * returned.
219  *
220  * Return: rproc handle on success, and an ERR_PTR on failure using one
221  * of the following error values
222  *    -ENODEV if device is not found
223  *    -EBUSY if PRU is already acquired by anyone
224  *    -EPROBE_DEFER is PRU device is not probed yet
225  */
226 struct rproc *pru_rproc_get(struct device_node *np, int index,
227 			    enum pruss_pru_id *pru_id)
228 {
229 	struct rproc *rproc;
230 	struct pru_rproc *pru;
231 	struct device *dev;
232 	const char *fw_name;
233 	int ret;
234 	u32 mux;
235 
236 	rproc = __pru_rproc_get(np, index);
237 	if (IS_ERR(rproc))
238 		return rproc;
239 
240 	pru = rproc->priv;
241 	dev = &rproc->dev;
242 
243 	mutex_lock(&pru->lock);
244 
245 	if (pru->client_np) {
246 		mutex_unlock(&pru->lock);
247 		ret = -EBUSY;
248 		goto err_no_rproc_handle;
249 	}
250 
251 	pru->client_np = np;
252 	rproc->sysfs_read_only = true;
253 
254 	mutex_unlock(&pru->lock);
255 
256 	if (pru_id)
257 		*pru_id = pru->id;
258 
259 	ret = pruss_cfg_get_gpmux(pru->pruss, pru->id, &pru->gpmux_save);
260 	if (ret) {
261 		dev_err(dev, "failed to get cfg gpmux: %d\n", ret);
262 		goto err;
263 	}
264 
265 	/* An error here is acceptable for backward compatibility */
266 	ret = of_property_read_u32_index(np, "ti,pruss-gp-mux-sel", index,
267 					 &mux);
268 	if (!ret) {
269 		ret = pruss_cfg_set_gpmux(pru->pruss, pru->id, mux);
270 		if (ret) {
271 			dev_err(dev, "failed to set cfg gpmux: %d\n", ret);
272 			goto err;
273 		}
274 	}
275 
276 	ret = of_property_read_string_index(np, "firmware-name", index,
277 					    &fw_name);
278 	if (!ret) {
279 		ret = pru_rproc_set_firmware(rproc, fw_name);
280 		if (ret) {
281 			dev_err(dev, "failed to set firmware: %d\n", ret);
282 			goto err;
283 		}
284 	}
285 
286 	return rproc;
287 
288 err_no_rproc_handle:
289 	rproc_put(rproc);
290 	return ERR_PTR(ret);
291 
292 err:
293 	pru_rproc_put(rproc);
294 	return ERR_PTR(ret);
295 }
296 EXPORT_SYMBOL_GPL(pru_rproc_get);
297 
298 /**
299  * pru_rproc_put() - release the PRU rproc resource
300  * @rproc: the rproc resource to release
301  *
302  * Releases the PRU rproc resource and makes it available to other
303  * users.
304  */
305 void pru_rproc_put(struct rproc *rproc)
306 {
307 	struct pru_rproc *pru;
308 
309 	if (IS_ERR_OR_NULL(rproc) || !is_pru_rproc(rproc->dev.parent))
310 		return;
311 
312 	pru = rproc->priv;
313 
314 	pruss_cfg_set_gpmux(pru->pruss, pru->id, pru->gpmux_save);
315 
316 	pru_rproc_set_firmware(rproc, NULL);
317 
318 	mutex_lock(&pru->lock);
319 
320 	if (!pru->client_np) {
321 		mutex_unlock(&pru->lock);
322 		return;
323 	}
324 
325 	pru->client_np = NULL;
326 	rproc->sysfs_read_only = false;
327 	mutex_unlock(&pru->lock);
328 
329 	rproc_put(rproc);
330 }
331 EXPORT_SYMBOL_GPL(pru_rproc_put);
332 
333 /**
334  * pru_rproc_set_ctable() - set the constant table index for the PRU
335  * @rproc: the rproc instance of the PRU
336  * @c: constant table index to set
337  * @addr: physical address to set it to
338  *
339  * Return: 0 on success, or errno in error case.
340  */
341 int pru_rproc_set_ctable(struct rproc *rproc, enum pru_ctable_idx c, u32 addr)
342 {
343 	struct pru_rproc *pru = rproc->priv;
344 	unsigned int reg;
345 	u32 mask, set;
346 	u16 idx;
347 	u16 idx_mask;
348 
349 	if (IS_ERR_OR_NULL(rproc))
350 		return -EINVAL;
351 
352 	if (!rproc->dev.parent || !is_pru_rproc(rproc->dev.parent))
353 		return -ENODEV;
354 
355 	/* pointer is 16 bit and index is 8-bit so mask out the rest */
356 	idx_mask = (c >= PRU_C28) ? 0xFFFF : 0xFF;
357 
358 	/* ctable uses bit 8 and upwards only */
359 	idx = (addr >> 8) & idx_mask;
360 
361 	/* configurable ctable (i.e. C24) starts at PRU_CTRL_CTBIR0 */
362 	reg = PRU_CTRL_CTBIR0 + 4 * (c >> 1);
363 	mask = idx_mask << (16 * (c & 1));
364 	set = idx << (16 * (c & 1));
365 
366 	pru_control_set_reg(pru, reg, mask, set);
367 
368 	return 0;
369 }
370 EXPORT_SYMBOL_GPL(pru_rproc_set_ctable);
371 
372 static inline u32 pru_debug_read_reg(struct pru_rproc *pru, unsigned int reg)
373 {
374 	return readl_relaxed(pru->mem_regions[PRU_IOMEM_DEBUG].va + reg);
375 }
376 
377 static int regs_show(struct seq_file *s, void *data)
378 {
379 	struct rproc *rproc = s->private;
380 	struct pru_rproc *pru = rproc->priv;
381 	int i, nregs = 32;
382 	u32 pru_sts;
383 	int pru_is_running;
384 
385 	seq_puts(s, "============== Control Registers ==============\n");
386 	seq_printf(s, "CTRL      := 0x%08x\n",
387 		   pru_control_read_reg(pru, PRU_CTRL_CTRL));
388 	pru_sts = pru_control_read_reg(pru, PRU_CTRL_STS);
389 	seq_printf(s, "STS (PC)  := 0x%08x (0x%08x)\n", pru_sts, pru_sts << 2);
390 	seq_printf(s, "WAKEUP_EN := 0x%08x\n",
391 		   pru_control_read_reg(pru, PRU_CTRL_WAKEUP_EN));
392 	seq_printf(s, "CYCLE     := 0x%08x\n",
393 		   pru_control_read_reg(pru, PRU_CTRL_CYCLE));
394 	seq_printf(s, "STALL     := 0x%08x\n",
395 		   pru_control_read_reg(pru, PRU_CTRL_STALL));
396 	seq_printf(s, "CTBIR0    := 0x%08x\n",
397 		   pru_control_read_reg(pru, PRU_CTRL_CTBIR0));
398 	seq_printf(s, "CTBIR1    := 0x%08x\n",
399 		   pru_control_read_reg(pru, PRU_CTRL_CTBIR1));
400 	seq_printf(s, "CTPPR0    := 0x%08x\n",
401 		   pru_control_read_reg(pru, PRU_CTRL_CTPPR0));
402 	seq_printf(s, "CTPPR1    := 0x%08x\n",
403 		   pru_control_read_reg(pru, PRU_CTRL_CTPPR1));
404 
405 	seq_puts(s, "=============== Debug Registers ===============\n");
406 	pru_is_running = pru_control_read_reg(pru, PRU_CTRL_CTRL) &
407 				CTRL_CTRL_RUNSTATE;
408 	if (pru_is_running) {
409 		seq_puts(s, "PRU is executing, cannot print/access debug registers.\n");
410 		return 0;
411 	}
412 
413 	for (i = 0; i < nregs; i++) {
414 		seq_printf(s, "GPREG%-2d := 0x%08x\tCT_REG%-2d := 0x%08x\n",
415 			   i, pru_debug_read_reg(pru, PRU_DEBUG_GPREG(i)),
416 			   i, pru_debug_read_reg(pru, PRU_DEBUG_CT_REG(i)));
417 	}
418 
419 	return 0;
420 }
421 DEFINE_SHOW_ATTRIBUTE(regs);
422 
423 /*
424  * Control PRU single-step mode
425  *
426  * This is a debug helper function used for controlling the single-step
427  * mode of the PRU. The PRU Debug registers are not accessible when the
428  * PRU is in RUNNING state.
429  *
430  * Writing a non-zero value sets the PRU into single-step mode irrespective
431  * of its previous state. The PRU mode is saved only on the first set into
432  * a single-step mode. Writing a zero value will restore the PRU into its
433  * original mode.
434  */
435 static int pru_rproc_debug_ss_set(void *data, u64 val)
436 {
437 	struct rproc *rproc = data;
438 	struct pru_rproc *pru = rproc->priv;
439 	u32 reg_val;
440 
441 	val = val ? 1 : 0;
442 	if (!val && !pru->dbg_single_step)
443 		return 0;
444 
445 	reg_val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
446 
447 	if (val && !pru->dbg_single_step)
448 		pru->dbg_continuous = reg_val;
449 
450 	if (val)
451 		reg_val |= CTRL_CTRL_SINGLE_STEP | CTRL_CTRL_EN;
452 	else
453 		reg_val = pru->dbg_continuous;
454 
455 	pru->dbg_single_step = val;
456 	pru_control_write_reg(pru, PRU_CTRL_CTRL, reg_val);
457 
458 	return 0;
459 }
460 
461 static int pru_rproc_debug_ss_get(void *data, u64 *val)
462 {
463 	struct rproc *rproc = data;
464 	struct pru_rproc *pru = rproc->priv;
465 
466 	*val = pru->dbg_single_step;
467 
468 	return 0;
469 }
470 DEFINE_DEBUGFS_ATTRIBUTE(pru_rproc_debug_ss_fops, pru_rproc_debug_ss_get,
471 			 pru_rproc_debug_ss_set, "%llu\n");
472 
473 /*
474  * Create PRU-specific debugfs entries
475  *
476  * The entries are created only if the parent remoteproc debugfs directory
477  * exists, and will be cleaned up by the remoteproc core.
478  */
479 static void pru_rproc_create_debug_entries(struct rproc *rproc)
480 {
481 	if (!rproc->dbg_dir)
482 		return;
483 
484 	debugfs_create_file("regs", 0400, rproc->dbg_dir,
485 			    rproc, &regs_fops);
486 	debugfs_create_file("single_step", 0600, rproc->dbg_dir,
487 			    rproc, &pru_rproc_debug_ss_fops);
488 }
489 
490 static void pru_dispose_irq_mapping(struct pru_rproc *pru)
491 {
492 	if (!pru->mapped_irq)
493 		return;
494 
495 	while (pru->evt_count) {
496 		pru->evt_count--;
497 		if (pru->mapped_irq[pru->evt_count] > 0)
498 			irq_dispose_mapping(pru->mapped_irq[pru->evt_count]);
499 	}
500 
501 	kfree(pru->mapped_irq);
502 	pru->mapped_irq = NULL;
503 }
504 
505 /*
506  * Parse the custom PRU interrupt map resource and configure the INTC
507  * appropriately.
508  */
509 static int pru_handle_intrmap(struct rproc *rproc)
510 {
511 	struct device *dev = rproc->dev.parent;
512 	struct pru_rproc *pru = rproc->priv;
513 	struct pru_irq_rsc *rsc = pru->pru_interrupt_map;
514 	struct irq_fwspec fwspec;
515 	struct device_node *parent, *irq_parent;
516 	int i, ret = 0;
517 
518 	/* not having pru_interrupt_map is not an error */
519 	if (!rsc)
520 		return 0;
521 
522 	/* currently supporting only type 0 */
523 	if (rsc->type != 0) {
524 		dev_err(dev, "unsupported rsc type: %d\n", rsc->type);
525 		return -EINVAL;
526 	}
527 
528 	if (rsc->num_evts > MAX_PRU_SYS_EVENTS)
529 		return -EINVAL;
530 
531 	if (sizeof(*rsc) + rsc->num_evts * sizeof(struct pruss_int_map) !=
532 	    pru->pru_interrupt_map_sz)
533 		return -EINVAL;
534 
535 	pru->evt_count = rsc->num_evts;
536 	pru->mapped_irq = kcalloc(pru->evt_count, sizeof(unsigned int),
537 				  GFP_KERNEL);
538 	if (!pru->mapped_irq) {
539 		pru->evt_count = 0;
540 		return -ENOMEM;
541 	}
542 
543 	/*
544 	 * parse and fill in system event to interrupt channel and
545 	 * channel-to-host mapping. The interrupt controller to be used
546 	 * for these mappings for a given PRU remoteproc is always its
547 	 * corresponding sibling PRUSS INTC node.
548 	 */
549 	parent = of_get_parent(dev_of_node(pru->dev));
550 	if (!parent) {
551 		kfree(pru->mapped_irq);
552 		pru->mapped_irq = NULL;
553 		pru->evt_count = 0;
554 		return -ENODEV;
555 	}
556 
557 	irq_parent = of_get_child_by_name(parent, "interrupt-controller");
558 	of_node_put(parent);
559 	if (!irq_parent) {
560 		kfree(pru->mapped_irq);
561 		pru->mapped_irq = NULL;
562 		pru->evt_count = 0;
563 		return -ENODEV;
564 	}
565 
566 	fwspec.fwnode = of_node_to_fwnode(irq_parent);
567 	fwspec.param_count = 3;
568 	for (i = 0; i < pru->evt_count; i++) {
569 		fwspec.param[0] = rsc->pru_intc_map[i].event;
570 		fwspec.param[1] = rsc->pru_intc_map[i].chnl;
571 		fwspec.param[2] = rsc->pru_intc_map[i].host;
572 
573 		dev_dbg(dev, "mapping%d: event %d, chnl %d, host %d\n",
574 			i, fwspec.param[0], fwspec.param[1], fwspec.param[2]);
575 
576 		pru->mapped_irq[i] = irq_create_fwspec_mapping(&fwspec);
577 		if (!pru->mapped_irq[i]) {
578 			dev_err(dev, "failed to get virq for fw mapping %d: event %d chnl %d host %d\n",
579 				i, fwspec.param[0], fwspec.param[1],
580 				fwspec.param[2]);
581 			ret = -EINVAL;
582 			goto map_fail;
583 		}
584 	}
585 	of_node_put(irq_parent);
586 
587 	return ret;
588 
589 map_fail:
590 	pru_dispose_irq_mapping(pru);
591 	of_node_put(irq_parent);
592 
593 	return ret;
594 }
595 
596 static int pru_rproc_start(struct rproc *rproc)
597 {
598 	struct device *dev = &rproc->dev;
599 	struct pru_rproc *pru = rproc->priv;
600 	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
601 	u32 val;
602 	int ret;
603 
604 	dev_dbg(dev, "starting %s%d: entry-point = 0x%llx\n",
605 		names[pru->data->type], pru->id, (rproc->bootaddr >> 2));
606 
607 	ret = pru_handle_intrmap(rproc);
608 	/*
609 	 * reset references to pru interrupt map - they will stop being valid
610 	 * after rproc_start returns
611 	 */
612 	pru->pru_interrupt_map = NULL;
613 	pru->pru_interrupt_map_sz = 0;
614 	if (ret)
615 		return ret;
616 
617 	val = CTRL_CTRL_EN | ((rproc->bootaddr >> 2) << 16);
618 	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
619 
620 	return 0;
621 }
622 
623 static int pru_rproc_stop(struct rproc *rproc)
624 {
625 	struct device *dev = &rproc->dev;
626 	struct pru_rproc *pru = rproc->priv;
627 	const char *names[PRU_TYPE_MAX] = { "PRU", "RTU", "Tx_PRU" };
628 	u32 val;
629 
630 	dev_dbg(dev, "stopping %s%d\n", names[pru->data->type], pru->id);
631 
632 	val = pru_control_read_reg(pru, PRU_CTRL_CTRL);
633 	val &= ~CTRL_CTRL_EN;
634 	pru_control_write_reg(pru, PRU_CTRL_CTRL, val);
635 
636 	/* dispose irq mapping - new firmware can provide new mapping */
637 	pru_dispose_irq_mapping(pru);
638 
639 	return 0;
640 }
641 
642 /*
643  * Convert PRU device address (data spaces only) to kernel virtual address.
644  *
645  * Each PRU has access to all data memories within the PRUSS, accessible at
646  * different ranges. So, look through both its primary and secondary Data
647  * RAMs as well as any shared Data RAM to convert a PRU device address to
648  * kernel virtual address. Data RAM0 is primary Data RAM for PRU0 and Data
649  * RAM1 is primary Data RAM for PRU1.
650  */
651 static void *pru_d_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
652 {
653 	struct pruss_mem_region dram0, dram1, shrd_ram;
654 	struct pruss *pruss = pru->pruss;
655 	u32 offset;
656 	void *va = NULL;
657 
658 	if (len == 0)
659 		return NULL;
660 
661 	dram0 = pruss->mem_regions[PRUSS_MEM_DRAM0];
662 	dram1 = pruss->mem_regions[PRUSS_MEM_DRAM1];
663 	/* PRU1 has its local RAM addresses reversed */
664 	if (pru->id == PRUSS_PRU1)
665 		swap(dram0, dram1);
666 	shrd_ram = pruss->mem_regions[PRUSS_MEM_SHRD_RAM2];
667 
668 	if (da + len <= PRU_PDRAM_DA + dram0.size) {
669 		offset = da - PRU_PDRAM_DA;
670 		va = (__force void *)(dram0.va + offset);
671 	} else if (da >= PRU_SDRAM_DA &&
672 		   da + len <= PRU_SDRAM_DA + dram1.size) {
673 		offset = da - PRU_SDRAM_DA;
674 		va = (__force void *)(dram1.va + offset);
675 	} else if (da >= PRU_SHRDRAM_DA &&
676 		   da + len <= PRU_SHRDRAM_DA + shrd_ram.size) {
677 		offset = da - PRU_SHRDRAM_DA;
678 		va = (__force void *)(shrd_ram.va + offset);
679 	}
680 
681 	return va;
682 }
683 
684 /*
685  * Convert PRU device address (instruction space) to kernel virtual address.
686  *
687  * A PRU does not have an unified address space. Each PRU has its very own
688  * private Instruction RAM, and its device address is identical to that of
689  * its primary Data RAM device address.
690  */
691 static void *pru_i_da_to_va(struct pru_rproc *pru, u32 da, size_t len)
692 {
693 	u32 offset;
694 	void *va = NULL;
695 
696 	if (len == 0)
697 		return NULL;
698 
699 	/*
700 	 * GNU binutils do not support multiple address spaces. The GNU
701 	 * linker's default linker script places IRAM at an arbitrary high
702 	 * offset, in order to differentiate it from DRAM. Hence we need to
703 	 * strip the artificial offset in the IRAM addresses coming from the
704 	 * ELF file.
705 	 *
706 	 * The TI proprietary linker would never set those higher IRAM address
707 	 * bits anyway. PRU architecture limits the program counter to 16-bit
708 	 * word-address range. This in turn corresponds to 18-bit IRAM
709 	 * byte-address range for ELF.
710 	 *
711 	 * Two more bits are added just in case to make the final 20-bit mask.
712 	 * Idea is to have a safeguard in case TI decides to add banking
713 	 * in future SoCs.
714 	 */
715 	da &= 0xfffff;
716 
717 	if (da + len <= PRU_IRAM_DA + pru->mem_regions[PRU_IOMEM_IRAM].size) {
718 		offset = da - PRU_IRAM_DA;
719 		va = (__force void *)(pru->mem_regions[PRU_IOMEM_IRAM].va +
720 				      offset);
721 	}
722 
723 	return va;
724 }
725 
726 /*
727  * Provide address translations for only PRU Data RAMs through the remoteproc
728  * core for any PRU client drivers. The PRU Instruction RAM access is restricted
729  * only to the PRU loader code.
730  */
731 static void *pru_rproc_da_to_va(struct rproc *rproc, u64 da, size_t len, bool *is_iomem)
732 {
733 	struct pru_rproc *pru = rproc->priv;
734 
735 	return pru_d_da_to_va(pru, da, len);
736 }
737 
738 /* PRU-specific address translator used by PRU loader. */
739 static void *pru_da_to_va(struct rproc *rproc, u64 da, size_t len, bool is_iram)
740 {
741 	struct pru_rproc *pru = rproc->priv;
742 	void *va;
743 
744 	if (is_iram)
745 		va = pru_i_da_to_va(pru, da, len);
746 	else
747 		va = pru_d_da_to_va(pru, da, len);
748 
749 	return va;
750 }
751 
752 static struct rproc_ops pru_rproc_ops = {
753 	.start		= pru_rproc_start,
754 	.stop		= pru_rproc_stop,
755 	.da_to_va	= pru_rproc_da_to_va,
756 };
757 
758 /*
759  * Custom memory copy implementation for ICSSG PRU/RTU/Tx_PRU Cores
760  *
761  * The ICSSG PRU/RTU/Tx_PRU cores have a memory copying issue with IRAM
762  * memories, that is not seen on previous generation SoCs. The data is reflected
763  * properly in the IRAM memories only for integer (4-byte) copies. Any unaligned
764  * copies result in all the other pre-existing bytes zeroed out within that
765  * 4-byte boundary, thereby resulting in wrong text/code in the IRAMs. Also, the
766  * IRAM memory port interface does not allow any 8-byte copies (as commonly used
767  * by ARM64 memcpy implementation) and throws an exception. The DRAM memory
768  * ports do not show this behavior.
769  */
770 static int pru_rproc_memcpy(void *dest, const void *src, size_t count)
771 {
772 	const u32 *s = src;
773 	u32 *d = dest;
774 	size_t size = count / 4;
775 	u32 *tmp_src = NULL;
776 
777 	/*
778 	 * TODO: relax limitation of 4-byte aligned dest addresses and copy
779 	 * sizes
780 	 */
781 	if ((long)dest % 4 || count % 4)
782 		return -EINVAL;
783 
784 	/* src offsets in ELF firmware image can be non-aligned */
785 	if ((long)src % 4) {
786 		tmp_src = kmemdup(src, count, GFP_KERNEL);
787 		if (!tmp_src)
788 			return -ENOMEM;
789 		s = tmp_src;
790 	}
791 
792 	while (size--)
793 		*d++ = *s++;
794 
795 	kfree(tmp_src);
796 
797 	return 0;
798 }
799 
800 static int
801 pru_rproc_load_elf_segments(struct rproc *rproc, const struct firmware *fw)
802 {
803 	struct pru_rproc *pru = rproc->priv;
804 	struct device *dev = &rproc->dev;
805 	struct elf32_hdr *ehdr;
806 	struct elf32_phdr *phdr;
807 	int i, ret = 0;
808 	const u8 *elf_data = fw->data;
809 
810 	ehdr = (struct elf32_hdr *)elf_data;
811 	phdr = (struct elf32_phdr *)(elf_data + ehdr->e_phoff);
812 
813 	/* go through the available ELF segments */
814 	for (i = 0; i < ehdr->e_phnum; i++, phdr++) {
815 		u32 da = phdr->p_paddr;
816 		u32 memsz = phdr->p_memsz;
817 		u32 filesz = phdr->p_filesz;
818 		u32 offset = phdr->p_offset;
819 		bool is_iram;
820 		void *ptr;
821 
822 		if (phdr->p_type != PT_LOAD || !filesz)
823 			continue;
824 
825 		dev_dbg(dev, "phdr: type %d da 0x%x memsz 0x%x filesz 0x%x\n",
826 			phdr->p_type, da, memsz, filesz);
827 
828 		if (filesz > memsz) {
829 			dev_err(dev, "bad phdr filesz 0x%x memsz 0x%x\n",
830 				filesz, memsz);
831 			ret = -EINVAL;
832 			break;
833 		}
834 
835 		if (offset + filesz > fw->size) {
836 			dev_err(dev, "truncated fw: need 0x%x avail 0x%zx\n",
837 				offset + filesz, fw->size);
838 			ret = -EINVAL;
839 			break;
840 		}
841 
842 		/* grab the kernel address for this device address */
843 		is_iram = phdr->p_flags & PF_X;
844 		ptr = pru_da_to_va(rproc, da, memsz, is_iram);
845 		if (!ptr) {
846 			dev_err(dev, "bad phdr da 0x%x mem 0x%x\n", da, memsz);
847 			ret = -EINVAL;
848 			break;
849 		}
850 
851 		if (pru->data->is_k3) {
852 			ret = pru_rproc_memcpy(ptr, elf_data + phdr->p_offset,
853 					       filesz);
854 			if (ret) {
855 				dev_err(dev, "PRU memory copy failed for da 0x%x memsz 0x%x\n",
856 					da, memsz);
857 				break;
858 			}
859 		} else {
860 			memcpy(ptr, elf_data + phdr->p_offset, filesz);
861 		}
862 
863 		/* skip the memzero logic performed by remoteproc ELF loader */
864 	}
865 
866 	return ret;
867 }
868 
869 static const void *
870 pru_rproc_find_interrupt_map(struct device *dev, const struct firmware *fw)
871 {
872 	struct elf32_shdr *shdr, *name_table_shdr;
873 	const char *name_table;
874 	const u8 *elf_data = fw->data;
875 	struct elf32_hdr *ehdr = (struct elf32_hdr *)elf_data;
876 	u16 shnum = ehdr->e_shnum;
877 	u16 shstrndx = ehdr->e_shstrndx;
878 	int i;
879 
880 	/* first, get the section header */
881 	shdr = (struct elf32_shdr *)(elf_data + ehdr->e_shoff);
882 	/* compute name table section header entry in shdr array */
883 	name_table_shdr = shdr + shstrndx;
884 	/* finally, compute the name table section address in elf */
885 	name_table = elf_data + name_table_shdr->sh_offset;
886 
887 	for (i = 0; i < shnum; i++, shdr++) {
888 		u32 size = shdr->sh_size;
889 		u32 offset = shdr->sh_offset;
890 		u32 name = shdr->sh_name;
891 
892 		if (strcmp(name_table + name, ".pru_irq_map"))
893 			continue;
894 
895 		/* make sure we have the entire irq map */
896 		if (offset + size > fw->size || offset + size < size) {
897 			dev_err(dev, ".pru_irq_map section truncated\n");
898 			return ERR_PTR(-EINVAL);
899 		}
900 
901 		/* make sure irq map has at least the header */
902 		if (sizeof(struct pru_irq_rsc) > size) {
903 			dev_err(dev, "header-less .pru_irq_map section\n");
904 			return ERR_PTR(-EINVAL);
905 		}
906 
907 		return shdr;
908 	}
909 
910 	dev_dbg(dev, "no .pru_irq_map section found for this fw\n");
911 
912 	return NULL;
913 }
914 
915 /*
916  * Use a custom parse_fw callback function for dealing with PRU firmware
917  * specific sections.
918  *
919  * The firmware blob can contain optional ELF sections: .resource_table section
920  * and .pru_irq_map one. The second one contains the PRUSS interrupt mapping
921  * description, which needs to be setup before powering on the PRU core. To
922  * avoid RAM wastage this ELF section is not mapped to any ELF segment (by the
923  * firmware linker) and therefore is not loaded to PRU memory.
924  */
925 static int pru_rproc_parse_fw(struct rproc *rproc, const struct firmware *fw)
926 {
927 	struct device *dev = &rproc->dev;
928 	struct pru_rproc *pru = rproc->priv;
929 	const u8 *elf_data = fw->data;
930 	const void *shdr;
931 	u8 class = fw_elf_get_class(fw);
932 	u64 sh_offset;
933 	int ret;
934 
935 	/* load optional rsc table */
936 	ret = rproc_elf_load_rsc_table(rproc, fw);
937 	if (ret == -EINVAL)
938 		dev_dbg(&rproc->dev, "no resource table found for this fw\n");
939 	else if (ret)
940 		return ret;
941 
942 	/* find .pru_interrupt_map section, not having it is not an error */
943 	shdr = pru_rproc_find_interrupt_map(dev, fw);
944 	if (IS_ERR(shdr))
945 		return PTR_ERR(shdr);
946 
947 	if (!shdr)
948 		return 0;
949 
950 	/* preserve pointer to PRU interrupt map together with it size */
951 	sh_offset = elf_shdr_get_sh_offset(class, shdr);
952 	pru->pru_interrupt_map = (struct pru_irq_rsc *)(elf_data + sh_offset);
953 	pru->pru_interrupt_map_sz = elf_shdr_get_sh_size(class, shdr);
954 
955 	return 0;
956 }
957 
958 /*
959  * Compute PRU id based on the IRAM addresses. The PRU IRAMs are
960  * always at a particular offset within the PRUSS address space.
961  */
962 static int pru_rproc_set_id(struct pru_rproc *pru)
963 {
964 	int ret = 0;
965 
966 	switch (pru->mem_regions[PRU_IOMEM_IRAM].pa & PRU_IRAM_ADDR_MASK) {
967 	case TX_PRU0_IRAM_ADDR_MASK:
968 		fallthrough;
969 	case RTU0_IRAM_ADDR_MASK:
970 		fallthrough;
971 	case PRU0_IRAM_ADDR_MASK:
972 		pru->id = PRUSS_PRU0;
973 		break;
974 	case TX_PRU1_IRAM_ADDR_MASK:
975 		fallthrough;
976 	case RTU1_IRAM_ADDR_MASK:
977 		fallthrough;
978 	case PRU1_IRAM_ADDR_MASK:
979 		pru->id = PRUSS_PRU1;
980 		break;
981 	default:
982 		ret = -EINVAL;
983 	}
984 
985 	return ret;
986 }
987 
988 static int pru_rproc_probe(struct platform_device *pdev)
989 {
990 	struct device *dev = &pdev->dev;
991 	struct device_node *np = dev->of_node;
992 	struct platform_device *ppdev = to_platform_device(dev->parent);
993 	struct pru_rproc *pru;
994 	const char *fw_name;
995 	struct rproc *rproc = NULL;
996 	struct resource *res;
997 	int i, ret;
998 	const struct pru_private_data *data;
999 	const char *mem_names[PRU_IOMEM_MAX] = { "iram", "control", "debug" };
1000 
1001 	data = of_device_get_match_data(&pdev->dev);
1002 	if (!data)
1003 		return -ENODEV;
1004 
1005 	ret = of_property_read_string(np, "firmware-name", &fw_name);
1006 	if (ret) {
1007 		dev_err(dev, "unable to retrieve firmware-name %d\n", ret);
1008 		return ret;
1009 	}
1010 
1011 	rproc = devm_rproc_alloc(dev, pdev->name, &pru_rproc_ops, fw_name,
1012 				 sizeof(*pru));
1013 	if (!rproc) {
1014 		dev_err(dev, "rproc_alloc failed\n");
1015 		return -ENOMEM;
1016 	}
1017 	/* use a custom load function to deal with PRU-specific quirks */
1018 	rproc->ops->load = pru_rproc_load_elf_segments;
1019 
1020 	/* use a custom parse function to deal with PRU-specific resources */
1021 	rproc->ops->parse_fw = pru_rproc_parse_fw;
1022 
1023 	/* error recovery is not supported for PRUs */
1024 	rproc->recovery_disabled = true;
1025 
1026 	/*
1027 	 * rproc_add will auto-boot the processor normally, but this is not
1028 	 * desired with PRU client driven boot-flow methodology. A PRU
1029 	 * application/client driver will boot the corresponding PRU
1030 	 * remote-processor as part of its state machine either through the
1031 	 * remoteproc sysfs interface or through the equivalent kernel API.
1032 	 */
1033 	rproc->auto_boot = false;
1034 
1035 	pru = rproc->priv;
1036 	pru->dev = dev;
1037 	pru->data = data;
1038 	pru->pruss = platform_get_drvdata(ppdev);
1039 	pru->rproc = rproc;
1040 	pru->fw_name = fw_name;
1041 	pru->client_np = NULL;
1042 	spin_lock_init(&pru->rmw_lock);
1043 	mutex_init(&pru->lock);
1044 
1045 	for (i = 0; i < ARRAY_SIZE(mem_names); i++) {
1046 		res = platform_get_resource_byname(pdev, IORESOURCE_MEM,
1047 						   mem_names[i]);
1048 		pru->mem_regions[i].va = devm_ioremap_resource(dev, res);
1049 		if (IS_ERR(pru->mem_regions[i].va)) {
1050 			dev_err(dev, "failed to parse and map memory resource %d %s\n",
1051 				i, mem_names[i]);
1052 			ret = PTR_ERR(pru->mem_regions[i].va);
1053 			return ret;
1054 		}
1055 		pru->mem_regions[i].pa = res->start;
1056 		pru->mem_regions[i].size = resource_size(res);
1057 
1058 		dev_dbg(dev, "memory %8s: pa %pa size 0x%zx va %pK\n",
1059 			mem_names[i], &pru->mem_regions[i].pa,
1060 			pru->mem_regions[i].size, pru->mem_regions[i].va);
1061 	}
1062 
1063 	ret = pru_rproc_set_id(pru);
1064 	if (ret < 0)
1065 		return ret;
1066 
1067 	platform_set_drvdata(pdev, rproc);
1068 
1069 	ret = devm_rproc_add(dev, pru->rproc);
1070 	if (ret) {
1071 		dev_err(dev, "rproc_add failed: %d\n", ret);
1072 		return ret;
1073 	}
1074 
1075 	pru_rproc_create_debug_entries(rproc);
1076 
1077 	dev_dbg(dev, "PRU rproc node %pOF probed successfully\n", np);
1078 
1079 	return 0;
1080 }
1081 
1082 static void pru_rproc_remove(struct platform_device *pdev)
1083 {
1084 	struct device *dev = &pdev->dev;
1085 	struct rproc *rproc = platform_get_drvdata(pdev);
1086 
1087 	dev_dbg(dev, "%s: removing rproc %s\n", __func__, rproc->name);
1088 }
1089 
1090 static const struct pru_private_data pru_data = {
1091 	.type = PRU_TYPE_PRU,
1092 };
1093 
1094 static const struct pru_private_data k3_pru_data = {
1095 	.type = PRU_TYPE_PRU,
1096 	.is_k3 = 1,
1097 };
1098 
1099 static const struct pru_private_data k3_rtu_data = {
1100 	.type = PRU_TYPE_RTU,
1101 	.is_k3 = 1,
1102 };
1103 
1104 static const struct pru_private_data k3_tx_pru_data = {
1105 	.type = PRU_TYPE_TX_PRU,
1106 	.is_k3 = 1,
1107 };
1108 
1109 static const struct of_device_id pru_rproc_match[] = {
1110 	{ .compatible = "ti,am3356-pru",	.data = &pru_data },
1111 	{ .compatible = "ti,am4376-pru",	.data = &pru_data },
1112 	{ .compatible = "ti,am5728-pru",	.data = &pru_data },
1113 	{ .compatible = "ti,am642-pru",		.data = &k3_pru_data },
1114 	{ .compatible = "ti,am642-rtu",		.data = &k3_rtu_data },
1115 	{ .compatible = "ti,am642-tx-pru",	.data = &k3_tx_pru_data },
1116 	{ .compatible = "ti,k2g-pru",		.data = &pru_data },
1117 	{ .compatible = "ti,am654-pru",		.data = &k3_pru_data },
1118 	{ .compatible = "ti,am654-rtu",		.data = &k3_rtu_data },
1119 	{ .compatible = "ti,am654-tx-pru",	.data = &k3_tx_pru_data },
1120 	{ .compatible = "ti,j721e-pru",		.data = &k3_pru_data },
1121 	{ .compatible = "ti,j721e-rtu",		.data = &k3_rtu_data },
1122 	{ .compatible = "ti,j721e-tx-pru",	.data = &k3_tx_pru_data },
1123 	{ .compatible = "ti,am625-pru",		.data = &k3_pru_data },
1124 	{},
1125 };
1126 MODULE_DEVICE_TABLE(of, pru_rproc_match);
1127 
1128 static struct platform_driver pru_rproc_driver = {
1129 	.driver = {
1130 		.name   = PRU_RPROC_DRVNAME,
1131 		.of_match_table = pru_rproc_match,
1132 		.suppress_bind_attrs = true,
1133 	},
1134 	.probe  = pru_rproc_probe,
1135 	.remove_new = pru_rproc_remove,
1136 };
1137 module_platform_driver(pru_rproc_driver);
1138 
1139 MODULE_AUTHOR("Suman Anna <s-anna@ti.com>");
1140 MODULE_AUTHOR("Andrew F. Davis <afd@ti.com>");
1141 MODULE_AUTHOR("Grzegorz Jaszczyk <grzegorz.jaszczyk@linaro.org>");
1142 MODULE_AUTHOR("Puranjay Mohan <p-mohan@ti.com>");
1143 MODULE_AUTHOR("Md Danish Anwar <danishanwar@ti.com>");
1144 MODULE_DESCRIPTION("PRU-ICSS Remote Processor Driver");
1145 MODULE_LICENSE("GPL v2");
1146