xref: /linux/drivers/pci/controller/pci-hyperv.c (revision 307797159ac25fe5a2048bf5c6a5718298edca57)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/delay.h>
44 #include <linux/semaphore.h>
45 #include <linux/irqdomain.h>
46 #include <asm/irqdomain.h>
47 #include <asm/apic.h>
48 #include <linux/irq.h>
49 #include <linux/msi.h>
50 #include <linux/hyperv.h>
51 #include <linux/refcount.h>
52 #include <asm/mshyperv.h>
53 
54 /*
55  * Protocol versions. The low word is the minor version, the high word the
56  * major version.
57  */
58 
59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
62 
63 enum pci_protocol_version_t {
64 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
65 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
66 };
67 
68 #define CPU_AFFINITY_ALL	-1ULL
69 
70 /*
71  * Supported protocol versions in the order of probing - highest go
72  * first.
73  */
74 static enum pci_protocol_version_t pci_protocol_versions[] = {
75 	PCI_PROTOCOL_VERSION_1_2,
76 	PCI_PROTOCOL_VERSION_1_1,
77 };
78 
79 /*
80  * Protocol version negotiated by hv_pci_protocol_negotiation().
81  */
82 static enum pci_protocol_version_t pci_protocol_version;
83 
84 #define PCI_CONFIG_MMIO_LENGTH	0x2000
85 #define CFG_PAGE_OFFSET 0x1000
86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
87 
88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
89 
90 #define STATUS_REVISION_MISMATCH 0xC0000059
91 
92 /*
93  * Message Types
94  */
95 
96 enum pci_message_type {
97 	/*
98 	 * Version 1.1
99 	 */
100 	PCI_MESSAGE_BASE                = 0x42490000,
101 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
102 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
103 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
104 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
105 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
106 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
107 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
108 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
109 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
110 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
111 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
112 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
113 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
114 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
115 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
116 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
117 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
118 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
119 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
120 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
121 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
122 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
123 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
124 	PCI_MESSAGE_MAXIMUM
125 };
126 
127 /*
128  * Structures defining the virtual PCI Express protocol.
129  */
130 
131 union pci_version {
132 	struct {
133 		u16 minor_version;
134 		u16 major_version;
135 	} parts;
136 	u32 version;
137 } __packed;
138 
139 /*
140  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
141  * which is all this driver does.  This representation is the one used in
142  * Windows, which is what is expected when sending this back and forth with
143  * the Hyper-V parent partition.
144  */
145 union win_slot_encoding {
146 	struct {
147 		u32	dev:5;
148 		u32	func:3;
149 		u32	reserved:24;
150 	} bits;
151 	u32 slot;
152 } __packed;
153 
154 /*
155  * Pretty much as defined in the PCI Specifications.
156  */
157 struct pci_function_description {
158 	u16	v_id;	/* vendor ID */
159 	u16	d_id;	/* device ID */
160 	u8	rev;
161 	u8	prog_intf;
162 	u8	subclass;
163 	u8	base_class;
164 	u32	subsystem_id;
165 	union win_slot_encoding win_slot;
166 	u32	ser;	/* serial number */
167 } __packed;
168 
169 /**
170  * struct hv_msi_desc
171  * @vector:		IDT entry
172  * @delivery_mode:	As defined in Intel's Programmer's
173  *			Reference Manual, Volume 3, Chapter 8.
174  * @vector_count:	Number of contiguous entries in the
175  *			Interrupt Descriptor Table that are
176  *			occupied by this Message-Signaled
177  *			Interrupt. For "MSI", as first defined
178  *			in PCI 2.2, this can be between 1 and
179  *			32. For "MSI-X," as first defined in PCI
180  *			3.0, this must be 1, as each MSI-X table
181  *			entry would have its own descriptor.
182  * @reserved:		Empty space
183  * @cpu_mask:		All the target virtual processors.
184  */
185 struct hv_msi_desc {
186 	u8	vector;
187 	u8	delivery_mode;
188 	u16	vector_count;
189 	u32	reserved;
190 	u64	cpu_mask;
191 } __packed;
192 
193 /**
194  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
195  * @vector:		IDT entry
196  * @delivery_mode:	As defined in Intel's Programmer's
197  *			Reference Manual, Volume 3, Chapter 8.
198  * @vector_count:	Number of contiguous entries in the
199  *			Interrupt Descriptor Table that are
200  *			occupied by this Message-Signaled
201  *			Interrupt. For "MSI", as first defined
202  *			in PCI 2.2, this can be between 1 and
203  *			32. For "MSI-X," as first defined in PCI
204  *			3.0, this must be 1, as each MSI-X table
205  *			entry would have its own descriptor.
206  * @processor_count:	number of bits enabled in array.
207  * @processor_array:	All the target virtual processors.
208  */
209 struct hv_msi_desc2 {
210 	u8	vector;
211 	u8	delivery_mode;
212 	u16	vector_count;
213 	u16	processor_count;
214 	u16	processor_array[32];
215 } __packed;
216 
217 /**
218  * struct tran_int_desc
219  * @reserved:		unused, padding
220  * @vector_count:	same as in hv_msi_desc
221  * @data:		This is the "data payload" value that is
222  *			written by the device when it generates
223  *			a message-signaled interrupt, either MSI
224  *			or MSI-X.
225  * @address:		This is the address to which the data
226  *			payload is written on interrupt
227  *			generation.
228  */
229 struct tran_int_desc {
230 	u16	reserved;
231 	u16	vector_count;
232 	u32	data;
233 	u64	address;
234 } __packed;
235 
236 /*
237  * A generic message format for virtual PCI.
238  * Specific message formats are defined later in the file.
239  */
240 
241 struct pci_message {
242 	u32 type;
243 } __packed;
244 
245 struct pci_child_message {
246 	struct pci_message message_type;
247 	union win_slot_encoding wslot;
248 } __packed;
249 
250 struct pci_incoming_message {
251 	struct vmpacket_descriptor hdr;
252 	struct pci_message message_type;
253 } __packed;
254 
255 struct pci_response {
256 	struct vmpacket_descriptor hdr;
257 	s32 status;			/* negative values are failures */
258 } __packed;
259 
260 struct pci_packet {
261 	void (*completion_func)(void *context, struct pci_response *resp,
262 				int resp_packet_size);
263 	void *compl_ctxt;
264 
265 	struct pci_message message[0];
266 };
267 
268 /*
269  * Specific message types supporting the PCI protocol.
270  */
271 
272 /*
273  * Version negotiation message. Sent from the guest to the host.
274  * The guest is free to try different versions until the host
275  * accepts the version.
276  *
277  * pci_version: The protocol version requested.
278  * is_last_attempt: If TRUE, this is the last version guest will request.
279  * reservedz: Reserved field, set to zero.
280  */
281 
282 struct pci_version_request {
283 	struct pci_message message_type;
284 	u32 protocol_version;
285 } __packed;
286 
287 /*
288  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
289  * bus (PCI Express port) is ready for action.
290  */
291 
292 struct pci_bus_d0_entry {
293 	struct pci_message message_type;
294 	u32 reserved;
295 	u64 mmio_base;
296 } __packed;
297 
298 struct pci_bus_relations {
299 	struct pci_incoming_message incoming;
300 	u32 device_count;
301 	struct pci_function_description func[0];
302 } __packed;
303 
304 struct pci_q_res_req_response {
305 	struct vmpacket_descriptor hdr;
306 	s32 status;			/* negative values are failures */
307 	u32 probed_bar[6];
308 } __packed;
309 
310 struct pci_set_power {
311 	struct pci_message message_type;
312 	union win_slot_encoding wslot;
313 	u32 power_state;		/* In Windows terms */
314 	u32 reserved;
315 } __packed;
316 
317 struct pci_set_power_response {
318 	struct vmpacket_descriptor hdr;
319 	s32 status;			/* negative values are failures */
320 	union win_slot_encoding wslot;
321 	u32 resultant_state;		/* In Windows terms */
322 	u32 reserved;
323 } __packed;
324 
325 struct pci_resources_assigned {
326 	struct pci_message message_type;
327 	union win_slot_encoding wslot;
328 	u8 memory_range[0x14][6];	/* not used here */
329 	u32 msi_descriptors;
330 	u32 reserved[4];
331 } __packed;
332 
333 struct pci_resources_assigned2 {
334 	struct pci_message message_type;
335 	union win_slot_encoding wslot;
336 	u8 memory_range[0x14][6];	/* not used here */
337 	u32 msi_descriptor_count;
338 	u8 reserved[70];
339 } __packed;
340 
341 struct pci_create_interrupt {
342 	struct pci_message message_type;
343 	union win_slot_encoding wslot;
344 	struct hv_msi_desc int_desc;
345 } __packed;
346 
347 struct pci_create_int_response {
348 	struct pci_response response;
349 	u32 reserved;
350 	struct tran_int_desc int_desc;
351 } __packed;
352 
353 struct pci_create_interrupt2 {
354 	struct pci_message message_type;
355 	union win_slot_encoding wslot;
356 	struct hv_msi_desc2 int_desc;
357 } __packed;
358 
359 struct pci_delete_interrupt {
360 	struct pci_message message_type;
361 	union win_slot_encoding wslot;
362 	struct tran_int_desc int_desc;
363 } __packed;
364 
365 struct pci_dev_incoming {
366 	struct pci_incoming_message incoming;
367 	union win_slot_encoding wslot;
368 } __packed;
369 
370 struct pci_eject_response {
371 	struct pci_message message_type;
372 	union win_slot_encoding wslot;
373 	u32 status;
374 } __packed;
375 
376 static int pci_ring_size = (4 * PAGE_SIZE);
377 
378 /*
379  * Definitions or interrupt steering hypercall.
380  */
381 #define HV_PARTITION_ID_SELF		((u64)-1)
382 #define HVCALL_RETARGET_INTERRUPT	0x7e
383 
384 struct hv_interrupt_entry {
385 	u32	source;			/* 1 for MSI(-X) */
386 	u32	reserved1;
387 	u32	address;
388 	u32	data;
389 };
390 
391 #define HV_VP_SET_BANK_COUNT_MAX	5 /* current implementation limit */
392 
393 struct hv_vp_set {
394 	u64	format;			/* 0 (HvGenericSetSparse4k) */
395 	u64	valid_banks;
396 	u64	masks[HV_VP_SET_BANK_COUNT_MAX];
397 };
398 
399 /*
400  * flags for hv_device_interrupt_target.flags
401  */
402 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST		1
403 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET	2
404 
405 struct hv_device_interrupt_target {
406 	u32	vector;
407 	u32	flags;
408 	union {
409 		u64		 vp_mask;
410 		struct hv_vp_set vp_set;
411 	};
412 };
413 
414 struct retarget_msi_interrupt {
415 	u64	partition_id;		/* use "self" */
416 	u64	device_id;
417 	struct hv_interrupt_entry int_entry;
418 	u64	reserved2;
419 	struct hv_device_interrupt_target int_target;
420 } __packed;
421 
422 /*
423  * Driver specific state.
424  */
425 
426 enum hv_pcibus_state {
427 	hv_pcibus_init = 0,
428 	hv_pcibus_probed,
429 	hv_pcibus_installed,
430 	hv_pcibus_removed,
431 	hv_pcibus_maximum
432 };
433 
434 struct hv_pcibus_device {
435 	struct pci_sysdata sysdata;
436 	enum hv_pcibus_state state;
437 	refcount_t remove_lock;
438 	struct hv_device *hdev;
439 	resource_size_t low_mmio_space;
440 	resource_size_t high_mmio_space;
441 	struct resource *mem_config;
442 	struct resource *low_mmio_res;
443 	struct resource *high_mmio_res;
444 	struct completion *survey_event;
445 	struct completion remove_event;
446 	struct pci_bus *pci_bus;
447 	spinlock_t config_lock;	/* Avoid two threads writing index page */
448 	spinlock_t device_list_lock;	/* Protect lists below */
449 	void __iomem *cfg_addr;
450 
451 	struct list_head resources_for_children;
452 
453 	struct list_head children;
454 	struct list_head dr_list;
455 
456 	struct msi_domain_info msi_info;
457 	struct msi_controller msi_chip;
458 	struct irq_domain *irq_domain;
459 
460 	/* hypercall arg, must not cross page boundary */
461 	struct retarget_msi_interrupt retarget_msi_interrupt_params;
462 
463 	spinlock_t retarget_msi_interrupt_lock;
464 
465 	struct workqueue_struct *wq;
466 };
467 
468 /*
469  * Tracks "Device Relations" messages from the host, which must be both
470  * processed in order and deferred so that they don't run in the context
471  * of the incoming packet callback.
472  */
473 struct hv_dr_work {
474 	struct work_struct wrk;
475 	struct hv_pcibus_device *bus;
476 };
477 
478 struct hv_dr_state {
479 	struct list_head list_entry;
480 	u32 device_count;
481 	struct pci_function_description func[0];
482 };
483 
484 enum hv_pcichild_state {
485 	hv_pcichild_init = 0,
486 	hv_pcichild_requirements,
487 	hv_pcichild_resourced,
488 	hv_pcichild_ejecting,
489 	hv_pcichild_maximum
490 };
491 
492 struct hv_pci_dev {
493 	/* List protected by pci_rescan_remove_lock */
494 	struct list_head list_entry;
495 	refcount_t refs;
496 	enum hv_pcichild_state state;
497 	struct pci_function_description desc;
498 	bool reported_missing;
499 	struct hv_pcibus_device *hbus;
500 	struct work_struct wrk;
501 
502 	/*
503 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
504 	 * read it back, for each of the BAR offsets within config space.
505 	 */
506 	u32 probed_bar[6];
507 };
508 
509 struct hv_pci_compl {
510 	struct completion host_event;
511 	s32 completion_status;
512 };
513 
514 static void hv_pci_onchannelcallback(void *context);
515 
516 /**
517  * hv_pci_generic_compl() - Invoked for a completion packet
518  * @context:		Set up by the sender of the packet.
519  * @resp:		The response packet
520  * @resp_packet_size:	Size in bytes of the packet
521  *
522  * This function is used to trigger an event and report status
523  * for any message for which the completion packet contains a
524  * status and nothing else.
525  */
526 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
527 				 int resp_packet_size)
528 {
529 	struct hv_pci_compl *comp_pkt = context;
530 
531 	if (resp_packet_size >= offsetofend(struct pci_response, status))
532 		comp_pkt->completion_status = resp->status;
533 	else
534 		comp_pkt->completion_status = -1;
535 
536 	complete(&comp_pkt->host_event);
537 }
538 
539 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
540 						u32 wslot);
541 
542 static void get_pcichild(struct hv_pci_dev *hpdev)
543 {
544 	refcount_inc(&hpdev->refs);
545 }
546 
547 static void put_pcichild(struct hv_pci_dev *hpdev)
548 {
549 	if (refcount_dec_and_test(&hpdev->refs))
550 		kfree(hpdev);
551 }
552 
553 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus);
554 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus);
555 
556 /*
557  * There is no good way to get notified from vmbus_onoffer_rescind(),
558  * so let's use polling here, since this is not a hot path.
559  */
560 static int wait_for_response(struct hv_device *hdev,
561 			     struct completion *comp)
562 {
563 	while (true) {
564 		if (hdev->channel->rescind) {
565 			dev_warn_once(&hdev->device, "The device is gone.\n");
566 			return -ENODEV;
567 		}
568 
569 		if (wait_for_completion_timeout(comp, HZ / 10))
570 			break;
571 	}
572 
573 	return 0;
574 }
575 
576 /**
577  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
578  * @devfn:	The Linux representation of PCI slot
579  *
580  * Windows uses a slightly different representation of PCI slot.
581  *
582  * Return: The Windows representation
583  */
584 static u32 devfn_to_wslot(int devfn)
585 {
586 	union win_slot_encoding wslot;
587 
588 	wslot.slot = 0;
589 	wslot.bits.dev = PCI_SLOT(devfn);
590 	wslot.bits.func = PCI_FUNC(devfn);
591 
592 	return wslot.slot;
593 }
594 
595 /**
596  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
597  * @wslot:	The Windows representation of PCI slot
598  *
599  * Windows uses a slightly different representation of PCI slot.
600  *
601  * Return: The Linux representation
602  */
603 static int wslot_to_devfn(u32 wslot)
604 {
605 	union win_slot_encoding slot_no;
606 
607 	slot_no.slot = wslot;
608 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
609 }
610 
611 /*
612  * PCI Configuration Space for these root PCI buses is implemented as a pair
613  * of pages in memory-mapped I/O space.  Writing to the first page chooses
614  * the PCI function being written or read.  Once the first page has been
615  * written to, the following page maps in the entire configuration space of
616  * the function.
617  */
618 
619 /**
620  * _hv_pcifront_read_config() - Internal PCI config read
621  * @hpdev:	The PCI driver's representation of the device
622  * @where:	Offset within config space
623  * @size:	Size of the transfer
624  * @val:	Pointer to the buffer receiving the data
625  */
626 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
627 				     int size, u32 *val)
628 {
629 	unsigned long flags;
630 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
631 
632 	/*
633 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
634 	 */
635 	if (where + size <= PCI_COMMAND) {
636 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
637 	} else if (where >= PCI_CLASS_REVISION && where + size <=
638 		   PCI_CACHE_LINE_SIZE) {
639 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
640 		       PCI_CLASS_REVISION, size);
641 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
642 		   PCI_ROM_ADDRESS) {
643 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
644 		       PCI_SUBSYSTEM_VENDOR_ID, size);
645 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
646 		   PCI_CAPABILITY_LIST) {
647 		/* ROM BARs are unimplemented */
648 		*val = 0;
649 	} else if (where >= PCI_INTERRUPT_LINE && where + size <=
650 		   PCI_INTERRUPT_PIN) {
651 		/*
652 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
653 		 * because this front-end only supports message-signaled
654 		 * interrupts.
655 		 */
656 		*val = 0;
657 	} else if (where + size <= CFG_PAGE_SIZE) {
658 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
659 		/* Choose the function to be read. (See comment above) */
660 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
661 		/* Make sure the function was chosen before we start reading. */
662 		mb();
663 		/* Read from that function's config space. */
664 		switch (size) {
665 		case 1:
666 			*val = readb(addr);
667 			break;
668 		case 2:
669 			*val = readw(addr);
670 			break;
671 		default:
672 			*val = readl(addr);
673 			break;
674 		}
675 		/*
676 		 * Make sure the read was done before we release the spinlock
677 		 * allowing consecutive reads/writes.
678 		 */
679 		mb();
680 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
681 	} else {
682 		dev_err(&hpdev->hbus->hdev->device,
683 			"Attempt to read beyond a function's config space.\n");
684 	}
685 }
686 
687 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
688 {
689 	u16 ret;
690 	unsigned long flags;
691 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET +
692 			     PCI_VENDOR_ID;
693 
694 	spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
695 
696 	/* Choose the function to be read. (See comment above) */
697 	writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
698 	/* Make sure the function was chosen before we start reading. */
699 	mb();
700 	/* Read from that function's config space. */
701 	ret = readw(addr);
702 	/*
703 	 * mb() is not required here, because the spin_unlock_irqrestore()
704 	 * is a barrier.
705 	 */
706 
707 	spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
708 
709 	return ret;
710 }
711 
712 /**
713  * _hv_pcifront_write_config() - Internal PCI config write
714  * @hpdev:	The PCI driver's representation of the device
715  * @where:	Offset within config space
716  * @size:	Size of the transfer
717  * @val:	The data being transferred
718  */
719 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
720 				      int size, u32 val)
721 {
722 	unsigned long flags;
723 	void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where;
724 
725 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
726 	    where + size <= PCI_CAPABILITY_LIST) {
727 		/* SSIDs and ROM BARs are read-only */
728 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
729 		spin_lock_irqsave(&hpdev->hbus->config_lock, flags);
730 		/* Choose the function to be written. (See comment above) */
731 		writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr);
732 		/* Make sure the function was chosen before we start writing. */
733 		wmb();
734 		/* Write to that function's config space. */
735 		switch (size) {
736 		case 1:
737 			writeb(val, addr);
738 			break;
739 		case 2:
740 			writew(val, addr);
741 			break;
742 		default:
743 			writel(val, addr);
744 			break;
745 		}
746 		/*
747 		 * Make sure the write was done before we release the spinlock
748 		 * allowing consecutive reads/writes.
749 		 */
750 		mb();
751 		spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags);
752 	} else {
753 		dev_err(&hpdev->hbus->hdev->device,
754 			"Attempt to write beyond a function's config space.\n");
755 	}
756 }
757 
758 /**
759  * hv_pcifront_read_config() - Read configuration space
760  * @bus: PCI Bus structure
761  * @devfn: Device/function
762  * @where: Offset from base
763  * @size: Byte/word/dword
764  * @val: Value to be read
765  *
766  * Return: PCIBIOS_SUCCESSFUL on success
767  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
768  */
769 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
770 				   int where, int size, u32 *val)
771 {
772 	struct hv_pcibus_device *hbus =
773 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
774 	struct hv_pci_dev *hpdev;
775 
776 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
777 	if (!hpdev)
778 		return PCIBIOS_DEVICE_NOT_FOUND;
779 
780 	_hv_pcifront_read_config(hpdev, where, size, val);
781 
782 	put_pcichild(hpdev);
783 	return PCIBIOS_SUCCESSFUL;
784 }
785 
786 /**
787  * hv_pcifront_write_config() - Write configuration space
788  * @bus: PCI Bus structure
789  * @devfn: Device/function
790  * @where: Offset from base
791  * @size: Byte/word/dword
792  * @val: Value to be written to device
793  *
794  * Return: PCIBIOS_SUCCESSFUL on success
795  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
796  */
797 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
798 				    int where, int size, u32 val)
799 {
800 	struct hv_pcibus_device *hbus =
801 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
802 	struct hv_pci_dev *hpdev;
803 
804 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
805 	if (!hpdev)
806 		return PCIBIOS_DEVICE_NOT_FOUND;
807 
808 	_hv_pcifront_write_config(hpdev, where, size, val);
809 
810 	put_pcichild(hpdev);
811 	return PCIBIOS_SUCCESSFUL;
812 }
813 
814 /* PCIe operations */
815 static struct pci_ops hv_pcifront_ops = {
816 	.read  = hv_pcifront_read_config,
817 	.write = hv_pcifront_write_config,
818 };
819 
820 /* Interrupt management hooks */
821 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
822 			     struct tran_int_desc *int_desc)
823 {
824 	struct pci_delete_interrupt *int_pkt;
825 	struct {
826 		struct pci_packet pkt;
827 		u8 buffer[sizeof(struct pci_delete_interrupt)];
828 	} ctxt;
829 
830 	memset(&ctxt, 0, sizeof(ctxt));
831 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
832 	int_pkt->message_type.type =
833 		PCI_DELETE_INTERRUPT_MESSAGE;
834 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
835 	int_pkt->int_desc = *int_desc;
836 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
837 			 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0);
838 	kfree(int_desc);
839 }
840 
841 /**
842  * hv_msi_free() - Free the MSI.
843  * @domain:	The interrupt domain pointer
844  * @info:	Extra MSI-related context
845  * @irq:	Identifies the IRQ.
846  *
847  * The Hyper-V parent partition and hypervisor are tracking the
848  * messages that are in use, keeping the interrupt redirection
849  * table up to date.  This callback sends a message that frees
850  * the IRT entry and related tracking nonsense.
851  */
852 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
853 			unsigned int irq)
854 {
855 	struct hv_pcibus_device *hbus;
856 	struct hv_pci_dev *hpdev;
857 	struct pci_dev *pdev;
858 	struct tran_int_desc *int_desc;
859 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
860 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
861 
862 	pdev = msi_desc_to_pci_dev(msi);
863 	hbus = info->data;
864 	int_desc = irq_data_get_irq_chip_data(irq_data);
865 	if (!int_desc)
866 		return;
867 
868 	irq_data->chip_data = NULL;
869 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
870 	if (!hpdev) {
871 		kfree(int_desc);
872 		return;
873 	}
874 
875 	hv_int_desc_free(hpdev, int_desc);
876 	put_pcichild(hpdev);
877 }
878 
879 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest,
880 			   bool force)
881 {
882 	struct irq_data *parent = data->parent_data;
883 
884 	return parent->chip->irq_set_affinity(parent, dest, force);
885 }
886 
887 static void hv_irq_mask(struct irq_data *data)
888 {
889 	pci_msi_mask_irq(data);
890 }
891 
892 /**
893  * hv_irq_unmask() - "Unmask" the IRQ by setting its current
894  * affinity.
895  * @data:	Describes the IRQ
896  *
897  * Build new a destination for the MSI and make a hypercall to
898  * update the Interrupt Redirection Table. "Device Logical ID"
899  * is built out of this PCI bus's instance GUID and the function
900  * number of the device.
901  */
902 static void hv_irq_unmask(struct irq_data *data)
903 {
904 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
905 	struct irq_cfg *cfg = irqd_cfg(data);
906 	struct retarget_msi_interrupt *params;
907 	struct hv_pcibus_device *hbus;
908 	struct cpumask *dest;
909 	struct pci_bus *pbus;
910 	struct pci_dev *pdev;
911 	unsigned long flags;
912 	u32 var_size = 0;
913 	int cpu_vmbus;
914 	int cpu;
915 	u64 res;
916 
917 	dest = irq_data_get_effective_affinity_mask(data);
918 	pdev = msi_desc_to_pci_dev(msi_desc);
919 	pbus = pdev->bus;
920 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
921 
922 	spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags);
923 
924 	params = &hbus->retarget_msi_interrupt_params;
925 	memset(params, 0, sizeof(*params));
926 	params->partition_id = HV_PARTITION_ID_SELF;
927 	params->int_entry.source = 1; /* MSI(-X) */
928 	params->int_entry.address = msi_desc->msg.address_lo;
929 	params->int_entry.data = msi_desc->msg.data;
930 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
931 			   (hbus->hdev->dev_instance.b[4] << 16) |
932 			   (hbus->hdev->dev_instance.b[7] << 8) |
933 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
934 			   PCI_FUNC(pdev->devfn);
935 	params->int_target.vector = cfg->vector;
936 
937 	/*
938 	 * Honoring apic->irq_delivery_mode set to dest_Fixed by
939 	 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a
940 	 * spurious interrupt storm. Not doing so does not seem to have a
941 	 * negative effect (yet?).
942 	 */
943 
944 	if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
945 		/*
946 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
947 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
948 		 * with >64 VP support.
949 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
950 		 * is not sufficient for this hypercall.
951 		 */
952 		params->int_target.flags |=
953 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
954 		params->int_target.vp_set.valid_banks =
955 			(1ull << HV_VP_SET_BANK_COUNT_MAX) - 1;
956 
957 		/*
958 		 * var-sized hypercall, var-size starts after vp_mask (thus
959 		 * vp_set.format does not count, but vp_set.valid_banks does).
960 		 */
961 		var_size = 1 + HV_VP_SET_BANK_COUNT_MAX;
962 
963 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
964 			cpu_vmbus = hv_cpu_number_to_vp_number(cpu);
965 
966 			if (cpu_vmbus >= HV_VP_SET_BANK_COUNT_MAX * 64) {
967 				dev_err(&hbus->hdev->device,
968 					"too high CPU %d", cpu_vmbus);
969 				res = 1;
970 				goto exit_unlock;
971 			}
972 
973 			params->int_target.vp_set.masks[cpu_vmbus / 64] |=
974 				(1ULL << (cpu_vmbus & 63));
975 		}
976 	} else {
977 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
978 			params->int_target.vp_mask |=
979 				(1ULL << hv_cpu_number_to_vp_number(cpu));
980 		}
981 	}
982 
983 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
984 			      params, NULL);
985 
986 exit_unlock:
987 	spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags);
988 
989 	if (res) {
990 		dev_err(&hbus->hdev->device,
991 			"%s() failed: %#llx", __func__, res);
992 		return;
993 	}
994 
995 	pci_msi_unmask_irq(data);
996 }
997 
998 struct compose_comp_ctxt {
999 	struct hv_pci_compl comp_pkt;
1000 	struct tran_int_desc int_desc;
1001 };
1002 
1003 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1004 				 int resp_packet_size)
1005 {
1006 	struct compose_comp_ctxt *comp_pkt = context;
1007 	struct pci_create_int_response *int_resp =
1008 		(struct pci_create_int_response *)resp;
1009 
1010 	comp_pkt->comp_pkt.completion_status = resp->status;
1011 	comp_pkt->int_desc = int_resp->int_desc;
1012 	complete(&comp_pkt->comp_pkt.host_event);
1013 }
1014 
1015 static u32 hv_compose_msi_req_v1(
1016 	struct pci_create_interrupt *int_pkt, struct cpumask *affinity,
1017 	u32 slot, u8 vector)
1018 {
1019 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1020 	int_pkt->wslot.slot = slot;
1021 	int_pkt->int_desc.vector = vector;
1022 	int_pkt->int_desc.vector_count = 1;
1023 	int_pkt->int_desc.delivery_mode = dest_Fixed;
1024 
1025 	/*
1026 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1027 	 * hv_irq_unmask().
1028 	 */
1029 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1030 
1031 	return sizeof(*int_pkt);
1032 }
1033 
1034 static u32 hv_compose_msi_req_v2(
1035 	struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity,
1036 	u32 slot, u8 vector)
1037 {
1038 	int cpu;
1039 
1040 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1041 	int_pkt->wslot.slot = slot;
1042 	int_pkt->int_desc.vector = vector;
1043 	int_pkt->int_desc.vector_count = 1;
1044 	int_pkt->int_desc.delivery_mode = dest_Fixed;
1045 
1046 	/*
1047 	 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1048 	 * by subsequent retarget in hv_irq_unmask().
1049 	 */
1050 	cpu = cpumask_first_and(affinity, cpu_online_mask);
1051 	int_pkt->int_desc.processor_array[0] =
1052 		hv_cpu_number_to_vp_number(cpu);
1053 	int_pkt->int_desc.processor_count = 1;
1054 
1055 	return sizeof(*int_pkt);
1056 }
1057 
1058 /**
1059  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1060  * @data:	Everything about this MSI
1061  * @msg:	Buffer that is filled in by this function
1062  *
1063  * This function unpacks the IRQ looking for target CPU set, IDT
1064  * vector and mode and sends a message to the parent partition
1065  * asking for a mapping for that tuple in this partition.  The
1066  * response supplies a data value and address to which that data
1067  * should be written to trigger that interrupt.
1068  */
1069 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1070 {
1071 	struct irq_cfg *cfg = irqd_cfg(data);
1072 	struct hv_pcibus_device *hbus;
1073 	struct hv_pci_dev *hpdev;
1074 	struct pci_bus *pbus;
1075 	struct pci_dev *pdev;
1076 	struct cpumask *dest;
1077 	unsigned long flags;
1078 	struct compose_comp_ctxt comp;
1079 	struct tran_int_desc *int_desc;
1080 	struct {
1081 		struct pci_packet pci_pkt;
1082 		union {
1083 			struct pci_create_interrupt v1;
1084 			struct pci_create_interrupt2 v2;
1085 		} int_pkts;
1086 	} __packed ctxt;
1087 
1088 	u32 size;
1089 	int ret;
1090 
1091 	pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data));
1092 	dest = irq_data_get_effective_affinity_mask(data);
1093 	pbus = pdev->bus;
1094 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1095 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1096 	if (!hpdev)
1097 		goto return_null_message;
1098 
1099 	/* Free any previous message that might have already been composed. */
1100 	if (data->chip_data) {
1101 		int_desc = data->chip_data;
1102 		data->chip_data = NULL;
1103 		hv_int_desc_free(hpdev, int_desc);
1104 	}
1105 
1106 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1107 	if (!int_desc)
1108 		goto drop_reference;
1109 
1110 	memset(&ctxt, 0, sizeof(ctxt));
1111 	init_completion(&comp.comp_pkt.host_event);
1112 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1113 	ctxt.pci_pkt.compl_ctxt = &comp;
1114 
1115 	switch (pci_protocol_version) {
1116 	case PCI_PROTOCOL_VERSION_1_1:
1117 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1118 					dest,
1119 					hpdev->desc.win_slot.slot,
1120 					cfg->vector);
1121 		break;
1122 
1123 	case PCI_PROTOCOL_VERSION_1_2:
1124 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1125 					dest,
1126 					hpdev->desc.win_slot.slot,
1127 					cfg->vector);
1128 		break;
1129 
1130 	default:
1131 		/* As we only negotiate protocol versions known to this driver,
1132 		 * this path should never hit. However, this is it not a hot
1133 		 * path so we print a message to aid future updates.
1134 		 */
1135 		dev_err(&hbus->hdev->device,
1136 			"Unexpected vPCI protocol, update driver.");
1137 		goto free_int_desc;
1138 	}
1139 
1140 	ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1141 			       size, (unsigned long)&ctxt.pci_pkt,
1142 			       VM_PKT_DATA_INBAND,
1143 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1144 	if (ret) {
1145 		dev_err(&hbus->hdev->device,
1146 			"Sending request for interrupt failed: 0x%x",
1147 			comp.comp_pkt.completion_status);
1148 		goto free_int_desc;
1149 	}
1150 
1151 	/*
1152 	 * Since this function is called with IRQ locks held, can't
1153 	 * do normal wait for completion; instead poll.
1154 	 */
1155 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1156 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1157 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1158 			dev_err_once(&hbus->hdev->device,
1159 				     "the device has gone\n");
1160 			goto free_int_desc;
1161 		}
1162 
1163 		/*
1164 		 * When the higher level interrupt code calls us with
1165 		 * interrupt disabled, we must poll the channel by calling
1166 		 * the channel callback directly when channel->target_cpu is
1167 		 * the current CPU. When the higher level interrupt code
1168 		 * calls us with interrupt enabled, let's add the
1169 		 * local_irq_save()/restore() to avoid race:
1170 		 * hv_pci_onchannelcallback() can also run in tasklet.
1171 		 */
1172 		local_irq_save(flags);
1173 
1174 		if (hbus->hdev->channel->target_cpu == smp_processor_id())
1175 			hv_pci_onchannelcallback(hbus);
1176 
1177 		local_irq_restore(flags);
1178 
1179 		if (hpdev->state == hv_pcichild_ejecting) {
1180 			dev_err_once(&hbus->hdev->device,
1181 				     "the device is being ejected\n");
1182 			goto free_int_desc;
1183 		}
1184 
1185 		udelay(100);
1186 	}
1187 
1188 	if (comp.comp_pkt.completion_status < 0) {
1189 		dev_err(&hbus->hdev->device,
1190 			"Request for interrupt failed: 0x%x",
1191 			comp.comp_pkt.completion_status);
1192 		goto free_int_desc;
1193 	}
1194 
1195 	/*
1196 	 * Record the assignment so that this can be unwound later. Using
1197 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
1198 	 * is already held.
1199 	 */
1200 	*int_desc = comp.int_desc;
1201 	data->chip_data = int_desc;
1202 
1203 	/* Pass up the result. */
1204 	msg->address_hi = comp.int_desc.address >> 32;
1205 	msg->address_lo = comp.int_desc.address & 0xffffffff;
1206 	msg->data = comp.int_desc.data;
1207 
1208 	put_pcichild(hpdev);
1209 	return;
1210 
1211 free_int_desc:
1212 	kfree(int_desc);
1213 drop_reference:
1214 	put_pcichild(hpdev);
1215 return_null_message:
1216 	msg->address_hi = 0;
1217 	msg->address_lo = 0;
1218 	msg->data = 0;
1219 }
1220 
1221 /* HW Interrupt Chip Descriptor */
1222 static struct irq_chip hv_msi_irq_chip = {
1223 	.name			= "Hyper-V PCIe MSI",
1224 	.irq_compose_msi_msg	= hv_compose_msi_msg,
1225 	.irq_set_affinity	= hv_set_affinity,
1226 	.irq_ack		= irq_chip_ack_parent,
1227 	.irq_mask		= hv_irq_mask,
1228 	.irq_unmask		= hv_irq_unmask,
1229 };
1230 
1231 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info,
1232 						   msi_alloc_info_t *arg)
1233 {
1234 	return arg->msi_hwirq;
1235 }
1236 
1237 static struct msi_domain_ops hv_msi_ops = {
1238 	.get_hwirq	= hv_msi_domain_ops_get_hwirq,
1239 	.msi_prepare	= pci_msi_prepare,
1240 	.set_desc	= pci_msi_set_desc,
1241 	.msi_free	= hv_msi_free,
1242 };
1243 
1244 /**
1245  * hv_pcie_init_irq_domain() - Initialize IRQ domain
1246  * @hbus:	The root PCI bus
1247  *
1248  * This function creates an IRQ domain which will be used for
1249  * interrupts from devices that have been passed through.  These
1250  * devices only support MSI and MSI-X, not line-based interrupts
1251  * or simulations of line-based interrupts through PCIe's
1252  * fabric-layer messages.  Because interrupts are remapped, we
1253  * can support multi-message MSI here.
1254  *
1255  * Return: '0' on success and error value on failure
1256  */
1257 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
1258 {
1259 	hbus->msi_info.chip = &hv_msi_irq_chip;
1260 	hbus->msi_info.ops = &hv_msi_ops;
1261 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
1262 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
1263 		MSI_FLAG_PCI_MSIX);
1264 	hbus->msi_info.handler = handle_edge_irq;
1265 	hbus->msi_info.handler_name = "edge";
1266 	hbus->msi_info.data = hbus;
1267 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode,
1268 						     &hbus->msi_info,
1269 						     x86_vector_domain);
1270 	if (!hbus->irq_domain) {
1271 		dev_err(&hbus->hdev->device,
1272 			"Failed to build an MSI IRQ domain\n");
1273 		return -ENODEV;
1274 	}
1275 
1276 	return 0;
1277 }
1278 
1279 /**
1280  * get_bar_size() - Get the address space consumed by a BAR
1281  * @bar_val:	Value that a BAR returned after -1 was written
1282  *              to it.
1283  *
1284  * This function returns the size of the BAR, rounded up to 1
1285  * page.  It has to be rounded up because the hypervisor's page
1286  * table entry that maps the BAR into the VM can't specify an
1287  * offset within a page.  The invariant is that the hypervisor
1288  * must place any BARs of smaller than page length at the
1289  * beginning of a page.
1290  *
1291  * Return:	Size in bytes of the consumed MMIO space.
1292  */
1293 static u64 get_bar_size(u64 bar_val)
1294 {
1295 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
1296 			PAGE_SIZE);
1297 }
1298 
1299 /**
1300  * survey_child_resources() - Total all MMIO requirements
1301  * @hbus:	Root PCI bus, as understood by this driver
1302  */
1303 static void survey_child_resources(struct hv_pcibus_device *hbus)
1304 {
1305 	struct hv_pci_dev *hpdev;
1306 	resource_size_t bar_size = 0;
1307 	unsigned long flags;
1308 	struct completion *event;
1309 	u64 bar_val;
1310 	int i;
1311 
1312 	/* If nobody is waiting on the answer, don't compute it. */
1313 	event = xchg(&hbus->survey_event, NULL);
1314 	if (!event)
1315 		return;
1316 
1317 	/* If the answer has already been computed, go with it. */
1318 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
1319 		complete(event);
1320 		return;
1321 	}
1322 
1323 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1324 
1325 	/*
1326 	 * Due to an interesting quirk of the PCI spec, all memory regions
1327 	 * for a child device are a power of 2 in size and aligned in memory,
1328 	 * so it's sufficient to just add them up without tracking alignment.
1329 	 */
1330 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1331 		for (i = 0; i < 6; i++) {
1332 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
1333 				dev_err(&hbus->hdev->device,
1334 					"There's an I/O BAR in this list!\n");
1335 
1336 			if (hpdev->probed_bar[i] != 0) {
1337 				/*
1338 				 * A probed BAR has all the upper bits set that
1339 				 * can be changed.
1340 				 */
1341 
1342 				bar_val = hpdev->probed_bar[i];
1343 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1344 					bar_val |=
1345 					((u64)hpdev->probed_bar[++i] << 32);
1346 				else
1347 					bar_val |= 0xffffffff00000000ULL;
1348 
1349 				bar_size = get_bar_size(bar_val);
1350 
1351 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
1352 					hbus->high_mmio_space += bar_size;
1353 				else
1354 					hbus->low_mmio_space += bar_size;
1355 			}
1356 		}
1357 	}
1358 
1359 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1360 	complete(event);
1361 }
1362 
1363 /**
1364  * prepopulate_bars() - Fill in BARs with defaults
1365  * @hbus:	Root PCI bus, as understood by this driver
1366  *
1367  * The core PCI driver code seems much, much happier if the BARs
1368  * for a device have values upon first scan. So fill them in.
1369  * The algorithm below works down from large sizes to small,
1370  * attempting to pack the assignments optimally. The assumption,
1371  * enforced in other parts of the code, is that the beginning of
1372  * the memory-mapped I/O space will be aligned on the largest
1373  * BAR size.
1374  */
1375 static void prepopulate_bars(struct hv_pcibus_device *hbus)
1376 {
1377 	resource_size_t high_size = 0;
1378 	resource_size_t low_size = 0;
1379 	resource_size_t high_base = 0;
1380 	resource_size_t low_base = 0;
1381 	resource_size_t bar_size;
1382 	struct hv_pci_dev *hpdev;
1383 	unsigned long flags;
1384 	u64 bar_val;
1385 	u32 command;
1386 	bool high;
1387 	int i;
1388 
1389 	if (hbus->low_mmio_space) {
1390 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
1391 		low_base = hbus->low_mmio_res->start;
1392 	}
1393 
1394 	if (hbus->high_mmio_space) {
1395 		high_size = 1ULL <<
1396 			(63 - __builtin_clzll(hbus->high_mmio_space));
1397 		high_base = hbus->high_mmio_res->start;
1398 	}
1399 
1400 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1401 
1402 	/* Pick addresses for the BARs. */
1403 	do {
1404 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1405 			for (i = 0; i < 6; i++) {
1406 				bar_val = hpdev->probed_bar[i];
1407 				if (bar_val == 0)
1408 					continue;
1409 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
1410 				if (high) {
1411 					bar_val |=
1412 						((u64)hpdev->probed_bar[i + 1]
1413 						 << 32);
1414 				} else {
1415 					bar_val |= 0xffffffffULL << 32;
1416 				}
1417 				bar_size = get_bar_size(bar_val);
1418 				if (high) {
1419 					if (high_size != bar_size) {
1420 						i++;
1421 						continue;
1422 					}
1423 					_hv_pcifront_write_config(hpdev,
1424 						PCI_BASE_ADDRESS_0 + (4 * i),
1425 						4,
1426 						(u32)(high_base & 0xffffff00));
1427 					i++;
1428 					_hv_pcifront_write_config(hpdev,
1429 						PCI_BASE_ADDRESS_0 + (4 * i),
1430 						4, (u32)(high_base >> 32));
1431 					high_base += bar_size;
1432 				} else {
1433 					if (low_size != bar_size)
1434 						continue;
1435 					_hv_pcifront_write_config(hpdev,
1436 						PCI_BASE_ADDRESS_0 + (4 * i),
1437 						4,
1438 						(u32)(low_base & 0xffffff00));
1439 					low_base += bar_size;
1440 				}
1441 			}
1442 			if (high_size <= 1 && low_size <= 1) {
1443 				/* Set the memory enable bit. */
1444 				_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2,
1445 							 &command);
1446 				command |= PCI_COMMAND_MEMORY;
1447 				_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2,
1448 							  command);
1449 				break;
1450 			}
1451 		}
1452 
1453 		high_size >>= 1;
1454 		low_size >>= 1;
1455 	}  while (high_size || low_size);
1456 
1457 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1458 }
1459 
1460 /**
1461  * create_root_hv_pci_bus() - Expose a new root PCI bus
1462  * @hbus:	Root PCI bus, as understood by this driver
1463  *
1464  * Return: 0 on success, -errno on failure
1465  */
1466 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
1467 {
1468 	/* Register the device */
1469 	hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device,
1470 					    0, /* bus number is always zero */
1471 					    &hv_pcifront_ops,
1472 					    &hbus->sysdata,
1473 					    &hbus->resources_for_children);
1474 	if (!hbus->pci_bus)
1475 		return -ENODEV;
1476 
1477 	hbus->pci_bus->msi = &hbus->msi_chip;
1478 	hbus->pci_bus->msi->dev = &hbus->hdev->device;
1479 
1480 	pci_lock_rescan_remove();
1481 	pci_scan_child_bus(hbus->pci_bus);
1482 	pci_bus_assign_resources(hbus->pci_bus);
1483 	pci_bus_add_devices(hbus->pci_bus);
1484 	pci_unlock_rescan_remove();
1485 	hbus->state = hv_pcibus_installed;
1486 	return 0;
1487 }
1488 
1489 struct q_res_req_compl {
1490 	struct completion host_event;
1491 	struct hv_pci_dev *hpdev;
1492 };
1493 
1494 /**
1495  * q_resource_requirements() - Query Resource Requirements
1496  * @context:		The completion context.
1497  * @resp:		The response that came from the host.
1498  * @resp_packet_size:	The size in bytes of resp.
1499  *
1500  * This function is invoked on completion of a Query Resource
1501  * Requirements packet.
1502  */
1503 static void q_resource_requirements(void *context, struct pci_response *resp,
1504 				    int resp_packet_size)
1505 {
1506 	struct q_res_req_compl *completion = context;
1507 	struct pci_q_res_req_response *q_res_req =
1508 		(struct pci_q_res_req_response *)resp;
1509 	int i;
1510 
1511 	if (resp->status < 0) {
1512 		dev_err(&completion->hpdev->hbus->hdev->device,
1513 			"query resource requirements failed: %x\n",
1514 			resp->status);
1515 	} else {
1516 		for (i = 0; i < 6; i++) {
1517 			completion->hpdev->probed_bar[i] =
1518 				q_res_req->probed_bar[i];
1519 		}
1520 	}
1521 
1522 	complete(&completion->host_event);
1523 }
1524 
1525 /**
1526  * new_pcichild_device() - Create a new child device
1527  * @hbus:	The internal struct tracking this root PCI bus.
1528  * @desc:	The information supplied so far from the host
1529  *              about the device.
1530  *
1531  * This function creates the tracking structure for a new child
1532  * device and kicks off the process of figuring out what it is.
1533  *
1534  * Return: Pointer to the new tracking struct
1535  */
1536 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
1537 		struct pci_function_description *desc)
1538 {
1539 	struct hv_pci_dev *hpdev;
1540 	struct pci_child_message *res_req;
1541 	struct q_res_req_compl comp_pkt;
1542 	struct {
1543 		struct pci_packet init_packet;
1544 		u8 buffer[sizeof(struct pci_child_message)];
1545 	} pkt;
1546 	unsigned long flags;
1547 	int ret;
1548 
1549 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
1550 	if (!hpdev)
1551 		return NULL;
1552 
1553 	hpdev->hbus = hbus;
1554 
1555 	memset(&pkt, 0, sizeof(pkt));
1556 	init_completion(&comp_pkt.host_event);
1557 	comp_pkt.hpdev = hpdev;
1558 	pkt.init_packet.compl_ctxt = &comp_pkt;
1559 	pkt.init_packet.completion_func = q_resource_requirements;
1560 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
1561 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
1562 	res_req->wslot.slot = desc->win_slot.slot;
1563 
1564 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
1565 			       sizeof(struct pci_child_message),
1566 			       (unsigned long)&pkt.init_packet,
1567 			       VM_PKT_DATA_INBAND,
1568 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1569 	if (ret)
1570 		goto error;
1571 
1572 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
1573 		goto error;
1574 
1575 	hpdev->desc = *desc;
1576 	refcount_set(&hpdev->refs, 1);
1577 	get_pcichild(hpdev);
1578 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1579 
1580 	list_add_tail(&hpdev->list_entry, &hbus->children);
1581 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1582 	return hpdev;
1583 
1584 error:
1585 	kfree(hpdev);
1586 	return NULL;
1587 }
1588 
1589 /**
1590  * get_pcichild_wslot() - Find device from slot
1591  * @hbus:	Root PCI bus, as understood by this driver
1592  * @wslot:	Location on the bus
1593  *
1594  * This function looks up a PCI device and returns the internal
1595  * representation of it.  It acquires a reference on it, so that
1596  * the device won't be deleted while somebody is using it.  The
1597  * caller is responsible for calling put_pcichild() to release
1598  * this reference.
1599  *
1600  * Return:	Internal representation of a PCI device
1601  */
1602 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1603 					     u32 wslot)
1604 {
1605 	unsigned long flags;
1606 	struct hv_pci_dev *iter, *hpdev = NULL;
1607 
1608 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1609 	list_for_each_entry(iter, &hbus->children, list_entry) {
1610 		if (iter->desc.win_slot.slot == wslot) {
1611 			hpdev = iter;
1612 			get_pcichild(hpdev);
1613 			break;
1614 		}
1615 	}
1616 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1617 
1618 	return hpdev;
1619 }
1620 
1621 /**
1622  * pci_devices_present_work() - Handle new list of child devices
1623  * @work:	Work struct embedded in struct hv_dr_work
1624  *
1625  * "Bus Relations" is the Windows term for "children of this
1626  * bus."  The terminology is preserved here for people trying to
1627  * debug the interaction between Hyper-V and Linux.  This
1628  * function is called when the parent partition reports a list
1629  * of functions that should be observed under this PCI Express
1630  * port (bus).
1631  *
1632  * This function updates the list, and must tolerate being
1633  * called multiple times with the same information.  The typical
1634  * number of child devices is one, with very atypical cases
1635  * involving three or four, so the algorithms used here can be
1636  * simple and inefficient.
1637  *
1638  * It must also treat the omission of a previously observed device as
1639  * notification that the device no longer exists.
1640  *
1641  * Note that this function is serialized with hv_eject_device_work(),
1642  * because both are pushed to the ordered workqueue hbus->wq.
1643  */
1644 static void pci_devices_present_work(struct work_struct *work)
1645 {
1646 	u32 child_no;
1647 	bool found;
1648 	struct pci_function_description *new_desc;
1649 	struct hv_pci_dev *hpdev;
1650 	struct hv_pcibus_device *hbus;
1651 	struct list_head removed;
1652 	struct hv_dr_work *dr_wrk;
1653 	struct hv_dr_state *dr = NULL;
1654 	unsigned long flags;
1655 
1656 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
1657 	hbus = dr_wrk->bus;
1658 	kfree(dr_wrk);
1659 
1660 	INIT_LIST_HEAD(&removed);
1661 
1662 	/* Pull this off the queue and process it if it was the last one. */
1663 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1664 	while (!list_empty(&hbus->dr_list)) {
1665 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
1666 				      list_entry);
1667 		list_del(&dr->list_entry);
1668 
1669 		/* Throw this away if the list still has stuff in it. */
1670 		if (!list_empty(&hbus->dr_list)) {
1671 			kfree(dr);
1672 			continue;
1673 		}
1674 	}
1675 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1676 
1677 	if (!dr) {
1678 		put_hvpcibus(hbus);
1679 		return;
1680 	}
1681 
1682 	/* First, mark all existing children as reported missing. */
1683 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1684 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
1685 		hpdev->reported_missing = true;
1686 	}
1687 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1688 
1689 	/* Next, add back any reported devices. */
1690 	for (child_no = 0; child_no < dr->device_count; child_no++) {
1691 		found = false;
1692 		new_desc = &dr->func[child_no];
1693 
1694 		spin_lock_irqsave(&hbus->device_list_lock, flags);
1695 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1696 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
1697 			    (hpdev->desc.v_id == new_desc->v_id) &&
1698 			    (hpdev->desc.d_id == new_desc->d_id) &&
1699 			    (hpdev->desc.ser == new_desc->ser)) {
1700 				hpdev->reported_missing = false;
1701 				found = true;
1702 			}
1703 		}
1704 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1705 
1706 		if (!found) {
1707 			hpdev = new_pcichild_device(hbus, new_desc);
1708 			if (!hpdev)
1709 				dev_err(&hbus->hdev->device,
1710 					"couldn't record a child device.\n");
1711 		}
1712 	}
1713 
1714 	/* Move missing children to a list on the stack. */
1715 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1716 	do {
1717 		found = false;
1718 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
1719 			if (hpdev->reported_missing) {
1720 				found = true;
1721 				put_pcichild(hpdev);
1722 				list_move_tail(&hpdev->list_entry, &removed);
1723 				break;
1724 			}
1725 		}
1726 	} while (found);
1727 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1728 
1729 	/* Delete everything that should no longer exist. */
1730 	while (!list_empty(&removed)) {
1731 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
1732 					 list_entry);
1733 		list_del(&hpdev->list_entry);
1734 		put_pcichild(hpdev);
1735 	}
1736 
1737 	switch (hbus->state) {
1738 	case hv_pcibus_installed:
1739 		/*
1740 		 * Tell the core to rescan bus
1741 		 * because there may have been changes.
1742 		 */
1743 		pci_lock_rescan_remove();
1744 		pci_scan_child_bus(hbus->pci_bus);
1745 		pci_unlock_rescan_remove();
1746 		break;
1747 
1748 	case hv_pcibus_init:
1749 	case hv_pcibus_probed:
1750 		survey_child_resources(hbus);
1751 		break;
1752 
1753 	default:
1754 		break;
1755 	}
1756 
1757 	put_hvpcibus(hbus);
1758 	kfree(dr);
1759 }
1760 
1761 /**
1762  * hv_pci_devices_present() - Handles list of new children
1763  * @hbus:	Root PCI bus, as understood by this driver
1764  * @relations:	Packet from host listing children
1765  *
1766  * This function is invoked whenever a new list of devices for
1767  * this bus appears.
1768  */
1769 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
1770 				   struct pci_bus_relations *relations)
1771 {
1772 	struct hv_dr_state *dr;
1773 	struct hv_dr_work *dr_wrk;
1774 	unsigned long flags;
1775 	bool pending_dr;
1776 
1777 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
1778 	if (!dr_wrk)
1779 		return;
1780 
1781 	dr = kzalloc(offsetof(struct hv_dr_state, func) +
1782 		     (sizeof(struct pci_function_description) *
1783 		      (relations->device_count)), GFP_NOWAIT);
1784 	if (!dr)  {
1785 		kfree(dr_wrk);
1786 		return;
1787 	}
1788 
1789 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
1790 	dr_wrk->bus = hbus;
1791 	dr->device_count = relations->device_count;
1792 	if (dr->device_count != 0) {
1793 		memcpy(dr->func, relations->func,
1794 		       sizeof(struct pci_function_description) *
1795 		       dr->device_count);
1796 	}
1797 
1798 	spin_lock_irqsave(&hbus->device_list_lock, flags);
1799 	/*
1800 	 * If pending_dr is true, we have already queued a work,
1801 	 * which will see the new dr. Otherwise, we need to
1802 	 * queue a new work.
1803 	 */
1804 	pending_dr = !list_empty(&hbus->dr_list);
1805 	list_add_tail(&dr->list_entry, &hbus->dr_list);
1806 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
1807 
1808 	if (pending_dr) {
1809 		kfree(dr_wrk);
1810 	} else {
1811 		get_hvpcibus(hbus);
1812 		queue_work(hbus->wq, &dr_wrk->wrk);
1813 	}
1814 }
1815 
1816 /**
1817  * hv_eject_device_work() - Asynchronously handles ejection
1818  * @work:	Work struct embedded in internal device struct
1819  *
1820  * This function handles ejecting a device.  Windows will
1821  * attempt to gracefully eject a device, waiting 60 seconds to
1822  * hear back from the guest OS that this completed successfully.
1823  * If this timer expires, the device will be forcibly removed.
1824  */
1825 static void hv_eject_device_work(struct work_struct *work)
1826 {
1827 	struct pci_eject_response *ejct_pkt;
1828 	struct hv_pci_dev *hpdev;
1829 	struct pci_dev *pdev;
1830 	unsigned long flags;
1831 	int wslot;
1832 	struct {
1833 		struct pci_packet pkt;
1834 		u8 buffer[sizeof(struct pci_eject_response)];
1835 	} ctxt;
1836 
1837 	hpdev = container_of(work, struct hv_pci_dev, wrk);
1838 
1839 	WARN_ON(hpdev->state != hv_pcichild_ejecting);
1840 
1841 	/*
1842 	 * Ejection can come before or after the PCI bus has been set up, so
1843 	 * attempt to find it and tear down the bus state, if it exists.  This
1844 	 * must be done without constructs like pci_domain_nr(hbus->pci_bus)
1845 	 * because hbus->pci_bus may not exist yet.
1846 	 */
1847 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
1848 	pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0,
1849 					   wslot);
1850 	if (pdev) {
1851 		pci_lock_rescan_remove();
1852 		pci_stop_and_remove_bus_device(pdev);
1853 		pci_dev_put(pdev);
1854 		pci_unlock_rescan_remove();
1855 	}
1856 
1857 	spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags);
1858 	list_del(&hpdev->list_entry);
1859 	spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags);
1860 
1861 	memset(&ctxt, 0, sizeof(ctxt));
1862 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
1863 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
1864 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1865 	vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt,
1866 			 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt,
1867 			 VM_PKT_DATA_INBAND, 0);
1868 
1869 	put_pcichild(hpdev);
1870 	put_pcichild(hpdev);
1871 	put_hvpcibus(hpdev->hbus);
1872 }
1873 
1874 /**
1875  * hv_pci_eject_device() - Handles device ejection
1876  * @hpdev:	Internal device tracking struct
1877  *
1878  * This function is invoked when an ejection packet arrives.  It
1879  * just schedules work so that we don't re-enter the packet
1880  * delivery code handling the ejection.
1881  */
1882 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
1883 {
1884 	hpdev->state = hv_pcichild_ejecting;
1885 	get_pcichild(hpdev);
1886 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
1887 	get_hvpcibus(hpdev->hbus);
1888 	queue_work(hpdev->hbus->wq, &hpdev->wrk);
1889 }
1890 
1891 /**
1892  * hv_pci_onchannelcallback() - Handles incoming packets
1893  * @context:	Internal bus tracking struct
1894  *
1895  * This function is invoked whenever the host sends a packet to
1896  * this channel (which is private to this root PCI bus).
1897  */
1898 static void hv_pci_onchannelcallback(void *context)
1899 {
1900 	const int packet_size = 0x100;
1901 	int ret;
1902 	struct hv_pcibus_device *hbus = context;
1903 	u32 bytes_recvd;
1904 	u64 req_id;
1905 	struct vmpacket_descriptor *desc;
1906 	unsigned char *buffer;
1907 	int bufferlen = packet_size;
1908 	struct pci_packet *comp_packet;
1909 	struct pci_response *response;
1910 	struct pci_incoming_message *new_message;
1911 	struct pci_bus_relations *bus_rel;
1912 	struct pci_dev_incoming *dev_message;
1913 	struct hv_pci_dev *hpdev;
1914 
1915 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
1916 	if (!buffer)
1917 		return;
1918 
1919 	while (1) {
1920 		ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer,
1921 					   bufferlen, &bytes_recvd, &req_id);
1922 
1923 		if (ret == -ENOBUFS) {
1924 			kfree(buffer);
1925 			/* Handle large packet */
1926 			bufferlen = bytes_recvd;
1927 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
1928 			if (!buffer)
1929 				return;
1930 			continue;
1931 		}
1932 
1933 		/* Zero length indicates there are no more packets. */
1934 		if (ret || !bytes_recvd)
1935 			break;
1936 
1937 		/*
1938 		 * All incoming packets must be at least as large as a
1939 		 * response.
1940 		 */
1941 		if (bytes_recvd <= sizeof(struct pci_response))
1942 			continue;
1943 		desc = (struct vmpacket_descriptor *)buffer;
1944 
1945 		switch (desc->type) {
1946 		case VM_PKT_COMP:
1947 
1948 			/*
1949 			 * The host is trusted, and thus it's safe to interpret
1950 			 * this transaction ID as a pointer.
1951 			 */
1952 			comp_packet = (struct pci_packet *)req_id;
1953 			response = (struct pci_response *)buffer;
1954 			comp_packet->completion_func(comp_packet->compl_ctxt,
1955 						     response,
1956 						     bytes_recvd);
1957 			break;
1958 
1959 		case VM_PKT_DATA_INBAND:
1960 
1961 			new_message = (struct pci_incoming_message *)buffer;
1962 			switch (new_message->message_type.type) {
1963 			case PCI_BUS_RELATIONS:
1964 
1965 				bus_rel = (struct pci_bus_relations *)buffer;
1966 				if (bytes_recvd <
1967 				    offsetof(struct pci_bus_relations, func) +
1968 				    (sizeof(struct pci_function_description) *
1969 				     (bus_rel->device_count))) {
1970 					dev_err(&hbus->hdev->device,
1971 						"bus relations too small\n");
1972 					break;
1973 				}
1974 
1975 				hv_pci_devices_present(hbus, bus_rel);
1976 				break;
1977 
1978 			case PCI_EJECT:
1979 
1980 				dev_message = (struct pci_dev_incoming *)buffer;
1981 				hpdev = get_pcichild_wslot(hbus,
1982 						      dev_message->wslot.slot);
1983 				if (hpdev) {
1984 					hv_pci_eject_device(hpdev);
1985 					put_pcichild(hpdev);
1986 				}
1987 				break;
1988 
1989 			default:
1990 				dev_warn(&hbus->hdev->device,
1991 					"Unimplemented protocol message %x\n",
1992 					new_message->message_type.type);
1993 				break;
1994 			}
1995 			break;
1996 
1997 		default:
1998 			dev_err(&hbus->hdev->device,
1999 				"unhandled packet type %d, tid %llx len %d\n",
2000 				desc->type, req_id, bytes_recvd);
2001 			break;
2002 		}
2003 	}
2004 
2005 	kfree(buffer);
2006 }
2007 
2008 /**
2009  * hv_pci_protocol_negotiation() - Set up protocol
2010  * @hdev:	VMBus's tracking struct for this root PCI bus
2011  *
2012  * This driver is intended to support running on Windows 10
2013  * (server) and later versions. It will not run on earlier
2014  * versions, as they assume that many of the operations which
2015  * Linux needs accomplished with a spinlock held were done via
2016  * asynchronous messaging via VMBus.  Windows 10 increases the
2017  * surface area of PCI emulation so that these actions can take
2018  * place by suspending a virtual processor for their duration.
2019  *
2020  * This function negotiates the channel protocol version,
2021  * failing if the host doesn't support the necessary protocol
2022  * level.
2023  */
2024 static int hv_pci_protocol_negotiation(struct hv_device *hdev)
2025 {
2026 	struct pci_version_request *version_req;
2027 	struct hv_pci_compl comp_pkt;
2028 	struct pci_packet *pkt;
2029 	int ret;
2030 	int i;
2031 
2032 	/*
2033 	 * Initiate the handshake with the host and negotiate
2034 	 * a version that the host can support. We start with the
2035 	 * highest version number and go down if the host cannot
2036 	 * support it.
2037 	 */
2038 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
2039 	if (!pkt)
2040 		return -ENOMEM;
2041 
2042 	init_completion(&comp_pkt.host_event);
2043 	pkt->completion_func = hv_pci_generic_compl;
2044 	pkt->compl_ctxt = &comp_pkt;
2045 	version_req = (struct pci_version_request *)&pkt->message;
2046 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
2047 
2048 	for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) {
2049 		version_req->protocol_version = pci_protocol_versions[i];
2050 		ret = vmbus_sendpacket(hdev->channel, version_req,
2051 				sizeof(struct pci_version_request),
2052 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
2053 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2054 		if (!ret)
2055 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2056 
2057 		if (ret) {
2058 			dev_err(&hdev->device,
2059 				"PCI Pass-through VSP failed to request version: %d",
2060 				ret);
2061 			goto exit;
2062 		}
2063 
2064 		if (comp_pkt.completion_status >= 0) {
2065 			pci_protocol_version = pci_protocol_versions[i];
2066 			dev_info(&hdev->device,
2067 				"PCI VMBus probing: Using version %#x\n",
2068 				pci_protocol_version);
2069 			goto exit;
2070 		}
2071 
2072 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
2073 			dev_err(&hdev->device,
2074 				"PCI Pass-through VSP failed version request: %#x",
2075 				comp_pkt.completion_status);
2076 			ret = -EPROTO;
2077 			goto exit;
2078 		}
2079 
2080 		reinit_completion(&comp_pkt.host_event);
2081 	}
2082 
2083 	dev_err(&hdev->device,
2084 		"PCI pass-through VSP failed to find supported version");
2085 	ret = -EPROTO;
2086 
2087 exit:
2088 	kfree(pkt);
2089 	return ret;
2090 }
2091 
2092 /**
2093  * hv_pci_free_bridge_windows() - Release memory regions for the
2094  * bus
2095  * @hbus:	Root PCI bus, as understood by this driver
2096  */
2097 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
2098 {
2099 	/*
2100 	 * Set the resources back to the way they looked when they
2101 	 * were allocated by setting IORESOURCE_BUSY again.
2102 	 */
2103 
2104 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
2105 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
2106 		vmbus_free_mmio(hbus->low_mmio_res->start,
2107 				resource_size(hbus->low_mmio_res));
2108 	}
2109 
2110 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
2111 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
2112 		vmbus_free_mmio(hbus->high_mmio_res->start,
2113 				resource_size(hbus->high_mmio_res));
2114 	}
2115 }
2116 
2117 /**
2118  * hv_pci_allocate_bridge_windows() - Allocate memory regions
2119  * for the bus
2120  * @hbus:	Root PCI bus, as understood by this driver
2121  *
2122  * This function calls vmbus_allocate_mmio(), which is itself a
2123  * bit of a compromise.  Ideally, we might change the pnp layer
2124  * in the kernel such that it comprehends either PCI devices
2125  * which are "grandchildren of ACPI," with some intermediate bus
2126  * node (in this case, VMBus) or change it such that it
2127  * understands VMBus.  The pnp layer, however, has been declared
2128  * deprecated, and not subject to change.
2129  *
2130  * The workaround, implemented here, is to ask VMBus to allocate
2131  * MMIO space for this bus.  VMBus itself knows which ranges are
2132  * appropriate by looking at its own ACPI objects.  Then, after
2133  * these ranges are claimed, they're modified to look like they
2134  * would have looked if the ACPI and pnp code had allocated
2135  * bridge windows.  These descriptors have to exist in this form
2136  * in order to satisfy the code which will get invoked when the
2137  * endpoint PCI function driver calls request_mem_region() or
2138  * request_mem_region_exclusive().
2139  *
2140  * Return: 0 on success, -errno on failure
2141  */
2142 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
2143 {
2144 	resource_size_t align;
2145 	int ret;
2146 
2147 	if (hbus->low_mmio_space) {
2148 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2149 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
2150 					  (u64)(u32)0xffffffff,
2151 					  hbus->low_mmio_space,
2152 					  align, false);
2153 		if (ret) {
2154 			dev_err(&hbus->hdev->device,
2155 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
2156 				hbus->low_mmio_space);
2157 			return ret;
2158 		}
2159 
2160 		/* Modify this resource to become a bridge window. */
2161 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
2162 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
2163 		pci_add_resource(&hbus->resources_for_children,
2164 				 hbus->low_mmio_res);
2165 	}
2166 
2167 	if (hbus->high_mmio_space) {
2168 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
2169 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
2170 					  0x100000000, -1,
2171 					  hbus->high_mmio_space, align,
2172 					  false);
2173 		if (ret) {
2174 			dev_err(&hbus->hdev->device,
2175 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
2176 				hbus->high_mmio_space);
2177 			goto release_low_mmio;
2178 		}
2179 
2180 		/* Modify this resource to become a bridge window. */
2181 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
2182 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
2183 		pci_add_resource(&hbus->resources_for_children,
2184 				 hbus->high_mmio_res);
2185 	}
2186 
2187 	return 0;
2188 
2189 release_low_mmio:
2190 	if (hbus->low_mmio_res) {
2191 		vmbus_free_mmio(hbus->low_mmio_res->start,
2192 				resource_size(hbus->low_mmio_res));
2193 	}
2194 
2195 	return ret;
2196 }
2197 
2198 /**
2199  * hv_allocate_config_window() - Find MMIO space for PCI Config
2200  * @hbus:	Root PCI bus, as understood by this driver
2201  *
2202  * This function claims memory-mapped I/O space for accessing
2203  * configuration space for the functions on this bus.
2204  *
2205  * Return: 0 on success, -errno on failure
2206  */
2207 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
2208 {
2209 	int ret;
2210 
2211 	/*
2212 	 * Set up a region of MMIO space to use for accessing configuration
2213 	 * space.
2214 	 */
2215 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
2216 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
2217 	if (ret)
2218 		return ret;
2219 
2220 	/*
2221 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
2222 	 * resource claims (those which cannot be overlapped) and the ranges
2223 	 * which are valid for the children of this bus, which are intended
2224 	 * to be overlapped by those children.  Set the flag on this claim
2225 	 * meaning that this region can't be overlapped.
2226 	 */
2227 
2228 	hbus->mem_config->flags |= IORESOURCE_BUSY;
2229 
2230 	return 0;
2231 }
2232 
2233 static void hv_free_config_window(struct hv_pcibus_device *hbus)
2234 {
2235 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
2236 }
2237 
2238 /**
2239  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
2240  * @hdev:	VMBus's tracking struct for this root PCI bus
2241  *
2242  * Return: 0 on success, -errno on failure
2243  */
2244 static int hv_pci_enter_d0(struct hv_device *hdev)
2245 {
2246 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2247 	struct pci_bus_d0_entry *d0_entry;
2248 	struct hv_pci_compl comp_pkt;
2249 	struct pci_packet *pkt;
2250 	int ret;
2251 
2252 	/*
2253 	 * Tell the host that the bus is ready to use, and moved into the
2254 	 * powered-on state.  This includes telling the host which region
2255 	 * of memory-mapped I/O space has been chosen for configuration space
2256 	 * access.
2257 	 */
2258 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
2259 	if (!pkt)
2260 		return -ENOMEM;
2261 
2262 	init_completion(&comp_pkt.host_event);
2263 	pkt->completion_func = hv_pci_generic_compl;
2264 	pkt->compl_ctxt = &comp_pkt;
2265 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
2266 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
2267 	d0_entry->mmio_base = hbus->mem_config->start;
2268 
2269 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
2270 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
2271 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2272 	if (!ret)
2273 		ret = wait_for_response(hdev, &comp_pkt.host_event);
2274 
2275 	if (ret)
2276 		goto exit;
2277 
2278 	if (comp_pkt.completion_status < 0) {
2279 		dev_err(&hdev->device,
2280 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
2281 			comp_pkt.completion_status);
2282 		ret = -EPROTO;
2283 		goto exit;
2284 	}
2285 
2286 	ret = 0;
2287 
2288 exit:
2289 	kfree(pkt);
2290 	return ret;
2291 }
2292 
2293 /**
2294  * hv_pci_query_relations() - Ask host to send list of child
2295  * devices
2296  * @hdev:	VMBus's tracking struct for this root PCI bus
2297  *
2298  * Return: 0 on success, -errno on failure
2299  */
2300 static int hv_pci_query_relations(struct hv_device *hdev)
2301 {
2302 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2303 	struct pci_message message;
2304 	struct completion comp;
2305 	int ret;
2306 
2307 	/* Ask the host to send along the list of child devices */
2308 	init_completion(&comp);
2309 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
2310 		return -ENOTEMPTY;
2311 
2312 	memset(&message, 0, sizeof(message));
2313 	message.type = PCI_QUERY_BUS_RELATIONS;
2314 
2315 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
2316 			       0, VM_PKT_DATA_INBAND, 0);
2317 	if (!ret)
2318 		ret = wait_for_response(hdev, &comp);
2319 
2320 	return ret;
2321 }
2322 
2323 /**
2324  * hv_send_resources_allocated() - Report local resource choices
2325  * @hdev:	VMBus's tracking struct for this root PCI bus
2326  *
2327  * The host OS is expecting to be sent a request as a message
2328  * which contains all the resources that the device will use.
2329  * The response contains those same resources, "translated"
2330  * which is to say, the values which should be used by the
2331  * hardware, when it delivers an interrupt.  (MMIO resources are
2332  * used in local terms.)  This is nice for Windows, and lines up
2333  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
2334  * is deeply expecting to scan an emulated PCI configuration
2335  * space.  So this message is sent here only to drive the state
2336  * machine on the host forward.
2337  *
2338  * Return: 0 on success, -errno on failure
2339  */
2340 static int hv_send_resources_allocated(struct hv_device *hdev)
2341 {
2342 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2343 	struct pci_resources_assigned *res_assigned;
2344 	struct pci_resources_assigned2 *res_assigned2;
2345 	struct hv_pci_compl comp_pkt;
2346 	struct hv_pci_dev *hpdev;
2347 	struct pci_packet *pkt;
2348 	size_t size_res;
2349 	u32 wslot;
2350 	int ret;
2351 
2352 	size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2)
2353 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
2354 
2355 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
2356 	if (!pkt)
2357 		return -ENOMEM;
2358 
2359 	ret = 0;
2360 
2361 	for (wslot = 0; wslot < 256; wslot++) {
2362 		hpdev = get_pcichild_wslot(hbus, wslot);
2363 		if (!hpdev)
2364 			continue;
2365 
2366 		memset(pkt, 0, sizeof(*pkt) + size_res);
2367 		init_completion(&comp_pkt.host_event);
2368 		pkt->completion_func = hv_pci_generic_compl;
2369 		pkt->compl_ctxt = &comp_pkt;
2370 
2371 		if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) {
2372 			res_assigned =
2373 				(struct pci_resources_assigned *)&pkt->message;
2374 			res_assigned->message_type.type =
2375 				PCI_RESOURCES_ASSIGNED;
2376 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
2377 		} else {
2378 			res_assigned2 =
2379 				(struct pci_resources_assigned2 *)&pkt->message;
2380 			res_assigned2->message_type.type =
2381 				PCI_RESOURCES_ASSIGNED2;
2382 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
2383 		}
2384 		put_pcichild(hpdev);
2385 
2386 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
2387 				size_res, (unsigned long)pkt,
2388 				VM_PKT_DATA_INBAND,
2389 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2390 		if (!ret)
2391 			ret = wait_for_response(hdev, &comp_pkt.host_event);
2392 		if (ret)
2393 			break;
2394 
2395 		if (comp_pkt.completion_status < 0) {
2396 			ret = -EPROTO;
2397 			dev_err(&hdev->device,
2398 				"resource allocated returned 0x%x",
2399 				comp_pkt.completion_status);
2400 			break;
2401 		}
2402 	}
2403 
2404 	kfree(pkt);
2405 	return ret;
2406 }
2407 
2408 /**
2409  * hv_send_resources_released() - Report local resources
2410  * released
2411  * @hdev:	VMBus's tracking struct for this root PCI bus
2412  *
2413  * Return: 0 on success, -errno on failure
2414  */
2415 static int hv_send_resources_released(struct hv_device *hdev)
2416 {
2417 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2418 	struct pci_child_message pkt;
2419 	struct hv_pci_dev *hpdev;
2420 	u32 wslot;
2421 	int ret;
2422 
2423 	for (wslot = 0; wslot < 256; wslot++) {
2424 		hpdev = get_pcichild_wslot(hbus, wslot);
2425 		if (!hpdev)
2426 			continue;
2427 
2428 		memset(&pkt, 0, sizeof(pkt));
2429 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
2430 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
2431 
2432 		put_pcichild(hpdev);
2433 
2434 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
2435 				       VM_PKT_DATA_INBAND, 0);
2436 		if (ret)
2437 			return ret;
2438 	}
2439 
2440 	return 0;
2441 }
2442 
2443 static void get_hvpcibus(struct hv_pcibus_device *hbus)
2444 {
2445 	refcount_inc(&hbus->remove_lock);
2446 }
2447 
2448 static void put_hvpcibus(struct hv_pcibus_device *hbus)
2449 {
2450 	if (refcount_dec_and_test(&hbus->remove_lock))
2451 		complete(&hbus->remove_event);
2452 }
2453 
2454 /**
2455  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
2456  * @hdev:	VMBus's tracking struct for this root PCI bus
2457  * @dev_id:	Identifies the device itself
2458  *
2459  * Return: 0 on success, -errno on failure
2460  */
2461 static int hv_pci_probe(struct hv_device *hdev,
2462 			const struct hv_vmbus_device_id *dev_id)
2463 {
2464 	struct hv_pcibus_device *hbus;
2465 	int ret;
2466 
2467 	/*
2468 	 * hv_pcibus_device contains the hypercall arguments for retargeting in
2469 	 * hv_irq_unmask(). Those must not cross a page boundary.
2470 	 */
2471 	BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE);
2472 
2473 	hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL);
2474 	if (!hbus)
2475 		return -ENOMEM;
2476 	hbus->state = hv_pcibus_init;
2477 
2478 	/*
2479 	 * The PCI bus "domain" is what is called "segment" in ACPI and
2480 	 * other specs.  Pull it from the instance ID, to get something
2481 	 * unique.  Bytes 8 and 9 are what is used in Windows guests, so
2482 	 * do the same thing for consistency.  Note that, since this code
2483 	 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee
2484 	 * that (1) the only domain in use for something that looks like
2485 	 * a physical PCI bus (which is actually emulated by the
2486 	 * hypervisor) is domain 0 and (2) there will be no overlap
2487 	 * between domains derived from these instance IDs in the same
2488 	 * VM.
2489 	 */
2490 	hbus->sysdata.domain = hdev->dev_instance.b[9] |
2491 			       hdev->dev_instance.b[8] << 8;
2492 
2493 	hbus->hdev = hdev;
2494 	refcount_set(&hbus->remove_lock, 1);
2495 	INIT_LIST_HEAD(&hbus->children);
2496 	INIT_LIST_HEAD(&hbus->dr_list);
2497 	INIT_LIST_HEAD(&hbus->resources_for_children);
2498 	spin_lock_init(&hbus->config_lock);
2499 	spin_lock_init(&hbus->device_list_lock);
2500 	spin_lock_init(&hbus->retarget_msi_interrupt_lock);
2501 	init_completion(&hbus->remove_event);
2502 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
2503 					   hbus->sysdata.domain);
2504 	if (!hbus->wq) {
2505 		ret = -ENOMEM;
2506 		goto free_bus;
2507 	}
2508 
2509 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
2510 			 hv_pci_onchannelcallback, hbus);
2511 	if (ret)
2512 		goto destroy_wq;
2513 
2514 	hv_set_drvdata(hdev, hbus);
2515 
2516 	ret = hv_pci_protocol_negotiation(hdev);
2517 	if (ret)
2518 		goto close;
2519 
2520 	ret = hv_allocate_config_window(hbus);
2521 	if (ret)
2522 		goto close;
2523 
2524 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
2525 				 PCI_CONFIG_MMIO_LENGTH);
2526 	if (!hbus->cfg_addr) {
2527 		dev_err(&hdev->device,
2528 			"Unable to map a virtual address for config space\n");
2529 		ret = -ENOMEM;
2530 		goto free_config;
2531 	}
2532 
2533 	hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus);
2534 	if (!hbus->sysdata.fwnode) {
2535 		ret = -ENOMEM;
2536 		goto unmap;
2537 	}
2538 
2539 	ret = hv_pcie_init_irq_domain(hbus);
2540 	if (ret)
2541 		goto free_fwnode;
2542 
2543 	ret = hv_pci_query_relations(hdev);
2544 	if (ret)
2545 		goto free_irq_domain;
2546 
2547 	ret = hv_pci_enter_d0(hdev);
2548 	if (ret)
2549 		goto free_irq_domain;
2550 
2551 	ret = hv_pci_allocate_bridge_windows(hbus);
2552 	if (ret)
2553 		goto free_irq_domain;
2554 
2555 	ret = hv_send_resources_allocated(hdev);
2556 	if (ret)
2557 		goto free_windows;
2558 
2559 	prepopulate_bars(hbus);
2560 
2561 	hbus->state = hv_pcibus_probed;
2562 
2563 	ret = create_root_hv_pci_bus(hbus);
2564 	if (ret)
2565 		goto free_windows;
2566 
2567 	return 0;
2568 
2569 free_windows:
2570 	hv_pci_free_bridge_windows(hbus);
2571 free_irq_domain:
2572 	irq_domain_remove(hbus->irq_domain);
2573 free_fwnode:
2574 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
2575 unmap:
2576 	iounmap(hbus->cfg_addr);
2577 free_config:
2578 	hv_free_config_window(hbus);
2579 close:
2580 	vmbus_close(hdev->channel);
2581 destroy_wq:
2582 	destroy_workqueue(hbus->wq);
2583 free_bus:
2584 	free_page((unsigned long)hbus);
2585 	return ret;
2586 }
2587 
2588 static void hv_pci_bus_exit(struct hv_device *hdev)
2589 {
2590 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
2591 	struct {
2592 		struct pci_packet teardown_packet;
2593 		u8 buffer[sizeof(struct pci_message)];
2594 	} pkt;
2595 	struct pci_bus_relations relations;
2596 	struct hv_pci_compl comp_pkt;
2597 	int ret;
2598 
2599 	/*
2600 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
2601 	 * access the per-channel ringbuffer any longer.
2602 	 */
2603 	if (hdev->channel->rescind)
2604 		return;
2605 
2606 	/* Delete any children which might still exist. */
2607 	memset(&relations, 0, sizeof(relations));
2608 	hv_pci_devices_present(hbus, &relations);
2609 
2610 	ret = hv_send_resources_released(hdev);
2611 	if (ret)
2612 		dev_err(&hdev->device,
2613 			"Couldn't send resources released packet(s)\n");
2614 
2615 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
2616 	init_completion(&comp_pkt.host_event);
2617 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
2618 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
2619 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
2620 
2621 	ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message,
2622 			       sizeof(struct pci_message),
2623 			       (unsigned long)&pkt.teardown_packet,
2624 			       VM_PKT_DATA_INBAND,
2625 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2626 	if (!ret)
2627 		wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ);
2628 }
2629 
2630 /**
2631  * hv_pci_remove() - Remove routine for this VMBus channel
2632  * @hdev:	VMBus's tracking struct for this root PCI bus
2633  *
2634  * Return: 0 on success, -errno on failure
2635  */
2636 static int hv_pci_remove(struct hv_device *hdev)
2637 {
2638 	struct hv_pcibus_device *hbus;
2639 
2640 	hbus = hv_get_drvdata(hdev);
2641 	if (hbus->state == hv_pcibus_installed) {
2642 		/* Remove the bus from PCI's point of view. */
2643 		pci_lock_rescan_remove();
2644 		pci_stop_root_bus(hbus->pci_bus);
2645 		pci_remove_root_bus(hbus->pci_bus);
2646 		pci_unlock_rescan_remove();
2647 		hbus->state = hv_pcibus_removed;
2648 	}
2649 
2650 	hv_pci_bus_exit(hdev);
2651 
2652 	vmbus_close(hdev->channel);
2653 
2654 	iounmap(hbus->cfg_addr);
2655 	hv_free_config_window(hbus);
2656 	pci_free_resource_list(&hbus->resources_for_children);
2657 	hv_pci_free_bridge_windows(hbus);
2658 	irq_domain_remove(hbus->irq_domain);
2659 	irq_domain_free_fwnode(hbus->sysdata.fwnode);
2660 	put_hvpcibus(hbus);
2661 	wait_for_completion(&hbus->remove_event);
2662 	destroy_workqueue(hbus->wq);
2663 	free_page((unsigned long)hbus);
2664 	return 0;
2665 }
2666 
2667 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
2668 	/* PCI Pass-through Class ID */
2669 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
2670 	{ HV_PCIE_GUID, },
2671 	{ },
2672 };
2673 
2674 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
2675 
2676 static struct hv_driver hv_pci_drv = {
2677 	.name		= "hv_pci",
2678 	.id_table	= hv_pci_id_table,
2679 	.probe		= hv_pci_probe,
2680 	.remove		= hv_pci_remove,
2681 };
2682 
2683 static void __exit exit_hv_pci_drv(void)
2684 {
2685 	vmbus_driver_unregister(&hv_pci_drv);
2686 }
2687 
2688 static int __init init_hv_pci_drv(void)
2689 {
2690 	return vmbus_driver_register(&hv_pci_drv);
2691 }
2692 
2693 module_init(init_hv_pci_drv);
2694 module_exit(exit_hv_pci_drv);
2695 
2696 MODULE_DESCRIPTION("Hyper-V PCI");
2697 MODULE_LICENSE("GPL v2");
2698