xref: /linux/drivers/of/base.c (revision 6ed7ffddcf61f668114edb676417e5fb33773b59)
1 /*
2  * Procedures for creating, accessing and interpreting the device tree.
3  *
4  * Paul Mackerras	August 1996.
5  * Copyright (C) 1996-2005 Paul Mackerras.
6  *
7  *  Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8  *    {engebret|bergner}@us.ibm.com
9  *
10  *  Adapted for sparc and sparc64 by David S. Miller davem@davemloft.net
11  *
12  *  Reconsolidated from arch/x/kernel/prom.c by Stephen Rothwell and
13  *  Grant Likely.
14  *
15  *      This program is free software; you can redistribute it and/or
16  *      modify it under the terms of the GNU General Public License
17  *      as published by the Free Software Foundation; either version
18  *      2 of the License, or (at your option) any later version.
19  */
20 #include <linux/ctype.h>
21 #include <linux/module.h>
22 #include <linux/of.h>
23 #include <linux/spinlock.h>
24 #include <linux/slab.h>
25 #include <linux/proc_fs.h>
26 
27 #include "of_private.h"
28 
29 LIST_HEAD(aliases_lookup);
30 
31 struct device_node *of_allnodes;
32 EXPORT_SYMBOL(of_allnodes);
33 struct device_node *of_chosen;
34 struct device_node *of_aliases;
35 
36 DEFINE_MUTEX(of_aliases_mutex);
37 
38 /* use when traversing tree through the allnext, child, sibling,
39  * or parent members of struct device_node.
40  */
41 DEFINE_RAW_SPINLOCK(devtree_lock);
42 
43 int of_n_addr_cells(struct device_node *np)
44 {
45 	const __be32 *ip;
46 
47 	do {
48 		if (np->parent)
49 			np = np->parent;
50 		ip = of_get_property(np, "#address-cells", NULL);
51 		if (ip)
52 			return be32_to_cpup(ip);
53 	} while (np->parent);
54 	/* No #address-cells property for the root node */
55 	return OF_ROOT_NODE_ADDR_CELLS_DEFAULT;
56 }
57 EXPORT_SYMBOL(of_n_addr_cells);
58 
59 int of_n_size_cells(struct device_node *np)
60 {
61 	const __be32 *ip;
62 
63 	do {
64 		if (np->parent)
65 			np = np->parent;
66 		ip = of_get_property(np, "#size-cells", NULL);
67 		if (ip)
68 			return be32_to_cpup(ip);
69 	} while (np->parent);
70 	/* No #size-cells property for the root node */
71 	return OF_ROOT_NODE_SIZE_CELLS_DEFAULT;
72 }
73 EXPORT_SYMBOL(of_n_size_cells);
74 
75 #if defined(CONFIG_OF_DYNAMIC)
76 /**
77  *	of_node_get - Increment refcount of a node
78  *	@node:	Node to inc refcount, NULL is supported to
79  *		simplify writing of callers
80  *
81  *	Returns node.
82  */
83 struct device_node *of_node_get(struct device_node *node)
84 {
85 	if (node)
86 		kref_get(&node->kref);
87 	return node;
88 }
89 EXPORT_SYMBOL(of_node_get);
90 
91 static inline struct device_node *kref_to_device_node(struct kref *kref)
92 {
93 	return container_of(kref, struct device_node, kref);
94 }
95 
96 /**
97  *	of_node_release - release a dynamically allocated node
98  *	@kref:  kref element of the node to be released
99  *
100  *	In of_node_put() this function is passed to kref_put()
101  *	as the destructor.
102  */
103 static void of_node_release(struct kref *kref)
104 {
105 	struct device_node *node = kref_to_device_node(kref);
106 	struct property *prop = node->properties;
107 
108 	/* We should never be releasing nodes that haven't been detached. */
109 	if (!of_node_check_flag(node, OF_DETACHED)) {
110 		pr_err("ERROR: Bad of_node_put() on %s\n", node->full_name);
111 		dump_stack();
112 		kref_init(&node->kref);
113 		return;
114 	}
115 
116 	if (!of_node_check_flag(node, OF_DYNAMIC))
117 		return;
118 
119 	while (prop) {
120 		struct property *next = prop->next;
121 		kfree(prop->name);
122 		kfree(prop->value);
123 		kfree(prop);
124 		prop = next;
125 
126 		if (!prop) {
127 			prop = node->deadprops;
128 			node->deadprops = NULL;
129 		}
130 	}
131 	kfree(node->full_name);
132 	kfree(node->data);
133 	kfree(node);
134 }
135 
136 /**
137  *	of_node_put - Decrement refcount of a node
138  *	@node:	Node to dec refcount, NULL is supported to
139  *		simplify writing of callers
140  *
141  */
142 void of_node_put(struct device_node *node)
143 {
144 	if (node)
145 		kref_put(&node->kref, of_node_release);
146 }
147 EXPORT_SYMBOL(of_node_put);
148 #endif /* CONFIG_OF_DYNAMIC */
149 
150 static struct property *__of_find_property(const struct device_node *np,
151 					   const char *name, int *lenp)
152 {
153 	struct property *pp;
154 
155 	if (!np)
156 		return NULL;
157 
158 	for (pp = np->properties; pp; pp = pp->next) {
159 		if (of_prop_cmp(pp->name, name) == 0) {
160 			if (lenp)
161 				*lenp = pp->length;
162 			break;
163 		}
164 	}
165 
166 	return pp;
167 }
168 
169 struct property *of_find_property(const struct device_node *np,
170 				  const char *name,
171 				  int *lenp)
172 {
173 	struct property *pp;
174 	unsigned long flags;
175 
176 	raw_spin_lock_irqsave(&devtree_lock, flags);
177 	pp = __of_find_property(np, name, lenp);
178 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
179 
180 	return pp;
181 }
182 EXPORT_SYMBOL(of_find_property);
183 
184 /**
185  * of_find_all_nodes - Get next node in global list
186  * @prev:	Previous node or NULL to start iteration
187  *		of_node_put() will be called on it
188  *
189  * Returns a node pointer with refcount incremented, use
190  * of_node_put() on it when done.
191  */
192 struct device_node *of_find_all_nodes(struct device_node *prev)
193 {
194 	struct device_node *np;
195 
196 	raw_spin_lock(&devtree_lock);
197 	np = prev ? prev->allnext : of_allnodes;
198 	for (; np != NULL; np = np->allnext)
199 		if (of_node_get(np))
200 			break;
201 	of_node_put(prev);
202 	raw_spin_unlock(&devtree_lock);
203 	return np;
204 }
205 EXPORT_SYMBOL(of_find_all_nodes);
206 
207 /*
208  * Find a property with a given name for a given node
209  * and return the value.
210  */
211 static const void *__of_get_property(const struct device_node *np,
212 				     const char *name, int *lenp)
213 {
214 	struct property *pp = __of_find_property(np, name, lenp);
215 
216 	return pp ? pp->value : NULL;
217 }
218 
219 /*
220  * Find a property with a given name for a given node
221  * and return the value.
222  */
223 const void *of_get_property(const struct device_node *np, const char *name,
224 			    int *lenp)
225 {
226 	struct property *pp = of_find_property(np, name, lenp);
227 
228 	return pp ? pp->value : NULL;
229 }
230 EXPORT_SYMBOL(of_get_property);
231 
232 /** Checks if the given "compat" string matches one of the strings in
233  * the device's "compatible" property
234  */
235 static int __of_device_is_compatible(const struct device_node *device,
236 				     const char *compat)
237 {
238 	const char* cp;
239 	int cplen, l;
240 
241 	cp = __of_get_property(device, "compatible", &cplen);
242 	if (cp == NULL)
243 		return 0;
244 	while (cplen > 0) {
245 		if (of_compat_cmp(cp, compat, strlen(compat)) == 0)
246 			return 1;
247 		l = strlen(cp) + 1;
248 		cp += l;
249 		cplen -= l;
250 	}
251 
252 	return 0;
253 }
254 
255 /** Checks if the given "compat" string matches one of the strings in
256  * the device's "compatible" property
257  */
258 int of_device_is_compatible(const struct device_node *device,
259 		const char *compat)
260 {
261 	unsigned long flags;
262 	int res;
263 
264 	raw_spin_lock_irqsave(&devtree_lock, flags);
265 	res = __of_device_is_compatible(device, compat);
266 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
267 	return res;
268 }
269 EXPORT_SYMBOL(of_device_is_compatible);
270 
271 /**
272  * of_machine_is_compatible - Test root of device tree for a given compatible value
273  * @compat: compatible string to look for in root node's compatible property.
274  *
275  * Returns true if the root node has the given value in its
276  * compatible property.
277  */
278 int of_machine_is_compatible(const char *compat)
279 {
280 	struct device_node *root;
281 	int rc = 0;
282 
283 	root = of_find_node_by_path("/");
284 	if (root) {
285 		rc = of_device_is_compatible(root, compat);
286 		of_node_put(root);
287 	}
288 	return rc;
289 }
290 EXPORT_SYMBOL(of_machine_is_compatible);
291 
292 /**
293  *  __of_device_is_available - check if a device is available for use
294  *
295  *  @device: Node to check for availability, with locks already held
296  *
297  *  Returns 1 if the status property is absent or set to "okay" or "ok",
298  *  0 otherwise
299  */
300 static int __of_device_is_available(const struct device_node *device)
301 {
302 	const char *status;
303 	int statlen;
304 
305 	status = __of_get_property(device, "status", &statlen);
306 	if (status == NULL)
307 		return 1;
308 
309 	if (statlen > 0) {
310 		if (!strcmp(status, "okay") || !strcmp(status, "ok"))
311 			return 1;
312 	}
313 
314 	return 0;
315 }
316 
317 /**
318  *  of_device_is_available - check if a device is available for use
319  *
320  *  @device: Node to check for availability
321  *
322  *  Returns 1 if the status property is absent or set to "okay" or "ok",
323  *  0 otherwise
324  */
325 int of_device_is_available(const struct device_node *device)
326 {
327 	unsigned long flags;
328 	int res;
329 
330 	raw_spin_lock_irqsave(&devtree_lock, flags);
331 	res = __of_device_is_available(device);
332 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
333 	return res;
334 
335 }
336 EXPORT_SYMBOL(of_device_is_available);
337 
338 /**
339  *	of_get_parent - Get a node's parent if any
340  *	@node:	Node to get parent
341  *
342  *	Returns a node pointer with refcount incremented, use
343  *	of_node_put() on it when done.
344  */
345 struct device_node *of_get_parent(const struct device_node *node)
346 {
347 	struct device_node *np;
348 	unsigned long flags;
349 
350 	if (!node)
351 		return NULL;
352 
353 	raw_spin_lock_irqsave(&devtree_lock, flags);
354 	np = of_node_get(node->parent);
355 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
356 	return np;
357 }
358 EXPORT_SYMBOL(of_get_parent);
359 
360 /**
361  *	of_get_next_parent - Iterate to a node's parent
362  *	@node:	Node to get parent of
363  *
364  * 	This is like of_get_parent() except that it drops the
365  * 	refcount on the passed node, making it suitable for iterating
366  * 	through a node's parents.
367  *
368  *	Returns a node pointer with refcount incremented, use
369  *	of_node_put() on it when done.
370  */
371 struct device_node *of_get_next_parent(struct device_node *node)
372 {
373 	struct device_node *parent;
374 	unsigned long flags;
375 
376 	if (!node)
377 		return NULL;
378 
379 	raw_spin_lock_irqsave(&devtree_lock, flags);
380 	parent = of_node_get(node->parent);
381 	of_node_put(node);
382 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
383 	return parent;
384 }
385 
386 /**
387  *	of_get_next_child - Iterate a node childs
388  *	@node:	parent node
389  *	@prev:	previous child of the parent node, or NULL to get first
390  *
391  *	Returns a node pointer with refcount incremented, use
392  *	of_node_put() on it when done.
393  */
394 struct device_node *of_get_next_child(const struct device_node *node,
395 	struct device_node *prev)
396 {
397 	struct device_node *next;
398 	unsigned long flags;
399 
400 	raw_spin_lock_irqsave(&devtree_lock, flags);
401 	next = prev ? prev->sibling : node->child;
402 	for (; next; next = next->sibling)
403 		if (of_node_get(next))
404 			break;
405 	of_node_put(prev);
406 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
407 	return next;
408 }
409 EXPORT_SYMBOL(of_get_next_child);
410 
411 /**
412  *	of_get_next_available_child - Find the next available child node
413  *	@node:	parent node
414  *	@prev:	previous child of the parent node, or NULL to get first
415  *
416  *      This function is like of_get_next_child(), except that it
417  *      automatically skips any disabled nodes (i.e. status = "disabled").
418  */
419 struct device_node *of_get_next_available_child(const struct device_node *node,
420 	struct device_node *prev)
421 {
422 	struct device_node *next;
423 
424 	raw_spin_lock(&devtree_lock);
425 	next = prev ? prev->sibling : node->child;
426 	for (; next; next = next->sibling) {
427 		if (!__of_device_is_available(next))
428 			continue;
429 		if (of_node_get(next))
430 			break;
431 	}
432 	of_node_put(prev);
433 	raw_spin_unlock(&devtree_lock);
434 	return next;
435 }
436 EXPORT_SYMBOL(of_get_next_available_child);
437 
438 /**
439  *	of_get_child_by_name - Find the child node by name for a given parent
440  *	@node:	parent node
441  *	@name:	child name to look for.
442  *
443  *      This function looks for child node for given matching name
444  *
445  *	Returns a node pointer if found, with refcount incremented, use
446  *	of_node_put() on it when done.
447  *	Returns NULL if node is not found.
448  */
449 struct device_node *of_get_child_by_name(const struct device_node *node,
450 				const char *name)
451 {
452 	struct device_node *child;
453 
454 	for_each_child_of_node(node, child)
455 		if (child->name && (of_node_cmp(child->name, name) == 0))
456 			break;
457 	return child;
458 }
459 EXPORT_SYMBOL(of_get_child_by_name);
460 
461 /**
462  *	of_find_node_by_path - Find a node matching a full OF path
463  *	@path:	The full path to match
464  *
465  *	Returns a node pointer with refcount incremented, use
466  *	of_node_put() on it when done.
467  */
468 struct device_node *of_find_node_by_path(const char *path)
469 {
470 	struct device_node *np = of_allnodes;
471 	unsigned long flags;
472 
473 	raw_spin_lock_irqsave(&devtree_lock, flags);
474 	for (; np; np = np->allnext) {
475 		if (np->full_name && (of_node_cmp(np->full_name, path) == 0)
476 		    && of_node_get(np))
477 			break;
478 	}
479 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
480 	return np;
481 }
482 EXPORT_SYMBOL(of_find_node_by_path);
483 
484 /**
485  *	of_find_node_by_name - Find a node by its "name" property
486  *	@from:	The node to start searching from or NULL, the node
487  *		you pass will not be searched, only the next one
488  *		will; typically, you pass what the previous call
489  *		returned. of_node_put() will be called on it
490  *	@name:	The name string to match against
491  *
492  *	Returns a node pointer with refcount incremented, use
493  *	of_node_put() on it when done.
494  */
495 struct device_node *of_find_node_by_name(struct device_node *from,
496 	const char *name)
497 {
498 	struct device_node *np;
499 	unsigned long flags;
500 
501 	raw_spin_lock_irqsave(&devtree_lock, flags);
502 	np = from ? from->allnext : of_allnodes;
503 	for (; np; np = np->allnext)
504 		if (np->name && (of_node_cmp(np->name, name) == 0)
505 		    && of_node_get(np))
506 			break;
507 	of_node_put(from);
508 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
509 	return np;
510 }
511 EXPORT_SYMBOL(of_find_node_by_name);
512 
513 /**
514  *	of_find_node_by_type - Find a node by its "device_type" property
515  *	@from:	The node to start searching from, or NULL to start searching
516  *		the entire device tree. The node you pass will not be
517  *		searched, only the next one will; typically, you pass
518  *		what the previous call returned. of_node_put() will be
519  *		called on from for you.
520  *	@type:	The type string to match against
521  *
522  *	Returns a node pointer with refcount incremented, use
523  *	of_node_put() on it when done.
524  */
525 struct device_node *of_find_node_by_type(struct device_node *from,
526 	const char *type)
527 {
528 	struct device_node *np;
529 	unsigned long flags;
530 
531 	raw_spin_lock_irqsave(&devtree_lock, flags);
532 	np = from ? from->allnext : of_allnodes;
533 	for (; np; np = np->allnext)
534 		if (np->type && (of_node_cmp(np->type, type) == 0)
535 		    && of_node_get(np))
536 			break;
537 	of_node_put(from);
538 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
539 	return np;
540 }
541 EXPORT_SYMBOL(of_find_node_by_type);
542 
543 /**
544  *	of_find_compatible_node - Find a node based on type and one of the
545  *                                tokens in its "compatible" property
546  *	@from:		The node to start searching from or NULL, the node
547  *			you pass will not be searched, only the next one
548  *			will; typically, you pass what the previous call
549  *			returned. of_node_put() will be called on it
550  *	@type:		The type string to match "device_type" or NULL to ignore
551  *	@compatible:	The string to match to one of the tokens in the device
552  *			"compatible" list.
553  *
554  *	Returns a node pointer with refcount incremented, use
555  *	of_node_put() on it when done.
556  */
557 struct device_node *of_find_compatible_node(struct device_node *from,
558 	const char *type, const char *compatible)
559 {
560 	struct device_node *np;
561 	unsigned long flags;
562 
563 	raw_spin_lock_irqsave(&devtree_lock, flags);
564 	np = from ? from->allnext : of_allnodes;
565 	for (; np; np = np->allnext) {
566 		if (type
567 		    && !(np->type && (of_node_cmp(np->type, type) == 0)))
568 			continue;
569 		if (__of_device_is_compatible(np, compatible) &&
570 		    of_node_get(np))
571 			break;
572 	}
573 	of_node_put(from);
574 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
575 	return np;
576 }
577 EXPORT_SYMBOL(of_find_compatible_node);
578 
579 /**
580  *	of_find_node_with_property - Find a node which has a property with
581  *                                   the given name.
582  *	@from:		The node to start searching from or NULL, the node
583  *			you pass will not be searched, only the next one
584  *			will; typically, you pass what the previous call
585  *			returned. of_node_put() will be called on it
586  *	@prop_name:	The name of the property to look for.
587  *
588  *	Returns a node pointer with refcount incremented, use
589  *	of_node_put() on it when done.
590  */
591 struct device_node *of_find_node_with_property(struct device_node *from,
592 	const char *prop_name)
593 {
594 	struct device_node *np;
595 	struct property *pp;
596 	unsigned long flags;
597 
598 	raw_spin_lock_irqsave(&devtree_lock, flags);
599 	np = from ? from->allnext : of_allnodes;
600 	for (; np; np = np->allnext) {
601 		for (pp = np->properties; pp; pp = pp->next) {
602 			if (of_prop_cmp(pp->name, prop_name) == 0) {
603 				of_node_get(np);
604 				goto out;
605 			}
606 		}
607 	}
608 out:
609 	of_node_put(from);
610 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
611 	return np;
612 }
613 EXPORT_SYMBOL(of_find_node_with_property);
614 
615 static
616 const struct of_device_id *__of_match_node(const struct of_device_id *matches,
617 					   const struct device_node *node)
618 {
619 	if (!matches)
620 		return NULL;
621 
622 	while (matches->name[0] || matches->type[0] || matches->compatible[0]) {
623 		int match = 1;
624 		if (matches->name[0])
625 			match &= node->name
626 				&& !strcmp(matches->name, node->name);
627 		if (matches->type[0])
628 			match &= node->type
629 				&& !strcmp(matches->type, node->type);
630 		if (matches->compatible[0])
631 			match &= __of_device_is_compatible(node,
632 							   matches->compatible);
633 		if (match)
634 			return matches;
635 		matches++;
636 	}
637 	return NULL;
638 }
639 
640 /**
641  * of_match_node - Tell if an device_node has a matching of_match structure
642  *	@matches:	array of of device match structures to search in
643  *	@node:		the of device structure to match against
644  *
645  *	Low level utility function used by device matching.
646  */
647 const struct of_device_id *of_match_node(const struct of_device_id *matches,
648 					 const struct device_node *node)
649 {
650 	const struct of_device_id *match;
651 	unsigned long flags;
652 
653 	raw_spin_lock_irqsave(&devtree_lock, flags);
654 	match = __of_match_node(matches, node);
655 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
656 	return match;
657 }
658 EXPORT_SYMBOL(of_match_node);
659 
660 /**
661  *	of_find_matching_node_and_match - Find a node based on an of_device_id
662  *					  match table.
663  *	@from:		The node to start searching from or NULL, the node
664  *			you pass will not be searched, only the next one
665  *			will; typically, you pass what the previous call
666  *			returned. of_node_put() will be called on it
667  *	@matches:	array of of device match structures to search in
668  *	@match		Updated to point at the matches entry which matched
669  *
670  *	Returns a node pointer with refcount incremented, use
671  *	of_node_put() on it when done.
672  */
673 struct device_node *of_find_matching_node_and_match(struct device_node *from,
674 					const struct of_device_id *matches,
675 					const struct of_device_id **match)
676 {
677 	struct device_node *np;
678 	const struct of_device_id *m;
679 	unsigned long flags;
680 
681 	if (match)
682 		*match = NULL;
683 
684 	raw_spin_lock_irqsave(&devtree_lock, flags);
685 	np = from ? from->allnext : of_allnodes;
686 	for (; np; np = np->allnext) {
687 		m = __of_match_node(matches, np);
688 		if (m && of_node_get(np)) {
689 			if (match)
690 				*match = m;
691 			break;
692 		}
693 	}
694 	of_node_put(from);
695 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
696 	return np;
697 }
698 EXPORT_SYMBOL(of_find_matching_node_and_match);
699 
700 /**
701  * of_modalias_node - Lookup appropriate modalias for a device node
702  * @node:	pointer to a device tree node
703  * @modalias:	Pointer to buffer that modalias value will be copied into
704  * @len:	Length of modalias value
705  *
706  * Based on the value of the compatible property, this routine will attempt
707  * to choose an appropriate modalias value for a particular device tree node.
708  * It does this by stripping the manufacturer prefix (as delimited by a ',')
709  * from the first entry in the compatible list property.
710  *
711  * This routine returns 0 on success, <0 on failure.
712  */
713 int of_modalias_node(struct device_node *node, char *modalias, int len)
714 {
715 	const char *compatible, *p;
716 	int cplen;
717 
718 	compatible = of_get_property(node, "compatible", &cplen);
719 	if (!compatible || strlen(compatible) > cplen)
720 		return -ENODEV;
721 	p = strchr(compatible, ',');
722 	strlcpy(modalias, p ? p + 1 : compatible, len);
723 	return 0;
724 }
725 EXPORT_SYMBOL_GPL(of_modalias_node);
726 
727 /**
728  * of_find_node_by_phandle - Find a node given a phandle
729  * @handle:	phandle of the node to find
730  *
731  * Returns a node pointer with refcount incremented, use
732  * of_node_put() on it when done.
733  */
734 struct device_node *of_find_node_by_phandle(phandle handle)
735 {
736 	struct device_node *np;
737 
738 	raw_spin_lock(&devtree_lock);
739 	for (np = of_allnodes; np; np = np->allnext)
740 		if (np->phandle == handle)
741 			break;
742 	of_node_get(np);
743 	raw_spin_unlock(&devtree_lock);
744 	return np;
745 }
746 EXPORT_SYMBOL(of_find_node_by_phandle);
747 
748 /**
749  * of_property_read_u8_array - Find and read an array of u8 from a property.
750  *
751  * @np:		device node from which the property value is to be read.
752  * @propname:	name of the property to be searched.
753  * @out_value:	pointer to return value, modified only if return value is 0.
754  * @sz:		number of array elements to read
755  *
756  * Search for a property in a device node and read 8-bit value(s) from
757  * it. Returns 0 on success, -EINVAL if the property does not exist,
758  * -ENODATA if property does not have a value, and -EOVERFLOW if the
759  * property data isn't large enough.
760  *
761  * dts entry of array should be like:
762  *	property = /bits/ 8 <0x50 0x60 0x70>;
763  *
764  * The out_value is modified only if a valid u8 value can be decoded.
765  */
766 int of_property_read_u8_array(const struct device_node *np,
767 			const char *propname, u8 *out_values, size_t sz)
768 {
769 	struct property *prop = of_find_property(np, propname, NULL);
770 	const u8 *val;
771 
772 	if (!prop)
773 		return -EINVAL;
774 	if (!prop->value)
775 		return -ENODATA;
776 	if ((sz * sizeof(*out_values)) > prop->length)
777 		return -EOVERFLOW;
778 
779 	val = prop->value;
780 	while (sz--)
781 		*out_values++ = *val++;
782 	return 0;
783 }
784 EXPORT_SYMBOL_GPL(of_property_read_u8_array);
785 
786 /**
787  * of_property_read_u16_array - Find and read an array of u16 from a property.
788  *
789  * @np:		device node from which the property value is to be read.
790  * @propname:	name of the property to be searched.
791  * @out_value:	pointer to return value, modified only if return value is 0.
792  * @sz:		number of array elements to read
793  *
794  * Search for a property in a device node and read 16-bit value(s) from
795  * it. Returns 0 on success, -EINVAL if the property does not exist,
796  * -ENODATA if property does not have a value, and -EOVERFLOW if the
797  * property data isn't large enough.
798  *
799  * dts entry of array should be like:
800  *	property = /bits/ 16 <0x5000 0x6000 0x7000>;
801  *
802  * The out_value is modified only if a valid u16 value can be decoded.
803  */
804 int of_property_read_u16_array(const struct device_node *np,
805 			const char *propname, u16 *out_values, size_t sz)
806 {
807 	struct property *prop = of_find_property(np, propname, NULL);
808 	const __be16 *val;
809 
810 	if (!prop)
811 		return -EINVAL;
812 	if (!prop->value)
813 		return -ENODATA;
814 	if ((sz * sizeof(*out_values)) > prop->length)
815 		return -EOVERFLOW;
816 
817 	val = prop->value;
818 	while (sz--)
819 		*out_values++ = be16_to_cpup(val++);
820 	return 0;
821 }
822 EXPORT_SYMBOL_GPL(of_property_read_u16_array);
823 
824 /**
825  * of_property_read_u32_array - Find and read an array of 32 bit integers
826  * from a property.
827  *
828  * @np:		device node from which the property value is to be read.
829  * @propname:	name of the property to be searched.
830  * @out_value:	pointer to return value, modified only if return value is 0.
831  * @sz:		number of array elements to read
832  *
833  * Search for a property in a device node and read 32-bit value(s) from
834  * it. Returns 0 on success, -EINVAL if the property does not exist,
835  * -ENODATA if property does not have a value, and -EOVERFLOW if the
836  * property data isn't large enough.
837  *
838  * The out_value is modified only if a valid u32 value can be decoded.
839  */
840 int of_property_read_u32_array(const struct device_node *np,
841 			       const char *propname, u32 *out_values,
842 			       size_t sz)
843 {
844 	struct property *prop = of_find_property(np, propname, NULL);
845 	const __be32 *val;
846 
847 	if (!prop)
848 		return -EINVAL;
849 	if (!prop->value)
850 		return -ENODATA;
851 	if ((sz * sizeof(*out_values)) > prop->length)
852 		return -EOVERFLOW;
853 
854 	val = prop->value;
855 	while (sz--)
856 		*out_values++ = be32_to_cpup(val++);
857 	return 0;
858 }
859 EXPORT_SYMBOL_GPL(of_property_read_u32_array);
860 
861 /**
862  * of_property_read_u64 - Find and read a 64 bit integer from a property
863  * @np:		device node from which the property value is to be read.
864  * @propname:	name of the property to be searched.
865  * @out_value:	pointer to return value, modified only if return value is 0.
866  *
867  * Search for a property in a device node and read a 64-bit value from
868  * it. Returns 0 on success, -EINVAL if the property does not exist,
869  * -ENODATA if property does not have a value, and -EOVERFLOW if the
870  * property data isn't large enough.
871  *
872  * The out_value is modified only if a valid u64 value can be decoded.
873  */
874 int of_property_read_u64(const struct device_node *np, const char *propname,
875 			 u64 *out_value)
876 {
877 	struct property *prop = of_find_property(np, propname, NULL);
878 
879 	if (!prop)
880 		return -EINVAL;
881 	if (!prop->value)
882 		return -ENODATA;
883 	if (sizeof(*out_value) > prop->length)
884 		return -EOVERFLOW;
885 	*out_value = of_read_number(prop->value, 2);
886 	return 0;
887 }
888 EXPORT_SYMBOL_GPL(of_property_read_u64);
889 
890 /**
891  * of_property_read_string - Find and read a string from a property
892  * @np:		device node from which the property value is to be read.
893  * @propname:	name of the property to be searched.
894  * @out_string:	pointer to null terminated return string, modified only if
895  *		return value is 0.
896  *
897  * Search for a property in a device tree node and retrieve a null
898  * terminated string value (pointer to data, not a copy). Returns 0 on
899  * success, -EINVAL if the property does not exist, -ENODATA if property
900  * does not have a value, and -EILSEQ if the string is not null-terminated
901  * within the length of the property data.
902  *
903  * The out_string pointer is modified only if a valid string can be decoded.
904  */
905 int of_property_read_string(struct device_node *np, const char *propname,
906 				const char **out_string)
907 {
908 	struct property *prop = of_find_property(np, propname, NULL);
909 	if (!prop)
910 		return -EINVAL;
911 	if (!prop->value)
912 		return -ENODATA;
913 	if (strnlen(prop->value, prop->length) >= prop->length)
914 		return -EILSEQ;
915 	*out_string = prop->value;
916 	return 0;
917 }
918 EXPORT_SYMBOL_GPL(of_property_read_string);
919 
920 /**
921  * of_property_read_string_index - Find and read a string from a multiple
922  * strings property.
923  * @np:		device node from which the property value is to be read.
924  * @propname:	name of the property to be searched.
925  * @index:	index of the string in the list of strings
926  * @out_string:	pointer to null terminated return string, modified only if
927  *		return value is 0.
928  *
929  * Search for a property in a device tree node and retrieve a null
930  * terminated string value (pointer to data, not a copy) in the list of strings
931  * contained in that property.
932  * Returns 0 on success, -EINVAL if the property does not exist, -ENODATA if
933  * property does not have a value, and -EILSEQ if the string is not
934  * null-terminated within the length of the property data.
935  *
936  * The out_string pointer is modified only if a valid string can be decoded.
937  */
938 int of_property_read_string_index(struct device_node *np, const char *propname,
939 				  int index, const char **output)
940 {
941 	struct property *prop = of_find_property(np, propname, NULL);
942 	int i = 0;
943 	size_t l = 0, total = 0;
944 	const char *p;
945 
946 	if (!prop)
947 		return -EINVAL;
948 	if (!prop->value)
949 		return -ENODATA;
950 	if (strnlen(prop->value, prop->length) >= prop->length)
951 		return -EILSEQ;
952 
953 	p = prop->value;
954 
955 	for (i = 0; total < prop->length; total += l, p += l) {
956 		l = strlen(p) + 1;
957 		if (i++ == index) {
958 			*output = p;
959 			return 0;
960 		}
961 	}
962 	return -ENODATA;
963 }
964 EXPORT_SYMBOL_GPL(of_property_read_string_index);
965 
966 /**
967  * of_property_match_string() - Find string in a list and return index
968  * @np: pointer to node containing string list property
969  * @propname: string list property name
970  * @string: pointer to string to search for in string list
971  *
972  * This function searches a string list property and returns the index
973  * of a specific string value.
974  */
975 int of_property_match_string(struct device_node *np, const char *propname,
976 			     const char *string)
977 {
978 	struct property *prop = of_find_property(np, propname, NULL);
979 	size_t l;
980 	int i;
981 	const char *p, *end;
982 
983 	if (!prop)
984 		return -EINVAL;
985 	if (!prop->value)
986 		return -ENODATA;
987 
988 	p = prop->value;
989 	end = p + prop->length;
990 
991 	for (i = 0; p < end; i++, p += l) {
992 		l = strlen(p) + 1;
993 		if (p + l > end)
994 			return -EILSEQ;
995 		pr_debug("comparing %s with %s\n", string, p);
996 		if (strcmp(string, p) == 0)
997 			return i; /* Found it; return index */
998 	}
999 	return -ENODATA;
1000 }
1001 EXPORT_SYMBOL_GPL(of_property_match_string);
1002 
1003 /**
1004  * of_property_count_strings - Find and return the number of strings from a
1005  * multiple strings property.
1006  * @np:		device node from which the property value is to be read.
1007  * @propname:	name of the property to be searched.
1008  *
1009  * Search for a property in a device tree node and retrieve the number of null
1010  * terminated string contain in it. Returns the number of strings on
1011  * success, -EINVAL if the property does not exist, -ENODATA if property
1012  * does not have a value, and -EILSEQ if the string is not null-terminated
1013  * within the length of the property data.
1014  */
1015 int of_property_count_strings(struct device_node *np, const char *propname)
1016 {
1017 	struct property *prop = of_find_property(np, propname, NULL);
1018 	int i = 0;
1019 	size_t l = 0, total = 0;
1020 	const char *p;
1021 
1022 	if (!prop)
1023 		return -EINVAL;
1024 	if (!prop->value)
1025 		return -ENODATA;
1026 	if (strnlen(prop->value, prop->length) >= prop->length)
1027 		return -EILSEQ;
1028 
1029 	p = prop->value;
1030 
1031 	for (i = 0; total < prop->length; total += l, p += l, i++)
1032 		l = strlen(p) + 1;
1033 
1034 	return i;
1035 }
1036 EXPORT_SYMBOL_GPL(of_property_count_strings);
1037 
1038 /**
1039  * of_parse_phandle - Resolve a phandle property to a device_node pointer
1040  * @np: Pointer to device node holding phandle property
1041  * @phandle_name: Name of property holding a phandle value
1042  * @index: For properties holding a table of phandles, this is the index into
1043  *         the table
1044  *
1045  * Returns the device_node pointer with refcount incremented.  Use
1046  * of_node_put() on it when done.
1047  */
1048 struct device_node *of_parse_phandle(const struct device_node *np,
1049 				     const char *phandle_name, int index)
1050 {
1051 	const __be32 *phandle;
1052 	int size;
1053 
1054 	phandle = of_get_property(np, phandle_name, &size);
1055 	if ((!phandle) || (size < sizeof(*phandle) * (index + 1)))
1056 		return NULL;
1057 
1058 	return of_find_node_by_phandle(be32_to_cpup(phandle + index));
1059 }
1060 EXPORT_SYMBOL(of_parse_phandle);
1061 
1062 /**
1063  * of_parse_phandle_with_args() - Find a node pointed by phandle in a list
1064  * @np:		pointer to a device tree node containing a list
1065  * @list_name:	property name that contains a list
1066  * @cells_name:	property name that specifies phandles' arguments count
1067  * @index:	index of a phandle to parse out
1068  * @out_args:	optional pointer to output arguments structure (will be filled)
1069  *
1070  * This function is useful to parse lists of phandles and their arguments.
1071  * Returns 0 on success and fills out_args, on error returns appropriate
1072  * errno value.
1073  *
1074  * Caller is responsible to call of_node_put() on the returned out_args->node
1075  * pointer.
1076  *
1077  * Example:
1078  *
1079  * phandle1: node1 {
1080  * 	#list-cells = <2>;
1081  * }
1082  *
1083  * phandle2: node2 {
1084  * 	#list-cells = <1>;
1085  * }
1086  *
1087  * node3 {
1088  * 	list = <&phandle1 1 2 &phandle2 3>;
1089  * }
1090  *
1091  * To get a device_node of the `node2' node you may call this:
1092  * of_parse_phandle_with_args(node3, "list", "#list-cells", 1, &args);
1093  */
1094 static int __of_parse_phandle_with_args(const struct device_node *np,
1095 					const char *list_name,
1096 					const char *cells_name, int index,
1097 					struct of_phandle_args *out_args)
1098 {
1099 	const __be32 *list, *list_end;
1100 	int rc = 0, size, cur_index = 0;
1101 	uint32_t count = 0;
1102 	struct device_node *node = NULL;
1103 	phandle phandle;
1104 
1105 	/* Retrieve the phandle list property */
1106 	list = of_get_property(np, list_name, &size);
1107 	if (!list)
1108 		return -ENOENT;
1109 	list_end = list + size / sizeof(*list);
1110 
1111 	/* Loop over the phandles until all the requested entry is found */
1112 	while (list < list_end) {
1113 		rc = -EINVAL;
1114 		count = 0;
1115 
1116 		/*
1117 		 * If phandle is 0, then it is an empty entry with no
1118 		 * arguments.  Skip forward to the next entry.
1119 		 */
1120 		phandle = be32_to_cpup(list++);
1121 		if (phandle) {
1122 			/*
1123 			 * Find the provider node and parse the #*-cells
1124 			 * property to determine the argument length
1125 			 */
1126 			node = of_find_node_by_phandle(phandle);
1127 			if (!node) {
1128 				pr_err("%s: could not find phandle\n",
1129 					 np->full_name);
1130 				goto err;
1131 			}
1132 			if (of_property_read_u32(node, cells_name, &count)) {
1133 				pr_err("%s: could not get %s for %s\n",
1134 					 np->full_name, cells_name,
1135 					 node->full_name);
1136 				goto err;
1137 			}
1138 
1139 			/*
1140 			 * Make sure that the arguments actually fit in the
1141 			 * remaining property data length
1142 			 */
1143 			if (list + count > list_end) {
1144 				pr_err("%s: arguments longer than property\n",
1145 					 np->full_name);
1146 				goto err;
1147 			}
1148 		}
1149 
1150 		/*
1151 		 * All of the error cases above bail out of the loop, so at
1152 		 * this point, the parsing is successful. If the requested
1153 		 * index matches, then fill the out_args structure and return,
1154 		 * or return -ENOENT for an empty entry.
1155 		 */
1156 		rc = -ENOENT;
1157 		if (cur_index == index) {
1158 			if (!phandle)
1159 				goto err;
1160 
1161 			if (out_args) {
1162 				int i;
1163 				if (WARN_ON(count > MAX_PHANDLE_ARGS))
1164 					count = MAX_PHANDLE_ARGS;
1165 				out_args->np = node;
1166 				out_args->args_count = count;
1167 				for (i = 0; i < count; i++)
1168 					out_args->args[i] = be32_to_cpup(list++);
1169 			}
1170 
1171 			/* Found it! return success */
1172 			if (node)
1173 				of_node_put(node);
1174 			return 0;
1175 		}
1176 
1177 		of_node_put(node);
1178 		node = NULL;
1179 		list += count;
1180 		cur_index++;
1181 	}
1182 
1183 	/*
1184 	 * Unlock node before returning result; will be one of:
1185 	 * -ENOENT : index is for empty phandle
1186 	 * -EINVAL : parsing error on data
1187 	 * [1..n]  : Number of phandle (count mode; when index = -1)
1188 	 */
1189 	rc = index < 0 ? cur_index : -ENOENT;
1190  err:
1191 	if (node)
1192 		of_node_put(node);
1193 	return rc;
1194 }
1195 
1196 int of_parse_phandle_with_args(const struct device_node *np, const char *list_name,
1197 				const char *cells_name, int index,
1198 				struct of_phandle_args *out_args)
1199 {
1200 	if (index < 0)
1201 		return -EINVAL;
1202 	return __of_parse_phandle_with_args(np, list_name, cells_name, index, out_args);
1203 }
1204 EXPORT_SYMBOL(of_parse_phandle_with_args);
1205 
1206 /**
1207  * of_count_phandle_with_args() - Find the number of phandles references in a property
1208  * @np:		pointer to a device tree node containing a list
1209  * @list_name:	property name that contains a list
1210  * @cells_name:	property name that specifies phandles' arguments count
1211  *
1212  * Returns the number of phandle + argument tuples within a property. It
1213  * is a typical pattern to encode a list of phandle and variable
1214  * arguments into a single property. The number of arguments is encoded
1215  * by a property in the phandle-target node. For example, a gpios
1216  * property would contain a list of GPIO specifies consisting of a
1217  * phandle and 1 or more arguments. The number of arguments are
1218  * determined by the #gpio-cells property in the node pointed to by the
1219  * phandle.
1220  */
1221 int of_count_phandle_with_args(const struct device_node *np, const char *list_name,
1222 				const char *cells_name)
1223 {
1224 	return __of_parse_phandle_with_args(np, list_name, cells_name, -1, NULL);
1225 }
1226 EXPORT_SYMBOL(of_count_phandle_with_args);
1227 
1228 #if defined(CONFIG_OF_DYNAMIC)
1229 static int of_property_notify(int action, struct device_node *np,
1230 			      struct property *prop)
1231 {
1232 	struct of_prop_reconfig pr;
1233 
1234 	pr.dn = np;
1235 	pr.prop = prop;
1236 	return of_reconfig_notify(action, &pr);
1237 }
1238 #else
1239 static int of_property_notify(int action, struct device_node *np,
1240 			      struct property *prop)
1241 {
1242 	return 0;
1243 }
1244 #endif
1245 
1246 /**
1247  * of_add_property - Add a property to a node
1248  */
1249 int of_add_property(struct device_node *np, struct property *prop)
1250 {
1251 	struct property **next;
1252 	unsigned long flags;
1253 	int rc;
1254 
1255 	rc = of_property_notify(OF_RECONFIG_ADD_PROPERTY, np, prop);
1256 	if (rc)
1257 		return rc;
1258 
1259 	prop->next = NULL;
1260 	raw_spin_lock_irqsave(&devtree_lock, flags);
1261 	next = &np->properties;
1262 	while (*next) {
1263 		if (strcmp(prop->name, (*next)->name) == 0) {
1264 			/* duplicate ! don't insert it */
1265 			raw_spin_unlock_irqrestore(&devtree_lock, flags);
1266 			return -1;
1267 		}
1268 		next = &(*next)->next;
1269 	}
1270 	*next = prop;
1271 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1272 
1273 #ifdef CONFIG_PROC_DEVICETREE
1274 	/* try to add to proc as well if it was initialized */
1275 	if (np->pde)
1276 		proc_device_tree_add_prop(np->pde, prop);
1277 #endif /* CONFIG_PROC_DEVICETREE */
1278 
1279 	return 0;
1280 }
1281 
1282 /**
1283  * of_remove_property - Remove a property from a node.
1284  *
1285  * Note that we don't actually remove it, since we have given out
1286  * who-knows-how-many pointers to the data using get-property.
1287  * Instead we just move the property to the "dead properties"
1288  * list, so it won't be found any more.
1289  */
1290 int of_remove_property(struct device_node *np, struct property *prop)
1291 {
1292 	struct property **next;
1293 	unsigned long flags;
1294 	int found = 0;
1295 	int rc;
1296 
1297 	rc = of_property_notify(OF_RECONFIG_REMOVE_PROPERTY, np, prop);
1298 	if (rc)
1299 		return rc;
1300 
1301 	raw_spin_lock_irqsave(&devtree_lock, flags);
1302 	next = &np->properties;
1303 	while (*next) {
1304 		if (*next == prop) {
1305 			/* found the node */
1306 			*next = prop->next;
1307 			prop->next = np->deadprops;
1308 			np->deadprops = prop;
1309 			found = 1;
1310 			break;
1311 		}
1312 		next = &(*next)->next;
1313 	}
1314 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1315 
1316 	if (!found)
1317 		return -ENODEV;
1318 
1319 #ifdef CONFIG_PROC_DEVICETREE
1320 	/* try to remove the proc node as well */
1321 	if (np->pde)
1322 		proc_device_tree_remove_prop(np->pde, prop);
1323 #endif /* CONFIG_PROC_DEVICETREE */
1324 
1325 	return 0;
1326 }
1327 
1328 /*
1329  * of_update_property - Update a property in a node, if the property does
1330  * not exist, add it.
1331  *
1332  * Note that we don't actually remove it, since we have given out
1333  * who-knows-how-many pointers to the data using get-property.
1334  * Instead we just move the property to the "dead properties" list,
1335  * and add the new property to the property list
1336  */
1337 int of_update_property(struct device_node *np, struct property *newprop)
1338 {
1339 	struct property **next, *oldprop;
1340 	unsigned long flags;
1341 	int rc, found = 0;
1342 
1343 	rc = of_property_notify(OF_RECONFIG_UPDATE_PROPERTY, np, newprop);
1344 	if (rc)
1345 		return rc;
1346 
1347 	if (!newprop->name)
1348 		return -EINVAL;
1349 
1350 	oldprop = of_find_property(np, newprop->name, NULL);
1351 	if (!oldprop)
1352 		return of_add_property(np, newprop);
1353 
1354 	raw_spin_lock_irqsave(&devtree_lock, flags);
1355 	next = &np->properties;
1356 	while (*next) {
1357 		if (*next == oldprop) {
1358 			/* found the node */
1359 			newprop->next = oldprop->next;
1360 			*next = newprop;
1361 			oldprop->next = np->deadprops;
1362 			np->deadprops = oldprop;
1363 			found = 1;
1364 			break;
1365 		}
1366 		next = &(*next)->next;
1367 	}
1368 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1369 
1370 	if (!found)
1371 		return -ENODEV;
1372 
1373 #ifdef CONFIG_PROC_DEVICETREE
1374 	/* try to add to proc as well if it was initialized */
1375 	if (np->pde)
1376 		proc_device_tree_update_prop(np->pde, newprop, oldprop);
1377 #endif /* CONFIG_PROC_DEVICETREE */
1378 
1379 	return 0;
1380 }
1381 
1382 #if defined(CONFIG_OF_DYNAMIC)
1383 /*
1384  * Support for dynamic device trees.
1385  *
1386  * On some platforms, the device tree can be manipulated at runtime.
1387  * The routines in this section support adding, removing and changing
1388  * device tree nodes.
1389  */
1390 
1391 static BLOCKING_NOTIFIER_HEAD(of_reconfig_chain);
1392 
1393 int of_reconfig_notifier_register(struct notifier_block *nb)
1394 {
1395 	return blocking_notifier_chain_register(&of_reconfig_chain, nb);
1396 }
1397 EXPORT_SYMBOL_GPL(of_reconfig_notifier_register);
1398 
1399 int of_reconfig_notifier_unregister(struct notifier_block *nb)
1400 {
1401 	return blocking_notifier_chain_unregister(&of_reconfig_chain, nb);
1402 }
1403 EXPORT_SYMBOL_GPL(of_reconfig_notifier_unregister);
1404 
1405 int of_reconfig_notify(unsigned long action, void *p)
1406 {
1407 	int rc;
1408 
1409 	rc = blocking_notifier_call_chain(&of_reconfig_chain, action, p);
1410 	return notifier_to_errno(rc);
1411 }
1412 
1413 #ifdef CONFIG_PROC_DEVICETREE
1414 static void of_add_proc_dt_entry(struct device_node *dn)
1415 {
1416 	struct proc_dir_entry *ent;
1417 
1418 	ent = proc_mkdir(strrchr(dn->full_name, '/') + 1, dn->parent->pde);
1419 	if (ent)
1420 		proc_device_tree_add_node(dn, ent);
1421 }
1422 #else
1423 static void of_add_proc_dt_entry(struct device_node *dn)
1424 {
1425 	return;
1426 }
1427 #endif
1428 
1429 /**
1430  * of_attach_node - Plug a device node into the tree and global list.
1431  */
1432 int of_attach_node(struct device_node *np)
1433 {
1434 	unsigned long flags;
1435 	int rc;
1436 
1437 	rc = of_reconfig_notify(OF_RECONFIG_ATTACH_NODE, np);
1438 	if (rc)
1439 		return rc;
1440 
1441 	raw_spin_lock_irqsave(&devtree_lock, flags);
1442 	np->sibling = np->parent->child;
1443 	np->allnext = of_allnodes;
1444 	np->parent->child = np;
1445 	of_allnodes = np;
1446 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1447 
1448 	of_add_proc_dt_entry(np);
1449 	return 0;
1450 }
1451 
1452 #ifdef CONFIG_PROC_DEVICETREE
1453 static void of_remove_proc_dt_entry(struct device_node *dn)
1454 {
1455 	struct device_node *parent = dn->parent;
1456 	struct property *prop = dn->properties;
1457 
1458 	while (prop) {
1459 		remove_proc_entry(prop->name, dn->pde);
1460 		prop = prop->next;
1461 	}
1462 
1463 	if (dn->pde)
1464 		remove_proc_entry(dn->pde->name, parent->pde);
1465 }
1466 #else
1467 static void of_remove_proc_dt_entry(struct device_node *dn)
1468 {
1469 	return;
1470 }
1471 #endif
1472 
1473 /**
1474  * of_detach_node - "Unplug" a node from the device tree.
1475  *
1476  * The caller must hold a reference to the node.  The memory associated with
1477  * the node is not freed until its refcount goes to zero.
1478  */
1479 int of_detach_node(struct device_node *np)
1480 {
1481 	struct device_node *parent;
1482 	unsigned long flags;
1483 	int rc = 0;
1484 
1485 	rc = of_reconfig_notify(OF_RECONFIG_DETACH_NODE, np);
1486 	if (rc)
1487 		return rc;
1488 
1489 	raw_spin_lock_irqsave(&devtree_lock, flags);
1490 
1491 	if (of_node_check_flag(np, OF_DETACHED)) {
1492 		/* someone already detached it */
1493 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1494 		return rc;
1495 	}
1496 
1497 	parent = np->parent;
1498 	if (!parent) {
1499 		raw_spin_unlock_irqrestore(&devtree_lock, flags);
1500 		return rc;
1501 	}
1502 
1503 	if (of_allnodes == np)
1504 		of_allnodes = np->allnext;
1505 	else {
1506 		struct device_node *prev;
1507 		for (prev = of_allnodes;
1508 		     prev->allnext != np;
1509 		     prev = prev->allnext)
1510 			;
1511 		prev->allnext = np->allnext;
1512 	}
1513 
1514 	if (parent->child == np)
1515 		parent->child = np->sibling;
1516 	else {
1517 		struct device_node *prevsib;
1518 		for (prevsib = np->parent->child;
1519 		     prevsib->sibling != np;
1520 		     prevsib = prevsib->sibling)
1521 			;
1522 		prevsib->sibling = np->sibling;
1523 	}
1524 
1525 	of_node_set_flag(np, OF_DETACHED);
1526 	raw_spin_unlock_irqrestore(&devtree_lock, flags);
1527 
1528 	of_remove_proc_dt_entry(np);
1529 	return rc;
1530 }
1531 #endif /* defined(CONFIG_OF_DYNAMIC) */
1532 
1533 static void of_alias_add(struct alias_prop *ap, struct device_node *np,
1534 			 int id, const char *stem, int stem_len)
1535 {
1536 	ap->np = np;
1537 	ap->id = id;
1538 	strncpy(ap->stem, stem, stem_len);
1539 	ap->stem[stem_len] = 0;
1540 	list_add_tail(&ap->link, &aliases_lookup);
1541 	pr_debug("adding DT alias:%s: stem=%s id=%i node=%s\n",
1542 		 ap->alias, ap->stem, ap->id, of_node_full_name(np));
1543 }
1544 
1545 /**
1546  * of_alias_scan - Scan all properties of 'aliases' node
1547  *
1548  * The function scans all the properties of 'aliases' node and populate
1549  * the the global lookup table with the properties.  It returns the
1550  * number of alias_prop found, or error code in error case.
1551  *
1552  * @dt_alloc:	An allocator that provides a virtual address to memory
1553  *		for the resulting tree
1554  */
1555 void of_alias_scan(void * (*dt_alloc)(u64 size, u64 align))
1556 {
1557 	struct property *pp;
1558 
1559 	of_chosen = of_find_node_by_path("/chosen");
1560 	if (of_chosen == NULL)
1561 		of_chosen = of_find_node_by_path("/chosen@0");
1562 	of_aliases = of_find_node_by_path("/aliases");
1563 	if (!of_aliases)
1564 		return;
1565 
1566 	for_each_property_of_node(of_aliases, pp) {
1567 		const char *start = pp->name;
1568 		const char *end = start + strlen(start);
1569 		struct device_node *np;
1570 		struct alias_prop *ap;
1571 		int id, len;
1572 
1573 		/* Skip those we do not want to proceed */
1574 		if (!strcmp(pp->name, "name") ||
1575 		    !strcmp(pp->name, "phandle") ||
1576 		    !strcmp(pp->name, "linux,phandle"))
1577 			continue;
1578 
1579 		np = of_find_node_by_path(pp->value);
1580 		if (!np)
1581 			continue;
1582 
1583 		/* walk the alias backwards to extract the id and work out
1584 		 * the 'stem' string */
1585 		while (isdigit(*(end-1)) && end > start)
1586 			end--;
1587 		len = end - start;
1588 
1589 		if (kstrtoint(end, 10, &id) < 0)
1590 			continue;
1591 
1592 		/* Allocate an alias_prop with enough space for the stem */
1593 		ap = dt_alloc(sizeof(*ap) + len + 1, 4);
1594 		if (!ap)
1595 			continue;
1596 		ap->alias = start;
1597 		of_alias_add(ap, np, id, start, len);
1598 	}
1599 }
1600 
1601 /**
1602  * of_alias_get_id - Get alias id for the given device_node
1603  * @np:		Pointer to the given device_node
1604  * @stem:	Alias stem of the given device_node
1605  *
1606  * The function travels the lookup table to get alias id for the given
1607  * device_node and alias stem.  It returns the alias id if find it.
1608  */
1609 int of_alias_get_id(struct device_node *np, const char *stem)
1610 {
1611 	struct alias_prop *app;
1612 	int id = -ENODEV;
1613 
1614 	mutex_lock(&of_aliases_mutex);
1615 	list_for_each_entry(app, &aliases_lookup, link) {
1616 		if (strcmp(app->stem, stem) != 0)
1617 			continue;
1618 
1619 		if (np == app->np) {
1620 			id = app->id;
1621 			break;
1622 		}
1623 	}
1624 	mutex_unlock(&of_aliases_mutex);
1625 
1626 	return id;
1627 }
1628 EXPORT_SYMBOL_GPL(of_alias_get_id);
1629 
1630 const __be32 *of_prop_next_u32(struct property *prop, const __be32 *cur,
1631 			       u32 *pu)
1632 {
1633 	const void *curv = cur;
1634 
1635 	if (!prop)
1636 		return NULL;
1637 
1638 	if (!cur) {
1639 		curv = prop->value;
1640 		goto out_val;
1641 	}
1642 
1643 	curv += sizeof(*cur);
1644 	if (curv >= prop->value + prop->length)
1645 		return NULL;
1646 
1647 out_val:
1648 	*pu = be32_to_cpup(curv);
1649 	return curv;
1650 }
1651 EXPORT_SYMBOL_GPL(of_prop_next_u32);
1652 
1653 const char *of_prop_next_string(struct property *prop, const char *cur)
1654 {
1655 	const void *curv = cur;
1656 
1657 	if (!prop)
1658 		return NULL;
1659 
1660 	if (!cur)
1661 		return prop->value;
1662 
1663 	curv += strlen(cur) + 1;
1664 	if (curv >= prop->value + prop->length)
1665 		return NULL;
1666 
1667 	return curv;
1668 }
1669 EXPORT_SYMBOL_GPL(of_prop_next_string);
1670