xref: /linux/drivers/nvme/host/fc.c (revision 19d0070a2792181f79df01277fe00b83b9f7eda7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) 2016 Avago Technologies.  All rights reserved.
4  */
5 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
6 #include <linux/module.h>
7 #include <linux/parser.h>
8 #include <uapi/scsi/fc/fc_fs.h>
9 #include <uapi/scsi/fc/fc_els.h>
10 #include <linux/delay.h>
11 #include <linux/overflow.h>
12 
13 #include "nvme.h"
14 #include "fabrics.h"
15 #include <linux/nvme-fc-driver.h>
16 #include <linux/nvme-fc.h>
17 #include "fc.h"
18 #include <scsi/scsi_transport_fc.h>
19 
20 /* *************************** Data Structures/Defines ****************** */
21 
22 
23 enum nvme_fc_queue_flags {
24 	NVME_FC_Q_CONNECTED = 0,
25 	NVME_FC_Q_LIVE,
26 };
27 
28 #define NVME_FC_DEFAULT_DEV_LOSS_TMO	60	/* seconds */
29 
30 struct nvme_fc_queue {
31 	struct nvme_fc_ctrl	*ctrl;
32 	struct device		*dev;
33 	struct blk_mq_hw_ctx	*hctx;
34 	void			*lldd_handle;
35 	size_t			cmnd_capsule_len;
36 	u32			qnum;
37 	u32			rqcnt;
38 	u32			seqno;
39 
40 	u64			connection_id;
41 	atomic_t		csn;
42 
43 	unsigned long		flags;
44 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
45 
46 enum nvme_fcop_flags {
47 	FCOP_FLAGS_TERMIO	= (1 << 0),
48 	FCOP_FLAGS_AEN		= (1 << 1),
49 };
50 
51 struct nvmefc_ls_req_op {
52 	struct nvmefc_ls_req	ls_req;
53 
54 	struct nvme_fc_rport	*rport;
55 	struct nvme_fc_queue	*queue;
56 	struct request		*rq;
57 	u32			flags;
58 
59 	int			ls_error;
60 	struct completion	ls_done;
61 	struct list_head	lsreq_list;	/* rport->ls_req_list */
62 	bool			req_queued;
63 };
64 
65 struct nvmefc_ls_rcv_op {
66 	struct nvme_fc_rport		*rport;
67 	struct nvmefc_ls_rsp		*lsrsp;
68 	union nvmefc_ls_requests	*rqstbuf;
69 	union nvmefc_ls_responses	*rspbuf;
70 	u16				rqstdatalen;
71 	bool				handled;
72 	dma_addr_t			rspdma;
73 	struct list_head		lsrcv_list;	/* rport->ls_rcv_list */
74 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
75 
76 enum nvme_fcpop_state {
77 	FCPOP_STATE_UNINIT	= 0,
78 	FCPOP_STATE_IDLE	= 1,
79 	FCPOP_STATE_ACTIVE	= 2,
80 	FCPOP_STATE_ABORTED	= 3,
81 	FCPOP_STATE_COMPLETE	= 4,
82 };
83 
84 struct nvme_fc_fcp_op {
85 	struct nvme_request	nreq;		/*
86 						 * nvme/host/core.c
87 						 * requires this to be
88 						 * the 1st element in the
89 						 * private structure
90 						 * associated with the
91 						 * request.
92 						 */
93 	struct nvmefc_fcp_req	fcp_req;
94 
95 	struct nvme_fc_ctrl	*ctrl;
96 	struct nvme_fc_queue	*queue;
97 	struct request		*rq;
98 
99 	atomic_t		state;
100 	u32			flags;
101 	u32			rqno;
102 	u32			nents;
103 
104 	struct nvme_fc_cmd_iu	cmd_iu;
105 	struct nvme_fc_ersp_iu	rsp_iu;
106 };
107 
108 struct nvme_fcp_op_w_sgl {
109 	struct nvme_fc_fcp_op	op;
110 	struct scatterlist	sgl[NVME_INLINE_SG_CNT];
111 	uint8_t			priv[];
112 };
113 
114 struct nvme_fc_lport {
115 	struct nvme_fc_local_port	localport;
116 
117 	struct ida			endp_cnt;
118 	struct list_head		port_list;	/* nvme_fc_port_list */
119 	struct list_head		endp_list;
120 	struct device			*dev;	/* physical device for dma */
121 	struct nvme_fc_port_template	*ops;
122 	struct kref			ref;
123 	atomic_t                        act_rport_cnt;
124 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
125 
126 struct nvme_fc_rport {
127 	struct nvme_fc_remote_port	remoteport;
128 
129 	struct list_head		endp_list; /* for lport->endp_list */
130 	struct list_head		ctrl_list;
131 	struct list_head		ls_req_list;
132 	struct list_head		ls_rcv_list;
133 	struct list_head		disc_list;
134 	struct device			*dev;	/* physical device for dma */
135 	struct nvme_fc_lport		*lport;
136 	spinlock_t			lock;
137 	struct kref			ref;
138 	atomic_t                        act_ctrl_cnt;
139 	unsigned long			dev_loss_end;
140 	struct work_struct		lsrcv_work;
141 } __aligned(sizeof(u64));	/* alignment for other things alloc'd with */
142 
143 /* fc_ctrl flags values - specified as bit positions */
144 #define ASSOC_ACTIVE		0
145 #define FCCTRL_TERMIO		1
146 
147 struct nvme_fc_ctrl {
148 	spinlock_t		lock;
149 	struct nvme_fc_queue	*queues;
150 	struct device		*dev;
151 	struct nvme_fc_lport	*lport;
152 	struct nvme_fc_rport	*rport;
153 	u32			cnum;
154 
155 	bool			ioq_live;
156 	atomic_t		err_work_active;
157 	u64			association_id;
158 	struct nvmefc_ls_rcv_op	*rcv_disconn;
159 
160 	struct list_head	ctrl_list;	/* rport->ctrl_list */
161 
162 	struct blk_mq_tag_set	admin_tag_set;
163 	struct blk_mq_tag_set	tag_set;
164 
165 	struct delayed_work	connect_work;
166 	struct work_struct	err_work;
167 
168 	struct kref		ref;
169 	unsigned long		flags;
170 	u32			iocnt;
171 	wait_queue_head_t	ioabort_wait;
172 
173 	struct nvme_fc_fcp_op	aen_ops[NVME_NR_AEN_COMMANDS];
174 
175 	struct nvme_ctrl	ctrl;
176 };
177 
178 static inline struct nvme_fc_ctrl *
179 to_fc_ctrl(struct nvme_ctrl *ctrl)
180 {
181 	return container_of(ctrl, struct nvme_fc_ctrl, ctrl);
182 }
183 
184 static inline struct nvme_fc_lport *
185 localport_to_lport(struct nvme_fc_local_port *portptr)
186 {
187 	return container_of(portptr, struct nvme_fc_lport, localport);
188 }
189 
190 static inline struct nvme_fc_rport *
191 remoteport_to_rport(struct nvme_fc_remote_port *portptr)
192 {
193 	return container_of(portptr, struct nvme_fc_rport, remoteport);
194 }
195 
196 static inline struct nvmefc_ls_req_op *
197 ls_req_to_lsop(struct nvmefc_ls_req *lsreq)
198 {
199 	return container_of(lsreq, struct nvmefc_ls_req_op, ls_req);
200 }
201 
202 static inline struct nvme_fc_fcp_op *
203 fcp_req_to_fcp_op(struct nvmefc_fcp_req *fcpreq)
204 {
205 	return container_of(fcpreq, struct nvme_fc_fcp_op, fcp_req);
206 }
207 
208 
209 
210 /* *************************** Globals **************************** */
211 
212 
213 static DEFINE_SPINLOCK(nvme_fc_lock);
214 
215 static LIST_HEAD(nvme_fc_lport_list);
216 static DEFINE_IDA(nvme_fc_local_port_cnt);
217 static DEFINE_IDA(nvme_fc_ctrl_cnt);
218 
219 static struct workqueue_struct *nvme_fc_wq;
220 
221 static bool nvme_fc_waiting_to_unload;
222 static DECLARE_COMPLETION(nvme_fc_unload_proceed);
223 
224 /*
225  * These items are short-term. They will eventually be moved into
226  * a generic FC class. See comments in module init.
227  */
228 static struct device *fc_udev_device;
229 
230 static void nvme_fc_complete_rq(struct request *rq);
231 
232 /* *********************** FC-NVME Port Management ************************ */
233 
234 static void __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *,
235 			struct nvme_fc_queue *, unsigned int);
236 
237 static void nvme_fc_handle_ls_rqst_work(struct work_struct *work);
238 
239 
240 static void
241 nvme_fc_free_lport(struct kref *ref)
242 {
243 	struct nvme_fc_lport *lport =
244 		container_of(ref, struct nvme_fc_lport, ref);
245 	unsigned long flags;
246 
247 	WARN_ON(lport->localport.port_state != FC_OBJSTATE_DELETED);
248 	WARN_ON(!list_empty(&lport->endp_list));
249 
250 	/* remove from transport list */
251 	spin_lock_irqsave(&nvme_fc_lock, flags);
252 	list_del(&lport->port_list);
253 	if (nvme_fc_waiting_to_unload && list_empty(&nvme_fc_lport_list))
254 		complete(&nvme_fc_unload_proceed);
255 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
256 
257 	ida_simple_remove(&nvme_fc_local_port_cnt, lport->localport.port_num);
258 	ida_destroy(&lport->endp_cnt);
259 
260 	put_device(lport->dev);
261 
262 	kfree(lport);
263 }
264 
265 static void
266 nvme_fc_lport_put(struct nvme_fc_lport *lport)
267 {
268 	kref_put(&lport->ref, nvme_fc_free_lport);
269 }
270 
271 static int
272 nvme_fc_lport_get(struct nvme_fc_lport *lport)
273 {
274 	return kref_get_unless_zero(&lport->ref);
275 }
276 
277 
278 static struct nvme_fc_lport *
279 nvme_fc_attach_to_unreg_lport(struct nvme_fc_port_info *pinfo,
280 			struct nvme_fc_port_template *ops,
281 			struct device *dev)
282 {
283 	struct nvme_fc_lport *lport;
284 	unsigned long flags;
285 
286 	spin_lock_irqsave(&nvme_fc_lock, flags);
287 
288 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
289 		if (lport->localport.node_name != pinfo->node_name ||
290 		    lport->localport.port_name != pinfo->port_name)
291 			continue;
292 
293 		if (lport->dev != dev) {
294 			lport = ERR_PTR(-EXDEV);
295 			goto out_done;
296 		}
297 
298 		if (lport->localport.port_state != FC_OBJSTATE_DELETED) {
299 			lport = ERR_PTR(-EEXIST);
300 			goto out_done;
301 		}
302 
303 		if (!nvme_fc_lport_get(lport)) {
304 			/*
305 			 * fails if ref cnt already 0. If so,
306 			 * act as if lport already deleted
307 			 */
308 			lport = NULL;
309 			goto out_done;
310 		}
311 
312 		/* resume the lport */
313 
314 		lport->ops = ops;
315 		lport->localport.port_role = pinfo->port_role;
316 		lport->localport.port_id = pinfo->port_id;
317 		lport->localport.port_state = FC_OBJSTATE_ONLINE;
318 
319 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
320 
321 		return lport;
322 	}
323 
324 	lport = NULL;
325 
326 out_done:
327 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
328 
329 	return lport;
330 }
331 
332 /**
333  * nvme_fc_register_localport - transport entry point called by an
334  *                              LLDD to register the existence of a NVME
335  *                              host FC port.
336  * @pinfo:     pointer to information about the port to be registered
337  * @template:  LLDD entrypoints and operational parameters for the port
338  * @dev:       physical hardware device node port corresponds to. Will be
339  *             used for DMA mappings
340  * @portptr:   pointer to a local port pointer. Upon success, the routine
341  *             will allocate a nvme_fc_local_port structure and place its
342  *             address in the local port pointer. Upon failure, local port
343  *             pointer will be set to 0.
344  *
345  * Returns:
346  * a completion status. Must be 0 upon success; a negative errno
347  * (ex: -ENXIO) upon failure.
348  */
349 int
350 nvme_fc_register_localport(struct nvme_fc_port_info *pinfo,
351 			struct nvme_fc_port_template *template,
352 			struct device *dev,
353 			struct nvme_fc_local_port **portptr)
354 {
355 	struct nvme_fc_lport *newrec;
356 	unsigned long flags;
357 	int ret, idx;
358 
359 	if (!template->localport_delete || !template->remoteport_delete ||
360 	    !template->ls_req || !template->fcp_io ||
361 	    !template->ls_abort || !template->fcp_abort ||
362 	    !template->max_hw_queues || !template->max_sgl_segments ||
363 	    !template->max_dif_sgl_segments || !template->dma_boundary) {
364 		ret = -EINVAL;
365 		goto out_reghost_failed;
366 	}
367 
368 	/*
369 	 * look to see if there is already a localport that had been
370 	 * deregistered and in the process of waiting for all the
371 	 * references to fully be removed.  If the references haven't
372 	 * expired, we can simply re-enable the localport. Remoteports
373 	 * and controller reconnections should resume naturally.
374 	 */
375 	newrec = nvme_fc_attach_to_unreg_lport(pinfo, template, dev);
376 
377 	/* found an lport, but something about its state is bad */
378 	if (IS_ERR(newrec)) {
379 		ret = PTR_ERR(newrec);
380 		goto out_reghost_failed;
381 
382 	/* found existing lport, which was resumed */
383 	} else if (newrec) {
384 		*portptr = &newrec->localport;
385 		return 0;
386 	}
387 
388 	/* nothing found - allocate a new localport struct */
389 
390 	newrec = kmalloc((sizeof(*newrec) + template->local_priv_sz),
391 			 GFP_KERNEL);
392 	if (!newrec) {
393 		ret = -ENOMEM;
394 		goto out_reghost_failed;
395 	}
396 
397 	idx = ida_simple_get(&nvme_fc_local_port_cnt, 0, 0, GFP_KERNEL);
398 	if (idx < 0) {
399 		ret = -ENOSPC;
400 		goto out_fail_kfree;
401 	}
402 
403 	if (!get_device(dev) && dev) {
404 		ret = -ENODEV;
405 		goto out_ida_put;
406 	}
407 
408 	INIT_LIST_HEAD(&newrec->port_list);
409 	INIT_LIST_HEAD(&newrec->endp_list);
410 	kref_init(&newrec->ref);
411 	atomic_set(&newrec->act_rport_cnt, 0);
412 	newrec->ops = template;
413 	newrec->dev = dev;
414 	ida_init(&newrec->endp_cnt);
415 	if (template->local_priv_sz)
416 		newrec->localport.private = &newrec[1];
417 	else
418 		newrec->localport.private = NULL;
419 	newrec->localport.node_name = pinfo->node_name;
420 	newrec->localport.port_name = pinfo->port_name;
421 	newrec->localport.port_role = pinfo->port_role;
422 	newrec->localport.port_id = pinfo->port_id;
423 	newrec->localport.port_state = FC_OBJSTATE_ONLINE;
424 	newrec->localport.port_num = idx;
425 
426 	spin_lock_irqsave(&nvme_fc_lock, flags);
427 	list_add_tail(&newrec->port_list, &nvme_fc_lport_list);
428 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
429 
430 	if (dev)
431 		dma_set_seg_boundary(dev, template->dma_boundary);
432 
433 	*portptr = &newrec->localport;
434 	return 0;
435 
436 out_ida_put:
437 	ida_simple_remove(&nvme_fc_local_port_cnt, idx);
438 out_fail_kfree:
439 	kfree(newrec);
440 out_reghost_failed:
441 	*portptr = NULL;
442 
443 	return ret;
444 }
445 EXPORT_SYMBOL_GPL(nvme_fc_register_localport);
446 
447 /**
448  * nvme_fc_unregister_localport - transport entry point called by an
449  *                              LLDD to deregister/remove a previously
450  *                              registered a NVME host FC port.
451  * @portptr: pointer to the (registered) local port that is to be deregistered.
452  *
453  * Returns:
454  * a completion status. Must be 0 upon success; a negative errno
455  * (ex: -ENXIO) upon failure.
456  */
457 int
458 nvme_fc_unregister_localport(struct nvme_fc_local_port *portptr)
459 {
460 	struct nvme_fc_lport *lport = localport_to_lport(portptr);
461 	unsigned long flags;
462 
463 	if (!portptr)
464 		return -EINVAL;
465 
466 	spin_lock_irqsave(&nvme_fc_lock, flags);
467 
468 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
469 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
470 		return -EINVAL;
471 	}
472 	portptr->port_state = FC_OBJSTATE_DELETED;
473 
474 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
475 
476 	if (atomic_read(&lport->act_rport_cnt) == 0)
477 		lport->ops->localport_delete(&lport->localport);
478 
479 	nvme_fc_lport_put(lport);
480 
481 	return 0;
482 }
483 EXPORT_SYMBOL_GPL(nvme_fc_unregister_localport);
484 
485 /*
486  * TRADDR strings, per FC-NVME are fixed format:
487  *   "nn-0x<16hexdigits>:pn-0x<16hexdigits>" - 43 characters
488  * udev event will only differ by prefix of what field is
489  * being specified:
490  *    "NVMEFC_HOST_TRADDR=" or "NVMEFC_TRADDR=" - 19 max characters
491  *  19 + 43 + null_fudge = 64 characters
492  */
493 #define FCNVME_TRADDR_LENGTH		64
494 
495 static void
496 nvme_fc_signal_discovery_scan(struct nvme_fc_lport *lport,
497 		struct nvme_fc_rport *rport)
498 {
499 	char hostaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_HOST_TRADDR=...*/
500 	char tgtaddr[FCNVME_TRADDR_LENGTH];	/* NVMEFC_TRADDR=...*/
501 	char *envp[4] = { "FC_EVENT=nvmediscovery", hostaddr, tgtaddr, NULL };
502 
503 	if (!(rport->remoteport.port_role & FC_PORT_ROLE_NVME_DISCOVERY))
504 		return;
505 
506 	snprintf(hostaddr, sizeof(hostaddr),
507 		"NVMEFC_HOST_TRADDR=nn-0x%016llx:pn-0x%016llx",
508 		lport->localport.node_name, lport->localport.port_name);
509 	snprintf(tgtaddr, sizeof(tgtaddr),
510 		"NVMEFC_TRADDR=nn-0x%016llx:pn-0x%016llx",
511 		rport->remoteport.node_name, rport->remoteport.port_name);
512 	kobject_uevent_env(&fc_udev_device->kobj, KOBJ_CHANGE, envp);
513 }
514 
515 static void
516 nvme_fc_free_rport(struct kref *ref)
517 {
518 	struct nvme_fc_rport *rport =
519 		container_of(ref, struct nvme_fc_rport, ref);
520 	struct nvme_fc_lport *lport =
521 			localport_to_lport(rport->remoteport.localport);
522 	unsigned long flags;
523 
524 	WARN_ON(rport->remoteport.port_state != FC_OBJSTATE_DELETED);
525 	WARN_ON(!list_empty(&rport->ctrl_list));
526 
527 	/* remove from lport list */
528 	spin_lock_irqsave(&nvme_fc_lock, flags);
529 	list_del(&rport->endp_list);
530 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
531 
532 	WARN_ON(!list_empty(&rport->disc_list));
533 	ida_simple_remove(&lport->endp_cnt, rport->remoteport.port_num);
534 
535 	kfree(rport);
536 
537 	nvme_fc_lport_put(lport);
538 }
539 
540 static void
541 nvme_fc_rport_put(struct nvme_fc_rport *rport)
542 {
543 	kref_put(&rport->ref, nvme_fc_free_rport);
544 }
545 
546 static int
547 nvme_fc_rport_get(struct nvme_fc_rport *rport)
548 {
549 	return kref_get_unless_zero(&rport->ref);
550 }
551 
552 static void
553 nvme_fc_resume_controller(struct nvme_fc_ctrl *ctrl)
554 {
555 	switch (ctrl->ctrl.state) {
556 	case NVME_CTRL_NEW:
557 	case NVME_CTRL_CONNECTING:
558 		/*
559 		 * As all reconnects were suppressed, schedule a
560 		 * connect.
561 		 */
562 		dev_info(ctrl->ctrl.device,
563 			"NVME-FC{%d}: connectivity re-established. "
564 			"Attempting reconnect\n", ctrl->cnum);
565 
566 		queue_delayed_work(nvme_wq, &ctrl->connect_work, 0);
567 		break;
568 
569 	case NVME_CTRL_RESETTING:
570 		/*
571 		 * Controller is already in the process of terminating the
572 		 * association. No need to do anything further. The reconnect
573 		 * step will naturally occur after the reset completes.
574 		 */
575 		break;
576 
577 	default:
578 		/* no action to take - let it delete */
579 		break;
580 	}
581 }
582 
583 static struct nvme_fc_rport *
584 nvme_fc_attach_to_suspended_rport(struct nvme_fc_lport *lport,
585 				struct nvme_fc_port_info *pinfo)
586 {
587 	struct nvme_fc_rport *rport;
588 	struct nvme_fc_ctrl *ctrl;
589 	unsigned long flags;
590 
591 	spin_lock_irqsave(&nvme_fc_lock, flags);
592 
593 	list_for_each_entry(rport, &lport->endp_list, endp_list) {
594 		if (rport->remoteport.node_name != pinfo->node_name ||
595 		    rport->remoteport.port_name != pinfo->port_name)
596 			continue;
597 
598 		if (!nvme_fc_rport_get(rport)) {
599 			rport = ERR_PTR(-ENOLCK);
600 			goto out_done;
601 		}
602 
603 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
604 
605 		spin_lock_irqsave(&rport->lock, flags);
606 
607 		/* has it been unregistered */
608 		if (rport->remoteport.port_state != FC_OBJSTATE_DELETED) {
609 			/* means lldd called us twice */
610 			spin_unlock_irqrestore(&rport->lock, flags);
611 			nvme_fc_rport_put(rport);
612 			return ERR_PTR(-ESTALE);
613 		}
614 
615 		rport->remoteport.port_role = pinfo->port_role;
616 		rport->remoteport.port_id = pinfo->port_id;
617 		rport->remoteport.port_state = FC_OBJSTATE_ONLINE;
618 		rport->dev_loss_end = 0;
619 
620 		/*
621 		 * kick off a reconnect attempt on all associations to the
622 		 * remote port. A successful reconnects will resume i/o.
623 		 */
624 		list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list)
625 			nvme_fc_resume_controller(ctrl);
626 
627 		spin_unlock_irqrestore(&rport->lock, flags);
628 
629 		return rport;
630 	}
631 
632 	rport = NULL;
633 
634 out_done:
635 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
636 
637 	return rport;
638 }
639 
640 static inline void
641 __nvme_fc_set_dev_loss_tmo(struct nvme_fc_rport *rport,
642 			struct nvme_fc_port_info *pinfo)
643 {
644 	if (pinfo->dev_loss_tmo)
645 		rport->remoteport.dev_loss_tmo = pinfo->dev_loss_tmo;
646 	else
647 		rport->remoteport.dev_loss_tmo = NVME_FC_DEFAULT_DEV_LOSS_TMO;
648 }
649 
650 /**
651  * nvme_fc_register_remoteport - transport entry point called by an
652  *                              LLDD to register the existence of a NVME
653  *                              subsystem FC port on its fabric.
654  * @localport: pointer to the (registered) local port that the remote
655  *             subsystem port is connected to.
656  * @pinfo:     pointer to information about the port to be registered
657  * @portptr:   pointer to a remote port pointer. Upon success, the routine
658  *             will allocate a nvme_fc_remote_port structure and place its
659  *             address in the remote port pointer. Upon failure, remote port
660  *             pointer will be set to 0.
661  *
662  * Returns:
663  * a completion status. Must be 0 upon success; a negative errno
664  * (ex: -ENXIO) upon failure.
665  */
666 int
667 nvme_fc_register_remoteport(struct nvme_fc_local_port *localport,
668 				struct nvme_fc_port_info *pinfo,
669 				struct nvme_fc_remote_port **portptr)
670 {
671 	struct nvme_fc_lport *lport = localport_to_lport(localport);
672 	struct nvme_fc_rport *newrec;
673 	unsigned long flags;
674 	int ret, idx;
675 
676 	if (!nvme_fc_lport_get(lport)) {
677 		ret = -ESHUTDOWN;
678 		goto out_reghost_failed;
679 	}
680 
681 	/*
682 	 * look to see if there is already a remoteport that is waiting
683 	 * for a reconnect (within dev_loss_tmo) with the same WWN's.
684 	 * If so, transition to it and reconnect.
685 	 */
686 	newrec = nvme_fc_attach_to_suspended_rport(lport, pinfo);
687 
688 	/* found an rport, but something about its state is bad */
689 	if (IS_ERR(newrec)) {
690 		ret = PTR_ERR(newrec);
691 		goto out_lport_put;
692 
693 	/* found existing rport, which was resumed */
694 	} else if (newrec) {
695 		nvme_fc_lport_put(lport);
696 		__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
697 		nvme_fc_signal_discovery_scan(lport, newrec);
698 		*portptr = &newrec->remoteport;
699 		return 0;
700 	}
701 
702 	/* nothing found - allocate a new remoteport struct */
703 
704 	newrec = kmalloc((sizeof(*newrec) + lport->ops->remote_priv_sz),
705 			 GFP_KERNEL);
706 	if (!newrec) {
707 		ret = -ENOMEM;
708 		goto out_lport_put;
709 	}
710 
711 	idx = ida_simple_get(&lport->endp_cnt, 0, 0, GFP_KERNEL);
712 	if (idx < 0) {
713 		ret = -ENOSPC;
714 		goto out_kfree_rport;
715 	}
716 
717 	INIT_LIST_HEAD(&newrec->endp_list);
718 	INIT_LIST_HEAD(&newrec->ctrl_list);
719 	INIT_LIST_HEAD(&newrec->ls_req_list);
720 	INIT_LIST_HEAD(&newrec->disc_list);
721 	kref_init(&newrec->ref);
722 	atomic_set(&newrec->act_ctrl_cnt, 0);
723 	spin_lock_init(&newrec->lock);
724 	newrec->remoteport.localport = &lport->localport;
725 	INIT_LIST_HEAD(&newrec->ls_rcv_list);
726 	newrec->dev = lport->dev;
727 	newrec->lport = lport;
728 	if (lport->ops->remote_priv_sz)
729 		newrec->remoteport.private = &newrec[1];
730 	else
731 		newrec->remoteport.private = NULL;
732 	newrec->remoteport.port_role = pinfo->port_role;
733 	newrec->remoteport.node_name = pinfo->node_name;
734 	newrec->remoteport.port_name = pinfo->port_name;
735 	newrec->remoteport.port_id = pinfo->port_id;
736 	newrec->remoteport.port_state = FC_OBJSTATE_ONLINE;
737 	newrec->remoteport.port_num = idx;
738 	__nvme_fc_set_dev_loss_tmo(newrec, pinfo);
739 	INIT_WORK(&newrec->lsrcv_work, nvme_fc_handle_ls_rqst_work);
740 
741 	spin_lock_irqsave(&nvme_fc_lock, flags);
742 	list_add_tail(&newrec->endp_list, &lport->endp_list);
743 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
744 
745 	nvme_fc_signal_discovery_scan(lport, newrec);
746 
747 	*portptr = &newrec->remoteport;
748 	return 0;
749 
750 out_kfree_rport:
751 	kfree(newrec);
752 out_lport_put:
753 	nvme_fc_lport_put(lport);
754 out_reghost_failed:
755 	*portptr = NULL;
756 	return ret;
757 }
758 EXPORT_SYMBOL_GPL(nvme_fc_register_remoteport);
759 
760 static int
761 nvme_fc_abort_lsops(struct nvme_fc_rport *rport)
762 {
763 	struct nvmefc_ls_req_op *lsop;
764 	unsigned long flags;
765 
766 restart:
767 	spin_lock_irqsave(&rport->lock, flags);
768 
769 	list_for_each_entry(lsop, &rport->ls_req_list, lsreq_list) {
770 		if (!(lsop->flags & FCOP_FLAGS_TERMIO)) {
771 			lsop->flags |= FCOP_FLAGS_TERMIO;
772 			spin_unlock_irqrestore(&rport->lock, flags);
773 			rport->lport->ops->ls_abort(&rport->lport->localport,
774 						&rport->remoteport,
775 						&lsop->ls_req);
776 			goto restart;
777 		}
778 	}
779 	spin_unlock_irqrestore(&rport->lock, flags);
780 
781 	return 0;
782 }
783 
784 static void
785 nvme_fc_ctrl_connectivity_loss(struct nvme_fc_ctrl *ctrl)
786 {
787 	dev_info(ctrl->ctrl.device,
788 		"NVME-FC{%d}: controller connectivity lost. Awaiting "
789 		"Reconnect", ctrl->cnum);
790 
791 	switch (ctrl->ctrl.state) {
792 	case NVME_CTRL_NEW:
793 	case NVME_CTRL_LIVE:
794 		/*
795 		 * Schedule a controller reset. The reset will terminate the
796 		 * association and schedule the reconnect timer.  Reconnects
797 		 * will be attempted until either the ctlr_loss_tmo
798 		 * (max_retries * connect_delay) expires or the remoteport's
799 		 * dev_loss_tmo expires.
800 		 */
801 		if (nvme_reset_ctrl(&ctrl->ctrl)) {
802 			dev_warn(ctrl->ctrl.device,
803 				"NVME-FC{%d}: Couldn't schedule reset.\n",
804 				ctrl->cnum);
805 			nvme_delete_ctrl(&ctrl->ctrl);
806 		}
807 		break;
808 
809 	case NVME_CTRL_CONNECTING:
810 		/*
811 		 * The association has already been terminated and the
812 		 * controller is attempting reconnects.  No need to do anything
813 		 * futher.  Reconnects will be attempted until either the
814 		 * ctlr_loss_tmo (max_retries * connect_delay) expires or the
815 		 * remoteport's dev_loss_tmo expires.
816 		 */
817 		break;
818 
819 	case NVME_CTRL_RESETTING:
820 		/*
821 		 * Controller is already in the process of terminating the
822 		 * association.  No need to do anything further. The reconnect
823 		 * step will kick in naturally after the association is
824 		 * terminated.
825 		 */
826 		break;
827 
828 	case NVME_CTRL_DELETING:
829 	default:
830 		/* no action to take - let it delete */
831 		break;
832 	}
833 }
834 
835 /**
836  * nvme_fc_unregister_remoteport - transport entry point called by an
837  *                              LLDD to deregister/remove a previously
838  *                              registered a NVME subsystem FC port.
839  * @portptr: pointer to the (registered) remote port that is to be
840  *           deregistered.
841  *
842  * Returns:
843  * a completion status. Must be 0 upon success; a negative errno
844  * (ex: -ENXIO) upon failure.
845  */
846 int
847 nvme_fc_unregister_remoteport(struct nvme_fc_remote_port *portptr)
848 {
849 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
850 	struct nvme_fc_ctrl *ctrl;
851 	unsigned long flags;
852 
853 	if (!portptr)
854 		return -EINVAL;
855 
856 	spin_lock_irqsave(&rport->lock, flags);
857 
858 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
859 		spin_unlock_irqrestore(&rport->lock, flags);
860 		return -EINVAL;
861 	}
862 	portptr->port_state = FC_OBJSTATE_DELETED;
863 
864 	rport->dev_loss_end = jiffies + (portptr->dev_loss_tmo * HZ);
865 
866 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
867 		/* if dev_loss_tmo==0, dev loss is immediate */
868 		if (!portptr->dev_loss_tmo) {
869 			dev_warn(ctrl->ctrl.device,
870 				"NVME-FC{%d}: controller connectivity lost.\n",
871 				ctrl->cnum);
872 			nvme_delete_ctrl(&ctrl->ctrl);
873 		} else
874 			nvme_fc_ctrl_connectivity_loss(ctrl);
875 	}
876 
877 	spin_unlock_irqrestore(&rport->lock, flags);
878 
879 	nvme_fc_abort_lsops(rport);
880 
881 	if (atomic_read(&rport->act_ctrl_cnt) == 0)
882 		rport->lport->ops->remoteport_delete(portptr);
883 
884 	/*
885 	 * release the reference, which will allow, if all controllers
886 	 * go away, which should only occur after dev_loss_tmo occurs,
887 	 * for the rport to be torn down.
888 	 */
889 	nvme_fc_rport_put(rport);
890 
891 	return 0;
892 }
893 EXPORT_SYMBOL_GPL(nvme_fc_unregister_remoteport);
894 
895 /**
896  * nvme_fc_rescan_remoteport - transport entry point called by an
897  *                              LLDD to request a nvme device rescan.
898  * @remoteport: pointer to the (registered) remote port that is to be
899  *              rescanned.
900  *
901  * Returns: N/A
902  */
903 void
904 nvme_fc_rescan_remoteport(struct nvme_fc_remote_port *remoteport)
905 {
906 	struct nvme_fc_rport *rport = remoteport_to_rport(remoteport);
907 
908 	nvme_fc_signal_discovery_scan(rport->lport, rport);
909 }
910 EXPORT_SYMBOL_GPL(nvme_fc_rescan_remoteport);
911 
912 int
913 nvme_fc_set_remoteport_devloss(struct nvme_fc_remote_port *portptr,
914 			u32 dev_loss_tmo)
915 {
916 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
917 	unsigned long flags;
918 
919 	spin_lock_irqsave(&rport->lock, flags);
920 
921 	if (portptr->port_state != FC_OBJSTATE_ONLINE) {
922 		spin_unlock_irqrestore(&rport->lock, flags);
923 		return -EINVAL;
924 	}
925 
926 	/* a dev_loss_tmo of 0 (immediate) is allowed to be set */
927 	rport->remoteport.dev_loss_tmo = dev_loss_tmo;
928 
929 	spin_unlock_irqrestore(&rport->lock, flags);
930 
931 	return 0;
932 }
933 EXPORT_SYMBOL_GPL(nvme_fc_set_remoteport_devloss);
934 
935 
936 /* *********************** FC-NVME DMA Handling **************************** */
937 
938 /*
939  * The fcloop device passes in a NULL device pointer. Real LLD's will
940  * pass in a valid device pointer. If NULL is passed to the dma mapping
941  * routines, depending on the platform, it may or may not succeed, and
942  * may crash.
943  *
944  * As such:
945  * Wrapper all the dma routines and check the dev pointer.
946  *
947  * If simple mappings (return just a dma address, we'll noop them,
948  * returning a dma address of 0.
949  *
950  * On more complex mappings (dma_map_sg), a pseudo routine fills
951  * in the scatter list, setting all dma addresses to 0.
952  */
953 
954 static inline dma_addr_t
955 fc_dma_map_single(struct device *dev, void *ptr, size_t size,
956 		enum dma_data_direction dir)
957 {
958 	return dev ? dma_map_single(dev, ptr, size, dir) : (dma_addr_t)0L;
959 }
960 
961 static inline int
962 fc_dma_mapping_error(struct device *dev, dma_addr_t dma_addr)
963 {
964 	return dev ? dma_mapping_error(dev, dma_addr) : 0;
965 }
966 
967 static inline void
968 fc_dma_unmap_single(struct device *dev, dma_addr_t addr, size_t size,
969 	enum dma_data_direction dir)
970 {
971 	if (dev)
972 		dma_unmap_single(dev, addr, size, dir);
973 }
974 
975 static inline void
976 fc_dma_sync_single_for_cpu(struct device *dev, dma_addr_t addr, size_t size,
977 		enum dma_data_direction dir)
978 {
979 	if (dev)
980 		dma_sync_single_for_cpu(dev, addr, size, dir);
981 }
982 
983 static inline void
984 fc_dma_sync_single_for_device(struct device *dev, dma_addr_t addr, size_t size,
985 		enum dma_data_direction dir)
986 {
987 	if (dev)
988 		dma_sync_single_for_device(dev, addr, size, dir);
989 }
990 
991 /* pseudo dma_map_sg call */
992 static int
993 fc_map_sg(struct scatterlist *sg, int nents)
994 {
995 	struct scatterlist *s;
996 	int i;
997 
998 	WARN_ON(nents == 0 || sg[0].length == 0);
999 
1000 	for_each_sg(sg, s, nents, i) {
1001 		s->dma_address = 0L;
1002 #ifdef CONFIG_NEED_SG_DMA_LENGTH
1003 		s->dma_length = s->length;
1004 #endif
1005 	}
1006 	return nents;
1007 }
1008 
1009 static inline int
1010 fc_dma_map_sg(struct device *dev, struct scatterlist *sg, int nents,
1011 		enum dma_data_direction dir)
1012 {
1013 	return dev ? dma_map_sg(dev, sg, nents, dir) : fc_map_sg(sg, nents);
1014 }
1015 
1016 static inline void
1017 fc_dma_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
1018 		enum dma_data_direction dir)
1019 {
1020 	if (dev)
1021 		dma_unmap_sg(dev, sg, nents, dir);
1022 }
1023 
1024 /* *********************** FC-NVME LS Handling **************************** */
1025 
1026 static void nvme_fc_ctrl_put(struct nvme_fc_ctrl *);
1027 static int nvme_fc_ctrl_get(struct nvme_fc_ctrl *);
1028 
1029 static void nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg);
1030 
1031 static void
1032 __nvme_fc_finish_ls_req(struct nvmefc_ls_req_op *lsop)
1033 {
1034 	struct nvme_fc_rport *rport = lsop->rport;
1035 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1036 	unsigned long flags;
1037 
1038 	spin_lock_irqsave(&rport->lock, flags);
1039 
1040 	if (!lsop->req_queued) {
1041 		spin_unlock_irqrestore(&rport->lock, flags);
1042 		return;
1043 	}
1044 
1045 	list_del(&lsop->lsreq_list);
1046 
1047 	lsop->req_queued = false;
1048 
1049 	spin_unlock_irqrestore(&rport->lock, flags);
1050 
1051 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1052 				  (lsreq->rqstlen + lsreq->rsplen),
1053 				  DMA_BIDIRECTIONAL);
1054 
1055 	nvme_fc_rport_put(rport);
1056 }
1057 
1058 static int
1059 __nvme_fc_send_ls_req(struct nvme_fc_rport *rport,
1060 		struct nvmefc_ls_req_op *lsop,
1061 		void (*done)(struct nvmefc_ls_req *req, int status))
1062 {
1063 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1064 	unsigned long flags;
1065 	int ret = 0;
1066 
1067 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
1068 		return -ECONNREFUSED;
1069 
1070 	if (!nvme_fc_rport_get(rport))
1071 		return -ESHUTDOWN;
1072 
1073 	lsreq->done = done;
1074 	lsop->rport = rport;
1075 	lsop->req_queued = false;
1076 	INIT_LIST_HEAD(&lsop->lsreq_list);
1077 	init_completion(&lsop->ls_done);
1078 
1079 	lsreq->rqstdma = fc_dma_map_single(rport->dev, lsreq->rqstaddr,
1080 				  lsreq->rqstlen + lsreq->rsplen,
1081 				  DMA_BIDIRECTIONAL);
1082 	if (fc_dma_mapping_error(rport->dev, lsreq->rqstdma)) {
1083 		ret = -EFAULT;
1084 		goto out_putrport;
1085 	}
1086 	lsreq->rspdma = lsreq->rqstdma + lsreq->rqstlen;
1087 
1088 	spin_lock_irqsave(&rport->lock, flags);
1089 
1090 	list_add_tail(&lsop->lsreq_list, &rport->ls_req_list);
1091 
1092 	lsop->req_queued = true;
1093 
1094 	spin_unlock_irqrestore(&rport->lock, flags);
1095 
1096 	ret = rport->lport->ops->ls_req(&rport->lport->localport,
1097 					&rport->remoteport, lsreq);
1098 	if (ret)
1099 		goto out_unlink;
1100 
1101 	return 0;
1102 
1103 out_unlink:
1104 	lsop->ls_error = ret;
1105 	spin_lock_irqsave(&rport->lock, flags);
1106 	lsop->req_queued = false;
1107 	list_del(&lsop->lsreq_list);
1108 	spin_unlock_irqrestore(&rport->lock, flags);
1109 	fc_dma_unmap_single(rport->dev, lsreq->rqstdma,
1110 				  (lsreq->rqstlen + lsreq->rsplen),
1111 				  DMA_BIDIRECTIONAL);
1112 out_putrport:
1113 	nvme_fc_rport_put(rport);
1114 
1115 	return ret;
1116 }
1117 
1118 static void
1119 nvme_fc_send_ls_req_done(struct nvmefc_ls_req *lsreq, int status)
1120 {
1121 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1122 
1123 	lsop->ls_error = status;
1124 	complete(&lsop->ls_done);
1125 }
1126 
1127 static int
1128 nvme_fc_send_ls_req(struct nvme_fc_rport *rport, struct nvmefc_ls_req_op *lsop)
1129 {
1130 	struct nvmefc_ls_req *lsreq = &lsop->ls_req;
1131 	struct fcnvme_ls_rjt *rjt = lsreq->rspaddr;
1132 	int ret;
1133 
1134 	ret = __nvme_fc_send_ls_req(rport, lsop, nvme_fc_send_ls_req_done);
1135 
1136 	if (!ret) {
1137 		/*
1138 		 * No timeout/not interruptible as we need the struct
1139 		 * to exist until the lldd calls us back. Thus mandate
1140 		 * wait until driver calls back. lldd responsible for
1141 		 * the timeout action
1142 		 */
1143 		wait_for_completion(&lsop->ls_done);
1144 
1145 		__nvme_fc_finish_ls_req(lsop);
1146 
1147 		ret = lsop->ls_error;
1148 	}
1149 
1150 	if (ret)
1151 		return ret;
1152 
1153 	/* ACC or RJT payload ? */
1154 	if (rjt->w0.ls_cmd == FCNVME_LS_RJT)
1155 		return -ENXIO;
1156 
1157 	return 0;
1158 }
1159 
1160 static int
1161 nvme_fc_send_ls_req_async(struct nvme_fc_rport *rport,
1162 		struct nvmefc_ls_req_op *lsop,
1163 		void (*done)(struct nvmefc_ls_req *req, int status))
1164 {
1165 	/* don't wait for completion */
1166 
1167 	return __nvme_fc_send_ls_req(rport, lsop, done);
1168 }
1169 
1170 static int
1171 nvme_fc_connect_admin_queue(struct nvme_fc_ctrl *ctrl,
1172 	struct nvme_fc_queue *queue, u16 qsize, u16 ersp_ratio)
1173 {
1174 	struct nvmefc_ls_req_op *lsop;
1175 	struct nvmefc_ls_req *lsreq;
1176 	struct fcnvme_ls_cr_assoc_rqst *assoc_rqst;
1177 	struct fcnvme_ls_cr_assoc_acc *assoc_acc;
1178 	unsigned long flags;
1179 	int ret, fcret = 0;
1180 
1181 	lsop = kzalloc((sizeof(*lsop) +
1182 			 sizeof(*assoc_rqst) + sizeof(*assoc_acc) +
1183 			 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1184 	if (!lsop) {
1185 		dev_info(ctrl->ctrl.device,
1186 			"NVME-FC{%d}: send Create Association failed: ENOMEM\n",
1187 			ctrl->cnum);
1188 		ret = -ENOMEM;
1189 		goto out_no_memory;
1190 	}
1191 
1192 	assoc_rqst = (struct fcnvme_ls_cr_assoc_rqst *)&lsop[1];
1193 	assoc_acc = (struct fcnvme_ls_cr_assoc_acc *)&assoc_rqst[1];
1194 	lsreq = &lsop->ls_req;
1195 	if (ctrl->lport->ops->lsrqst_priv_sz)
1196 		lsreq->private = &assoc_acc[1];
1197 	else
1198 		lsreq->private = NULL;
1199 
1200 	assoc_rqst->w0.ls_cmd = FCNVME_LS_CREATE_ASSOCIATION;
1201 	assoc_rqst->desc_list_len =
1202 			cpu_to_be32(sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1203 
1204 	assoc_rqst->assoc_cmd.desc_tag =
1205 			cpu_to_be32(FCNVME_LSDESC_CREATE_ASSOC_CMD);
1206 	assoc_rqst->assoc_cmd.desc_len =
1207 			fcnvme_lsdesc_len(
1208 				sizeof(struct fcnvme_lsdesc_cr_assoc_cmd));
1209 
1210 	assoc_rqst->assoc_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1211 	assoc_rqst->assoc_cmd.sqsize = cpu_to_be16(qsize - 1);
1212 	/* Linux supports only Dynamic controllers */
1213 	assoc_rqst->assoc_cmd.cntlid = cpu_to_be16(0xffff);
1214 	uuid_copy(&assoc_rqst->assoc_cmd.hostid, &ctrl->ctrl.opts->host->id);
1215 	strncpy(assoc_rqst->assoc_cmd.hostnqn, ctrl->ctrl.opts->host->nqn,
1216 		min(FCNVME_ASSOC_HOSTNQN_LEN, NVMF_NQN_SIZE));
1217 	strncpy(assoc_rqst->assoc_cmd.subnqn, ctrl->ctrl.opts->subsysnqn,
1218 		min(FCNVME_ASSOC_SUBNQN_LEN, NVMF_NQN_SIZE));
1219 
1220 	lsop->queue = queue;
1221 	lsreq->rqstaddr = assoc_rqst;
1222 	lsreq->rqstlen = sizeof(*assoc_rqst);
1223 	lsreq->rspaddr = assoc_acc;
1224 	lsreq->rsplen = sizeof(*assoc_acc);
1225 	lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1226 
1227 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1228 	if (ret)
1229 		goto out_free_buffer;
1230 
1231 	/* process connect LS completion */
1232 
1233 	/* validate the ACC response */
1234 	if (assoc_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1235 		fcret = VERR_LSACC;
1236 	else if (assoc_acc->hdr.desc_list_len !=
1237 			fcnvme_lsdesc_len(
1238 				sizeof(struct fcnvme_ls_cr_assoc_acc)))
1239 		fcret = VERR_CR_ASSOC_ACC_LEN;
1240 	else if (assoc_acc->hdr.rqst.desc_tag !=
1241 			cpu_to_be32(FCNVME_LSDESC_RQST))
1242 		fcret = VERR_LSDESC_RQST;
1243 	else if (assoc_acc->hdr.rqst.desc_len !=
1244 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1245 		fcret = VERR_LSDESC_RQST_LEN;
1246 	else if (assoc_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_ASSOCIATION)
1247 		fcret = VERR_CR_ASSOC;
1248 	else if (assoc_acc->associd.desc_tag !=
1249 			cpu_to_be32(FCNVME_LSDESC_ASSOC_ID))
1250 		fcret = VERR_ASSOC_ID;
1251 	else if (assoc_acc->associd.desc_len !=
1252 			fcnvme_lsdesc_len(
1253 				sizeof(struct fcnvme_lsdesc_assoc_id)))
1254 		fcret = VERR_ASSOC_ID_LEN;
1255 	else if (assoc_acc->connectid.desc_tag !=
1256 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1257 		fcret = VERR_CONN_ID;
1258 	else if (assoc_acc->connectid.desc_len !=
1259 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1260 		fcret = VERR_CONN_ID_LEN;
1261 
1262 	if (fcret) {
1263 		ret = -EBADF;
1264 		dev_err(ctrl->dev,
1265 			"q %d Create Association LS failed: %s\n",
1266 			queue->qnum, validation_errors[fcret]);
1267 	} else {
1268 		spin_lock_irqsave(&ctrl->lock, flags);
1269 		ctrl->association_id =
1270 			be64_to_cpu(assoc_acc->associd.association_id);
1271 		queue->connection_id =
1272 			be64_to_cpu(assoc_acc->connectid.connection_id);
1273 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1274 		spin_unlock_irqrestore(&ctrl->lock, flags);
1275 	}
1276 
1277 out_free_buffer:
1278 	kfree(lsop);
1279 out_no_memory:
1280 	if (ret)
1281 		dev_err(ctrl->dev,
1282 			"queue %d connect admin queue failed (%d).\n",
1283 			queue->qnum, ret);
1284 	return ret;
1285 }
1286 
1287 static int
1288 nvme_fc_connect_queue(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
1289 			u16 qsize, u16 ersp_ratio)
1290 {
1291 	struct nvmefc_ls_req_op *lsop;
1292 	struct nvmefc_ls_req *lsreq;
1293 	struct fcnvme_ls_cr_conn_rqst *conn_rqst;
1294 	struct fcnvme_ls_cr_conn_acc *conn_acc;
1295 	int ret, fcret = 0;
1296 
1297 	lsop = kzalloc((sizeof(*lsop) +
1298 			 sizeof(*conn_rqst) + sizeof(*conn_acc) +
1299 			 ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1300 	if (!lsop) {
1301 		dev_info(ctrl->ctrl.device,
1302 			"NVME-FC{%d}: send Create Connection failed: ENOMEM\n",
1303 			ctrl->cnum);
1304 		ret = -ENOMEM;
1305 		goto out_no_memory;
1306 	}
1307 
1308 	conn_rqst = (struct fcnvme_ls_cr_conn_rqst *)&lsop[1];
1309 	conn_acc = (struct fcnvme_ls_cr_conn_acc *)&conn_rqst[1];
1310 	lsreq = &lsop->ls_req;
1311 	if (ctrl->lport->ops->lsrqst_priv_sz)
1312 		lsreq->private = (void *)&conn_acc[1];
1313 	else
1314 		lsreq->private = NULL;
1315 
1316 	conn_rqst->w0.ls_cmd = FCNVME_LS_CREATE_CONNECTION;
1317 	conn_rqst->desc_list_len = cpu_to_be32(
1318 				sizeof(struct fcnvme_lsdesc_assoc_id) +
1319 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1320 
1321 	conn_rqst->associd.desc_tag = cpu_to_be32(FCNVME_LSDESC_ASSOC_ID);
1322 	conn_rqst->associd.desc_len =
1323 			fcnvme_lsdesc_len(
1324 				sizeof(struct fcnvme_lsdesc_assoc_id));
1325 	conn_rqst->associd.association_id = cpu_to_be64(ctrl->association_id);
1326 	conn_rqst->connect_cmd.desc_tag =
1327 			cpu_to_be32(FCNVME_LSDESC_CREATE_CONN_CMD);
1328 	conn_rqst->connect_cmd.desc_len =
1329 			fcnvme_lsdesc_len(
1330 				sizeof(struct fcnvme_lsdesc_cr_conn_cmd));
1331 	conn_rqst->connect_cmd.ersp_ratio = cpu_to_be16(ersp_ratio);
1332 	conn_rqst->connect_cmd.qid  = cpu_to_be16(queue->qnum);
1333 	conn_rqst->connect_cmd.sqsize = cpu_to_be16(qsize - 1);
1334 
1335 	lsop->queue = queue;
1336 	lsreq->rqstaddr = conn_rqst;
1337 	lsreq->rqstlen = sizeof(*conn_rqst);
1338 	lsreq->rspaddr = conn_acc;
1339 	lsreq->rsplen = sizeof(*conn_acc);
1340 	lsreq->timeout = NVME_FC_LS_TIMEOUT_SEC;
1341 
1342 	ret = nvme_fc_send_ls_req(ctrl->rport, lsop);
1343 	if (ret)
1344 		goto out_free_buffer;
1345 
1346 	/* process connect LS completion */
1347 
1348 	/* validate the ACC response */
1349 	if (conn_acc->hdr.w0.ls_cmd != FCNVME_LS_ACC)
1350 		fcret = VERR_LSACC;
1351 	else if (conn_acc->hdr.desc_list_len !=
1352 			fcnvme_lsdesc_len(sizeof(struct fcnvme_ls_cr_conn_acc)))
1353 		fcret = VERR_CR_CONN_ACC_LEN;
1354 	else if (conn_acc->hdr.rqst.desc_tag != cpu_to_be32(FCNVME_LSDESC_RQST))
1355 		fcret = VERR_LSDESC_RQST;
1356 	else if (conn_acc->hdr.rqst.desc_len !=
1357 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_rqst)))
1358 		fcret = VERR_LSDESC_RQST_LEN;
1359 	else if (conn_acc->hdr.rqst.w0.ls_cmd != FCNVME_LS_CREATE_CONNECTION)
1360 		fcret = VERR_CR_CONN;
1361 	else if (conn_acc->connectid.desc_tag !=
1362 			cpu_to_be32(FCNVME_LSDESC_CONN_ID))
1363 		fcret = VERR_CONN_ID;
1364 	else if (conn_acc->connectid.desc_len !=
1365 			fcnvme_lsdesc_len(sizeof(struct fcnvme_lsdesc_conn_id)))
1366 		fcret = VERR_CONN_ID_LEN;
1367 
1368 	if (fcret) {
1369 		ret = -EBADF;
1370 		dev_err(ctrl->dev,
1371 			"q %d Create I/O Connection LS failed: %s\n",
1372 			queue->qnum, validation_errors[fcret]);
1373 	} else {
1374 		queue->connection_id =
1375 			be64_to_cpu(conn_acc->connectid.connection_id);
1376 		set_bit(NVME_FC_Q_CONNECTED, &queue->flags);
1377 	}
1378 
1379 out_free_buffer:
1380 	kfree(lsop);
1381 out_no_memory:
1382 	if (ret)
1383 		dev_err(ctrl->dev,
1384 			"queue %d connect I/O queue failed (%d).\n",
1385 			queue->qnum, ret);
1386 	return ret;
1387 }
1388 
1389 static void
1390 nvme_fc_disconnect_assoc_done(struct nvmefc_ls_req *lsreq, int status)
1391 {
1392 	struct nvmefc_ls_req_op *lsop = ls_req_to_lsop(lsreq);
1393 
1394 	__nvme_fc_finish_ls_req(lsop);
1395 
1396 	/* fc-nvme initiator doesn't care about success or failure of cmd */
1397 
1398 	kfree(lsop);
1399 }
1400 
1401 /*
1402  * This routine sends a FC-NVME LS to disconnect (aka terminate)
1403  * the FC-NVME Association.  Terminating the association also
1404  * terminates the FC-NVME connections (per queue, both admin and io
1405  * queues) that are part of the association. E.g. things are torn
1406  * down, and the related FC-NVME Association ID and Connection IDs
1407  * become invalid.
1408  *
1409  * The behavior of the fc-nvme initiator is such that it's
1410  * understanding of the association and connections will implicitly
1411  * be torn down. The action is implicit as it may be due to a loss of
1412  * connectivity with the fc-nvme target, so you may never get a
1413  * response even if you tried.  As such, the action of this routine
1414  * is to asynchronously send the LS, ignore any results of the LS, and
1415  * continue on with terminating the association. If the fc-nvme target
1416  * is present and receives the LS, it too can tear down.
1417  */
1418 static void
1419 nvme_fc_xmt_disconnect_assoc(struct nvme_fc_ctrl *ctrl)
1420 {
1421 	struct fcnvme_ls_disconnect_assoc_rqst *discon_rqst;
1422 	struct fcnvme_ls_disconnect_assoc_acc *discon_acc;
1423 	struct nvmefc_ls_req_op *lsop;
1424 	struct nvmefc_ls_req *lsreq;
1425 	int ret;
1426 
1427 	lsop = kzalloc((sizeof(*lsop) +
1428 			sizeof(*discon_rqst) + sizeof(*discon_acc) +
1429 			ctrl->lport->ops->lsrqst_priv_sz), GFP_KERNEL);
1430 	if (!lsop) {
1431 		dev_info(ctrl->ctrl.device,
1432 			"NVME-FC{%d}: send Disconnect Association "
1433 			"failed: ENOMEM\n",
1434 			ctrl->cnum);
1435 		return;
1436 	}
1437 
1438 	discon_rqst = (struct fcnvme_ls_disconnect_assoc_rqst *)&lsop[1];
1439 	discon_acc = (struct fcnvme_ls_disconnect_assoc_acc *)&discon_rqst[1];
1440 	lsreq = &lsop->ls_req;
1441 	if (ctrl->lport->ops->lsrqst_priv_sz)
1442 		lsreq->private = (void *)&discon_acc[1];
1443 	else
1444 		lsreq->private = NULL;
1445 
1446 	nvmefc_fmt_lsreq_discon_assoc(lsreq, discon_rqst, discon_acc,
1447 				ctrl->association_id);
1448 
1449 	ret = nvme_fc_send_ls_req_async(ctrl->rport, lsop,
1450 				nvme_fc_disconnect_assoc_done);
1451 	if (ret)
1452 		kfree(lsop);
1453 }
1454 
1455 static void
1456 nvme_fc_xmt_ls_rsp_done(struct nvmefc_ls_rsp *lsrsp)
1457 {
1458 	struct nvmefc_ls_rcv_op *lsop = lsrsp->nvme_fc_private;
1459 	struct nvme_fc_rport *rport = lsop->rport;
1460 	struct nvme_fc_lport *lport = rport->lport;
1461 	unsigned long flags;
1462 
1463 	spin_lock_irqsave(&rport->lock, flags);
1464 	list_del(&lsop->lsrcv_list);
1465 	spin_unlock_irqrestore(&rport->lock, flags);
1466 
1467 	fc_dma_sync_single_for_cpu(lport->dev, lsop->rspdma,
1468 				sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1469 	fc_dma_unmap_single(lport->dev, lsop->rspdma,
1470 			sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1471 
1472 	kfree(lsop);
1473 
1474 	nvme_fc_rport_put(rport);
1475 }
1476 
1477 static void
1478 nvme_fc_xmt_ls_rsp(struct nvmefc_ls_rcv_op *lsop)
1479 {
1480 	struct nvme_fc_rport *rport = lsop->rport;
1481 	struct nvme_fc_lport *lport = rport->lport;
1482 	struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1483 	int ret;
1484 
1485 	fc_dma_sync_single_for_device(lport->dev, lsop->rspdma,
1486 				  sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1487 
1488 	ret = lport->ops->xmt_ls_rsp(&lport->localport, &rport->remoteport,
1489 				     lsop->lsrsp);
1490 	if (ret) {
1491 		dev_warn(lport->dev,
1492 			"LLDD rejected LS RSP xmt: LS %d status %d\n",
1493 			w0->ls_cmd, ret);
1494 		nvme_fc_xmt_ls_rsp_done(lsop->lsrsp);
1495 		return;
1496 	}
1497 }
1498 
1499 static struct nvme_fc_ctrl *
1500 nvme_fc_match_disconn_ls(struct nvme_fc_rport *rport,
1501 		      struct nvmefc_ls_rcv_op *lsop)
1502 {
1503 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1504 					&lsop->rqstbuf->rq_dis_assoc;
1505 	struct nvme_fc_ctrl *ctrl, *ret = NULL;
1506 	struct nvmefc_ls_rcv_op *oldls = NULL;
1507 	u64 association_id = be64_to_cpu(rqst->associd.association_id);
1508 	unsigned long flags;
1509 
1510 	spin_lock_irqsave(&rport->lock, flags);
1511 
1512 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
1513 		if (!nvme_fc_ctrl_get(ctrl))
1514 			continue;
1515 		spin_lock(&ctrl->lock);
1516 		if (association_id == ctrl->association_id) {
1517 			oldls = ctrl->rcv_disconn;
1518 			ctrl->rcv_disconn = lsop;
1519 			ret = ctrl;
1520 		}
1521 		spin_unlock(&ctrl->lock);
1522 		if (ret)
1523 			/* leave the ctrl get reference */
1524 			break;
1525 		nvme_fc_ctrl_put(ctrl);
1526 	}
1527 
1528 	spin_unlock_irqrestore(&rport->lock, flags);
1529 
1530 	/* transmit a response for anything that was pending */
1531 	if (oldls) {
1532 		dev_info(rport->lport->dev,
1533 			"NVME-FC{%d}: Multiple Disconnect Association "
1534 			"LS's received\n", ctrl->cnum);
1535 		/* overwrite good response with bogus failure */
1536 		oldls->lsrsp->rsplen = nvme_fc_format_rjt(oldls->rspbuf,
1537 						sizeof(*oldls->rspbuf),
1538 						rqst->w0.ls_cmd,
1539 						FCNVME_RJT_RC_UNAB,
1540 						FCNVME_RJT_EXP_NONE, 0);
1541 		nvme_fc_xmt_ls_rsp(oldls);
1542 	}
1543 
1544 	return ret;
1545 }
1546 
1547 /*
1548  * returns true to mean LS handled and ls_rsp can be sent
1549  * returns false to defer ls_rsp xmt (will be done as part of
1550  *     association termination)
1551  */
1552 static bool
1553 nvme_fc_ls_disconnect_assoc(struct nvmefc_ls_rcv_op *lsop)
1554 {
1555 	struct nvme_fc_rport *rport = lsop->rport;
1556 	struct fcnvme_ls_disconnect_assoc_rqst *rqst =
1557 					&lsop->rqstbuf->rq_dis_assoc;
1558 	struct fcnvme_ls_disconnect_assoc_acc *acc =
1559 					&lsop->rspbuf->rsp_dis_assoc;
1560 	struct nvme_fc_ctrl *ctrl = NULL;
1561 	int ret = 0;
1562 
1563 	memset(acc, 0, sizeof(*acc));
1564 
1565 	ret = nvmefc_vldt_lsreq_discon_assoc(lsop->rqstdatalen, rqst);
1566 	if (!ret) {
1567 		/* match an active association */
1568 		ctrl = nvme_fc_match_disconn_ls(rport, lsop);
1569 		if (!ctrl)
1570 			ret = VERR_NO_ASSOC;
1571 	}
1572 
1573 	if (ret) {
1574 		dev_info(rport->lport->dev,
1575 			"Disconnect LS failed: %s\n",
1576 			validation_errors[ret]);
1577 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(acc,
1578 					sizeof(*acc), rqst->w0.ls_cmd,
1579 					(ret == VERR_NO_ASSOC) ?
1580 						FCNVME_RJT_RC_INV_ASSOC :
1581 						FCNVME_RJT_RC_LOGIC,
1582 					FCNVME_RJT_EXP_NONE, 0);
1583 		return true;
1584 	}
1585 
1586 	/* format an ACCept response */
1587 
1588 	lsop->lsrsp->rsplen = sizeof(*acc);
1589 
1590 	nvme_fc_format_rsp_hdr(acc, FCNVME_LS_ACC,
1591 			fcnvme_lsdesc_len(
1592 				sizeof(struct fcnvme_ls_disconnect_assoc_acc)),
1593 			FCNVME_LS_DISCONNECT_ASSOC);
1594 
1595 	/*
1596 	 * the transmit of the response will occur after the exchanges
1597 	 * for the association have been ABTS'd by
1598 	 * nvme_fc_delete_association().
1599 	 */
1600 
1601 	/* fail the association */
1602 	nvme_fc_error_recovery(ctrl, "Disconnect Association LS received");
1603 
1604 	/* release the reference taken by nvme_fc_match_disconn_ls() */
1605 	nvme_fc_ctrl_put(ctrl);
1606 
1607 	return false;
1608 }
1609 
1610 /*
1611  * Actual Processing routine for received FC-NVME LS Requests from the LLD
1612  * returns true if a response should be sent afterward, false if rsp will
1613  * be sent asynchronously.
1614  */
1615 static bool
1616 nvme_fc_handle_ls_rqst(struct nvmefc_ls_rcv_op *lsop)
1617 {
1618 	struct fcnvme_ls_rqst_w0 *w0 = &lsop->rqstbuf->w0;
1619 	bool ret = true;
1620 
1621 	lsop->lsrsp->nvme_fc_private = lsop;
1622 	lsop->lsrsp->rspbuf = lsop->rspbuf;
1623 	lsop->lsrsp->rspdma = lsop->rspdma;
1624 	lsop->lsrsp->done = nvme_fc_xmt_ls_rsp_done;
1625 	/* Be preventative. handlers will later set to valid length */
1626 	lsop->lsrsp->rsplen = 0;
1627 
1628 	/*
1629 	 * handlers:
1630 	 *   parse request input, execute the request, and format the
1631 	 *   LS response
1632 	 */
1633 	switch (w0->ls_cmd) {
1634 	case FCNVME_LS_DISCONNECT_ASSOC:
1635 		ret = nvme_fc_ls_disconnect_assoc(lsop);
1636 		break;
1637 	case FCNVME_LS_DISCONNECT_CONN:
1638 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1639 				sizeof(*lsop->rspbuf), w0->ls_cmd,
1640 				FCNVME_RJT_RC_UNSUP, FCNVME_RJT_EXP_NONE, 0);
1641 		break;
1642 	case FCNVME_LS_CREATE_ASSOCIATION:
1643 	case FCNVME_LS_CREATE_CONNECTION:
1644 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1645 				sizeof(*lsop->rspbuf), w0->ls_cmd,
1646 				FCNVME_RJT_RC_LOGIC, FCNVME_RJT_EXP_NONE, 0);
1647 		break;
1648 	default:
1649 		lsop->lsrsp->rsplen = nvme_fc_format_rjt(lsop->rspbuf,
1650 				sizeof(*lsop->rspbuf), w0->ls_cmd,
1651 				FCNVME_RJT_RC_INVAL, FCNVME_RJT_EXP_NONE, 0);
1652 		break;
1653 	}
1654 
1655 	return(ret);
1656 }
1657 
1658 static void
1659 nvme_fc_handle_ls_rqst_work(struct work_struct *work)
1660 {
1661 	struct nvme_fc_rport *rport =
1662 		container_of(work, struct nvme_fc_rport, lsrcv_work);
1663 	struct fcnvme_ls_rqst_w0 *w0;
1664 	struct nvmefc_ls_rcv_op *lsop;
1665 	unsigned long flags;
1666 	bool sendrsp;
1667 
1668 restart:
1669 	sendrsp = true;
1670 	spin_lock_irqsave(&rport->lock, flags);
1671 	list_for_each_entry(lsop, &rport->ls_rcv_list, lsrcv_list) {
1672 		if (lsop->handled)
1673 			continue;
1674 
1675 		lsop->handled = true;
1676 		if (rport->remoteport.port_state == FC_OBJSTATE_ONLINE) {
1677 			spin_unlock_irqrestore(&rport->lock, flags);
1678 			sendrsp = nvme_fc_handle_ls_rqst(lsop);
1679 		} else {
1680 			spin_unlock_irqrestore(&rport->lock, flags);
1681 			w0 = &lsop->rqstbuf->w0;
1682 			lsop->lsrsp->rsplen = nvme_fc_format_rjt(
1683 						lsop->rspbuf,
1684 						sizeof(*lsop->rspbuf),
1685 						w0->ls_cmd,
1686 						FCNVME_RJT_RC_UNAB,
1687 						FCNVME_RJT_EXP_NONE, 0);
1688 		}
1689 		if (sendrsp)
1690 			nvme_fc_xmt_ls_rsp(lsop);
1691 		goto restart;
1692 	}
1693 	spin_unlock_irqrestore(&rport->lock, flags);
1694 }
1695 
1696 /**
1697  * nvme_fc_rcv_ls_req - transport entry point called by an LLDD
1698  *                       upon the reception of a NVME LS request.
1699  *
1700  * The nvme-fc layer will copy payload to an internal structure for
1701  * processing.  As such, upon completion of the routine, the LLDD may
1702  * immediately free/reuse the LS request buffer passed in the call.
1703  *
1704  * If this routine returns error, the LLDD should abort the exchange.
1705  *
1706  * @remoteport: pointer to the (registered) remote port that the LS
1707  *              was received from. The remoteport is associated with
1708  *              a specific localport.
1709  * @lsrsp:      pointer to a nvmefc_ls_rsp response structure to be
1710  *              used to reference the exchange corresponding to the LS
1711  *              when issuing an ls response.
1712  * @lsreqbuf:   pointer to the buffer containing the LS Request
1713  * @lsreqbuf_len: length, in bytes, of the received LS request
1714  */
1715 int
1716 nvme_fc_rcv_ls_req(struct nvme_fc_remote_port *portptr,
1717 			struct nvmefc_ls_rsp *lsrsp,
1718 			void *lsreqbuf, u32 lsreqbuf_len)
1719 {
1720 	struct nvme_fc_rport *rport = remoteport_to_rport(portptr);
1721 	struct nvme_fc_lport *lport = rport->lport;
1722 	struct fcnvme_ls_rqst_w0 *w0 = (struct fcnvme_ls_rqst_w0 *)lsreqbuf;
1723 	struct nvmefc_ls_rcv_op *lsop;
1724 	unsigned long flags;
1725 	int ret;
1726 
1727 	nvme_fc_rport_get(rport);
1728 
1729 	/* validate there's a routine to transmit a response */
1730 	if (!lport->ops->xmt_ls_rsp) {
1731 		dev_info(lport->dev,
1732 			"RCV %s LS failed: no LLDD xmt_ls_rsp\n",
1733 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1734 				nvmefc_ls_names[w0->ls_cmd] : "");
1735 		ret = -EINVAL;
1736 		goto out_put;
1737 	}
1738 
1739 	if (lsreqbuf_len > sizeof(union nvmefc_ls_requests)) {
1740 		dev_info(lport->dev,
1741 			"RCV %s LS failed: payload too large\n",
1742 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1743 				nvmefc_ls_names[w0->ls_cmd] : "");
1744 		ret = -E2BIG;
1745 		goto out_put;
1746 	}
1747 
1748 	lsop = kzalloc(sizeof(*lsop) +
1749 			sizeof(union nvmefc_ls_requests) +
1750 			sizeof(union nvmefc_ls_responses),
1751 			GFP_KERNEL);
1752 	if (!lsop) {
1753 		dev_info(lport->dev,
1754 			"RCV %s LS failed: No memory\n",
1755 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1756 				nvmefc_ls_names[w0->ls_cmd] : "");
1757 		ret = -ENOMEM;
1758 		goto out_put;
1759 	}
1760 	lsop->rqstbuf = (union nvmefc_ls_requests *)&lsop[1];
1761 	lsop->rspbuf = (union nvmefc_ls_responses *)&lsop->rqstbuf[1];
1762 
1763 	lsop->rspdma = fc_dma_map_single(lport->dev, lsop->rspbuf,
1764 					sizeof(*lsop->rspbuf),
1765 					DMA_TO_DEVICE);
1766 	if (fc_dma_mapping_error(lport->dev, lsop->rspdma)) {
1767 		dev_info(lport->dev,
1768 			"RCV %s LS failed: DMA mapping failure\n",
1769 			(w0->ls_cmd <= NVME_FC_LAST_LS_CMD_VALUE) ?
1770 				nvmefc_ls_names[w0->ls_cmd] : "");
1771 		ret = -EFAULT;
1772 		goto out_free;
1773 	}
1774 
1775 	lsop->rport = rport;
1776 	lsop->lsrsp = lsrsp;
1777 
1778 	memcpy(lsop->rqstbuf, lsreqbuf, lsreqbuf_len);
1779 	lsop->rqstdatalen = lsreqbuf_len;
1780 
1781 	spin_lock_irqsave(&rport->lock, flags);
1782 	if (rport->remoteport.port_state != FC_OBJSTATE_ONLINE) {
1783 		spin_unlock_irqrestore(&rport->lock, flags);
1784 		ret = -ENOTCONN;
1785 		goto out_unmap;
1786 	}
1787 	list_add_tail(&lsop->lsrcv_list, &rport->ls_rcv_list);
1788 	spin_unlock_irqrestore(&rport->lock, flags);
1789 
1790 	schedule_work(&rport->lsrcv_work);
1791 
1792 	return 0;
1793 
1794 out_unmap:
1795 	fc_dma_unmap_single(lport->dev, lsop->rspdma,
1796 			sizeof(*lsop->rspbuf), DMA_TO_DEVICE);
1797 out_free:
1798 	kfree(lsop);
1799 out_put:
1800 	nvme_fc_rport_put(rport);
1801 	return ret;
1802 }
1803 EXPORT_SYMBOL_GPL(nvme_fc_rcv_ls_req);
1804 
1805 
1806 /* *********************** NVME Ctrl Routines **************************** */
1807 
1808 static void
1809 __nvme_fc_exit_request(struct nvme_fc_ctrl *ctrl,
1810 		struct nvme_fc_fcp_op *op)
1811 {
1812 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.rspdma,
1813 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1814 	fc_dma_unmap_single(ctrl->lport->dev, op->fcp_req.cmddma,
1815 				sizeof(op->cmd_iu), DMA_TO_DEVICE);
1816 
1817 	atomic_set(&op->state, FCPOP_STATE_UNINIT);
1818 }
1819 
1820 static void
1821 nvme_fc_exit_request(struct blk_mq_tag_set *set, struct request *rq,
1822 		unsigned int hctx_idx)
1823 {
1824 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
1825 
1826 	return __nvme_fc_exit_request(set->driver_data, op);
1827 }
1828 
1829 static int
1830 __nvme_fc_abort_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_fcp_op *op)
1831 {
1832 	unsigned long flags;
1833 	int opstate;
1834 
1835 	spin_lock_irqsave(&ctrl->lock, flags);
1836 	opstate = atomic_xchg(&op->state, FCPOP_STATE_ABORTED);
1837 	if (opstate != FCPOP_STATE_ACTIVE)
1838 		atomic_set(&op->state, opstate);
1839 	else if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
1840 		ctrl->iocnt++;
1841 	spin_unlock_irqrestore(&ctrl->lock, flags);
1842 
1843 	if (opstate != FCPOP_STATE_ACTIVE)
1844 		return -ECANCELED;
1845 
1846 	ctrl->lport->ops->fcp_abort(&ctrl->lport->localport,
1847 					&ctrl->rport->remoteport,
1848 					op->queue->lldd_handle,
1849 					&op->fcp_req);
1850 
1851 	return 0;
1852 }
1853 
1854 static void
1855 nvme_fc_abort_aen_ops(struct nvme_fc_ctrl *ctrl)
1856 {
1857 	struct nvme_fc_fcp_op *aen_op = ctrl->aen_ops;
1858 	int i;
1859 
1860 	/* ensure we've initialized the ops once */
1861 	if (!(aen_op->flags & FCOP_FLAGS_AEN))
1862 		return;
1863 
1864 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++)
1865 		__nvme_fc_abort_op(ctrl, aen_op);
1866 }
1867 
1868 static inline void
1869 __nvme_fc_fcpop_chk_teardowns(struct nvme_fc_ctrl *ctrl,
1870 		struct nvme_fc_fcp_op *op, int opstate)
1871 {
1872 	unsigned long flags;
1873 
1874 	if (opstate == FCPOP_STATE_ABORTED) {
1875 		spin_lock_irqsave(&ctrl->lock, flags);
1876 		if (test_bit(FCCTRL_TERMIO, &ctrl->flags)) {
1877 			if (!--ctrl->iocnt)
1878 				wake_up(&ctrl->ioabort_wait);
1879 		}
1880 		spin_unlock_irqrestore(&ctrl->lock, flags);
1881 	}
1882 }
1883 
1884 static void
1885 nvme_fc_fcpio_done(struct nvmefc_fcp_req *req)
1886 {
1887 	struct nvme_fc_fcp_op *op = fcp_req_to_fcp_op(req);
1888 	struct request *rq = op->rq;
1889 	struct nvmefc_fcp_req *freq = &op->fcp_req;
1890 	struct nvme_fc_ctrl *ctrl = op->ctrl;
1891 	struct nvme_fc_queue *queue = op->queue;
1892 	struct nvme_completion *cqe = &op->rsp_iu.cqe;
1893 	struct nvme_command *sqe = &op->cmd_iu.sqe;
1894 	__le16 status = cpu_to_le16(NVME_SC_SUCCESS << 1);
1895 	union nvme_result result;
1896 	bool terminate_assoc = true;
1897 	int opstate;
1898 
1899 	/*
1900 	 * WARNING:
1901 	 * The current linux implementation of a nvme controller
1902 	 * allocates a single tag set for all io queues and sizes
1903 	 * the io queues to fully hold all possible tags. Thus, the
1904 	 * implementation does not reference or care about the sqhd
1905 	 * value as it never needs to use the sqhd/sqtail pointers
1906 	 * for submission pacing.
1907 	 *
1908 	 * This affects the FC-NVME implementation in two ways:
1909 	 * 1) As the value doesn't matter, we don't need to waste
1910 	 *    cycles extracting it from ERSPs and stamping it in the
1911 	 *    cases where the transport fabricates CQEs on successful
1912 	 *    completions.
1913 	 * 2) The FC-NVME implementation requires that delivery of
1914 	 *    ERSP completions are to go back to the nvme layer in order
1915 	 *    relative to the rsn, such that the sqhd value will always
1916 	 *    be "in order" for the nvme layer. As the nvme layer in
1917 	 *    linux doesn't care about sqhd, there's no need to return
1918 	 *    them in order.
1919 	 *
1920 	 * Additionally:
1921 	 * As the core nvme layer in linux currently does not look at
1922 	 * every field in the cqe - in cases where the FC transport must
1923 	 * fabricate a CQE, the following fields will not be set as they
1924 	 * are not referenced:
1925 	 *      cqe.sqid,  cqe.sqhd,  cqe.command_id
1926 	 *
1927 	 * Failure or error of an individual i/o, in a transport
1928 	 * detected fashion unrelated to the nvme completion status,
1929 	 * potentially cause the initiator and target sides to get out
1930 	 * of sync on SQ head/tail (aka outstanding io count allowed).
1931 	 * Per FC-NVME spec, failure of an individual command requires
1932 	 * the connection to be terminated, which in turn requires the
1933 	 * association to be terminated.
1934 	 */
1935 
1936 	opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
1937 
1938 	fc_dma_sync_single_for_cpu(ctrl->lport->dev, op->fcp_req.rspdma,
1939 				sizeof(op->rsp_iu), DMA_FROM_DEVICE);
1940 
1941 	if (opstate == FCPOP_STATE_ABORTED)
1942 		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1943 	else if (freq->status) {
1944 		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1945 		dev_info(ctrl->ctrl.device,
1946 			"NVME-FC{%d}: io failed due to lldd error %d\n",
1947 			ctrl->cnum, freq->status);
1948 	}
1949 
1950 	/*
1951 	 * For the linux implementation, if we have an unsuccesful
1952 	 * status, they blk-mq layer can typically be called with the
1953 	 * non-zero status and the content of the cqe isn't important.
1954 	 */
1955 	if (status)
1956 		goto done;
1957 
1958 	/*
1959 	 * command completed successfully relative to the wire
1960 	 * protocol. However, validate anything received and
1961 	 * extract the status and result from the cqe (create it
1962 	 * where necessary).
1963 	 */
1964 
1965 	switch (freq->rcv_rsplen) {
1966 
1967 	case 0:
1968 	case NVME_FC_SIZEOF_ZEROS_RSP:
1969 		/*
1970 		 * No response payload or 12 bytes of payload (which
1971 		 * should all be zeros) are considered successful and
1972 		 * no payload in the CQE by the transport.
1973 		 */
1974 		if (freq->transferred_length !=
1975 		    be32_to_cpu(op->cmd_iu.data_len)) {
1976 			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1977 			dev_info(ctrl->ctrl.device,
1978 				"NVME-FC{%d}: io failed due to bad transfer "
1979 				"length: %d vs expected %d\n",
1980 				ctrl->cnum, freq->transferred_length,
1981 				be32_to_cpu(op->cmd_iu.data_len));
1982 			goto done;
1983 		}
1984 		result.u64 = 0;
1985 		break;
1986 
1987 	case sizeof(struct nvme_fc_ersp_iu):
1988 		/*
1989 		 * The ERSP IU contains a full completion with CQE.
1990 		 * Validate ERSP IU and look at cqe.
1991 		 */
1992 		if (unlikely(be16_to_cpu(op->rsp_iu.iu_len) !=
1993 					(freq->rcv_rsplen / 4) ||
1994 			     be32_to_cpu(op->rsp_iu.xfrd_len) !=
1995 					freq->transferred_length ||
1996 			     op->rsp_iu.ersp_result ||
1997 			     sqe->common.command_id != cqe->command_id)) {
1998 			status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
1999 			dev_info(ctrl->ctrl.device,
2000 				"NVME-FC{%d}: io failed due to bad NVMe_ERSP: "
2001 				"iu len %d, xfr len %d vs %d, status code "
2002 				"%d, cmdid %d vs %d\n",
2003 				ctrl->cnum, be16_to_cpu(op->rsp_iu.iu_len),
2004 				be32_to_cpu(op->rsp_iu.xfrd_len),
2005 				freq->transferred_length,
2006 				op->rsp_iu.ersp_result,
2007 				sqe->common.command_id,
2008 				cqe->command_id);
2009 			goto done;
2010 		}
2011 		result = cqe->result;
2012 		status = cqe->status;
2013 		break;
2014 
2015 	default:
2016 		status = cpu_to_le16(NVME_SC_HOST_PATH_ERROR << 1);
2017 		dev_info(ctrl->ctrl.device,
2018 			"NVME-FC{%d}: io failed due to odd NVMe_xRSP iu "
2019 			"len %d\n",
2020 			ctrl->cnum, freq->rcv_rsplen);
2021 		goto done;
2022 	}
2023 
2024 	terminate_assoc = false;
2025 
2026 done:
2027 	if (op->flags & FCOP_FLAGS_AEN) {
2028 		nvme_complete_async_event(&queue->ctrl->ctrl, status, &result);
2029 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2030 		atomic_set(&op->state, FCPOP_STATE_IDLE);
2031 		op->flags = FCOP_FLAGS_AEN;	/* clear other flags */
2032 		nvme_fc_ctrl_put(ctrl);
2033 		goto check_error;
2034 	}
2035 
2036 	__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2037 	if (!nvme_end_request(rq, status, result))
2038 		nvme_fc_complete_rq(rq);
2039 
2040 check_error:
2041 	if (terminate_assoc)
2042 		nvme_fc_error_recovery(ctrl, "transport detected io error");
2043 }
2044 
2045 static int
2046 __nvme_fc_init_request(struct nvme_fc_ctrl *ctrl,
2047 		struct nvme_fc_queue *queue, struct nvme_fc_fcp_op *op,
2048 		struct request *rq, u32 rqno)
2049 {
2050 	struct nvme_fcp_op_w_sgl *op_w_sgl =
2051 		container_of(op, typeof(*op_w_sgl), op);
2052 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2053 	int ret = 0;
2054 
2055 	memset(op, 0, sizeof(*op));
2056 	op->fcp_req.cmdaddr = &op->cmd_iu;
2057 	op->fcp_req.cmdlen = sizeof(op->cmd_iu);
2058 	op->fcp_req.rspaddr = &op->rsp_iu;
2059 	op->fcp_req.rsplen = sizeof(op->rsp_iu);
2060 	op->fcp_req.done = nvme_fc_fcpio_done;
2061 	op->ctrl = ctrl;
2062 	op->queue = queue;
2063 	op->rq = rq;
2064 	op->rqno = rqno;
2065 
2066 	cmdiu->format_id = NVME_CMD_FORMAT_ID;
2067 	cmdiu->fc_id = NVME_CMD_FC_ID;
2068 	cmdiu->iu_len = cpu_to_be16(sizeof(*cmdiu) / sizeof(u32));
2069 	if (queue->qnum)
2070 		cmdiu->rsv_cat = fccmnd_set_cat_css(0,
2071 					(NVME_CC_CSS_NVM >> NVME_CC_CSS_SHIFT));
2072 	else
2073 		cmdiu->rsv_cat = fccmnd_set_cat_admin(0);
2074 
2075 	op->fcp_req.cmddma = fc_dma_map_single(ctrl->lport->dev,
2076 				&op->cmd_iu, sizeof(op->cmd_iu), DMA_TO_DEVICE);
2077 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.cmddma)) {
2078 		dev_err(ctrl->dev,
2079 			"FCP Op failed - cmdiu dma mapping failed.\n");
2080 		ret = EFAULT;
2081 		goto out_on_error;
2082 	}
2083 
2084 	op->fcp_req.rspdma = fc_dma_map_single(ctrl->lport->dev,
2085 				&op->rsp_iu, sizeof(op->rsp_iu),
2086 				DMA_FROM_DEVICE);
2087 	if (fc_dma_mapping_error(ctrl->lport->dev, op->fcp_req.rspdma)) {
2088 		dev_err(ctrl->dev,
2089 			"FCP Op failed - rspiu dma mapping failed.\n");
2090 		ret = EFAULT;
2091 	}
2092 
2093 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2094 out_on_error:
2095 	return ret;
2096 }
2097 
2098 static int
2099 nvme_fc_init_request(struct blk_mq_tag_set *set, struct request *rq,
2100 		unsigned int hctx_idx, unsigned int numa_node)
2101 {
2102 	struct nvme_fc_ctrl *ctrl = set->driver_data;
2103 	struct nvme_fcp_op_w_sgl *op = blk_mq_rq_to_pdu(rq);
2104 	int queue_idx = (set == &ctrl->tag_set) ? hctx_idx + 1 : 0;
2105 	struct nvme_fc_queue *queue = &ctrl->queues[queue_idx];
2106 	int res;
2107 
2108 	res = __nvme_fc_init_request(ctrl, queue, &op->op, rq, queue->rqcnt++);
2109 	if (res)
2110 		return res;
2111 	op->op.fcp_req.first_sgl = op->sgl;
2112 	op->op.fcp_req.private = &op->priv[0];
2113 	nvme_req(rq)->ctrl = &ctrl->ctrl;
2114 	return res;
2115 }
2116 
2117 static int
2118 nvme_fc_init_aen_ops(struct nvme_fc_ctrl *ctrl)
2119 {
2120 	struct nvme_fc_fcp_op *aen_op;
2121 	struct nvme_fc_cmd_iu *cmdiu;
2122 	struct nvme_command *sqe;
2123 	void *private = NULL;
2124 	int i, ret;
2125 
2126 	aen_op = ctrl->aen_ops;
2127 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2128 		if (ctrl->lport->ops->fcprqst_priv_sz) {
2129 			private = kzalloc(ctrl->lport->ops->fcprqst_priv_sz,
2130 						GFP_KERNEL);
2131 			if (!private)
2132 				return -ENOMEM;
2133 		}
2134 
2135 		cmdiu = &aen_op->cmd_iu;
2136 		sqe = &cmdiu->sqe;
2137 		ret = __nvme_fc_init_request(ctrl, &ctrl->queues[0],
2138 				aen_op, (struct request *)NULL,
2139 				(NVME_AQ_BLK_MQ_DEPTH + i));
2140 		if (ret) {
2141 			kfree(private);
2142 			return ret;
2143 		}
2144 
2145 		aen_op->flags = FCOP_FLAGS_AEN;
2146 		aen_op->fcp_req.private = private;
2147 
2148 		memset(sqe, 0, sizeof(*sqe));
2149 		sqe->common.opcode = nvme_admin_async_event;
2150 		/* Note: core layer may overwrite the sqe.command_id value */
2151 		sqe->common.command_id = NVME_AQ_BLK_MQ_DEPTH + i;
2152 	}
2153 	return 0;
2154 }
2155 
2156 static void
2157 nvme_fc_term_aen_ops(struct nvme_fc_ctrl *ctrl)
2158 {
2159 	struct nvme_fc_fcp_op *aen_op;
2160 	int i;
2161 
2162 	aen_op = ctrl->aen_ops;
2163 	for (i = 0; i < NVME_NR_AEN_COMMANDS; i++, aen_op++) {
2164 		__nvme_fc_exit_request(ctrl, aen_op);
2165 
2166 		kfree(aen_op->fcp_req.private);
2167 		aen_op->fcp_req.private = NULL;
2168 	}
2169 }
2170 
2171 static inline void
2172 __nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, struct nvme_fc_ctrl *ctrl,
2173 		unsigned int qidx)
2174 {
2175 	struct nvme_fc_queue *queue = &ctrl->queues[qidx];
2176 
2177 	hctx->driver_data = queue;
2178 	queue->hctx = hctx;
2179 }
2180 
2181 static int
2182 nvme_fc_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2183 		unsigned int hctx_idx)
2184 {
2185 	struct nvme_fc_ctrl *ctrl = data;
2186 
2187 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx + 1);
2188 
2189 	return 0;
2190 }
2191 
2192 static int
2193 nvme_fc_init_admin_hctx(struct blk_mq_hw_ctx *hctx, void *data,
2194 		unsigned int hctx_idx)
2195 {
2196 	struct nvme_fc_ctrl *ctrl = data;
2197 
2198 	__nvme_fc_init_hctx(hctx, ctrl, hctx_idx);
2199 
2200 	return 0;
2201 }
2202 
2203 static void
2204 nvme_fc_init_queue(struct nvme_fc_ctrl *ctrl, int idx)
2205 {
2206 	struct nvme_fc_queue *queue;
2207 
2208 	queue = &ctrl->queues[idx];
2209 	memset(queue, 0, sizeof(*queue));
2210 	queue->ctrl = ctrl;
2211 	queue->qnum = idx;
2212 	atomic_set(&queue->csn, 0);
2213 	queue->dev = ctrl->dev;
2214 
2215 	if (idx > 0)
2216 		queue->cmnd_capsule_len = ctrl->ctrl.ioccsz * 16;
2217 	else
2218 		queue->cmnd_capsule_len = sizeof(struct nvme_command);
2219 
2220 	/*
2221 	 * Considered whether we should allocate buffers for all SQEs
2222 	 * and CQEs and dma map them - mapping their respective entries
2223 	 * into the request structures (kernel vm addr and dma address)
2224 	 * thus the driver could use the buffers/mappings directly.
2225 	 * It only makes sense if the LLDD would use them for its
2226 	 * messaging api. It's very unlikely most adapter api's would use
2227 	 * a native NVME sqe/cqe. More reasonable if FC-NVME IU payload
2228 	 * structures were used instead.
2229 	 */
2230 }
2231 
2232 /*
2233  * This routine terminates a queue at the transport level.
2234  * The transport has already ensured that all outstanding ios on
2235  * the queue have been terminated.
2236  * The transport will send a Disconnect LS request to terminate
2237  * the queue's connection. Termination of the admin queue will also
2238  * terminate the association at the target.
2239  */
2240 static void
2241 nvme_fc_free_queue(struct nvme_fc_queue *queue)
2242 {
2243 	if (!test_and_clear_bit(NVME_FC_Q_CONNECTED, &queue->flags))
2244 		return;
2245 
2246 	clear_bit(NVME_FC_Q_LIVE, &queue->flags);
2247 	/*
2248 	 * Current implementation never disconnects a single queue.
2249 	 * It always terminates a whole association. So there is never
2250 	 * a disconnect(queue) LS sent to the target.
2251 	 */
2252 
2253 	queue->connection_id = 0;
2254 	atomic_set(&queue->csn, 0);
2255 }
2256 
2257 static void
2258 __nvme_fc_delete_hw_queue(struct nvme_fc_ctrl *ctrl,
2259 	struct nvme_fc_queue *queue, unsigned int qidx)
2260 {
2261 	if (ctrl->lport->ops->delete_queue)
2262 		ctrl->lport->ops->delete_queue(&ctrl->lport->localport, qidx,
2263 				queue->lldd_handle);
2264 	queue->lldd_handle = NULL;
2265 }
2266 
2267 static void
2268 nvme_fc_free_io_queues(struct nvme_fc_ctrl *ctrl)
2269 {
2270 	int i;
2271 
2272 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
2273 		nvme_fc_free_queue(&ctrl->queues[i]);
2274 }
2275 
2276 static int
2277 __nvme_fc_create_hw_queue(struct nvme_fc_ctrl *ctrl,
2278 	struct nvme_fc_queue *queue, unsigned int qidx, u16 qsize)
2279 {
2280 	int ret = 0;
2281 
2282 	queue->lldd_handle = NULL;
2283 	if (ctrl->lport->ops->create_queue)
2284 		ret = ctrl->lport->ops->create_queue(&ctrl->lport->localport,
2285 				qidx, qsize, &queue->lldd_handle);
2286 
2287 	return ret;
2288 }
2289 
2290 static void
2291 nvme_fc_delete_hw_io_queues(struct nvme_fc_ctrl *ctrl)
2292 {
2293 	struct nvme_fc_queue *queue = &ctrl->queues[ctrl->ctrl.queue_count - 1];
2294 	int i;
2295 
2296 	for (i = ctrl->ctrl.queue_count - 1; i >= 1; i--, queue--)
2297 		__nvme_fc_delete_hw_queue(ctrl, queue, i);
2298 }
2299 
2300 static int
2301 nvme_fc_create_hw_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2302 {
2303 	struct nvme_fc_queue *queue = &ctrl->queues[1];
2304 	int i, ret;
2305 
2306 	for (i = 1; i < ctrl->ctrl.queue_count; i++, queue++) {
2307 		ret = __nvme_fc_create_hw_queue(ctrl, queue, i, qsize);
2308 		if (ret)
2309 			goto delete_queues;
2310 	}
2311 
2312 	return 0;
2313 
2314 delete_queues:
2315 	for (; i >= 0; i--)
2316 		__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[i], i);
2317 	return ret;
2318 }
2319 
2320 static int
2321 nvme_fc_connect_io_queues(struct nvme_fc_ctrl *ctrl, u16 qsize)
2322 {
2323 	int i, ret = 0;
2324 
2325 	for (i = 1; i < ctrl->ctrl.queue_count; i++) {
2326 		ret = nvme_fc_connect_queue(ctrl, &ctrl->queues[i], qsize,
2327 					(qsize / 5));
2328 		if (ret)
2329 			break;
2330 		ret = nvmf_connect_io_queue(&ctrl->ctrl, i, false);
2331 		if (ret)
2332 			break;
2333 
2334 		set_bit(NVME_FC_Q_LIVE, &ctrl->queues[i].flags);
2335 	}
2336 
2337 	return ret;
2338 }
2339 
2340 static void
2341 nvme_fc_init_io_queues(struct nvme_fc_ctrl *ctrl)
2342 {
2343 	int i;
2344 
2345 	for (i = 1; i < ctrl->ctrl.queue_count; i++)
2346 		nvme_fc_init_queue(ctrl, i);
2347 }
2348 
2349 static void
2350 nvme_fc_ctrl_free(struct kref *ref)
2351 {
2352 	struct nvme_fc_ctrl *ctrl =
2353 		container_of(ref, struct nvme_fc_ctrl, ref);
2354 	unsigned long flags;
2355 
2356 	if (ctrl->ctrl.tagset) {
2357 		blk_cleanup_queue(ctrl->ctrl.connect_q);
2358 		blk_mq_free_tag_set(&ctrl->tag_set);
2359 	}
2360 
2361 	/* remove from rport list */
2362 	spin_lock_irqsave(&ctrl->rport->lock, flags);
2363 	list_del(&ctrl->ctrl_list);
2364 	spin_unlock_irqrestore(&ctrl->rport->lock, flags);
2365 
2366 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
2367 	blk_cleanup_queue(ctrl->ctrl.admin_q);
2368 	blk_cleanup_queue(ctrl->ctrl.fabrics_q);
2369 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
2370 
2371 	kfree(ctrl->queues);
2372 
2373 	put_device(ctrl->dev);
2374 	nvme_fc_rport_put(ctrl->rport);
2375 
2376 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
2377 	if (ctrl->ctrl.opts)
2378 		nvmf_free_options(ctrl->ctrl.opts);
2379 	kfree(ctrl);
2380 }
2381 
2382 static void
2383 nvme_fc_ctrl_put(struct nvme_fc_ctrl *ctrl)
2384 {
2385 	kref_put(&ctrl->ref, nvme_fc_ctrl_free);
2386 }
2387 
2388 static int
2389 nvme_fc_ctrl_get(struct nvme_fc_ctrl *ctrl)
2390 {
2391 	return kref_get_unless_zero(&ctrl->ref);
2392 }
2393 
2394 /*
2395  * All accesses from nvme core layer done - can now free the
2396  * controller. Called after last nvme_put_ctrl() call
2397  */
2398 static void
2399 nvme_fc_nvme_ctrl_freed(struct nvme_ctrl *nctrl)
2400 {
2401 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2402 
2403 	WARN_ON(nctrl != &ctrl->ctrl);
2404 
2405 	nvme_fc_ctrl_put(ctrl);
2406 }
2407 
2408 static void
2409 nvme_fc_error_recovery(struct nvme_fc_ctrl *ctrl, char *errmsg)
2410 {
2411 	int active;
2412 
2413 	/*
2414 	 * if an error (io timeout, etc) while (re)connecting,
2415 	 * it's an error on creating the new association.
2416 	 * Start the error recovery thread if it hasn't already
2417 	 * been started. It is expected there could be multiple
2418 	 * ios hitting this path before things are cleaned up.
2419 	 */
2420 	if (ctrl->ctrl.state == NVME_CTRL_CONNECTING) {
2421 		active = atomic_xchg(&ctrl->err_work_active, 1);
2422 		if (!active && !queue_work(nvme_fc_wq, &ctrl->err_work)) {
2423 			atomic_set(&ctrl->err_work_active, 0);
2424 			WARN_ON(1);
2425 		}
2426 		return;
2427 	}
2428 
2429 	/* Otherwise, only proceed if in LIVE state - e.g. on first error */
2430 	if (ctrl->ctrl.state != NVME_CTRL_LIVE)
2431 		return;
2432 
2433 	dev_warn(ctrl->ctrl.device,
2434 		"NVME-FC{%d}: transport association error detected: %s\n",
2435 		ctrl->cnum, errmsg);
2436 	dev_warn(ctrl->ctrl.device,
2437 		"NVME-FC{%d}: resetting controller\n", ctrl->cnum);
2438 
2439 	nvme_reset_ctrl(&ctrl->ctrl);
2440 }
2441 
2442 static enum blk_eh_timer_return
2443 nvme_fc_timeout(struct request *rq, bool reserved)
2444 {
2445 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2446 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2447 
2448 	/*
2449 	 * we can't individually ABTS an io without affecting the queue,
2450 	 * thus killing the queue, and thus the association.
2451 	 * So resolve by performing a controller reset, which will stop
2452 	 * the host/io stack, terminate the association on the link,
2453 	 * and recreate an association on the link.
2454 	 */
2455 	nvme_fc_error_recovery(ctrl, "io timeout error");
2456 
2457 	/*
2458 	 * the io abort has been initiated. Have the reset timer
2459 	 * restarted and the abort completion will complete the io
2460 	 * shortly. Avoids a synchronous wait while the abort finishes.
2461 	 */
2462 	return BLK_EH_RESET_TIMER;
2463 }
2464 
2465 static int
2466 nvme_fc_map_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2467 		struct nvme_fc_fcp_op *op)
2468 {
2469 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2470 	int ret;
2471 
2472 	freq->sg_cnt = 0;
2473 
2474 	if (!blk_rq_nr_phys_segments(rq))
2475 		return 0;
2476 
2477 	freq->sg_table.sgl = freq->first_sgl;
2478 	ret = sg_alloc_table_chained(&freq->sg_table,
2479 			blk_rq_nr_phys_segments(rq), freq->sg_table.sgl,
2480 			NVME_INLINE_SG_CNT);
2481 	if (ret)
2482 		return -ENOMEM;
2483 
2484 	op->nents = blk_rq_map_sg(rq->q, rq, freq->sg_table.sgl);
2485 	WARN_ON(op->nents > blk_rq_nr_phys_segments(rq));
2486 	freq->sg_cnt = fc_dma_map_sg(ctrl->lport->dev, freq->sg_table.sgl,
2487 				op->nents, rq_dma_dir(rq));
2488 	if (unlikely(freq->sg_cnt <= 0)) {
2489 		sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2490 		freq->sg_cnt = 0;
2491 		return -EFAULT;
2492 	}
2493 
2494 	/*
2495 	 * TODO: blk_integrity_rq(rq)  for DIF
2496 	 */
2497 	return 0;
2498 }
2499 
2500 static void
2501 nvme_fc_unmap_data(struct nvme_fc_ctrl *ctrl, struct request *rq,
2502 		struct nvme_fc_fcp_op *op)
2503 {
2504 	struct nvmefc_fcp_req *freq = &op->fcp_req;
2505 
2506 	if (!freq->sg_cnt)
2507 		return;
2508 
2509 	fc_dma_unmap_sg(ctrl->lport->dev, freq->sg_table.sgl, op->nents,
2510 			rq_dma_dir(rq));
2511 
2512 	sg_free_table_chained(&freq->sg_table, NVME_INLINE_SG_CNT);
2513 
2514 	freq->sg_cnt = 0;
2515 }
2516 
2517 /*
2518  * In FC, the queue is a logical thing. At transport connect, the target
2519  * creates its "queue" and returns a handle that is to be given to the
2520  * target whenever it posts something to the corresponding SQ.  When an
2521  * SQE is sent on a SQ, FC effectively considers the SQE, or rather the
2522  * command contained within the SQE, an io, and assigns a FC exchange
2523  * to it. The SQE and the associated SQ handle are sent in the initial
2524  * CMD IU sents on the exchange. All transfers relative to the io occur
2525  * as part of the exchange.  The CQE is the last thing for the io,
2526  * which is transferred (explicitly or implicitly) with the RSP IU
2527  * sent on the exchange. After the CQE is received, the FC exchange is
2528  * terminaed and the Exchange may be used on a different io.
2529  *
2530  * The transport to LLDD api has the transport making a request for a
2531  * new fcp io request to the LLDD. The LLDD then allocates a FC exchange
2532  * resource and transfers the command. The LLDD will then process all
2533  * steps to complete the io. Upon completion, the transport done routine
2534  * is called.
2535  *
2536  * So - while the operation is outstanding to the LLDD, there is a link
2537  * level FC exchange resource that is also outstanding. This must be
2538  * considered in all cleanup operations.
2539  */
2540 static blk_status_t
2541 nvme_fc_start_fcp_op(struct nvme_fc_ctrl *ctrl, struct nvme_fc_queue *queue,
2542 	struct nvme_fc_fcp_op *op, u32 data_len,
2543 	enum nvmefc_fcp_datadir	io_dir)
2544 {
2545 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2546 	struct nvme_command *sqe = &cmdiu->sqe;
2547 	int ret, opstate;
2548 
2549 	/*
2550 	 * before attempting to send the io, check to see if we believe
2551 	 * the target device is present
2552 	 */
2553 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2554 		return BLK_STS_RESOURCE;
2555 
2556 	if (!nvme_fc_ctrl_get(ctrl))
2557 		return BLK_STS_IOERR;
2558 
2559 	/* format the FC-NVME CMD IU and fcp_req */
2560 	cmdiu->connection_id = cpu_to_be64(queue->connection_id);
2561 	cmdiu->data_len = cpu_to_be32(data_len);
2562 	switch (io_dir) {
2563 	case NVMEFC_FCP_WRITE:
2564 		cmdiu->flags = FCNVME_CMD_FLAGS_WRITE;
2565 		break;
2566 	case NVMEFC_FCP_READ:
2567 		cmdiu->flags = FCNVME_CMD_FLAGS_READ;
2568 		break;
2569 	case NVMEFC_FCP_NODATA:
2570 		cmdiu->flags = 0;
2571 		break;
2572 	}
2573 	op->fcp_req.payload_length = data_len;
2574 	op->fcp_req.io_dir = io_dir;
2575 	op->fcp_req.transferred_length = 0;
2576 	op->fcp_req.rcv_rsplen = 0;
2577 	op->fcp_req.status = NVME_SC_SUCCESS;
2578 	op->fcp_req.sqid = cpu_to_le16(queue->qnum);
2579 
2580 	/*
2581 	 * validate per fabric rules, set fields mandated by fabric spec
2582 	 * as well as those by FC-NVME spec.
2583 	 */
2584 	WARN_ON_ONCE(sqe->common.metadata);
2585 	sqe->common.flags |= NVME_CMD_SGL_METABUF;
2586 
2587 	/*
2588 	 * format SQE DPTR field per FC-NVME rules:
2589 	 *    type=0x5     Transport SGL Data Block Descriptor
2590 	 *    subtype=0xA  Transport-specific value
2591 	 *    address=0
2592 	 *    length=length of the data series
2593 	 */
2594 	sqe->rw.dptr.sgl.type = (NVME_TRANSPORT_SGL_DATA_DESC << 4) |
2595 					NVME_SGL_FMT_TRANSPORT_A;
2596 	sqe->rw.dptr.sgl.length = cpu_to_le32(data_len);
2597 	sqe->rw.dptr.sgl.addr = 0;
2598 
2599 	if (!(op->flags & FCOP_FLAGS_AEN)) {
2600 		ret = nvme_fc_map_data(ctrl, op->rq, op);
2601 		if (ret < 0) {
2602 			nvme_cleanup_cmd(op->rq);
2603 			nvme_fc_ctrl_put(ctrl);
2604 			if (ret == -ENOMEM || ret == -EAGAIN)
2605 				return BLK_STS_RESOURCE;
2606 			return BLK_STS_IOERR;
2607 		}
2608 	}
2609 
2610 	fc_dma_sync_single_for_device(ctrl->lport->dev, op->fcp_req.cmddma,
2611 				  sizeof(op->cmd_iu), DMA_TO_DEVICE);
2612 
2613 	atomic_set(&op->state, FCPOP_STATE_ACTIVE);
2614 
2615 	if (!(op->flags & FCOP_FLAGS_AEN))
2616 		blk_mq_start_request(op->rq);
2617 
2618 	cmdiu->csn = cpu_to_be32(atomic_inc_return(&queue->csn));
2619 	ret = ctrl->lport->ops->fcp_io(&ctrl->lport->localport,
2620 					&ctrl->rport->remoteport,
2621 					queue->lldd_handle, &op->fcp_req);
2622 
2623 	if (ret) {
2624 		/*
2625 		 * If the lld fails to send the command is there an issue with
2626 		 * the csn value?  If the command that fails is the Connect,
2627 		 * no - as the connection won't be live.  If it is a command
2628 		 * post-connect, it's possible a gap in csn may be created.
2629 		 * Does this matter?  As Linux initiators don't send fused
2630 		 * commands, no.  The gap would exist, but as there's nothing
2631 		 * that depends on csn order to be delivered on the target
2632 		 * side, it shouldn't hurt.  It would be difficult for a
2633 		 * target to even detect the csn gap as it has no idea when the
2634 		 * cmd with the csn was supposed to arrive.
2635 		 */
2636 		opstate = atomic_xchg(&op->state, FCPOP_STATE_COMPLETE);
2637 		__nvme_fc_fcpop_chk_teardowns(ctrl, op, opstate);
2638 
2639 		if (!(op->flags & FCOP_FLAGS_AEN)) {
2640 			nvme_fc_unmap_data(ctrl, op->rq, op);
2641 			nvme_cleanup_cmd(op->rq);
2642 		}
2643 
2644 		nvme_fc_ctrl_put(ctrl);
2645 
2646 		if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE &&
2647 				ret != -EBUSY)
2648 			return BLK_STS_IOERR;
2649 
2650 		return BLK_STS_RESOURCE;
2651 	}
2652 
2653 	return BLK_STS_OK;
2654 }
2655 
2656 static blk_status_t
2657 nvme_fc_queue_rq(struct blk_mq_hw_ctx *hctx,
2658 			const struct blk_mq_queue_data *bd)
2659 {
2660 	struct nvme_ns *ns = hctx->queue->queuedata;
2661 	struct nvme_fc_queue *queue = hctx->driver_data;
2662 	struct nvme_fc_ctrl *ctrl = queue->ctrl;
2663 	struct request *rq = bd->rq;
2664 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2665 	struct nvme_fc_cmd_iu *cmdiu = &op->cmd_iu;
2666 	struct nvme_command *sqe = &cmdiu->sqe;
2667 	enum nvmefc_fcp_datadir	io_dir;
2668 	bool queue_ready = test_bit(NVME_FC_Q_LIVE, &queue->flags);
2669 	u32 data_len;
2670 	blk_status_t ret;
2671 
2672 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE ||
2673 	    !nvmf_check_ready(&queue->ctrl->ctrl, rq, queue_ready))
2674 		return nvmf_fail_nonready_command(&queue->ctrl->ctrl, rq);
2675 
2676 	ret = nvme_setup_cmd(ns, rq, sqe);
2677 	if (ret)
2678 		return ret;
2679 
2680 	/*
2681 	 * nvme core doesn't quite treat the rq opaquely. Commands such
2682 	 * as WRITE ZEROES will return a non-zero rq payload_bytes yet
2683 	 * there is no actual payload to be transferred.
2684 	 * To get it right, key data transmission on there being 1 or
2685 	 * more physical segments in the sg list. If there is no
2686 	 * physical segments, there is no payload.
2687 	 */
2688 	if (blk_rq_nr_phys_segments(rq)) {
2689 		data_len = blk_rq_payload_bytes(rq);
2690 		io_dir = ((rq_data_dir(rq) == WRITE) ?
2691 					NVMEFC_FCP_WRITE : NVMEFC_FCP_READ);
2692 	} else {
2693 		data_len = 0;
2694 		io_dir = NVMEFC_FCP_NODATA;
2695 	}
2696 
2697 
2698 	return nvme_fc_start_fcp_op(ctrl, queue, op, data_len, io_dir);
2699 }
2700 
2701 static void
2702 nvme_fc_submit_async_event(struct nvme_ctrl *arg)
2703 {
2704 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(arg);
2705 	struct nvme_fc_fcp_op *aen_op;
2706 	blk_status_t ret;
2707 
2708 	if (test_bit(FCCTRL_TERMIO, &ctrl->flags))
2709 		return;
2710 
2711 	aen_op = &ctrl->aen_ops[0];
2712 
2713 	ret = nvme_fc_start_fcp_op(ctrl, aen_op->queue, aen_op, 0,
2714 					NVMEFC_FCP_NODATA);
2715 	if (ret)
2716 		dev_err(ctrl->ctrl.device,
2717 			"failed async event work\n");
2718 }
2719 
2720 static void
2721 nvme_fc_complete_rq(struct request *rq)
2722 {
2723 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(rq);
2724 	struct nvme_fc_ctrl *ctrl = op->ctrl;
2725 
2726 	atomic_set(&op->state, FCPOP_STATE_IDLE);
2727 
2728 	nvme_fc_unmap_data(ctrl, rq, op);
2729 	nvme_complete_rq(rq);
2730 	nvme_fc_ctrl_put(ctrl);
2731 }
2732 
2733 /*
2734  * This routine is used by the transport when it needs to find active
2735  * io on a queue that is to be terminated. The transport uses
2736  * blk_mq_tagset_busy_itr() to find the busy requests, which then invoke
2737  * this routine to kill them on a 1 by 1 basis.
2738  *
2739  * As FC allocates FC exchange for each io, the transport must contact
2740  * the LLDD to terminate the exchange, thus releasing the FC exchange.
2741  * After terminating the exchange the LLDD will call the transport's
2742  * normal io done path for the request, but it will have an aborted
2743  * status. The done path will return the io request back to the block
2744  * layer with an error status.
2745  */
2746 static bool
2747 nvme_fc_terminate_exchange(struct request *req, void *data, bool reserved)
2748 {
2749 	struct nvme_ctrl *nctrl = data;
2750 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
2751 	struct nvme_fc_fcp_op *op = blk_mq_rq_to_pdu(req);
2752 
2753 	__nvme_fc_abort_op(ctrl, op);
2754 	return true;
2755 }
2756 
2757 
2758 static const struct blk_mq_ops nvme_fc_mq_ops = {
2759 	.queue_rq	= nvme_fc_queue_rq,
2760 	.complete	= nvme_fc_complete_rq,
2761 	.init_request	= nvme_fc_init_request,
2762 	.exit_request	= nvme_fc_exit_request,
2763 	.init_hctx	= nvme_fc_init_hctx,
2764 	.timeout	= nvme_fc_timeout,
2765 };
2766 
2767 static int
2768 nvme_fc_create_io_queues(struct nvme_fc_ctrl *ctrl)
2769 {
2770 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2771 	unsigned int nr_io_queues;
2772 	int ret;
2773 
2774 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2775 				ctrl->lport->ops->max_hw_queues);
2776 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2777 	if (ret) {
2778 		dev_info(ctrl->ctrl.device,
2779 			"set_queue_count failed: %d\n", ret);
2780 		return ret;
2781 	}
2782 
2783 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2784 	if (!nr_io_queues)
2785 		return 0;
2786 
2787 	nvme_fc_init_io_queues(ctrl);
2788 
2789 	memset(&ctrl->tag_set, 0, sizeof(ctrl->tag_set));
2790 	ctrl->tag_set.ops = &nvme_fc_mq_ops;
2791 	ctrl->tag_set.queue_depth = ctrl->ctrl.opts->queue_size;
2792 	ctrl->tag_set.reserved_tags = 1; /* fabric connect */
2793 	ctrl->tag_set.numa_node = ctrl->ctrl.numa_node;
2794 	ctrl->tag_set.flags = BLK_MQ_F_SHOULD_MERGE;
2795 	ctrl->tag_set.cmd_size =
2796 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
2797 			    ctrl->lport->ops->fcprqst_priv_sz);
2798 	ctrl->tag_set.driver_data = ctrl;
2799 	ctrl->tag_set.nr_hw_queues = ctrl->ctrl.queue_count - 1;
2800 	ctrl->tag_set.timeout = NVME_IO_TIMEOUT;
2801 
2802 	ret = blk_mq_alloc_tag_set(&ctrl->tag_set);
2803 	if (ret)
2804 		return ret;
2805 
2806 	ctrl->ctrl.tagset = &ctrl->tag_set;
2807 
2808 	ctrl->ctrl.connect_q = blk_mq_init_queue(&ctrl->tag_set);
2809 	if (IS_ERR(ctrl->ctrl.connect_q)) {
2810 		ret = PTR_ERR(ctrl->ctrl.connect_q);
2811 		goto out_free_tag_set;
2812 	}
2813 
2814 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2815 	if (ret)
2816 		goto out_cleanup_blk_queue;
2817 
2818 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2819 	if (ret)
2820 		goto out_delete_hw_queues;
2821 
2822 	ctrl->ioq_live = true;
2823 
2824 	return 0;
2825 
2826 out_delete_hw_queues:
2827 	nvme_fc_delete_hw_io_queues(ctrl);
2828 out_cleanup_blk_queue:
2829 	blk_cleanup_queue(ctrl->ctrl.connect_q);
2830 out_free_tag_set:
2831 	blk_mq_free_tag_set(&ctrl->tag_set);
2832 	nvme_fc_free_io_queues(ctrl);
2833 
2834 	/* force put free routine to ignore io queues */
2835 	ctrl->ctrl.tagset = NULL;
2836 
2837 	return ret;
2838 }
2839 
2840 static int
2841 nvme_fc_recreate_io_queues(struct nvme_fc_ctrl *ctrl)
2842 {
2843 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2844 	u32 prior_ioq_cnt = ctrl->ctrl.queue_count - 1;
2845 	unsigned int nr_io_queues;
2846 	int ret;
2847 
2848 	nr_io_queues = min(min(opts->nr_io_queues, num_online_cpus()),
2849 				ctrl->lport->ops->max_hw_queues);
2850 	ret = nvme_set_queue_count(&ctrl->ctrl, &nr_io_queues);
2851 	if (ret) {
2852 		dev_info(ctrl->ctrl.device,
2853 			"set_queue_count failed: %d\n", ret);
2854 		return ret;
2855 	}
2856 
2857 	if (!nr_io_queues && prior_ioq_cnt) {
2858 		dev_info(ctrl->ctrl.device,
2859 			"Fail Reconnect: At least 1 io queue "
2860 			"required (was %d)\n", prior_ioq_cnt);
2861 		return -ENOSPC;
2862 	}
2863 
2864 	ctrl->ctrl.queue_count = nr_io_queues + 1;
2865 	/* check for io queues existing */
2866 	if (ctrl->ctrl.queue_count == 1)
2867 		return 0;
2868 
2869 	ret = nvme_fc_create_hw_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2870 	if (ret)
2871 		goto out_free_io_queues;
2872 
2873 	ret = nvme_fc_connect_io_queues(ctrl, ctrl->ctrl.sqsize + 1);
2874 	if (ret)
2875 		goto out_delete_hw_queues;
2876 
2877 	if (prior_ioq_cnt != nr_io_queues)
2878 		dev_info(ctrl->ctrl.device,
2879 			"reconnect: revising io queue count from %d to %d\n",
2880 			prior_ioq_cnt, nr_io_queues);
2881 	blk_mq_update_nr_hw_queues(&ctrl->tag_set, nr_io_queues);
2882 
2883 	return 0;
2884 
2885 out_delete_hw_queues:
2886 	nvme_fc_delete_hw_io_queues(ctrl);
2887 out_free_io_queues:
2888 	nvme_fc_free_io_queues(ctrl);
2889 	return ret;
2890 }
2891 
2892 static void
2893 nvme_fc_rport_active_on_lport(struct nvme_fc_rport *rport)
2894 {
2895 	struct nvme_fc_lport *lport = rport->lport;
2896 
2897 	atomic_inc(&lport->act_rport_cnt);
2898 }
2899 
2900 static void
2901 nvme_fc_rport_inactive_on_lport(struct nvme_fc_rport *rport)
2902 {
2903 	struct nvme_fc_lport *lport = rport->lport;
2904 	u32 cnt;
2905 
2906 	cnt = atomic_dec_return(&lport->act_rport_cnt);
2907 	if (cnt == 0 && lport->localport.port_state == FC_OBJSTATE_DELETED)
2908 		lport->ops->localport_delete(&lport->localport);
2909 }
2910 
2911 static int
2912 nvme_fc_ctlr_active_on_rport(struct nvme_fc_ctrl *ctrl)
2913 {
2914 	struct nvme_fc_rport *rport = ctrl->rport;
2915 	u32 cnt;
2916 
2917 	if (test_and_set_bit(ASSOC_ACTIVE, &ctrl->flags))
2918 		return 1;
2919 
2920 	cnt = atomic_inc_return(&rport->act_ctrl_cnt);
2921 	if (cnt == 1)
2922 		nvme_fc_rport_active_on_lport(rport);
2923 
2924 	return 0;
2925 }
2926 
2927 static int
2928 nvme_fc_ctlr_inactive_on_rport(struct nvme_fc_ctrl *ctrl)
2929 {
2930 	struct nvme_fc_rport *rport = ctrl->rport;
2931 	struct nvme_fc_lport *lport = rport->lport;
2932 	u32 cnt;
2933 
2934 	/* clearing of ctrl->flags ASSOC_ACTIVE bit is in association delete */
2935 
2936 	cnt = atomic_dec_return(&rport->act_ctrl_cnt);
2937 	if (cnt == 0) {
2938 		if (rport->remoteport.port_state == FC_OBJSTATE_DELETED)
2939 			lport->ops->remoteport_delete(&rport->remoteport);
2940 		nvme_fc_rport_inactive_on_lport(rport);
2941 	}
2942 
2943 	return 0;
2944 }
2945 
2946 /*
2947  * This routine restarts the controller on the host side, and
2948  * on the link side, recreates the controller association.
2949  */
2950 static int
2951 nvme_fc_create_association(struct nvme_fc_ctrl *ctrl)
2952 {
2953 	struct nvmf_ctrl_options *opts = ctrl->ctrl.opts;
2954 	struct nvmefc_ls_rcv_op *disls = NULL;
2955 	unsigned long flags;
2956 	int ret;
2957 	bool changed;
2958 
2959 	++ctrl->ctrl.nr_reconnects;
2960 
2961 	if (ctrl->rport->remoteport.port_state != FC_OBJSTATE_ONLINE)
2962 		return -ENODEV;
2963 
2964 	if (nvme_fc_ctlr_active_on_rport(ctrl))
2965 		return -ENOTUNIQ;
2966 
2967 	dev_info(ctrl->ctrl.device,
2968 		"NVME-FC{%d}: create association : host wwpn 0x%016llx "
2969 		" rport wwpn 0x%016llx: NQN \"%s\"\n",
2970 		ctrl->cnum, ctrl->lport->localport.port_name,
2971 		ctrl->rport->remoteport.port_name, ctrl->ctrl.opts->subsysnqn);
2972 
2973 	/*
2974 	 * Create the admin queue
2975 	 */
2976 
2977 	ret = __nvme_fc_create_hw_queue(ctrl, &ctrl->queues[0], 0,
2978 				NVME_AQ_DEPTH);
2979 	if (ret)
2980 		goto out_free_queue;
2981 
2982 	ret = nvme_fc_connect_admin_queue(ctrl, &ctrl->queues[0],
2983 				NVME_AQ_DEPTH, (NVME_AQ_DEPTH / 4));
2984 	if (ret)
2985 		goto out_delete_hw_queue;
2986 
2987 	ret = nvmf_connect_admin_queue(&ctrl->ctrl);
2988 	if (ret)
2989 		goto out_disconnect_admin_queue;
2990 
2991 	set_bit(NVME_FC_Q_LIVE, &ctrl->queues[0].flags);
2992 
2993 	/*
2994 	 * Check controller capabilities
2995 	 *
2996 	 * todo:- add code to check if ctrl attributes changed from
2997 	 * prior connection values
2998 	 */
2999 
3000 	ret = nvme_enable_ctrl(&ctrl->ctrl);
3001 	if (ret)
3002 		goto out_disconnect_admin_queue;
3003 
3004 	ctrl->ctrl.max_hw_sectors =
3005 		(ctrl->lport->ops->max_sgl_segments - 1) << (PAGE_SHIFT - 9);
3006 
3007 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
3008 
3009 	ret = nvme_init_identify(&ctrl->ctrl);
3010 	if (ret)
3011 		goto out_disconnect_admin_queue;
3012 
3013 	/* sanity checks */
3014 
3015 	/* FC-NVME does not have other data in the capsule */
3016 	if (ctrl->ctrl.icdoff) {
3017 		dev_err(ctrl->ctrl.device, "icdoff %d is not supported!\n",
3018 				ctrl->ctrl.icdoff);
3019 		goto out_disconnect_admin_queue;
3020 	}
3021 
3022 	/* FC-NVME supports normal SGL Data Block Descriptors */
3023 
3024 	if (opts->queue_size > ctrl->ctrl.maxcmd) {
3025 		/* warn if maxcmd is lower than queue_size */
3026 		dev_warn(ctrl->ctrl.device,
3027 			"queue_size %zu > ctrl maxcmd %u, reducing "
3028 			"to maxcmd\n",
3029 			opts->queue_size, ctrl->ctrl.maxcmd);
3030 		opts->queue_size = ctrl->ctrl.maxcmd;
3031 	}
3032 
3033 	if (opts->queue_size > ctrl->ctrl.sqsize + 1) {
3034 		/* warn if sqsize is lower than queue_size */
3035 		dev_warn(ctrl->ctrl.device,
3036 			"queue_size %zu > ctrl sqsize %u, reducing "
3037 			"to sqsize\n",
3038 			opts->queue_size, ctrl->ctrl.sqsize + 1);
3039 		opts->queue_size = ctrl->ctrl.sqsize + 1;
3040 	}
3041 
3042 	ret = nvme_fc_init_aen_ops(ctrl);
3043 	if (ret)
3044 		goto out_term_aen_ops;
3045 
3046 	/*
3047 	 * Create the io queues
3048 	 */
3049 
3050 	if (ctrl->ctrl.queue_count > 1) {
3051 		if (!ctrl->ioq_live)
3052 			ret = nvme_fc_create_io_queues(ctrl);
3053 		else
3054 			ret = nvme_fc_recreate_io_queues(ctrl);
3055 		if (ret)
3056 			goto out_term_aen_ops;
3057 	}
3058 
3059 	changed = nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_LIVE);
3060 
3061 	ctrl->ctrl.nr_reconnects = 0;
3062 
3063 	if (changed)
3064 		nvme_start_ctrl(&ctrl->ctrl);
3065 
3066 	return 0;	/* Success */
3067 
3068 out_term_aen_ops:
3069 	nvme_fc_term_aen_ops(ctrl);
3070 out_disconnect_admin_queue:
3071 	/* send a Disconnect(association) LS to fc-nvme target */
3072 	nvme_fc_xmt_disconnect_assoc(ctrl);
3073 	spin_lock_irqsave(&ctrl->lock, flags);
3074 	ctrl->association_id = 0;
3075 	disls = ctrl->rcv_disconn;
3076 	ctrl->rcv_disconn = NULL;
3077 	spin_unlock_irqrestore(&ctrl->lock, flags);
3078 	if (disls)
3079 		nvme_fc_xmt_ls_rsp(disls);
3080 out_delete_hw_queue:
3081 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3082 out_free_queue:
3083 	nvme_fc_free_queue(&ctrl->queues[0]);
3084 	clear_bit(ASSOC_ACTIVE, &ctrl->flags);
3085 	nvme_fc_ctlr_inactive_on_rport(ctrl);
3086 
3087 	return ret;
3088 }
3089 
3090 /*
3091  * This routine stops operation of the controller on the host side.
3092  * On the host os stack side: Admin and IO queues are stopped,
3093  *   outstanding ios on them terminated via FC ABTS.
3094  * On the link side: the association is terminated.
3095  */
3096 static void
3097 nvme_fc_delete_association(struct nvme_fc_ctrl *ctrl)
3098 {
3099 	struct nvmefc_ls_rcv_op *disls = NULL;
3100 	unsigned long flags;
3101 
3102 	if (!test_and_clear_bit(ASSOC_ACTIVE, &ctrl->flags))
3103 		return;
3104 
3105 	spin_lock_irqsave(&ctrl->lock, flags);
3106 	set_bit(FCCTRL_TERMIO, &ctrl->flags);
3107 	ctrl->iocnt = 0;
3108 	spin_unlock_irqrestore(&ctrl->lock, flags);
3109 
3110 	/*
3111 	 * If io queues are present, stop them and terminate all outstanding
3112 	 * ios on them. As FC allocates FC exchange for each io, the
3113 	 * transport must contact the LLDD to terminate the exchange,
3114 	 * thus releasing the FC exchange. We use blk_mq_tagset_busy_itr()
3115 	 * to tell us what io's are busy and invoke a transport routine
3116 	 * to kill them with the LLDD.  After terminating the exchange
3117 	 * the LLDD will call the transport's normal io done path, but it
3118 	 * will have an aborted status. The done path will return the
3119 	 * io requests back to the block layer as part of normal completions
3120 	 * (but with error status).
3121 	 */
3122 	if (ctrl->ctrl.queue_count > 1) {
3123 		nvme_stop_queues(&ctrl->ctrl);
3124 		blk_mq_tagset_busy_iter(&ctrl->tag_set,
3125 				nvme_fc_terminate_exchange, &ctrl->ctrl);
3126 		blk_mq_tagset_wait_completed_request(&ctrl->tag_set);
3127 	}
3128 
3129 	/*
3130 	 * Other transports, which don't have link-level contexts bound
3131 	 * to sqe's, would try to gracefully shutdown the controller by
3132 	 * writing the registers for shutdown and polling (call
3133 	 * nvme_shutdown_ctrl()). Given a bunch of i/o was potentially
3134 	 * just aborted and we will wait on those contexts, and given
3135 	 * there was no indication of how live the controlelr is on the
3136 	 * link, don't send more io to create more contexts for the
3137 	 * shutdown. Let the controller fail via keepalive failure if
3138 	 * its still present.
3139 	 */
3140 
3141 	/*
3142 	 * clean up the admin queue. Same thing as above.
3143 	 * use blk_mq_tagset_busy_itr() and the transport routine to
3144 	 * terminate the exchanges.
3145 	 */
3146 	blk_mq_quiesce_queue(ctrl->ctrl.admin_q);
3147 	blk_mq_tagset_busy_iter(&ctrl->admin_tag_set,
3148 				nvme_fc_terminate_exchange, &ctrl->ctrl);
3149 	blk_mq_tagset_wait_completed_request(&ctrl->admin_tag_set);
3150 
3151 	/* kill the aens as they are a separate path */
3152 	nvme_fc_abort_aen_ops(ctrl);
3153 
3154 	/* wait for all io that had to be aborted */
3155 	spin_lock_irq(&ctrl->lock);
3156 	wait_event_lock_irq(ctrl->ioabort_wait, ctrl->iocnt == 0, ctrl->lock);
3157 	clear_bit(FCCTRL_TERMIO, &ctrl->flags);
3158 	spin_unlock_irq(&ctrl->lock);
3159 
3160 	nvme_fc_term_aen_ops(ctrl);
3161 
3162 	/*
3163 	 * send a Disconnect(association) LS to fc-nvme target
3164 	 * Note: could have been sent at top of process, but
3165 	 * cleaner on link traffic if after the aborts complete.
3166 	 * Note: if association doesn't exist, association_id will be 0
3167 	 */
3168 	if (ctrl->association_id)
3169 		nvme_fc_xmt_disconnect_assoc(ctrl);
3170 
3171 	spin_lock_irqsave(&ctrl->lock, flags);
3172 	ctrl->association_id = 0;
3173 	disls = ctrl->rcv_disconn;
3174 	ctrl->rcv_disconn = NULL;
3175 	spin_unlock_irqrestore(&ctrl->lock, flags);
3176 	if (disls)
3177 		/*
3178 		 * if a Disconnect Request was waiting for a response, send
3179 		 * now that all ABTS's have been issued (and are complete).
3180 		 */
3181 		nvme_fc_xmt_ls_rsp(disls);
3182 
3183 	if (ctrl->ctrl.tagset) {
3184 		nvme_fc_delete_hw_io_queues(ctrl);
3185 		nvme_fc_free_io_queues(ctrl);
3186 	}
3187 
3188 	__nvme_fc_delete_hw_queue(ctrl, &ctrl->queues[0], 0);
3189 	nvme_fc_free_queue(&ctrl->queues[0]);
3190 
3191 	/* re-enable the admin_q so anything new can fast fail */
3192 	blk_mq_unquiesce_queue(ctrl->ctrl.admin_q);
3193 
3194 	/* resume the io queues so that things will fast fail */
3195 	nvme_start_queues(&ctrl->ctrl);
3196 
3197 	nvme_fc_ctlr_inactive_on_rport(ctrl);
3198 }
3199 
3200 static void
3201 nvme_fc_delete_ctrl(struct nvme_ctrl *nctrl)
3202 {
3203 	struct nvme_fc_ctrl *ctrl = to_fc_ctrl(nctrl);
3204 
3205 	cancel_work_sync(&ctrl->err_work);
3206 	cancel_delayed_work_sync(&ctrl->connect_work);
3207 	/*
3208 	 * kill the association on the link side.  this will block
3209 	 * waiting for io to terminate
3210 	 */
3211 	nvme_fc_delete_association(ctrl);
3212 }
3213 
3214 static void
3215 nvme_fc_reconnect_or_delete(struct nvme_fc_ctrl *ctrl, int status)
3216 {
3217 	struct nvme_fc_rport *rport = ctrl->rport;
3218 	struct nvme_fc_remote_port *portptr = &rport->remoteport;
3219 	unsigned long recon_delay = ctrl->ctrl.opts->reconnect_delay * HZ;
3220 	bool recon = true;
3221 
3222 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING)
3223 		return;
3224 
3225 	if (portptr->port_state == FC_OBJSTATE_ONLINE)
3226 		dev_info(ctrl->ctrl.device,
3227 			"NVME-FC{%d}: reset: Reconnect attempt failed (%d)\n",
3228 			ctrl->cnum, status);
3229 	else if (time_after_eq(jiffies, rport->dev_loss_end))
3230 		recon = false;
3231 
3232 	if (recon && nvmf_should_reconnect(&ctrl->ctrl)) {
3233 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
3234 			dev_info(ctrl->ctrl.device,
3235 				"NVME-FC{%d}: Reconnect attempt in %ld "
3236 				"seconds\n",
3237 				ctrl->cnum, recon_delay / HZ);
3238 		else if (time_after(jiffies + recon_delay, rport->dev_loss_end))
3239 			recon_delay = rport->dev_loss_end - jiffies;
3240 
3241 		queue_delayed_work(nvme_wq, &ctrl->connect_work, recon_delay);
3242 	} else {
3243 		if (portptr->port_state == FC_OBJSTATE_ONLINE)
3244 			dev_warn(ctrl->ctrl.device,
3245 				"NVME-FC{%d}: Max reconnect attempts (%d) "
3246 				"reached.\n",
3247 				ctrl->cnum, ctrl->ctrl.nr_reconnects);
3248 		else
3249 			dev_warn(ctrl->ctrl.device,
3250 				"NVME-FC{%d}: dev_loss_tmo (%d) expired "
3251 				"while waiting for remoteport connectivity.\n",
3252 				ctrl->cnum, min_t(int, portptr->dev_loss_tmo,
3253 					(ctrl->ctrl.opts->max_reconnects *
3254 					 ctrl->ctrl.opts->reconnect_delay)));
3255 		WARN_ON(nvme_delete_ctrl(&ctrl->ctrl));
3256 	}
3257 }
3258 
3259 static void
3260 __nvme_fc_terminate_io(struct nvme_fc_ctrl *ctrl)
3261 {
3262 	/*
3263 	 * if state is connecting - the error occurred as part of a
3264 	 * reconnect attempt. The create_association error paths will
3265 	 * clean up any outstanding io.
3266 	 *
3267 	 * if it's a different state - ensure all pending io is
3268 	 * terminated. Given this can delay while waiting for the
3269 	 * aborted io to return, we recheck adapter state below
3270 	 * before changing state.
3271 	 */
3272 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING) {
3273 		nvme_stop_keep_alive(&ctrl->ctrl);
3274 
3275 		/* will block will waiting for io to terminate */
3276 		nvme_fc_delete_association(ctrl);
3277 	}
3278 
3279 	if (ctrl->ctrl.state != NVME_CTRL_CONNECTING &&
3280 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING))
3281 		dev_err(ctrl->ctrl.device,
3282 			"NVME-FC{%d}: error_recovery: Couldn't change state "
3283 			"to CONNECTING\n", ctrl->cnum);
3284 }
3285 
3286 static void
3287 nvme_fc_reset_ctrl_work(struct work_struct *work)
3288 {
3289 	struct nvme_fc_ctrl *ctrl =
3290 		container_of(work, struct nvme_fc_ctrl, ctrl.reset_work);
3291 	int ret;
3292 
3293 	__nvme_fc_terminate_io(ctrl);
3294 
3295 	nvme_stop_ctrl(&ctrl->ctrl);
3296 
3297 	if (ctrl->rport->remoteport.port_state == FC_OBJSTATE_ONLINE)
3298 		ret = nvme_fc_create_association(ctrl);
3299 	else
3300 		ret = -ENOTCONN;
3301 
3302 	if (ret)
3303 		nvme_fc_reconnect_or_delete(ctrl, ret);
3304 	else
3305 		dev_info(ctrl->ctrl.device,
3306 			"NVME-FC{%d}: controller reset complete\n",
3307 			ctrl->cnum);
3308 }
3309 
3310 static void
3311 nvme_fc_connect_err_work(struct work_struct *work)
3312 {
3313 	struct nvme_fc_ctrl *ctrl =
3314 			container_of(work, struct nvme_fc_ctrl, err_work);
3315 
3316 	__nvme_fc_terminate_io(ctrl);
3317 
3318 	atomic_set(&ctrl->err_work_active, 0);
3319 
3320 	/*
3321 	 * Rescheduling the connection after recovering
3322 	 * from the io error is left to the reconnect work
3323 	 * item, which is what should have stalled waiting on
3324 	 * the io that had the error that scheduled this work.
3325 	 */
3326 }
3327 
3328 static const struct nvme_ctrl_ops nvme_fc_ctrl_ops = {
3329 	.name			= "fc",
3330 	.module			= THIS_MODULE,
3331 	.flags			= NVME_F_FABRICS,
3332 	.reg_read32		= nvmf_reg_read32,
3333 	.reg_read64		= nvmf_reg_read64,
3334 	.reg_write32		= nvmf_reg_write32,
3335 	.free_ctrl		= nvme_fc_nvme_ctrl_freed,
3336 	.submit_async_event	= nvme_fc_submit_async_event,
3337 	.delete_ctrl		= nvme_fc_delete_ctrl,
3338 	.get_address		= nvmf_get_address,
3339 };
3340 
3341 static void
3342 nvme_fc_connect_ctrl_work(struct work_struct *work)
3343 {
3344 	int ret;
3345 
3346 	struct nvme_fc_ctrl *ctrl =
3347 			container_of(to_delayed_work(work),
3348 				struct nvme_fc_ctrl, connect_work);
3349 
3350 	ret = nvme_fc_create_association(ctrl);
3351 	if (ret)
3352 		nvme_fc_reconnect_or_delete(ctrl, ret);
3353 	else
3354 		dev_info(ctrl->ctrl.device,
3355 			"NVME-FC{%d}: controller connect complete\n",
3356 			ctrl->cnum);
3357 }
3358 
3359 
3360 static const struct blk_mq_ops nvme_fc_admin_mq_ops = {
3361 	.queue_rq	= nvme_fc_queue_rq,
3362 	.complete	= nvme_fc_complete_rq,
3363 	.init_request	= nvme_fc_init_request,
3364 	.exit_request	= nvme_fc_exit_request,
3365 	.init_hctx	= nvme_fc_init_admin_hctx,
3366 	.timeout	= nvme_fc_timeout,
3367 };
3368 
3369 
3370 /*
3371  * Fails a controller request if it matches an existing controller
3372  * (association) with the same tuple:
3373  * <Host NQN, Host ID, local FC port, remote FC port, SUBSYS NQN>
3374  *
3375  * The ports don't need to be compared as they are intrinsically
3376  * already matched by the port pointers supplied.
3377  */
3378 static bool
3379 nvme_fc_existing_controller(struct nvme_fc_rport *rport,
3380 		struct nvmf_ctrl_options *opts)
3381 {
3382 	struct nvme_fc_ctrl *ctrl;
3383 	unsigned long flags;
3384 	bool found = false;
3385 
3386 	spin_lock_irqsave(&rport->lock, flags);
3387 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3388 		found = nvmf_ctlr_matches_baseopts(&ctrl->ctrl, opts);
3389 		if (found)
3390 			break;
3391 	}
3392 	spin_unlock_irqrestore(&rport->lock, flags);
3393 
3394 	return found;
3395 }
3396 
3397 static struct nvme_ctrl *
3398 nvme_fc_init_ctrl(struct device *dev, struct nvmf_ctrl_options *opts,
3399 	struct nvme_fc_lport *lport, struct nvme_fc_rport *rport)
3400 {
3401 	struct nvme_fc_ctrl *ctrl;
3402 	unsigned long flags;
3403 	int ret, idx;
3404 
3405 	if (!(rport->remoteport.port_role &
3406 	    (FC_PORT_ROLE_NVME_DISCOVERY | FC_PORT_ROLE_NVME_TARGET))) {
3407 		ret = -EBADR;
3408 		goto out_fail;
3409 	}
3410 
3411 	if (!opts->duplicate_connect &&
3412 	    nvme_fc_existing_controller(rport, opts)) {
3413 		ret = -EALREADY;
3414 		goto out_fail;
3415 	}
3416 
3417 	ctrl = kzalloc(sizeof(*ctrl), GFP_KERNEL);
3418 	if (!ctrl) {
3419 		ret = -ENOMEM;
3420 		goto out_fail;
3421 	}
3422 
3423 	idx = ida_simple_get(&nvme_fc_ctrl_cnt, 0, 0, GFP_KERNEL);
3424 	if (idx < 0) {
3425 		ret = -ENOSPC;
3426 		goto out_free_ctrl;
3427 	}
3428 
3429 	ctrl->ctrl.opts = opts;
3430 	ctrl->ctrl.nr_reconnects = 0;
3431 	if (lport->dev)
3432 		ctrl->ctrl.numa_node = dev_to_node(lport->dev);
3433 	else
3434 		ctrl->ctrl.numa_node = NUMA_NO_NODE;
3435 	INIT_LIST_HEAD(&ctrl->ctrl_list);
3436 	ctrl->lport = lport;
3437 	ctrl->rport = rport;
3438 	ctrl->dev = lport->dev;
3439 	ctrl->cnum = idx;
3440 	ctrl->ioq_live = false;
3441 	atomic_set(&ctrl->err_work_active, 0);
3442 	init_waitqueue_head(&ctrl->ioabort_wait);
3443 
3444 	get_device(ctrl->dev);
3445 	kref_init(&ctrl->ref);
3446 
3447 	INIT_WORK(&ctrl->ctrl.reset_work, nvme_fc_reset_ctrl_work);
3448 	INIT_DELAYED_WORK(&ctrl->connect_work, nvme_fc_connect_ctrl_work);
3449 	INIT_WORK(&ctrl->err_work, nvme_fc_connect_err_work);
3450 	spin_lock_init(&ctrl->lock);
3451 
3452 	/* io queue count */
3453 	ctrl->ctrl.queue_count = min_t(unsigned int,
3454 				opts->nr_io_queues,
3455 				lport->ops->max_hw_queues);
3456 	ctrl->ctrl.queue_count++;	/* +1 for admin queue */
3457 
3458 	ctrl->ctrl.sqsize = opts->queue_size - 1;
3459 	ctrl->ctrl.kato = opts->kato;
3460 	ctrl->ctrl.cntlid = 0xffff;
3461 
3462 	ret = -ENOMEM;
3463 	ctrl->queues = kcalloc(ctrl->ctrl.queue_count,
3464 				sizeof(struct nvme_fc_queue), GFP_KERNEL);
3465 	if (!ctrl->queues)
3466 		goto out_free_ida;
3467 
3468 	nvme_fc_init_queue(ctrl, 0);
3469 
3470 	memset(&ctrl->admin_tag_set, 0, sizeof(ctrl->admin_tag_set));
3471 	ctrl->admin_tag_set.ops = &nvme_fc_admin_mq_ops;
3472 	ctrl->admin_tag_set.queue_depth = NVME_AQ_MQ_TAG_DEPTH;
3473 	ctrl->admin_tag_set.reserved_tags = 2; /* fabric connect + Keep-Alive */
3474 	ctrl->admin_tag_set.numa_node = ctrl->ctrl.numa_node;
3475 	ctrl->admin_tag_set.cmd_size =
3476 		struct_size((struct nvme_fcp_op_w_sgl *)NULL, priv,
3477 			    ctrl->lport->ops->fcprqst_priv_sz);
3478 	ctrl->admin_tag_set.driver_data = ctrl;
3479 	ctrl->admin_tag_set.nr_hw_queues = 1;
3480 	ctrl->admin_tag_set.timeout = ADMIN_TIMEOUT;
3481 	ctrl->admin_tag_set.flags = BLK_MQ_F_NO_SCHED;
3482 
3483 	ret = blk_mq_alloc_tag_set(&ctrl->admin_tag_set);
3484 	if (ret)
3485 		goto out_free_queues;
3486 	ctrl->ctrl.admin_tagset = &ctrl->admin_tag_set;
3487 
3488 	ctrl->ctrl.fabrics_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3489 	if (IS_ERR(ctrl->ctrl.fabrics_q)) {
3490 		ret = PTR_ERR(ctrl->ctrl.fabrics_q);
3491 		goto out_free_admin_tag_set;
3492 	}
3493 
3494 	ctrl->ctrl.admin_q = blk_mq_init_queue(&ctrl->admin_tag_set);
3495 	if (IS_ERR(ctrl->ctrl.admin_q)) {
3496 		ret = PTR_ERR(ctrl->ctrl.admin_q);
3497 		goto out_cleanup_fabrics_q;
3498 	}
3499 
3500 	/*
3501 	 * Would have been nice to init io queues tag set as well.
3502 	 * However, we require interaction from the controller
3503 	 * for max io queue count before we can do so.
3504 	 * Defer this to the connect path.
3505 	 */
3506 
3507 	ret = nvme_init_ctrl(&ctrl->ctrl, dev, &nvme_fc_ctrl_ops, 0);
3508 	if (ret)
3509 		goto out_cleanup_admin_q;
3510 
3511 	/* at this point, teardown path changes to ref counting on nvme ctrl */
3512 
3513 	spin_lock_irqsave(&rport->lock, flags);
3514 	list_add_tail(&ctrl->ctrl_list, &rport->ctrl_list);
3515 	spin_unlock_irqrestore(&rport->lock, flags);
3516 
3517 	if (!nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_RESETTING) ||
3518 	    !nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_CONNECTING)) {
3519 		dev_err(ctrl->ctrl.device,
3520 			"NVME-FC{%d}: failed to init ctrl state\n", ctrl->cnum);
3521 		goto fail_ctrl;
3522 	}
3523 
3524 	if (!queue_delayed_work(nvme_wq, &ctrl->connect_work, 0)) {
3525 		dev_err(ctrl->ctrl.device,
3526 			"NVME-FC{%d}: failed to schedule initial connect\n",
3527 			ctrl->cnum);
3528 		goto fail_ctrl;
3529 	}
3530 
3531 	flush_delayed_work(&ctrl->connect_work);
3532 
3533 	dev_info(ctrl->ctrl.device,
3534 		"NVME-FC{%d}: new ctrl: NQN \"%s\"\n",
3535 		ctrl->cnum, ctrl->ctrl.opts->subsysnqn);
3536 
3537 	return &ctrl->ctrl;
3538 
3539 fail_ctrl:
3540 	nvme_change_ctrl_state(&ctrl->ctrl, NVME_CTRL_DELETING);
3541 	cancel_work_sync(&ctrl->ctrl.reset_work);
3542 	cancel_work_sync(&ctrl->err_work);
3543 	cancel_delayed_work_sync(&ctrl->connect_work);
3544 
3545 	ctrl->ctrl.opts = NULL;
3546 
3547 	/* initiate nvme ctrl ref counting teardown */
3548 	nvme_uninit_ctrl(&ctrl->ctrl);
3549 
3550 	/* Remove core ctrl ref. */
3551 	nvme_put_ctrl(&ctrl->ctrl);
3552 
3553 	/* as we're past the point where we transition to the ref
3554 	 * counting teardown path, if we return a bad pointer here,
3555 	 * the calling routine, thinking it's prior to the
3556 	 * transition, will do an rport put. Since the teardown
3557 	 * path also does a rport put, we do an extra get here to
3558 	 * so proper order/teardown happens.
3559 	 */
3560 	nvme_fc_rport_get(rport);
3561 
3562 	return ERR_PTR(-EIO);
3563 
3564 out_cleanup_admin_q:
3565 	blk_cleanup_queue(ctrl->ctrl.admin_q);
3566 out_cleanup_fabrics_q:
3567 	blk_cleanup_queue(ctrl->ctrl.fabrics_q);
3568 out_free_admin_tag_set:
3569 	blk_mq_free_tag_set(&ctrl->admin_tag_set);
3570 out_free_queues:
3571 	kfree(ctrl->queues);
3572 out_free_ida:
3573 	put_device(ctrl->dev);
3574 	ida_simple_remove(&nvme_fc_ctrl_cnt, ctrl->cnum);
3575 out_free_ctrl:
3576 	kfree(ctrl);
3577 out_fail:
3578 	/* exit via here doesn't follow ctlr ref points */
3579 	return ERR_PTR(ret);
3580 }
3581 
3582 
3583 struct nvmet_fc_traddr {
3584 	u64	nn;
3585 	u64	pn;
3586 };
3587 
3588 static int
3589 __nvme_fc_parse_u64(substring_t *sstr, u64 *val)
3590 {
3591 	u64 token64;
3592 
3593 	if (match_u64(sstr, &token64))
3594 		return -EINVAL;
3595 	*val = token64;
3596 
3597 	return 0;
3598 }
3599 
3600 /*
3601  * This routine validates and extracts the WWN's from the TRADDR string.
3602  * As kernel parsers need the 0x to determine number base, universally
3603  * build string to parse with 0x prefix before parsing name strings.
3604  */
3605 static int
3606 nvme_fc_parse_traddr(struct nvmet_fc_traddr *traddr, char *buf, size_t blen)
3607 {
3608 	char name[2 + NVME_FC_TRADDR_HEXNAMELEN + 1];
3609 	substring_t wwn = { name, &name[sizeof(name)-1] };
3610 	int nnoffset, pnoffset;
3611 
3612 	/* validate if string is one of the 2 allowed formats */
3613 	if (strnlen(buf, blen) == NVME_FC_TRADDR_MAXLENGTH &&
3614 			!strncmp(buf, "nn-0x", NVME_FC_TRADDR_OXNNLEN) &&
3615 			!strncmp(&buf[NVME_FC_TRADDR_MAX_PN_OFFSET],
3616 				"pn-0x", NVME_FC_TRADDR_OXNNLEN)) {
3617 		nnoffset = NVME_FC_TRADDR_OXNNLEN;
3618 		pnoffset = NVME_FC_TRADDR_MAX_PN_OFFSET +
3619 						NVME_FC_TRADDR_OXNNLEN;
3620 	} else if ((strnlen(buf, blen) == NVME_FC_TRADDR_MINLENGTH &&
3621 			!strncmp(buf, "nn-", NVME_FC_TRADDR_NNLEN) &&
3622 			!strncmp(&buf[NVME_FC_TRADDR_MIN_PN_OFFSET],
3623 				"pn-", NVME_FC_TRADDR_NNLEN))) {
3624 		nnoffset = NVME_FC_TRADDR_NNLEN;
3625 		pnoffset = NVME_FC_TRADDR_MIN_PN_OFFSET + NVME_FC_TRADDR_NNLEN;
3626 	} else
3627 		goto out_einval;
3628 
3629 	name[0] = '0';
3630 	name[1] = 'x';
3631 	name[2 + NVME_FC_TRADDR_HEXNAMELEN] = 0;
3632 
3633 	memcpy(&name[2], &buf[nnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3634 	if (__nvme_fc_parse_u64(&wwn, &traddr->nn))
3635 		goto out_einval;
3636 
3637 	memcpy(&name[2], &buf[pnoffset], NVME_FC_TRADDR_HEXNAMELEN);
3638 	if (__nvme_fc_parse_u64(&wwn, &traddr->pn))
3639 		goto out_einval;
3640 
3641 	return 0;
3642 
3643 out_einval:
3644 	pr_warn("%s: bad traddr string\n", __func__);
3645 	return -EINVAL;
3646 }
3647 
3648 static struct nvme_ctrl *
3649 nvme_fc_create_ctrl(struct device *dev, struct nvmf_ctrl_options *opts)
3650 {
3651 	struct nvme_fc_lport *lport;
3652 	struct nvme_fc_rport *rport;
3653 	struct nvme_ctrl *ctrl;
3654 	struct nvmet_fc_traddr laddr = { 0L, 0L };
3655 	struct nvmet_fc_traddr raddr = { 0L, 0L };
3656 	unsigned long flags;
3657 	int ret;
3658 
3659 	ret = nvme_fc_parse_traddr(&raddr, opts->traddr, NVMF_TRADDR_SIZE);
3660 	if (ret || !raddr.nn || !raddr.pn)
3661 		return ERR_PTR(-EINVAL);
3662 
3663 	ret = nvme_fc_parse_traddr(&laddr, opts->host_traddr, NVMF_TRADDR_SIZE);
3664 	if (ret || !laddr.nn || !laddr.pn)
3665 		return ERR_PTR(-EINVAL);
3666 
3667 	/* find the host and remote ports to connect together */
3668 	spin_lock_irqsave(&nvme_fc_lock, flags);
3669 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3670 		if (lport->localport.node_name != laddr.nn ||
3671 		    lport->localport.port_name != laddr.pn)
3672 			continue;
3673 
3674 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3675 			if (rport->remoteport.node_name != raddr.nn ||
3676 			    rport->remoteport.port_name != raddr.pn)
3677 				continue;
3678 
3679 			/* if fail to get reference fall through. Will error */
3680 			if (!nvme_fc_rport_get(rport))
3681 				break;
3682 
3683 			spin_unlock_irqrestore(&nvme_fc_lock, flags);
3684 
3685 			ctrl = nvme_fc_init_ctrl(dev, opts, lport, rport);
3686 			if (IS_ERR(ctrl))
3687 				nvme_fc_rport_put(rport);
3688 			return ctrl;
3689 		}
3690 	}
3691 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3692 
3693 	pr_warn("%s: %s - %s combination not found\n",
3694 		__func__, opts->traddr, opts->host_traddr);
3695 	return ERR_PTR(-ENOENT);
3696 }
3697 
3698 
3699 static struct nvmf_transport_ops nvme_fc_transport = {
3700 	.name		= "fc",
3701 	.module		= THIS_MODULE,
3702 	.required_opts	= NVMF_OPT_TRADDR | NVMF_OPT_HOST_TRADDR,
3703 	.allowed_opts	= NVMF_OPT_RECONNECT_DELAY | NVMF_OPT_CTRL_LOSS_TMO,
3704 	.create_ctrl	= nvme_fc_create_ctrl,
3705 };
3706 
3707 /* Arbitrary successive failures max. With lots of subsystems could be high */
3708 #define DISCOVERY_MAX_FAIL	20
3709 
3710 static ssize_t nvme_fc_nvme_discovery_store(struct device *dev,
3711 		struct device_attribute *attr, const char *buf, size_t count)
3712 {
3713 	unsigned long flags;
3714 	LIST_HEAD(local_disc_list);
3715 	struct nvme_fc_lport *lport;
3716 	struct nvme_fc_rport *rport;
3717 	int failcnt = 0;
3718 
3719 	spin_lock_irqsave(&nvme_fc_lock, flags);
3720 restart:
3721 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3722 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3723 			if (!nvme_fc_lport_get(lport))
3724 				continue;
3725 			if (!nvme_fc_rport_get(rport)) {
3726 				/*
3727 				 * This is a temporary condition. Upon restart
3728 				 * this rport will be gone from the list.
3729 				 *
3730 				 * Revert the lport put and retry.  Anything
3731 				 * added to the list already will be skipped (as
3732 				 * they are no longer list_empty).  Loops should
3733 				 * resume at rports that were not yet seen.
3734 				 */
3735 				nvme_fc_lport_put(lport);
3736 
3737 				if (failcnt++ < DISCOVERY_MAX_FAIL)
3738 					goto restart;
3739 
3740 				pr_err("nvme_discovery: too many reference "
3741 				       "failures\n");
3742 				goto process_local_list;
3743 			}
3744 			if (list_empty(&rport->disc_list))
3745 				list_add_tail(&rport->disc_list,
3746 					      &local_disc_list);
3747 		}
3748 	}
3749 
3750 process_local_list:
3751 	while (!list_empty(&local_disc_list)) {
3752 		rport = list_first_entry(&local_disc_list,
3753 					 struct nvme_fc_rport, disc_list);
3754 		list_del_init(&rport->disc_list);
3755 		spin_unlock_irqrestore(&nvme_fc_lock, flags);
3756 
3757 		lport = rport->lport;
3758 		/* signal discovery. Won't hurt if it repeats */
3759 		nvme_fc_signal_discovery_scan(lport, rport);
3760 		nvme_fc_rport_put(rport);
3761 		nvme_fc_lport_put(lport);
3762 
3763 		spin_lock_irqsave(&nvme_fc_lock, flags);
3764 	}
3765 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3766 
3767 	return count;
3768 }
3769 static DEVICE_ATTR(nvme_discovery, 0200, NULL, nvme_fc_nvme_discovery_store);
3770 
3771 static struct attribute *nvme_fc_attrs[] = {
3772 	&dev_attr_nvme_discovery.attr,
3773 	NULL
3774 };
3775 
3776 static struct attribute_group nvme_fc_attr_group = {
3777 	.attrs = nvme_fc_attrs,
3778 };
3779 
3780 static const struct attribute_group *nvme_fc_attr_groups[] = {
3781 	&nvme_fc_attr_group,
3782 	NULL
3783 };
3784 
3785 static struct class fc_class = {
3786 	.name = "fc",
3787 	.dev_groups = nvme_fc_attr_groups,
3788 	.owner = THIS_MODULE,
3789 };
3790 
3791 static int __init nvme_fc_init_module(void)
3792 {
3793 	int ret;
3794 
3795 	nvme_fc_wq = alloc_workqueue("nvme_fc_wq", WQ_MEM_RECLAIM, 0);
3796 	if (!nvme_fc_wq)
3797 		return -ENOMEM;
3798 
3799 	/*
3800 	 * NOTE:
3801 	 * It is expected that in the future the kernel will combine
3802 	 * the FC-isms that are currently under scsi and now being
3803 	 * added to by NVME into a new standalone FC class. The SCSI
3804 	 * and NVME protocols and their devices would be under this
3805 	 * new FC class.
3806 	 *
3807 	 * As we need something to post FC-specific udev events to,
3808 	 * specifically for nvme probe events, start by creating the
3809 	 * new device class.  When the new standalone FC class is
3810 	 * put in place, this code will move to a more generic
3811 	 * location for the class.
3812 	 */
3813 	ret = class_register(&fc_class);
3814 	if (ret) {
3815 		pr_err("couldn't register class fc\n");
3816 		goto out_destroy_wq;
3817 	}
3818 
3819 	/*
3820 	 * Create a device for the FC-centric udev events
3821 	 */
3822 	fc_udev_device = device_create(&fc_class, NULL, MKDEV(0, 0), NULL,
3823 				"fc_udev_device");
3824 	if (IS_ERR(fc_udev_device)) {
3825 		pr_err("couldn't create fc_udev device!\n");
3826 		ret = PTR_ERR(fc_udev_device);
3827 		goto out_destroy_class;
3828 	}
3829 
3830 	ret = nvmf_register_transport(&nvme_fc_transport);
3831 	if (ret)
3832 		goto out_destroy_device;
3833 
3834 	return 0;
3835 
3836 out_destroy_device:
3837 	device_destroy(&fc_class, MKDEV(0, 0));
3838 out_destroy_class:
3839 	class_unregister(&fc_class);
3840 out_destroy_wq:
3841 	destroy_workqueue(nvme_fc_wq);
3842 
3843 	return ret;
3844 }
3845 
3846 static void
3847 nvme_fc_delete_controllers(struct nvme_fc_rport *rport)
3848 {
3849 	struct nvme_fc_ctrl *ctrl;
3850 
3851 	spin_lock(&rport->lock);
3852 	list_for_each_entry(ctrl, &rport->ctrl_list, ctrl_list) {
3853 		dev_warn(ctrl->ctrl.device,
3854 			"NVME-FC{%d}: transport unloading: deleting ctrl\n",
3855 			ctrl->cnum);
3856 		nvme_delete_ctrl(&ctrl->ctrl);
3857 	}
3858 	spin_unlock(&rport->lock);
3859 }
3860 
3861 static void
3862 nvme_fc_cleanup_for_unload(void)
3863 {
3864 	struct nvme_fc_lport *lport;
3865 	struct nvme_fc_rport *rport;
3866 
3867 	list_for_each_entry(lport, &nvme_fc_lport_list, port_list) {
3868 		list_for_each_entry(rport, &lport->endp_list, endp_list) {
3869 			nvme_fc_delete_controllers(rport);
3870 		}
3871 	}
3872 }
3873 
3874 static void __exit nvme_fc_exit_module(void)
3875 {
3876 	unsigned long flags;
3877 	bool need_cleanup = false;
3878 
3879 	spin_lock_irqsave(&nvme_fc_lock, flags);
3880 	nvme_fc_waiting_to_unload = true;
3881 	if (!list_empty(&nvme_fc_lport_list)) {
3882 		need_cleanup = true;
3883 		nvme_fc_cleanup_for_unload();
3884 	}
3885 	spin_unlock_irqrestore(&nvme_fc_lock, flags);
3886 	if (need_cleanup) {
3887 		pr_info("%s: waiting for ctlr deletes\n", __func__);
3888 		wait_for_completion(&nvme_fc_unload_proceed);
3889 		pr_info("%s: ctrl deletes complete\n", __func__);
3890 	}
3891 
3892 	nvmf_unregister_transport(&nvme_fc_transport);
3893 
3894 	ida_destroy(&nvme_fc_local_port_cnt);
3895 	ida_destroy(&nvme_fc_ctrl_cnt);
3896 
3897 	device_destroy(&fc_class, MKDEV(0, 0));
3898 	class_unregister(&fc_class);
3899 	destroy_workqueue(nvme_fc_wq);
3900 }
3901 
3902 module_init(nvme_fc_init_module);
3903 module_exit(nvme_fc_exit_module);
3904 
3905 MODULE_LICENSE("GPL v2");
3906