xref: /linux/drivers/net/wireless/ralink/rt2x00/rt2x00queue.c (revision fbc872c38c8fed31948c85683b5326ee5ab9fccc)
1 /*
2 	Copyright (C) 2010 Willow Garage <http://www.willowgarage.com>
3 	Copyright (C) 2004 - 2010 Ivo van Doorn <IvDoorn@gmail.com>
4 	Copyright (C) 2004 - 2009 Gertjan van Wingerde <gwingerde@gmail.com>
5 	<http://rt2x00.serialmonkey.com>
6 
7 	This program is free software; you can redistribute it and/or modify
8 	it under the terms of the GNU General Public License as published by
9 	the Free Software Foundation; either version 2 of the License, or
10 	(at your option) any later version.
11 
12 	This program is distributed in the hope that it will be useful,
13 	but WITHOUT ANY WARRANTY; without even the implied warranty of
14 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 	GNU General Public License for more details.
16 
17 	You should have received a copy of the GNU General Public License
18 	along with this program; if not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 /*
22 	Module: rt2x00lib
23 	Abstract: rt2x00 queue specific routines.
24  */
25 
26 #include <linux/slab.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/dma-mapping.h>
30 
31 #include "rt2x00.h"
32 #include "rt2x00lib.h"
33 
34 struct sk_buff *rt2x00queue_alloc_rxskb(struct queue_entry *entry, gfp_t gfp)
35 {
36 	struct data_queue *queue = entry->queue;
37 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
38 	struct sk_buff *skb;
39 	struct skb_frame_desc *skbdesc;
40 	unsigned int frame_size;
41 	unsigned int head_size = 0;
42 	unsigned int tail_size = 0;
43 
44 	/*
45 	 * The frame size includes descriptor size, because the
46 	 * hardware directly receive the frame into the skbuffer.
47 	 */
48 	frame_size = queue->data_size + queue->desc_size + queue->winfo_size;
49 
50 	/*
51 	 * The payload should be aligned to a 4-byte boundary,
52 	 * this means we need at least 3 bytes for moving the frame
53 	 * into the correct offset.
54 	 */
55 	head_size = 4;
56 
57 	/*
58 	 * For IV/EIV/ICV assembly we must make sure there is
59 	 * at least 8 bytes bytes available in headroom for IV/EIV
60 	 * and 8 bytes for ICV data as tailroon.
61 	 */
62 	if (rt2x00_has_cap_hw_crypto(rt2x00dev)) {
63 		head_size += 8;
64 		tail_size += 8;
65 	}
66 
67 	/*
68 	 * Allocate skbuffer.
69 	 */
70 	skb = __dev_alloc_skb(frame_size + head_size + tail_size, gfp);
71 	if (!skb)
72 		return NULL;
73 
74 	/*
75 	 * Make sure we not have a frame with the requested bytes
76 	 * available in the head and tail.
77 	 */
78 	skb_reserve(skb, head_size);
79 	skb_put(skb, frame_size);
80 
81 	/*
82 	 * Populate skbdesc.
83 	 */
84 	skbdesc = get_skb_frame_desc(skb);
85 	memset(skbdesc, 0, sizeof(*skbdesc));
86 	skbdesc->entry = entry;
87 
88 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA)) {
89 		dma_addr_t skb_dma;
90 
91 		skb_dma = dma_map_single(rt2x00dev->dev, skb->data, skb->len,
92 					 DMA_FROM_DEVICE);
93 		if (unlikely(dma_mapping_error(rt2x00dev->dev, skb_dma))) {
94 			dev_kfree_skb_any(skb);
95 			return NULL;
96 		}
97 
98 		skbdesc->skb_dma = skb_dma;
99 		skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
100 	}
101 
102 	return skb;
103 }
104 
105 int rt2x00queue_map_txskb(struct queue_entry *entry)
106 {
107 	struct device *dev = entry->queue->rt2x00dev->dev;
108 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
109 
110 	skbdesc->skb_dma =
111 	    dma_map_single(dev, entry->skb->data, entry->skb->len, DMA_TO_DEVICE);
112 
113 	if (unlikely(dma_mapping_error(dev, skbdesc->skb_dma)))
114 		return -ENOMEM;
115 
116 	skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
117 	return 0;
118 }
119 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
120 
121 void rt2x00queue_unmap_skb(struct queue_entry *entry)
122 {
123 	struct device *dev = entry->queue->rt2x00dev->dev;
124 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
125 
126 	if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
127 		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
128 				 DMA_FROM_DEVICE);
129 		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
130 	} else if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
131 		dma_unmap_single(dev, skbdesc->skb_dma, entry->skb->len,
132 				 DMA_TO_DEVICE);
133 		skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
134 	}
135 }
136 EXPORT_SYMBOL_GPL(rt2x00queue_unmap_skb);
137 
138 void rt2x00queue_free_skb(struct queue_entry *entry)
139 {
140 	if (!entry->skb)
141 		return;
142 
143 	rt2x00queue_unmap_skb(entry);
144 	dev_kfree_skb_any(entry->skb);
145 	entry->skb = NULL;
146 }
147 
148 void rt2x00queue_align_frame(struct sk_buff *skb)
149 {
150 	unsigned int frame_length = skb->len;
151 	unsigned int align = ALIGN_SIZE(skb, 0);
152 
153 	if (!align)
154 		return;
155 
156 	skb_push(skb, align);
157 	memmove(skb->data, skb->data + align, frame_length);
158 	skb_trim(skb, frame_length);
159 }
160 
161 /*
162  * H/W needs L2 padding between the header and the paylod if header size
163  * is not 4 bytes aligned.
164  */
165 void rt2x00queue_insert_l2pad(struct sk_buff *skb, unsigned int hdr_len)
166 {
167 	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
168 
169 	if (!l2pad)
170 		return;
171 
172 	skb_push(skb, l2pad);
173 	memmove(skb->data, skb->data + l2pad, hdr_len);
174 }
175 
176 void rt2x00queue_remove_l2pad(struct sk_buff *skb, unsigned int hdr_len)
177 {
178 	unsigned int l2pad = (skb->len > hdr_len) ? L2PAD_SIZE(hdr_len) : 0;
179 
180 	if (!l2pad)
181 		return;
182 
183 	memmove(skb->data + l2pad, skb->data, hdr_len);
184 	skb_pull(skb, l2pad);
185 }
186 
187 static void rt2x00queue_create_tx_descriptor_seq(struct rt2x00_dev *rt2x00dev,
188 						 struct sk_buff *skb,
189 						 struct txentry_desc *txdesc)
190 {
191 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
192 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
193 	struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
194 	u16 seqno;
195 
196 	if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
197 		return;
198 
199 	__set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
200 
201 	if (!rt2x00_has_cap_flag(rt2x00dev, REQUIRE_SW_SEQNO)) {
202 		/*
203 		 * rt2800 has a H/W (or F/W) bug, device incorrectly increase
204 		 * seqno on retransmited data (non-QOS) frames. To workaround
205 		 * the problem let's generate seqno in software if QOS is
206 		 * disabled.
207 		 */
208 		if (test_bit(CONFIG_QOS_DISABLED, &rt2x00dev->flags))
209 			__clear_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
210 		else
211 			/* H/W will generate sequence number */
212 			return;
213 	}
214 
215 	/*
216 	 * The hardware is not able to insert a sequence number. Assign a
217 	 * software generated one here.
218 	 *
219 	 * This is wrong because beacons are not getting sequence
220 	 * numbers assigned properly.
221 	 *
222 	 * A secondary problem exists for drivers that cannot toggle
223 	 * sequence counting per-frame, since those will override the
224 	 * sequence counter given by mac80211.
225 	 */
226 	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
227 		seqno = atomic_add_return(0x10, &intf->seqno);
228 	else
229 		seqno = atomic_read(&intf->seqno);
230 
231 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
232 	hdr->seq_ctrl |= cpu_to_le16(seqno);
233 }
234 
235 static void rt2x00queue_create_tx_descriptor_plcp(struct rt2x00_dev *rt2x00dev,
236 						  struct sk_buff *skb,
237 						  struct txentry_desc *txdesc,
238 						  const struct rt2x00_rate *hwrate)
239 {
240 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
241 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
242 	unsigned int data_length;
243 	unsigned int duration;
244 	unsigned int residual;
245 
246 	/*
247 	 * Determine with what IFS priority this frame should be send.
248 	 * Set ifs to IFS_SIFS when the this is not the first fragment,
249 	 * or this fragment came after RTS/CTS.
250 	 */
251 	if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
252 		txdesc->u.plcp.ifs = IFS_BACKOFF;
253 	else
254 		txdesc->u.plcp.ifs = IFS_SIFS;
255 
256 	/* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
257 	data_length = skb->len + 4;
258 	data_length += rt2x00crypto_tx_overhead(rt2x00dev, skb);
259 
260 	/*
261 	 * PLCP setup
262 	 * Length calculation depends on OFDM/CCK rate.
263 	 */
264 	txdesc->u.plcp.signal = hwrate->plcp;
265 	txdesc->u.plcp.service = 0x04;
266 
267 	if (hwrate->flags & DEV_RATE_OFDM) {
268 		txdesc->u.plcp.length_high = (data_length >> 6) & 0x3f;
269 		txdesc->u.plcp.length_low = data_length & 0x3f;
270 	} else {
271 		/*
272 		 * Convert length to microseconds.
273 		 */
274 		residual = GET_DURATION_RES(data_length, hwrate->bitrate);
275 		duration = GET_DURATION(data_length, hwrate->bitrate);
276 
277 		if (residual != 0) {
278 			duration++;
279 
280 			/*
281 			 * Check if we need to set the Length Extension
282 			 */
283 			if (hwrate->bitrate == 110 && residual <= 30)
284 				txdesc->u.plcp.service |= 0x80;
285 		}
286 
287 		txdesc->u.plcp.length_high = (duration >> 8) & 0xff;
288 		txdesc->u.plcp.length_low = duration & 0xff;
289 
290 		/*
291 		 * When preamble is enabled we should set the
292 		 * preamble bit for the signal.
293 		 */
294 		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
295 			txdesc->u.plcp.signal |= 0x08;
296 	}
297 }
298 
299 static void rt2x00queue_create_tx_descriptor_ht(struct rt2x00_dev *rt2x00dev,
300 						struct sk_buff *skb,
301 						struct txentry_desc *txdesc,
302 						struct ieee80211_sta *sta,
303 						const struct rt2x00_rate *hwrate)
304 {
305 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
306 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
307 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
308 	struct rt2x00_sta *sta_priv = NULL;
309 
310 	if (sta) {
311 		txdesc->u.ht.mpdu_density =
312 		    sta->ht_cap.ampdu_density;
313 
314 		sta_priv = sta_to_rt2x00_sta(sta);
315 		txdesc->u.ht.wcid = sta_priv->wcid;
316 	}
317 
318 	/*
319 	 * If IEEE80211_TX_RC_MCS is set txrate->idx just contains the
320 	 * mcs rate to be used
321 	 */
322 	if (txrate->flags & IEEE80211_TX_RC_MCS) {
323 		txdesc->u.ht.mcs = txrate->idx;
324 
325 		/*
326 		 * MIMO PS should be set to 1 for STA's using dynamic SM PS
327 		 * when using more then one tx stream (>MCS7).
328 		 */
329 		if (sta && txdesc->u.ht.mcs > 7 &&
330 		    sta->smps_mode == IEEE80211_SMPS_DYNAMIC)
331 			__set_bit(ENTRY_TXD_HT_MIMO_PS, &txdesc->flags);
332 	} else {
333 		txdesc->u.ht.mcs = rt2x00_get_rate_mcs(hwrate->mcs);
334 		if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
335 			txdesc->u.ht.mcs |= 0x08;
336 	}
337 
338 	if (test_bit(CONFIG_HT_DISABLED, &rt2x00dev->flags)) {
339 		if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
340 			txdesc->u.ht.txop = TXOP_SIFS;
341 		else
342 			txdesc->u.ht.txop = TXOP_BACKOFF;
343 
344 		/* Left zero on all other settings. */
345 		return;
346 	}
347 
348 	txdesc->u.ht.ba_size = 7;	/* FIXME: What value is needed? */
349 
350 	/*
351 	 * Only one STBC stream is supported for now.
352 	 */
353 	if (tx_info->flags & IEEE80211_TX_CTL_STBC)
354 		txdesc->u.ht.stbc = 1;
355 
356 	/*
357 	 * This frame is eligible for an AMPDU, however, don't aggregate
358 	 * frames that are intended to probe a specific tx rate.
359 	 */
360 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU &&
361 	    !(tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
362 		__set_bit(ENTRY_TXD_HT_AMPDU, &txdesc->flags);
363 
364 	/*
365 	 * Set 40Mhz mode if necessary (for legacy rates this will
366 	 * duplicate the frame to both channels).
367 	 */
368 	if (txrate->flags & IEEE80211_TX_RC_40_MHZ_WIDTH ||
369 	    txrate->flags & IEEE80211_TX_RC_DUP_DATA)
370 		__set_bit(ENTRY_TXD_HT_BW_40, &txdesc->flags);
371 	if (txrate->flags & IEEE80211_TX_RC_SHORT_GI)
372 		__set_bit(ENTRY_TXD_HT_SHORT_GI, &txdesc->flags);
373 
374 	/*
375 	 * Determine IFS values
376 	 * - Use TXOP_BACKOFF for management frames except beacons
377 	 * - Use TXOP_SIFS for fragment bursts
378 	 * - Use TXOP_HTTXOP for everything else
379 	 *
380 	 * Note: rt2800 devices won't use CTS protection (if used)
381 	 * for frames not transmitted with TXOP_HTTXOP
382 	 */
383 	if (ieee80211_is_mgmt(hdr->frame_control) &&
384 	    !ieee80211_is_beacon(hdr->frame_control))
385 		txdesc->u.ht.txop = TXOP_BACKOFF;
386 	else if (!(tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT))
387 		txdesc->u.ht.txop = TXOP_SIFS;
388 	else
389 		txdesc->u.ht.txop = TXOP_HTTXOP;
390 }
391 
392 static void rt2x00queue_create_tx_descriptor(struct rt2x00_dev *rt2x00dev,
393 					     struct sk_buff *skb,
394 					     struct txentry_desc *txdesc,
395 					     struct ieee80211_sta *sta)
396 {
397 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
398 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
399 	struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
400 	struct ieee80211_rate *rate;
401 	const struct rt2x00_rate *hwrate = NULL;
402 
403 	memset(txdesc, 0, sizeof(*txdesc));
404 
405 	/*
406 	 * Header and frame information.
407 	 */
408 	txdesc->length = skb->len;
409 	txdesc->header_length = ieee80211_get_hdrlen_from_skb(skb);
410 
411 	/*
412 	 * Check whether this frame is to be acked.
413 	 */
414 	if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
415 		__set_bit(ENTRY_TXD_ACK, &txdesc->flags);
416 
417 	/*
418 	 * Check if this is a RTS/CTS frame
419 	 */
420 	if (ieee80211_is_rts(hdr->frame_control) ||
421 	    ieee80211_is_cts(hdr->frame_control)) {
422 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
423 		if (ieee80211_is_rts(hdr->frame_control))
424 			__set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
425 		else
426 			__set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
427 		if (tx_info->control.rts_cts_rate_idx >= 0)
428 			rate =
429 			    ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
430 	}
431 
432 	/*
433 	 * Determine retry information.
434 	 */
435 	txdesc->retry_limit = tx_info->control.rates[0].count - 1;
436 	if (txdesc->retry_limit >= rt2x00dev->long_retry)
437 		__set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
438 
439 	/*
440 	 * Check if more fragments are pending
441 	 */
442 	if (ieee80211_has_morefrags(hdr->frame_control)) {
443 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
444 		__set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
445 	}
446 
447 	/*
448 	 * Check if more frames (!= fragments) are pending
449 	 */
450 	if (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)
451 		__set_bit(ENTRY_TXD_BURST, &txdesc->flags);
452 
453 	/*
454 	 * Beacons and probe responses require the tsf timestamp
455 	 * to be inserted into the frame.
456 	 */
457 	if (ieee80211_is_beacon(hdr->frame_control) ||
458 	    ieee80211_is_probe_resp(hdr->frame_control))
459 		__set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
460 
461 	if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
462 	    !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags))
463 		__set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
464 
465 	/*
466 	 * Determine rate modulation.
467 	 */
468 	if (txrate->flags & IEEE80211_TX_RC_GREEN_FIELD)
469 		txdesc->rate_mode = RATE_MODE_HT_GREENFIELD;
470 	else if (txrate->flags & IEEE80211_TX_RC_MCS)
471 		txdesc->rate_mode = RATE_MODE_HT_MIX;
472 	else {
473 		rate = ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
474 		hwrate = rt2x00_get_rate(rate->hw_value);
475 		if (hwrate->flags & DEV_RATE_OFDM)
476 			txdesc->rate_mode = RATE_MODE_OFDM;
477 		else
478 			txdesc->rate_mode = RATE_MODE_CCK;
479 	}
480 
481 	/*
482 	 * Apply TX descriptor handling by components
483 	 */
484 	rt2x00crypto_create_tx_descriptor(rt2x00dev, skb, txdesc);
485 	rt2x00queue_create_tx_descriptor_seq(rt2x00dev, skb, txdesc);
486 
487 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_HT_TX_DESC))
488 		rt2x00queue_create_tx_descriptor_ht(rt2x00dev, skb, txdesc,
489 						   sta, hwrate);
490 	else
491 		rt2x00queue_create_tx_descriptor_plcp(rt2x00dev, skb, txdesc,
492 						      hwrate);
493 }
494 
495 static int rt2x00queue_write_tx_data(struct queue_entry *entry,
496 				     struct txentry_desc *txdesc)
497 {
498 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
499 
500 	/*
501 	 * This should not happen, we already checked the entry
502 	 * was ours. When the hardware disagrees there has been
503 	 * a queue corruption!
504 	 */
505 	if (unlikely(rt2x00dev->ops->lib->get_entry_state &&
506 		     rt2x00dev->ops->lib->get_entry_state(entry))) {
507 		rt2x00_err(rt2x00dev,
508 			   "Corrupt queue %d, accessing entry which is not ours\n"
509 			   "Please file bug report to %s\n",
510 			   entry->queue->qid, DRV_PROJECT);
511 		return -EINVAL;
512 	}
513 
514 	/*
515 	 * Add the requested extra tx headroom in front of the skb.
516 	 */
517 	skb_push(entry->skb, rt2x00dev->extra_tx_headroom);
518 	memset(entry->skb->data, 0, rt2x00dev->extra_tx_headroom);
519 
520 	/*
521 	 * Call the driver's write_tx_data function, if it exists.
522 	 */
523 	if (rt2x00dev->ops->lib->write_tx_data)
524 		rt2x00dev->ops->lib->write_tx_data(entry, txdesc);
525 
526 	/*
527 	 * Map the skb to DMA.
528 	 */
529 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_DMA) &&
530 	    rt2x00queue_map_txskb(entry))
531 		return -ENOMEM;
532 
533 	return 0;
534 }
535 
536 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
537 					    struct txentry_desc *txdesc)
538 {
539 	struct data_queue *queue = entry->queue;
540 
541 	queue->rt2x00dev->ops->lib->write_tx_desc(entry, txdesc);
542 
543 	/*
544 	 * All processing on the frame has been completed, this means
545 	 * it is now ready to be dumped to userspace through debugfs.
546 	 */
547 	rt2x00debug_dump_frame(queue->rt2x00dev, DUMP_FRAME_TX, entry->skb);
548 }
549 
550 static void rt2x00queue_kick_tx_queue(struct data_queue *queue,
551 				      struct txentry_desc *txdesc)
552 {
553 	/*
554 	 * Check if we need to kick the queue, there are however a few rules
555 	 *	1) Don't kick unless this is the last in frame in a burst.
556 	 *	   When the burst flag is set, this frame is always followed
557 	 *	   by another frame which in some way are related to eachother.
558 	 *	   This is true for fragments, RTS or CTS-to-self frames.
559 	 *	2) Rule 1 can be broken when the available entries
560 	 *	   in the queue are less then a certain threshold.
561 	 */
562 	if (rt2x00queue_threshold(queue) ||
563 	    !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
564 		queue->rt2x00dev->ops->lib->kick_queue(queue);
565 }
566 
567 static void rt2x00queue_bar_check(struct queue_entry *entry)
568 {
569 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
570 	struct ieee80211_bar *bar = (void *) (entry->skb->data +
571 				    rt2x00dev->extra_tx_headroom);
572 	struct rt2x00_bar_list_entry *bar_entry;
573 
574 	if (likely(!ieee80211_is_back_req(bar->frame_control)))
575 		return;
576 
577 	bar_entry = kmalloc(sizeof(*bar_entry), GFP_ATOMIC);
578 
579 	/*
580 	 * If the alloc fails we still send the BAR out but just don't track
581 	 * it in our bar list. And as a result we will report it to mac80211
582 	 * back as failed.
583 	 */
584 	if (!bar_entry)
585 		return;
586 
587 	bar_entry->entry = entry;
588 	bar_entry->block_acked = 0;
589 
590 	/*
591 	 * Copy the relevant parts of the 802.11 BAR into out check list
592 	 * such that we can use RCU for less-overhead in the RX path since
593 	 * sending BARs and processing the according BlockAck should be
594 	 * the exception.
595 	 */
596 	memcpy(bar_entry->ra, bar->ra, sizeof(bar->ra));
597 	memcpy(bar_entry->ta, bar->ta, sizeof(bar->ta));
598 	bar_entry->control = bar->control;
599 	bar_entry->start_seq_num = bar->start_seq_num;
600 
601 	/*
602 	 * Insert BAR into our BAR check list.
603 	 */
604 	spin_lock_bh(&rt2x00dev->bar_list_lock);
605 	list_add_tail_rcu(&bar_entry->list, &rt2x00dev->bar_list);
606 	spin_unlock_bh(&rt2x00dev->bar_list_lock);
607 }
608 
609 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb,
610 			       struct ieee80211_sta *sta, bool local)
611 {
612 	struct ieee80211_tx_info *tx_info;
613 	struct queue_entry *entry;
614 	struct txentry_desc txdesc;
615 	struct skb_frame_desc *skbdesc;
616 	u8 rate_idx, rate_flags;
617 	int ret = 0;
618 
619 	/*
620 	 * Copy all TX descriptor information into txdesc,
621 	 * after that we are free to use the skb->cb array
622 	 * for our information.
623 	 */
624 	rt2x00queue_create_tx_descriptor(queue->rt2x00dev, skb, &txdesc, sta);
625 
626 	/*
627 	 * All information is retrieved from the skb->cb array,
628 	 * now we should claim ownership of the driver part of that
629 	 * array, preserving the bitrate index and flags.
630 	 */
631 	tx_info = IEEE80211_SKB_CB(skb);
632 	rate_idx = tx_info->control.rates[0].idx;
633 	rate_flags = tx_info->control.rates[0].flags;
634 	skbdesc = get_skb_frame_desc(skb);
635 	memset(skbdesc, 0, sizeof(*skbdesc));
636 	skbdesc->tx_rate_idx = rate_idx;
637 	skbdesc->tx_rate_flags = rate_flags;
638 
639 	if (local)
640 		skbdesc->flags |= SKBDESC_NOT_MAC80211;
641 
642 	/*
643 	 * When hardware encryption is supported, and this frame
644 	 * is to be encrypted, we should strip the IV/EIV data from
645 	 * the frame so we can provide it to the driver separately.
646 	 */
647 	if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
648 	    !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
649 		if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_COPY_IV))
650 			rt2x00crypto_tx_copy_iv(skb, &txdesc);
651 		else
652 			rt2x00crypto_tx_remove_iv(skb, &txdesc);
653 	}
654 
655 	/*
656 	 * When DMA allocation is required we should guarantee to the
657 	 * driver that the DMA is aligned to a 4-byte boundary.
658 	 * However some drivers require L2 padding to pad the payload
659 	 * rather then the header. This could be a requirement for
660 	 * PCI and USB devices, while header alignment only is valid
661 	 * for PCI devices.
662 	 */
663 	if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_L2PAD))
664 		rt2x00queue_insert_l2pad(skb, txdesc.header_length);
665 	else if (rt2x00_has_cap_flag(queue->rt2x00dev, REQUIRE_DMA))
666 		rt2x00queue_align_frame(skb);
667 
668 	/*
669 	 * That function must be called with bh disabled.
670 	 */
671 	spin_lock(&queue->tx_lock);
672 
673 	if (unlikely(rt2x00queue_full(queue))) {
674 		rt2x00_err(queue->rt2x00dev, "Dropping frame due to full tx queue %d\n",
675 			   queue->qid);
676 		ret = -ENOBUFS;
677 		goto out;
678 	}
679 
680 	entry = rt2x00queue_get_entry(queue, Q_INDEX);
681 
682 	if (unlikely(test_and_set_bit(ENTRY_OWNER_DEVICE_DATA,
683 				      &entry->flags))) {
684 		rt2x00_err(queue->rt2x00dev,
685 			   "Arrived at non-free entry in the non-full queue %d\n"
686 			   "Please file bug report to %s\n",
687 			   queue->qid, DRV_PROJECT);
688 		ret = -EINVAL;
689 		goto out;
690 	}
691 
692 	skbdesc->entry = entry;
693 	entry->skb = skb;
694 
695 	/*
696 	 * It could be possible that the queue was corrupted and this
697 	 * call failed. Since we always return NETDEV_TX_OK to mac80211,
698 	 * this frame will simply be dropped.
699 	 */
700 	if (unlikely(rt2x00queue_write_tx_data(entry, &txdesc))) {
701 		clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
702 		entry->skb = NULL;
703 		ret = -EIO;
704 		goto out;
705 	}
706 
707 	/*
708 	 * Put BlockAckReqs into our check list for driver BA processing.
709 	 */
710 	rt2x00queue_bar_check(entry);
711 
712 	set_bit(ENTRY_DATA_PENDING, &entry->flags);
713 
714 	rt2x00queue_index_inc(entry, Q_INDEX);
715 	rt2x00queue_write_tx_descriptor(entry, &txdesc);
716 	rt2x00queue_kick_tx_queue(queue, &txdesc);
717 
718 out:
719 	spin_unlock(&queue->tx_lock);
720 	return ret;
721 }
722 
723 int rt2x00queue_clear_beacon(struct rt2x00_dev *rt2x00dev,
724 			     struct ieee80211_vif *vif)
725 {
726 	struct rt2x00_intf *intf = vif_to_intf(vif);
727 
728 	if (unlikely(!intf->beacon))
729 		return -ENOBUFS;
730 
731 	/*
732 	 * Clean up the beacon skb.
733 	 */
734 	rt2x00queue_free_skb(intf->beacon);
735 
736 	/*
737 	 * Clear beacon (single bssid devices don't need to clear the beacon
738 	 * since the beacon queue will get stopped anyway).
739 	 */
740 	if (rt2x00dev->ops->lib->clear_beacon)
741 		rt2x00dev->ops->lib->clear_beacon(intf->beacon);
742 
743 	return 0;
744 }
745 
746 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
747 			      struct ieee80211_vif *vif)
748 {
749 	struct rt2x00_intf *intf = vif_to_intf(vif);
750 	struct skb_frame_desc *skbdesc;
751 	struct txentry_desc txdesc;
752 
753 	if (unlikely(!intf->beacon))
754 		return -ENOBUFS;
755 
756 	/*
757 	 * Clean up the beacon skb.
758 	 */
759 	rt2x00queue_free_skb(intf->beacon);
760 
761 	intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
762 	if (!intf->beacon->skb)
763 		return -ENOMEM;
764 
765 	/*
766 	 * Copy all TX descriptor information into txdesc,
767 	 * after that we are free to use the skb->cb array
768 	 * for our information.
769 	 */
770 	rt2x00queue_create_tx_descriptor(rt2x00dev, intf->beacon->skb, &txdesc, NULL);
771 
772 	/*
773 	 * Fill in skb descriptor
774 	 */
775 	skbdesc = get_skb_frame_desc(intf->beacon->skb);
776 	memset(skbdesc, 0, sizeof(*skbdesc));
777 	skbdesc->entry = intf->beacon;
778 
779 	/*
780 	 * Send beacon to hardware.
781 	 */
782 	rt2x00dev->ops->lib->write_beacon(intf->beacon, &txdesc);
783 
784 	return 0;
785 
786 }
787 
788 bool rt2x00queue_for_each_entry(struct data_queue *queue,
789 				enum queue_index start,
790 				enum queue_index end,
791 				void *data,
792 				bool (*fn)(struct queue_entry *entry,
793 					   void *data))
794 {
795 	unsigned long irqflags;
796 	unsigned int index_start;
797 	unsigned int index_end;
798 	unsigned int i;
799 
800 	if (unlikely(start >= Q_INDEX_MAX || end >= Q_INDEX_MAX)) {
801 		rt2x00_err(queue->rt2x00dev,
802 			   "Entry requested from invalid index range (%d - %d)\n",
803 			   start, end);
804 		return true;
805 	}
806 
807 	/*
808 	 * Only protect the range we are going to loop over,
809 	 * if during our loop a extra entry is set to pending
810 	 * it should not be kicked during this run, since it
811 	 * is part of another TX operation.
812 	 */
813 	spin_lock_irqsave(&queue->index_lock, irqflags);
814 	index_start = queue->index[start];
815 	index_end = queue->index[end];
816 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
817 
818 	/*
819 	 * Start from the TX done pointer, this guarantees that we will
820 	 * send out all frames in the correct order.
821 	 */
822 	if (index_start < index_end) {
823 		for (i = index_start; i < index_end; i++) {
824 			if (fn(&queue->entries[i], data))
825 				return true;
826 		}
827 	} else {
828 		for (i = index_start; i < queue->limit; i++) {
829 			if (fn(&queue->entries[i], data))
830 				return true;
831 		}
832 
833 		for (i = 0; i < index_end; i++) {
834 			if (fn(&queue->entries[i], data))
835 				return true;
836 		}
837 	}
838 
839 	return false;
840 }
841 EXPORT_SYMBOL_GPL(rt2x00queue_for_each_entry);
842 
843 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
844 					  enum queue_index index)
845 {
846 	struct queue_entry *entry;
847 	unsigned long irqflags;
848 
849 	if (unlikely(index >= Q_INDEX_MAX)) {
850 		rt2x00_err(queue->rt2x00dev, "Entry requested from invalid index type (%d)\n",
851 			   index);
852 		return NULL;
853 	}
854 
855 	spin_lock_irqsave(&queue->index_lock, irqflags);
856 
857 	entry = &queue->entries[queue->index[index]];
858 
859 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
860 
861 	return entry;
862 }
863 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
864 
865 void rt2x00queue_index_inc(struct queue_entry *entry, enum queue_index index)
866 {
867 	struct data_queue *queue = entry->queue;
868 	unsigned long irqflags;
869 
870 	if (unlikely(index >= Q_INDEX_MAX)) {
871 		rt2x00_err(queue->rt2x00dev,
872 			   "Index change on invalid index type (%d)\n", index);
873 		return;
874 	}
875 
876 	spin_lock_irqsave(&queue->index_lock, irqflags);
877 
878 	queue->index[index]++;
879 	if (queue->index[index] >= queue->limit)
880 		queue->index[index] = 0;
881 
882 	entry->last_action = jiffies;
883 
884 	if (index == Q_INDEX) {
885 		queue->length++;
886 	} else if (index == Q_INDEX_DONE) {
887 		queue->length--;
888 		queue->count++;
889 	}
890 
891 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
892 }
893 
894 static void rt2x00queue_pause_queue_nocheck(struct data_queue *queue)
895 {
896 	switch (queue->qid) {
897 	case QID_AC_VO:
898 	case QID_AC_VI:
899 	case QID_AC_BE:
900 	case QID_AC_BK:
901 		/*
902 		 * For TX queues, we have to disable the queue
903 		 * inside mac80211.
904 		 */
905 		ieee80211_stop_queue(queue->rt2x00dev->hw, queue->qid);
906 		break;
907 	default:
908 		break;
909 	}
910 }
911 void rt2x00queue_pause_queue(struct data_queue *queue)
912 {
913 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
914 	    !test_bit(QUEUE_STARTED, &queue->flags) ||
915 	    test_and_set_bit(QUEUE_PAUSED, &queue->flags))
916 		return;
917 
918 	rt2x00queue_pause_queue_nocheck(queue);
919 }
920 EXPORT_SYMBOL_GPL(rt2x00queue_pause_queue);
921 
922 void rt2x00queue_unpause_queue(struct data_queue *queue)
923 {
924 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
925 	    !test_bit(QUEUE_STARTED, &queue->flags) ||
926 	    !test_and_clear_bit(QUEUE_PAUSED, &queue->flags))
927 		return;
928 
929 	switch (queue->qid) {
930 	case QID_AC_VO:
931 	case QID_AC_VI:
932 	case QID_AC_BE:
933 	case QID_AC_BK:
934 		/*
935 		 * For TX queues, we have to enable the queue
936 		 * inside mac80211.
937 		 */
938 		ieee80211_wake_queue(queue->rt2x00dev->hw, queue->qid);
939 		break;
940 	case QID_RX:
941 		/*
942 		 * For RX we need to kick the queue now in order to
943 		 * receive frames.
944 		 */
945 		queue->rt2x00dev->ops->lib->kick_queue(queue);
946 	default:
947 		break;
948 	}
949 }
950 EXPORT_SYMBOL_GPL(rt2x00queue_unpause_queue);
951 
952 void rt2x00queue_start_queue(struct data_queue *queue)
953 {
954 	mutex_lock(&queue->status_lock);
955 
956 	if (!test_bit(DEVICE_STATE_PRESENT, &queue->rt2x00dev->flags) ||
957 	    test_and_set_bit(QUEUE_STARTED, &queue->flags)) {
958 		mutex_unlock(&queue->status_lock);
959 		return;
960 	}
961 
962 	set_bit(QUEUE_PAUSED, &queue->flags);
963 
964 	queue->rt2x00dev->ops->lib->start_queue(queue);
965 
966 	rt2x00queue_unpause_queue(queue);
967 
968 	mutex_unlock(&queue->status_lock);
969 }
970 EXPORT_SYMBOL_GPL(rt2x00queue_start_queue);
971 
972 void rt2x00queue_stop_queue(struct data_queue *queue)
973 {
974 	mutex_lock(&queue->status_lock);
975 
976 	if (!test_and_clear_bit(QUEUE_STARTED, &queue->flags)) {
977 		mutex_unlock(&queue->status_lock);
978 		return;
979 	}
980 
981 	rt2x00queue_pause_queue_nocheck(queue);
982 
983 	queue->rt2x00dev->ops->lib->stop_queue(queue);
984 
985 	mutex_unlock(&queue->status_lock);
986 }
987 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queue);
988 
989 void rt2x00queue_flush_queue(struct data_queue *queue, bool drop)
990 {
991 	bool tx_queue =
992 		(queue->qid == QID_AC_VO) ||
993 		(queue->qid == QID_AC_VI) ||
994 		(queue->qid == QID_AC_BE) ||
995 		(queue->qid == QID_AC_BK);
996 
997 
998 	/*
999 	 * If we are not supposed to drop any pending
1000 	 * frames, this means we must force a start (=kick)
1001 	 * to the queue to make sure the hardware will
1002 	 * start transmitting.
1003 	 */
1004 	if (!drop && tx_queue)
1005 		queue->rt2x00dev->ops->lib->kick_queue(queue);
1006 
1007 	/*
1008 	 * Check if driver supports flushing, if that is the case we can
1009 	 * defer the flushing to the driver. Otherwise we must use the
1010 	 * alternative which just waits for the queue to become empty.
1011 	 */
1012 	if (likely(queue->rt2x00dev->ops->lib->flush_queue))
1013 		queue->rt2x00dev->ops->lib->flush_queue(queue, drop);
1014 
1015 	/*
1016 	 * The queue flush has failed...
1017 	 */
1018 	if (unlikely(!rt2x00queue_empty(queue)))
1019 		rt2x00_warn(queue->rt2x00dev, "Queue %d failed to flush\n",
1020 			    queue->qid);
1021 }
1022 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queue);
1023 
1024 void rt2x00queue_start_queues(struct rt2x00_dev *rt2x00dev)
1025 {
1026 	struct data_queue *queue;
1027 
1028 	/*
1029 	 * rt2x00queue_start_queue will call ieee80211_wake_queue
1030 	 * for each queue after is has been properly initialized.
1031 	 */
1032 	tx_queue_for_each(rt2x00dev, queue)
1033 		rt2x00queue_start_queue(queue);
1034 
1035 	rt2x00queue_start_queue(rt2x00dev->rx);
1036 }
1037 EXPORT_SYMBOL_GPL(rt2x00queue_start_queues);
1038 
1039 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
1040 {
1041 	struct data_queue *queue;
1042 
1043 	/*
1044 	 * rt2x00queue_stop_queue will call ieee80211_stop_queue
1045 	 * as well, but we are completely shutting doing everything
1046 	 * now, so it is much safer to stop all TX queues at once,
1047 	 * and use rt2x00queue_stop_queue for cleaning up.
1048 	 */
1049 	ieee80211_stop_queues(rt2x00dev->hw);
1050 
1051 	tx_queue_for_each(rt2x00dev, queue)
1052 		rt2x00queue_stop_queue(queue);
1053 
1054 	rt2x00queue_stop_queue(rt2x00dev->rx);
1055 }
1056 EXPORT_SYMBOL_GPL(rt2x00queue_stop_queues);
1057 
1058 void rt2x00queue_flush_queues(struct rt2x00_dev *rt2x00dev, bool drop)
1059 {
1060 	struct data_queue *queue;
1061 
1062 	tx_queue_for_each(rt2x00dev, queue)
1063 		rt2x00queue_flush_queue(queue, drop);
1064 
1065 	rt2x00queue_flush_queue(rt2x00dev->rx, drop);
1066 }
1067 EXPORT_SYMBOL_GPL(rt2x00queue_flush_queues);
1068 
1069 static void rt2x00queue_reset(struct data_queue *queue)
1070 {
1071 	unsigned long irqflags;
1072 	unsigned int i;
1073 
1074 	spin_lock_irqsave(&queue->index_lock, irqflags);
1075 
1076 	queue->count = 0;
1077 	queue->length = 0;
1078 
1079 	for (i = 0; i < Q_INDEX_MAX; i++)
1080 		queue->index[i] = 0;
1081 
1082 	spin_unlock_irqrestore(&queue->index_lock, irqflags);
1083 }
1084 
1085 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
1086 {
1087 	struct data_queue *queue;
1088 	unsigned int i;
1089 
1090 	queue_for_each(rt2x00dev, queue) {
1091 		rt2x00queue_reset(queue);
1092 
1093 		for (i = 0; i < queue->limit; i++)
1094 			rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
1095 	}
1096 }
1097 
1098 static int rt2x00queue_alloc_entries(struct data_queue *queue)
1099 {
1100 	struct queue_entry *entries;
1101 	unsigned int entry_size;
1102 	unsigned int i;
1103 
1104 	rt2x00queue_reset(queue);
1105 
1106 	/*
1107 	 * Allocate all queue entries.
1108 	 */
1109 	entry_size = sizeof(*entries) + queue->priv_size;
1110 	entries = kcalloc(queue->limit, entry_size, GFP_KERNEL);
1111 	if (!entries)
1112 		return -ENOMEM;
1113 
1114 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
1115 	(((char *)(__base)) + ((__limit) * (__esize)) + \
1116 	    ((__index) * (__psize)))
1117 
1118 	for (i = 0; i < queue->limit; i++) {
1119 		entries[i].flags = 0;
1120 		entries[i].queue = queue;
1121 		entries[i].skb = NULL;
1122 		entries[i].entry_idx = i;
1123 		entries[i].priv_data =
1124 		    QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
1125 					    sizeof(*entries), queue->priv_size);
1126 	}
1127 
1128 #undef QUEUE_ENTRY_PRIV_OFFSET
1129 
1130 	queue->entries = entries;
1131 
1132 	return 0;
1133 }
1134 
1135 static void rt2x00queue_free_skbs(struct data_queue *queue)
1136 {
1137 	unsigned int i;
1138 
1139 	if (!queue->entries)
1140 		return;
1141 
1142 	for (i = 0; i < queue->limit; i++) {
1143 		rt2x00queue_free_skb(&queue->entries[i]);
1144 	}
1145 }
1146 
1147 static int rt2x00queue_alloc_rxskbs(struct data_queue *queue)
1148 {
1149 	unsigned int i;
1150 	struct sk_buff *skb;
1151 
1152 	for (i = 0; i < queue->limit; i++) {
1153 		skb = rt2x00queue_alloc_rxskb(&queue->entries[i], GFP_KERNEL);
1154 		if (!skb)
1155 			return -ENOMEM;
1156 		queue->entries[i].skb = skb;
1157 	}
1158 
1159 	return 0;
1160 }
1161 
1162 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
1163 {
1164 	struct data_queue *queue;
1165 	int status;
1166 
1167 	status = rt2x00queue_alloc_entries(rt2x00dev->rx);
1168 	if (status)
1169 		goto exit;
1170 
1171 	tx_queue_for_each(rt2x00dev, queue) {
1172 		status = rt2x00queue_alloc_entries(queue);
1173 		if (status)
1174 			goto exit;
1175 	}
1176 
1177 	status = rt2x00queue_alloc_entries(rt2x00dev->bcn);
1178 	if (status)
1179 		goto exit;
1180 
1181 	if (rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE)) {
1182 		status = rt2x00queue_alloc_entries(rt2x00dev->atim);
1183 		if (status)
1184 			goto exit;
1185 	}
1186 
1187 	status = rt2x00queue_alloc_rxskbs(rt2x00dev->rx);
1188 	if (status)
1189 		goto exit;
1190 
1191 	return 0;
1192 
1193 exit:
1194 	rt2x00_err(rt2x00dev, "Queue entries allocation failed\n");
1195 
1196 	rt2x00queue_uninitialize(rt2x00dev);
1197 
1198 	return status;
1199 }
1200 
1201 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
1202 {
1203 	struct data_queue *queue;
1204 
1205 	rt2x00queue_free_skbs(rt2x00dev->rx);
1206 
1207 	queue_for_each(rt2x00dev, queue) {
1208 		kfree(queue->entries);
1209 		queue->entries = NULL;
1210 	}
1211 }
1212 
1213 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
1214 			     struct data_queue *queue, enum data_queue_qid qid)
1215 {
1216 	mutex_init(&queue->status_lock);
1217 	spin_lock_init(&queue->tx_lock);
1218 	spin_lock_init(&queue->index_lock);
1219 
1220 	queue->rt2x00dev = rt2x00dev;
1221 	queue->qid = qid;
1222 	queue->txop = 0;
1223 	queue->aifs = 2;
1224 	queue->cw_min = 5;
1225 	queue->cw_max = 10;
1226 
1227 	rt2x00dev->ops->queue_init(queue);
1228 
1229 	queue->threshold = DIV_ROUND_UP(queue->limit, 10);
1230 }
1231 
1232 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
1233 {
1234 	struct data_queue *queue;
1235 	enum data_queue_qid qid;
1236 	unsigned int req_atim =
1237 	    rt2x00_has_cap_flag(rt2x00dev, REQUIRE_ATIM_QUEUE);
1238 
1239 	/*
1240 	 * We need the following queues:
1241 	 * RX: 1
1242 	 * TX: ops->tx_queues
1243 	 * Beacon: 1
1244 	 * Atim: 1 (if required)
1245 	 */
1246 	rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
1247 
1248 	queue = kcalloc(rt2x00dev->data_queues, sizeof(*queue), GFP_KERNEL);
1249 	if (!queue) {
1250 		rt2x00_err(rt2x00dev, "Queue allocation failed\n");
1251 		return -ENOMEM;
1252 	}
1253 
1254 	/*
1255 	 * Initialize pointers
1256 	 */
1257 	rt2x00dev->rx = queue;
1258 	rt2x00dev->tx = &queue[1];
1259 	rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
1260 	rt2x00dev->atim = req_atim ? &queue[2 + rt2x00dev->ops->tx_queues] : NULL;
1261 
1262 	/*
1263 	 * Initialize queue parameters.
1264 	 * RX: qid = QID_RX
1265 	 * TX: qid = QID_AC_VO + index
1266 	 * TX: cw_min: 2^5 = 32.
1267 	 * TX: cw_max: 2^10 = 1024.
1268 	 * BCN: qid = QID_BEACON
1269 	 * ATIM: qid = QID_ATIM
1270 	 */
1271 	rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
1272 
1273 	qid = QID_AC_VO;
1274 	tx_queue_for_each(rt2x00dev, queue)
1275 		rt2x00queue_init(rt2x00dev, queue, qid++);
1276 
1277 	rt2x00queue_init(rt2x00dev, rt2x00dev->bcn, QID_BEACON);
1278 	if (req_atim)
1279 		rt2x00queue_init(rt2x00dev, rt2x00dev->atim, QID_ATIM);
1280 
1281 	return 0;
1282 }
1283 
1284 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
1285 {
1286 	kfree(rt2x00dev->rx);
1287 	rt2x00dev->rx = NULL;
1288 	rt2x00dev->tx = NULL;
1289 	rt2x00dev->bcn = NULL;
1290 }
1291