xref: /linux/drivers/net/wireless/ralink/rt2x00/rt2500pci.c (revision fcc8487d477a3452a1d0ccbdd4c5e0e1e3cb8bed)
1 /*
2 	Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
3 	<http://rt2x00.serialmonkey.com>
4 
5 	This program is free software; you can redistribute it and/or modify
6 	it under the terms of the GNU General Public License as published by
7 	the Free Software Foundation; either version 2 of the License, or
8 	(at your option) any later version.
9 
10 	This program is distributed in the hope that it will be useful,
11 	but WITHOUT ANY WARRANTY; without even the implied warranty of
12 	MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 	GNU General Public License for more details.
14 
15 	You should have received a copy of the GNU General Public License
16 	along with this program; if not, see <http://www.gnu.org/licenses/>.
17  */
18 
19 /*
20 	Module: rt2500pci
21 	Abstract: rt2500pci device specific routines.
22 	Supported chipsets: RT2560.
23  */
24 
25 #include <linux/delay.h>
26 #include <linux/etherdevice.h>
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/eeprom_93cx6.h>
31 #include <linux/slab.h>
32 
33 #include "rt2x00.h"
34 #include "rt2x00mmio.h"
35 #include "rt2x00pci.h"
36 #include "rt2500pci.h"
37 
38 /*
39  * Register access.
40  * All access to the CSR registers will go through the methods
41  * rt2x00mmio_register_read and rt2x00mmio_register_write.
42  * BBP and RF register require indirect register access,
43  * and use the CSR registers BBPCSR and RFCSR to achieve this.
44  * These indirect registers work with busy bits,
45  * and we will try maximal REGISTER_BUSY_COUNT times to access
46  * the register while taking a REGISTER_BUSY_DELAY us delay
47  * between each attampt. When the busy bit is still set at that time,
48  * the access attempt is considered to have failed,
49  * and we will print an error.
50  */
51 #define WAIT_FOR_BBP(__dev, __reg) \
52 	rt2x00mmio_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
53 #define WAIT_FOR_RF(__dev, __reg) \
54 	rt2x00mmio_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
55 
56 static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
57 				const unsigned int word, const u8 value)
58 {
59 	u32 reg;
60 
61 	mutex_lock(&rt2x00dev->csr_mutex);
62 
63 	/*
64 	 * Wait until the BBP becomes available, afterwards we
65 	 * can safely write the new data into the register.
66 	 */
67 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
68 		reg = 0;
69 		rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
70 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
71 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
72 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
73 
74 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
75 	}
76 
77 	mutex_unlock(&rt2x00dev->csr_mutex);
78 }
79 
80 static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
81 			       const unsigned int word, u8 *value)
82 {
83 	u32 reg;
84 
85 	mutex_lock(&rt2x00dev->csr_mutex);
86 
87 	/*
88 	 * Wait until the BBP becomes available, afterwards we
89 	 * can safely write the read request into the register.
90 	 * After the data has been written, we wait until hardware
91 	 * returns the correct value, if at any time the register
92 	 * doesn't become available in time, reg will be 0xffffffff
93 	 * which means we return 0xff to the caller.
94 	 */
95 	if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
96 		reg = 0;
97 		rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
98 		rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
99 		rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
100 
101 		rt2x00mmio_register_write(rt2x00dev, BBPCSR, reg);
102 
103 		WAIT_FOR_BBP(rt2x00dev, &reg);
104 	}
105 
106 	*value = rt2x00_get_field32(reg, BBPCSR_VALUE);
107 
108 	mutex_unlock(&rt2x00dev->csr_mutex);
109 }
110 
111 static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
112 			       const unsigned int word, const u32 value)
113 {
114 	u32 reg;
115 
116 	mutex_lock(&rt2x00dev->csr_mutex);
117 
118 	/*
119 	 * Wait until the RF becomes available, afterwards we
120 	 * can safely write the new data into the register.
121 	 */
122 	if (WAIT_FOR_RF(rt2x00dev, &reg)) {
123 		reg = 0;
124 		rt2x00_set_field32(&reg, RFCSR_VALUE, value);
125 		rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
126 		rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
127 		rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
128 
129 		rt2x00mmio_register_write(rt2x00dev, RFCSR, reg);
130 		rt2x00_rf_write(rt2x00dev, word, value);
131 	}
132 
133 	mutex_unlock(&rt2x00dev->csr_mutex);
134 }
135 
136 static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
137 {
138 	struct rt2x00_dev *rt2x00dev = eeprom->data;
139 	u32 reg;
140 
141 	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
142 
143 	eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
144 	eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
145 	eeprom->reg_data_clock =
146 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
147 	eeprom->reg_chip_select =
148 	    !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
149 }
150 
151 static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
152 {
153 	struct rt2x00_dev *rt2x00dev = eeprom->data;
154 	u32 reg = 0;
155 
156 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
157 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
158 	rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
159 			   !!eeprom->reg_data_clock);
160 	rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
161 			   !!eeprom->reg_chip_select);
162 
163 	rt2x00mmio_register_write(rt2x00dev, CSR21, reg);
164 }
165 
166 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
167 static const struct rt2x00debug rt2500pci_rt2x00debug = {
168 	.owner	= THIS_MODULE,
169 	.csr	= {
170 		.read		= rt2x00mmio_register_read,
171 		.write		= rt2x00mmio_register_write,
172 		.flags		= RT2X00DEBUGFS_OFFSET,
173 		.word_base	= CSR_REG_BASE,
174 		.word_size	= sizeof(u32),
175 		.word_count	= CSR_REG_SIZE / sizeof(u32),
176 	},
177 	.eeprom	= {
178 		.read		= rt2x00_eeprom_read,
179 		.write		= rt2x00_eeprom_write,
180 		.word_base	= EEPROM_BASE,
181 		.word_size	= sizeof(u16),
182 		.word_count	= EEPROM_SIZE / sizeof(u16),
183 	},
184 	.bbp	= {
185 		.read		= rt2500pci_bbp_read,
186 		.write		= rt2500pci_bbp_write,
187 		.word_base	= BBP_BASE,
188 		.word_size	= sizeof(u8),
189 		.word_count	= BBP_SIZE / sizeof(u8),
190 	},
191 	.rf	= {
192 		.read		= rt2x00_rf_read,
193 		.write		= rt2500pci_rf_write,
194 		.word_base	= RF_BASE,
195 		.word_size	= sizeof(u32),
196 		.word_count	= RF_SIZE / sizeof(u32),
197 	},
198 };
199 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
200 
201 static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
202 {
203 	u32 reg;
204 
205 	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
206 	return rt2x00_get_field32(reg, GPIOCSR_VAL0);
207 }
208 
209 #ifdef CONFIG_RT2X00_LIB_LEDS
210 static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
211 				     enum led_brightness brightness)
212 {
213 	struct rt2x00_led *led =
214 	    container_of(led_cdev, struct rt2x00_led, led_dev);
215 	unsigned int enabled = brightness != LED_OFF;
216 	u32 reg;
217 
218 	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
219 
220 	if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
221 		rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
222 	else if (led->type == LED_TYPE_ACTIVITY)
223 		rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
224 
225 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
226 }
227 
228 static int rt2500pci_blink_set(struct led_classdev *led_cdev,
229 			       unsigned long *delay_on,
230 			       unsigned long *delay_off)
231 {
232 	struct rt2x00_led *led =
233 	    container_of(led_cdev, struct rt2x00_led, led_dev);
234 	u32 reg;
235 
236 	rt2x00mmio_register_read(led->rt2x00dev, LEDCSR, &reg);
237 	rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
238 	rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
239 	rt2x00mmio_register_write(led->rt2x00dev, LEDCSR, reg);
240 
241 	return 0;
242 }
243 
244 static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
245 			       struct rt2x00_led *led,
246 			       enum led_type type)
247 {
248 	led->rt2x00dev = rt2x00dev;
249 	led->type = type;
250 	led->led_dev.brightness_set = rt2500pci_brightness_set;
251 	led->led_dev.blink_set = rt2500pci_blink_set;
252 	led->flags = LED_INITIALIZED;
253 }
254 #endif /* CONFIG_RT2X00_LIB_LEDS */
255 
256 /*
257  * Configuration handlers.
258  */
259 static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
260 				    const unsigned int filter_flags)
261 {
262 	u32 reg;
263 
264 	/*
265 	 * Start configuration steps.
266 	 * Note that the version error will always be dropped
267 	 * and broadcast frames will always be accepted since
268 	 * there is no filter for it at this time.
269 	 */
270 	rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
271 	rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
272 			   !(filter_flags & FIF_FCSFAIL));
273 	rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
274 			   !(filter_flags & FIF_PLCPFAIL));
275 	rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
276 			   !(filter_flags & FIF_CONTROL));
277 	rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
278 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags));
279 	rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
280 			   !test_bit(CONFIG_MONITORING, &rt2x00dev->flags) &&
281 			   !rt2x00dev->intf_ap_count);
282 	rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
283 	rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
284 			   !(filter_flags & FIF_ALLMULTI));
285 	rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
286 	rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
287 }
288 
289 static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
290 				  struct rt2x00_intf *intf,
291 				  struct rt2x00intf_conf *conf,
292 				  const unsigned int flags)
293 {
294 	struct data_queue *queue = rt2x00dev->bcn;
295 	unsigned int bcn_preload;
296 	u32 reg;
297 
298 	if (flags & CONFIG_UPDATE_TYPE) {
299 		/*
300 		 * Enable beacon config
301 		 */
302 		bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
303 		rt2x00mmio_register_read(rt2x00dev, BCNCSR1, &reg);
304 		rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
305 		rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
306 		rt2x00mmio_register_write(rt2x00dev, BCNCSR1, reg);
307 
308 		/*
309 		 * Enable synchronisation.
310 		 */
311 		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
312 		rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
313 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
314 	}
315 
316 	if (flags & CONFIG_UPDATE_MAC)
317 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR3,
318 					      conf->mac, sizeof(conf->mac));
319 
320 	if (flags & CONFIG_UPDATE_BSSID)
321 		rt2x00mmio_register_multiwrite(rt2x00dev, CSR5,
322 					      conf->bssid, sizeof(conf->bssid));
323 }
324 
325 static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
326 				 struct rt2x00lib_erp *erp,
327 				 u32 changed)
328 {
329 	int preamble_mask;
330 	u32 reg;
331 
332 	/*
333 	 * When short preamble is enabled, we should set bit 0x08
334 	 */
335 	if (changed & BSS_CHANGED_ERP_PREAMBLE) {
336 		preamble_mask = erp->short_preamble << 3;
337 
338 		rt2x00mmio_register_read(rt2x00dev, TXCSR1, &reg);
339 		rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
340 		rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
341 		rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
342 		rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
343 		rt2x00mmio_register_write(rt2x00dev, TXCSR1, reg);
344 
345 		rt2x00mmio_register_read(rt2x00dev, ARCSR2, &reg);
346 		rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
347 		rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
348 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
349 				   GET_DURATION(ACK_SIZE, 10));
350 		rt2x00mmio_register_write(rt2x00dev, ARCSR2, reg);
351 
352 		rt2x00mmio_register_read(rt2x00dev, ARCSR3, &reg);
353 		rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
354 		rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
355 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
356 				   GET_DURATION(ACK_SIZE, 20));
357 		rt2x00mmio_register_write(rt2x00dev, ARCSR3, reg);
358 
359 		rt2x00mmio_register_read(rt2x00dev, ARCSR4, &reg);
360 		rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
361 		rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
362 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
363 				   GET_DURATION(ACK_SIZE, 55));
364 		rt2x00mmio_register_write(rt2x00dev, ARCSR4, reg);
365 
366 		rt2x00mmio_register_read(rt2x00dev, ARCSR5, &reg);
367 		rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
368 		rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
369 		rt2x00_set_field32(&reg, ARCSR2_LENGTH,
370 				   GET_DURATION(ACK_SIZE, 110));
371 		rt2x00mmio_register_write(rt2x00dev, ARCSR5, reg);
372 	}
373 
374 	if (changed & BSS_CHANGED_BASIC_RATES)
375 		rt2x00mmio_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
376 
377 	if (changed & BSS_CHANGED_ERP_SLOT) {
378 		rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
379 		rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
380 		rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
381 
382 		rt2x00mmio_register_read(rt2x00dev, CSR18, &reg);
383 		rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
384 		rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
385 		rt2x00mmio_register_write(rt2x00dev, CSR18, reg);
386 
387 		rt2x00mmio_register_read(rt2x00dev, CSR19, &reg);
388 		rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
389 		rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
390 		rt2x00mmio_register_write(rt2x00dev, CSR19, reg);
391 	}
392 
393 	if (changed & BSS_CHANGED_BEACON_INT) {
394 		rt2x00mmio_register_read(rt2x00dev, CSR12, &reg);
395 		rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
396 				   erp->beacon_int * 16);
397 		rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
398 				   erp->beacon_int * 16);
399 		rt2x00mmio_register_write(rt2x00dev, CSR12, reg);
400 	}
401 
402 }
403 
404 static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
405 				 struct antenna_setup *ant)
406 {
407 	u32 reg;
408 	u8 r14;
409 	u8 r2;
410 
411 	/*
412 	 * We should never come here because rt2x00lib is supposed
413 	 * to catch this and send us the correct antenna explicitely.
414 	 */
415 	BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
416 	       ant->tx == ANTENNA_SW_DIVERSITY);
417 
418 	rt2x00mmio_register_read(rt2x00dev, BBPCSR1, &reg);
419 	rt2500pci_bbp_read(rt2x00dev, 14, &r14);
420 	rt2500pci_bbp_read(rt2x00dev, 2, &r2);
421 
422 	/*
423 	 * Configure the TX antenna.
424 	 */
425 	switch (ant->tx) {
426 	case ANTENNA_A:
427 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
428 		rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
429 		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
430 		break;
431 	case ANTENNA_B:
432 	default:
433 		rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
434 		rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
435 		rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
436 		break;
437 	}
438 
439 	/*
440 	 * Configure the RX antenna.
441 	 */
442 	switch (ant->rx) {
443 	case ANTENNA_A:
444 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
445 		break;
446 	case ANTENNA_B:
447 	default:
448 		rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
449 		break;
450 	}
451 
452 	/*
453 	 * RT2525E and RT5222 need to flip TX I/Q
454 	 */
455 	if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
456 		rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
457 		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
458 		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
459 
460 		/*
461 		 * RT2525E does not need RX I/Q Flip.
462 		 */
463 		if (rt2x00_rf(rt2x00dev, RF2525E))
464 			rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
465 	} else {
466 		rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
467 		rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
468 	}
469 
470 	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, reg);
471 	rt2500pci_bbp_write(rt2x00dev, 14, r14);
472 	rt2500pci_bbp_write(rt2x00dev, 2, r2);
473 }
474 
475 static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
476 				     struct rf_channel *rf, const int txpower)
477 {
478 	u8 r70;
479 
480 	/*
481 	 * Set TXpower.
482 	 */
483 	rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
484 
485 	/*
486 	 * Switch on tuning bits.
487 	 * For RT2523 devices we do not need to update the R1 register.
488 	 */
489 	if (!rt2x00_rf(rt2x00dev, RF2523))
490 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
491 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
492 
493 	/*
494 	 * For RT2525 we should first set the channel to half band higher.
495 	 */
496 	if (rt2x00_rf(rt2x00dev, RF2525)) {
497 		static const u32 vals[] = {
498 			0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
499 			0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
500 			0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
501 			0x00080d2e, 0x00080d3a
502 		};
503 
504 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
505 		rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
506 		rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
507 		if (rf->rf4)
508 			rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
509 	}
510 
511 	rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
512 	rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
513 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
514 	if (rf->rf4)
515 		rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
516 
517 	/*
518 	 * Channel 14 requires the Japan filter bit to be set.
519 	 */
520 	r70 = 0x46;
521 	rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
522 	rt2500pci_bbp_write(rt2x00dev, 70, r70);
523 
524 	msleep(1);
525 
526 	/*
527 	 * Switch off tuning bits.
528 	 * For RT2523 devices we do not need to update the R1 register.
529 	 */
530 	if (!rt2x00_rf(rt2x00dev, RF2523)) {
531 		rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
532 		rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
533 	}
534 
535 	rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
536 	rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
537 
538 	/*
539 	 * Clear false CRC during channel switch.
540 	 */
541 	rt2x00mmio_register_read(rt2x00dev, CNT0, &rf->rf1);
542 }
543 
544 static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
545 				     const int txpower)
546 {
547 	u32 rf3;
548 
549 	rt2x00_rf_read(rt2x00dev, 3, &rf3);
550 	rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
551 	rt2500pci_rf_write(rt2x00dev, 3, rf3);
552 }
553 
554 static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
555 					 struct rt2x00lib_conf *libconf)
556 {
557 	u32 reg;
558 
559 	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
560 	rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
561 			   libconf->conf->long_frame_max_tx_count);
562 	rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
563 			   libconf->conf->short_frame_max_tx_count);
564 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
565 }
566 
567 static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
568 				struct rt2x00lib_conf *libconf)
569 {
570 	enum dev_state state =
571 	    (libconf->conf->flags & IEEE80211_CONF_PS) ?
572 		STATE_SLEEP : STATE_AWAKE;
573 	u32 reg;
574 
575 	if (state == STATE_SLEEP) {
576 		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
577 		rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
578 				   (rt2x00dev->beacon_int - 20) * 16);
579 		rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
580 				   libconf->conf->listen_interval - 1);
581 
582 		/* We must first disable autowake before it can be enabled */
583 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
584 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
585 
586 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
587 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
588 	} else {
589 		rt2x00mmio_register_read(rt2x00dev, CSR20, &reg);
590 		rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
591 		rt2x00mmio_register_write(rt2x00dev, CSR20, reg);
592 	}
593 
594 	rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
595 }
596 
597 static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
598 			     struct rt2x00lib_conf *libconf,
599 			     const unsigned int flags)
600 {
601 	if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
602 		rt2500pci_config_channel(rt2x00dev, &libconf->rf,
603 					 libconf->conf->power_level);
604 	if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
605 	    !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
606 		rt2500pci_config_txpower(rt2x00dev,
607 					 libconf->conf->power_level);
608 	if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
609 		rt2500pci_config_retry_limit(rt2x00dev, libconf);
610 	if (flags & IEEE80211_CONF_CHANGE_PS)
611 		rt2500pci_config_ps(rt2x00dev, libconf);
612 }
613 
614 /*
615  * Link tuning
616  */
617 static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
618 				 struct link_qual *qual)
619 {
620 	u32 reg;
621 
622 	/*
623 	 * Update FCS error count from register.
624 	 */
625 	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
626 	qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
627 
628 	/*
629 	 * Update False CCA count from register.
630 	 */
631 	rt2x00mmio_register_read(rt2x00dev, CNT3, &reg);
632 	qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
633 }
634 
635 static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
636 				     struct link_qual *qual, u8 vgc_level)
637 {
638 	if (qual->vgc_level_reg != vgc_level) {
639 		rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
640 		qual->vgc_level = vgc_level;
641 		qual->vgc_level_reg = vgc_level;
642 	}
643 }
644 
645 static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
646 				  struct link_qual *qual)
647 {
648 	rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
649 }
650 
651 static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
652 				 struct link_qual *qual, const u32 count)
653 {
654 	/*
655 	 * To prevent collisions with MAC ASIC on chipsets
656 	 * up to version C the link tuning should halt after 20
657 	 * seconds while being associated.
658 	 */
659 	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
660 	    rt2x00dev->intf_associated && count > 20)
661 		return;
662 
663 	/*
664 	 * Chipset versions C and lower should directly continue
665 	 * to the dynamic CCA tuning. Chipset version D and higher
666 	 * should go straight to dynamic CCA tuning when they
667 	 * are not associated.
668 	 */
669 	if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
670 	    !rt2x00dev->intf_associated)
671 		goto dynamic_cca_tune;
672 
673 	/*
674 	 * A too low RSSI will cause too much false CCA which will
675 	 * then corrupt the R17 tuning. To remidy this the tuning should
676 	 * be stopped (While making sure the R17 value will not exceed limits)
677 	 */
678 	if (qual->rssi < -80 && count > 20) {
679 		if (qual->vgc_level_reg >= 0x41)
680 			rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
681 		return;
682 	}
683 
684 	/*
685 	 * Special big-R17 for short distance
686 	 */
687 	if (qual->rssi >= -58) {
688 		rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
689 		return;
690 	}
691 
692 	/*
693 	 * Special mid-R17 for middle distance
694 	 */
695 	if (qual->rssi >= -74) {
696 		rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
697 		return;
698 	}
699 
700 	/*
701 	 * Leave short or middle distance condition, restore r17
702 	 * to the dynamic tuning range.
703 	 */
704 	if (qual->vgc_level_reg >= 0x41) {
705 		rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
706 		return;
707 	}
708 
709 dynamic_cca_tune:
710 
711 	/*
712 	 * R17 is inside the dynamic tuning range,
713 	 * start tuning the link based on the false cca counter.
714 	 */
715 	if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
716 		rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
717 	else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
718 		rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
719 }
720 
721 /*
722  * Queue handlers.
723  */
724 static void rt2500pci_start_queue(struct data_queue *queue)
725 {
726 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
727 	u32 reg;
728 
729 	switch (queue->qid) {
730 	case QID_RX:
731 		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
732 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
733 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
734 		break;
735 	case QID_BEACON:
736 		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
737 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
738 		rt2x00_set_field32(&reg, CSR14_TBCN, 1);
739 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
740 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
741 		break;
742 	default:
743 		break;
744 	}
745 }
746 
747 static void rt2500pci_kick_queue(struct data_queue *queue)
748 {
749 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
750 	u32 reg;
751 
752 	switch (queue->qid) {
753 	case QID_AC_VO:
754 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
755 		rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
756 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
757 		break;
758 	case QID_AC_VI:
759 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
760 		rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
761 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
762 		break;
763 	case QID_ATIM:
764 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
765 		rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
766 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
767 		break;
768 	default:
769 		break;
770 	}
771 }
772 
773 static void rt2500pci_stop_queue(struct data_queue *queue)
774 {
775 	struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
776 	u32 reg;
777 
778 	switch (queue->qid) {
779 	case QID_AC_VO:
780 	case QID_AC_VI:
781 	case QID_ATIM:
782 		rt2x00mmio_register_read(rt2x00dev, TXCSR0, &reg);
783 		rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
784 		rt2x00mmio_register_write(rt2x00dev, TXCSR0, reg);
785 		break;
786 	case QID_RX:
787 		rt2x00mmio_register_read(rt2x00dev, RXCSR0, &reg);
788 		rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
789 		rt2x00mmio_register_write(rt2x00dev, RXCSR0, reg);
790 		break;
791 	case QID_BEACON:
792 		rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
793 		rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
794 		rt2x00_set_field32(&reg, CSR14_TBCN, 0);
795 		rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
796 		rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
797 
798 		/*
799 		 * Wait for possibly running tbtt tasklets.
800 		 */
801 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
802 		break;
803 	default:
804 		break;
805 	}
806 }
807 
808 /*
809  * Initialization functions.
810  */
811 static bool rt2500pci_get_entry_state(struct queue_entry *entry)
812 {
813 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
814 	u32 word;
815 
816 	if (entry->queue->qid == QID_RX) {
817 		rt2x00_desc_read(entry_priv->desc, 0, &word);
818 
819 		return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
820 	} else {
821 		rt2x00_desc_read(entry_priv->desc, 0, &word);
822 
823 		return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
824 		        rt2x00_get_field32(word, TXD_W0_VALID));
825 	}
826 }
827 
828 static void rt2500pci_clear_entry(struct queue_entry *entry)
829 {
830 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
831 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
832 	u32 word;
833 
834 	if (entry->queue->qid == QID_RX) {
835 		rt2x00_desc_read(entry_priv->desc, 1, &word);
836 		rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
837 		rt2x00_desc_write(entry_priv->desc, 1, word);
838 
839 		rt2x00_desc_read(entry_priv->desc, 0, &word);
840 		rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
841 		rt2x00_desc_write(entry_priv->desc, 0, word);
842 	} else {
843 		rt2x00_desc_read(entry_priv->desc, 0, &word);
844 		rt2x00_set_field32(&word, TXD_W0_VALID, 0);
845 		rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
846 		rt2x00_desc_write(entry_priv->desc, 0, word);
847 	}
848 }
849 
850 static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
851 {
852 	struct queue_entry_priv_mmio *entry_priv;
853 	u32 reg;
854 
855 	/*
856 	 * Initialize registers.
857 	 */
858 	rt2x00mmio_register_read(rt2x00dev, TXCSR2, &reg);
859 	rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
860 	rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
861 	rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
862 	rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
863 	rt2x00mmio_register_write(rt2x00dev, TXCSR2, reg);
864 
865 	entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
866 	rt2x00mmio_register_read(rt2x00dev, TXCSR3, &reg);
867 	rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
868 			   entry_priv->desc_dma);
869 	rt2x00mmio_register_write(rt2x00dev, TXCSR3, reg);
870 
871 	entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
872 	rt2x00mmio_register_read(rt2x00dev, TXCSR5, &reg);
873 	rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
874 			   entry_priv->desc_dma);
875 	rt2x00mmio_register_write(rt2x00dev, TXCSR5, reg);
876 
877 	entry_priv = rt2x00dev->atim->entries[0].priv_data;
878 	rt2x00mmio_register_read(rt2x00dev, TXCSR4, &reg);
879 	rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
880 			   entry_priv->desc_dma);
881 	rt2x00mmio_register_write(rt2x00dev, TXCSR4, reg);
882 
883 	entry_priv = rt2x00dev->bcn->entries[0].priv_data;
884 	rt2x00mmio_register_read(rt2x00dev, TXCSR6, &reg);
885 	rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
886 			   entry_priv->desc_dma);
887 	rt2x00mmio_register_write(rt2x00dev, TXCSR6, reg);
888 
889 	rt2x00mmio_register_read(rt2x00dev, RXCSR1, &reg);
890 	rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
891 	rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
892 	rt2x00mmio_register_write(rt2x00dev, RXCSR1, reg);
893 
894 	entry_priv = rt2x00dev->rx->entries[0].priv_data;
895 	rt2x00mmio_register_read(rt2x00dev, RXCSR2, &reg);
896 	rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
897 			   entry_priv->desc_dma);
898 	rt2x00mmio_register_write(rt2x00dev, RXCSR2, reg);
899 
900 	return 0;
901 }
902 
903 static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
904 {
905 	u32 reg;
906 
907 	rt2x00mmio_register_write(rt2x00dev, PSCSR0, 0x00020002);
908 	rt2x00mmio_register_write(rt2x00dev, PSCSR1, 0x00000002);
909 	rt2x00mmio_register_write(rt2x00dev, PSCSR2, 0x00020002);
910 	rt2x00mmio_register_write(rt2x00dev, PSCSR3, 0x00000002);
911 
912 	rt2x00mmio_register_read(rt2x00dev, TIMECSR, &reg);
913 	rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
914 	rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
915 	rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
916 	rt2x00mmio_register_write(rt2x00dev, TIMECSR, reg);
917 
918 	rt2x00mmio_register_read(rt2x00dev, CSR9, &reg);
919 	rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
920 			   rt2x00dev->rx->data_size / 128);
921 	rt2x00mmio_register_write(rt2x00dev, CSR9, reg);
922 
923 	/*
924 	 * Always use CWmin and CWmax set in descriptor.
925 	 */
926 	rt2x00mmio_register_read(rt2x00dev, CSR11, &reg);
927 	rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
928 	rt2x00mmio_register_write(rt2x00dev, CSR11, reg);
929 
930 	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
931 	rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
932 	rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
933 	rt2x00_set_field32(&reg, CSR14_TBCN, 0);
934 	rt2x00_set_field32(&reg, CSR14_TCFP, 0);
935 	rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
936 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
937 	rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
938 	rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
939 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
940 
941 	rt2x00mmio_register_write(rt2x00dev, CNT3, 0);
942 
943 	rt2x00mmio_register_read(rt2x00dev, TXCSR8, &reg);
944 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
945 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
946 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
947 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
948 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
949 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
950 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
951 	rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
952 	rt2x00mmio_register_write(rt2x00dev, TXCSR8, reg);
953 
954 	rt2x00mmio_register_read(rt2x00dev, ARTCSR0, &reg);
955 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
956 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
957 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
958 	rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
959 	rt2x00mmio_register_write(rt2x00dev, ARTCSR0, reg);
960 
961 	rt2x00mmio_register_read(rt2x00dev, ARTCSR1, &reg);
962 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
963 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
964 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
965 	rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
966 	rt2x00mmio_register_write(rt2x00dev, ARTCSR1, reg);
967 
968 	rt2x00mmio_register_read(rt2x00dev, ARTCSR2, &reg);
969 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
970 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
971 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
972 	rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
973 	rt2x00mmio_register_write(rt2x00dev, ARTCSR2, reg);
974 
975 	rt2x00mmio_register_read(rt2x00dev, RXCSR3, &reg);
976 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
977 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
978 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
979 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
980 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
981 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
982 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
983 	rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
984 	rt2x00mmio_register_write(rt2x00dev, RXCSR3, reg);
985 
986 	rt2x00mmio_register_read(rt2x00dev, PCICSR, &reg);
987 	rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
988 	rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
989 	rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
990 	rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
991 	rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
992 	rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
993 	rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
994 	rt2x00mmio_register_write(rt2x00dev, PCICSR, reg);
995 
996 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
997 
998 	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
999 	rt2x00mmio_register_write(rt2x00dev, TESTCSR, 0x000000f0);
1000 
1001 	if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1002 		return -EBUSY;
1003 
1004 	rt2x00mmio_register_write(rt2x00dev, MACCSR0, 0x00213223);
1005 	rt2x00mmio_register_write(rt2x00dev, MACCSR1, 0x00235518);
1006 
1007 	rt2x00mmio_register_read(rt2x00dev, MACCSR2, &reg);
1008 	rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1009 	rt2x00mmio_register_write(rt2x00dev, MACCSR2, reg);
1010 
1011 	rt2x00mmio_register_read(rt2x00dev, RALINKCSR, &reg);
1012 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1013 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1014 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1015 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1016 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1017 	rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1018 	rt2x00mmio_register_write(rt2x00dev, RALINKCSR, reg);
1019 
1020 	rt2x00mmio_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1021 
1022 	rt2x00mmio_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1023 
1024 	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1025 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1026 	rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1027 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1028 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1029 
1030 	rt2x00mmio_register_read(rt2x00dev, CSR1, &reg);
1031 	rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1032 	rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1033 	rt2x00mmio_register_write(rt2x00dev, CSR1, reg);
1034 
1035 	/*
1036 	 * We must clear the FCS and FIFO error count.
1037 	 * These registers are cleared on read,
1038 	 * so we may pass a useless variable to store the value.
1039 	 */
1040 	rt2x00mmio_register_read(rt2x00dev, CNT0, &reg);
1041 	rt2x00mmio_register_read(rt2x00dev, CNT4, &reg);
1042 
1043 	return 0;
1044 }
1045 
1046 static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1047 {
1048 	unsigned int i;
1049 	u8 value;
1050 
1051 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1052 		rt2500pci_bbp_read(rt2x00dev, 0, &value);
1053 		if ((value != 0xff) && (value != 0x00))
1054 			return 0;
1055 		udelay(REGISTER_BUSY_DELAY);
1056 	}
1057 
1058 	rt2x00_err(rt2x00dev, "BBP register access failed, aborting\n");
1059 	return -EACCES;
1060 }
1061 
1062 static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1063 {
1064 	unsigned int i;
1065 	u16 eeprom;
1066 	u8 reg_id;
1067 	u8 value;
1068 
1069 	if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1070 		return -EACCES;
1071 
1072 	rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1073 	rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1074 	rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1075 	rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1076 	rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1077 	rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1078 	rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1079 	rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1080 	rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1081 	rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1082 	rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1083 	rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1084 	rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1085 	rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1086 	rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1087 	rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1088 	rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1089 	rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1090 	rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1091 	rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1092 	rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1093 	rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1094 	rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1095 	rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1096 	rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1097 	rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1098 	rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1099 	rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1100 	rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1101 	rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1102 
1103 	for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1104 		rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1105 
1106 		if (eeprom != 0xffff && eeprom != 0x0000) {
1107 			reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1108 			value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1109 			rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1110 		}
1111 	}
1112 
1113 	return 0;
1114 }
1115 
1116 /*
1117  * Device state switch handlers.
1118  */
1119 static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1120 				 enum dev_state state)
1121 {
1122 	int mask = (state == STATE_RADIO_IRQ_OFF);
1123 	u32 reg;
1124 	unsigned long flags;
1125 
1126 	/*
1127 	 * When interrupts are being enabled, the interrupt registers
1128 	 * should clear the register to assure a clean state.
1129 	 */
1130 	if (state == STATE_RADIO_IRQ_ON) {
1131 		rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1132 		rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1133 	}
1134 
1135 	/*
1136 	 * Only toggle the interrupts bits we are going to use.
1137 	 * Non-checked interrupt bits are disabled by default.
1138 	 */
1139 	spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1140 
1141 	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1142 	rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1143 	rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1144 	rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1145 	rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1146 	rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1147 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1148 
1149 	spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1150 
1151 	if (state == STATE_RADIO_IRQ_OFF) {
1152 		/*
1153 		 * Ensure that all tasklets are finished.
1154 		 */
1155 		tasklet_kill(&rt2x00dev->txstatus_tasklet);
1156 		tasklet_kill(&rt2x00dev->rxdone_tasklet);
1157 		tasklet_kill(&rt2x00dev->tbtt_tasklet);
1158 	}
1159 }
1160 
1161 static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1162 {
1163 	/*
1164 	 * Initialize all registers.
1165 	 */
1166 	if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1167 		     rt2500pci_init_registers(rt2x00dev) ||
1168 		     rt2500pci_init_bbp(rt2x00dev)))
1169 		return -EIO;
1170 
1171 	return 0;
1172 }
1173 
1174 static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1175 {
1176 	/*
1177 	 * Disable power
1178 	 */
1179 	rt2x00mmio_register_write(rt2x00dev, PWRCSR0, 0);
1180 }
1181 
1182 static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1183 			       enum dev_state state)
1184 {
1185 	u32 reg, reg2;
1186 	unsigned int i;
1187 	char put_to_sleep;
1188 	char bbp_state;
1189 	char rf_state;
1190 
1191 	put_to_sleep = (state != STATE_AWAKE);
1192 
1193 	rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg);
1194 	rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1195 	rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1196 	rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1197 	rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1198 	rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1199 
1200 	/*
1201 	 * Device is not guaranteed to be in the requested state yet.
1202 	 * We must wait until the register indicates that the
1203 	 * device has entered the correct state.
1204 	 */
1205 	for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1206 		rt2x00mmio_register_read(rt2x00dev, PWRCSR1, &reg2);
1207 		bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1208 		rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1209 		if (bbp_state == state && rf_state == state)
1210 			return 0;
1211 		rt2x00mmio_register_write(rt2x00dev, PWRCSR1, reg);
1212 		msleep(10);
1213 	}
1214 
1215 	return -EBUSY;
1216 }
1217 
1218 static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1219 				      enum dev_state state)
1220 {
1221 	int retval = 0;
1222 
1223 	switch (state) {
1224 	case STATE_RADIO_ON:
1225 		retval = rt2500pci_enable_radio(rt2x00dev);
1226 		break;
1227 	case STATE_RADIO_OFF:
1228 		rt2500pci_disable_radio(rt2x00dev);
1229 		break;
1230 	case STATE_RADIO_IRQ_ON:
1231 	case STATE_RADIO_IRQ_OFF:
1232 		rt2500pci_toggle_irq(rt2x00dev, state);
1233 		break;
1234 	case STATE_DEEP_SLEEP:
1235 	case STATE_SLEEP:
1236 	case STATE_STANDBY:
1237 	case STATE_AWAKE:
1238 		retval = rt2500pci_set_state(rt2x00dev, state);
1239 		break;
1240 	default:
1241 		retval = -ENOTSUPP;
1242 		break;
1243 	}
1244 
1245 	if (unlikely(retval))
1246 		rt2x00_err(rt2x00dev, "Device failed to enter state %d (%d)\n",
1247 			   state, retval);
1248 
1249 	return retval;
1250 }
1251 
1252 /*
1253  * TX descriptor initialization
1254  */
1255 static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1256 				    struct txentry_desc *txdesc)
1257 {
1258 	struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1259 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1260 	__le32 *txd = entry_priv->desc;
1261 	u32 word;
1262 
1263 	/*
1264 	 * Start writing the descriptor words.
1265 	 */
1266 	rt2x00_desc_read(txd, 1, &word);
1267 	rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1268 	rt2x00_desc_write(txd, 1, word);
1269 
1270 	rt2x00_desc_read(txd, 2, &word);
1271 	rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1272 	rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1273 	rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1274 	rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1275 	rt2x00_desc_write(txd, 2, word);
1276 
1277 	rt2x00_desc_read(txd, 3, &word);
1278 	rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1279 	rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1280 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1281 			   txdesc->u.plcp.length_low);
1282 	rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1283 			   txdesc->u.plcp.length_high);
1284 	rt2x00_desc_write(txd, 3, word);
1285 
1286 	rt2x00_desc_read(txd, 10, &word);
1287 	rt2x00_set_field32(&word, TXD_W10_RTS,
1288 			   test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1289 	rt2x00_desc_write(txd, 10, word);
1290 
1291 	/*
1292 	 * Writing TXD word 0 must the last to prevent a race condition with
1293 	 * the device, whereby the device may take hold of the TXD before we
1294 	 * finished updating it.
1295 	 */
1296 	rt2x00_desc_read(txd, 0, &word);
1297 	rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1298 	rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1299 	rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1300 			   test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1301 	rt2x00_set_field32(&word, TXD_W0_ACK,
1302 			   test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1303 	rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1304 			   test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1305 	rt2x00_set_field32(&word, TXD_W0_OFDM,
1306 			   (txdesc->rate_mode == RATE_MODE_OFDM));
1307 	rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1308 	rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1309 	rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1310 			   test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1311 	rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1312 	rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1313 	rt2x00_desc_write(txd, 0, word);
1314 
1315 	/*
1316 	 * Register descriptor details in skb frame descriptor.
1317 	 */
1318 	skbdesc->desc = txd;
1319 	skbdesc->desc_len = TXD_DESC_SIZE;
1320 }
1321 
1322 /*
1323  * TX data initialization
1324  */
1325 static void rt2500pci_write_beacon(struct queue_entry *entry,
1326 				   struct txentry_desc *txdesc)
1327 {
1328 	struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1329 	u32 reg;
1330 
1331 	/*
1332 	 * Disable beaconing while we are reloading the beacon data,
1333 	 * otherwise we might be sending out invalid data.
1334 	 */
1335 	rt2x00mmio_register_read(rt2x00dev, CSR14, &reg);
1336 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1337 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1338 
1339 	if (rt2x00queue_map_txskb(entry)) {
1340 		rt2x00_err(rt2x00dev, "Fail to map beacon, aborting\n");
1341 		goto out;
1342 	}
1343 
1344 	/*
1345 	 * Write the TX descriptor for the beacon.
1346 	 */
1347 	rt2500pci_write_tx_desc(entry, txdesc);
1348 
1349 	/*
1350 	 * Dump beacon to userspace through debugfs.
1351 	 */
1352 	rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry);
1353 out:
1354 	/*
1355 	 * Enable beaconing again.
1356 	 */
1357 	rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1358 	rt2x00mmio_register_write(rt2x00dev, CSR14, reg);
1359 }
1360 
1361 /*
1362  * RX control handlers
1363  */
1364 static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1365 				  struct rxdone_entry_desc *rxdesc)
1366 {
1367 	struct queue_entry_priv_mmio *entry_priv = entry->priv_data;
1368 	u32 word0;
1369 	u32 word2;
1370 
1371 	rt2x00_desc_read(entry_priv->desc, 0, &word0);
1372 	rt2x00_desc_read(entry_priv->desc, 2, &word2);
1373 
1374 	if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1375 		rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1376 	if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1377 		rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1378 
1379 	/*
1380 	 * Obtain the status about this packet.
1381 	 * When frame was received with an OFDM bitrate,
1382 	 * the signal is the PLCP value. If it was received with
1383 	 * a CCK bitrate the signal is the rate in 100kbit/s.
1384 	 */
1385 	rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1386 	rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1387 	    entry->queue->rt2x00dev->rssi_offset;
1388 	rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1389 
1390 	if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1391 		rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1392 	else
1393 		rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1394 	if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1395 		rxdesc->dev_flags |= RXDONE_MY_BSS;
1396 }
1397 
1398 /*
1399  * Interrupt functions.
1400  */
1401 static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1402 			     const enum data_queue_qid queue_idx)
1403 {
1404 	struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1405 	struct queue_entry_priv_mmio *entry_priv;
1406 	struct queue_entry *entry;
1407 	struct txdone_entry_desc txdesc;
1408 	u32 word;
1409 
1410 	while (!rt2x00queue_empty(queue)) {
1411 		entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1412 		entry_priv = entry->priv_data;
1413 		rt2x00_desc_read(entry_priv->desc, 0, &word);
1414 
1415 		if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1416 		    !rt2x00_get_field32(word, TXD_W0_VALID))
1417 			break;
1418 
1419 		/*
1420 		 * Obtain the status about this packet.
1421 		 */
1422 		txdesc.flags = 0;
1423 		switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1424 		case 0: /* Success */
1425 		case 1: /* Success with retry */
1426 			__set_bit(TXDONE_SUCCESS, &txdesc.flags);
1427 			break;
1428 		case 2: /* Failure, excessive retries */
1429 			__set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1430 			/* Don't break, this is a failed frame! */
1431 		default: /* Failure */
1432 			__set_bit(TXDONE_FAILURE, &txdesc.flags);
1433 		}
1434 		txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1435 
1436 		rt2x00lib_txdone(entry, &txdesc);
1437 	}
1438 }
1439 
1440 static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1441 					      struct rt2x00_field32 irq_field)
1442 {
1443 	u32 reg;
1444 
1445 	/*
1446 	 * Enable a single interrupt. The interrupt mask register
1447 	 * access needs locking.
1448 	 */
1449 	spin_lock_irq(&rt2x00dev->irqmask_lock);
1450 
1451 	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1452 	rt2x00_set_field32(&reg, irq_field, 0);
1453 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1454 
1455 	spin_unlock_irq(&rt2x00dev->irqmask_lock);
1456 }
1457 
1458 static void rt2500pci_txstatus_tasklet(unsigned long data)
1459 {
1460 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1461 	u32 reg;
1462 
1463 	/*
1464 	 * Handle all tx queues.
1465 	 */
1466 	rt2500pci_txdone(rt2x00dev, QID_ATIM);
1467 	rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1468 	rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1469 
1470 	/*
1471 	 * Enable all TXDONE interrupts again.
1472 	 */
1473 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags)) {
1474 		spin_lock_irq(&rt2x00dev->irqmask_lock);
1475 
1476 		rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1477 		rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1478 		rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1479 		rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1480 		rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1481 
1482 		spin_unlock_irq(&rt2x00dev->irqmask_lock);
1483 	}
1484 }
1485 
1486 static void rt2500pci_tbtt_tasklet(unsigned long data)
1487 {
1488 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1489 	rt2x00lib_beacondone(rt2x00dev);
1490 	if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1491 		rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1492 }
1493 
1494 static void rt2500pci_rxdone_tasklet(unsigned long data)
1495 {
1496 	struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1497 	if (rt2x00mmio_rxdone(rt2x00dev))
1498 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1499 	else if (test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1500 		rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1501 }
1502 
1503 static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1504 {
1505 	struct rt2x00_dev *rt2x00dev = dev_instance;
1506 	u32 reg, mask;
1507 
1508 	/*
1509 	 * Get the interrupt sources & saved to local variable.
1510 	 * Write register value back to clear pending interrupts.
1511 	 */
1512 	rt2x00mmio_register_read(rt2x00dev, CSR7, &reg);
1513 	rt2x00mmio_register_write(rt2x00dev, CSR7, reg);
1514 
1515 	if (!reg)
1516 		return IRQ_NONE;
1517 
1518 	if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1519 		return IRQ_HANDLED;
1520 
1521 	mask = reg;
1522 
1523 	/*
1524 	 * Schedule tasklets for interrupt handling.
1525 	 */
1526 	if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1527 		tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1528 
1529 	if (rt2x00_get_field32(reg, CSR7_RXDONE))
1530 		tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1531 
1532 	if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1533 	    rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1534 	    rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1535 		tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1536 		/*
1537 		 * Mask out all txdone interrupts.
1538 		 */
1539 		rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1540 		rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1541 		rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1542 	}
1543 
1544 	/*
1545 	 * Disable all interrupts for which a tasklet was scheduled right now,
1546 	 * the tasklet will reenable the appropriate interrupts.
1547 	 */
1548 	spin_lock(&rt2x00dev->irqmask_lock);
1549 
1550 	rt2x00mmio_register_read(rt2x00dev, CSR8, &reg);
1551 	reg |= mask;
1552 	rt2x00mmio_register_write(rt2x00dev, CSR8, reg);
1553 
1554 	spin_unlock(&rt2x00dev->irqmask_lock);
1555 
1556 	return IRQ_HANDLED;
1557 }
1558 
1559 /*
1560  * Device probe functions.
1561  */
1562 static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1563 {
1564 	struct eeprom_93cx6 eeprom;
1565 	u32 reg;
1566 	u16 word;
1567 	u8 *mac;
1568 
1569 	rt2x00mmio_register_read(rt2x00dev, CSR21, &reg);
1570 
1571 	eeprom.data = rt2x00dev;
1572 	eeprom.register_read = rt2500pci_eepromregister_read;
1573 	eeprom.register_write = rt2500pci_eepromregister_write;
1574 	eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1575 	    PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1576 	eeprom.reg_data_in = 0;
1577 	eeprom.reg_data_out = 0;
1578 	eeprom.reg_data_clock = 0;
1579 	eeprom.reg_chip_select = 0;
1580 
1581 	eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1582 			       EEPROM_SIZE / sizeof(u16));
1583 
1584 	/*
1585 	 * Start validation of the data that has been read.
1586 	 */
1587 	mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1588 	rt2x00lib_set_mac_address(rt2x00dev, mac);
1589 
1590 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1591 	if (word == 0xffff) {
1592 		rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1593 		rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1594 				   ANTENNA_SW_DIVERSITY);
1595 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1596 				   ANTENNA_SW_DIVERSITY);
1597 		rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1598 				   LED_MODE_DEFAULT);
1599 		rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1600 		rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1601 		rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1602 		rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1603 		rt2x00_eeprom_dbg(rt2x00dev, "Antenna: 0x%04x\n", word);
1604 	}
1605 
1606 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1607 	if (word == 0xffff) {
1608 		rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1609 		rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1610 		rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1611 		rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1612 		rt2x00_eeprom_dbg(rt2x00dev, "NIC: 0x%04x\n", word);
1613 	}
1614 
1615 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1616 	if (word == 0xffff) {
1617 		rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1618 				   DEFAULT_RSSI_OFFSET);
1619 		rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1620 		rt2x00_eeprom_dbg(rt2x00dev, "Calibrate offset: 0x%04x\n",
1621 				  word);
1622 	}
1623 
1624 	return 0;
1625 }
1626 
1627 static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1628 {
1629 	u32 reg;
1630 	u16 value;
1631 	u16 eeprom;
1632 
1633 	/*
1634 	 * Read EEPROM word for configuration.
1635 	 */
1636 	rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1637 
1638 	/*
1639 	 * Identify RF chipset.
1640 	 */
1641 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1642 	rt2x00mmio_register_read(rt2x00dev, CSR0, &reg);
1643 	rt2x00_set_chip(rt2x00dev, RT2560, value,
1644 			rt2x00_get_field32(reg, CSR0_REVISION));
1645 
1646 	if (!rt2x00_rf(rt2x00dev, RF2522) &&
1647 	    !rt2x00_rf(rt2x00dev, RF2523) &&
1648 	    !rt2x00_rf(rt2x00dev, RF2524) &&
1649 	    !rt2x00_rf(rt2x00dev, RF2525) &&
1650 	    !rt2x00_rf(rt2x00dev, RF2525E) &&
1651 	    !rt2x00_rf(rt2x00dev, RF5222)) {
1652 		rt2x00_err(rt2x00dev, "Invalid RF chipset detected\n");
1653 		return -ENODEV;
1654 	}
1655 
1656 	/*
1657 	 * Identify default antenna configuration.
1658 	 */
1659 	rt2x00dev->default_ant.tx =
1660 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1661 	rt2x00dev->default_ant.rx =
1662 	    rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1663 
1664 	/*
1665 	 * Store led mode, for correct led behaviour.
1666 	 */
1667 #ifdef CONFIG_RT2X00_LIB_LEDS
1668 	value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1669 
1670 	rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1671 	if (value == LED_MODE_TXRX_ACTIVITY ||
1672 	    value == LED_MODE_DEFAULT ||
1673 	    value == LED_MODE_ASUS)
1674 		rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1675 				   LED_TYPE_ACTIVITY);
1676 #endif /* CONFIG_RT2X00_LIB_LEDS */
1677 
1678 	/*
1679 	 * Detect if this device has an hardware controlled radio.
1680 	 */
1681 	if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO)) {
1682 		__set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1683 		/*
1684 		 * On this device RFKILL initialized during probe does not work.
1685 		 */
1686 		__set_bit(REQUIRE_DELAYED_RFKILL, &rt2x00dev->cap_flags);
1687 	}
1688 
1689 	/*
1690 	 * Check if the BBP tuning should be enabled.
1691 	 */
1692 	rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1693 	if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1694 		__set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1695 
1696 	/*
1697 	 * Read the RSSI <-> dBm offset information.
1698 	 */
1699 	rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1700 	rt2x00dev->rssi_offset =
1701 	    rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1702 
1703 	return 0;
1704 }
1705 
1706 /*
1707  * RF value list for RF2522
1708  * Supports: 2.4 GHz
1709  */
1710 static const struct rf_channel rf_vals_bg_2522[] = {
1711 	{ 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1712 	{ 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1713 	{ 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1714 	{ 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1715 	{ 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1716 	{ 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1717 	{ 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1718 	{ 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1719 	{ 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1720 	{ 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1721 	{ 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1722 	{ 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1723 	{ 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1724 	{ 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1725 };
1726 
1727 /*
1728  * RF value list for RF2523
1729  * Supports: 2.4 GHz
1730  */
1731 static const struct rf_channel rf_vals_bg_2523[] = {
1732 	{ 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1733 	{ 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1734 	{ 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1735 	{ 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1736 	{ 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1737 	{ 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1738 	{ 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1739 	{ 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1740 	{ 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1741 	{ 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1742 	{ 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1743 	{ 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1744 	{ 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1745 	{ 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1746 };
1747 
1748 /*
1749  * RF value list for RF2524
1750  * Supports: 2.4 GHz
1751  */
1752 static const struct rf_channel rf_vals_bg_2524[] = {
1753 	{ 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1754 	{ 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1755 	{ 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1756 	{ 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1757 	{ 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1758 	{ 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1759 	{ 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1760 	{ 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1761 	{ 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1762 	{ 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1763 	{ 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1764 	{ 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1765 	{ 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1766 	{ 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1767 };
1768 
1769 /*
1770  * RF value list for RF2525
1771  * Supports: 2.4 GHz
1772  */
1773 static const struct rf_channel rf_vals_bg_2525[] = {
1774 	{ 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1775 	{ 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1776 	{ 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1777 	{ 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1778 	{ 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1779 	{ 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1780 	{ 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1781 	{ 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1782 	{ 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1783 	{ 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1784 	{ 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1785 	{ 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1786 	{ 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1787 	{ 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1788 };
1789 
1790 /*
1791  * RF value list for RF2525e
1792  * Supports: 2.4 GHz
1793  */
1794 static const struct rf_channel rf_vals_bg_2525e[] = {
1795 	{ 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1796 	{ 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1797 	{ 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1798 	{ 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1799 	{ 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1800 	{ 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1801 	{ 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1802 	{ 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1803 	{ 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1804 	{ 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1805 	{ 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1806 	{ 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1807 	{ 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1808 	{ 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1809 };
1810 
1811 /*
1812  * RF value list for RF5222
1813  * Supports: 2.4 GHz & 5.2 GHz
1814  */
1815 static const struct rf_channel rf_vals_5222[] = {
1816 	{ 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1817 	{ 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1818 	{ 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1819 	{ 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1820 	{ 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1821 	{ 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1822 	{ 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1823 	{ 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1824 	{ 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1825 	{ 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1826 	{ 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1827 	{ 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1828 	{ 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1829 	{ 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1830 
1831 	/* 802.11 UNI / HyperLan 2 */
1832 	{ 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1833 	{ 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1834 	{ 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1835 	{ 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1836 	{ 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1837 	{ 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1838 	{ 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1839 	{ 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1840 
1841 	/* 802.11 HyperLan 2 */
1842 	{ 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1843 	{ 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1844 	{ 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1845 	{ 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1846 	{ 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1847 	{ 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1848 	{ 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1849 	{ 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1850 	{ 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1851 	{ 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1852 
1853 	/* 802.11 UNII */
1854 	{ 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1855 	{ 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1856 	{ 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1857 	{ 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1858 	{ 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1859 };
1860 
1861 static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1862 {
1863 	struct hw_mode_spec *spec = &rt2x00dev->spec;
1864 	struct channel_info *info;
1865 	char *tx_power;
1866 	unsigned int i;
1867 
1868 	/*
1869 	 * Initialize all hw fields.
1870 	 */
1871 	ieee80211_hw_set(rt2x00dev->hw, PS_NULLFUNC_STACK);
1872 	ieee80211_hw_set(rt2x00dev->hw, SUPPORTS_PS);
1873 	ieee80211_hw_set(rt2x00dev->hw, HOST_BROADCAST_PS_BUFFERING);
1874 	ieee80211_hw_set(rt2x00dev->hw, SIGNAL_DBM);
1875 
1876 	SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1877 	SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1878 				rt2x00_eeprom_addr(rt2x00dev,
1879 						   EEPROM_MAC_ADDR_0));
1880 
1881 	/*
1882 	 * Disable powersaving as default.
1883 	 */
1884 	rt2x00dev->hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
1885 
1886 	/*
1887 	 * Initialize hw_mode information.
1888 	 */
1889 	spec->supported_bands = SUPPORT_BAND_2GHZ;
1890 	spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1891 
1892 	if (rt2x00_rf(rt2x00dev, RF2522)) {
1893 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1894 		spec->channels = rf_vals_bg_2522;
1895 	} else if (rt2x00_rf(rt2x00dev, RF2523)) {
1896 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1897 		spec->channels = rf_vals_bg_2523;
1898 	} else if (rt2x00_rf(rt2x00dev, RF2524)) {
1899 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1900 		spec->channels = rf_vals_bg_2524;
1901 	} else if (rt2x00_rf(rt2x00dev, RF2525)) {
1902 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1903 		spec->channels = rf_vals_bg_2525;
1904 	} else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1905 		spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1906 		spec->channels = rf_vals_bg_2525e;
1907 	} else if (rt2x00_rf(rt2x00dev, RF5222)) {
1908 		spec->supported_bands |= SUPPORT_BAND_5GHZ;
1909 		spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1910 		spec->channels = rf_vals_5222;
1911 	}
1912 
1913 	/*
1914 	 * Create channel information array
1915 	 */
1916 	info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1917 	if (!info)
1918 		return -ENOMEM;
1919 
1920 	spec->channels_info = info;
1921 
1922 	tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1923 	for (i = 0; i < 14; i++) {
1924 		info[i].max_power = MAX_TXPOWER;
1925 		info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1926 	}
1927 
1928 	if (spec->num_channels > 14) {
1929 		for (i = 14; i < spec->num_channels; i++) {
1930 			info[i].max_power = MAX_TXPOWER;
1931 			info[i].default_power1 = DEFAULT_TXPOWER;
1932 		}
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1939 {
1940 	int retval;
1941 	u32 reg;
1942 
1943 	/*
1944 	 * Allocate eeprom data.
1945 	 */
1946 	retval = rt2500pci_validate_eeprom(rt2x00dev);
1947 	if (retval)
1948 		return retval;
1949 
1950 	retval = rt2500pci_init_eeprom(rt2x00dev);
1951 	if (retval)
1952 		return retval;
1953 
1954 	/*
1955 	 * Enable rfkill polling by setting GPIO direction of the
1956 	 * rfkill switch GPIO pin correctly.
1957 	 */
1958 	rt2x00mmio_register_read(rt2x00dev, GPIOCSR, &reg);
1959 	rt2x00_set_field32(&reg, GPIOCSR_DIR0, 1);
1960 	rt2x00mmio_register_write(rt2x00dev, GPIOCSR, reg);
1961 
1962 	/*
1963 	 * Initialize hw specifications.
1964 	 */
1965 	retval = rt2500pci_probe_hw_mode(rt2x00dev);
1966 	if (retval)
1967 		return retval;
1968 
1969 	/*
1970 	 * This device requires the atim queue and DMA-mapped skbs.
1971 	 */
1972 	__set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1973 	__set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1974 	__set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1975 
1976 	/*
1977 	 * Set the rssi offset.
1978 	 */
1979 	rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1980 
1981 	return 0;
1982 }
1983 
1984 /*
1985  * IEEE80211 stack callback functions.
1986  */
1987 static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw,
1988 			     struct ieee80211_vif *vif)
1989 {
1990 	struct rt2x00_dev *rt2x00dev = hw->priv;
1991 	u64 tsf;
1992 	u32 reg;
1993 
1994 	rt2x00mmio_register_read(rt2x00dev, CSR17, &reg);
1995 	tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1996 	rt2x00mmio_register_read(rt2x00dev, CSR16, &reg);
1997 	tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1998 
1999 	return tsf;
2000 }
2001 
2002 static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
2003 {
2004 	struct rt2x00_dev *rt2x00dev = hw->priv;
2005 	u32 reg;
2006 
2007 	rt2x00mmio_register_read(rt2x00dev, CSR15, &reg);
2008 	return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
2009 }
2010 
2011 static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2012 	.tx			= rt2x00mac_tx,
2013 	.start			= rt2x00mac_start,
2014 	.stop			= rt2x00mac_stop,
2015 	.add_interface		= rt2x00mac_add_interface,
2016 	.remove_interface	= rt2x00mac_remove_interface,
2017 	.config			= rt2x00mac_config,
2018 	.configure_filter	= rt2x00mac_configure_filter,
2019 	.sw_scan_start		= rt2x00mac_sw_scan_start,
2020 	.sw_scan_complete	= rt2x00mac_sw_scan_complete,
2021 	.get_stats		= rt2x00mac_get_stats,
2022 	.bss_info_changed	= rt2x00mac_bss_info_changed,
2023 	.conf_tx		= rt2x00mac_conf_tx,
2024 	.get_tsf		= rt2500pci_get_tsf,
2025 	.tx_last_beacon		= rt2500pci_tx_last_beacon,
2026 	.rfkill_poll		= rt2x00mac_rfkill_poll,
2027 	.flush			= rt2x00mac_flush,
2028 	.set_antenna		= rt2x00mac_set_antenna,
2029 	.get_antenna		= rt2x00mac_get_antenna,
2030 	.get_ringparam		= rt2x00mac_get_ringparam,
2031 	.tx_frames_pending	= rt2x00mac_tx_frames_pending,
2032 };
2033 
2034 static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2035 	.irq_handler		= rt2500pci_interrupt,
2036 	.txstatus_tasklet	= rt2500pci_txstatus_tasklet,
2037 	.tbtt_tasklet		= rt2500pci_tbtt_tasklet,
2038 	.rxdone_tasklet		= rt2500pci_rxdone_tasklet,
2039 	.probe_hw		= rt2500pci_probe_hw,
2040 	.initialize		= rt2x00mmio_initialize,
2041 	.uninitialize		= rt2x00mmio_uninitialize,
2042 	.get_entry_state	= rt2500pci_get_entry_state,
2043 	.clear_entry		= rt2500pci_clear_entry,
2044 	.set_device_state	= rt2500pci_set_device_state,
2045 	.rfkill_poll		= rt2500pci_rfkill_poll,
2046 	.link_stats		= rt2500pci_link_stats,
2047 	.reset_tuner		= rt2500pci_reset_tuner,
2048 	.link_tuner		= rt2500pci_link_tuner,
2049 	.start_queue		= rt2500pci_start_queue,
2050 	.kick_queue		= rt2500pci_kick_queue,
2051 	.stop_queue		= rt2500pci_stop_queue,
2052 	.flush_queue		= rt2x00mmio_flush_queue,
2053 	.write_tx_desc		= rt2500pci_write_tx_desc,
2054 	.write_beacon		= rt2500pci_write_beacon,
2055 	.fill_rxdone		= rt2500pci_fill_rxdone,
2056 	.config_filter		= rt2500pci_config_filter,
2057 	.config_intf		= rt2500pci_config_intf,
2058 	.config_erp		= rt2500pci_config_erp,
2059 	.config_ant		= rt2500pci_config_ant,
2060 	.config			= rt2500pci_config,
2061 };
2062 
2063 static void rt2500pci_queue_init(struct data_queue *queue)
2064 {
2065 	switch (queue->qid) {
2066 	case QID_RX:
2067 		queue->limit = 32;
2068 		queue->data_size = DATA_FRAME_SIZE;
2069 		queue->desc_size = RXD_DESC_SIZE;
2070 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2071 		break;
2072 
2073 	case QID_AC_VO:
2074 	case QID_AC_VI:
2075 	case QID_AC_BE:
2076 	case QID_AC_BK:
2077 		queue->limit = 32;
2078 		queue->data_size = DATA_FRAME_SIZE;
2079 		queue->desc_size = TXD_DESC_SIZE;
2080 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2081 		break;
2082 
2083 	case QID_BEACON:
2084 		queue->limit = 1;
2085 		queue->data_size = MGMT_FRAME_SIZE;
2086 		queue->desc_size = TXD_DESC_SIZE;
2087 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2088 		break;
2089 
2090 	case QID_ATIM:
2091 		queue->limit = 8;
2092 		queue->data_size = DATA_FRAME_SIZE;
2093 		queue->desc_size = TXD_DESC_SIZE;
2094 		queue->priv_size = sizeof(struct queue_entry_priv_mmio);
2095 		break;
2096 
2097 	default:
2098 		BUG();
2099 		break;
2100 	}
2101 }
2102 
2103 static const struct rt2x00_ops rt2500pci_ops = {
2104 	.name			= KBUILD_MODNAME,
2105 	.max_ap_intf		= 1,
2106 	.eeprom_size		= EEPROM_SIZE,
2107 	.rf_size		= RF_SIZE,
2108 	.tx_queues		= NUM_TX_QUEUES,
2109 	.queue_init		= rt2500pci_queue_init,
2110 	.lib			= &rt2500pci_rt2x00_ops,
2111 	.hw			= &rt2500pci_mac80211_ops,
2112 #ifdef CONFIG_RT2X00_LIB_DEBUGFS
2113 	.debugfs		= &rt2500pci_rt2x00debug,
2114 #endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2115 };
2116 
2117 /*
2118  * RT2500pci module information.
2119  */
2120 static const struct pci_device_id rt2500pci_device_table[] = {
2121 	{ PCI_DEVICE(0x1814, 0x0201) },
2122 	{ 0, }
2123 };
2124 
2125 MODULE_AUTHOR(DRV_PROJECT);
2126 MODULE_VERSION(DRV_VERSION);
2127 MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2128 MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2129 MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2130 MODULE_LICENSE("GPL");
2131 
2132 static int rt2500pci_probe(struct pci_dev *pci_dev,
2133 			   const struct pci_device_id *id)
2134 {
2135 	return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2136 }
2137 
2138 static struct pci_driver rt2500pci_driver = {
2139 	.name		= KBUILD_MODNAME,
2140 	.id_table	= rt2500pci_device_table,
2141 	.probe		= rt2500pci_probe,
2142 	.remove		= rt2x00pci_remove,
2143 	.suspend	= rt2x00pci_suspend,
2144 	.resume		= rt2x00pci_resume,
2145 };
2146 
2147 module_pci_driver(rt2500pci_driver);
2148