xref: /linux/drivers/net/wireless/mediatek/mt76/usb.c (revision 19d0070a2792181f79df01277fe00b83b9f7eda7)
1 // SPDX-License-Identifier: ISC
2 /*
3  * Copyright (C) 2018 Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>
4  */
5 
6 #include <linux/module.h>
7 #include "mt76.h"
8 #include "usb_trace.h"
9 #include "dma.h"
10 
11 #define MT_VEND_REQ_MAX_RETRY	10
12 #define MT_VEND_REQ_TOUT_MS	300
13 
14 static bool disable_usb_sg;
15 module_param_named(disable_usb_sg, disable_usb_sg, bool, 0644);
16 MODULE_PARM_DESC(disable_usb_sg, "Disable usb scatter-gather support");
17 
18 static int __mt76u_vendor_request(struct mt76_dev *dev, u8 req,
19 				  u8 req_type, u16 val, u16 offset,
20 				  void *buf, size_t len)
21 {
22 	struct usb_interface *uintf = to_usb_interface(dev->dev);
23 	struct usb_device *udev = interface_to_usbdev(uintf);
24 	unsigned int pipe;
25 	int i, ret;
26 
27 	lockdep_assert_held(&dev->usb.usb_ctrl_mtx);
28 
29 	pipe = (req_type & USB_DIR_IN) ? usb_rcvctrlpipe(udev, 0)
30 				       : usb_sndctrlpipe(udev, 0);
31 	for (i = 0; i < MT_VEND_REQ_MAX_RETRY; i++) {
32 		if (test_bit(MT76_REMOVED, &dev->phy.state))
33 			return -EIO;
34 
35 		ret = usb_control_msg(udev, pipe, req, req_type, val,
36 				      offset, buf, len, MT_VEND_REQ_TOUT_MS);
37 		if (ret == -ENODEV)
38 			set_bit(MT76_REMOVED, &dev->phy.state);
39 		if (ret >= 0 || ret == -ENODEV)
40 			return ret;
41 		usleep_range(5000, 10000);
42 	}
43 
44 	dev_err(dev->dev, "vendor request req:%02x off:%04x failed:%d\n",
45 		req, offset, ret);
46 	return ret;
47 }
48 
49 int mt76u_vendor_request(struct mt76_dev *dev, u8 req,
50 			 u8 req_type, u16 val, u16 offset,
51 			 void *buf, size_t len)
52 {
53 	int ret;
54 
55 	mutex_lock(&dev->usb.usb_ctrl_mtx);
56 	ret = __mt76u_vendor_request(dev, req, req_type,
57 				     val, offset, buf, len);
58 	trace_usb_reg_wr(dev, offset, val);
59 	mutex_unlock(&dev->usb.usb_ctrl_mtx);
60 
61 	return ret;
62 }
63 EXPORT_SYMBOL_GPL(mt76u_vendor_request);
64 
65 static u32 ___mt76u_rr(struct mt76_dev *dev, u8 req, u32 addr)
66 {
67 	struct mt76_usb *usb = &dev->usb;
68 	u32 data = ~0;
69 	int ret;
70 
71 	ret = __mt76u_vendor_request(dev, req,
72 				     USB_DIR_IN | USB_TYPE_VENDOR,
73 				     addr >> 16, addr, usb->data,
74 				     sizeof(__le32));
75 	if (ret == sizeof(__le32))
76 		data = get_unaligned_le32(usb->data);
77 	trace_usb_reg_rr(dev, addr, data);
78 
79 	return data;
80 }
81 
82 static u32 __mt76u_rr(struct mt76_dev *dev, u32 addr)
83 {
84 	u8 req;
85 
86 	switch (addr & MT_VEND_TYPE_MASK) {
87 	case MT_VEND_TYPE_EEPROM:
88 		req = MT_VEND_READ_EEPROM;
89 		break;
90 	case MT_VEND_TYPE_CFG:
91 		req = MT_VEND_READ_CFG;
92 		break;
93 	default:
94 		req = MT_VEND_MULTI_READ;
95 		break;
96 	}
97 
98 	return ___mt76u_rr(dev, req, addr & ~MT_VEND_TYPE_MASK);
99 }
100 
101 static u32 mt76u_rr(struct mt76_dev *dev, u32 addr)
102 {
103 	u32 ret;
104 
105 	mutex_lock(&dev->usb.usb_ctrl_mtx);
106 	ret = __mt76u_rr(dev, addr);
107 	mutex_unlock(&dev->usb.usb_ctrl_mtx);
108 
109 	return ret;
110 }
111 
112 static u32 mt76u_rr_ext(struct mt76_dev *dev, u32 addr)
113 {
114 	u32 ret;
115 
116 	mutex_lock(&dev->usb.usb_ctrl_mtx);
117 	ret = ___mt76u_rr(dev, MT_VEND_READ_EXT, addr);
118 	mutex_unlock(&dev->usb.usb_ctrl_mtx);
119 
120 	return ret;
121 }
122 
123 static void ___mt76u_wr(struct mt76_dev *dev, u8 req,
124 			u32 addr, u32 val)
125 {
126 	struct mt76_usb *usb = &dev->usb;
127 
128 	put_unaligned_le32(val, usb->data);
129 	__mt76u_vendor_request(dev, req,
130 			       USB_DIR_OUT | USB_TYPE_VENDOR,
131 			       addr >> 16, addr, usb->data,
132 			       sizeof(__le32));
133 	trace_usb_reg_wr(dev, addr, val);
134 }
135 
136 static void __mt76u_wr(struct mt76_dev *dev, u32 addr, u32 val)
137 {
138 	u8 req;
139 
140 	switch (addr & MT_VEND_TYPE_MASK) {
141 	case MT_VEND_TYPE_CFG:
142 		req = MT_VEND_WRITE_CFG;
143 		break;
144 	default:
145 		req = MT_VEND_MULTI_WRITE;
146 		break;
147 	}
148 	___mt76u_wr(dev, req, addr & ~MT_VEND_TYPE_MASK, val);
149 }
150 
151 static void mt76u_wr(struct mt76_dev *dev, u32 addr, u32 val)
152 {
153 	mutex_lock(&dev->usb.usb_ctrl_mtx);
154 	__mt76u_wr(dev, addr, val);
155 	mutex_unlock(&dev->usb.usb_ctrl_mtx);
156 }
157 
158 static void mt76u_wr_ext(struct mt76_dev *dev, u32 addr, u32 val)
159 {
160 	mutex_lock(&dev->usb.usb_ctrl_mtx);
161 	___mt76u_wr(dev, MT_VEND_WRITE_EXT, addr, val);
162 	mutex_unlock(&dev->usb.usb_ctrl_mtx);
163 }
164 
165 static u32 mt76u_rmw(struct mt76_dev *dev, u32 addr,
166 		     u32 mask, u32 val)
167 {
168 	mutex_lock(&dev->usb.usb_ctrl_mtx);
169 	val |= __mt76u_rr(dev, addr) & ~mask;
170 	__mt76u_wr(dev, addr, val);
171 	mutex_unlock(&dev->usb.usb_ctrl_mtx);
172 
173 	return val;
174 }
175 
176 static u32 mt76u_rmw_ext(struct mt76_dev *dev, u32 addr,
177 			 u32 mask, u32 val)
178 {
179 	mutex_lock(&dev->usb.usb_ctrl_mtx);
180 	val |= ___mt76u_rr(dev, MT_VEND_READ_EXT, addr) & ~mask;
181 	___mt76u_wr(dev, MT_VEND_WRITE_EXT, addr, val);
182 	mutex_unlock(&dev->usb.usb_ctrl_mtx);
183 
184 	return val;
185 }
186 
187 static void mt76u_copy(struct mt76_dev *dev, u32 offset,
188 		       const void *data, int len)
189 {
190 	struct mt76_usb *usb = &dev->usb;
191 	const u8 *val = data;
192 	int ret;
193 	int current_batch_size;
194 	int i = 0;
195 
196 	/* Assure that always a multiple of 4 bytes are copied,
197 	 * otherwise beacons can be corrupted.
198 	 * See: "mt76: round up length on mt76_wr_copy"
199 	 * Commit 850e8f6fbd5d0003b0
200 	 */
201 	len = round_up(len, 4);
202 
203 	mutex_lock(&usb->usb_ctrl_mtx);
204 	while (i < len) {
205 		current_batch_size = min_t(int, usb->data_len, len - i);
206 		memcpy(usb->data, val + i, current_batch_size);
207 		ret = __mt76u_vendor_request(dev, MT_VEND_MULTI_WRITE,
208 					     USB_DIR_OUT | USB_TYPE_VENDOR,
209 					     0, offset + i, usb->data,
210 					     current_batch_size);
211 		if (ret < 0)
212 			break;
213 
214 		i += current_batch_size;
215 	}
216 	mutex_unlock(&usb->usb_ctrl_mtx);
217 }
218 
219 static void mt76u_copy_ext(struct mt76_dev *dev, u32 offset,
220 			   const void *data, int len)
221 {
222 	struct mt76_usb *usb = &dev->usb;
223 	int ret, i = 0, batch_len;
224 	const u8 *val = data;
225 
226 	len = round_up(len, 4);
227 	mutex_lock(&usb->usb_ctrl_mtx);
228 	while (i < len) {
229 		batch_len = min_t(int, usb->data_len, len - i);
230 		memcpy(usb->data, val + i, batch_len);
231 		ret = __mt76u_vendor_request(dev, MT_VEND_WRITE_EXT,
232 					     USB_DIR_OUT | USB_TYPE_VENDOR,
233 					     (offset + i) >> 16, offset + i,
234 					     usb->data, batch_len);
235 		if (ret < 0)
236 			break;
237 
238 		i += batch_len;
239 	}
240 	mutex_unlock(&usb->usb_ctrl_mtx);
241 }
242 
243 static void
244 mt76u_read_copy_ext(struct mt76_dev *dev, u32 offset,
245 		    void *data, int len)
246 {
247 	struct mt76_usb *usb = &dev->usb;
248 	int i = 0, batch_len, ret;
249 	u8 *val = data;
250 
251 	len = round_up(len, 4);
252 	mutex_lock(&usb->usb_ctrl_mtx);
253 	while (i < len) {
254 		batch_len = min_t(int, usb->data_len, len - i);
255 		ret = __mt76u_vendor_request(dev, MT_VEND_READ_EXT,
256 					     USB_DIR_IN | USB_TYPE_VENDOR,
257 					     (offset + i) >> 16, offset + i,
258 					     usb->data, batch_len);
259 		if (ret < 0)
260 			break;
261 
262 		memcpy(val + i, usb->data, batch_len);
263 		i += batch_len;
264 	}
265 	mutex_unlock(&usb->usb_ctrl_mtx);
266 }
267 
268 void mt76u_single_wr(struct mt76_dev *dev, const u8 req,
269 		     const u16 offset, const u32 val)
270 {
271 	mutex_lock(&dev->usb.usb_ctrl_mtx);
272 	__mt76u_vendor_request(dev, req,
273 			       USB_DIR_OUT | USB_TYPE_VENDOR,
274 			       val & 0xffff, offset, NULL, 0);
275 	__mt76u_vendor_request(dev, req,
276 			       USB_DIR_OUT | USB_TYPE_VENDOR,
277 			       val >> 16, offset + 2, NULL, 0);
278 	mutex_unlock(&dev->usb.usb_ctrl_mtx);
279 }
280 EXPORT_SYMBOL_GPL(mt76u_single_wr);
281 
282 static int
283 mt76u_req_wr_rp(struct mt76_dev *dev, u32 base,
284 		const struct mt76_reg_pair *data, int len)
285 {
286 	struct mt76_usb *usb = &dev->usb;
287 
288 	mutex_lock(&usb->usb_ctrl_mtx);
289 	while (len > 0) {
290 		__mt76u_wr(dev, base + data->reg, data->value);
291 		len--;
292 		data++;
293 	}
294 	mutex_unlock(&usb->usb_ctrl_mtx);
295 
296 	return 0;
297 }
298 
299 static int
300 mt76u_wr_rp(struct mt76_dev *dev, u32 base,
301 	    const struct mt76_reg_pair *data, int n)
302 {
303 	if (test_bit(MT76_STATE_MCU_RUNNING, &dev->phy.state))
304 		return dev->mcu_ops->mcu_wr_rp(dev, base, data, n);
305 	else
306 		return mt76u_req_wr_rp(dev, base, data, n);
307 }
308 
309 static int
310 mt76u_req_rd_rp(struct mt76_dev *dev, u32 base, struct mt76_reg_pair *data,
311 		int len)
312 {
313 	struct mt76_usb *usb = &dev->usb;
314 
315 	mutex_lock(&usb->usb_ctrl_mtx);
316 	while (len > 0) {
317 		data->value = __mt76u_rr(dev, base + data->reg);
318 		len--;
319 		data++;
320 	}
321 	mutex_unlock(&usb->usb_ctrl_mtx);
322 
323 	return 0;
324 }
325 
326 static int
327 mt76u_rd_rp(struct mt76_dev *dev, u32 base,
328 	    struct mt76_reg_pair *data, int n)
329 {
330 	if (test_bit(MT76_STATE_MCU_RUNNING, &dev->phy.state))
331 		return dev->mcu_ops->mcu_rd_rp(dev, base, data, n);
332 	else
333 		return mt76u_req_rd_rp(dev, base, data, n);
334 }
335 
336 static bool mt76u_check_sg(struct mt76_dev *dev)
337 {
338 	struct usb_interface *uintf = to_usb_interface(dev->dev);
339 	struct usb_device *udev = interface_to_usbdev(uintf);
340 
341 	return (!disable_usb_sg && udev->bus->sg_tablesize > 0 &&
342 		(udev->bus->no_sg_constraint ||
343 		 udev->speed == USB_SPEED_WIRELESS));
344 }
345 
346 static int
347 mt76u_set_endpoints(struct usb_interface *intf,
348 		    struct mt76_usb *usb)
349 {
350 	struct usb_host_interface *intf_desc = intf->cur_altsetting;
351 	struct usb_endpoint_descriptor *ep_desc;
352 	int i, in_ep = 0, out_ep = 0;
353 
354 	for (i = 0; i < intf_desc->desc.bNumEndpoints; i++) {
355 		ep_desc = &intf_desc->endpoint[i].desc;
356 
357 		if (usb_endpoint_is_bulk_in(ep_desc) &&
358 		    in_ep < __MT_EP_IN_MAX) {
359 			usb->in_ep[in_ep] = usb_endpoint_num(ep_desc);
360 			in_ep++;
361 		} else if (usb_endpoint_is_bulk_out(ep_desc) &&
362 			   out_ep < __MT_EP_OUT_MAX) {
363 			usb->out_ep[out_ep] = usb_endpoint_num(ep_desc);
364 			out_ep++;
365 		}
366 	}
367 
368 	if (in_ep != __MT_EP_IN_MAX || out_ep != __MT_EP_OUT_MAX)
369 		return -EINVAL;
370 	return 0;
371 }
372 
373 static int
374 mt76u_fill_rx_sg(struct mt76_dev *dev, struct mt76_queue *q, struct urb *urb,
375 		 int nsgs, gfp_t gfp)
376 {
377 	int i;
378 
379 	for (i = 0; i < nsgs; i++) {
380 		struct page *page;
381 		void *data;
382 		int offset;
383 
384 		data = page_frag_alloc(&q->rx_page, q->buf_size, gfp);
385 		if (!data)
386 			break;
387 
388 		page = virt_to_head_page(data);
389 		offset = data - page_address(page);
390 		sg_set_page(&urb->sg[i], page, q->buf_size, offset);
391 	}
392 
393 	if (i < nsgs) {
394 		int j;
395 
396 		for (j = nsgs; j < urb->num_sgs; j++)
397 			skb_free_frag(sg_virt(&urb->sg[j]));
398 		urb->num_sgs = i;
399 	}
400 
401 	urb->num_sgs = max_t(int, i, urb->num_sgs);
402 	urb->transfer_buffer_length = urb->num_sgs * q->buf_size;
403 	sg_init_marker(urb->sg, urb->num_sgs);
404 
405 	return i ? : -ENOMEM;
406 }
407 
408 static int
409 mt76u_refill_rx(struct mt76_dev *dev, struct mt76_queue *q,
410 		struct urb *urb, int nsgs, gfp_t gfp)
411 {
412 	enum mt76_rxq_id qid = q - &dev->q_rx[MT_RXQ_MAIN];
413 
414 	if (qid == MT_RXQ_MAIN && dev->usb.sg_en)
415 		return mt76u_fill_rx_sg(dev, q, urb, nsgs, gfp);
416 
417 	urb->transfer_buffer_length = q->buf_size;
418 	urb->transfer_buffer = page_frag_alloc(&q->rx_page, q->buf_size, gfp);
419 
420 	return urb->transfer_buffer ? 0 : -ENOMEM;
421 }
422 
423 static int
424 mt76u_urb_alloc(struct mt76_dev *dev, struct mt76_queue_entry *e,
425 		int sg_max_size)
426 {
427 	unsigned int size = sizeof(struct urb);
428 
429 	if (dev->usb.sg_en)
430 		size += sg_max_size * sizeof(struct scatterlist);
431 
432 	e->urb = kzalloc(size, GFP_KERNEL);
433 	if (!e->urb)
434 		return -ENOMEM;
435 
436 	usb_init_urb(e->urb);
437 
438 	if (dev->usb.sg_en && sg_max_size > 0)
439 		e->urb->sg = (struct scatterlist *)(e->urb + 1);
440 
441 	return 0;
442 }
443 
444 static int
445 mt76u_rx_urb_alloc(struct mt76_dev *dev, struct mt76_queue *q,
446 		   struct mt76_queue_entry *e)
447 {
448 	enum mt76_rxq_id qid = q - &dev->q_rx[MT_RXQ_MAIN];
449 	int err, sg_size;
450 
451 	sg_size = qid == MT_RXQ_MAIN ? MT_RX_SG_MAX_SIZE : 0;
452 	err = mt76u_urb_alloc(dev, e, sg_size);
453 	if (err)
454 		return err;
455 
456 	return mt76u_refill_rx(dev, q, e->urb, sg_size, GFP_KERNEL);
457 }
458 
459 static void mt76u_urb_free(struct urb *urb)
460 {
461 	int i;
462 
463 	for (i = 0; i < urb->num_sgs; i++)
464 		skb_free_frag(sg_virt(&urb->sg[i]));
465 
466 	if (urb->transfer_buffer)
467 		skb_free_frag(urb->transfer_buffer);
468 
469 	usb_free_urb(urb);
470 }
471 
472 static void
473 mt76u_fill_bulk_urb(struct mt76_dev *dev, int dir, int index,
474 		    struct urb *urb, usb_complete_t complete_fn,
475 		    void *context)
476 {
477 	struct usb_interface *uintf = to_usb_interface(dev->dev);
478 	struct usb_device *udev = interface_to_usbdev(uintf);
479 	unsigned int pipe;
480 
481 	if (dir == USB_DIR_IN)
482 		pipe = usb_rcvbulkpipe(udev, dev->usb.in_ep[index]);
483 	else
484 		pipe = usb_sndbulkpipe(udev, dev->usb.out_ep[index]);
485 
486 	urb->dev = udev;
487 	urb->pipe = pipe;
488 	urb->complete = complete_fn;
489 	urb->context = context;
490 }
491 
492 static struct urb *
493 mt76u_get_next_rx_entry(struct mt76_queue *q)
494 {
495 	struct urb *urb = NULL;
496 	unsigned long flags;
497 
498 	spin_lock_irqsave(&q->lock, flags);
499 	if (q->queued > 0) {
500 		urb = q->entry[q->head].urb;
501 		q->head = (q->head + 1) % q->ndesc;
502 		q->queued--;
503 	}
504 	spin_unlock_irqrestore(&q->lock, flags);
505 
506 	return urb;
507 }
508 
509 static int
510 mt76u_get_rx_entry_len(struct mt76_dev *dev, u8 *data,
511 		       u32 data_len)
512 {
513 	u16 dma_len, min_len;
514 
515 	dma_len = get_unaligned_le16(data);
516 	if (dev->drv->drv_flags & MT_DRV_RX_DMA_HDR)
517 		return dma_len;
518 
519 	min_len = MT_DMA_HDR_LEN + MT_RX_RXWI_LEN + MT_FCE_INFO_LEN;
520 	if (data_len < min_len || !dma_len ||
521 	    dma_len + MT_DMA_HDR_LEN > data_len ||
522 	    (dma_len & 0x3))
523 		return -EINVAL;
524 	return dma_len;
525 }
526 
527 static struct sk_buff *
528 mt76u_build_rx_skb(struct mt76_dev *dev, void *data,
529 		   int len, int buf_size)
530 {
531 	int head_room, drv_flags = dev->drv->drv_flags;
532 	struct sk_buff *skb;
533 
534 	head_room = drv_flags & MT_DRV_RX_DMA_HDR ? 0 : MT_DMA_HDR_LEN;
535 	if (SKB_WITH_OVERHEAD(buf_size) < head_room + len) {
536 		struct page *page;
537 
538 		/* slow path, not enough space for data and
539 		 * skb_shared_info
540 		 */
541 		skb = alloc_skb(MT_SKB_HEAD_LEN, GFP_ATOMIC);
542 		if (!skb)
543 			return NULL;
544 
545 		skb_put_data(skb, data + head_room, MT_SKB_HEAD_LEN);
546 		data += head_room + MT_SKB_HEAD_LEN;
547 		page = virt_to_head_page(data);
548 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
549 				page, data - page_address(page),
550 				len - MT_SKB_HEAD_LEN, buf_size);
551 
552 		return skb;
553 	}
554 
555 	/* fast path */
556 	skb = build_skb(data, buf_size);
557 	if (!skb)
558 		return NULL;
559 
560 	skb_reserve(skb, head_room);
561 	__skb_put(skb, len);
562 
563 	return skb;
564 }
565 
566 static int
567 mt76u_process_rx_entry(struct mt76_dev *dev, struct urb *urb,
568 		       int buf_size)
569 {
570 	u8 *data = urb->num_sgs ? sg_virt(&urb->sg[0]) : urb->transfer_buffer;
571 	int data_len = urb->num_sgs ? urb->sg[0].length : urb->actual_length;
572 	int len, nsgs = 1, head_room, drv_flags = dev->drv->drv_flags;
573 	struct sk_buff *skb;
574 
575 	if (!test_bit(MT76_STATE_INITIALIZED, &dev->phy.state))
576 		return 0;
577 
578 	len = mt76u_get_rx_entry_len(dev, data, urb->actual_length);
579 	if (len < 0)
580 		return 0;
581 
582 	head_room = drv_flags & MT_DRV_RX_DMA_HDR ? 0 : MT_DMA_HDR_LEN;
583 	data_len = min_t(int, len, data_len - head_room);
584 	skb = mt76u_build_rx_skb(dev, data, data_len, buf_size);
585 	if (!skb)
586 		return 0;
587 
588 	len -= data_len;
589 	while (len > 0 && nsgs < urb->num_sgs) {
590 		data_len = min_t(int, len, urb->sg[nsgs].length);
591 		skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags,
592 				sg_page(&urb->sg[nsgs]),
593 				urb->sg[nsgs].offset, data_len,
594 				buf_size);
595 		len -= data_len;
596 		nsgs++;
597 	}
598 	dev->drv->rx_skb(dev, MT_RXQ_MAIN, skb);
599 
600 	return nsgs;
601 }
602 
603 static void mt76u_complete_rx(struct urb *urb)
604 {
605 	struct mt76_dev *dev = dev_get_drvdata(&urb->dev->dev);
606 	struct mt76_queue *q = urb->context;
607 	unsigned long flags;
608 
609 	trace_rx_urb(dev, urb);
610 
611 	switch (urb->status) {
612 	case -ECONNRESET:
613 	case -ESHUTDOWN:
614 	case -ENOENT:
615 		return;
616 	default:
617 		dev_err_ratelimited(dev->dev, "rx urb failed: %d\n",
618 				    urb->status);
619 		/* fall through */
620 	case 0:
621 		break;
622 	}
623 
624 	spin_lock_irqsave(&q->lock, flags);
625 	if (WARN_ONCE(q->entry[q->tail].urb != urb, "rx urb mismatch"))
626 		goto out;
627 
628 	q->tail = (q->tail + 1) % q->ndesc;
629 	q->queued++;
630 	tasklet_schedule(&dev->usb.rx_tasklet);
631 out:
632 	spin_unlock_irqrestore(&q->lock, flags);
633 }
634 
635 static int
636 mt76u_submit_rx_buf(struct mt76_dev *dev, enum mt76_rxq_id qid,
637 		    struct urb *urb)
638 {
639 	int ep = qid == MT_RXQ_MAIN ? MT_EP_IN_PKT_RX : MT_EP_IN_CMD_RESP;
640 
641 	mt76u_fill_bulk_urb(dev, USB_DIR_IN, ep, urb,
642 			    mt76u_complete_rx, &dev->q_rx[qid]);
643 	trace_submit_urb(dev, urb);
644 
645 	return usb_submit_urb(urb, GFP_ATOMIC);
646 }
647 
648 static void
649 mt76u_process_rx_queue(struct mt76_dev *dev, struct mt76_queue *q)
650 {
651 	int qid = q - &dev->q_rx[MT_RXQ_MAIN];
652 	struct urb *urb;
653 	int err, count;
654 
655 	while (true) {
656 		urb = mt76u_get_next_rx_entry(q);
657 		if (!urb)
658 			break;
659 
660 		count = mt76u_process_rx_entry(dev, urb, q->buf_size);
661 		if (count > 0) {
662 			err = mt76u_refill_rx(dev, q, urb, count, GFP_ATOMIC);
663 			if (err < 0)
664 				break;
665 		}
666 		mt76u_submit_rx_buf(dev, qid, urb);
667 	}
668 	if (qid == MT_RXQ_MAIN)
669 		mt76_rx_poll_complete(dev, MT_RXQ_MAIN, NULL);
670 }
671 
672 static void mt76u_rx_tasklet(unsigned long data)
673 {
674 	struct mt76_dev *dev = (struct mt76_dev *)data;
675 	struct mt76_queue *q;
676 	int i;
677 
678 	rcu_read_lock();
679 	for (i = 0; i < __MT_RXQ_MAX; i++) {
680 		q = &dev->q_rx[i];
681 		if (!q->ndesc)
682 			continue;
683 
684 		mt76u_process_rx_queue(dev, q);
685 	}
686 	rcu_read_unlock();
687 }
688 
689 static int
690 mt76u_submit_rx_buffers(struct mt76_dev *dev, enum mt76_rxq_id qid)
691 {
692 	struct mt76_queue *q = &dev->q_rx[qid];
693 	unsigned long flags;
694 	int i, err = 0;
695 
696 	spin_lock_irqsave(&q->lock, flags);
697 	for (i = 0; i < q->ndesc; i++) {
698 		err = mt76u_submit_rx_buf(dev, qid, q->entry[i].urb);
699 		if (err < 0)
700 			break;
701 	}
702 	q->head = q->tail = 0;
703 	q->queued = 0;
704 	spin_unlock_irqrestore(&q->lock, flags);
705 
706 	return err;
707 }
708 
709 static int
710 mt76u_alloc_rx_queue(struct mt76_dev *dev, enum mt76_rxq_id qid)
711 {
712 	struct mt76_queue *q = &dev->q_rx[qid];
713 	int i, err;
714 
715 	spin_lock_init(&q->lock);
716 	q->entry = devm_kcalloc(dev->dev,
717 				MT_NUM_RX_ENTRIES, sizeof(*q->entry),
718 				GFP_KERNEL);
719 	if (!q->entry)
720 		return -ENOMEM;
721 
722 	q->ndesc = MT_NUM_RX_ENTRIES;
723 	q->buf_size = PAGE_SIZE;
724 
725 	for (i = 0; i < q->ndesc; i++) {
726 		err = mt76u_rx_urb_alloc(dev, q, &q->entry[i]);
727 		if (err < 0)
728 			return err;
729 	}
730 
731 	return mt76u_submit_rx_buffers(dev, qid);
732 }
733 
734 int mt76u_alloc_mcu_queue(struct mt76_dev *dev)
735 {
736 	return mt76u_alloc_rx_queue(dev, MT_RXQ_MCU);
737 }
738 EXPORT_SYMBOL_GPL(mt76u_alloc_mcu_queue);
739 
740 static void
741 mt76u_free_rx_queue(struct mt76_dev *dev, struct mt76_queue *q)
742 {
743 	struct page *page;
744 	int i;
745 
746 	for (i = 0; i < q->ndesc; i++)
747 		mt76u_urb_free(q->entry[i].urb);
748 
749 	if (!q->rx_page.va)
750 		return;
751 
752 	page = virt_to_page(q->rx_page.va);
753 	__page_frag_cache_drain(page, q->rx_page.pagecnt_bias);
754 	memset(&q->rx_page, 0, sizeof(q->rx_page));
755 }
756 
757 static void mt76u_free_rx(struct mt76_dev *dev)
758 {
759 	struct mt76_queue *q;
760 	int i;
761 
762 	for (i = 0; i < __MT_RXQ_MAX; i++) {
763 		q = &dev->q_rx[i];
764 		if (!q->ndesc)
765 			continue;
766 
767 		mt76u_free_rx_queue(dev, q);
768 	}
769 }
770 
771 void mt76u_stop_rx(struct mt76_dev *dev)
772 {
773 	struct mt76_queue *q;
774 	int i, j;
775 
776 	for (i = 0; i < __MT_RXQ_MAX; i++) {
777 		q = &dev->q_rx[i];
778 		if (!q->ndesc)
779 			continue;
780 
781 		for (j = 0; j < q->ndesc; j++)
782 			usb_poison_urb(q->entry[j].urb);
783 	}
784 
785 	tasklet_kill(&dev->usb.rx_tasklet);
786 }
787 EXPORT_SYMBOL_GPL(mt76u_stop_rx);
788 
789 int mt76u_resume_rx(struct mt76_dev *dev)
790 {
791 	struct mt76_queue *q;
792 	int i, j, err;
793 
794 	for (i = 0; i < __MT_RXQ_MAX; i++) {
795 		q = &dev->q_rx[i];
796 
797 		if (!q->ndesc)
798 			continue;
799 
800 		for (j = 0; j < q->ndesc; j++)
801 			usb_unpoison_urb(q->entry[j].urb);
802 
803 		err = mt76u_submit_rx_buffers(dev, i);
804 		if (err < 0)
805 			return err;
806 	}
807 
808 	return 0;
809 }
810 EXPORT_SYMBOL_GPL(mt76u_resume_rx);
811 
812 static void mt76u_tx_tasklet(unsigned long data)
813 {
814 	struct mt76_dev *dev = (struct mt76_dev *)data;
815 	struct mt76_queue_entry entry;
816 	struct mt76_sw_queue *sq;
817 	struct mt76_queue *q;
818 	bool wake;
819 	int i;
820 
821 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
822 		u32 n_dequeued = 0, n_sw_dequeued = 0;
823 
824 		sq = &dev->q_tx[i];
825 		q = sq->q;
826 
827 		while (q->queued > n_dequeued) {
828 			if (!q->entry[q->head].done)
829 				break;
830 
831 			if (q->entry[q->head].schedule) {
832 				q->entry[q->head].schedule = false;
833 				n_sw_dequeued++;
834 			}
835 
836 			entry = q->entry[q->head];
837 			q->entry[q->head].done = false;
838 			q->head = (q->head + 1) % q->ndesc;
839 			n_dequeued++;
840 
841 			dev->drv->tx_complete_skb(dev, i, &entry);
842 		}
843 
844 		spin_lock_bh(&q->lock);
845 
846 		sq->swq_queued -= n_sw_dequeued;
847 		q->queued -= n_dequeued;
848 
849 		wake = q->stopped && q->queued < q->ndesc - 8;
850 		if (wake)
851 			q->stopped = false;
852 
853 		if (!q->queued)
854 			wake_up(&dev->tx_wait);
855 
856 		spin_unlock_bh(&q->lock);
857 
858 		mt76_txq_schedule(&dev->phy, i);
859 
860 		if (dev->drv->tx_status_data &&
861 		    !test_and_set_bit(MT76_READING_STATS, &dev->phy.state))
862 			queue_work(dev->usb.wq, &dev->usb.stat_work);
863 		if (wake)
864 			ieee80211_wake_queue(dev->hw, i);
865 	}
866 }
867 
868 static void mt76u_tx_status_data(struct work_struct *work)
869 {
870 	struct mt76_usb *usb;
871 	struct mt76_dev *dev;
872 	u8 update = 1;
873 	u16 count = 0;
874 
875 	usb = container_of(work, struct mt76_usb, stat_work);
876 	dev = container_of(usb, struct mt76_dev, usb);
877 
878 	while (true) {
879 		if (test_bit(MT76_REMOVED, &dev->phy.state))
880 			break;
881 
882 		if (!dev->drv->tx_status_data(dev, &update))
883 			break;
884 		count++;
885 	}
886 
887 	if (count && test_bit(MT76_STATE_RUNNING, &dev->phy.state))
888 		queue_work(usb->wq, &usb->stat_work);
889 	else
890 		clear_bit(MT76_READING_STATS, &dev->phy.state);
891 }
892 
893 static void mt76u_complete_tx(struct urb *urb)
894 {
895 	struct mt76_dev *dev = dev_get_drvdata(&urb->dev->dev);
896 	struct mt76_queue_entry *e = urb->context;
897 
898 	if (mt76u_urb_error(urb))
899 		dev_err(dev->dev, "tx urb failed: %d\n", urb->status);
900 	e->done = true;
901 
902 	tasklet_schedule(&dev->tx_tasklet);
903 }
904 
905 static int
906 mt76u_tx_setup_buffers(struct mt76_dev *dev, struct sk_buff *skb,
907 		       struct urb *urb)
908 {
909 	urb->transfer_buffer_length = skb->len;
910 
911 	if (!dev->usb.sg_en) {
912 		urb->transfer_buffer = skb->data;
913 		return 0;
914 	}
915 
916 	sg_init_table(urb->sg, MT_TX_SG_MAX_SIZE);
917 	urb->num_sgs = skb_to_sgvec(skb, urb->sg, 0, skb->len);
918 	if (!urb->num_sgs)
919 		return -ENOMEM;
920 
921 	return urb->num_sgs;
922 }
923 
924 int mt76u_skb_dma_info(struct sk_buff *skb, u32 info)
925 {
926 	struct sk_buff *iter, *last = skb;
927 	u32 pad;
928 
929 	put_unaligned_le32(info, skb_push(skb, sizeof(info)));
930 	/* Add zero pad of 4 - 7 bytes */
931 	pad = round_up(skb->len, 4) + 4 - skb->len;
932 
933 	/* First packet of a A-MSDU burst keeps track of the whole burst
934 	 * length, need to update length of it and the last packet.
935 	 */
936 	skb_walk_frags(skb, iter) {
937 		last = iter;
938 		if (!iter->next) {
939 			skb->data_len += pad;
940 			skb->len += pad;
941 			break;
942 		}
943 	}
944 
945 	if (skb_pad(last, pad))
946 		return -ENOMEM;
947 	__skb_put(last, pad);
948 
949 	return 0;
950 }
951 EXPORT_SYMBOL_GPL(mt76u_skb_dma_info);
952 
953 static int
954 mt76u_tx_queue_skb(struct mt76_dev *dev, enum mt76_txq_id qid,
955 		   struct sk_buff *skb, struct mt76_wcid *wcid,
956 		   struct ieee80211_sta *sta)
957 {
958 	struct mt76_queue *q = dev->q_tx[qid].q;
959 	struct mt76_tx_info tx_info = {
960 		.skb = skb,
961 	};
962 	u16 idx = q->tail;
963 	int err;
964 
965 	if (q->queued == q->ndesc)
966 		return -ENOSPC;
967 
968 	skb->prev = skb->next = NULL;
969 	err = dev->drv->tx_prepare_skb(dev, NULL, qid, wcid, sta, &tx_info);
970 	if (err < 0)
971 		return err;
972 
973 	err = mt76u_tx_setup_buffers(dev, tx_info.skb, q->entry[idx].urb);
974 	if (err < 0)
975 		return err;
976 
977 	mt76u_fill_bulk_urb(dev, USB_DIR_OUT, q2ep(q->hw_idx),
978 			    q->entry[idx].urb, mt76u_complete_tx,
979 			    &q->entry[idx]);
980 
981 	q->tail = (q->tail + 1) % q->ndesc;
982 	q->entry[idx].skb = tx_info.skb;
983 	q->queued++;
984 
985 	return idx;
986 }
987 
988 static void mt76u_tx_kick(struct mt76_dev *dev, struct mt76_queue *q)
989 {
990 	struct urb *urb;
991 	int err;
992 
993 	while (q->first != q->tail) {
994 		urb = q->entry[q->first].urb;
995 
996 		trace_submit_urb(dev, urb);
997 		err = usb_submit_urb(urb, GFP_ATOMIC);
998 		if (err < 0) {
999 			if (err == -ENODEV)
1000 				set_bit(MT76_REMOVED, &dev->phy.state);
1001 			else
1002 				dev_err(dev->dev, "tx urb submit failed:%d\n",
1003 					err);
1004 			break;
1005 		}
1006 		q->first = (q->first + 1) % q->ndesc;
1007 	}
1008 }
1009 
1010 static u8 mt76u_ac_to_hwq(struct mt76_dev *dev, u8 ac)
1011 {
1012 	if (mt76_chip(dev) == 0x7663) {
1013 		static const u8 lmac_queue_map[] = {
1014 			/* ac to lmac mapping */
1015 			[IEEE80211_AC_BK] = 0,
1016 			[IEEE80211_AC_BE] = 1,
1017 			[IEEE80211_AC_VI] = 2,
1018 			[IEEE80211_AC_VO] = 4,
1019 		};
1020 
1021 		if (WARN_ON(ac >= ARRAY_SIZE(lmac_queue_map)))
1022 			return 1; /* BE */
1023 
1024 		return lmac_queue_map[ac];
1025 	}
1026 
1027 	return mt76_ac_to_hwq(ac);
1028 }
1029 
1030 static int mt76u_alloc_tx(struct mt76_dev *dev)
1031 {
1032 	struct mt76_queue *q;
1033 	int i, j, err;
1034 
1035 	for (i = 0; i <= MT_TXQ_PSD; i++) {
1036 		INIT_LIST_HEAD(&dev->q_tx[i].swq);
1037 
1038 		if (i >= IEEE80211_NUM_ACS) {
1039 			dev->q_tx[i].q = dev->q_tx[0].q;
1040 			continue;
1041 		}
1042 
1043 		q = devm_kzalloc(dev->dev, sizeof(*q), GFP_KERNEL);
1044 		if (!q)
1045 			return -ENOMEM;
1046 
1047 		spin_lock_init(&q->lock);
1048 		q->hw_idx = mt76u_ac_to_hwq(dev, i);
1049 		dev->q_tx[i].q = q;
1050 
1051 		q->entry = devm_kcalloc(dev->dev,
1052 					MT_NUM_TX_ENTRIES, sizeof(*q->entry),
1053 					GFP_KERNEL);
1054 		if (!q->entry)
1055 			return -ENOMEM;
1056 
1057 		q->ndesc = MT_NUM_TX_ENTRIES;
1058 		for (j = 0; j < q->ndesc; j++) {
1059 			err = mt76u_urb_alloc(dev, &q->entry[j],
1060 					      MT_TX_SG_MAX_SIZE);
1061 			if (err < 0)
1062 				return err;
1063 		}
1064 	}
1065 	return 0;
1066 }
1067 
1068 static void mt76u_free_tx(struct mt76_dev *dev)
1069 {
1070 	int i;
1071 
1072 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
1073 		struct mt76_queue *q;
1074 		int j;
1075 
1076 		q = dev->q_tx[i].q;
1077 		if (!q)
1078 			continue;
1079 
1080 		for (j = 0; j < q->ndesc; j++)
1081 			usb_free_urb(q->entry[j].urb);
1082 	}
1083 }
1084 
1085 void mt76u_stop_tx(struct mt76_dev *dev)
1086 {
1087 	int ret;
1088 
1089 	ret = wait_event_timeout(dev->tx_wait, !mt76_has_tx_pending(&dev->phy),
1090 				 HZ / 5);
1091 	if (!ret) {
1092 		struct mt76_queue_entry entry;
1093 		struct mt76_queue *q;
1094 		int i, j;
1095 
1096 		dev_err(dev->dev, "timed out waiting for pending tx\n");
1097 
1098 		for (i = 0; i < IEEE80211_NUM_ACS; i++) {
1099 			q = dev->q_tx[i].q;
1100 			if (!q)
1101 				continue;
1102 
1103 			for (j = 0; j < q->ndesc; j++)
1104 				usb_kill_urb(q->entry[j].urb);
1105 		}
1106 
1107 		tasklet_kill(&dev->tx_tasklet);
1108 
1109 		/* On device removal we maight queue skb's, but mt76u_tx_kick()
1110 		 * will fail to submit urb, cleanup those skb's manually.
1111 		 */
1112 		for (i = 0; i < IEEE80211_NUM_ACS; i++) {
1113 			q = dev->q_tx[i].q;
1114 			if (!q)
1115 				continue;
1116 
1117 			/* Assure we are in sync with killed tasklet. */
1118 			spin_lock_bh(&q->lock);
1119 			while (q->queued) {
1120 				entry = q->entry[q->head];
1121 				q->head = (q->head + 1) % q->ndesc;
1122 				q->queued--;
1123 
1124 				dev->drv->tx_complete_skb(dev, i, &entry);
1125 			}
1126 			spin_unlock_bh(&q->lock);
1127 		}
1128 	}
1129 
1130 	cancel_work_sync(&dev->usb.stat_work);
1131 	clear_bit(MT76_READING_STATS, &dev->phy.state);
1132 
1133 	mt76_tx_status_check(dev, NULL, true);
1134 }
1135 EXPORT_SYMBOL_GPL(mt76u_stop_tx);
1136 
1137 void mt76u_queues_deinit(struct mt76_dev *dev)
1138 {
1139 	mt76u_stop_rx(dev);
1140 	mt76u_stop_tx(dev);
1141 
1142 	mt76u_free_rx(dev);
1143 	mt76u_free_tx(dev);
1144 }
1145 EXPORT_SYMBOL_GPL(mt76u_queues_deinit);
1146 
1147 int mt76u_alloc_queues(struct mt76_dev *dev)
1148 {
1149 	int err;
1150 
1151 	err = mt76u_alloc_rx_queue(dev, MT_RXQ_MAIN);
1152 	if (err < 0)
1153 		return err;
1154 
1155 	return mt76u_alloc_tx(dev);
1156 }
1157 EXPORT_SYMBOL_GPL(mt76u_alloc_queues);
1158 
1159 static const struct mt76_queue_ops usb_queue_ops = {
1160 	.tx_queue_skb = mt76u_tx_queue_skb,
1161 	.kick = mt76u_tx_kick,
1162 };
1163 
1164 void mt76u_deinit(struct mt76_dev *dev)
1165 {
1166 	if (dev->usb.wq) {
1167 		destroy_workqueue(dev->usb.wq);
1168 		dev->usb.wq = NULL;
1169 	}
1170 }
1171 EXPORT_SYMBOL_GPL(mt76u_deinit);
1172 
1173 int mt76u_init(struct mt76_dev *dev,
1174 	       struct usb_interface *intf, bool ext)
1175 {
1176 	static struct mt76_bus_ops mt76u_ops = {
1177 		.read_copy = mt76u_read_copy_ext,
1178 		.wr_rp = mt76u_wr_rp,
1179 		.rd_rp = mt76u_rd_rp,
1180 		.type = MT76_BUS_USB,
1181 	};
1182 	struct usb_device *udev = interface_to_usbdev(intf);
1183 	struct mt76_usb *usb = &dev->usb;
1184 	int err = -ENOMEM;
1185 
1186 	mt76u_ops.rr = ext ? mt76u_rr_ext : mt76u_rr;
1187 	mt76u_ops.wr = ext ? mt76u_wr_ext : mt76u_wr;
1188 	mt76u_ops.rmw = ext ? mt76u_rmw_ext : mt76u_rmw;
1189 	mt76u_ops.write_copy = ext ? mt76u_copy_ext : mt76u_copy;
1190 
1191 	tasklet_init(&usb->rx_tasklet, mt76u_rx_tasklet, (unsigned long)dev);
1192 	tasklet_init(&dev->tx_tasklet, mt76u_tx_tasklet, (unsigned long)dev);
1193 	INIT_WORK(&usb->stat_work, mt76u_tx_status_data);
1194 
1195 	usb->wq = alloc_workqueue("mt76u", WQ_UNBOUND, 0);
1196 	if (!usb->wq)
1197 		return -ENOMEM;
1198 
1199 	usb->data_len = usb_maxpacket(udev, usb_sndctrlpipe(udev, 0), 1);
1200 	if (usb->data_len < 32)
1201 		usb->data_len = 32;
1202 
1203 	usb->data = devm_kmalloc(dev->dev, usb->data_len, GFP_KERNEL);
1204 	if (!usb->data)
1205 		goto error;
1206 
1207 	mutex_init(&usb->usb_ctrl_mtx);
1208 	dev->bus = &mt76u_ops;
1209 	dev->queue_ops = &usb_queue_ops;
1210 
1211 	dev_set_drvdata(&udev->dev, dev);
1212 
1213 	usb->sg_en = mt76u_check_sg(dev);
1214 
1215 	err = mt76u_set_endpoints(intf, usb);
1216 	if (err < 0)
1217 		goto error;
1218 
1219 	return 0;
1220 
1221 error:
1222 	mt76u_deinit(dev);
1223 	return err;
1224 }
1225 EXPORT_SYMBOL_GPL(mt76u_init);
1226 
1227 MODULE_AUTHOR("Lorenzo Bianconi <lorenzo.bianconi83@gmail.com>");
1228 MODULE_LICENSE("Dual BSD/GPL");
1229