xref: /linux/drivers/net/wireless/ath/ath9k/eeprom_4k.c (revision 564eb714f5f09ac733c26860d5f0831f213fbdf1)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20 
21 static int ath9k_hw_4k_get_eeprom_ver(struct ath_hw *ah)
22 {
23 	return ((ah->eeprom.map4k.baseEepHeader.version >> 12) & 0xF);
24 }
25 
26 static int ath9k_hw_4k_get_eeprom_rev(struct ath_hw *ah)
27 {
28 	return ((ah->eeprom.map4k.baseEepHeader.version) & 0xFFF);
29 }
30 
31 #define SIZE_EEPROM_4K (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
32 
33 static bool __ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
34 {
35 	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
36 	int addr, eep_start_loc = 64;
37 
38 	for (addr = 0; addr < SIZE_EEPROM_4K; addr++) {
39 		if (!ath9k_hw_nvram_read(ah, addr + eep_start_loc, eep_data))
40 			return false;
41 		eep_data++;
42 	}
43 
44 	return true;
45 }
46 
47 static bool __ath9k_hw_usb_4k_fill_eeprom(struct ath_hw *ah)
48 {
49 	u16 *eep_data = (u16 *)&ah->eeprom.map4k;
50 
51 	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data, 64, SIZE_EEPROM_4K);
52 
53 	return true;
54 }
55 
56 static bool ath9k_hw_4k_fill_eeprom(struct ath_hw *ah)
57 {
58 	struct ath_common *common = ath9k_hw_common(ah);
59 
60 	if (!ath9k_hw_use_flash(ah)) {
61 		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
62 	}
63 
64 	if (common->bus_ops->ath_bus_type == ATH_USB)
65 		return __ath9k_hw_usb_4k_fill_eeprom(ah);
66 	else
67 		return __ath9k_hw_4k_fill_eeprom(ah);
68 }
69 
70 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
71 static u32 ath9k_dump_4k_modal_eeprom(char *buf, u32 len, u32 size,
72 				      struct modal_eep_4k_header *modal_hdr)
73 {
74 	PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
75 	PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
76 	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
77 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
78 	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
79 	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
80 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
81 	PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
82 	PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
83 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
84 	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
85 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
86 	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
87 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
88 	PR_EEP("xpdGain", modal_hdr->xpdGain);
89 	PR_EEP("External PD", modal_hdr->xpd);
90 	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
91 	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
92 	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
93 	PR_EEP("O/D Bias Version", modal_hdr->version);
94 	PR_EEP("CCK OutputBias", modal_hdr->ob_0);
95 	PR_EEP("BPSK OutputBias", modal_hdr->ob_1);
96 	PR_EEP("QPSK OutputBias", modal_hdr->ob_2);
97 	PR_EEP("16QAM OutputBias", modal_hdr->ob_3);
98 	PR_EEP("64QAM OutputBias", modal_hdr->ob_4);
99 	PR_EEP("CCK Driver1_Bias", modal_hdr->db1_0);
100 	PR_EEP("BPSK Driver1_Bias", modal_hdr->db1_1);
101 	PR_EEP("QPSK Driver1_Bias", modal_hdr->db1_2);
102 	PR_EEP("16QAM Driver1_Bias", modal_hdr->db1_3);
103 	PR_EEP("64QAM Driver1_Bias", modal_hdr->db1_4);
104 	PR_EEP("CCK Driver2_Bias", modal_hdr->db2_0);
105 	PR_EEP("BPSK Driver2_Bias", modal_hdr->db2_1);
106 	PR_EEP("QPSK Driver2_Bias", modal_hdr->db2_2);
107 	PR_EEP("16QAM Driver2_Bias", modal_hdr->db2_3);
108 	PR_EEP("64QAM Driver2_Bias", modal_hdr->db2_4);
109 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
110 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
111 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
112 	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
113 	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
114 	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
115 	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
116 	PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
117 	PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
118 	PR_EEP("Ant. Diversity ctl1", modal_hdr->antdiv_ctl1);
119 	PR_EEP("Ant. Diversity ctl2", modal_hdr->antdiv_ctl2);
120 	PR_EEP("TX Diversity", modal_hdr->tx_diversity);
121 
122 	return len;
123 }
124 
125 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
126 				       u8 *buf, u32 len, u32 size)
127 {
128 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
129 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
130 
131 	if (!dump_base_hdr) {
132 		len += scnprintf(buf + len, size - len,
133 				 "%20s :\n", "2GHz modal Header");
134 		len = ath9k_dump_4k_modal_eeprom(buf, len, size,
135 						 &eep->modalHeader);
136 		goto out;
137 	}
138 
139 	PR_EEP("Major Version", pBase->version >> 12);
140 	PR_EEP("Minor Version", pBase->version & 0xFFF);
141 	PR_EEP("Checksum", pBase->checksum);
142 	PR_EEP("Length", pBase->length);
143 	PR_EEP("RegDomain1", pBase->regDmn[0]);
144 	PR_EEP("RegDomain2", pBase->regDmn[1]);
145 	PR_EEP("TX Mask", pBase->txMask);
146 	PR_EEP("RX Mask", pBase->rxMask);
147 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
148 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
149 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
150 					AR5416_OPFLAGS_N_2G_HT20));
151 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
152 					AR5416_OPFLAGS_N_2G_HT40));
153 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
154 					AR5416_OPFLAGS_N_5G_HT20));
155 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
156 					AR5416_OPFLAGS_N_5G_HT40));
157 	PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
158 	PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
159 	PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
160 	PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
161 	PR_EEP("TX Gain type", pBase->txGainType);
162 
163 	len += scnprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
164 			 pBase->macAddr);
165 
166 out:
167 	if (len > size)
168 		len = size;
169 
170 	return len;
171 }
172 #else
173 static u32 ath9k_hw_4k_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
174 				       u8 *buf, u32 len, u32 size)
175 {
176 	return 0;
177 }
178 #endif
179 
180 
181 #undef SIZE_EEPROM_4K
182 
183 static int ath9k_hw_4k_check_eeprom(struct ath_hw *ah)
184 {
185 #define EEPROM_4K_SIZE (sizeof(struct ar5416_eeprom_4k) / sizeof(u16))
186 	struct ath_common *common = ath9k_hw_common(ah);
187 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
188 	u16 *eepdata, temp, magic, magic2;
189 	u32 sum = 0, el;
190 	bool need_swap = false;
191 	int i, addr;
192 
193 
194 	if (!ath9k_hw_use_flash(ah)) {
195 		if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET,
196 					 &magic)) {
197 			ath_err(common, "Reading Magic # failed\n");
198 			return false;
199 		}
200 
201 		ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
202 
203 		if (magic != AR5416_EEPROM_MAGIC) {
204 			magic2 = swab16(magic);
205 
206 			if (magic2 == AR5416_EEPROM_MAGIC) {
207 				need_swap = true;
208 				eepdata = (u16 *) (&ah->eeprom);
209 
210 				for (addr = 0; addr < EEPROM_4K_SIZE; addr++) {
211 					temp = swab16(*eepdata);
212 					*eepdata = temp;
213 					eepdata++;
214 				}
215 			} else {
216 				ath_err(common,
217 					"Invalid EEPROM Magic. Endianness mismatch.\n");
218 				return -EINVAL;
219 			}
220 		}
221 	}
222 
223 	ath_dbg(common, EEPROM, "need_swap = %s\n",
224 		need_swap ? "True" : "False");
225 
226 	if (need_swap)
227 		el = swab16(ah->eeprom.map4k.baseEepHeader.length);
228 	else
229 		el = ah->eeprom.map4k.baseEepHeader.length;
230 
231 	if (el > sizeof(struct ar5416_eeprom_4k))
232 		el = sizeof(struct ar5416_eeprom_4k) / sizeof(u16);
233 	else
234 		el = el / sizeof(u16);
235 
236 	eepdata = (u16 *)(&ah->eeprom);
237 
238 	for (i = 0; i < el; i++)
239 		sum ^= *eepdata++;
240 
241 	if (need_swap) {
242 		u32 integer;
243 		u16 word;
244 
245 		ath_dbg(common, EEPROM,
246 			"EEPROM Endianness is not native.. Changing\n");
247 
248 		word = swab16(eep->baseEepHeader.length);
249 		eep->baseEepHeader.length = word;
250 
251 		word = swab16(eep->baseEepHeader.checksum);
252 		eep->baseEepHeader.checksum = word;
253 
254 		word = swab16(eep->baseEepHeader.version);
255 		eep->baseEepHeader.version = word;
256 
257 		word = swab16(eep->baseEepHeader.regDmn[0]);
258 		eep->baseEepHeader.regDmn[0] = word;
259 
260 		word = swab16(eep->baseEepHeader.regDmn[1]);
261 		eep->baseEepHeader.regDmn[1] = word;
262 
263 		word = swab16(eep->baseEepHeader.rfSilent);
264 		eep->baseEepHeader.rfSilent = word;
265 
266 		word = swab16(eep->baseEepHeader.blueToothOptions);
267 		eep->baseEepHeader.blueToothOptions = word;
268 
269 		word = swab16(eep->baseEepHeader.deviceCap);
270 		eep->baseEepHeader.deviceCap = word;
271 
272 		integer = swab32(eep->modalHeader.antCtrlCommon);
273 		eep->modalHeader.antCtrlCommon = integer;
274 
275 		for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
276 			integer = swab32(eep->modalHeader.antCtrlChain[i]);
277 			eep->modalHeader.antCtrlChain[i] = integer;
278 		}
279 
280 		for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
281 			word = swab16(eep->modalHeader.spurChans[i].spurChan);
282 			eep->modalHeader.spurChans[i].spurChan = word;
283 		}
284 	}
285 
286 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
287 	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
288 		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
289 			sum, ah->eep_ops->get_eeprom_ver(ah));
290 		return -EINVAL;
291 	}
292 
293 	return 0;
294 #undef EEPROM_4K_SIZE
295 }
296 
297 static u32 ath9k_hw_4k_get_eeprom(struct ath_hw *ah,
298 				  enum eeprom_param param)
299 {
300 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
301 	struct modal_eep_4k_header *pModal = &eep->modalHeader;
302 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
303 	u16 ver_minor;
304 
305 	ver_minor = pBase->version & AR5416_EEP_VER_MINOR_MASK;
306 
307 	switch (param) {
308 	case EEP_NFTHRESH_2:
309 		return pModal->noiseFloorThreshCh[0];
310 	case EEP_MAC_LSW:
311 		return get_unaligned_be16(pBase->macAddr);
312 	case EEP_MAC_MID:
313 		return get_unaligned_be16(pBase->macAddr + 2);
314 	case EEP_MAC_MSW:
315 		return get_unaligned_be16(pBase->macAddr + 4);
316 	case EEP_REG_0:
317 		return pBase->regDmn[0];
318 	case EEP_OP_CAP:
319 		return pBase->deviceCap;
320 	case EEP_OP_MODE:
321 		return pBase->opCapFlags;
322 	case EEP_RF_SILENT:
323 		return pBase->rfSilent;
324 	case EEP_OB_2:
325 		return pModal->ob_0;
326 	case EEP_DB_2:
327 		return pModal->db1_1;
328 	case EEP_MINOR_REV:
329 		return ver_minor;
330 	case EEP_TX_MASK:
331 		return pBase->txMask;
332 	case EEP_RX_MASK:
333 		return pBase->rxMask;
334 	case EEP_FRAC_N_5G:
335 		return 0;
336 	case EEP_PWR_TABLE_OFFSET:
337 		return AR5416_PWR_TABLE_OFFSET_DB;
338 	case EEP_MODAL_VER:
339 		return pModal->version;
340 	case EEP_ANT_DIV_CTL1:
341 		return pModal->antdiv_ctl1;
342 	case EEP_TXGAIN_TYPE:
343 		return pBase->txGainType;
344 	case EEP_ANTENNA_GAIN_2G:
345 		return pModal->antennaGainCh[0];
346 	default:
347 		return 0;
348 	}
349 }
350 
351 static void ath9k_hw_set_4k_power_cal_table(struct ath_hw *ah,
352 				  struct ath9k_channel *chan)
353 {
354 	struct ath_common *common = ath9k_hw_common(ah);
355 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
356 	struct cal_data_per_freq_4k *pRawDataset;
357 	u8 *pCalBChans = NULL;
358 	u16 pdGainOverlap_t2;
359 	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
360 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
361 	u16 numPiers, i, j;
362 	u16 numXpdGain, xpdMask;
363 	u16 xpdGainValues[AR5416_EEP4K_NUM_PD_GAINS] = { 0, 0 };
364 	u32 reg32, regOffset, regChainOffset;
365 
366 	xpdMask = pEepData->modalHeader.xpdGain;
367 
368 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
369 	    AR5416_EEP_MINOR_VER_2) {
370 		pdGainOverlap_t2 =
371 			pEepData->modalHeader.pdGainOverlap;
372 	} else {
373 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
374 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
375 	}
376 
377 	pCalBChans = pEepData->calFreqPier2G;
378 	numPiers = AR5416_EEP4K_NUM_2G_CAL_PIERS;
379 
380 	numXpdGain = 0;
381 
382 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
383 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
384 			if (numXpdGain >= AR5416_EEP4K_NUM_PD_GAINS)
385 				break;
386 			xpdGainValues[numXpdGain] =
387 				(u16)(AR5416_PD_GAINS_IN_MASK - i);
388 			numXpdGain++;
389 		}
390 	}
391 
392 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
393 		      (numXpdGain - 1) & 0x3);
394 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
395 		      xpdGainValues[0]);
396 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
397 		      xpdGainValues[1]);
398 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3, 0);
399 
400 	for (i = 0; i < AR5416_EEP4K_MAX_CHAINS; i++) {
401 		regChainOffset = i * 0x1000;
402 
403 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
404 			pRawDataset = pEepData->calPierData2G[i];
405 
406 			ath9k_hw_get_gain_boundaries_pdadcs(ah, chan,
407 					    pRawDataset, pCalBChans,
408 					    numPiers, pdGainOverlap_t2,
409 					    gainBoundaries,
410 					    pdadcValues, numXpdGain);
411 
412 			ENABLE_REGWRITE_BUFFER(ah);
413 
414 			REG_WRITE(ah, AR_PHY_TPCRG5 + regChainOffset,
415 				  SM(pdGainOverlap_t2,
416 				     AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
417 				  | SM(gainBoundaries[0],
418 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
419 				  | SM(gainBoundaries[1],
420 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
421 				  | SM(gainBoundaries[2],
422 				       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
423 				  | SM(gainBoundaries[3],
424 			       AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4));
425 
426 			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
427 			for (j = 0; j < 32; j++) {
428 				reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
429 				REG_WRITE(ah, regOffset, reg32);
430 
431 				ath_dbg(common, EEPROM,
432 					"PDADC (%d,%4x): %4.4x %8.8x\n",
433 					i, regChainOffset, regOffset,
434 					reg32);
435 				ath_dbg(common, EEPROM,
436 					"PDADC: Chain %d | "
437 					"PDADC %3d Value %3d | "
438 					"PDADC %3d Value %3d | "
439 					"PDADC %3d Value %3d | "
440 					"PDADC %3d Value %3d |\n",
441 					i, 4 * j, pdadcValues[4 * j],
442 					4 * j + 1, pdadcValues[4 * j + 1],
443 					4 * j + 2, pdadcValues[4 * j + 2],
444 					4 * j + 3, pdadcValues[4 * j + 3]);
445 
446 				regOffset += 4;
447 			}
448 
449 			REGWRITE_BUFFER_FLUSH(ah);
450 		}
451 	}
452 }
453 
454 static void ath9k_hw_set_4k_power_per_rate_table(struct ath_hw *ah,
455 						 struct ath9k_channel *chan,
456 						 int16_t *ratesArray,
457 						 u16 cfgCtl,
458 						 u16 antenna_reduction,
459 						 u16 powerLimit)
460 {
461 #define CMP_TEST_GRP \
462 	(((cfgCtl & ~CTL_MODE_M)| (pCtlMode[ctlMode] & CTL_MODE_M)) ==	\
463 	 pEepData->ctlIndex[i])						\
464 	|| (((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
465 	    ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))
466 
467 	int i;
468 	u16 twiceMinEdgePower;
469 	u16 twiceMaxEdgePower;
470 	u16 scaledPower = 0, minCtlPower;
471 	u16 numCtlModes;
472 	const u16 *pCtlMode;
473 	u16 ctlMode, freq;
474 	struct chan_centers centers;
475 	struct cal_ctl_data_4k *rep;
476 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
477 	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
478 		0, { 0, 0, 0, 0}
479 	};
480 	struct cal_target_power_leg targetPowerOfdmExt = {
481 		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
482 		0, { 0, 0, 0, 0 }
483 	};
484 	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
485 		0, {0, 0, 0, 0}
486 	};
487 	static const u16 ctlModesFor11g[] = {
488 		CTL_11B, CTL_11G, CTL_2GHT20,
489 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
490 	};
491 
492 	ath9k_hw_get_channel_centers(ah, chan, &centers);
493 
494 	scaledPower = powerLimit - antenna_reduction;
495 	numCtlModes = ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;
496 	pCtlMode = ctlModesFor11g;
497 
498 	ath9k_hw_get_legacy_target_powers(ah, chan,
499 			pEepData->calTargetPowerCck,
500 			AR5416_NUM_2G_CCK_TARGET_POWERS,
501 			&targetPowerCck, 4, false);
502 	ath9k_hw_get_legacy_target_powers(ah, chan,
503 			pEepData->calTargetPower2G,
504 			AR5416_NUM_2G_20_TARGET_POWERS,
505 			&targetPowerOfdm, 4, false);
506 	ath9k_hw_get_target_powers(ah, chan,
507 			pEepData->calTargetPower2GHT20,
508 			AR5416_NUM_2G_20_TARGET_POWERS,
509 			&targetPowerHt20, 8, false);
510 
511 	if (IS_CHAN_HT40(chan)) {
512 		numCtlModes = ARRAY_SIZE(ctlModesFor11g);
513 		ath9k_hw_get_target_powers(ah, chan,
514 				pEepData->calTargetPower2GHT40,
515 				AR5416_NUM_2G_40_TARGET_POWERS,
516 				&targetPowerHt40, 8, true);
517 		ath9k_hw_get_legacy_target_powers(ah, chan,
518 				pEepData->calTargetPowerCck,
519 				AR5416_NUM_2G_CCK_TARGET_POWERS,
520 				&targetPowerCckExt, 4, true);
521 		ath9k_hw_get_legacy_target_powers(ah, chan,
522 				pEepData->calTargetPower2G,
523 				AR5416_NUM_2G_20_TARGET_POWERS,
524 				&targetPowerOfdmExt, 4, true);
525 	}
526 
527 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
528 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
529 			(pCtlMode[ctlMode] == CTL_2GHT40);
530 
531 		if (isHt40CtlMode)
532 			freq = centers.synth_center;
533 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
534 			freq = centers.ext_center;
535 		else
536 			freq = centers.ctl_center;
537 
538 		twiceMaxEdgePower = MAX_RATE_POWER;
539 
540 		for (i = 0; (i < AR5416_EEP4K_NUM_CTLS) &&
541 			     pEepData->ctlIndex[i]; i++) {
542 
543 			if (CMP_TEST_GRP) {
544 				rep = &(pEepData->ctlData[i]);
545 
546 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(
547 					freq,
548 					rep->ctlEdges[
549 					ar5416_get_ntxchains(ah->txchainmask) - 1],
550 					IS_CHAN_2GHZ(chan),
551 					AR5416_EEP4K_NUM_BAND_EDGES);
552 
553 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
554 					twiceMaxEdgePower =
555 						min(twiceMaxEdgePower,
556 						    twiceMinEdgePower);
557 				} else {
558 					twiceMaxEdgePower = twiceMinEdgePower;
559 					break;
560 				}
561 			}
562 		}
563 
564 		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);
565 
566 		switch (pCtlMode[ctlMode]) {
567 		case CTL_11B:
568 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
569 				targetPowerCck.tPow2x[i] =
570 					min((u16)targetPowerCck.tPow2x[i],
571 					    minCtlPower);
572 			}
573 			break;
574 		case CTL_11G:
575 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
576 				targetPowerOfdm.tPow2x[i] =
577 					min((u16)targetPowerOfdm.tPow2x[i],
578 					    minCtlPower);
579 			}
580 			break;
581 		case CTL_2GHT20:
582 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
583 				targetPowerHt20.tPow2x[i] =
584 					min((u16)targetPowerHt20.tPow2x[i],
585 					    minCtlPower);
586 			}
587 			break;
588 		case CTL_11B_EXT:
589 			targetPowerCckExt.tPow2x[0] =
590 				min((u16)targetPowerCckExt.tPow2x[0],
591 				    minCtlPower);
592 			break;
593 		case CTL_11G_EXT:
594 			targetPowerOfdmExt.tPow2x[0] =
595 				min((u16)targetPowerOfdmExt.tPow2x[0],
596 				    minCtlPower);
597 			break;
598 		case CTL_2GHT40:
599 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
600 				targetPowerHt40.tPow2x[i] =
601 					min((u16)targetPowerHt40.tPow2x[i],
602 					    minCtlPower);
603 			}
604 			break;
605 		default:
606 			break;
607 		}
608 	}
609 
610 	ratesArray[rate6mb] =
611 	ratesArray[rate9mb] =
612 	ratesArray[rate12mb] =
613 	ratesArray[rate18mb] =
614 	ratesArray[rate24mb] =
615 	targetPowerOfdm.tPow2x[0];
616 
617 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
618 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
619 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
620 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
621 
622 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
623 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
624 
625 	ratesArray[rate1l] = targetPowerCck.tPow2x[0];
626 	ratesArray[rate2s] = ratesArray[rate2l] = targetPowerCck.tPow2x[1];
627 	ratesArray[rate5_5s] = ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
628 	ratesArray[rate11s] = ratesArray[rate11l] = targetPowerCck.tPow2x[3];
629 
630 	if (IS_CHAN_HT40(chan)) {
631 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
632 			ratesArray[rateHt40_0 + i] =
633 				targetPowerHt40.tPow2x[i];
634 		}
635 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
636 		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
637 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
638 		ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
639 	}
640 
641 #undef CMP_TEST_GRP
642 }
643 
644 static void ath9k_hw_4k_set_txpower(struct ath_hw *ah,
645 				    struct ath9k_channel *chan,
646 				    u16 cfgCtl,
647 				    u8 twiceAntennaReduction,
648 				    u8 powerLimit, bool test)
649 {
650 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
651 	struct ar5416_eeprom_4k *pEepData = &ah->eeprom.map4k;
652 	struct modal_eep_4k_header *pModal = &pEepData->modalHeader;
653 	int16_t ratesArray[Ar5416RateSize];
654 	u8 ht40PowerIncForPdadc = 2;
655 	int i;
656 
657 	memset(ratesArray, 0, sizeof(ratesArray));
658 
659 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
660 	    AR5416_EEP_MINOR_VER_2) {
661 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
662 	}
663 
664 	ath9k_hw_set_4k_power_per_rate_table(ah, chan,
665 					     &ratesArray[0], cfgCtl,
666 					     twiceAntennaReduction,
667 					     powerLimit);
668 
669 	ath9k_hw_set_4k_power_cal_table(ah, chan);
670 
671 	regulatory->max_power_level = 0;
672 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
673 		if (ratesArray[i] > MAX_RATE_POWER)
674 			ratesArray[i] = MAX_RATE_POWER;
675 
676 		if (ratesArray[i] > regulatory->max_power_level)
677 			regulatory->max_power_level = ratesArray[i];
678 	}
679 
680 	if (test)
681 	    return;
682 
683 	for (i = 0; i < Ar5416RateSize; i++)
684 		ratesArray[i] -= AR5416_PWR_TABLE_OFFSET_DB * 2;
685 
686 	ENABLE_REGWRITE_BUFFER(ah);
687 
688 	/* OFDM power per rate */
689 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
690 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
691 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
692 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
693 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
694 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
695 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
696 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
697 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
698 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
699 
700 	/* CCK power per rate */
701 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
702 		  ATH9K_POW_SM(ratesArray[rate2s], 24)
703 		  | ATH9K_POW_SM(ratesArray[rate2l], 16)
704 		  | ATH9K_POW_SM(ratesArray[rateXr], 8)
705 		  | ATH9K_POW_SM(ratesArray[rate1l], 0));
706 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
707 		  ATH9K_POW_SM(ratesArray[rate11s], 24)
708 		  | ATH9K_POW_SM(ratesArray[rate11l], 16)
709 		  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
710 		  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
711 
712 	/* HT20 power per rate */
713 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
714 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
715 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
716 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
717 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
718 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
719 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
720 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
721 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
722 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
723 
724 	/* HT40 power per rate */
725 	if (IS_CHAN_HT40(chan)) {
726 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
727 			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
728 				       ht40PowerIncForPdadc, 24)
729 			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
730 					 ht40PowerIncForPdadc, 16)
731 			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
732 					 ht40PowerIncForPdadc, 8)
733 			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
734 					 ht40PowerIncForPdadc, 0));
735 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
736 			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
737 				       ht40PowerIncForPdadc, 24)
738 			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
739 					 ht40PowerIncForPdadc, 16)
740 			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
741 					 ht40PowerIncForPdadc, 8)
742 			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
743 					 ht40PowerIncForPdadc, 0));
744 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
745 			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
746 			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
747 			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
748 			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
749 	}
750 
751 	REGWRITE_BUFFER_FLUSH(ah);
752 }
753 
754 static void ath9k_hw_4k_set_gain(struct ath_hw *ah,
755 				 struct modal_eep_4k_header *pModal,
756 				 struct ar5416_eeprom_4k *eep,
757 				 u8 txRxAttenLocal)
758 {
759 	REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0,
760 		  pModal->antCtrlChain[0]);
761 
762 	REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0),
763 		  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0)) &
764 		   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
765 		     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
766 		  SM(pModal->iqCalICh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
767 		  SM(pModal->iqCalQCh[0], AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
768 
769 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
770 	    AR5416_EEP_MINOR_VER_3) {
771 		txRxAttenLocal = pModal->txRxAttenCh[0];
772 
773 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
774 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN, pModal->bswMargin[0]);
775 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
776 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
777 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
778 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
779 			      pModal->xatten2Margin[0]);
780 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ,
781 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB, pModal->xatten2Db[0]);
782 
783 		/* Set the block 1 value to block 0 value */
784 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
785 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
786 			      pModal->bswMargin[0]);
787 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
788 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB, pModal->bswAtten[0]);
789 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
790 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
791 			      pModal->xatten2Margin[0]);
792 		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + 0x1000,
793 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
794 			      pModal->xatten2Db[0]);
795 	}
796 
797 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
798 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
799 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN,
800 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
801 
802 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
803 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
804 	REG_RMW_FIELD(ah, AR_PHY_RXGAIN + 0x1000,
805 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[0]);
806 }
807 
808 /*
809  * Read EEPROM header info and program the device for correct operation
810  * given the channel value.
811  */
812 static void ath9k_hw_4k_set_board_values(struct ath_hw *ah,
813 					 struct ath9k_channel *chan)
814 {
815 	struct ath9k_hw_capabilities *pCap = &ah->caps;
816 	struct modal_eep_4k_header *pModal;
817 	struct ar5416_eeprom_4k *eep = &ah->eeprom.map4k;
818 	struct base_eep_header_4k *pBase = &eep->baseEepHeader;
819 	u8 txRxAttenLocal;
820 	u8 ob[5], db1[5], db2[5];
821 	u8 ant_div_control1, ant_div_control2;
822 	u8 bb_desired_scale;
823 	u32 regVal;
824 
825 	pModal = &eep->modalHeader;
826 	txRxAttenLocal = 23;
827 
828 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon);
829 
830 	/* Single chain for 4K EEPROM*/
831 	ath9k_hw_4k_set_gain(ah, pModal, eep, txRxAttenLocal);
832 
833 	/* Initialize Ant Diversity settings from EEPROM */
834 	if (pModal->version >= 3) {
835 		ant_div_control1 = pModal->antdiv_ctl1;
836 		ant_div_control2 = pModal->antdiv_ctl2;
837 
838 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
839 		regVal &= (~(AR_PHY_9285_ANT_DIV_CTL_ALL));
840 
841 		regVal |= SM(ant_div_control1,
842 			     AR_PHY_9285_ANT_DIV_CTL);
843 		regVal |= SM(ant_div_control2,
844 			     AR_PHY_9285_ANT_DIV_ALT_LNACONF);
845 		regVal |= SM((ant_div_control2 >> 2),
846 			     AR_PHY_9285_ANT_DIV_MAIN_LNACONF);
847 		regVal |= SM((ant_div_control1 >> 1),
848 			     AR_PHY_9285_ANT_DIV_ALT_GAINTB);
849 		regVal |= SM((ant_div_control1 >> 2),
850 			     AR_PHY_9285_ANT_DIV_MAIN_GAINTB);
851 
852 
853 		REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
854 		regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
855 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
856 		regVal &= (~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
857 		regVal |= SM((ant_div_control1 >> 3),
858 			     AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV);
859 
860 		REG_WRITE(ah, AR_PHY_CCK_DETECT, regVal);
861 		regVal = REG_READ(ah, AR_PHY_CCK_DETECT);
862 
863 		if (pCap->hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
864 			/*
865 			 * If diversity combining is enabled,
866 			 * set MAIN to LNA1 and ALT to LNA2 initially.
867 			 */
868 			regVal = REG_READ(ah, AR_PHY_MULTICHAIN_GAIN_CTL);
869 			regVal &= (~(AR_PHY_9285_ANT_DIV_MAIN_LNACONF |
870 				     AR_PHY_9285_ANT_DIV_ALT_LNACONF));
871 
872 			regVal |= (ATH_ANT_DIV_COMB_LNA1 <<
873 				   AR_PHY_9285_ANT_DIV_MAIN_LNACONF_S);
874 			regVal |= (ATH_ANT_DIV_COMB_LNA2 <<
875 				   AR_PHY_9285_ANT_DIV_ALT_LNACONF_S);
876 			regVal &= (~(AR_PHY_9285_FAST_DIV_BIAS));
877 			regVal |= (0 << AR_PHY_9285_FAST_DIV_BIAS_S);
878 			REG_WRITE(ah, AR_PHY_MULTICHAIN_GAIN_CTL, regVal);
879 		}
880 	}
881 
882 	if (pModal->version >= 2) {
883 		ob[0] = pModal->ob_0;
884 		ob[1] = pModal->ob_1;
885 		ob[2] = pModal->ob_2;
886 		ob[3] = pModal->ob_3;
887 		ob[4] = pModal->ob_4;
888 
889 		db1[0] = pModal->db1_0;
890 		db1[1] = pModal->db1_1;
891 		db1[2] = pModal->db1_2;
892 		db1[3] = pModal->db1_3;
893 		db1[4] = pModal->db1_4;
894 
895 		db2[0] = pModal->db2_0;
896 		db2[1] = pModal->db2_1;
897 		db2[2] = pModal->db2_2;
898 		db2[3] = pModal->db2_3;
899 		db2[4] = pModal->db2_4;
900 	} else if (pModal->version == 1) {
901 		ob[0] = pModal->ob_0;
902 		ob[1] = ob[2] = ob[3] = ob[4] = pModal->ob_1;
903 		db1[0] = pModal->db1_0;
904 		db1[1] = db1[2] = db1[3] = db1[4] = pModal->db1_1;
905 		db2[0] = pModal->db2_0;
906 		db2[1] = db2[2] = db2[3] = db2[4] = pModal->db2_1;
907 	} else {
908 		int i;
909 
910 		for (i = 0; i < 5; i++) {
911 			ob[i] = pModal->ob_0;
912 			db1[i] = pModal->db1_0;
913 			db2[i] = pModal->db1_0;
914 		}
915 	}
916 
917 	if (AR_SREV_9271(ah)) {
918 		ath9k_hw_analog_shift_rmw(ah,
919 					  AR9285_AN_RF2G3,
920 					  AR9271_AN_RF2G3_OB_cck,
921 					  AR9271_AN_RF2G3_OB_cck_S,
922 					  ob[0]);
923 		ath9k_hw_analog_shift_rmw(ah,
924 					  AR9285_AN_RF2G3,
925 					  AR9271_AN_RF2G3_OB_psk,
926 					  AR9271_AN_RF2G3_OB_psk_S,
927 					  ob[1]);
928 		ath9k_hw_analog_shift_rmw(ah,
929 					  AR9285_AN_RF2G3,
930 					  AR9271_AN_RF2G3_OB_qam,
931 					  AR9271_AN_RF2G3_OB_qam_S,
932 					  ob[2]);
933 		ath9k_hw_analog_shift_rmw(ah,
934 					  AR9285_AN_RF2G3,
935 					  AR9271_AN_RF2G3_DB_1,
936 					  AR9271_AN_RF2G3_DB_1_S,
937 					  db1[0]);
938 		ath9k_hw_analog_shift_rmw(ah,
939 					  AR9285_AN_RF2G4,
940 					  AR9271_AN_RF2G4_DB_2,
941 					  AR9271_AN_RF2G4_DB_2_S,
942 					  db2[0]);
943 	} else {
944 		ath9k_hw_analog_shift_rmw(ah,
945 					  AR9285_AN_RF2G3,
946 					  AR9285_AN_RF2G3_OB_0,
947 					  AR9285_AN_RF2G3_OB_0_S,
948 					  ob[0]);
949 		ath9k_hw_analog_shift_rmw(ah,
950 					  AR9285_AN_RF2G3,
951 					  AR9285_AN_RF2G3_OB_1,
952 					  AR9285_AN_RF2G3_OB_1_S,
953 					  ob[1]);
954 		ath9k_hw_analog_shift_rmw(ah,
955 					  AR9285_AN_RF2G3,
956 					  AR9285_AN_RF2G3_OB_2,
957 					  AR9285_AN_RF2G3_OB_2_S,
958 					  ob[2]);
959 		ath9k_hw_analog_shift_rmw(ah,
960 					  AR9285_AN_RF2G3,
961 					  AR9285_AN_RF2G3_OB_3,
962 					  AR9285_AN_RF2G3_OB_3_S,
963 					  ob[3]);
964 		ath9k_hw_analog_shift_rmw(ah,
965 					  AR9285_AN_RF2G3,
966 					  AR9285_AN_RF2G3_OB_4,
967 					  AR9285_AN_RF2G3_OB_4_S,
968 					  ob[4]);
969 
970 		ath9k_hw_analog_shift_rmw(ah,
971 					  AR9285_AN_RF2G3,
972 					  AR9285_AN_RF2G3_DB1_0,
973 					  AR9285_AN_RF2G3_DB1_0_S,
974 					  db1[0]);
975 		ath9k_hw_analog_shift_rmw(ah,
976 					  AR9285_AN_RF2G3,
977 					  AR9285_AN_RF2G3_DB1_1,
978 					  AR9285_AN_RF2G3_DB1_1_S,
979 					  db1[1]);
980 		ath9k_hw_analog_shift_rmw(ah,
981 					  AR9285_AN_RF2G3,
982 					  AR9285_AN_RF2G3_DB1_2,
983 					  AR9285_AN_RF2G3_DB1_2_S,
984 					  db1[2]);
985 		ath9k_hw_analog_shift_rmw(ah,
986 					  AR9285_AN_RF2G4,
987 					  AR9285_AN_RF2G4_DB1_3,
988 					  AR9285_AN_RF2G4_DB1_3_S,
989 					  db1[3]);
990 		ath9k_hw_analog_shift_rmw(ah,
991 					  AR9285_AN_RF2G4,
992 					  AR9285_AN_RF2G4_DB1_4,
993 					  AR9285_AN_RF2G4_DB1_4_S, db1[4]);
994 
995 		ath9k_hw_analog_shift_rmw(ah,
996 					  AR9285_AN_RF2G4,
997 					  AR9285_AN_RF2G4_DB2_0,
998 					  AR9285_AN_RF2G4_DB2_0_S,
999 					  db2[0]);
1000 		ath9k_hw_analog_shift_rmw(ah,
1001 					  AR9285_AN_RF2G4,
1002 					  AR9285_AN_RF2G4_DB2_1,
1003 					  AR9285_AN_RF2G4_DB2_1_S,
1004 					  db2[1]);
1005 		ath9k_hw_analog_shift_rmw(ah,
1006 					  AR9285_AN_RF2G4,
1007 					  AR9285_AN_RF2G4_DB2_2,
1008 					  AR9285_AN_RF2G4_DB2_2_S,
1009 					  db2[2]);
1010 		ath9k_hw_analog_shift_rmw(ah,
1011 					  AR9285_AN_RF2G4,
1012 					  AR9285_AN_RF2G4_DB2_3,
1013 					  AR9285_AN_RF2G4_DB2_3_S,
1014 					  db2[3]);
1015 		ath9k_hw_analog_shift_rmw(ah,
1016 					  AR9285_AN_RF2G4,
1017 					  AR9285_AN_RF2G4_DB2_4,
1018 					  AR9285_AN_RF2G4_DB2_4_S,
1019 					  db2[4]);
1020 	}
1021 
1022 
1023 	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
1024 		      pModal->switchSettling);
1025 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
1026 		      pModal->adcDesiredSize);
1027 
1028 	REG_WRITE(ah, AR_PHY_RF_CTL4,
1029 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF) |
1030 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF) |
1031 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)  |
1032 		  SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));
1033 
1034 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1035 		      pModal->txEndToRxOn);
1036 
1037 	if (AR_SREV_9271_10(ah))
1038 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
1039 			      pModal->txEndToRxOn);
1040 	REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
1041 		      pModal->thresh62);
1042 	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0, AR_PHY_EXT_CCA0_THRESH62,
1043 		      pModal->thresh62);
1044 
1045 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1046 						AR5416_EEP_MINOR_VER_2) {
1047 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_DATA_START,
1048 			      pModal->txFrameToDataStart);
1049 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
1050 			      pModal->txFrameToPaOn);
1051 	}
1052 
1053 	if ((eep->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1054 						AR5416_EEP_MINOR_VER_3) {
1055 		if (IS_CHAN_HT40(chan))
1056 			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
1057 				      AR_PHY_SETTLING_SWITCH,
1058 				      pModal->swSettleHt40);
1059 	}
1060 
1061 	bb_desired_scale = (pModal->bb_scale_smrt_antenna &
1062 			EEP_4K_BB_DESIRED_SCALE_MASK);
1063 	if ((pBase->txGainType == 0) && (bb_desired_scale != 0)) {
1064 		u32 pwrctrl, mask, clr;
1065 
1066 		mask = BIT(0)|BIT(5)|BIT(10)|BIT(15)|BIT(20)|BIT(25);
1067 		pwrctrl = mask * bb_desired_scale;
1068 		clr = mask * 0x1f;
1069 		REG_RMW(ah, AR_PHY_TX_PWRCTRL8, pwrctrl, clr);
1070 		REG_RMW(ah, AR_PHY_TX_PWRCTRL10, pwrctrl, clr);
1071 		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL12, pwrctrl, clr);
1072 
1073 		mask = BIT(0)|BIT(5)|BIT(15);
1074 		pwrctrl = mask * bb_desired_scale;
1075 		clr = mask * 0x1f;
1076 		REG_RMW(ah, AR_PHY_TX_PWRCTRL9, pwrctrl, clr);
1077 
1078 		mask = BIT(0)|BIT(5);
1079 		pwrctrl = mask * bb_desired_scale;
1080 		clr = mask * 0x1f;
1081 		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL11, pwrctrl, clr);
1082 		REG_RMW(ah, AR_PHY_CH0_TX_PWRCTRL13, pwrctrl, clr);
1083 	}
1084 }
1085 
1086 static u16 ath9k_hw_4k_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1087 {
1088 #define EEP_MAP4K_SPURCHAN \
1089 	(ah->eeprom.map4k.modalHeader.spurChans[i].spurChan)
1090 	struct ath_common *common = ath9k_hw_common(ah);
1091 
1092 	u16 spur_val = AR_NO_SPUR;
1093 
1094 	ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1095 		i, is2GHz, ah->config.spurchans[i][is2GHz]);
1096 
1097 	switch (ah->config.spurmode) {
1098 	case SPUR_DISABLE:
1099 		break;
1100 	case SPUR_ENABLE_IOCTL:
1101 		spur_val = ah->config.spurchans[i][is2GHz];
1102 		ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1103 			spur_val);
1104 		break;
1105 	case SPUR_ENABLE_EEPROM:
1106 		spur_val = EEP_MAP4K_SPURCHAN;
1107 		break;
1108 	}
1109 
1110 	return spur_val;
1111 
1112 #undef EEP_MAP4K_SPURCHAN
1113 }
1114 
1115 const struct eeprom_ops eep_4k_ops = {
1116 	.check_eeprom		= ath9k_hw_4k_check_eeprom,
1117 	.get_eeprom		= ath9k_hw_4k_get_eeprom,
1118 	.fill_eeprom		= ath9k_hw_4k_fill_eeprom,
1119 	.dump_eeprom		= ath9k_hw_4k_dump_eeprom,
1120 	.get_eeprom_ver		= ath9k_hw_4k_get_eeprom_ver,
1121 	.get_eeprom_rev		= ath9k_hw_4k_get_eeprom_rev,
1122 	.set_board_values	= ath9k_hw_4k_set_board_values,
1123 	.set_txpower		= ath9k_hw_4k_set_txpower,
1124 	.get_spur_channel	= ath9k_hw_4k_get_spur_channel
1125 };
1126