xref: /linux/drivers/net/ethernet/smsc/smc91x.h (revision a4cdb556cae05cd3e7b602b3a44c01420c4e2258)
1 /*------------------------------------------------------------------------
2  . smc91x.h - macros for SMSC's 91C9x/91C1xx single-chip Ethernet device.
3  .
4  . Copyright (C) 1996 by Erik Stahlman
5  . Copyright (C) 2001 Standard Microsystems Corporation
6  .	Developed by Simple Network Magic Corporation
7  . Copyright (C) 2003 Monta Vista Software, Inc.
8  .	Unified SMC91x driver by Nicolas Pitre
9  .
10  . This program is free software; you can redistribute it and/or modify
11  . it under the terms of the GNU General Public License as published by
12  . the Free Software Foundation; either version 2 of the License, or
13  . (at your option) any later version.
14  .
15  . This program is distributed in the hope that it will be useful,
16  . but WITHOUT ANY WARRANTY; without even the implied warranty of
17  . MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
18  . GNU General Public License for more details.
19  .
20  . You should have received a copy of the GNU General Public License
21  . along with this program; if not, see <http://www.gnu.org/licenses/>.
22  .
23  . Information contained in this file was obtained from the LAN91C111
24  . manual from SMC.  To get a copy, if you really want one, you can find
25  . information under www.smsc.com.
26  .
27  . Authors
28  .	Erik Stahlman		<erik@vt.edu>
29  .	Daris A Nevil		<dnevil@snmc.com>
30  .	Nicolas Pitre 		<nico@fluxnic.net>
31  .
32  ---------------------------------------------------------------------------*/
33 #ifndef _SMC91X_H_
34 #define _SMC91X_H_
35 
36 #include <linux/dmaengine.h>
37 #include <linux/smc91x.h>
38 
39 /*
40  * Define your architecture specific bus configuration parameters here.
41  */
42 
43 #if defined(CONFIG_ARM)
44 
45 #include <asm/mach-types.h>
46 
47 /* Now the bus width is specified in the platform data
48  * pretend here to support all I/O access types
49  */
50 #define SMC_CAN_USE_8BIT	1
51 #define SMC_CAN_USE_16BIT	1
52 #define SMC_CAN_USE_32BIT	1
53 #define SMC_NOWAIT		1
54 
55 #define SMC_IO_SHIFT		(lp->io_shift)
56 
57 #define SMC_inb(a, r)		readb((a) + (r))
58 #define SMC_inw(a, r)		readw((a) + (r))
59 #define SMC_inl(a, r)		readl((a) + (r))
60 #define SMC_outb(v, a, r)	writeb(v, (a) + (r))
61 #define SMC_outl(v, a, r)	writel(v, (a) + (r))
62 #define SMC_insw(a, r, p, l)	readsw((a) + (r), p, l)
63 #define SMC_outsw(a, r, p, l)	writesw((a) + (r), p, l)
64 #define SMC_insl(a, r, p, l)	readsl((a) + (r), p, l)
65 #define SMC_outsl(a, r, p, l)	writesl((a) + (r), p, l)
66 #define SMC_IRQ_FLAGS		(-1)	/* from resource */
67 
68 /* We actually can't write halfwords properly if not word aligned */
69 static inline void SMC_outw(u16 val, void __iomem *ioaddr, int reg)
70 {
71 	if ((machine_is_mainstone() || machine_is_stargate2() ||
72 	     machine_is_pxa_idp()) && reg & 2) {
73 		unsigned int v = val << 16;
74 		v |= readl(ioaddr + (reg & ~2)) & 0xffff;
75 		writel(v, ioaddr + (reg & ~2));
76 	} else {
77 		writew(val, ioaddr + reg);
78 	}
79 }
80 
81 #elif	defined(CONFIG_SH_SH4202_MICRODEV)
82 
83 #define SMC_CAN_USE_8BIT	0
84 #define SMC_CAN_USE_16BIT	1
85 #define SMC_CAN_USE_32BIT	0
86 
87 #define SMC_inb(a, r)		inb((a) + (r) - 0xa0000000)
88 #define SMC_inw(a, r)		inw((a) + (r) - 0xa0000000)
89 #define SMC_inl(a, r)		inl((a) + (r) - 0xa0000000)
90 #define SMC_outb(v, a, r)	outb(v, (a) + (r) - 0xa0000000)
91 #define SMC_outw(v, a, r)	outw(v, (a) + (r) - 0xa0000000)
92 #define SMC_outl(v, a, r)	outl(v, (a) + (r) - 0xa0000000)
93 #define SMC_insl(a, r, p, l)	insl((a) + (r) - 0xa0000000, p, l)
94 #define SMC_outsl(a, r, p, l)	outsl((a) + (r) - 0xa0000000, p, l)
95 #define SMC_insw(a, r, p, l)	insw((a) + (r) - 0xa0000000, p, l)
96 #define SMC_outsw(a, r, p, l)	outsw((a) + (r) - 0xa0000000, p, l)
97 
98 #define SMC_IRQ_FLAGS		(0)
99 
100 #elif   defined(CONFIG_M32R)
101 
102 #define SMC_CAN_USE_8BIT	0
103 #define SMC_CAN_USE_16BIT	1
104 #define SMC_CAN_USE_32BIT	0
105 
106 #define SMC_inb(a, r)		inb(((u32)a) + (r))
107 #define SMC_inw(a, r)		inw(((u32)a) + (r))
108 #define SMC_outb(v, a, r)	outb(v, ((u32)a) + (r))
109 #define SMC_outw(v, a, r)	outw(v, ((u32)a) + (r))
110 #define SMC_insw(a, r, p, l)	insw(((u32)a) + (r), p, l)
111 #define SMC_outsw(a, r, p, l)	outsw(((u32)a) + (r), p, l)
112 
113 #define SMC_IRQ_FLAGS		(0)
114 
115 #define RPC_LSA_DEFAULT		RPC_LED_TX_RX
116 #define RPC_LSB_DEFAULT		RPC_LED_100_10
117 
118 #elif defined(CONFIG_MN10300)
119 
120 /*
121  * MN10300/AM33 configuration
122  */
123 
124 #include <unit/smc91111.h>
125 
126 #elif defined(CONFIG_ATARI)
127 
128 #define SMC_CAN_USE_8BIT        1
129 #define SMC_CAN_USE_16BIT       1
130 #define SMC_CAN_USE_32BIT       1
131 #define SMC_NOWAIT              1
132 
133 #define SMC_inb(a, r)           readb((a) + (r))
134 #define SMC_inw(a, r)           readw((a) + (r))
135 #define SMC_inl(a, r)           readl((a) + (r))
136 #define SMC_outb(v, a, r)       writeb(v, (a) + (r))
137 #define SMC_outw(v, a, r)       writew(v, (a) + (r))
138 #define SMC_outl(v, a, r)       writel(v, (a) + (r))
139 #define SMC_insw(a, r, p, l)    readsw((a) + (r), p, l)
140 #define SMC_outsw(a, r, p, l)   writesw((a) + (r), p, l)
141 #define SMC_insl(a, r, p, l)    readsl((a) + (r), p, l)
142 #define SMC_outsl(a, r, p, l)   writesl((a) + (r), p, l)
143 
144 #define RPC_LSA_DEFAULT         RPC_LED_100_10
145 #define RPC_LSB_DEFAULT         RPC_LED_TX_RX
146 
147 #elif defined(CONFIG_COLDFIRE)
148 
149 #define SMC_CAN_USE_8BIT	0
150 #define SMC_CAN_USE_16BIT	1
151 #define SMC_CAN_USE_32BIT	0
152 #define SMC_NOWAIT		1
153 
154 static inline void mcf_insw(void *a, unsigned char *p, int l)
155 {
156 	u16 *wp = (u16 *) p;
157 	while (l-- > 0)
158 		*wp++ = readw(a);
159 }
160 
161 static inline void mcf_outsw(void *a, unsigned char *p, int l)
162 {
163 	u16 *wp = (u16 *) p;
164 	while (l-- > 0)
165 		writew(*wp++, a);
166 }
167 
168 #define SMC_inw(a, r)		_swapw(readw((a) + (r)))
169 #define SMC_outw(v, a, r)	writew(_swapw(v), (a) + (r))
170 #define SMC_insw(a, r, p, l)	mcf_insw(a + r, p, l)
171 #define SMC_outsw(a, r, p, l)	mcf_outsw(a + r, p, l)
172 
173 #define SMC_IRQ_FLAGS		0
174 
175 #else
176 
177 /*
178  * Default configuration
179  */
180 
181 #define SMC_CAN_USE_8BIT	1
182 #define SMC_CAN_USE_16BIT	1
183 #define SMC_CAN_USE_32BIT	1
184 #define SMC_NOWAIT		1
185 
186 #define SMC_IO_SHIFT		(lp->io_shift)
187 
188 #define SMC_inb(a, r)		ioread8((a) + (r))
189 #define SMC_inw(a, r)		ioread16((a) + (r))
190 #define SMC_inl(a, r)		ioread32((a) + (r))
191 #define SMC_outb(v, a, r)	iowrite8(v, (a) + (r))
192 #define SMC_outw(v, a, r)	iowrite16(v, (a) + (r))
193 #define SMC_outl(v, a, r)	iowrite32(v, (a) + (r))
194 #define SMC_insw(a, r, p, l)	ioread16_rep((a) + (r), p, l)
195 #define SMC_outsw(a, r, p, l)	iowrite16_rep((a) + (r), p, l)
196 #define SMC_insl(a, r, p, l)	ioread32_rep((a) + (r), p, l)
197 #define SMC_outsl(a, r, p, l)	iowrite32_rep((a) + (r), p, l)
198 
199 #define RPC_LSA_DEFAULT		RPC_LED_100_10
200 #define RPC_LSB_DEFAULT		RPC_LED_TX_RX
201 
202 #endif
203 
204 
205 /* store this information for the driver.. */
206 struct smc_local {
207 	/*
208 	 * If I have to wait until memory is available to send a
209 	 * packet, I will store the skbuff here, until I get the
210 	 * desired memory.  Then, I'll send it out and free it.
211 	 */
212 	struct sk_buff *pending_tx_skb;
213 	struct tasklet_struct tx_task;
214 
215 	struct gpio_desc *power_gpio;
216 	struct gpio_desc *reset_gpio;
217 
218 	/* version/revision of the SMC91x chip */
219 	int	version;
220 
221 	/* Contains the current active transmission mode */
222 	int	tcr_cur_mode;
223 
224 	/* Contains the current active receive mode */
225 	int	rcr_cur_mode;
226 
227 	/* Contains the current active receive/phy mode */
228 	int	rpc_cur_mode;
229 	int	ctl_rfduplx;
230 	int	ctl_rspeed;
231 
232 	u32	msg_enable;
233 	u32	phy_type;
234 	struct mii_if_info mii;
235 
236 	/* work queue */
237 	struct work_struct phy_configure;
238 	struct net_device *dev;
239 	int	work_pending;
240 
241 	spinlock_t lock;
242 
243 #ifdef CONFIG_ARCH_PXA
244 	/* DMA needs the physical address of the chip */
245 	u_long physaddr;
246 	struct device *device;
247 #endif
248 	struct dma_chan *dma_chan;
249 	void __iomem *base;
250 	void __iomem *datacs;
251 
252 	/* the low address lines on some platforms aren't connected... */
253 	int	io_shift;
254 
255 	struct smc91x_platdata cfg;
256 };
257 
258 #define SMC_8BIT(p)	((p)->cfg.flags & SMC91X_USE_8BIT)
259 #define SMC_16BIT(p)	((p)->cfg.flags & SMC91X_USE_16BIT)
260 #define SMC_32BIT(p)	((p)->cfg.flags & SMC91X_USE_32BIT)
261 
262 #ifdef CONFIG_ARCH_PXA
263 /*
264  * Let's use the DMA engine on the XScale PXA2xx for RX packets. This is
265  * always happening in irq context so no need to worry about races.  TX is
266  * different and probably not worth it for that reason, and not as critical
267  * as RX which can overrun memory and lose packets.
268  */
269 #include <linux/dma-mapping.h>
270 #include <linux/dma/pxa-dma.h>
271 
272 #ifdef SMC_insl
273 #undef SMC_insl
274 #define SMC_insl(a, r, p, l) \
275 	smc_pxa_dma_insl(a, lp, r, dev->dma, p, l)
276 static inline void
277 smc_pxa_dma_inpump(struct smc_local *lp, u_char *buf, int len)
278 {
279 	dma_addr_t dmabuf;
280 	struct dma_async_tx_descriptor *tx;
281 	dma_cookie_t cookie;
282 	enum dma_status status;
283 	struct dma_tx_state state;
284 
285 	dmabuf = dma_map_single(lp->device, buf, len, DMA_FROM_DEVICE);
286 	tx = dmaengine_prep_slave_single(lp->dma_chan, dmabuf, len,
287 					 DMA_DEV_TO_MEM, 0);
288 	if (tx) {
289 		cookie = dmaengine_submit(tx);
290 		dma_async_issue_pending(lp->dma_chan);
291 		do {
292 			status = dmaengine_tx_status(lp->dma_chan, cookie,
293 						     &state);
294 			cpu_relax();
295 		} while (status != DMA_COMPLETE && status != DMA_ERROR &&
296 			 state.residue);
297 		dmaengine_terminate_all(lp->dma_chan);
298 	}
299 	dma_unmap_single(lp->device, dmabuf, len, DMA_FROM_DEVICE);
300 }
301 
302 static inline void
303 smc_pxa_dma_insl(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
304 		 u_char *buf, int len)
305 {
306 	struct dma_slave_config	config;
307 	int ret;
308 
309 	/* fallback if no DMA available */
310 	if (!lp->dma_chan) {
311 		readsl(ioaddr + reg, buf, len);
312 		return;
313 	}
314 
315 	/* 64 bit alignment is required for memory to memory DMA */
316 	if ((long)buf & 4) {
317 		*((u32 *)buf) = SMC_inl(ioaddr, reg);
318 		buf += 4;
319 		len--;
320 	}
321 
322 	memset(&config, 0, sizeof(config));
323 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
324 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
325 	config.src_addr = lp->physaddr + reg;
326 	config.dst_addr = lp->physaddr + reg;
327 	config.src_maxburst = 32;
328 	config.dst_maxburst = 32;
329 	ret = dmaengine_slave_config(lp->dma_chan, &config);
330 	if (ret) {
331 		dev_err(lp->device, "dma channel configuration failed: %d\n",
332 			ret);
333 		return;
334 	}
335 
336 	len *= 4;
337 	smc_pxa_dma_inpump(lp, buf, len);
338 }
339 #endif
340 
341 #ifdef SMC_insw
342 #undef SMC_insw
343 #define SMC_insw(a, r, p, l) \
344 	smc_pxa_dma_insw(a, lp, r, dev->dma, p, l)
345 static inline void
346 smc_pxa_dma_insw(void __iomem *ioaddr, struct smc_local *lp, int reg, int dma,
347 		 u_char *buf, int len)
348 {
349 	struct dma_slave_config	config;
350 	int ret;
351 
352 	/* fallback if no DMA available */
353 	if (!lp->dma_chan) {
354 		readsw(ioaddr + reg, buf, len);
355 		return;
356 	}
357 
358 	/* 64 bit alignment is required for memory to memory DMA */
359 	while ((long)buf & 6) {
360 		*((u16 *)buf) = SMC_inw(ioaddr, reg);
361 		buf += 2;
362 		len--;
363 	}
364 
365 	memset(&config, 0, sizeof(config));
366 	config.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
367 	config.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
368 	config.src_addr = lp->physaddr + reg;
369 	config.dst_addr = lp->physaddr + reg;
370 	config.src_maxburst = 32;
371 	config.dst_maxburst = 32;
372 	ret = dmaengine_slave_config(lp->dma_chan, &config);
373 	if (ret) {
374 		dev_err(lp->device, "dma channel configuration failed: %d\n",
375 			ret);
376 		return;
377 	}
378 
379 	len *= 2;
380 	smc_pxa_dma_inpump(lp, buf, len);
381 }
382 #endif
383 
384 #endif  /* CONFIG_ARCH_PXA */
385 
386 
387 /*
388  * Everything a particular hardware setup needs should have been defined
389  * at this point.  Add stubs for the undefined cases, mainly to avoid
390  * compilation warnings since they'll be optimized away, or to prevent buggy
391  * use of them.
392  */
393 
394 #if ! SMC_CAN_USE_32BIT
395 #define SMC_inl(ioaddr, reg)		({ BUG(); 0; })
396 #define SMC_outl(x, ioaddr, reg)	BUG()
397 #define SMC_insl(a, r, p, l)		BUG()
398 #define SMC_outsl(a, r, p, l)		BUG()
399 #endif
400 
401 #if !defined(SMC_insl) || !defined(SMC_outsl)
402 #define SMC_insl(a, r, p, l)		BUG()
403 #define SMC_outsl(a, r, p, l)		BUG()
404 #endif
405 
406 #if ! SMC_CAN_USE_16BIT
407 
408 /*
409  * Any 16-bit access is performed with two 8-bit accesses if the hardware
410  * can't do it directly. Most registers are 16-bit so those are mandatory.
411  */
412 #define SMC_outw(x, ioaddr, reg)					\
413 	do {								\
414 		unsigned int __val16 = (x);				\
415 		SMC_outb( __val16, ioaddr, reg );			\
416 		SMC_outb( __val16 >> 8, ioaddr, reg + (1 << SMC_IO_SHIFT));\
417 	} while (0)
418 #define SMC_inw(ioaddr, reg)						\
419 	({								\
420 		unsigned int __val16;					\
421 		__val16 =  SMC_inb( ioaddr, reg );			\
422 		__val16 |= SMC_inb( ioaddr, reg + (1 << SMC_IO_SHIFT)) << 8; \
423 		__val16;						\
424 	})
425 
426 #define SMC_insw(a, r, p, l)		BUG()
427 #define SMC_outsw(a, r, p, l)		BUG()
428 
429 #endif
430 
431 #if !defined(SMC_insw) || !defined(SMC_outsw)
432 #define SMC_insw(a, r, p, l)		BUG()
433 #define SMC_outsw(a, r, p, l)		BUG()
434 #endif
435 
436 #if ! SMC_CAN_USE_8BIT
437 #define SMC_inb(ioaddr, reg)		({ BUG(); 0; })
438 #define SMC_outb(x, ioaddr, reg)	BUG()
439 #define SMC_insb(a, r, p, l)		BUG()
440 #define SMC_outsb(a, r, p, l)		BUG()
441 #endif
442 
443 #if !defined(SMC_insb) || !defined(SMC_outsb)
444 #define SMC_insb(a, r, p, l)		BUG()
445 #define SMC_outsb(a, r, p, l)		BUG()
446 #endif
447 
448 #ifndef SMC_CAN_USE_DATACS
449 #define SMC_CAN_USE_DATACS	0
450 #endif
451 
452 #ifndef SMC_IO_SHIFT
453 #define SMC_IO_SHIFT	0
454 #endif
455 
456 #ifndef	SMC_IRQ_FLAGS
457 #define	SMC_IRQ_FLAGS		IRQF_TRIGGER_RISING
458 #endif
459 
460 #ifndef SMC_INTERRUPT_PREAMBLE
461 #define SMC_INTERRUPT_PREAMBLE
462 #endif
463 
464 
465 /* Because of bank switching, the LAN91x uses only 16 I/O ports */
466 #define SMC_IO_EXTENT	(16 << SMC_IO_SHIFT)
467 #define SMC_DATA_EXTENT (4)
468 
469 /*
470  . Bank Select Register:
471  .
472  .		yyyy yyyy 0000 00xx
473  .		xx 		= bank number
474  .		yyyy yyyy	= 0x33, for identification purposes.
475 */
476 #define BANK_SELECT		(14 << SMC_IO_SHIFT)
477 
478 
479 // Transmit Control Register
480 /* BANK 0  */
481 #define TCR_REG(lp) 	SMC_REG(lp, 0x0000, 0)
482 #define TCR_ENABLE	0x0001	// When 1 we can transmit
483 #define TCR_LOOP	0x0002	// Controls output pin LBK
484 #define TCR_FORCOL	0x0004	// When 1 will force a collision
485 #define TCR_PAD_EN	0x0080	// When 1 will pad tx frames < 64 bytes w/0
486 #define TCR_NOCRC	0x0100	// When 1 will not append CRC to tx frames
487 #define TCR_MON_CSN	0x0400	// When 1 tx monitors carrier
488 #define TCR_FDUPLX    	0x0800  // When 1 enables full duplex operation
489 #define TCR_STP_SQET	0x1000	// When 1 stops tx if Signal Quality Error
490 #define TCR_EPH_LOOP	0x2000	// When 1 enables EPH block loopback
491 #define TCR_SWFDUP	0x8000	// When 1 enables Switched Full Duplex mode
492 
493 #define TCR_CLEAR	0	/* do NOTHING */
494 /* the default settings for the TCR register : */
495 #define TCR_DEFAULT	(TCR_ENABLE | TCR_PAD_EN)
496 
497 
498 // EPH Status Register
499 /* BANK 0  */
500 #define EPH_STATUS_REG(lp)	SMC_REG(lp, 0x0002, 0)
501 #define ES_TX_SUC	0x0001	// Last TX was successful
502 #define ES_SNGL_COL	0x0002	// Single collision detected for last tx
503 #define ES_MUL_COL	0x0004	// Multiple collisions detected for last tx
504 #define ES_LTX_MULT	0x0008	// Last tx was a multicast
505 #define ES_16COL	0x0010	// 16 Collisions Reached
506 #define ES_SQET		0x0020	// Signal Quality Error Test
507 #define ES_LTXBRD	0x0040	// Last tx was a broadcast
508 #define ES_TXDEFR	0x0080	// Transmit Deferred
509 #define ES_LATCOL	0x0200	// Late collision detected on last tx
510 #define ES_LOSTCARR	0x0400	// Lost Carrier Sense
511 #define ES_EXC_DEF	0x0800	// Excessive Deferral
512 #define ES_CTR_ROL	0x1000	// Counter Roll Over indication
513 #define ES_LINK_OK	0x4000	// Driven by inverted value of nLNK pin
514 #define ES_TXUNRN	0x8000	// Tx Underrun
515 
516 
517 // Receive Control Register
518 /* BANK 0  */
519 #define RCR_REG(lp)		SMC_REG(lp, 0x0004, 0)
520 #define RCR_RX_ABORT	0x0001	// Set if a rx frame was aborted
521 #define RCR_PRMS	0x0002	// Enable promiscuous mode
522 #define RCR_ALMUL	0x0004	// When set accepts all multicast frames
523 #define RCR_RXEN	0x0100	// IFF this is set, we can receive packets
524 #define RCR_STRIP_CRC	0x0200	// When set strips CRC from rx packets
525 #define RCR_ABORT_ENB	0x0200	// When set will abort rx on collision
526 #define RCR_FILT_CAR	0x0400	// When set filters leading 12 bit s of carrier
527 #define RCR_SOFTRST	0x8000 	// resets the chip
528 
529 /* the normal settings for the RCR register : */
530 #define RCR_DEFAULT	(RCR_STRIP_CRC | RCR_RXEN)
531 #define RCR_CLEAR	0x0	// set it to a base state
532 
533 
534 // Counter Register
535 /* BANK 0  */
536 #define COUNTER_REG(lp)	SMC_REG(lp, 0x0006, 0)
537 
538 
539 // Memory Information Register
540 /* BANK 0  */
541 #define MIR_REG(lp)		SMC_REG(lp, 0x0008, 0)
542 
543 
544 // Receive/Phy Control Register
545 /* BANK 0  */
546 #define RPC_REG(lp)		SMC_REG(lp, 0x000A, 0)
547 #define RPC_SPEED	0x2000	// When 1 PHY is in 100Mbps mode.
548 #define RPC_DPLX	0x1000	// When 1 PHY is in Full-Duplex Mode
549 #define RPC_ANEG	0x0800	// When 1 PHY is in Auto-Negotiate Mode
550 #define RPC_LSXA_SHFT	5	// Bits to shift LS2A,LS1A,LS0A to lsb
551 #define RPC_LSXB_SHFT	2	// Bits to get LS2B,LS1B,LS0B to lsb
552 
553 #ifndef RPC_LSA_DEFAULT
554 #define RPC_LSA_DEFAULT	RPC_LED_100
555 #endif
556 #ifndef RPC_LSB_DEFAULT
557 #define RPC_LSB_DEFAULT RPC_LED_FD
558 #endif
559 
560 #define RPC_DEFAULT (RPC_ANEG | RPC_SPEED | RPC_DPLX)
561 
562 
563 /* Bank 0 0x0C is reserved */
564 
565 // Bank Select Register
566 /* All Banks */
567 #define BSR_REG		0x000E
568 
569 
570 // Configuration Reg
571 /* BANK 1 */
572 #define CONFIG_REG(lp)	SMC_REG(lp, 0x0000,	1)
573 #define CONFIG_EXT_PHY	0x0200	// 1=external MII, 0=internal Phy
574 #define CONFIG_GPCNTRL	0x0400	// Inverse value drives pin nCNTRL
575 #define CONFIG_NO_WAIT	0x1000	// When 1 no extra wait states on ISA bus
576 #define CONFIG_EPH_POWER_EN 0x8000 // When 0 EPH is placed into low power mode.
577 
578 // Default is powered-up, Internal Phy, Wait States, and pin nCNTRL=low
579 #define CONFIG_DEFAULT	(CONFIG_EPH_POWER_EN)
580 
581 
582 // Base Address Register
583 /* BANK 1 */
584 #define BASE_REG(lp)	SMC_REG(lp, 0x0002, 1)
585 
586 
587 // Individual Address Registers
588 /* BANK 1 */
589 #define ADDR0_REG(lp)	SMC_REG(lp, 0x0004, 1)
590 #define ADDR1_REG(lp)	SMC_REG(lp, 0x0006, 1)
591 #define ADDR2_REG(lp)	SMC_REG(lp, 0x0008, 1)
592 
593 
594 // General Purpose Register
595 /* BANK 1 */
596 #define GP_REG(lp)		SMC_REG(lp, 0x000A, 1)
597 
598 
599 // Control Register
600 /* BANK 1 */
601 #define CTL_REG(lp)		SMC_REG(lp, 0x000C, 1)
602 #define CTL_RCV_BAD	0x4000 // When 1 bad CRC packets are received
603 #define CTL_AUTO_RELEASE 0x0800 // When 1 tx pages are released automatically
604 #define CTL_LE_ENABLE	0x0080 // When 1 enables Link Error interrupt
605 #define CTL_CR_ENABLE	0x0040 // When 1 enables Counter Rollover interrupt
606 #define CTL_TE_ENABLE	0x0020 // When 1 enables Transmit Error interrupt
607 #define CTL_EEPROM_SELECT 0x0004 // Controls EEPROM reload & store
608 #define CTL_RELOAD	0x0002 // When set reads EEPROM into registers
609 #define CTL_STORE	0x0001 // When set stores registers into EEPROM
610 
611 
612 // MMU Command Register
613 /* BANK 2 */
614 #define MMU_CMD_REG(lp)	SMC_REG(lp, 0x0000, 2)
615 #define MC_BUSY		1	// When 1 the last release has not completed
616 #define MC_NOP		(0<<5)	// No Op
617 #define MC_ALLOC	(1<<5) 	// OR with number of 256 byte packets
618 #define MC_RESET	(2<<5)	// Reset MMU to initial state
619 #define MC_REMOVE	(3<<5) 	// Remove the current rx packet
620 #define MC_RELEASE  	(4<<5) 	// Remove and release the current rx packet
621 #define MC_FREEPKT  	(5<<5) 	// Release packet in PNR register
622 #define MC_ENQUEUE	(6<<5)	// Enqueue the packet for transmit
623 #define MC_RSTTXFIFO	(7<<5)	// Reset the TX FIFOs
624 
625 
626 // Packet Number Register
627 /* BANK 2 */
628 #define PN_REG(lp)		SMC_REG(lp, 0x0002, 2)
629 
630 
631 // Allocation Result Register
632 /* BANK 2 */
633 #define AR_REG(lp)		SMC_REG(lp, 0x0003, 2)
634 #define AR_FAILED	0x80	// Alocation Failed
635 
636 
637 // TX FIFO Ports Register
638 /* BANK 2 */
639 #define TXFIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
640 #define TXFIFO_TEMPTY	0x80	// TX FIFO Empty
641 
642 // RX FIFO Ports Register
643 /* BANK 2 */
644 #define RXFIFO_REG(lp)	SMC_REG(lp, 0x0005, 2)
645 #define RXFIFO_REMPTY	0x80	// RX FIFO Empty
646 
647 #define FIFO_REG(lp)	SMC_REG(lp, 0x0004, 2)
648 
649 // Pointer Register
650 /* BANK 2 */
651 #define PTR_REG(lp)		SMC_REG(lp, 0x0006, 2)
652 #define PTR_RCV		0x8000 // 1=Receive area, 0=Transmit area
653 #define PTR_AUTOINC 	0x4000 // Auto increment the pointer on each access
654 #define PTR_READ	0x2000 // When 1 the operation is a read
655 
656 
657 // Data Register
658 /* BANK 2 */
659 #define DATA_REG(lp)	SMC_REG(lp, 0x0008, 2)
660 
661 
662 // Interrupt Status/Acknowledge Register
663 /* BANK 2 */
664 #define INT_REG(lp)		SMC_REG(lp, 0x000C, 2)
665 
666 
667 // Interrupt Mask Register
668 /* BANK 2 */
669 #define IM_REG(lp)		SMC_REG(lp, 0x000D, 2)
670 #define IM_MDINT	0x80 // PHY MI Register 18 Interrupt
671 #define IM_ERCV_INT	0x40 // Early Receive Interrupt
672 #define IM_EPH_INT	0x20 // Set by Ethernet Protocol Handler section
673 #define IM_RX_OVRN_INT	0x10 // Set by Receiver Overruns
674 #define IM_ALLOC_INT	0x08 // Set when allocation request is completed
675 #define IM_TX_EMPTY_INT	0x04 // Set if the TX FIFO goes empty
676 #define IM_TX_INT	0x02 // Transmit Interrupt
677 #define IM_RCV_INT	0x01 // Receive Interrupt
678 
679 
680 // Multicast Table Registers
681 /* BANK 3 */
682 #define MCAST_REG1(lp)	SMC_REG(lp, 0x0000, 3)
683 #define MCAST_REG2(lp)	SMC_REG(lp, 0x0002, 3)
684 #define MCAST_REG3(lp)	SMC_REG(lp, 0x0004, 3)
685 #define MCAST_REG4(lp)	SMC_REG(lp, 0x0006, 3)
686 
687 
688 // Management Interface Register (MII)
689 /* BANK 3 */
690 #define MII_REG(lp)		SMC_REG(lp, 0x0008, 3)
691 #define MII_MSK_CRS100	0x4000 // Disables CRS100 detection during tx half dup
692 #define MII_MDOE	0x0008 // MII Output Enable
693 #define MII_MCLK	0x0004 // MII Clock, pin MDCLK
694 #define MII_MDI		0x0002 // MII Input, pin MDI
695 #define MII_MDO		0x0001 // MII Output, pin MDO
696 
697 
698 // Revision Register
699 /* BANK 3 */
700 /* ( hi: chip id   low: rev # ) */
701 #define REV_REG(lp)		SMC_REG(lp, 0x000A, 3)
702 
703 
704 // Early RCV Register
705 /* BANK 3 */
706 /* this is NOT on SMC9192 */
707 #define ERCV_REG(lp)	SMC_REG(lp, 0x000C, 3)
708 #define ERCV_RCV_DISCRD	0x0080 // When 1 discards a packet being received
709 #define ERCV_THRESHOLD	0x001F // ERCV Threshold Mask
710 
711 
712 // External Register
713 /* BANK 7 */
714 #define EXT_REG(lp)		SMC_REG(lp, 0x0000, 7)
715 
716 
717 #define CHIP_9192	3
718 #define CHIP_9194	4
719 #define CHIP_9195	5
720 #define CHIP_9196	6
721 #define CHIP_91100	7
722 #define CHIP_91100FD	8
723 #define CHIP_91111FD	9
724 
725 static const char * chip_ids[ 16 ] =  {
726 	NULL, NULL, NULL,
727 	/* 3 */ "SMC91C90/91C92",
728 	/* 4 */ "SMC91C94",
729 	/* 5 */ "SMC91C95",
730 	/* 6 */ "SMC91C96",
731 	/* 7 */ "SMC91C100",
732 	/* 8 */ "SMC91C100FD",
733 	/* 9 */ "SMC91C11xFD",
734 	NULL, NULL, NULL,
735 	NULL, NULL, NULL};
736 
737 
738 /*
739  . Receive status bits
740 */
741 #define RS_ALGNERR	0x8000
742 #define RS_BRODCAST	0x4000
743 #define RS_BADCRC	0x2000
744 #define RS_ODDFRAME	0x1000
745 #define RS_TOOLONG	0x0800
746 #define RS_TOOSHORT	0x0400
747 #define RS_MULTICAST	0x0001
748 #define RS_ERRORS	(RS_ALGNERR | RS_BADCRC | RS_TOOLONG | RS_TOOSHORT)
749 
750 
751 /*
752  * PHY IDs
753  *  LAN83C183 == LAN91C111 Internal PHY
754  */
755 #define PHY_LAN83C183	0x0016f840
756 #define PHY_LAN83C180	0x02821c50
757 
758 /*
759  * PHY Register Addresses (LAN91C111 Internal PHY)
760  *
761  * Generic PHY registers can be found in <linux/mii.h>
762  *
763  * These phy registers are specific to our on-board phy.
764  */
765 
766 // PHY Configuration Register 1
767 #define PHY_CFG1_REG		0x10
768 #define PHY_CFG1_LNKDIS		0x8000	// 1=Rx Link Detect Function disabled
769 #define PHY_CFG1_XMTDIS		0x4000	// 1=TP Transmitter Disabled
770 #define PHY_CFG1_XMTPDN		0x2000	// 1=TP Transmitter Powered Down
771 #define PHY_CFG1_BYPSCR		0x0400	// 1=Bypass scrambler/descrambler
772 #define PHY_CFG1_UNSCDS		0x0200	// 1=Unscramble Idle Reception Disable
773 #define PHY_CFG1_EQLZR		0x0100	// 1=Rx Equalizer Disabled
774 #define PHY_CFG1_CABLE		0x0080	// 1=STP(150ohm), 0=UTP(100ohm)
775 #define PHY_CFG1_RLVL0		0x0040	// 1=Rx Squelch level reduced by 4.5db
776 #define PHY_CFG1_TLVL_SHIFT	2	// Transmit Output Level Adjust
777 #define PHY_CFG1_TLVL_MASK	0x003C
778 #define PHY_CFG1_TRF_MASK	0x0003	// Transmitter Rise/Fall time
779 
780 
781 // PHY Configuration Register 2
782 #define PHY_CFG2_REG		0x11
783 #define PHY_CFG2_APOLDIS	0x0020	// 1=Auto Polarity Correction disabled
784 #define PHY_CFG2_JABDIS		0x0010	// 1=Jabber disabled
785 #define PHY_CFG2_MREG		0x0008	// 1=Multiple register access (MII mgt)
786 #define PHY_CFG2_INTMDIO	0x0004	// 1=Interrupt signaled with MDIO pulseo
787 
788 // PHY Status Output (and Interrupt status) Register
789 #define PHY_INT_REG		0x12	// Status Output (Interrupt Status)
790 #define PHY_INT_INT		0x8000	// 1=bits have changed since last read
791 #define PHY_INT_LNKFAIL		0x4000	// 1=Link Not detected
792 #define PHY_INT_LOSSSYNC	0x2000	// 1=Descrambler has lost sync
793 #define PHY_INT_CWRD		0x1000	// 1=Invalid 4B5B code detected on rx
794 #define PHY_INT_SSD		0x0800	// 1=No Start Of Stream detected on rx
795 #define PHY_INT_ESD		0x0400	// 1=No End Of Stream detected on rx
796 #define PHY_INT_RPOL		0x0200	// 1=Reverse Polarity detected
797 #define PHY_INT_JAB		0x0100	// 1=Jabber detected
798 #define PHY_INT_SPDDET		0x0080	// 1=100Base-TX mode, 0=10Base-T mode
799 #define PHY_INT_DPLXDET		0x0040	// 1=Device in Full Duplex
800 
801 // PHY Interrupt/Status Mask Register
802 #define PHY_MASK_REG		0x13	// Interrupt Mask
803 // Uses the same bit definitions as PHY_INT_REG
804 
805 
806 /*
807  * SMC91C96 ethernet config and status registers.
808  * These are in the "attribute" space.
809  */
810 #define ECOR			0x8000
811 #define ECOR_RESET		0x80
812 #define ECOR_LEVEL_IRQ		0x40
813 #define ECOR_WR_ATTRIB		0x04
814 #define ECOR_ENABLE		0x01
815 
816 #define ECSR			0x8002
817 #define ECSR_IOIS8		0x20
818 #define ECSR_PWRDWN		0x04
819 #define ECSR_INT		0x02
820 
821 #define ATTRIB_SIZE		((64*1024) << SMC_IO_SHIFT)
822 
823 
824 /*
825  * Macros to abstract register access according to the data bus
826  * capabilities.  Please use those and not the in/out primitives.
827  * Note: the following macros do *not* select the bank -- this must
828  * be done separately as needed in the main code.  The SMC_REG() macro
829  * only uses the bank argument for debugging purposes (when enabled).
830  *
831  * Note: despite inline functions being safer, everything leading to this
832  * should preferably be macros to let BUG() display the line number in
833  * the core source code since we're interested in the top call site
834  * not in any inline function location.
835  */
836 
837 #if SMC_DEBUG > 0
838 #define SMC_REG(lp, reg, bank)					\
839 	({								\
840 		int __b = SMC_CURRENT_BANK(lp);			\
841 		if (unlikely((__b & ~0xf0) != (0x3300 | bank))) {	\
842 			pr_err("%s: bank reg screwed (0x%04x)\n",	\
843 			       CARDNAME, __b);				\
844 			BUG();						\
845 		}							\
846 		reg<<SMC_IO_SHIFT;					\
847 	})
848 #else
849 #define SMC_REG(lp, reg, bank)	(reg<<SMC_IO_SHIFT)
850 #endif
851 
852 /*
853  * Hack Alert: Some setups just can't write 8 or 16 bits reliably when not
854  * aligned to a 32 bit boundary.  I tell you that does exist!
855  * Fortunately the affected register accesses can be easily worked around
856  * since we can write zeroes to the preceding 16 bits without adverse
857  * effects and use a 32-bit access.
858  *
859  * Enforce it on any 32-bit capable setup for now.
860  */
861 #define SMC_MUST_ALIGN_WRITE(lp)	SMC_32BIT(lp)
862 
863 #define SMC_GET_PN(lp)						\
864 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, PN_REG(lp)))	\
865 				: (SMC_inw(ioaddr, PN_REG(lp)) & 0xFF))
866 
867 #define SMC_SET_PN(lp, x)						\
868 	do {								\
869 		if (SMC_MUST_ALIGN_WRITE(lp))				\
870 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 0, 2));	\
871 		else if (SMC_8BIT(lp))				\
872 			SMC_outb(x, ioaddr, PN_REG(lp));		\
873 		else							\
874 			SMC_outw(x, ioaddr, PN_REG(lp));		\
875 	} while (0)
876 
877 #define SMC_GET_AR(lp)						\
878 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, AR_REG(lp)))	\
879 				: (SMC_inw(ioaddr, PN_REG(lp)) >> 8))
880 
881 #define SMC_GET_TXFIFO(lp)						\
882 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, TXFIFO_REG(lp)))	\
883 				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) & 0xFF))
884 
885 #define SMC_GET_RXFIFO(lp)						\
886 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, RXFIFO_REG(lp)))	\
887 				: (SMC_inw(ioaddr, TXFIFO_REG(lp)) >> 8))
888 
889 #define SMC_GET_INT(lp)						\
890 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, INT_REG(lp)))	\
891 				: (SMC_inw(ioaddr, INT_REG(lp)) & 0xFF))
892 
893 #define SMC_ACK_INT(lp, x)						\
894 	do {								\
895 		if (SMC_8BIT(lp))					\
896 			SMC_outb(x, ioaddr, INT_REG(lp));		\
897 		else {							\
898 			unsigned long __flags;				\
899 			int __mask;					\
900 			local_irq_save(__flags);			\
901 			__mask = SMC_inw(ioaddr, INT_REG(lp)) & ~0xff; \
902 			SMC_outw(__mask | (x), ioaddr, INT_REG(lp));	\
903 			local_irq_restore(__flags);			\
904 		}							\
905 	} while (0)
906 
907 #define SMC_GET_INT_MASK(lp)						\
908 	(SMC_8BIT(lp)	? (SMC_inb(ioaddr, IM_REG(lp)))	\
909 				: (SMC_inw(ioaddr, INT_REG(lp)) >> 8))
910 
911 #define SMC_SET_INT_MASK(lp, x)					\
912 	do {								\
913 		if (SMC_8BIT(lp))					\
914 			SMC_outb(x, ioaddr, IM_REG(lp));		\
915 		else							\
916 			SMC_outw((x) << 8, ioaddr, INT_REG(lp));	\
917 	} while (0)
918 
919 #define SMC_CURRENT_BANK(lp)	SMC_inw(ioaddr, BANK_SELECT)
920 
921 #define SMC_SELECT_BANK(lp, x)					\
922 	do {								\
923 		if (SMC_MUST_ALIGN_WRITE(lp))				\
924 			SMC_outl((x)<<16, ioaddr, 12<<SMC_IO_SHIFT);	\
925 		else							\
926 			SMC_outw(x, ioaddr, BANK_SELECT);		\
927 	} while (0)
928 
929 #define SMC_GET_BASE(lp)		SMC_inw(ioaddr, BASE_REG(lp))
930 
931 #define SMC_SET_BASE(lp, x)		SMC_outw(x, ioaddr, BASE_REG(lp))
932 
933 #define SMC_GET_CONFIG(lp)	SMC_inw(ioaddr, CONFIG_REG(lp))
934 
935 #define SMC_SET_CONFIG(lp, x)	SMC_outw(x, ioaddr, CONFIG_REG(lp))
936 
937 #define SMC_GET_COUNTER(lp)	SMC_inw(ioaddr, COUNTER_REG(lp))
938 
939 #define SMC_GET_CTL(lp)		SMC_inw(ioaddr, CTL_REG(lp))
940 
941 #define SMC_SET_CTL(lp, x)		SMC_outw(x, ioaddr, CTL_REG(lp))
942 
943 #define SMC_GET_MII(lp)		SMC_inw(ioaddr, MII_REG(lp))
944 
945 #define SMC_GET_GP(lp)		SMC_inw(ioaddr, GP_REG(lp))
946 
947 #define SMC_SET_GP(lp, x)						\
948 	do {								\
949 		if (SMC_MUST_ALIGN_WRITE(lp))				\
950 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 1));	\
951 		else							\
952 			SMC_outw(x, ioaddr, GP_REG(lp));		\
953 	} while (0)
954 
955 #define SMC_SET_MII(lp, x)		SMC_outw(x, ioaddr, MII_REG(lp))
956 
957 #define SMC_GET_MIR(lp)		SMC_inw(ioaddr, MIR_REG(lp))
958 
959 #define SMC_SET_MIR(lp, x)		SMC_outw(x, ioaddr, MIR_REG(lp))
960 
961 #define SMC_GET_MMU_CMD(lp)	SMC_inw(ioaddr, MMU_CMD_REG(lp))
962 
963 #define SMC_SET_MMU_CMD(lp, x)	SMC_outw(x, ioaddr, MMU_CMD_REG(lp))
964 
965 #define SMC_GET_FIFO(lp)		SMC_inw(ioaddr, FIFO_REG(lp))
966 
967 #define SMC_GET_PTR(lp)		SMC_inw(ioaddr, PTR_REG(lp))
968 
969 #define SMC_SET_PTR(lp, x)						\
970 	do {								\
971 		if (SMC_MUST_ALIGN_WRITE(lp))				\
972 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 4, 2));	\
973 		else							\
974 			SMC_outw(x, ioaddr, PTR_REG(lp));		\
975 	} while (0)
976 
977 #define SMC_GET_EPH_STATUS(lp)	SMC_inw(ioaddr, EPH_STATUS_REG(lp))
978 
979 #define SMC_GET_RCR(lp)		SMC_inw(ioaddr, RCR_REG(lp))
980 
981 #define SMC_SET_RCR(lp, x)		SMC_outw(x, ioaddr, RCR_REG(lp))
982 
983 #define SMC_GET_REV(lp)		SMC_inw(ioaddr, REV_REG(lp))
984 
985 #define SMC_GET_RPC(lp)		SMC_inw(ioaddr, RPC_REG(lp))
986 
987 #define SMC_SET_RPC(lp, x)						\
988 	do {								\
989 		if (SMC_MUST_ALIGN_WRITE(lp))				\
990 			SMC_outl((x)<<16, ioaddr, SMC_REG(lp, 8, 0));	\
991 		else							\
992 			SMC_outw(x, ioaddr, RPC_REG(lp));		\
993 	} while (0)
994 
995 #define SMC_GET_TCR(lp)		SMC_inw(ioaddr, TCR_REG(lp))
996 
997 #define SMC_SET_TCR(lp, x)		SMC_outw(x, ioaddr, TCR_REG(lp))
998 
999 #ifndef SMC_GET_MAC_ADDR
1000 #define SMC_GET_MAC_ADDR(lp, addr)					\
1001 	do {								\
1002 		unsigned int __v;					\
1003 		__v = SMC_inw(ioaddr, ADDR0_REG(lp));			\
1004 		addr[0] = __v; addr[1] = __v >> 8;			\
1005 		__v = SMC_inw(ioaddr, ADDR1_REG(lp));			\
1006 		addr[2] = __v; addr[3] = __v >> 8;			\
1007 		__v = SMC_inw(ioaddr, ADDR2_REG(lp));			\
1008 		addr[4] = __v; addr[5] = __v >> 8;			\
1009 	} while (0)
1010 #endif
1011 
1012 #define SMC_SET_MAC_ADDR(lp, addr)					\
1013 	do {								\
1014 		SMC_outw(addr[0]|(addr[1] << 8), ioaddr, ADDR0_REG(lp)); \
1015 		SMC_outw(addr[2]|(addr[3] << 8), ioaddr, ADDR1_REG(lp)); \
1016 		SMC_outw(addr[4]|(addr[5] << 8), ioaddr, ADDR2_REG(lp)); \
1017 	} while (0)
1018 
1019 #define SMC_SET_MCAST(lp, x)						\
1020 	do {								\
1021 		const unsigned char *mt = (x);				\
1022 		SMC_outw(mt[0] | (mt[1] << 8), ioaddr, MCAST_REG1(lp)); \
1023 		SMC_outw(mt[2] | (mt[3] << 8), ioaddr, MCAST_REG2(lp)); \
1024 		SMC_outw(mt[4] | (mt[5] << 8), ioaddr, MCAST_REG3(lp)); \
1025 		SMC_outw(mt[6] | (mt[7] << 8), ioaddr, MCAST_REG4(lp)); \
1026 	} while (0)
1027 
1028 #define SMC_PUT_PKT_HDR(lp, status, length)				\
1029 	do {								\
1030 		if (SMC_32BIT(lp))					\
1031 			SMC_outl((status) | (length)<<16, ioaddr,	\
1032 				 DATA_REG(lp));			\
1033 		else {							\
1034 			SMC_outw(status, ioaddr, DATA_REG(lp));	\
1035 			SMC_outw(length, ioaddr, DATA_REG(lp));	\
1036 		}							\
1037 	} while (0)
1038 
1039 #define SMC_GET_PKT_HDR(lp, status, length)				\
1040 	do {								\
1041 		if (SMC_32BIT(lp)) {				\
1042 			unsigned int __val = SMC_inl(ioaddr, DATA_REG(lp)); \
1043 			(status) = __val & 0xffff;			\
1044 			(length) = __val >> 16;				\
1045 		} else {						\
1046 			(status) = SMC_inw(ioaddr, DATA_REG(lp));	\
1047 			(length) = SMC_inw(ioaddr, DATA_REG(lp));	\
1048 		}							\
1049 	} while (0)
1050 
1051 #define SMC_PUSH_DATA(lp, p, l)					\
1052 	do {								\
1053 		if (SMC_32BIT(lp)) {				\
1054 			void *__ptr = (p);				\
1055 			int __len = (l);				\
1056 			void __iomem *__ioaddr = ioaddr;		\
1057 			if (__len >= 2 && (unsigned long)__ptr & 2) {	\
1058 				__len -= 2;				\
1059 				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1060 				__ptr += 2;				\
1061 			}						\
1062 			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1063 				__ioaddr = lp->datacs;			\
1064 			SMC_outsl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1065 			if (__len & 2) {				\
1066 				__ptr += (__len & ~3);			\
1067 				SMC_outsw(ioaddr, DATA_REG(lp), __ptr, 1); \
1068 			}						\
1069 		} else if (SMC_16BIT(lp))				\
1070 			SMC_outsw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1071 		else if (SMC_8BIT(lp))				\
1072 			SMC_outsb(ioaddr, DATA_REG(lp), p, l);	\
1073 	} while (0)
1074 
1075 #define SMC_PULL_DATA(lp, p, l)					\
1076 	do {								\
1077 		if (SMC_32BIT(lp)) {				\
1078 			void *__ptr = (p);				\
1079 			int __len = (l);				\
1080 			void __iomem *__ioaddr = ioaddr;		\
1081 			if ((unsigned long)__ptr & 2) {			\
1082 				/*					\
1083 				 * We want 32bit alignment here.	\
1084 				 * Since some buses perform a full	\
1085 				 * 32bit fetch even for 16bit data	\
1086 				 * we can't use SMC_inw() here.		\
1087 				 * Back both source (on-chip) and	\
1088 				 * destination pointers of 2 bytes.	\
1089 				 * This is possible since the call to	\
1090 				 * SMC_GET_PKT_HDR() already advanced	\
1091 				 * the source pointer of 4 bytes, and	\
1092 				 * the skb_reserve(skb, 2) advanced	\
1093 				 * the destination pointer of 2 bytes.	\
1094 				 */					\
1095 				__ptr -= 2;				\
1096 				__len += 2;				\
1097 				SMC_SET_PTR(lp,			\
1098 					2|PTR_READ|PTR_RCV|PTR_AUTOINC); \
1099 			}						\
1100 			if (SMC_CAN_USE_DATACS && lp->datacs)		\
1101 				__ioaddr = lp->datacs;			\
1102 			__len += 2;					\
1103 			SMC_insl(__ioaddr, DATA_REG(lp), __ptr, __len>>2); \
1104 		} else if (SMC_16BIT(lp))				\
1105 			SMC_insw(ioaddr, DATA_REG(lp), p, (l) >> 1);	\
1106 		else if (SMC_8BIT(lp))				\
1107 			SMC_insb(ioaddr, DATA_REG(lp), p, l);		\
1108 	} while (0)
1109 
1110 #endif  /* _SMC91X_H_ */
1111