xref: /linux/drivers/net/ethernet/sfc/falcon/qt202x_phy.c (revision e5a52fd2b8cdb700b3c07b030e050a49ef3156b9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /****************************************************************************
3  * Driver for Solarflare network controllers and boards
4  * Copyright 2006-2012 Solarflare Communications Inc.
5  */
6 /*
7  * Driver for AMCC QT202x SFP+ and XFP adapters; see www.amcc.com for details
8  */
9 
10 #include <linux/slab.h>
11 #include <linux/timer.h>
12 #include <linux/delay.h>
13 #include "efx.h"
14 #include "mdio_10g.h"
15 #include "phy.h"
16 #include "nic.h"
17 
18 #define QT202X_REQUIRED_DEVS (MDIO_DEVS_PCS |		\
19 			      MDIO_DEVS_PMAPMD |	\
20 			      MDIO_DEVS_PHYXS)
21 
22 #define QT202X_LOOPBACKS ((1 << LOOPBACK_PCS) |		\
23 			  (1 << LOOPBACK_PMAPMD) |	\
24 			  (1 << LOOPBACK_PHYXS_WS))
25 
26 /****************************************************************************/
27 /* Quake-specific MDIO registers */
28 #define MDIO_QUAKE_LED0_REG	(0xD006)
29 
30 /* QT2025C only */
31 #define PCS_FW_HEARTBEAT_REG	0xd7ee
32 #define PCS_FW_HEARTB_LBN	0
33 #define PCS_FW_HEARTB_WIDTH	8
34 #define PCS_FW_PRODUCT_CODE_1	0xd7f0
35 #define PCS_FW_VERSION_1	0xd7f3
36 #define PCS_FW_BUILD_1		0xd7f6
37 #define PCS_UC8051_STATUS_REG	0xd7fd
38 #define PCS_UC_STATUS_LBN	0
39 #define PCS_UC_STATUS_WIDTH	8
40 #define PCS_UC_STATUS_FW_SAVE	0x20
41 #define PMA_PMD_MODE_REG	0xc301
42 #define PMA_PMD_RXIN_SEL_LBN	6
43 #define PMA_PMD_FTX_CTRL2_REG	0xc309
44 #define PMA_PMD_FTX_STATIC_LBN	13
45 #define PMA_PMD_VEND1_REG	0xc001
46 #define PMA_PMD_VEND1_LBTXD_LBN	15
47 #define PCS_VEND1_REG		0xc000
48 #define PCS_VEND1_LBTXD_LBN	5
49 
50 void falcon_qt202x_set_led(struct ef4_nic *p, int led, int mode)
51 {
52 	int addr = MDIO_QUAKE_LED0_REG + led;
53 	ef4_mdio_write(p, MDIO_MMD_PMAPMD, addr, mode);
54 }
55 
56 struct qt202x_phy_data {
57 	enum ef4_phy_mode phy_mode;
58 	bool bug17190_in_bad_state;
59 	unsigned long bug17190_timer;
60 	u32 firmware_ver;
61 };
62 
63 #define QT2022C2_MAX_RESET_TIME 500
64 #define QT2022C2_RESET_WAIT 10
65 
66 #define QT2025C_MAX_HEARTB_TIME (5 * HZ)
67 #define QT2025C_HEARTB_WAIT 100
68 #define QT2025C_MAX_FWSTART_TIME (25 * HZ / 10)
69 #define QT2025C_FWSTART_WAIT 100
70 
71 #define BUG17190_INTERVAL (2 * HZ)
72 
73 static int qt2025c_wait_heartbeat(struct ef4_nic *efx)
74 {
75 	unsigned long timeout = jiffies + QT2025C_MAX_HEARTB_TIME;
76 	int reg, old_counter = 0;
77 
78 	/* Wait for firmware heartbeat to start */
79 	for (;;) {
80 		int counter;
81 		reg = ef4_mdio_read(efx, MDIO_MMD_PCS, PCS_FW_HEARTBEAT_REG);
82 		if (reg < 0)
83 			return reg;
84 		counter = ((reg >> PCS_FW_HEARTB_LBN) &
85 			    ((1 << PCS_FW_HEARTB_WIDTH) - 1));
86 		if (old_counter == 0)
87 			old_counter = counter;
88 		else if (counter != old_counter)
89 			break;
90 		if (time_after(jiffies, timeout)) {
91 			/* Some cables have EEPROMs that conflict with the
92 			 * PHY's on-board EEPROM so it cannot load firmware */
93 			netif_err(efx, hw, efx->net_dev,
94 				  "If an SFP+ direct attach cable is"
95 				  " connected, please check that it complies"
96 				  " with the SFP+ specification\n");
97 			return -ETIMEDOUT;
98 		}
99 		msleep(QT2025C_HEARTB_WAIT);
100 	}
101 
102 	return 0;
103 }
104 
105 static int qt2025c_wait_fw_status_good(struct ef4_nic *efx)
106 {
107 	unsigned long timeout = jiffies + QT2025C_MAX_FWSTART_TIME;
108 	int reg;
109 
110 	/* Wait for firmware status to look good */
111 	for (;;) {
112 		reg = ef4_mdio_read(efx, MDIO_MMD_PCS, PCS_UC8051_STATUS_REG);
113 		if (reg < 0)
114 			return reg;
115 		if ((reg &
116 		     ((1 << PCS_UC_STATUS_WIDTH) - 1) << PCS_UC_STATUS_LBN) >=
117 		    PCS_UC_STATUS_FW_SAVE)
118 			break;
119 		if (time_after(jiffies, timeout))
120 			return -ETIMEDOUT;
121 		msleep(QT2025C_FWSTART_WAIT);
122 	}
123 
124 	return 0;
125 }
126 
127 static void qt2025c_restart_firmware(struct ef4_nic *efx)
128 {
129 	/* Restart microcontroller execution of firmware from RAM */
130 	ef4_mdio_write(efx, 3, 0xe854, 0x00c0);
131 	ef4_mdio_write(efx, 3, 0xe854, 0x0040);
132 	msleep(50);
133 }
134 
135 static int qt2025c_wait_reset(struct ef4_nic *efx)
136 {
137 	int rc;
138 
139 	rc = qt2025c_wait_heartbeat(efx);
140 	if (rc != 0)
141 		return rc;
142 
143 	rc = qt2025c_wait_fw_status_good(efx);
144 	if (rc == -ETIMEDOUT) {
145 		/* Bug 17689: occasionally heartbeat starts but firmware status
146 		 * code never progresses beyond 0x00.  Try again, once, after
147 		 * restarting execution of the firmware image. */
148 		netif_dbg(efx, hw, efx->net_dev,
149 			  "bashing QT2025C microcontroller\n");
150 		qt2025c_restart_firmware(efx);
151 		rc = qt2025c_wait_heartbeat(efx);
152 		if (rc != 0)
153 			return rc;
154 		rc = qt2025c_wait_fw_status_good(efx);
155 	}
156 
157 	return rc;
158 }
159 
160 static void qt2025c_firmware_id(struct ef4_nic *efx)
161 {
162 	struct qt202x_phy_data *phy_data = efx->phy_data;
163 	u8 firmware_id[9];
164 	size_t i;
165 
166 	for (i = 0; i < sizeof(firmware_id); i++)
167 		firmware_id[i] = ef4_mdio_read(efx, MDIO_MMD_PCS,
168 					       PCS_FW_PRODUCT_CODE_1 + i);
169 	netif_info(efx, probe, efx->net_dev,
170 		   "QT2025C firmware %xr%d v%d.%d.%d.%d [20%02d-%02d-%02d]\n",
171 		   (firmware_id[0] << 8) | firmware_id[1], firmware_id[2],
172 		   firmware_id[3] >> 4, firmware_id[3] & 0xf,
173 		   firmware_id[4], firmware_id[5],
174 		   firmware_id[6], firmware_id[7], firmware_id[8]);
175 	phy_data->firmware_ver = ((firmware_id[3] & 0xf0) << 20) |
176 				 ((firmware_id[3] & 0x0f) << 16) |
177 				 (firmware_id[4] << 8) | firmware_id[5];
178 }
179 
180 static void qt2025c_bug17190_workaround(struct ef4_nic *efx)
181 {
182 	struct qt202x_phy_data *phy_data = efx->phy_data;
183 
184 	/* The PHY can get stuck in a state where it reports PHY_XS and PMA/PMD
185 	 * layers up, but PCS down (no block_lock).  If we notice this state
186 	 * persisting for a couple of seconds, we switch PMA/PMD loopback
187 	 * briefly on and then off again, which is normally sufficient to
188 	 * recover it.
189 	 */
190 	if (efx->link_state.up ||
191 	    !ef4_mdio_links_ok(efx, MDIO_DEVS_PMAPMD | MDIO_DEVS_PHYXS)) {
192 		phy_data->bug17190_in_bad_state = false;
193 		return;
194 	}
195 
196 	if (!phy_data->bug17190_in_bad_state) {
197 		phy_data->bug17190_in_bad_state = true;
198 		phy_data->bug17190_timer = jiffies + BUG17190_INTERVAL;
199 		return;
200 	}
201 
202 	if (time_after_eq(jiffies, phy_data->bug17190_timer)) {
203 		netif_dbg(efx, hw, efx->net_dev, "bashing QT2025C PMA/PMD\n");
204 		ef4_mdio_set_flag(efx, MDIO_MMD_PMAPMD, MDIO_CTRL1,
205 				  MDIO_PMA_CTRL1_LOOPBACK, true);
206 		msleep(100);
207 		ef4_mdio_set_flag(efx, MDIO_MMD_PMAPMD, MDIO_CTRL1,
208 				  MDIO_PMA_CTRL1_LOOPBACK, false);
209 		phy_data->bug17190_timer = jiffies + BUG17190_INTERVAL;
210 	}
211 }
212 
213 static int qt2025c_select_phy_mode(struct ef4_nic *efx)
214 {
215 	struct qt202x_phy_data *phy_data = efx->phy_data;
216 	struct falcon_board *board = falcon_board(efx);
217 	int reg, rc, i;
218 	uint16_t phy_op_mode;
219 
220 	/* Only 2.0.1.0+ PHY firmware supports the more optimal SFP+
221 	 * Self-Configure mode.  Don't attempt any switching if we encounter
222 	 * older firmware. */
223 	if (phy_data->firmware_ver < 0x02000100)
224 		return 0;
225 
226 	/* In general we will get optimal behaviour in "SFP+ Self-Configure"
227 	 * mode; however, that powers down most of the PHY when no module is
228 	 * present, so we must use a different mode (any fixed mode will do)
229 	 * to be sure that loopbacks will work. */
230 	phy_op_mode = (efx->loopback_mode == LOOPBACK_NONE) ? 0x0038 : 0x0020;
231 
232 	/* Only change mode if really necessary */
233 	reg = ef4_mdio_read(efx, 1, 0xc319);
234 	if ((reg & 0x0038) == phy_op_mode)
235 		return 0;
236 	netif_dbg(efx, hw, efx->net_dev, "Switching PHY to mode 0x%04x\n",
237 		  phy_op_mode);
238 
239 	/* This sequence replicates the register writes configured in the boot
240 	 * EEPROM (including the differences between board revisions), except
241 	 * that the operating mode is changed, and the PHY is prevented from
242 	 * unnecessarily reloading the main firmware image again. */
243 	ef4_mdio_write(efx, 1, 0xc300, 0x0000);
244 	/* (Note: this portion of the boot EEPROM sequence, which bit-bashes 9
245 	 * STOPs onto the firmware/module I2C bus to reset it, varies across
246 	 * board revisions, as the bus is connected to different GPIO/LED
247 	 * outputs on the PHY.) */
248 	if (board->major == 0 && board->minor < 2) {
249 		ef4_mdio_write(efx, 1, 0xc303, 0x4498);
250 		for (i = 0; i < 9; i++) {
251 			ef4_mdio_write(efx, 1, 0xc303, 0x4488);
252 			ef4_mdio_write(efx, 1, 0xc303, 0x4480);
253 			ef4_mdio_write(efx, 1, 0xc303, 0x4490);
254 			ef4_mdio_write(efx, 1, 0xc303, 0x4498);
255 		}
256 	} else {
257 		ef4_mdio_write(efx, 1, 0xc303, 0x0920);
258 		ef4_mdio_write(efx, 1, 0xd008, 0x0004);
259 		for (i = 0; i < 9; i++) {
260 			ef4_mdio_write(efx, 1, 0xc303, 0x0900);
261 			ef4_mdio_write(efx, 1, 0xd008, 0x0005);
262 			ef4_mdio_write(efx, 1, 0xc303, 0x0920);
263 			ef4_mdio_write(efx, 1, 0xd008, 0x0004);
264 		}
265 		ef4_mdio_write(efx, 1, 0xc303, 0x4900);
266 	}
267 	ef4_mdio_write(efx, 1, 0xc303, 0x4900);
268 	ef4_mdio_write(efx, 1, 0xc302, 0x0004);
269 	ef4_mdio_write(efx, 1, 0xc316, 0x0013);
270 	ef4_mdio_write(efx, 1, 0xc318, 0x0054);
271 	ef4_mdio_write(efx, 1, 0xc319, phy_op_mode);
272 	ef4_mdio_write(efx, 1, 0xc31a, 0x0098);
273 	ef4_mdio_write(efx, 3, 0x0026, 0x0e00);
274 	ef4_mdio_write(efx, 3, 0x0027, 0x0013);
275 	ef4_mdio_write(efx, 3, 0x0028, 0xa528);
276 	ef4_mdio_write(efx, 1, 0xd006, 0x000a);
277 	ef4_mdio_write(efx, 1, 0xd007, 0x0009);
278 	ef4_mdio_write(efx, 1, 0xd008, 0x0004);
279 	/* This additional write is not present in the boot EEPROM.  It
280 	 * prevents the PHY's internal boot ROM doing another pointless (and
281 	 * slow) reload of the firmware image (the microcontroller's code
282 	 * memory is not affected by the microcontroller reset). */
283 	ef4_mdio_write(efx, 1, 0xc317, 0x00ff);
284 	/* PMA/PMD loopback sets RXIN to inverse polarity and the firmware
285 	 * restart doesn't reset it. We need to do that ourselves. */
286 	ef4_mdio_set_flag(efx, 1, PMA_PMD_MODE_REG,
287 			  1 << PMA_PMD_RXIN_SEL_LBN, false);
288 	ef4_mdio_write(efx, 1, 0xc300, 0x0002);
289 	msleep(20);
290 
291 	/* Restart microcontroller execution of firmware from RAM */
292 	qt2025c_restart_firmware(efx);
293 
294 	/* Wait for the microcontroller to be ready again */
295 	rc = qt2025c_wait_reset(efx);
296 	if (rc < 0) {
297 		netif_err(efx, hw, efx->net_dev,
298 			  "PHY microcontroller reset during mode switch "
299 			  "timed out\n");
300 		return rc;
301 	}
302 
303 	return 0;
304 }
305 
306 static int qt202x_reset_phy(struct ef4_nic *efx)
307 {
308 	int rc;
309 
310 	if (efx->phy_type == PHY_TYPE_QT2025C) {
311 		/* Wait for the reset triggered by falcon_reset_hw()
312 		 * to complete */
313 		rc = qt2025c_wait_reset(efx);
314 		if (rc < 0)
315 			goto fail;
316 	} else {
317 		/* Reset the PHYXS MMD. This is documented as doing
318 		 * a complete soft reset. */
319 		rc = ef4_mdio_reset_mmd(efx, MDIO_MMD_PHYXS,
320 					QT2022C2_MAX_RESET_TIME /
321 					QT2022C2_RESET_WAIT,
322 					QT2022C2_RESET_WAIT);
323 		if (rc < 0)
324 			goto fail;
325 	}
326 
327 	/* Wait 250ms for the PHY to complete bootup */
328 	msleep(250);
329 
330 	falcon_board(efx)->type->init_phy(efx);
331 
332 	return 0;
333 
334  fail:
335 	netif_err(efx, hw, efx->net_dev, "PHY reset timed out\n");
336 	return rc;
337 }
338 
339 static int qt202x_phy_probe(struct ef4_nic *efx)
340 {
341 	struct qt202x_phy_data *phy_data;
342 
343 	phy_data = kzalloc(sizeof(struct qt202x_phy_data), GFP_KERNEL);
344 	if (!phy_data)
345 		return -ENOMEM;
346 	efx->phy_data = phy_data;
347 	phy_data->phy_mode = efx->phy_mode;
348 	phy_data->bug17190_in_bad_state = false;
349 	phy_data->bug17190_timer = 0;
350 
351 	efx->mdio.mmds = QT202X_REQUIRED_DEVS;
352 	efx->mdio.mode_support = MDIO_SUPPORTS_C45 | MDIO_EMULATE_C22;
353 	efx->loopback_modes = QT202X_LOOPBACKS | FALCON_XMAC_LOOPBACKS;
354 	return 0;
355 }
356 
357 static int qt202x_phy_init(struct ef4_nic *efx)
358 {
359 	u32 devid;
360 	int rc;
361 
362 	rc = qt202x_reset_phy(efx);
363 	if (rc) {
364 		netif_err(efx, probe, efx->net_dev, "PHY init failed\n");
365 		return rc;
366 	}
367 
368 	devid = ef4_mdio_read_id(efx, MDIO_MMD_PHYXS);
369 	netif_info(efx, probe, efx->net_dev,
370 		   "PHY ID reg %x (OUI %06x model %02x revision %x)\n",
371 		   devid, ef4_mdio_id_oui(devid), ef4_mdio_id_model(devid),
372 		   ef4_mdio_id_rev(devid));
373 
374 	if (efx->phy_type == PHY_TYPE_QT2025C)
375 		qt2025c_firmware_id(efx);
376 
377 	return 0;
378 }
379 
380 static int qt202x_link_ok(struct ef4_nic *efx)
381 {
382 	return ef4_mdio_links_ok(efx, QT202X_REQUIRED_DEVS);
383 }
384 
385 static bool qt202x_phy_poll(struct ef4_nic *efx)
386 {
387 	bool was_up = efx->link_state.up;
388 
389 	efx->link_state.up = qt202x_link_ok(efx);
390 	efx->link_state.speed = 10000;
391 	efx->link_state.fd = true;
392 	efx->link_state.fc = efx->wanted_fc;
393 
394 	if (efx->phy_type == PHY_TYPE_QT2025C)
395 		qt2025c_bug17190_workaround(efx);
396 
397 	return efx->link_state.up != was_up;
398 }
399 
400 static int qt202x_phy_reconfigure(struct ef4_nic *efx)
401 {
402 	struct qt202x_phy_data *phy_data = efx->phy_data;
403 
404 	if (efx->phy_type == PHY_TYPE_QT2025C) {
405 		int rc = qt2025c_select_phy_mode(efx);
406 		if (rc)
407 			return rc;
408 
409 		/* There are several different register bits which can
410 		 * disable TX (and save power) on direct-attach cables
411 		 * or optical transceivers, varying somewhat between
412 		 * firmware versions.  Only 'static mode' appears to
413 		 * cover everything. */
414 		mdio_set_flag(
415 			&efx->mdio, efx->mdio.prtad, MDIO_MMD_PMAPMD,
416 			PMA_PMD_FTX_CTRL2_REG, 1 << PMA_PMD_FTX_STATIC_LBN,
417 			efx->phy_mode & PHY_MODE_TX_DISABLED ||
418 			efx->phy_mode & PHY_MODE_LOW_POWER ||
419 			efx->loopback_mode == LOOPBACK_PCS ||
420 			efx->loopback_mode == LOOPBACK_PMAPMD);
421 	} else {
422 		/* Reset the PHY when moving from tx off to tx on */
423 		if (!(efx->phy_mode & PHY_MODE_TX_DISABLED) &&
424 		    (phy_data->phy_mode & PHY_MODE_TX_DISABLED))
425 			qt202x_reset_phy(efx);
426 
427 		ef4_mdio_transmit_disable(efx);
428 	}
429 
430 	ef4_mdio_phy_reconfigure(efx);
431 
432 	phy_data->phy_mode = efx->phy_mode;
433 
434 	return 0;
435 }
436 
437 static void qt202x_phy_get_link_ksettings(struct ef4_nic *efx,
438 					  struct ethtool_link_ksettings *cmd)
439 {
440 	mdio45_ethtool_ksettings_get(&efx->mdio, cmd);
441 }
442 
443 static void qt202x_phy_remove(struct ef4_nic *efx)
444 {
445 	/* Free the context block */
446 	kfree(efx->phy_data);
447 	efx->phy_data = NULL;
448 }
449 
450 static int qt202x_phy_get_module_info(struct ef4_nic *efx,
451 				      struct ethtool_modinfo *modinfo)
452 {
453 	modinfo->type = ETH_MODULE_SFF_8079;
454 	modinfo->eeprom_len = ETH_MODULE_SFF_8079_LEN;
455 	return 0;
456 }
457 
458 static int qt202x_phy_get_module_eeprom(struct ef4_nic *efx,
459 					struct ethtool_eeprom *ee, u8 *data)
460 {
461 	int mmd, reg_base, rc, i;
462 
463 	if (efx->phy_type == PHY_TYPE_QT2025C) {
464 		mmd = MDIO_MMD_PCS;
465 		reg_base = 0xd000;
466 	} else {
467 		mmd = MDIO_MMD_PMAPMD;
468 		reg_base = 0x8007;
469 	}
470 
471 	for (i = 0; i < ee->len; i++) {
472 		rc = ef4_mdio_read(efx, mmd, reg_base + ee->offset + i);
473 		if (rc < 0)
474 			return rc;
475 		data[i] = rc;
476 	}
477 
478 	return 0;
479 }
480 
481 const struct ef4_phy_operations falcon_qt202x_phy_ops = {
482 	.probe		 = qt202x_phy_probe,
483 	.init		 = qt202x_phy_init,
484 	.reconfigure	 = qt202x_phy_reconfigure,
485 	.poll		 = qt202x_phy_poll,
486 	.fini		 = ef4_port_dummy_op_void,
487 	.remove		 = qt202x_phy_remove,
488 	.get_link_ksettings = qt202x_phy_get_link_ksettings,
489 	.set_link_ksettings = ef4_mdio_set_link_ksettings,
490 	.test_alive	 = ef4_mdio_test_alive,
491 	.get_module_eeprom = qt202x_phy_get_module_eeprom,
492 	.get_module_info = qt202x_phy_get_module_info,
493 };
494