xref: /linux/drivers/net/ethernet/qlogic/qla3xxx.c (revision e5a52fd2b8cdb700b3c07b030e050a49ef3156b9)
1 /*
2  * QLogic QLA3xxx NIC HBA Driver
3  * Copyright (c)  2003-2006 QLogic Corporation
4  *
5  * See LICENSE.qla3xxx for copyright and licensing details.
6  */
7 
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9 
10 #include <linux/kernel.h>
11 #include <linux/types.h>
12 #include <linux/module.h>
13 #include <linux/list.h>
14 #include <linux/pci.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/sched.h>
17 #include <linux/slab.h>
18 #include <linux/dmapool.h>
19 #include <linux/mempool.h>
20 #include <linux/spinlock.h>
21 #include <linux/kthread.h>
22 #include <linux/interrupt.h>
23 #include <linux/errno.h>
24 #include <linux/ioport.h>
25 #include <linux/ip.h>
26 #include <linux/in.h>
27 #include <linux/if_arp.h>
28 #include <linux/if_ether.h>
29 #include <linux/netdevice.h>
30 #include <linux/etherdevice.h>
31 #include <linux/ethtool.h>
32 #include <linux/skbuff.h>
33 #include <linux/rtnetlink.h>
34 #include <linux/if_vlan.h>
35 #include <linux/delay.h>
36 #include <linux/mm.h>
37 #include <linux/prefetch.h>
38 
39 #include "qla3xxx.h"
40 
41 #define DRV_NAME	"qla3xxx"
42 #define DRV_STRING	"QLogic ISP3XXX Network Driver"
43 #define DRV_VERSION	"v2.03.00-k5"
44 
45 static const char ql3xxx_driver_name[] = DRV_NAME;
46 static const char ql3xxx_driver_version[] = DRV_VERSION;
47 
48 #define TIMED_OUT_MSG							\
49 "Timed out waiting for management port to get free before issuing command\n"
50 
51 MODULE_AUTHOR("QLogic Corporation");
52 MODULE_DESCRIPTION("QLogic ISP3XXX Network Driver " DRV_VERSION " ");
53 MODULE_LICENSE("GPL");
54 MODULE_VERSION(DRV_VERSION);
55 
56 static const u32 default_msg
57     = NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK
58     | NETIF_MSG_IFUP | NETIF_MSG_IFDOWN;
59 
60 static int debug = -1;		/* defaults above */
61 module_param(debug, int, 0);
62 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
63 
64 static int msi;
65 module_param(msi, int, 0);
66 MODULE_PARM_DESC(msi, "Turn on Message Signaled Interrupts.");
67 
68 static const struct pci_device_id ql3xxx_pci_tbl[] = {
69 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3022_DEVICE_ID)},
70 	{PCI_DEVICE(PCI_VENDOR_ID_QLOGIC, QL3032_DEVICE_ID)},
71 	/* required last entry */
72 	{0,}
73 };
74 
75 MODULE_DEVICE_TABLE(pci, ql3xxx_pci_tbl);
76 
77 /*
78  *  These are the known PHY's which are used
79  */
80 enum PHY_DEVICE_TYPE {
81    PHY_TYPE_UNKNOWN   = 0,
82    PHY_VITESSE_VSC8211,
83    PHY_AGERE_ET1011C,
84    MAX_PHY_DEV_TYPES
85 };
86 
87 struct PHY_DEVICE_INFO {
88 	const enum PHY_DEVICE_TYPE	phyDevice;
89 	const u32		phyIdOUI;
90 	const u16		phyIdModel;
91 	const char		*name;
92 };
93 
94 static const struct PHY_DEVICE_INFO PHY_DEVICES[] = {
95 	{PHY_TYPE_UNKNOWN,    0x000000, 0x0, "PHY_TYPE_UNKNOWN"},
96 	{PHY_VITESSE_VSC8211, 0x0003f1, 0xb, "PHY_VITESSE_VSC8211"},
97 	{PHY_AGERE_ET1011C,   0x00a0bc, 0x1, "PHY_AGERE_ET1011C"},
98 };
99 
100 
101 /*
102  * Caller must take hw_lock.
103  */
104 static int ql_sem_spinlock(struct ql3_adapter *qdev,
105 			    u32 sem_mask, u32 sem_bits)
106 {
107 	struct ql3xxx_port_registers __iomem *port_regs =
108 		qdev->mem_map_registers;
109 	u32 value;
110 	unsigned int seconds = 3;
111 
112 	do {
113 		writel((sem_mask | sem_bits),
114 		       &port_regs->CommonRegs.semaphoreReg);
115 		value = readl(&port_regs->CommonRegs.semaphoreReg);
116 		if ((value & (sem_mask >> 16)) == sem_bits)
117 			return 0;
118 		ssleep(1);
119 	} while (--seconds);
120 	return -1;
121 }
122 
123 static void ql_sem_unlock(struct ql3_adapter *qdev, u32 sem_mask)
124 {
125 	struct ql3xxx_port_registers __iomem *port_regs =
126 		qdev->mem_map_registers;
127 	writel(sem_mask, &port_regs->CommonRegs.semaphoreReg);
128 	readl(&port_regs->CommonRegs.semaphoreReg);
129 }
130 
131 static int ql_sem_lock(struct ql3_adapter *qdev, u32 sem_mask, u32 sem_bits)
132 {
133 	struct ql3xxx_port_registers __iomem *port_regs =
134 		qdev->mem_map_registers;
135 	u32 value;
136 
137 	writel((sem_mask | sem_bits), &port_regs->CommonRegs.semaphoreReg);
138 	value = readl(&port_regs->CommonRegs.semaphoreReg);
139 	return ((value & (sem_mask >> 16)) == sem_bits);
140 }
141 
142 /*
143  * Caller holds hw_lock.
144  */
145 static int ql_wait_for_drvr_lock(struct ql3_adapter *qdev)
146 {
147 	int i = 0;
148 
149 	do {
150 		if (ql_sem_lock(qdev,
151 				QL_DRVR_SEM_MASK,
152 				(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
153 				 * 2) << 1)) {
154 			netdev_printk(KERN_DEBUG, qdev->ndev,
155 				      "driver lock acquired\n");
156 			return 1;
157 		}
158 		ssleep(1);
159 	} while (++i < 10);
160 
161 	netdev_err(qdev->ndev, "Timed out waiting for driver lock...\n");
162 	return 0;
163 }
164 
165 static void ql_set_register_page(struct ql3_adapter *qdev, u32 page)
166 {
167 	struct ql3xxx_port_registers __iomem *port_regs =
168 		qdev->mem_map_registers;
169 
170 	writel(((ISP_CONTROL_NP_MASK << 16) | page),
171 			&port_regs->CommonRegs.ispControlStatus);
172 	readl(&port_regs->CommonRegs.ispControlStatus);
173 	qdev->current_page = page;
174 }
175 
176 static u32 ql_read_common_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
177 {
178 	u32 value;
179 	unsigned long hw_flags;
180 
181 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
182 	value = readl(reg);
183 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
184 
185 	return value;
186 }
187 
188 static u32 ql_read_common_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
189 {
190 	return readl(reg);
191 }
192 
193 static u32 ql_read_page0_reg_l(struct ql3_adapter *qdev, u32 __iomem *reg)
194 {
195 	u32 value;
196 	unsigned long hw_flags;
197 
198 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
199 
200 	if (qdev->current_page != 0)
201 		ql_set_register_page(qdev, 0);
202 	value = readl(reg);
203 
204 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
205 	return value;
206 }
207 
208 static u32 ql_read_page0_reg(struct ql3_adapter *qdev, u32 __iomem *reg)
209 {
210 	if (qdev->current_page != 0)
211 		ql_set_register_page(qdev, 0);
212 	return readl(reg);
213 }
214 
215 static void ql_write_common_reg_l(struct ql3_adapter *qdev,
216 				u32 __iomem *reg, u32 value)
217 {
218 	unsigned long hw_flags;
219 
220 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
221 	writel(value, reg);
222 	readl(reg);
223 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
224 }
225 
226 static void ql_write_common_reg(struct ql3_adapter *qdev,
227 				u32 __iomem *reg, u32 value)
228 {
229 	writel(value, reg);
230 	readl(reg);
231 }
232 
233 static void ql_write_nvram_reg(struct ql3_adapter *qdev,
234 				u32 __iomem *reg, u32 value)
235 {
236 	writel(value, reg);
237 	readl(reg);
238 	udelay(1);
239 }
240 
241 static void ql_write_page0_reg(struct ql3_adapter *qdev,
242 			       u32 __iomem *reg, u32 value)
243 {
244 	if (qdev->current_page != 0)
245 		ql_set_register_page(qdev, 0);
246 	writel(value, reg);
247 	readl(reg);
248 }
249 
250 /*
251  * Caller holds hw_lock. Only called during init.
252  */
253 static void ql_write_page1_reg(struct ql3_adapter *qdev,
254 			       u32 __iomem *reg, u32 value)
255 {
256 	if (qdev->current_page != 1)
257 		ql_set_register_page(qdev, 1);
258 	writel(value, reg);
259 	readl(reg);
260 }
261 
262 /*
263  * Caller holds hw_lock. Only called during init.
264  */
265 static void ql_write_page2_reg(struct ql3_adapter *qdev,
266 			       u32 __iomem *reg, u32 value)
267 {
268 	if (qdev->current_page != 2)
269 		ql_set_register_page(qdev, 2);
270 	writel(value, reg);
271 	readl(reg);
272 }
273 
274 static void ql_disable_interrupts(struct ql3_adapter *qdev)
275 {
276 	struct ql3xxx_port_registers __iomem *port_regs =
277 		qdev->mem_map_registers;
278 
279 	ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
280 			    (ISP_IMR_ENABLE_INT << 16));
281 
282 }
283 
284 static void ql_enable_interrupts(struct ql3_adapter *qdev)
285 {
286 	struct ql3xxx_port_registers __iomem *port_regs =
287 		qdev->mem_map_registers;
288 
289 	ql_write_common_reg_l(qdev, &port_regs->CommonRegs.ispInterruptMaskReg,
290 			    ((0xff << 16) | ISP_IMR_ENABLE_INT));
291 
292 }
293 
294 static void ql_release_to_lrg_buf_free_list(struct ql3_adapter *qdev,
295 					    struct ql_rcv_buf_cb *lrg_buf_cb)
296 {
297 	dma_addr_t map;
298 	int err;
299 	lrg_buf_cb->next = NULL;
300 
301 	if (qdev->lrg_buf_free_tail == NULL) {	/* The list is empty  */
302 		qdev->lrg_buf_free_head = qdev->lrg_buf_free_tail = lrg_buf_cb;
303 	} else {
304 		qdev->lrg_buf_free_tail->next = lrg_buf_cb;
305 		qdev->lrg_buf_free_tail = lrg_buf_cb;
306 	}
307 
308 	if (!lrg_buf_cb->skb) {
309 		lrg_buf_cb->skb = netdev_alloc_skb(qdev->ndev,
310 						   qdev->lrg_buffer_len);
311 		if (unlikely(!lrg_buf_cb->skb)) {
312 			qdev->lrg_buf_skb_check++;
313 		} else {
314 			/*
315 			 * We save some space to copy the ethhdr from first
316 			 * buffer
317 			 */
318 			skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
319 			map = pci_map_single(qdev->pdev,
320 					     lrg_buf_cb->skb->data,
321 					     qdev->lrg_buffer_len -
322 					     QL_HEADER_SPACE,
323 					     PCI_DMA_FROMDEVICE);
324 			err = pci_dma_mapping_error(qdev->pdev, map);
325 			if (err) {
326 				netdev_err(qdev->ndev,
327 					   "PCI mapping failed with error: %d\n",
328 					   err);
329 				dev_kfree_skb(lrg_buf_cb->skb);
330 				lrg_buf_cb->skb = NULL;
331 
332 				qdev->lrg_buf_skb_check++;
333 				return;
334 			}
335 
336 			lrg_buf_cb->buf_phy_addr_low =
337 			    cpu_to_le32(LS_64BITS(map));
338 			lrg_buf_cb->buf_phy_addr_high =
339 			    cpu_to_le32(MS_64BITS(map));
340 			dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
341 			dma_unmap_len_set(lrg_buf_cb, maplen,
342 					  qdev->lrg_buffer_len -
343 					  QL_HEADER_SPACE);
344 		}
345 	}
346 
347 	qdev->lrg_buf_free_count++;
348 }
349 
350 static struct ql_rcv_buf_cb *ql_get_from_lrg_buf_free_list(struct ql3_adapter
351 							   *qdev)
352 {
353 	struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
354 
355 	if (lrg_buf_cb != NULL) {
356 		qdev->lrg_buf_free_head = lrg_buf_cb->next;
357 		if (qdev->lrg_buf_free_head == NULL)
358 			qdev->lrg_buf_free_tail = NULL;
359 		qdev->lrg_buf_free_count--;
360 	}
361 
362 	return lrg_buf_cb;
363 }
364 
365 static u32 addrBits = EEPROM_NO_ADDR_BITS;
366 static u32 dataBits = EEPROM_NO_DATA_BITS;
367 
368 static void fm93c56a_deselect(struct ql3_adapter *qdev);
369 static void eeprom_readword(struct ql3_adapter *qdev, u32 eepromAddr,
370 			    unsigned short *value);
371 
372 /*
373  * Caller holds hw_lock.
374  */
375 static void fm93c56a_select(struct ql3_adapter *qdev)
376 {
377 	struct ql3xxx_port_registers __iomem *port_regs =
378 			qdev->mem_map_registers;
379 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
380 
381 	qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_1;
382 	ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
383 }
384 
385 /*
386  * Caller holds hw_lock.
387  */
388 static void fm93c56a_cmd(struct ql3_adapter *qdev, u32 cmd, u32 eepromAddr)
389 {
390 	int i;
391 	u32 mask;
392 	u32 dataBit;
393 	u32 previousBit;
394 	struct ql3xxx_port_registers __iomem *port_regs =
395 			qdev->mem_map_registers;
396 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
397 
398 	/* Clock in a zero, then do the start bit */
399 	ql_write_nvram_reg(qdev, spir,
400 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
401 			    AUBURN_EEPROM_DO_1));
402 	ql_write_nvram_reg(qdev, spir,
403 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
404 			    AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_RISE));
405 	ql_write_nvram_reg(qdev, spir,
406 			   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
407 			    AUBURN_EEPROM_DO_1 | AUBURN_EEPROM_CLK_FALL));
408 
409 	mask = 1 << (FM93C56A_CMD_BITS - 1);
410 	/* Force the previous data bit to be different */
411 	previousBit = 0xffff;
412 	for (i = 0; i < FM93C56A_CMD_BITS; i++) {
413 		dataBit = (cmd & mask)
414 			? AUBURN_EEPROM_DO_1
415 			: AUBURN_EEPROM_DO_0;
416 		if (previousBit != dataBit) {
417 			/* If the bit changed, change the DO state to match */
418 			ql_write_nvram_reg(qdev, spir,
419 					   (ISP_NVRAM_MASK |
420 					    qdev->eeprom_cmd_data | dataBit));
421 			previousBit = dataBit;
422 		}
423 		ql_write_nvram_reg(qdev, spir,
424 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
425 				    dataBit | AUBURN_EEPROM_CLK_RISE));
426 		ql_write_nvram_reg(qdev, spir,
427 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
428 				    dataBit | AUBURN_EEPROM_CLK_FALL));
429 		cmd = cmd << 1;
430 	}
431 
432 	mask = 1 << (addrBits - 1);
433 	/* Force the previous data bit to be different */
434 	previousBit = 0xffff;
435 	for (i = 0; i < addrBits; i++) {
436 		dataBit = (eepromAddr & mask) ? AUBURN_EEPROM_DO_1
437 			: AUBURN_EEPROM_DO_0;
438 		if (previousBit != dataBit) {
439 			/*
440 			 * If the bit changed, then change the DO state to
441 			 * match
442 			 */
443 			ql_write_nvram_reg(qdev, spir,
444 					   (ISP_NVRAM_MASK |
445 					    qdev->eeprom_cmd_data | dataBit));
446 			previousBit = dataBit;
447 		}
448 		ql_write_nvram_reg(qdev, spir,
449 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
450 				    dataBit | AUBURN_EEPROM_CLK_RISE));
451 		ql_write_nvram_reg(qdev, spir,
452 				   (ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
453 				    dataBit | AUBURN_EEPROM_CLK_FALL));
454 		eepromAddr = eepromAddr << 1;
455 	}
456 }
457 
458 /*
459  * Caller holds hw_lock.
460  */
461 static void fm93c56a_deselect(struct ql3_adapter *qdev)
462 {
463 	struct ql3xxx_port_registers __iomem *port_regs =
464 			qdev->mem_map_registers;
465 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
466 
467 	qdev->eeprom_cmd_data = AUBURN_EEPROM_CS_0;
468 	ql_write_nvram_reg(qdev, spir, ISP_NVRAM_MASK | qdev->eeprom_cmd_data);
469 }
470 
471 /*
472  * Caller holds hw_lock.
473  */
474 static void fm93c56a_datain(struct ql3_adapter *qdev, unsigned short *value)
475 {
476 	int i;
477 	u32 data = 0;
478 	u32 dataBit;
479 	struct ql3xxx_port_registers __iomem *port_regs =
480 			qdev->mem_map_registers;
481 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
482 
483 	/* Read the data bits */
484 	/* The first bit is a dummy.  Clock right over it. */
485 	for (i = 0; i < dataBits; i++) {
486 		ql_write_nvram_reg(qdev, spir,
487 				   ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
488 				   AUBURN_EEPROM_CLK_RISE);
489 		ql_write_nvram_reg(qdev, spir,
490 				   ISP_NVRAM_MASK | qdev->eeprom_cmd_data |
491 				   AUBURN_EEPROM_CLK_FALL);
492 		dataBit = (ql_read_common_reg(qdev, spir) &
493 			   AUBURN_EEPROM_DI_1) ? 1 : 0;
494 		data = (data << 1) | dataBit;
495 	}
496 	*value = (u16)data;
497 }
498 
499 /*
500  * Caller holds hw_lock.
501  */
502 static void eeprom_readword(struct ql3_adapter *qdev,
503 			    u32 eepromAddr, unsigned short *value)
504 {
505 	fm93c56a_select(qdev);
506 	fm93c56a_cmd(qdev, (int)FM93C56A_READ, eepromAddr);
507 	fm93c56a_datain(qdev, value);
508 	fm93c56a_deselect(qdev);
509 }
510 
511 static void ql_set_mac_addr(struct net_device *ndev, u16 *addr)
512 {
513 	__le16 *p = (__le16 *)ndev->dev_addr;
514 	p[0] = cpu_to_le16(addr[0]);
515 	p[1] = cpu_to_le16(addr[1]);
516 	p[2] = cpu_to_le16(addr[2]);
517 }
518 
519 static int ql_get_nvram_params(struct ql3_adapter *qdev)
520 {
521 	u16 *pEEPROMData;
522 	u16 checksum = 0;
523 	u32 index;
524 	unsigned long hw_flags;
525 
526 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
527 
528 	pEEPROMData = (u16 *)&qdev->nvram_data;
529 	qdev->eeprom_cmd_data = 0;
530 	if (ql_sem_spinlock(qdev, QL_NVRAM_SEM_MASK,
531 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
532 			 2) << 10)) {
533 		pr_err("%s: Failed ql_sem_spinlock()\n", __func__);
534 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
535 		return -1;
536 	}
537 
538 	for (index = 0; index < EEPROM_SIZE; index++) {
539 		eeprom_readword(qdev, index, pEEPROMData);
540 		checksum += *pEEPROMData;
541 		pEEPROMData++;
542 	}
543 	ql_sem_unlock(qdev, QL_NVRAM_SEM_MASK);
544 
545 	if (checksum != 0) {
546 		netdev_err(qdev->ndev, "checksum should be zero, is %x!!\n",
547 			   checksum);
548 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
549 		return -1;
550 	}
551 
552 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
553 	return checksum;
554 }
555 
556 static const u32 PHYAddr[2] = {
557 	PORT0_PHY_ADDRESS, PORT1_PHY_ADDRESS
558 };
559 
560 static int ql_wait_for_mii_ready(struct ql3_adapter *qdev)
561 {
562 	struct ql3xxx_port_registers __iomem *port_regs =
563 			qdev->mem_map_registers;
564 	u32 temp;
565 	int count = 1000;
566 
567 	while (count) {
568 		temp = ql_read_page0_reg(qdev, &port_regs->macMIIStatusReg);
569 		if (!(temp & MAC_MII_STATUS_BSY))
570 			return 0;
571 		udelay(10);
572 		count--;
573 	}
574 	return -1;
575 }
576 
577 static void ql_mii_enable_scan_mode(struct ql3_adapter *qdev)
578 {
579 	struct ql3xxx_port_registers __iomem *port_regs =
580 			qdev->mem_map_registers;
581 	u32 scanControl;
582 
583 	if (qdev->numPorts > 1) {
584 		/* Auto scan will cycle through multiple ports */
585 		scanControl = MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC;
586 	} else {
587 		scanControl = MAC_MII_CONTROL_SC;
588 	}
589 
590 	/*
591 	 * Scan register 1 of PHY/PETBI,
592 	 * Set up to scan both devices
593 	 * The autoscan starts from the first register, completes
594 	 * the last one before rolling over to the first
595 	 */
596 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
597 			   PHYAddr[0] | MII_SCAN_REGISTER);
598 
599 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
600 			   (scanControl) |
601 			   ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS) << 16));
602 }
603 
604 static u8 ql_mii_disable_scan_mode(struct ql3_adapter *qdev)
605 {
606 	u8 ret;
607 	struct ql3xxx_port_registers __iomem *port_regs =
608 					qdev->mem_map_registers;
609 
610 	/* See if scan mode is enabled before we turn it off */
611 	if (ql_read_page0_reg(qdev, &port_regs->macMIIMgmtControlReg) &
612 	    (MAC_MII_CONTROL_AS | MAC_MII_CONTROL_SC)) {
613 		/* Scan is enabled */
614 		ret = 1;
615 	} else {
616 		/* Scan is disabled */
617 		ret = 0;
618 	}
619 
620 	/*
621 	 * When disabling scan mode you must first change the MII register
622 	 * address
623 	 */
624 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
625 			   PHYAddr[0] | MII_SCAN_REGISTER);
626 
627 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
628 			   ((MAC_MII_CONTROL_SC | MAC_MII_CONTROL_AS |
629 			     MAC_MII_CONTROL_RC) << 16));
630 
631 	return ret;
632 }
633 
634 static int ql_mii_write_reg_ex(struct ql3_adapter *qdev,
635 			       u16 regAddr, u16 value, u32 phyAddr)
636 {
637 	struct ql3xxx_port_registers __iomem *port_regs =
638 			qdev->mem_map_registers;
639 	u8 scanWasEnabled;
640 
641 	scanWasEnabled = ql_mii_disable_scan_mode(qdev);
642 
643 	if (ql_wait_for_mii_ready(qdev)) {
644 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
645 		return -1;
646 	}
647 
648 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
649 			   phyAddr | regAddr);
650 
651 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
652 
653 	/* Wait for write to complete 9/10/04 SJP */
654 	if (ql_wait_for_mii_ready(qdev)) {
655 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
656 		return -1;
657 	}
658 
659 	if (scanWasEnabled)
660 		ql_mii_enable_scan_mode(qdev);
661 
662 	return 0;
663 }
664 
665 static int ql_mii_read_reg_ex(struct ql3_adapter *qdev, u16 regAddr,
666 			      u16 *value, u32 phyAddr)
667 {
668 	struct ql3xxx_port_registers __iomem *port_regs =
669 			qdev->mem_map_registers;
670 	u8 scanWasEnabled;
671 	u32 temp;
672 
673 	scanWasEnabled = ql_mii_disable_scan_mode(qdev);
674 
675 	if (ql_wait_for_mii_ready(qdev)) {
676 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
677 		return -1;
678 	}
679 
680 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
681 			   phyAddr | regAddr);
682 
683 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
684 			   (MAC_MII_CONTROL_RC << 16));
685 
686 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
687 			   (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
688 
689 	/* Wait for the read to complete */
690 	if (ql_wait_for_mii_ready(qdev)) {
691 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
692 		return -1;
693 	}
694 
695 	temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
696 	*value = (u16) temp;
697 
698 	if (scanWasEnabled)
699 		ql_mii_enable_scan_mode(qdev);
700 
701 	return 0;
702 }
703 
704 static int ql_mii_write_reg(struct ql3_adapter *qdev, u16 regAddr, u16 value)
705 {
706 	struct ql3xxx_port_registers __iomem *port_regs =
707 			qdev->mem_map_registers;
708 
709 	ql_mii_disable_scan_mode(qdev);
710 
711 	if (ql_wait_for_mii_ready(qdev)) {
712 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
713 		return -1;
714 	}
715 
716 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
717 			   qdev->PHYAddr | regAddr);
718 
719 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtDataReg, value);
720 
721 	/* Wait for write to complete. */
722 	if (ql_wait_for_mii_ready(qdev)) {
723 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
724 		return -1;
725 	}
726 
727 	ql_mii_enable_scan_mode(qdev);
728 
729 	return 0;
730 }
731 
732 static int ql_mii_read_reg(struct ql3_adapter *qdev, u16 regAddr, u16 *value)
733 {
734 	u32 temp;
735 	struct ql3xxx_port_registers __iomem *port_regs =
736 			qdev->mem_map_registers;
737 
738 	ql_mii_disable_scan_mode(qdev);
739 
740 	if (ql_wait_for_mii_ready(qdev)) {
741 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
742 		return -1;
743 	}
744 
745 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtAddrReg,
746 			   qdev->PHYAddr | regAddr);
747 
748 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
749 			   (MAC_MII_CONTROL_RC << 16));
750 
751 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
752 			   (MAC_MII_CONTROL_RC << 16) | MAC_MII_CONTROL_RC);
753 
754 	/* Wait for the read to complete */
755 	if (ql_wait_for_mii_ready(qdev)) {
756 		netif_warn(qdev, link, qdev->ndev, TIMED_OUT_MSG);
757 		return -1;
758 	}
759 
760 	temp = ql_read_page0_reg(qdev, &port_regs->macMIIMgmtDataReg);
761 	*value = (u16) temp;
762 
763 	ql_mii_enable_scan_mode(qdev);
764 
765 	return 0;
766 }
767 
768 static void ql_petbi_reset(struct ql3_adapter *qdev)
769 {
770 	ql_mii_write_reg(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET);
771 }
772 
773 static void ql_petbi_start_neg(struct ql3_adapter *qdev)
774 {
775 	u16 reg;
776 
777 	/* Enable Auto-negotiation sense */
778 	ql_mii_read_reg(qdev, PETBI_TBI_CTRL, &reg);
779 	reg |= PETBI_TBI_AUTO_SENSE;
780 	ql_mii_write_reg(qdev, PETBI_TBI_CTRL, reg);
781 
782 	ql_mii_write_reg(qdev, PETBI_NEG_ADVER,
783 			 PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX);
784 
785 	ql_mii_write_reg(qdev, PETBI_CONTROL_REG,
786 			 PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
787 			 PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000);
788 
789 }
790 
791 static void ql_petbi_reset_ex(struct ql3_adapter *qdev)
792 {
793 	ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG, PETBI_CTRL_SOFT_RESET,
794 			    PHYAddr[qdev->mac_index]);
795 }
796 
797 static void ql_petbi_start_neg_ex(struct ql3_adapter *qdev)
798 {
799 	u16 reg;
800 
801 	/* Enable Auto-negotiation sense */
802 	ql_mii_read_reg_ex(qdev, PETBI_TBI_CTRL, &reg,
803 			   PHYAddr[qdev->mac_index]);
804 	reg |= PETBI_TBI_AUTO_SENSE;
805 	ql_mii_write_reg_ex(qdev, PETBI_TBI_CTRL, reg,
806 			    PHYAddr[qdev->mac_index]);
807 
808 	ql_mii_write_reg_ex(qdev, PETBI_NEG_ADVER,
809 			    PETBI_NEG_PAUSE | PETBI_NEG_DUPLEX,
810 			    PHYAddr[qdev->mac_index]);
811 
812 	ql_mii_write_reg_ex(qdev, PETBI_CONTROL_REG,
813 			    PETBI_CTRL_AUTO_NEG | PETBI_CTRL_RESTART_NEG |
814 			    PETBI_CTRL_FULL_DUPLEX | PETBI_CTRL_SPEED_1000,
815 			    PHYAddr[qdev->mac_index]);
816 }
817 
818 static void ql_petbi_init(struct ql3_adapter *qdev)
819 {
820 	ql_petbi_reset(qdev);
821 	ql_petbi_start_neg(qdev);
822 }
823 
824 static void ql_petbi_init_ex(struct ql3_adapter *qdev)
825 {
826 	ql_petbi_reset_ex(qdev);
827 	ql_petbi_start_neg_ex(qdev);
828 }
829 
830 static int ql_is_petbi_neg_pause(struct ql3_adapter *qdev)
831 {
832 	u16 reg;
833 
834 	if (ql_mii_read_reg(qdev, PETBI_NEG_PARTNER, &reg) < 0)
835 		return 0;
836 
837 	return (reg & PETBI_NEG_PAUSE_MASK) == PETBI_NEG_PAUSE;
838 }
839 
840 static void phyAgereSpecificInit(struct ql3_adapter *qdev, u32 miiAddr)
841 {
842 	netdev_info(qdev->ndev, "enabling Agere specific PHY\n");
843 	/* power down device bit 11 = 1 */
844 	ql_mii_write_reg_ex(qdev, 0x00, 0x1940, miiAddr);
845 	/* enable diagnostic mode bit 2 = 1 */
846 	ql_mii_write_reg_ex(qdev, 0x12, 0x840e, miiAddr);
847 	/* 1000MB amplitude adjust (see Agere errata) */
848 	ql_mii_write_reg_ex(qdev, 0x10, 0x8805, miiAddr);
849 	/* 1000MB amplitude adjust (see Agere errata) */
850 	ql_mii_write_reg_ex(qdev, 0x11, 0xf03e, miiAddr);
851 	/* 100MB amplitude adjust (see Agere errata) */
852 	ql_mii_write_reg_ex(qdev, 0x10, 0x8806, miiAddr);
853 	/* 100MB amplitude adjust (see Agere errata) */
854 	ql_mii_write_reg_ex(qdev, 0x11, 0x003e, miiAddr);
855 	/* 10MB amplitude adjust (see Agere errata) */
856 	ql_mii_write_reg_ex(qdev, 0x10, 0x8807, miiAddr);
857 	/* 10MB amplitude adjust (see Agere errata) */
858 	ql_mii_write_reg_ex(qdev, 0x11, 0x1f00, miiAddr);
859 	/* point to hidden reg 0x2806 */
860 	ql_mii_write_reg_ex(qdev, 0x10, 0x2806, miiAddr);
861 	/* Write new PHYAD w/bit 5 set */
862 	ql_mii_write_reg_ex(qdev, 0x11,
863 			    0x0020 | (PHYAddr[qdev->mac_index] >> 8), miiAddr);
864 	/*
865 	 * Disable diagnostic mode bit 2 = 0
866 	 * Power up device bit 11 = 0
867 	 * Link up (on) and activity (blink)
868 	 */
869 	ql_mii_write_reg(qdev, 0x12, 0x840a);
870 	ql_mii_write_reg(qdev, 0x00, 0x1140);
871 	ql_mii_write_reg(qdev, 0x1c, 0xfaf0);
872 }
873 
874 static enum PHY_DEVICE_TYPE getPhyType(struct ql3_adapter *qdev,
875 				       u16 phyIdReg0, u16 phyIdReg1)
876 {
877 	enum PHY_DEVICE_TYPE result = PHY_TYPE_UNKNOWN;
878 	u32   oui;
879 	u16   model;
880 	int i;
881 
882 	if (phyIdReg0 == 0xffff)
883 		return result;
884 
885 	if (phyIdReg1 == 0xffff)
886 		return result;
887 
888 	/* oui is split between two registers */
889 	oui = (phyIdReg0 << 6) | ((phyIdReg1 & PHY_OUI_1_MASK) >> 10);
890 
891 	model = (phyIdReg1 & PHY_MODEL_MASK) >> 4;
892 
893 	/* Scan table for this PHY */
894 	for (i = 0; i < MAX_PHY_DEV_TYPES; i++) {
895 		if ((oui == PHY_DEVICES[i].phyIdOUI) &&
896 		    (model == PHY_DEVICES[i].phyIdModel)) {
897 			netdev_info(qdev->ndev, "Phy: %s\n",
898 				    PHY_DEVICES[i].name);
899 			result = PHY_DEVICES[i].phyDevice;
900 			break;
901 		}
902 	}
903 
904 	return result;
905 }
906 
907 static int ql_phy_get_speed(struct ql3_adapter *qdev)
908 {
909 	u16 reg;
910 
911 	switch (qdev->phyType) {
912 	case PHY_AGERE_ET1011C: {
913 		if (ql_mii_read_reg(qdev, 0x1A, &reg) < 0)
914 			return 0;
915 
916 		reg = (reg >> 8) & 3;
917 		break;
918 	}
919 	default:
920 		if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
921 			return 0;
922 
923 		reg = (((reg & 0x18) >> 3) & 3);
924 	}
925 
926 	switch (reg) {
927 	case 2:
928 		return SPEED_1000;
929 	case 1:
930 		return SPEED_100;
931 	case 0:
932 		return SPEED_10;
933 	default:
934 		return -1;
935 	}
936 }
937 
938 static int ql_is_full_dup(struct ql3_adapter *qdev)
939 {
940 	u16 reg;
941 
942 	switch (qdev->phyType) {
943 	case PHY_AGERE_ET1011C: {
944 		if (ql_mii_read_reg(qdev, 0x1A, &reg))
945 			return 0;
946 
947 		return ((reg & 0x0080) && (reg & 0x1000)) != 0;
948 	}
949 	case PHY_VITESSE_VSC8211:
950 	default: {
951 		if (ql_mii_read_reg(qdev, AUX_CONTROL_STATUS, &reg) < 0)
952 			return 0;
953 		return (reg & PHY_AUX_DUPLEX_STAT) != 0;
954 	}
955 	}
956 }
957 
958 static int ql_is_phy_neg_pause(struct ql3_adapter *qdev)
959 {
960 	u16 reg;
961 
962 	if (ql_mii_read_reg(qdev, PHY_NEG_PARTNER, &reg) < 0)
963 		return 0;
964 
965 	return (reg & PHY_NEG_PAUSE) != 0;
966 }
967 
968 static int PHY_Setup(struct ql3_adapter *qdev)
969 {
970 	u16   reg1;
971 	u16   reg2;
972 	bool  agereAddrChangeNeeded = false;
973 	u32 miiAddr = 0;
974 	int err;
975 
976 	/*  Determine the PHY we are using by reading the ID's */
977 	err = ql_mii_read_reg(qdev, PHY_ID_0_REG, &reg1);
978 	if (err != 0) {
979 		netdev_err(qdev->ndev, "Could not read from reg PHY_ID_0_REG\n");
980 		return err;
981 	}
982 
983 	err = ql_mii_read_reg(qdev, PHY_ID_1_REG, &reg2);
984 	if (err != 0) {
985 		netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG\n");
986 		return err;
987 	}
988 
989 	/*  Check if we have a Agere PHY */
990 	if ((reg1 == 0xffff) || (reg2 == 0xffff)) {
991 
992 		/* Determine which MII address we should be using
993 		   determined by the index of the card */
994 		if (qdev->mac_index == 0)
995 			miiAddr = MII_AGERE_ADDR_1;
996 		else
997 			miiAddr = MII_AGERE_ADDR_2;
998 
999 		err = ql_mii_read_reg_ex(qdev, PHY_ID_0_REG, &reg1, miiAddr);
1000 		if (err != 0) {
1001 			netdev_err(qdev->ndev,
1002 				   "Could not read from reg PHY_ID_0_REG after Agere detected\n");
1003 			return err;
1004 		}
1005 
1006 		err = ql_mii_read_reg_ex(qdev, PHY_ID_1_REG, &reg2, miiAddr);
1007 		if (err != 0) {
1008 			netdev_err(qdev->ndev, "Could not read from reg PHY_ID_1_REG after Agere detected\n");
1009 			return err;
1010 		}
1011 
1012 		/*  We need to remember to initialize the Agere PHY */
1013 		agereAddrChangeNeeded = true;
1014 	}
1015 
1016 	/*  Determine the particular PHY we have on board to apply
1017 	    PHY specific initializations */
1018 	qdev->phyType = getPhyType(qdev, reg1, reg2);
1019 
1020 	if ((qdev->phyType == PHY_AGERE_ET1011C) && agereAddrChangeNeeded) {
1021 		/* need this here so address gets changed */
1022 		phyAgereSpecificInit(qdev, miiAddr);
1023 	} else if (qdev->phyType == PHY_TYPE_UNKNOWN) {
1024 		netdev_err(qdev->ndev, "PHY is unknown\n");
1025 		return -EIO;
1026 	}
1027 
1028 	return 0;
1029 }
1030 
1031 /*
1032  * Caller holds hw_lock.
1033  */
1034 static void ql_mac_enable(struct ql3_adapter *qdev, u32 enable)
1035 {
1036 	struct ql3xxx_port_registers __iomem *port_regs =
1037 			qdev->mem_map_registers;
1038 	u32 value;
1039 
1040 	if (enable)
1041 		value = (MAC_CONFIG_REG_PE | (MAC_CONFIG_REG_PE << 16));
1042 	else
1043 		value = (MAC_CONFIG_REG_PE << 16);
1044 
1045 	if (qdev->mac_index)
1046 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1047 	else
1048 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1049 }
1050 
1051 /*
1052  * Caller holds hw_lock.
1053  */
1054 static void ql_mac_cfg_soft_reset(struct ql3_adapter *qdev, u32 enable)
1055 {
1056 	struct ql3xxx_port_registers __iomem *port_regs =
1057 			qdev->mem_map_registers;
1058 	u32 value;
1059 
1060 	if (enable)
1061 		value = (MAC_CONFIG_REG_SR | (MAC_CONFIG_REG_SR << 16));
1062 	else
1063 		value = (MAC_CONFIG_REG_SR << 16);
1064 
1065 	if (qdev->mac_index)
1066 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1067 	else
1068 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1069 }
1070 
1071 /*
1072  * Caller holds hw_lock.
1073  */
1074 static void ql_mac_cfg_gig(struct ql3_adapter *qdev, u32 enable)
1075 {
1076 	struct ql3xxx_port_registers __iomem *port_regs =
1077 			qdev->mem_map_registers;
1078 	u32 value;
1079 
1080 	if (enable)
1081 		value = (MAC_CONFIG_REG_GM | (MAC_CONFIG_REG_GM << 16));
1082 	else
1083 		value = (MAC_CONFIG_REG_GM << 16);
1084 
1085 	if (qdev->mac_index)
1086 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1087 	else
1088 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1089 }
1090 
1091 /*
1092  * Caller holds hw_lock.
1093  */
1094 static void ql_mac_cfg_full_dup(struct ql3_adapter *qdev, u32 enable)
1095 {
1096 	struct ql3xxx_port_registers __iomem *port_regs =
1097 			qdev->mem_map_registers;
1098 	u32 value;
1099 
1100 	if (enable)
1101 		value = (MAC_CONFIG_REG_FD | (MAC_CONFIG_REG_FD << 16));
1102 	else
1103 		value = (MAC_CONFIG_REG_FD << 16);
1104 
1105 	if (qdev->mac_index)
1106 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1107 	else
1108 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1109 }
1110 
1111 /*
1112  * Caller holds hw_lock.
1113  */
1114 static void ql_mac_cfg_pause(struct ql3_adapter *qdev, u32 enable)
1115 {
1116 	struct ql3xxx_port_registers __iomem *port_regs =
1117 			qdev->mem_map_registers;
1118 	u32 value;
1119 
1120 	if (enable)
1121 		value =
1122 		    ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) |
1123 		     ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16));
1124 	else
1125 		value = ((MAC_CONFIG_REG_TF | MAC_CONFIG_REG_RF) << 16);
1126 
1127 	if (qdev->mac_index)
1128 		ql_write_page0_reg(qdev, &port_regs->mac1ConfigReg, value);
1129 	else
1130 		ql_write_page0_reg(qdev, &port_regs->mac0ConfigReg, value);
1131 }
1132 
1133 /*
1134  * Caller holds hw_lock.
1135  */
1136 static int ql_is_fiber(struct ql3_adapter *qdev)
1137 {
1138 	struct ql3xxx_port_registers __iomem *port_regs =
1139 			qdev->mem_map_registers;
1140 	u32 bitToCheck = 0;
1141 	u32 temp;
1142 
1143 	switch (qdev->mac_index) {
1144 	case 0:
1145 		bitToCheck = PORT_STATUS_SM0;
1146 		break;
1147 	case 1:
1148 		bitToCheck = PORT_STATUS_SM1;
1149 		break;
1150 	}
1151 
1152 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1153 	return (temp & bitToCheck) != 0;
1154 }
1155 
1156 static int ql_is_auto_cfg(struct ql3_adapter *qdev)
1157 {
1158 	u16 reg;
1159 	ql_mii_read_reg(qdev, 0x00, &reg);
1160 	return (reg & 0x1000) != 0;
1161 }
1162 
1163 /*
1164  * Caller holds hw_lock.
1165  */
1166 static int ql_is_auto_neg_complete(struct ql3_adapter *qdev)
1167 {
1168 	struct ql3xxx_port_registers __iomem *port_regs =
1169 			qdev->mem_map_registers;
1170 	u32 bitToCheck = 0;
1171 	u32 temp;
1172 
1173 	switch (qdev->mac_index) {
1174 	case 0:
1175 		bitToCheck = PORT_STATUS_AC0;
1176 		break;
1177 	case 1:
1178 		bitToCheck = PORT_STATUS_AC1;
1179 		break;
1180 	}
1181 
1182 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1183 	if (temp & bitToCheck) {
1184 		netif_info(qdev, link, qdev->ndev, "Auto-Negotiate complete\n");
1185 		return 1;
1186 	}
1187 	netif_info(qdev, link, qdev->ndev, "Auto-Negotiate incomplete\n");
1188 	return 0;
1189 }
1190 
1191 /*
1192  *  ql_is_neg_pause() returns 1 if pause was negotiated to be on
1193  */
1194 static int ql_is_neg_pause(struct ql3_adapter *qdev)
1195 {
1196 	if (ql_is_fiber(qdev))
1197 		return ql_is_petbi_neg_pause(qdev);
1198 	else
1199 		return ql_is_phy_neg_pause(qdev);
1200 }
1201 
1202 static int ql_auto_neg_error(struct ql3_adapter *qdev)
1203 {
1204 	struct ql3xxx_port_registers __iomem *port_regs =
1205 			qdev->mem_map_registers;
1206 	u32 bitToCheck = 0;
1207 	u32 temp;
1208 
1209 	switch (qdev->mac_index) {
1210 	case 0:
1211 		bitToCheck = PORT_STATUS_AE0;
1212 		break;
1213 	case 1:
1214 		bitToCheck = PORT_STATUS_AE1;
1215 		break;
1216 	}
1217 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1218 	return (temp & bitToCheck) != 0;
1219 }
1220 
1221 static u32 ql_get_link_speed(struct ql3_adapter *qdev)
1222 {
1223 	if (ql_is_fiber(qdev))
1224 		return SPEED_1000;
1225 	else
1226 		return ql_phy_get_speed(qdev);
1227 }
1228 
1229 static int ql_is_link_full_dup(struct ql3_adapter *qdev)
1230 {
1231 	if (ql_is_fiber(qdev))
1232 		return 1;
1233 	else
1234 		return ql_is_full_dup(qdev);
1235 }
1236 
1237 /*
1238  * Caller holds hw_lock.
1239  */
1240 static int ql_link_down_detect(struct ql3_adapter *qdev)
1241 {
1242 	struct ql3xxx_port_registers __iomem *port_regs =
1243 			qdev->mem_map_registers;
1244 	u32 bitToCheck = 0;
1245 	u32 temp;
1246 
1247 	switch (qdev->mac_index) {
1248 	case 0:
1249 		bitToCheck = ISP_CONTROL_LINK_DN_0;
1250 		break;
1251 	case 1:
1252 		bitToCheck = ISP_CONTROL_LINK_DN_1;
1253 		break;
1254 	}
1255 
1256 	temp =
1257 	    ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
1258 	return (temp & bitToCheck) != 0;
1259 }
1260 
1261 /*
1262  * Caller holds hw_lock.
1263  */
1264 static int ql_link_down_detect_clear(struct ql3_adapter *qdev)
1265 {
1266 	struct ql3xxx_port_registers __iomem *port_regs =
1267 			qdev->mem_map_registers;
1268 
1269 	switch (qdev->mac_index) {
1270 	case 0:
1271 		ql_write_common_reg(qdev,
1272 				    &port_regs->CommonRegs.ispControlStatus,
1273 				    (ISP_CONTROL_LINK_DN_0) |
1274 				    (ISP_CONTROL_LINK_DN_0 << 16));
1275 		break;
1276 
1277 	case 1:
1278 		ql_write_common_reg(qdev,
1279 				    &port_regs->CommonRegs.ispControlStatus,
1280 				    (ISP_CONTROL_LINK_DN_1) |
1281 				    (ISP_CONTROL_LINK_DN_1 << 16));
1282 		break;
1283 
1284 	default:
1285 		return 1;
1286 	}
1287 
1288 	return 0;
1289 }
1290 
1291 /*
1292  * Caller holds hw_lock.
1293  */
1294 static int ql_this_adapter_controls_port(struct ql3_adapter *qdev)
1295 {
1296 	struct ql3xxx_port_registers __iomem *port_regs =
1297 			qdev->mem_map_registers;
1298 	u32 bitToCheck = 0;
1299 	u32 temp;
1300 
1301 	switch (qdev->mac_index) {
1302 	case 0:
1303 		bitToCheck = PORT_STATUS_F1_ENABLED;
1304 		break;
1305 	case 1:
1306 		bitToCheck = PORT_STATUS_F3_ENABLED;
1307 		break;
1308 	default:
1309 		break;
1310 	}
1311 
1312 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1313 	if (temp & bitToCheck) {
1314 		netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1315 			     "not link master\n");
1316 		return 0;
1317 	}
1318 
1319 	netif_printk(qdev, link, KERN_DEBUG, qdev->ndev, "link master\n");
1320 	return 1;
1321 }
1322 
1323 static void ql_phy_reset_ex(struct ql3_adapter *qdev)
1324 {
1325 	ql_mii_write_reg_ex(qdev, CONTROL_REG, PHY_CTRL_SOFT_RESET,
1326 			    PHYAddr[qdev->mac_index]);
1327 }
1328 
1329 static void ql_phy_start_neg_ex(struct ql3_adapter *qdev)
1330 {
1331 	u16 reg;
1332 	u16 portConfiguration;
1333 
1334 	if (qdev->phyType == PHY_AGERE_ET1011C)
1335 		ql_mii_write_reg(qdev, 0x13, 0x0000);
1336 					/* turn off external loopback */
1337 
1338 	if (qdev->mac_index == 0)
1339 		portConfiguration =
1340 			qdev->nvram_data.macCfg_port0.portConfiguration;
1341 	else
1342 		portConfiguration =
1343 			qdev->nvram_data.macCfg_port1.portConfiguration;
1344 
1345 	/*  Some HBA's in the field are set to 0 and they need to
1346 	    be reinterpreted with a default value */
1347 	if (portConfiguration == 0)
1348 		portConfiguration = PORT_CONFIG_DEFAULT;
1349 
1350 	/* Set the 1000 advertisements */
1351 	ql_mii_read_reg_ex(qdev, PHY_GIG_CONTROL, &reg,
1352 			   PHYAddr[qdev->mac_index]);
1353 	reg &= ~PHY_GIG_ALL_PARAMS;
1354 
1355 	if (portConfiguration & PORT_CONFIG_1000MB_SPEED) {
1356 		if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED)
1357 			reg |= PHY_GIG_ADV_1000F;
1358 		else
1359 			reg |= PHY_GIG_ADV_1000H;
1360 	}
1361 
1362 	ql_mii_write_reg_ex(qdev, PHY_GIG_CONTROL, reg,
1363 			    PHYAddr[qdev->mac_index]);
1364 
1365 	/* Set the 10/100 & pause negotiation advertisements */
1366 	ql_mii_read_reg_ex(qdev, PHY_NEG_ADVER, &reg,
1367 			   PHYAddr[qdev->mac_index]);
1368 	reg &= ~PHY_NEG_ALL_PARAMS;
1369 
1370 	if (portConfiguration & PORT_CONFIG_SYM_PAUSE_ENABLED)
1371 		reg |= PHY_NEG_ASY_PAUSE | PHY_NEG_SYM_PAUSE;
1372 
1373 	if (portConfiguration & PORT_CONFIG_FULL_DUPLEX_ENABLED) {
1374 		if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1375 			reg |= PHY_NEG_ADV_100F;
1376 
1377 		if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1378 			reg |= PHY_NEG_ADV_10F;
1379 	}
1380 
1381 	if (portConfiguration & PORT_CONFIG_HALF_DUPLEX_ENABLED) {
1382 		if (portConfiguration & PORT_CONFIG_100MB_SPEED)
1383 			reg |= PHY_NEG_ADV_100H;
1384 
1385 		if (portConfiguration & PORT_CONFIG_10MB_SPEED)
1386 			reg |= PHY_NEG_ADV_10H;
1387 	}
1388 
1389 	if (portConfiguration & PORT_CONFIG_1000MB_SPEED)
1390 		reg |= 1;
1391 
1392 	ql_mii_write_reg_ex(qdev, PHY_NEG_ADVER, reg,
1393 			    PHYAddr[qdev->mac_index]);
1394 
1395 	ql_mii_read_reg_ex(qdev, CONTROL_REG, &reg, PHYAddr[qdev->mac_index]);
1396 
1397 	ql_mii_write_reg_ex(qdev, CONTROL_REG,
1398 			    reg | PHY_CTRL_RESTART_NEG | PHY_CTRL_AUTO_NEG,
1399 			    PHYAddr[qdev->mac_index]);
1400 }
1401 
1402 static void ql_phy_init_ex(struct ql3_adapter *qdev)
1403 {
1404 	ql_phy_reset_ex(qdev);
1405 	PHY_Setup(qdev);
1406 	ql_phy_start_neg_ex(qdev);
1407 }
1408 
1409 /*
1410  * Caller holds hw_lock.
1411  */
1412 static u32 ql_get_link_state(struct ql3_adapter *qdev)
1413 {
1414 	struct ql3xxx_port_registers __iomem *port_regs =
1415 			qdev->mem_map_registers;
1416 	u32 bitToCheck = 0;
1417 	u32 temp, linkState;
1418 
1419 	switch (qdev->mac_index) {
1420 	case 0:
1421 		bitToCheck = PORT_STATUS_UP0;
1422 		break;
1423 	case 1:
1424 		bitToCheck = PORT_STATUS_UP1;
1425 		break;
1426 	}
1427 
1428 	temp = ql_read_page0_reg(qdev, &port_regs->portStatus);
1429 	if (temp & bitToCheck)
1430 		linkState = LS_UP;
1431 	else
1432 		linkState = LS_DOWN;
1433 
1434 	return linkState;
1435 }
1436 
1437 static int ql_port_start(struct ql3_adapter *qdev)
1438 {
1439 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1440 		(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1441 			 2) << 7)) {
1442 		netdev_err(qdev->ndev, "Could not get hw lock for GIO\n");
1443 		return -1;
1444 	}
1445 
1446 	if (ql_is_fiber(qdev)) {
1447 		ql_petbi_init(qdev);
1448 	} else {
1449 		/* Copper port */
1450 		ql_phy_init_ex(qdev);
1451 	}
1452 
1453 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1454 	return 0;
1455 }
1456 
1457 static int ql_finish_auto_neg(struct ql3_adapter *qdev)
1458 {
1459 
1460 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1461 		(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1462 			 2) << 7))
1463 		return -1;
1464 
1465 	if (!ql_auto_neg_error(qdev)) {
1466 		if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1467 			/* configure the MAC */
1468 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1469 				     "Configuring link\n");
1470 			ql_mac_cfg_soft_reset(qdev, 1);
1471 			ql_mac_cfg_gig(qdev,
1472 				       (ql_get_link_speed
1473 					(qdev) ==
1474 					SPEED_1000));
1475 			ql_mac_cfg_full_dup(qdev,
1476 					    ql_is_link_full_dup
1477 					    (qdev));
1478 			ql_mac_cfg_pause(qdev,
1479 					 ql_is_neg_pause
1480 					 (qdev));
1481 			ql_mac_cfg_soft_reset(qdev, 0);
1482 
1483 			/* enable the MAC */
1484 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1485 				     "Enabling mac\n");
1486 			ql_mac_enable(qdev, 1);
1487 		}
1488 
1489 		qdev->port_link_state = LS_UP;
1490 		netif_start_queue(qdev->ndev);
1491 		netif_carrier_on(qdev->ndev);
1492 		netif_info(qdev, link, qdev->ndev,
1493 			   "Link is up at %d Mbps, %s duplex\n",
1494 			   ql_get_link_speed(qdev),
1495 			   ql_is_link_full_dup(qdev) ? "full" : "half");
1496 
1497 	} else {	/* Remote error detected */
1498 
1499 		if (test_bit(QL_LINK_MASTER, &qdev->flags)) {
1500 			netif_printk(qdev, link, KERN_DEBUG, qdev->ndev,
1501 				     "Remote error detected. Calling ql_port_start()\n");
1502 			/*
1503 			 * ql_port_start() is shared code and needs
1504 			 * to lock the PHY on it's own.
1505 			 */
1506 			ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1507 			if (ql_port_start(qdev))	/* Restart port */
1508 				return -1;
1509 			return 0;
1510 		}
1511 	}
1512 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1513 	return 0;
1514 }
1515 
1516 static void ql_link_state_machine_work(struct work_struct *work)
1517 {
1518 	struct ql3_adapter *qdev =
1519 		container_of(work, struct ql3_adapter, link_state_work.work);
1520 
1521 	u32 curr_link_state;
1522 	unsigned long hw_flags;
1523 
1524 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1525 
1526 	curr_link_state = ql_get_link_state(qdev);
1527 
1528 	if (test_bit(QL_RESET_ACTIVE, &qdev->flags)) {
1529 		netif_info(qdev, link, qdev->ndev,
1530 			   "Reset in progress, skip processing link state\n");
1531 
1532 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1533 
1534 		/* Restart timer on 2 second interval. */
1535 		mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1536 
1537 		return;
1538 	}
1539 
1540 	switch (qdev->port_link_state) {
1541 	default:
1542 		if (test_bit(QL_LINK_MASTER, &qdev->flags))
1543 			ql_port_start(qdev);
1544 		qdev->port_link_state = LS_DOWN;
1545 		/* Fall Through */
1546 
1547 	case LS_DOWN:
1548 		if (curr_link_state == LS_UP) {
1549 			netif_info(qdev, link, qdev->ndev, "Link is up\n");
1550 			if (ql_is_auto_neg_complete(qdev))
1551 				ql_finish_auto_neg(qdev);
1552 
1553 			if (qdev->port_link_state == LS_UP)
1554 				ql_link_down_detect_clear(qdev);
1555 
1556 			qdev->port_link_state = LS_UP;
1557 		}
1558 		break;
1559 
1560 	case LS_UP:
1561 		/*
1562 		 * See if the link is currently down or went down and came
1563 		 * back up
1564 		 */
1565 		if (curr_link_state == LS_DOWN) {
1566 			netif_info(qdev, link, qdev->ndev, "Link is down\n");
1567 			qdev->port_link_state = LS_DOWN;
1568 		}
1569 		if (ql_link_down_detect(qdev))
1570 			qdev->port_link_state = LS_DOWN;
1571 		break;
1572 	}
1573 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1574 
1575 	/* Restart timer on 2 second interval. */
1576 	mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
1577 }
1578 
1579 /*
1580  * Caller must take hw_lock and QL_PHY_GIO_SEM.
1581  */
1582 static void ql_get_phy_owner(struct ql3_adapter *qdev)
1583 {
1584 	if (ql_this_adapter_controls_port(qdev))
1585 		set_bit(QL_LINK_MASTER, &qdev->flags);
1586 	else
1587 		clear_bit(QL_LINK_MASTER, &qdev->flags);
1588 }
1589 
1590 /*
1591  * Caller must take hw_lock and QL_PHY_GIO_SEM.
1592  */
1593 static void ql_init_scan_mode(struct ql3_adapter *qdev)
1594 {
1595 	ql_mii_enable_scan_mode(qdev);
1596 
1597 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1598 		if (ql_this_adapter_controls_port(qdev))
1599 			ql_petbi_init_ex(qdev);
1600 	} else {
1601 		if (ql_this_adapter_controls_port(qdev))
1602 			ql_phy_init_ex(qdev);
1603 	}
1604 }
1605 
1606 /*
1607  * MII_Setup needs to be called before taking the PHY out of reset
1608  * so that the management interface clock speed can be set properly.
1609  * It would be better if we had a way to disable MDC until after the
1610  * PHY is out of reset, but we don't have that capability.
1611  */
1612 static int ql_mii_setup(struct ql3_adapter *qdev)
1613 {
1614 	u32 reg;
1615 	struct ql3xxx_port_registers __iomem *port_regs =
1616 			qdev->mem_map_registers;
1617 
1618 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1619 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
1620 			 2) << 7))
1621 		return -1;
1622 
1623 	if (qdev->device_id == QL3032_DEVICE_ID)
1624 		ql_write_page0_reg(qdev,
1625 			&port_regs->macMIIMgmtControlReg, 0x0f00000);
1626 
1627 	/* Divide 125MHz clock by 28 to meet PHY timing requirements */
1628 	reg = MAC_MII_CONTROL_CLK_SEL_DIV28;
1629 
1630 	ql_write_page0_reg(qdev, &port_regs->macMIIMgmtControlReg,
1631 			   reg | ((MAC_MII_CONTROL_CLK_SEL_MASK) << 16));
1632 
1633 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1634 	return 0;
1635 }
1636 
1637 #define SUPPORTED_OPTICAL_MODES	(SUPPORTED_1000baseT_Full |	\
1638 				 SUPPORTED_FIBRE |		\
1639 				 SUPPORTED_Autoneg)
1640 #define SUPPORTED_TP_MODES	(SUPPORTED_10baseT_Half |	\
1641 				 SUPPORTED_10baseT_Full |	\
1642 				 SUPPORTED_100baseT_Half |	\
1643 				 SUPPORTED_100baseT_Full |	\
1644 				 SUPPORTED_1000baseT_Half |	\
1645 				 SUPPORTED_1000baseT_Full |	\
1646 				 SUPPORTED_Autoneg |		\
1647 				 SUPPORTED_TP)			\
1648 
1649 static u32 ql_supported_modes(struct ql3_adapter *qdev)
1650 {
1651 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags))
1652 		return SUPPORTED_OPTICAL_MODES;
1653 
1654 	return SUPPORTED_TP_MODES;
1655 }
1656 
1657 static int ql_get_auto_cfg_status(struct ql3_adapter *qdev)
1658 {
1659 	int status;
1660 	unsigned long hw_flags;
1661 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1662 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1663 			    (QL_RESOURCE_BITS_BASE_CODE |
1664 			     (qdev->mac_index) * 2) << 7)) {
1665 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1666 		return 0;
1667 	}
1668 	status = ql_is_auto_cfg(qdev);
1669 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1670 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1671 	return status;
1672 }
1673 
1674 static u32 ql_get_speed(struct ql3_adapter *qdev)
1675 {
1676 	u32 status;
1677 	unsigned long hw_flags;
1678 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1679 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1680 			    (QL_RESOURCE_BITS_BASE_CODE |
1681 			     (qdev->mac_index) * 2) << 7)) {
1682 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1683 		return 0;
1684 	}
1685 	status = ql_get_link_speed(qdev);
1686 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1687 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1688 	return status;
1689 }
1690 
1691 static int ql_get_full_dup(struct ql3_adapter *qdev)
1692 {
1693 	int status;
1694 	unsigned long hw_flags;
1695 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
1696 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
1697 			    (QL_RESOURCE_BITS_BASE_CODE |
1698 			     (qdev->mac_index) * 2) << 7)) {
1699 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1700 		return 0;
1701 	}
1702 	status = ql_is_link_full_dup(qdev);
1703 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
1704 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
1705 	return status;
1706 }
1707 
1708 static int ql_get_link_ksettings(struct net_device *ndev,
1709 				 struct ethtool_link_ksettings *cmd)
1710 {
1711 	struct ql3_adapter *qdev = netdev_priv(ndev);
1712 	u32 supported, advertising;
1713 
1714 	supported = ql_supported_modes(qdev);
1715 
1716 	if (test_bit(QL_LINK_OPTICAL, &qdev->flags)) {
1717 		cmd->base.port = PORT_FIBRE;
1718 	} else {
1719 		cmd->base.port = PORT_TP;
1720 		cmd->base.phy_address = qdev->PHYAddr;
1721 	}
1722 	advertising = ql_supported_modes(qdev);
1723 	cmd->base.autoneg = ql_get_auto_cfg_status(qdev);
1724 	cmd->base.speed = ql_get_speed(qdev);
1725 	cmd->base.duplex = ql_get_full_dup(qdev);
1726 
1727 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
1728 						supported);
1729 	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
1730 						advertising);
1731 
1732 	return 0;
1733 }
1734 
1735 static void ql_get_drvinfo(struct net_device *ndev,
1736 			   struct ethtool_drvinfo *drvinfo)
1737 {
1738 	struct ql3_adapter *qdev = netdev_priv(ndev);
1739 	strlcpy(drvinfo->driver, ql3xxx_driver_name, sizeof(drvinfo->driver));
1740 	strlcpy(drvinfo->version, ql3xxx_driver_version,
1741 		sizeof(drvinfo->version));
1742 	strlcpy(drvinfo->bus_info, pci_name(qdev->pdev),
1743 		sizeof(drvinfo->bus_info));
1744 }
1745 
1746 static u32 ql_get_msglevel(struct net_device *ndev)
1747 {
1748 	struct ql3_adapter *qdev = netdev_priv(ndev);
1749 	return qdev->msg_enable;
1750 }
1751 
1752 static void ql_set_msglevel(struct net_device *ndev, u32 value)
1753 {
1754 	struct ql3_adapter *qdev = netdev_priv(ndev);
1755 	qdev->msg_enable = value;
1756 }
1757 
1758 static void ql_get_pauseparam(struct net_device *ndev,
1759 			      struct ethtool_pauseparam *pause)
1760 {
1761 	struct ql3_adapter *qdev = netdev_priv(ndev);
1762 	struct ql3xxx_port_registers __iomem *port_regs =
1763 		qdev->mem_map_registers;
1764 
1765 	u32 reg;
1766 	if (qdev->mac_index == 0)
1767 		reg = ql_read_page0_reg(qdev, &port_regs->mac0ConfigReg);
1768 	else
1769 		reg = ql_read_page0_reg(qdev, &port_regs->mac1ConfigReg);
1770 
1771 	pause->autoneg  = ql_get_auto_cfg_status(qdev);
1772 	pause->rx_pause = (reg & MAC_CONFIG_REG_RF) >> 2;
1773 	pause->tx_pause = (reg & MAC_CONFIG_REG_TF) >> 1;
1774 }
1775 
1776 static const struct ethtool_ops ql3xxx_ethtool_ops = {
1777 	.get_drvinfo = ql_get_drvinfo,
1778 	.get_link = ethtool_op_get_link,
1779 	.get_msglevel = ql_get_msglevel,
1780 	.set_msglevel = ql_set_msglevel,
1781 	.get_pauseparam = ql_get_pauseparam,
1782 	.get_link_ksettings = ql_get_link_ksettings,
1783 };
1784 
1785 static int ql_populate_free_queue(struct ql3_adapter *qdev)
1786 {
1787 	struct ql_rcv_buf_cb *lrg_buf_cb = qdev->lrg_buf_free_head;
1788 	dma_addr_t map;
1789 	int err;
1790 
1791 	while (lrg_buf_cb) {
1792 		if (!lrg_buf_cb->skb) {
1793 			lrg_buf_cb->skb =
1794 				netdev_alloc_skb(qdev->ndev,
1795 						 qdev->lrg_buffer_len);
1796 			if (unlikely(!lrg_buf_cb->skb)) {
1797 				netdev_printk(KERN_DEBUG, qdev->ndev,
1798 					      "Failed netdev_alloc_skb()\n");
1799 				break;
1800 			} else {
1801 				/*
1802 				 * We save some space to copy the ethhdr from
1803 				 * first buffer
1804 				 */
1805 				skb_reserve(lrg_buf_cb->skb, QL_HEADER_SPACE);
1806 				map = pci_map_single(qdev->pdev,
1807 						     lrg_buf_cb->skb->data,
1808 						     qdev->lrg_buffer_len -
1809 						     QL_HEADER_SPACE,
1810 						     PCI_DMA_FROMDEVICE);
1811 
1812 				err = pci_dma_mapping_error(qdev->pdev, map);
1813 				if (err) {
1814 					netdev_err(qdev->ndev,
1815 						   "PCI mapping failed with error: %d\n",
1816 						   err);
1817 					dev_kfree_skb(lrg_buf_cb->skb);
1818 					lrg_buf_cb->skb = NULL;
1819 					break;
1820 				}
1821 
1822 
1823 				lrg_buf_cb->buf_phy_addr_low =
1824 					cpu_to_le32(LS_64BITS(map));
1825 				lrg_buf_cb->buf_phy_addr_high =
1826 					cpu_to_le32(MS_64BITS(map));
1827 				dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
1828 				dma_unmap_len_set(lrg_buf_cb, maplen,
1829 						  qdev->lrg_buffer_len -
1830 						  QL_HEADER_SPACE);
1831 				--qdev->lrg_buf_skb_check;
1832 				if (!qdev->lrg_buf_skb_check)
1833 					return 1;
1834 			}
1835 		}
1836 		lrg_buf_cb = lrg_buf_cb->next;
1837 	}
1838 	return 0;
1839 }
1840 
1841 /*
1842  * Caller holds hw_lock.
1843  */
1844 static void ql_update_small_bufq_prod_index(struct ql3_adapter *qdev)
1845 {
1846 	struct ql3xxx_port_registers __iomem *port_regs =
1847 		qdev->mem_map_registers;
1848 
1849 	if (qdev->small_buf_release_cnt >= 16) {
1850 		while (qdev->small_buf_release_cnt >= 16) {
1851 			qdev->small_buf_q_producer_index++;
1852 
1853 			if (qdev->small_buf_q_producer_index ==
1854 			    NUM_SBUFQ_ENTRIES)
1855 				qdev->small_buf_q_producer_index = 0;
1856 			qdev->small_buf_release_cnt -= 8;
1857 		}
1858 		wmb();
1859 		writel_relaxed(qdev->small_buf_q_producer_index,
1860 			       &port_regs->CommonRegs.rxSmallQProducerIndex);
1861 	}
1862 }
1863 
1864 /*
1865  * Caller holds hw_lock.
1866  */
1867 static void ql_update_lrg_bufq_prod_index(struct ql3_adapter *qdev)
1868 {
1869 	struct bufq_addr_element *lrg_buf_q_ele;
1870 	int i;
1871 	struct ql_rcv_buf_cb *lrg_buf_cb;
1872 	struct ql3xxx_port_registers __iomem *port_regs =
1873 		qdev->mem_map_registers;
1874 
1875 	if ((qdev->lrg_buf_free_count >= 8) &&
1876 	    (qdev->lrg_buf_release_cnt >= 16)) {
1877 
1878 		if (qdev->lrg_buf_skb_check)
1879 			if (!ql_populate_free_queue(qdev))
1880 				return;
1881 
1882 		lrg_buf_q_ele = qdev->lrg_buf_next_free;
1883 
1884 		while ((qdev->lrg_buf_release_cnt >= 16) &&
1885 		       (qdev->lrg_buf_free_count >= 8)) {
1886 
1887 			for (i = 0; i < 8; i++) {
1888 				lrg_buf_cb =
1889 				    ql_get_from_lrg_buf_free_list(qdev);
1890 				lrg_buf_q_ele->addr_high =
1891 				    lrg_buf_cb->buf_phy_addr_high;
1892 				lrg_buf_q_ele->addr_low =
1893 				    lrg_buf_cb->buf_phy_addr_low;
1894 				lrg_buf_q_ele++;
1895 
1896 				qdev->lrg_buf_release_cnt--;
1897 			}
1898 
1899 			qdev->lrg_buf_q_producer_index++;
1900 
1901 			if (qdev->lrg_buf_q_producer_index ==
1902 			    qdev->num_lbufq_entries)
1903 				qdev->lrg_buf_q_producer_index = 0;
1904 
1905 			if (qdev->lrg_buf_q_producer_index ==
1906 			    (qdev->num_lbufq_entries - 1)) {
1907 				lrg_buf_q_ele = qdev->lrg_buf_q_virt_addr;
1908 			}
1909 		}
1910 		wmb();
1911 		qdev->lrg_buf_next_free = lrg_buf_q_ele;
1912 		writel(qdev->lrg_buf_q_producer_index,
1913 			&port_regs->CommonRegs.rxLargeQProducerIndex);
1914 	}
1915 }
1916 
1917 static void ql_process_mac_tx_intr(struct ql3_adapter *qdev,
1918 				   struct ob_mac_iocb_rsp *mac_rsp)
1919 {
1920 	struct ql_tx_buf_cb *tx_cb;
1921 	int i;
1922 
1923 	if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1924 		netdev_warn(qdev->ndev,
1925 			    "Frame too short but it was padded and sent\n");
1926 	}
1927 
1928 	tx_cb = &qdev->tx_buf[mac_rsp->transaction_id];
1929 
1930 	/*  Check the transmit response flags for any errors */
1931 	if (mac_rsp->flags & OB_MAC_IOCB_RSP_S) {
1932 		netdev_err(qdev->ndev,
1933 			   "Frame too short to be legal, frame not sent\n");
1934 
1935 		qdev->ndev->stats.tx_errors++;
1936 		goto frame_not_sent;
1937 	}
1938 
1939 	if (tx_cb->seg_count == 0) {
1940 		netdev_err(qdev->ndev, "tx_cb->seg_count == 0: %d\n",
1941 			   mac_rsp->transaction_id);
1942 
1943 		qdev->ndev->stats.tx_errors++;
1944 		goto invalid_seg_count;
1945 	}
1946 
1947 	pci_unmap_single(qdev->pdev,
1948 			 dma_unmap_addr(&tx_cb->map[0], mapaddr),
1949 			 dma_unmap_len(&tx_cb->map[0], maplen),
1950 			 PCI_DMA_TODEVICE);
1951 	tx_cb->seg_count--;
1952 	if (tx_cb->seg_count) {
1953 		for (i = 1; i < tx_cb->seg_count; i++) {
1954 			pci_unmap_page(qdev->pdev,
1955 				       dma_unmap_addr(&tx_cb->map[i],
1956 						      mapaddr),
1957 				       dma_unmap_len(&tx_cb->map[i], maplen),
1958 				       PCI_DMA_TODEVICE);
1959 		}
1960 	}
1961 	qdev->ndev->stats.tx_packets++;
1962 	qdev->ndev->stats.tx_bytes += tx_cb->skb->len;
1963 
1964 frame_not_sent:
1965 	dev_kfree_skb_irq(tx_cb->skb);
1966 	tx_cb->skb = NULL;
1967 
1968 invalid_seg_count:
1969 	atomic_inc(&qdev->tx_count);
1970 }
1971 
1972 static void ql_get_sbuf(struct ql3_adapter *qdev)
1973 {
1974 	if (++qdev->small_buf_index == NUM_SMALL_BUFFERS)
1975 		qdev->small_buf_index = 0;
1976 	qdev->small_buf_release_cnt++;
1977 }
1978 
1979 static struct ql_rcv_buf_cb *ql_get_lbuf(struct ql3_adapter *qdev)
1980 {
1981 	struct ql_rcv_buf_cb *lrg_buf_cb = NULL;
1982 	lrg_buf_cb = &qdev->lrg_buf[qdev->lrg_buf_index];
1983 	qdev->lrg_buf_release_cnt++;
1984 	if (++qdev->lrg_buf_index == qdev->num_large_buffers)
1985 		qdev->lrg_buf_index = 0;
1986 	return lrg_buf_cb;
1987 }
1988 
1989 /*
1990  * The difference between 3022 and 3032 for inbound completions:
1991  * 3022 uses two buffers per completion.  The first buffer contains
1992  * (some) header info, the second the remainder of the headers plus
1993  * the data.  For this chip we reserve some space at the top of the
1994  * receive buffer so that the header info in buffer one can be
1995  * prepended to the buffer two.  Buffer two is the sent up while
1996  * buffer one is returned to the hardware to be reused.
1997  * 3032 receives all of it's data and headers in one buffer for a
1998  * simpler process.  3032 also supports checksum verification as
1999  * can be seen in ql_process_macip_rx_intr().
2000  */
2001 static void ql_process_mac_rx_intr(struct ql3_adapter *qdev,
2002 				   struct ib_mac_iocb_rsp *ib_mac_rsp_ptr)
2003 {
2004 	struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2005 	struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2006 	struct sk_buff *skb;
2007 	u16 length = le16_to_cpu(ib_mac_rsp_ptr->length);
2008 
2009 	/*
2010 	 * Get the inbound address list (small buffer).
2011 	 */
2012 	ql_get_sbuf(qdev);
2013 
2014 	if (qdev->device_id == QL3022_DEVICE_ID)
2015 		lrg_buf_cb1 = ql_get_lbuf(qdev);
2016 
2017 	/* start of second buffer */
2018 	lrg_buf_cb2 = ql_get_lbuf(qdev);
2019 	skb = lrg_buf_cb2->skb;
2020 
2021 	qdev->ndev->stats.rx_packets++;
2022 	qdev->ndev->stats.rx_bytes += length;
2023 
2024 	skb_put(skb, length);
2025 	pci_unmap_single(qdev->pdev,
2026 			 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2027 			 dma_unmap_len(lrg_buf_cb2, maplen),
2028 			 PCI_DMA_FROMDEVICE);
2029 	prefetch(skb->data);
2030 	skb_checksum_none_assert(skb);
2031 	skb->protocol = eth_type_trans(skb, qdev->ndev);
2032 
2033 	napi_gro_receive(&qdev->napi, skb);
2034 	lrg_buf_cb2->skb = NULL;
2035 
2036 	if (qdev->device_id == QL3022_DEVICE_ID)
2037 		ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2038 	ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2039 }
2040 
2041 static void ql_process_macip_rx_intr(struct ql3_adapter *qdev,
2042 				     struct ib_ip_iocb_rsp *ib_ip_rsp_ptr)
2043 {
2044 	struct ql_rcv_buf_cb *lrg_buf_cb1 = NULL;
2045 	struct ql_rcv_buf_cb *lrg_buf_cb2 = NULL;
2046 	struct sk_buff *skb1 = NULL, *skb2;
2047 	struct net_device *ndev = qdev->ndev;
2048 	u16 length = le16_to_cpu(ib_ip_rsp_ptr->length);
2049 	u16 size = 0;
2050 
2051 	/*
2052 	 * Get the inbound address list (small buffer).
2053 	 */
2054 
2055 	ql_get_sbuf(qdev);
2056 
2057 	if (qdev->device_id == QL3022_DEVICE_ID) {
2058 		/* start of first buffer on 3022 */
2059 		lrg_buf_cb1 = ql_get_lbuf(qdev);
2060 		skb1 = lrg_buf_cb1->skb;
2061 		size = ETH_HLEN;
2062 		if (*((u16 *) skb1->data) != 0xFFFF)
2063 			size += VLAN_ETH_HLEN - ETH_HLEN;
2064 	}
2065 
2066 	/* start of second buffer */
2067 	lrg_buf_cb2 = ql_get_lbuf(qdev);
2068 	skb2 = lrg_buf_cb2->skb;
2069 
2070 	skb_put(skb2, length);	/* Just the second buffer length here. */
2071 	pci_unmap_single(qdev->pdev,
2072 			 dma_unmap_addr(lrg_buf_cb2, mapaddr),
2073 			 dma_unmap_len(lrg_buf_cb2, maplen),
2074 			 PCI_DMA_FROMDEVICE);
2075 	prefetch(skb2->data);
2076 
2077 	skb_checksum_none_assert(skb2);
2078 	if (qdev->device_id == QL3022_DEVICE_ID) {
2079 		/*
2080 		 * Copy the ethhdr from first buffer to second. This
2081 		 * is necessary for 3022 IP completions.
2082 		 */
2083 		skb_copy_from_linear_data_offset(skb1, VLAN_ID_LEN,
2084 						 skb_push(skb2, size), size);
2085 	} else {
2086 		u16 checksum = le16_to_cpu(ib_ip_rsp_ptr->checksum);
2087 		if (checksum &
2088 			(IB_IP_IOCB_RSP_3032_ICE |
2089 			 IB_IP_IOCB_RSP_3032_CE)) {
2090 			netdev_err(ndev,
2091 				   "%s: Bad checksum for this %s packet, checksum = %x\n",
2092 				   __func__,
2093 				   ((checksum & IB_IP_IOCB_RSP_3032_TCP) ?
2094 				    "TCP" : "UDP"), checksum);
2095 		} else if ((checksum & IB_IP_IOCB_RSP_3032_TCP) ||
2096 				(checksum & IB_IP_IOCB_RSP_3032_UDP &&
2097 				!(checksum & IB_IP_IOCB_RSP_3032_NUC))) {
2098 			skb2->ip_summed = CHECKSUM_UNNECESSARY;
2099 		}
2100 	}
2101 	skb2->protocol = eth_type_trans(skb2, qdev->ndev);
2102 
2103 	napi_gro_receive(&qdev->napi, skb2);
2104 	ndev->stats.rx_packets++;
2105 	ndev->stats.rx_bytes += length;
2106 	lrg_buf_cb2->skb = NULL;
2107 
2108 	if (qdev->device_id == QL3022_DEVICE_ID)
2109 		ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb1);
2110 	ql_release_to_lrg_buf_free_list(qdev, lrg_buf_cb2);
2111 }
2112 
2113 static int ql_tx_rx_clean(struct ql3_adapter *qdev, int budget)
2114 {
2115 	struct net_rsp_iocb *net_rsp;
2116 	struct net_device *ndev = qdev->ndev;
2117 	int work_done = 0;
2118 
2119 	/* While there are entries in the completion queue. */
2120 	while ((le32_to_cpu(*(qdev->prsp_producer_index)) !=
2121 		qdev->rsp_consumer_index) && (work_done < budget)) {
2122 
2123 		net_rsp = qdev->rsp_current;
2124 		rmb();
2125 		/*
2126 		 * Fix 4032 chip's undocumented "feature" where bit-8 is set
2127 		 * if the inbound completion is for a VLAN.
2128 		 */
2129 		if (qdev->device_id == QL3032_DEVICE_ID)
2130 			net_rsp->opcode &= 0x7f;
2131 		switch (net_rsp->opcode) {
2132 
2133 		case OPCODE_OB_MAC_IOCB_FN0:
2134 		case OPCODE_OB_MAC_IOCB_FN2:
2135 			ql_process_mac_tx_intr(qdev, (struct ob_mac_iocb_rsp *)
2136 					       net_rsp);
2137 			break;
2138 
2139 		case OPCODE_IB_MAC_IOCB:
2140 		case OPCODE_IB_3032_MAC_IOCB:
2141 			ql_process_mac_rx_intr(qdev, (struct ib_mac_iocb_rsp *)
2142 					       net_rsp);
2143 			work_done++;
2144 			break;
2145 
2146 		case OPCODE_IB_IP_IOCB:
2147 		case OPCODE_IB_3032_IP_IOCB:
2148 			ql_process_macip_rx_intr(qdev, (struct ib_ip_iocb_rsp *)
2149 						 net_rsp);
2150 			work_done++;
2151 			break;
2152 		default: {
2153 			u32 *tmp = (u32 *)net_rsp;
2154 			netdev_err(ndev,
2155 				   "Hit default case, not handled!\n"
2156 				   "	dropping the packet, opcode = %x\n"
2157 				   "0x%08lx 0x%08lx 0x%08lx 0x%08lx\n",
2158 				   net_rsp->opcode,
2159 				   (unsigned long int)tmp[0],
2160 				   (unsigned long int)tmp[1],
2161 				   (unsigned long int)tmp[2],
2162 				   (unsigned long int)tmp[3]);
2163 		}
2164 		}
2165 
2166 		qdev->rsp_consumer_index++;
2167 
2168 		if (qdev->rsp_consumer_index == NUM_RSP_Q_ENTRIES) {
2169 			qdev->rsp_consumer_index = 0;
2170 			qdev->rsp_current = qdev->rsp_q_virt_addr;
2171 		} else {
2172 			qdev->rsp_current++;
2173 		}
2174 
2175 	}
2176 
2177 	return work_done;
2178 }
2179 
2180 static int ql_poll(struct napi_struct *napi, int budget)
2181 {
2182 	struct ql3_adapter *qdev = container_of(napi, struct ql3_adapter, napi);
2183 	struct ql3xxx_port_registers __iomem *port_regs =
2184 		qdev->mem_map_registers;
2185 	int work_done;
2186 
2187 	work_done = ql_tx_rx_clean(qdev, budget);
2188 
2189 	if (work_done < budget && napi_complete_done(napi, work_done)) {
2190 		unsigned long flags;
2191 
2192 		spin_lock_irqsave(&qdev->hw_lock, flags);
2193 		ql_update_small_bufq_prod_index(qdev);
2194 		ql_update_lrg_bufq_prod_index(qdev);
2195 		writel(qdev->rsp_consumer_index,
2196 			    &port_regs->CommonRegs.rspQConsumerIndex);
2197 		spin_unlock_irqrestore(&qdev->hw_lock, flags);
2198 
2199 		ql_enable_interrupts(qdev);
2200 	}
2201 	return work_done;
2202 }
2203 
2204 static irqreturn_t ql3xxx_isr(int irq, void *dev_id)
2205 {
2206 
2207 	struct net_device *ndev = dev_id;
2208 	struct ql3_adapter *qdev = netdev_priv(ndev);
2209 	struct ql3xxx_port_registers __iomem *port_regs =
2210 		qdev->mem_map_registers;
2211 	u32 value;
2212 	int handled = 1;
2213 	u32 var;
2214 
2215 	value = ql_read_common_reg_l(qdev,
2216 				     &port_regs->CommonRegs.ispControlStatus);
2217 
2218 	if (value & (ISP_CONTROL_FE | ISP_CONTROL_RI)) {
2219 		spin_lock(&qdev->adapter_lock);
2220 		netif_stop_queue(qdev->ndev);
2221 		netif_carrier_off(qdev->ndev);
2222 		ql_disable_interrupts(qdev);
2223 		qdev->port_link_state = LS_DOWN;
2224 		set_bit(QL_RESET_ACTIVE, &qdev->flags) ;
2225 
2226 		if (value & ISP_CONTROL_FE) {
2227 			/*
2228 			 * Chip Fatal Error.
2229 			 */
2230 			var =
2231 			    ql_read_page0_reg_l(qdev,
2232 					      &port_regs->PortFatalErrStatus);
2233 			netdev_warn(ndev,
2234 				    "Resetting chip. PortFatalErrStatus register = 0x%x\n",
2235 				    var);
2236 			set_bit(QL_RESET_START, &qdev->flags) ;
2237 		} else {
2238 			/*
2239 			 * Soft Reset Requested.
2240 			 */
2241 			set_bit(QL_RESET_PER_SCSI, &qdev->flags) ;
2242 			netdev_err(ndev,
2243 				   "Another function issued a reset to the chip. ISR value = %x\n",
2244 				   value);
2245 		}
2246 		queue_delayed_work(qdev->workqueue, &qdev->reset_work, 0);
2247 		spin_unlock(&qdev->adapter_lock);
2248 	} else if (value & ISP_IMR_DISABLE_CMPL_INT) {
2249 		ql_disable_interrupts(qdev);
2250 		if (likely(napi_schedule_prep(&qdev->napi)))
2251 			__napi_schedule(&qdev->napi);
2252 	} else
2253 		return IRQ_NONE;
2254 
2255 	return IRQ_RETVAL(handled);
2256 }
2257 
2258 /*
2259  * Get the total number of segments needed for the given number of fragments.
2260  * This is necessary because outbound address lists (OAL) will be used when
2261  * more than two frags are given.  Each address list has 5 addr/len pairs.
2262  * The 5th pair in each OAL is used to  point to the next OAL if more frags
2263  * are coming.  That is why the frags:segment count ratio is not linear.
2264  */
2265 static int ql_get_seg_count(struct ql3_adapter *qdev, unsigned short frags)
2266 {
2267 	if (qdev->device_id == QL3022_DEVICE_ID)
2268 		return 1;
2269 
2270 	if (frags <= 2)
2271 		return frags + 1;
2272 	else if (frags <= 6)
2273 		return frags + 2;
2274 	else if (frags <= 10)
2275 		return frags + 3;
2276 	else if (frags <= 14)
2277 		return frags + 4;
2278 	else if (frags <= 18)
2279 		return frags + 5;
2280 	return -1;
2281 }
2282 
2283 static void ql_hw_csum_setup(const struct sk_buff *skb,
2284 			     struct ob_mac_iocb_req *mac_iocb_ptr)
2285 {
2286 	const struct iphdr *ip = ip_hdr(skb);
2287 
2288 	mac_iocb_ptr->ip_hdr_off = skb_network_offset(skb);
2289 	mac_iocb_ptr->ip_hdr_len = ip->ihl;
2290 
2291 	if (ip->protocol == IPPROTO_TCP) {
2292 		mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_TC |
2293 			OB_3032MAC_IOCB_REQ_IC;
2294 	} else {
2295 		mac_iocb_ptr->flags1 |= OB_3032MAC_IOCB_REQ_UC |
2296 			OB_3032MAC_IOCB_REQ_IC;
2297 	}
2298 
2299 }
2300 
2301 /*
2302  * Map the buffers for this transmit.
2303  * This will return NETDEV_TX_BUSY or NETDEV_TX_OK based on success.
2304  */
2305 static int ql_send_map(struct ql3_adapter *qdev,
2306 				struct ob_mac_iocb_req *mac_iocb_ptr,
2307 				struct ql_tx_buf_cb *tx_cb,
2308 				struct sk_buff *skb)
2309 {
2310 	struct oal *oal;
2311 	struct oal_entry *oal_entry;
2312 	int len = skb_headlen(skb);
2313 	dma_addr_t map;
2314 	int err;
2315 	int completed_segs, i;
2316 	int seg_cnt, seg = 0;
2317 	int frag_cnt = (int)skb_shinfo(skb)->nr_frags;
2318 
2319 	seg_cnt = tx_cb->seg_count;
2320 	/*
2321 	 * Map the skb buffer first.
2322 	 */
2323 	map = pci_map_single(qdev->pdev, skb->data, len, PCI_DMA_TODEVICE);
2324 
2325 	err = pci_dma_mapping_error(qdev->pdev, map);
2326 	if (err) {
2327 		netdev_err(qdev->ndev, "PCI mapping failed with error: %d\n",
2328 			   err);
2329 
2330 		return NETDEV_TX_BUSY;
2331 	}
2332 
2333 	oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2334 	oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2335 	oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2336 	oal_entry->len = cpu_to_le32(len);
2337 	dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2338 	dma_unmap_len_set(&tx_cb->map[seg], maplen, len);
2339 	seg++;
2340 
2341 	if (seg_cnt == 1) {
2342 		/* Terminate the last segment. */
2343 		oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2344 		return NETDEV_TX_OK;
2345 	}
2346 	oal = tx_cb->oal;
2347 	for (completed_segs = 0;
2348 	     completed_segs < frag_cnt;
2349 	     completed_segs++, seg++) {
2350 		skb_frag_t *frag = &skb_shinfo(skb)->frags[completed_segs];
2351 		oal_entry++;
2352 		/*
2353 		 * Check for continuation requirements.
2354 		 * It's strange but necessary.
2355 		 * Continuation entry points to outbound address list.
2356 		 */
2357 		if ((seg == 2 && seg_cnt > 3) ||
2358 		    (seg == 7 && seg_cnt > 8) ||
2359 		    (seg == 12 && seg_cnt > 13) ||
2360 		    (seg == 17 && seg_cnt > 18)) {
2361 			map = pci_map_single(qdev->pdev, oal,
2362 					     sizeof(struct oal),
2363 					     PCI_DMA_TODEVICE);
2364 
2365 			err = pci_dma_mapping_error(qdev->pdev, map);
2366 			if (err) {
2367 				netdev_err(qdev->ndev,
2368 					   "PCI mapping outbound address list with error: %d\n",
2369 					   err);
2370 				goto map_error;
2371 			}
2372 
2373 			oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2374 			oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2375 			oal_entry->len = cpu_to_le32(sizeof(struct oal) |
2376 						     OAL_CONT_ENTRY);
2377 			dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2378 			dma_unmap_len_set(&tx_cb->map[seg], maplen,
2379 					  sizeof(struct oal));
2380 			oal_entry = (struct oal_entry *)oal;
2381 			oal++;
2382 			seg++;
2383 		}
2384 
2385 		map = skb_frag_dma_map(&qdev->pdev->dev, frag, 0, skb_frag_size(frag),
2386 				       DMA_TO_DEVICE);
2387 
2388 		err = dma_mapping_error(&qdev->pdev->dev, map);
2389 		if (err) {
2390 			netdev_err(qdev->ndev,
2391 				   "PCI mapping frags failed with error: %d\n",
2392 				   err);
2393 			goto map_error;
2394 		}
2395 
2396 		oal_entry->dma_lo = cpu_to_le32(LS_64BITS(map));
2397 		oal_entry->dma_hi = cpu_to_le32(MS_64BITS(map));
2398 		oal_entry->len = cpu_to_le32(skb_frag_size(frag));
2399 		dma_unmap_addr_set(&tx_cb->map[seg], mapaddr, map);
2400 		dma_unmap_len_set(&tx_cb->map[seg], maplen, skb_frag_size(frag));
2401 		}
2402 	/* Terminate the last segment. */
2403 	oal_entry->len |= cpu_to_le32(OAL_LAST_ENTRY);
2404 	return NETDEV_TX_OK;
2405 
2406 map_error:
2407 	/* A PCI mapping failed and now we will need to back out
2408 	 * We need to traverse through the oal's and associated pages which
2409 	 * have been mapped and now we must unmap them to clean up properly
2410 	 */
2411 
2412 	seg = 1;
2413 	oal_entry = (struct oal_entry *)&mac_iocb_ptr->buf_addr0_low;
2414 	oal = tx_cb->oal;
2415 	for (i = 0; i < completed_segs; i++, seg++) {
2416 		oal_entry++;
2417 
2418 		/*
2419 		 * Check for continuation requirements.
2420 		 * It's strange but necessary.
2421 		 */
2422 
2423 		if ((seg == 2 && seg_cnt > 3) ||
2424 		    (seg == 7 && seg_cnt > 8) ||
2425 		    (seg == 12 && seg_cnt > 13) ||
2426 		    (seg == 17 && seg_cnt > 18)) {
2427 			pci_unmap_single(qdev->pdev,
2428 				dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2429 				dma_unmap_len(&tx_cb->map[seg], maplen),
2430 				 PCI_DMA_TODEVICE);
2431 			oal++;
2432 			seg++;
2433 		}
2434 
2435 		pci_unmap_page(qdev->pdev,
2436 			       dma_unmap_addr(&tx_cb->map[seg], mapaddr),
2437 			       dma_unmap_len(&tx_cb->map[seg], maplen),
2438 			       PCI_DMA_TODEVICE);
2439 	}
2440 
2441 	pci_unmap_single(qdev->pdev,
2442 			 dma_unmap_addr(&tx_cb->map[0], mapaddr),
2443 			 dma_unmap_addr(&tx_cb->map[0], maplen),
2444 			 PCI_DMA_TODEVICE);
2445 
2446 	return NETDEV_TX_BUSY;
2447 
2448 }
2449 
2450 /*
2451  * The difference between 3022 and 3032 sends:
2452  * 3022 only supports a simple single segment transmission.
2453  * 3032 supports checksumming and scatter/gather lists (fragments).
2454  * The 3032 supports sglists by using the 3 addr/len pairs (ALP)
2455  * in the IOCB plus a chain of outbound address lists (OAL) that
2456  * each contain 5 ALPs.  The last ALP of the IOCB (3rd) or OAL (5th)
2457  * will be used to point to an OAL when more ALP entries are required.
2458  * The IOCB is always the top of the chain followed by one or more
2459  * OALs (when necessary).
2460  */
2461 static netdev_tx_t ql3xxx_send(struct sk_buff *skb,
2462 			       struct net_device *ndev)
2463 {
2464 	struct ql3_adapter *qdev = netdev_priv(ndev);
2465 	struct ql3xxx_port_registers __iomem *port_regs =
2466 			qdev->mem_map_registers;
2467 	struct ql_tx_buf_cb *tx_cb;
2468 	u32 tot_len = skb->len;
2469 	struct ob_mac_iocb_req *mac_iocb_ptr;
2470 
2471 	if (unlikely(atomic_read(&qdev->tx_count) < 2))
2472 		return NETDEV_TX_BUSY;
2473 
2474 	tx_cb = &qdev->tx_buf[qdev->req_producer_index];
2475 	tx_cb->seg_count = ql_get_seg_count(qdev,
2476 					     skb_shinfo(skb)->nr_frags);
2477 	if (tx_cb->seg_count == -1) {
2478 		netdev_err(ndev, "%s: invalid segment count!\n", __func__);
2479 		return NETDEV_TX_OK;
2480 	}
2481 
2482 	mac_iocb_ptr = tx_cb->queue_entry;
2483 	memset((void *)mac_iocb_ptr, 0, sizeof(struct ob_mac_iocb_req));
2484 	mac_iocb_ptr->opcode = qdev->mac_ob_opcode;
2485 	mac_iocb_ptr->flags = OB_MAC_IOCB_REQ_X;
2486 	mac_iocb_ptr->flags |= qdev->mb_bit_mask;
2487 	mac_iocb_ptr->transaction_id = qdev->req_producer_index;
2488 	mac_iocb_ptr->data_len = cpu_to_le16((u16) tot_len);
2489 	tx_cb->skb = skb;
2490 	if (qdev->device_id == QL3032_DEVICE_ID &&
2491 	    skb->ip_summed == CHECKSUM_PARTIAL)
2492 		ql_hw_csum_setup(skb, mac_iocb_ptr);
2493 
2494 	if (ql_send_map(qdev, mac_iocb_ptr, tx_cb, skb) != NETDEV_TX_OK) {
2495 		netdev_err(ndev, "%s: Could not map the segments!\n", __func__);
2496 		return NETDEV_TX_BUSY;
2497 	}
2498 
2499 	wmb();
2500 	qdev->req_producer_index++;
2501 	if (qdev->req_producer_index == NUM_REQ_Q_ENTRIES)
2502 		qdev->req_producer_index = 0;
2503 	wmb();
2504 	ql_write_common_reg_l(qdev,
2505 			    &port_regs->CommonRegs.reqQProducerIndex,
2506 			    qdev->req_producer_index);
2507 
2508 	netif_printk(qdev, tx_queued, KERN_DEBUG, ndev,
2509 		     "tx queued, slot %d, len %d\n",
2510 		     qdev->req_producer_index, skb->len);
2511 
2512 	atomic_dec(&qdev->tx_count);
2513 	return NETDEV_TX_OK;
2514 }
2515 
2516 static int ql_alloc_net_req_rsp_queues(struct ql3_adapter *qdev)
2517 {
2518 	qdev->req_q_size =
2519 	    (u32) (NUM_REQ_Q_ENTRIES * sizeof(struct ob_mac_iocb_req));
2520 
2521 	qdev->rsp_q_size = NUM_RSP_Q_ENTRIES * sizeof(struct net_rsp_iocb);
2522 
2523 	/* The barrier is required to ensure request and response queue
2524 	 * addr writes to the registers.
2525 	 */
2526 	wmb();
2527 
2528 	qdev->req_q_virt_addr =
2529 	    pci_alloc_consistent(qdev->pdev,
2530 				 (size_t) qdev->req_q_size,
2531 				 &qdev->req_q_phy_addr);
2532 
2533 	if ((qdev->req_q_virt_addr == NULL) ||
2534 	    LS_64BITS(qdev->req_q_phy_addr) & (qdev->req_q_size - 1)) {
2535 		netdev_err(qdev->ndev, "reqQ failed\n");
2536 		return -ENOMEM;
2537 	}
2538 
2539 	qdev->rsp_q_virt_addr =
2540 	    pci_alloc_consistent(qdev->pdev,
2541 				 (size_t) qdev->rsp_q_size,
2542 				 &qdev->rsp_q_phy_addr);
2543 
2544 	if ((qdev->rsp_q_virt_addr == NULL) ||
2545 	    LS_64BITS(qdev->rsp_q_phy_addr) & (qdev->rsp_q_size - 1)) {
2546 		netdev_err(qdev->ndev, "rspQ allocation failed\n");
2547 		pci_free_consistent(qdev->pdev, (size_t) qdev->req_q_size,
2548 				    qdev->req_q_virt_addr,
2549 				    qdev->req_q_phy_addr);
2550 		return -ENOMEM;
2551 	}
2552 
2553 	set_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2554 
2555 	return 0;
2556 }
2557 
2558 static void ql_free_net_req_rsp_queues(struct ql3_adapter *qdev)
2559 {
2560 	if (!test_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags)) {
2561 		netdev_info(qdev->ndev, "Already done\n");
2562 		return;
2563 	}
2564 
2565 	pci_free_consistent(qdev->pdev,
2566 			    qdev->req_q_size,
2567 			    qdev->req_q_virt_addr, qdev->req_q_phy_addr);
2568 
2569 	qdev->req_q_virt_addr = NULL;
2570 
2571 	pci_free_consistent(qdev->pdev,
2572 			    qdev->rsp_q_size,
2573 			    qdev->rsp_q_virt_addr, qdev->rsp_q_phy_addr);
2574 
2575 	qdev->rsp_q_virt_addr = NULL;
2576 
2577 	clear_bit(QL_ALLOC_REQ_RSP_Q_DONE, &qdev->flags);
2578 }
2579 
2580 static int ql_alloc_buffer_queues(struct ql3_adapter *qdev)
2581 {
2582 	/* Create Large Buffer Queue */
2583 	qdev->lrg_buf_q_size =
2584 		qdev->num_lbufq_entries * sizeof(struct lrg_buf_q_entry);
2585 	if (qdev->lrg_buf_q_size < PAGE_SIZE)
2586 		qdev->lrg_buf_q_alloc_size = PAGE_SIZE;
2587 	else
2588 		qdev->lrg_buf_q_alloc_size = qdev->lrg_buf_q_size * 2;
2589 
2590 	qdev->lrg_buf = kmalloc_array(qdev->num_large_buffers,
2591 				      sizeof(struct ql_rcv_buf_cb),
2592 				      GFP_KERNEL);
2593 	if (qdev->lrg_buf == NULL)
2594 		return -ENOMEM;
2595 
2596 	qdev->lrg_buf_q_alloc_virt_addr =
2597 		pci_alloc_consistent(qdev->pdev,
2598 				     qdev->lrg_buf_q_alloc_size,
2599 				     &qdev->lrg_buf_q_alloc_phy_addr);
2600 
2601 	if (qdev->lrg_buf_q_alloc_virt_addr == NULL) {
2602 		netdev_err(qdev->ndev, "lBufQ failed\n");
2603 		return -ENOMEM;
2604 	}
2605 	qdev->lrg_buf_q_virt_addr = qdev->lrg_buf_q_alloc_virt_addr;
2606 	qdev->lrg_buf_q_phy_addr = qdev->lrg_buf_q_alloc_phy_addr;
2607 
2608 	/* Create Small Buffer Queue */
2609 	qdev->small_buf_q_size =
2610 		NUM_SBUFQ_ENTRIES * sizeof(struct lrg_buf_q_entry);
2611 	if (qdev->small_buf_q_size < PAGE_SIZE)
2612 		qdev->small_buf_q_alloc_size = PAGE_SIZE;
2613 	else
2614 		qdev->small_buf_q_alloc_size = qdev->small_buf_q_size * 2;
2615 
2616 	qdev->small_buf_q_alloc_virt_addr =
2617 		pci_alloc_consistent(qdev->pdev,
2618 				     qdev->small_buf_q_alloc_size,
2619 				     &qdev->small_buf_q_alloc_phy_addr);
2620 
2621 	if (qdev->small_buf_q_alloc_virt_addr == NULL) {
2622 		netdev_err(qdev->ndev, "Small Buffer Queue allocation failed\n");
2623 		pci_free_consistent(qdev->pdev, qdev->lrg_buf_q_alloc_size,
2624 				    qdev->lrg_buf_q_alloc_virt_addr,
2625 				    qdev->lrg_buf_q_alloc_phy_addr);
2626 		return -ENOMEM;
2627 	}
2628 
2629 	qdev->small_buf_q_virt_addr = qdev->small_buf_q_alloc_virt_addr;
2630 	qdev->small_buf_q_phy_addr = qdev->small_buf_q_alloc_phy_addr;
2631 	set_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2632 	return 0;
2633 }
2634 
2635 static void ql_free_buffer_queues(struct ql3_adapter *qdev)
2636 {
2637 	if (!test_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags)) {
2638 		netdev_info(qdev->ndev, "Already done\n");
2639 		return;
2640 	}
2641 	kfree(qdev->lrg_buf);
2642 	pci_free_consistent(qdev->pdev,
2643 			    qdev->lrg_buf_q_alloc_size,
2644 			    qdev->lrg_buf_q_alloc_virt_addr,
2645 			    qdev->lrg_buf_q_alloc_phy_addr);
2646 
2647 	qdev->lrg_buf_q_virt_addr = NULL;
2648 
2649 	pci_free_consistent(qdev->pdev,
2650 			    qdev->small_buf_q_alloc_size,
2651 			    qdev->small_buf_q_alloc_virt_addr,
2652 			    qdev->small_buf_q_alloc_phy_addr);
2653 
2654 	qdev->small_buf_q_virt_addr = NULL;
2655 
2656 	clear_bit(QL_ALLOC_BUFQS_DONE, &qdev->flags);
2657 }
2658 
2659 static int ql_alloc_small_buffers(struct ql3_adapter *qdev)
2660 {
2661 	int i;
2662 	struct bufq_addr_element *small_buf_q_entry;
2663 
2664 	/* Currently we allocate on one of memory and use it for smallbuffers */
2665 	qdev->small_buf_total_size =
2666 		(QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES *
2667 		 QL_SMALL_BUFFER_SIZE);
2668 
2669 	qdev->small_buf_virt_addr =
2670 		pci_alloc_consistent(qdev->pdev,
2671 				     qdev->small_buf_total_size,
2672 				     &qdev->small_buf_phy_addr);
2673 
2674 	if (qdev->small_buf_virt_addr == NULL) {
2675 		netdev_err(qdev->ndev, "Failed to get small buffer memory\n");
2676 		return -ENOMEM;
2677 	}
2678 
2679 	qdev->small_buf_phy_addr_low = LS_64BITS(qdev->small_buf_phy_addr);
2680 	qdev->small_buf_phy_addr_high = MS_64BITS(qdev->small_buf_phy_addr);
2681 
2682 	small_buf_q_entry = qdev->small_buf_q_virt_addr;
2683 
2684 	/* Initialize the small buffer queue. */
2685 	for (i = 0; i < (QL_ADDR_ELE_PER_BUFQ_ENTRY * NUM_SBUFQ_ENTRIES); i++) {
2686 		small_buf_q_entry->addr_high =
2687 		    cpu_to_le32(qdev->small_buf_phy_addr_high);
2688 		small_buf_q_entry->addr_low =
2689 		    cpu_to_le32(qdev->small_buf_phy_addr_low +
2690 				(i * QL_SMALL_BUFFER_SIZE));
2691 		small_buf_q_entry++;
2692 	}
2693 	qdev->small_buf_index = 0;
2694 	set_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags);
2695 	return 0;
2696 }
2697 
2698 static void ql_free_small_buffers(struct ql3_adapter *qdev)
2699 {
2700 	if (!test_bit(QL_ALLOC_SMALL_BUF_DONE, &qdev->flags)) {
2701 		netdev_info(qdev->ndev, "Already done\n");
2702 		return;
2703 	}
2704 	if (qdev->small_buf_virt_addr != NULL) {
2705 		pci_free_consistent(qdev->pdev,
2706 				    qdev->small_buf_total_size,
2707 				    qdev->small_buf_virt_addr,
2708 				    qdev->small_buf_phy_addr);
2709 
2710 		qdev->small_buf_virt_addr = NULL;
2711 	}
2712 }
2713 
2714 static void ql_free_large_buffers(struct ql3_adapter *qdev)
2715 {
2716 	int i = 0;
2717 	struct ql_rcv_buf_cb *lrg_buf_cb;
2718 
2719 	for (i = 0; i < qdev->num_large_buffers; i++) {
2720 		lrg_buf_cb = &qdev->lrg_buf[i];
2721 		if (lrg_buf_cb->skb) {
2722 			dev_kfree_skb(lrg_buf_cb->skb);
2723 			pci_unmap_single(qdev->pdev,
2724 					 dma_unmap_addr(lrg_buf_cb, mapaddr),
2725 					 dma_unmap_len(lrg_buf_cb, maplen),
2726 					 PCI_DMA_FROMDEVICE);
2727 			memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2728 		} else {
2729 			break;
2730 		}
2731 	}
2732 }
2733 
2734 static void ql_init_large_buffers(struct ql3_adapter *qdev)
2735 {
2736 	int i;
2737 	struct ql_rcv_buf_cb *lrg_buf_cb;
2738 	struct bufq_addr_element *buf_addr_ele = qdev->lrg_buf_q_virt_addr;
2739 
2740 	for (i = 0; i < qdev->num_large_buffers; i++) {
2741 		lrg_buf_cb = &qdev->lrg_buf[i];
2742 		buf_addr_ele->addr_high = lrg_buf_cb->buf_phy_addr_high;
2743 		buf_addr_ele->addr_low = lrg_buf_cb->buf_phy_addr_low;
2744 		buf_addr_ele++;
2745 	}
2746 	qdev->lrg_buf_index = 0;
2747 	qdev->lrg_buf_skb_check = 0;
2748 }
2749 
2750 static int ql_alloc_large_buffers(struct ql3_adapter *qdev)
2751 {
2752 	int i;
2753 	struct ql_rcv_buf_cb *lrg_buf_cb;
2754 	struct sk_buff *skb;
2755 	dma_addr_t map;
2756 	int err;
2757 
2758 	for (i = 0; i < qdev->num_large_buffers; i++) {
2759 		lrg_buf_cb = &qdev->lrg_buf[i];
2760 		memset(lrg_buf_cb, 0, sizeof(struct ql_rcv_buf_cb));
2761 
2762 		skb = netdev_alloc_skb(qdev->ndev,
2763 				       qdev->lrg_buffer_len);
2764 		if (unlikely(!skb)) {
2765 			/* Better luck next round */
2766 			netdev_err(qdev->ndev,
2767 				   "large buff alloc failed for %d bytes at index %d\n",
2768 				   qdev->lrg_buffer_len * 2, i);
2769 			ql_free_large_buffers(qdev);
2770 			return -ENOMEM;
2771 		} else {
2772 			lrg_buf_cb->index = i;
2773 			/*
2774 			 * We save some space to copy the ethhdr from first
2775 			 * buffer
2776 			 */
2777 			skb_reserve(skb, QL_HEADER_SPACE);
2778 			map = pci_map_single(qdev->pdev,
2779 					     skb->data,
2780 					     qdev->lrg_buffer_len -
2781 					     QL_HEADER_SPACE,
2782 					     PCI_DMA_FROMDEVICE);
2783 
2784 			err = pci_dma_mapping_error(qdev->pdev, map);
2785 			if (err) {
2786 				netdev_err(qdev->ndev,
2787 					   "PCI mapping failed with error: %d\n",
2788 					   err);
2789 				dev_kfree_skb_irq(skb);
2790 				ql_free_large_buffers(qdev);
2791 				return -ENOMEM;
2792 			}
2793 
2794 			lrg_buf_cb->skb = skb;
2795 			dma_unmap_addr_set(lrg_buf_cb, mapaddr, map);
2796 			dma_unmap_len_set(lrg_buf_cb, maplen,
2797 					  qdev->lrg_buffer_len -
2798 					  QL_HEADER_SPACE);
2799 			lrg_buf_cb->buf_phy_addr_low =
2800 			    cpu_to_le32(LS_64BITS(map));
2801 			lrg_buf_cb->buf_phy_addr_high =
2802 			    cpu_to_le32(MS_64BITS(map));
2803 		}
2804 	}
2805 	return 0;
2806 }
2807 
2808 static void ql_free_send_free_list(struct ql3_adapter *qdev)
2809 {
2810 	struct ql_tx_buf_cb *tx_cb;
2811 	int i;
2812 
2813 	tx_cb = &qdev->tx_buf[0];
2814 	for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2815 		kfree(tx_cb->oal);
2816 		tx_cb->oal = NULL;
2817 		tx_cb++;
2818 	}
2819 }
2820 
2821 static int ql_create_send_free_list(struct ql3_adapter *qdev)
2822 {
2823 	struct ql_tx_buf_cb *tx_cb;
2824 	int i;
2825 	struct ob_mac_iocb_req *req_q_curr = qdev->req_q_virt_addr;
2826 
2827 	/* Create free list of transmit buffers */
2828 	for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
2829 
2830 		tx_cb = &qdev->tx_buf[i];
2831 		tx_cb->skb = NULL;
2832 		tx_cb->queue_entry = req_q_curr;
2833 		req_q_curr++;
2834 		tx_cb->oal = kmalloc(512, GFP_KERNEL);
2835 		if (tx_cb->oal == NULL)
2836 			return -ENOMEM;
2837 	}
2838 	return 0;
2839 }
2840 
2841 static int ql_alloc_mem_resources(struct ql3_adapter *qdev)
2842 {
2843 	if (qdev->ndev->mtu == NORMAL_MTU_SIZE) {
2844 		qdev->num_lbufq_entries = NUM_LBUFQ_ENTRIES;
2845 		qdev->lrg_buffer_len = NORMAL_MTU_SIZE;
2846 	} else if (qdev->ndev->mtu == JUMBO_MTU_SIZE) {
2847 		/*
2848 		 * Bigger buffers, so less of them.
2849 		 */
2850 		qdev->num_lbufq_entries = JUMBO_NUM_LBUFQ_ENTRIES;
2851 		qdev->lrg_buffer_len = JUMBO_MTU_SIZE;
2852 	} else {
2853 		netdev_err(qdev->ndev, "Invalid mtu size: %d.  Only %d and %d are accepted.\n",
2854 			   qdev->ndev->mtu, NORMAL_MTU_SIZE, JUMBO_MTU_SIZE);
2855 		return -ENOMEM;
2856 	}
2857 	qdev->num_large_buffers =
2858 		qdev->num_lbufq_entries * QL_ADDR_ELE_PER_BUFQ_ENTRY;
2859 	qdev->lrg_buffer_len += VLAN_ETH_HLEN + VLAN_ID_LEN + QL_HEADER_SPACE;
2860 	qdev->max_frame_size =
2861 		(qdev->lrg_buffer_len - QL_HEADER_SPACE) + ETHERNET_CRC_SIZE;
2862 
2863 	/*
2864 	 * First allocate a page of shared memory and use it for shadow
2865 	 * locations of Network Request Queue Consumer Address Register and
2866 	 * Network Completion Queue Producer Index Register
2867 	 */
2868 	qdev->shadow_reg_virt_addr =
2869 		pci_alloc_consistent(qdev->pdev,
2870 				     PAGE_SIZE, &qdev->shadow_reg_phy_addr);
2871 
2872 	if (qdev->shadow_reg_virt_addr != NULL) {
2873 		qdev->preq_consumer_index = qdev->shadow_reg_virt_addr;
2874 		qdev->req_consumer_index_phy_addr_high =
2875 			MS_64BITS(qdev->shadow_reg_phy_addr);
2876 		qdev->req_consumer_index_phy_addr_low =
2877 			LS_64BITS(qdev->shadow_reg_phy_addr);
2878 
2879 		qdev->prsp_producer_index =
2880 			(__le32 *) (((u8 *) qdev->preq_consumer_index) + 8);
2881 		qdev->rsp_producer_index_phy_addr_high =
2882 			qdev->req_consumer_index_phy_addr_high;
2883 		qdev->rsp_producer_index_phy_addr_low =
2884 			qdev->req_consumer_index_phy_addr_low + 8;
2885 	} else {
2886 		netdev_err(qdev->ndev, "shadowReg Alloc failed\n");
2887 		return -ENOMEM;
2888 	}
2889 
2890 	if (ql_alloc_net_req_rsp_queues(qdev) != 0) {
2891 		netdev_err(qdev->ndev, "ql_alloc_net_req_rsp_queues failed\n");
2892 		goto err_req_rsp;
2893 	}
2894 
2895 	if (ql_alloc_buffer_queues(qdev) != 0) {
2896 		netdev_err(qdev->ndev, "ql_alloc_buffer_queues failed\n");
2897 		goto err_buffer_queues;
2898 	}
2899 
2900 	if (ql_alloc_small_buffers(qdev) != 0) {
2901 		netdev_err(qdev->ndev, "ql_alloc_small_buffers failed\n");
2902 		goto err_small_buffers;
2903 	}
2904 
2905 	if (ql_alloc_large_buffers(qdev) != 0) {
2906 		netdev_err(qdev->ndev, "ql_alloc_large_buffers failed\n");
2907 		goto err_small_buffers;
2908 	}
2909 
2910 	/* Initialize the large buffer queue. */
2911 	ql_init_large_buffers(qdev);
2912 	if (ql_create_send_free_list(qdev))
2913 		goto err_free_list;
2914 
2915 	qdev->rsp_current = qdev->rsp_q_virt_addr;
2916 
2917 	return 0;
2918 err_free_list:
2919 	ql_free_send_free_list(qdev);
2920 err_small_buffers:
2921 	ql_free_buffer_queues(qdev);
2922 err_buffer_queues:
2923 	ql_free_net_req_rsp_queues(qdev);
2924 err_req_rsp:
2925 	pci_free_consistent(qdev->pdev,
2926 			    PAGE_SIZE,
2927 			    qdev->shadow_reg_virt_addr,
2928 			    qdev->shadow_reg_phy_addr);
2929 
2930 	return -ENOMEM;
2931 }
2932 
2933 static void ql_free_mem_resources(struct ql3_adapter *qdev)
2934 {
2935 	ql_free_send_free_list(qdev);
2936 	ql_free_large_buffers(qdev);
2937 	ql_free_small_buffers(qdev);
2938 	ql_free_buffer_queues(qdev);
2939 	ql_free_net_req_rsp_queues(qdev);
2940 	if (qdev->shadow_reg_virt_addr != NULL) {
2941 		pci_free_consistent(qdev->pdev,
2942 				    PAGE_SIZE,
2943 				    qdev->shadow_reg_virt_addr,
2944 				    qdev->shadow_reg_phy_addr);
2945 		qdev->shadow_reg_virt_addr = NULL;
2946 	}
2947 }
2948 
2949 static int ql_init_misc_registers(struct ql3_adapter *qdev)
2950 {
2951 	struct ql3xxx_local_ram_registers __iomem *local_ram =
2952 	    (void __iomem *)qdev->mem_map_registers;
2953 
2954 	if (ql_sem_spinlock(qdev, QL_DDR_RAM_SEM_MASK,
2955 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
2956 			 2) << 4))
2957 		return -1;
2958 
2959 	ql_write_page2_reg(qdev,
2960 			   &local_ram->bufletSize, qdev->nvram_data.bufletSize);
2961 
2962 	ql_write_page2_reg(qdev,
2963 			   &local_ram->maxBufletCount,
2964 			   qdev->nvram_data.bufletCount);
2965 
2966 	ql_write_page2_reg(qdev,
2967 			   &local_ram->freeBufletThresholdLow,
2968 			   (qdev->nvram_data.tcpWindowThreshold25 << 16) |
2969 			   (qdev->nvram_data.tcpWindowThreshold0));
2970 
2971 	ql_write_page2_reg(qdev,
2972 			   &local_ram->freeBufletThresholdHigh,
2973 			   qdev->nvram_data.tcpWindowThreshold50);
2974 
2975 	ql_write_page2_reg(qdev,
2976 			   &local_ram->ipHashTableBase,
2977 			   (qdev->nvram_data.ipHashTableBaseHi << 16) |
2978 			   qdev->nvram_data.ipHashTableBaseLo);
2979 	ql_write_page2_reg(qdev,
2980 			   &local_ram->ipHashTableCount,
2981 			   qdev->nvram_data.ipHashTableSize);
2982 	ql_write_page2_reg(qdev,
2983 			   &local_ram->tcpHashTableBase,
2984 			   (qdev->nvram_data.tcpHashTableBaseHi << 16) |
2985 			   qdev->nvram_data.tcpHashTableBaseLo);
2986 	ql_write_page2_reg(qdev,
2987 			   &local_ram->tcpHashTableCount,
2988 			   qdev->nvram_data.tcpHashTableSize);
2989 	ql_write_page2_reg(qdev,
2990 			   &local_ram->ncbBase,
2991 			   (qdev->nvram_data.ncbTableBaseHi << 16) |
2992 			   qdev->nvram_data.ncbTableBaseLo);
2993 	ql_write_page2_reg(qdev,
2994 			   &local_ram->maxNcbCount,
2995 			   qdev->nvram_data.ncbTableSize);
2996 	ql_write_page2_reg(qdev,
2997 			   &local_ram->drbBase,
2998 			   (qdev->nvram_data.drbTableBaseHi << 16) |
2999 			   qdev->nvram_data.drbTableBaseLo);
3000 	ql_write_page2_reg(qdev,
3001 			   &local_ram->maxDrbCount,
3002 			   qdev->nvram_data.drbTableSize);
3003 	ql_sem_unlock(qdev, QL_DDR_RAM_SEM_MASK);
3004 	return 0;
3005 }
3006 
3007 static int ql_adapter_initialize(struct ql3_adapter *qdev)
3008 {
3009 	u32 value;
3010 	struct ql3xxx_port_registers __iomem *port_regs =
3011 		qdev->mem_map_registers;
3012 	__iomem u32 *spir = &port_regs->CommonRegs.serialPortInterfaceReg;
3013 	struct ql3xxx_host_memory_registers __iomem *hmem_regs =
3014 		(void __iomem *)port_regs;
3015 	u32 delay = 10;
3016 	int status = 0;
3017 
3018 	if (ql_mii_setup(qdev))
3019 		return -1;
3020 
3021 	/* Bring out PHY out of reset */
3022 	ql_write_common_reg(qdev, spir,
3023 			    (ISP_SERIAL_PORT_IF_WE |
3024 			     (ISP_SERIAL_PORT_IF_WE << 16)));
3025 	/* Give the PHY time to come out of reset. */
3026 	mdelay(100);
3027 	qdev->port_link_state = LS_DOWN;
3028 	netif_carrier_off(qdev->ndev);
3029 
3030 	/* V2 chip fix for ARS-39168. */
3031 	ql_write_common_reg(qdev, spir,
3032 			    (ISP_SERIAL_PORT_IF_SDE |
3033 			     (ISP_SERIAL_PORT_IF_SDE << 16)));
3034 
3035 	/* Request Queue Registers */
3036 	*((u32 *)(qdev->preq_consumer_index)) = 0;
3037 	atomic_set(&qdev->tx_count, NUM_REQ_Q_ENTRIES);
3038 	qdev->req_producer_index = 0;
3039 
3040 	ql_write_page1_reg(qdev,
3041 			   &hmem_regs->reqConsumerIndexAddrHigh,
3042 			   qdev->req_consumer_index_phy_addr_high);
3043 	ql_write_page1_reg(qdev,
3044 			   &hmem_regs->reqConsumerIndexAddrLow,
3045 			   qdev->req_consumer_index_phy_addr_low);
3046 
3047 	ql_write_page1_reg(qdev,
3048 			   &hmem_regs->reqBaseAddrHigh,
3049 			   MS_64BITS(qdev->req_q_phy_addr));
3050 	ql_write_page1_reg(qdev,
3051 			   &hmem_regs->reqBaseAddrLow,
3052 			   LS_64BITS(qdev->req_q_phy_addr));
3053 	ql_write_page1_reg(qdev, &hmem_regs->reqLength, NUM_REQ_Q_ENTRIES);
3054 
3055 	/* Response Queue Registers */
3056 	*((__le16 *) (qdev->prsp_producer_index)) = 0;
3057 	qdev->rsp_consumer_index = 0;
3058 	qdev->rsp_current = qdev->rsp_q_virt_addr;
3059 
3060 	ql_write_page1_reg(qdev,
3061 			   &hmem_regs->rspProducerIndexAddrHigh,
3062 			   qdev->rsp_producer_index_phy_addr_high);
3063 
3064 	ql_write_page1_reg(qdev,
3065 			   &hmem_regs->rspProducerIndexAddrLow,
3066 			   qdev->rsp_producer_index_phy_addr_low);
3067 
3068 	ql_write_page1_reg(qdev,
3069 			   &hmem_regs->rspBaseAddrHigh,
3070 			   MS_64BITS(qdev->rsp_q_phy_addr));
3071 
3072 	ql_write_page1_reg(qdev,
3073 			   &hmem_regs->rspBaseAddrLow,
3074 			   LS_64BITS(qdev->rsp_q_phy_addr));
3075 
3076 	ql_write_page1_reg(qdev, &hmem_regs->rspLength, NUM_RSP_Q_ENTRIES);
3077 
3078 	/* Large Buffer Queue */
3079 	ql_write_page1_reg(qdev,
3080 			   &hmem_regs->rxLargeQBaseAddrHigh,
3081 			   MS_64BITS(qdev->lrg_buf_q_phy_addr));
3082 
3083 	ql_write_page1_reg(qdev,
3084 			   &hmem_regs->rxLargeQBaseAddrLow,
3085 			   LS_64BITS(qdev->lrg_buf_q_phy_addr));
3086 
3087 	ql_write_page1_reg(qdev,
3088 			   &hmem_regs->rxLargeQLength,
3089 			   qdev->num_lbufq_entries);
3090 
3091 	ql_write_page1_reg(qdev,
3092 			   &hmem_regs->rxLargeBufferLength,
3093 			   qdev->lrg_buffer_len);
3094 
3095 	/* Small Buffer Queue */
3096 	ql_write_page1_reg(qdev,
3097 			   &hmem_regs->rxSmallQBaseAddrHigh,
3098 			   MS_64BITS(qdev->small_buf_q_phy_addr));
3099 
3100 	ql_write_page1_reg(qdev,
3101 			   &hmem_regs->rxSmallQBaseAddrLow,
3102 			   LS_64BITS(qdev->small_buf_q_phy_addr));
3103 
3104 	ql_write_page1_reg(qdev, &hmem_regs->rxSmallQLength, NUM_SBUFQ_ENTRIES);
3105 	ql_write_page1_reg(qdev,
3106 			   &hmem_regs->rxSmallBufferLength,
3107 			   QL_SMALL_BUFFER_SIZE);
3108 
3109 	qdev->small_buf_q_producer_index = NUM_SBUFQ_ENTRIES - 1;
3110 	qdev->small_buf_release_cnt = 8;
3111 	qdev->lrg_buf_q_producer_index = qdev->num_lbufq_entries - 1;
3112 	qdev->lrg_buf_release_cnt = 8;
3113 	qdev->lrg_buf_next_free = qdev->lrg_buf_q_virt_addr;
3114 	qdev->small_buf_index = 0;
3115 	qdev->lrg_buf_index = 0;
3116 	qdev->lrg_buf_free_count = 0;
3117 	qdev->lrg_buf_free_head = NULL;
3118 	qdev->lrg_buf_free_tail = NULL;
3119 
3120 	ql_write_common_reg(qdev,
3121 			    &port_regs->CommonRegs.
3122 			    rxSmallQProducerIndex,
3123 			    qdev->small_buf_q_producer_index);
3124 	ql_write_common_reg(qdev,
3125 			    &port_regs->CommonRegs.
3126 			    rxLargeQProducerIndex,
3127 			    qdev->lrg_buf_q_producer_index);
3128 
3129 	/*
3130 	 * Find out if the chip has already been initialized.  If it has, then
3131 	 * we skip some of the initialization.
3132 	 */
3133 	clear_bit(QL_LINK_MASTER, &qdev->flags);
3134 	value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3135 	if ((value & PORT_STATUS_IC) == 0) {
3136 
3137 		/* Chip has not been configured yet, so let it rip. */
3138 		if (ql_init_misc_registers(qdev)) {
3139 			status = -1;
3140 			goto out;
3141 		}
3142 
3143 		value = qdev->nvram_data.tcpMaxWindowSize;
3144 		ql_write_page0_reg(qdev, &port_regs->tcpMaxWindow, value);
3145 
3146 		value = (0xFFFF << 16) | qdev->nvram_data.extHwConfig;
3147 
3148 		if (ql_sem_spinlock(qdev, QL_FLASH_SEM_MASK,
3149 				(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index)
3150 				 * 2) << 13)) {
3151 			status = -1;
3152 			goto out;
3153 		}
3154 		ql_write_page0_reg(qdev, &port_regs->ExternalHWConfig, value);
3155 		ql_write_page0_reg(qdev, &port_regs->InternalChipConfig,
3156 				   (((INTERNAL_CHIP_SD | INTERNAL_CHIP_WE) <<
3157 				     16) | (INTERNAL_CHIP_SD |
3158 					    INTERNAL_CHIP_WE)));
3159 		ql_sem_unlock(qdev, QL_FLASH_SEM_MASK);
3160 	}
3161 
3162 	if (qdev->mac_index)
3163 		ql_write_page0_reg(qdev,
3164 				   &port_regs->mac1MaxFrameLengthReg,
3165 				   qdev->max_frame_size);
3166 	else
3167 		ql_write_page0_reg(qdev,
3168 					   &port_regs->mac0MaxFrameLengthReg,
3169 					   qdev->max_frame_size);
3170 
3171 	if (ql_sem_spinlock(qdev, QL_PHY_GIO_SEM_MASK,
3172 			(QL_RESOURCE_BITS_BASE_CODE | (qdev->mac_index) *
3173 			 2) << 7)) {
3174 		status = -1;
3175 		goto out;
3176 	}
3177 
3178 	PHY_Setup(qdev);
3179 	ql_init_scan_mode(qdev);
3180 	ql_get_phy_owner(qdev);
3181 
3182 	/* Load the MAC Configuration */
3183 
3184 	/* Program lower 32 bits of the MAC address */
3185 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3186 			   (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3187 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3188 			   ((qdev->ndev->dev_addr[2] << 24)
3189 			    | (qdev->ndev->dev_addr[3] << 16)
3190 			    | (qdev->ndev->dev_addr[4] << 8)
3191 			    | qdev->ndev->dev_addr[5]));
3192 
3193 	/* Program top 16 bits of the MAC address */
3194 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3195 			   ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3196 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3197 			   ((qdev->ndev->dev_addr[0] << 8)
3198 			    | qdev->ndev->dev_addr[1]));
3199 
3200 	/* Enable Primary MAC */
3201 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3202 			   ((MAC_ADDR_INDIRECT_PTR_REG_PE << 16) |
3203 			    MAC_ADDR_INDIRECT_PTR_REG_PE));
3204 
3205 	/* Clear Primary and Secondary IP addresses */
3206 	ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3207 			   ((IP_ADDR_INDEX_REG_MASK << 16) |
3208 			    (qdev->mac_index << 2)));
3209 	ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3210 
3211 	ql_write_page0_reg(qdev, &port_regs->ipAddrIndexReg,
3212 			   ((IP_ADDR_INDEX_REG_MASK << 16) |
3213 			    ((qdev->mac_index << 2) + 1)));
3214 	ql_write_page0_reg(qdev, &port_regs->ipAddrDataReg, 0);
3215 
3216 	ql_sem_unlock(qdev, QL_PHY_GIO_SEM_MASK);
3217 
3218 	/* Indicate Configuration Complete */
3219 	ql_write_page0_reg(qdev,
3220 			   &port_regs->portControl,
3221 			   ((PORT_CONTROL_CC << 16) | PORT_CONTROL_CC));
3222 
3223 	do {
3224 		value = ql_read_page0_reg(qdev, &port_regs->portStatus);
3225 		if (value & PORT_STATUS_IC)
3226 			break;
3227 		spin_unlock_irq(&qdev->hw_lock);
3228 		msleep(500);
3229 		spin_lock_irq(&qdev->hw_lock);
3230 	} while (--delay);
3231 
3232 	if (delay == 0) {
3233 		netdev_err(qdev->ndev, "Hw Initialization timeout\n");
3234 		status = -1;
3235 		goto out;
3236 	}
3237 
3238 	/* Enable Ethernet Function */
3239 	if (qdev->device_id == QL3032_DEVICE_ID) {
3240 		value =
3241 		    (QL3032_PORT_CONTROL_EF | QL3032_PORT_CONTROL_KIE |
3242 		     QL3032_PORT_CONTROL_EIv6 | QL3032_PORT_CONTROL_EIv4 |
3243 			QL3032_PORT_CONTROL_ET);
3244 		ql_write_page0_reg(qdev, &port_regs->functionControl,
3245 				   ((value << 16) | value));
3246 	} else {
3247 		value =
3248 		    (PORT_CONTROL_EF | PORT_CONTROL_ET | PORT_CONTROL_EI |
3249 		     PORT_CONTROL_HH);
3250 		ql_write_page0_reg(qdev, &port_regs->portControl,
3251 				   ((value << 16) | value));
3252 	}
3253 
3254 
3255 out:
3256 	return status;
3257 }
3258 
3259 /*
3260  * Caller holds hw_lock.
3261  */
3262 static int ql_adapter_reset(struct ql3_adapter *qdev)
3263 {
3264 	struct ql3xxx_port_registers __iomem *port_regs =
3265 		qdev->mem_map_registers;
3266 	int status = 0;
3267 	u16 value;
3268 	int max_wait_time;
3269 
3270 	set_bit(QL_RESET_ACTIVE, &qdev->flags);
3271 	clear_bit(QL_RESET_DONE, &qdev->flags);
3272 
3273 	/*
3274 	 * Issue soft reset to chip.
3275 	 */
3276 	netdev_printk(KERN_DEBUG, qdev->ndev, "Issue soft reset to chip\n");
3277 	ql_write_common_reg(qdev,
3278 			    &port_regs->CommonRegs.ispControlStatus,
3279 			    ((ISP_CONTROL_SR << 16) | ISP_CONTROL_SR));
3280 
3281 	/* Wait 3 seconds for reset to complete. */
3282 	netdev_printk(KERN_DEBUG, qdev->ndev,
3283 		      "Wait 10 milliseconds for reset to complete\n");
3284 
3285 	/* Wait until the firmware tells us the Soft Reset is done */
3286 	max_wait_time = 5;
3287 	do {
3288 		value =
3289 		    ql_read_common_reg(qdev,
3290 				       &port_regs->CommonRegs.ispControlStatus);
3291 		if ((value & ISP_CONTROL_SR) == 0)
3292 			break;
3293 
3294 		ssleep(1);
3295 	} while ((--max_wait_time));
3296 
3297 	/*
3298 	 * Also, make sure that the Network Reset Interrupt bit has been
3299 	 * cleared after the soft reset has taken place.
3300 	 */
3301 	value =
3302 	    ql_read_common_reg(qdev, &port_regs->CommonRegs.ispControlStatus);
3303 	if (value & ISP_CONTROL_RI) {
3304 		netdev_printk(KERN_DEBUG, qdev->ndev,
3305 			      "clearing RI after reset\n");
3306 		ql_write_common_reg(qdev,
3307 				    &port_regs->CommonRegs.
3308 				    ispControlStatus,
3309 				    ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3310 	}
3311 
3312 	if (max_wait_time == 0) {
3313 		/* Issue Force Soft Reset */
3314 		ql_write_common_reg(qdev,
3315 				    &port_regs->CommonRegs.
3316 				    ispControlStatus,
3317 				    ((ISP_CONTROL_FSR << 16) |
3318 				     ISP_CONTROL_FSR));
3319 		/*
3320 		 * Wait until the firmware tells us the Force Soft Reset is
3321 		 * done
3322 		 */
3323 		max_wait_time = 5;
3324 		do {
3325 			value = ql_read_common_reg(qdev,
3326 						   &port_regs->CommonRegs.
3327 						   ispControlStatus);
3328 			if ((value & ISP_CONTROL_FSR) == 0)
3329 				break;
3330 			ssleep(1);
3331 		} while ((--max_wait_time));
3332 	}
3333 	if (max_wait_time == 0)
3334 		status = 1;
3335 
3336 	clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3337 	set_bit(QL_RESET_DONE, &qdev->flags);
3338 	return status;
3339 }
3340 
3341 static void ql_set_mac_info(struct ql3_adapter *qdev)
3342 {
3343 	struct ql3xxx_port_registers __iomem *port_regs =
3344 		qdev->mem_map_registers;
3345 	u32 value, port_status;
3346 	u8 func_number;
3347 
3348 	/* Get the function number */
3349 	value =
3350 	    ql_read_common_reg_l(qdev, &port_regs->CommonRegs.ispControlStatus);
3351 	func_number = (u8) ((value >> 4) & OPCODE_FUNC_ID_MASK);
3352 	port_status = ql_read_page0_reg(qdev, &port_regs->portStatus);
3353 	switch (value & ISP_CONTROL_FN_MASK) {
3354 	case ISP_CONTROL_FN0_NET:
3355 		qdev->mac_index = 0;
3356 		qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3357 		qdev->mb_bit_mask = FN0_MA_BITS_MASK;
3358 		qdev->PHYAddr = PORT0_PHY_ADDRESS;
3359 		if (port_status & PORT_STATUS_SM0)
3360 			set_bit(QL_LINK_OPTICAL, &qdev->flags);
3361 		else
3362 			clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3363 		break;
3364 
3365 	case ISP_CONTROL_FN1_NET:
3366 		qdev->mac_index = 1;
3367 		qdev->mac_ob_opcode = OUTBOUND_MAC_IOCB | func_number;
3368 		qdev->mb_bit_mask = FN1_MA_BITS_MASK;
3369 		qdev->PHYAddr = PORT1_PHY_ADDRESS;
3370 		if (port_status & PORT_STATUS_SM1)
3371 			set_bit(QL_LINK_OPTICAL, &qdev->flags);
3372 		else
3373 			clear_bit(QL_LINK_OPTICAL, &qdev->flags);
3374 		break;
3375 
3376 	case ISP_CONTROL_FN0_SCSI:
3377 	case ISP_CONTROL_FN1_SCSI:
3378 	default:
3379 		netdev_printk(KERN_DEBUG, qdev->ndev,
3380 			      "Invalid function number, ispControlStatus = 0x%x\n",
3381 			      value);
3382 		break;
3383 	}
3384 	qdev->numPorts = qdev->nvram_data.version_and_numPorts >> 8;
3385 }
3386 
3387 static void ql_display_dev_info(struct net_device *ndev)
3388 {
3389 	struct ql3_adapter *qdev = netdev_priv(ndev);
3390 	struct pci_dev *pdev = qdev->pdev;
3391 
3392 	netdev_info(ndev,
3393 		    "%s Adapter %d RevisionID %d found %s on PCI slot %d\n",
3394 		    DRV_NAME, qdev->index, qdev->chip_rev_id,
3395 		    qdev->device_id == QL3032_DEVICE_ID ? "QLA3032" : "QLA3022",
3396 		    qdev->pci_slot);
3397 	netdev_info(ndev, "%s Interface\n",
3398 		test_bit(QL_LINK_OPTICAL, &qdev->flags) ? "OPTICAL" : "COPPER");
3399 
3400 	/*
3401 	 * Print PCI bus width/type.
3402 	 */
3403 	netdev_info(ndev, "Bus interface is %s %s\n",
3404 		    ((qdev->pci_width == 64) ? "64-bit" : "32-bit"),
3405 		    ((qdev->pci_x) ? "PCI-X" : "PCI"));
3406 
3407 	netdev_info(ndev, "mem  IO base address adjusted = 0x%p\n",
3408 		    qdev->mem_map_registers);
3409 	netdev_info(ndev, "Interrupt number = %d\n", pdev->irq);
3410 
3411 	netif_info(qdev, probe, ndev, "MAC address %pM\n", ndev->dev_addr);
3412 }
3413 
3414 static int ql_adapter_down(struct ql3_adapter *qdev, int do_reset)
3415 {
3416 	struct net_device *ndev = qdev->ndev;
3417 	int retval = 0;
3418 
3419 	netif_stop_queue(ndev);
3420 	netif_carrier_off(ndev);
3421 
3422 	clear_bit(QL_ADAPTER_UP, &qdev->flags);
3423 	clear_bit(QL_LINK_MASTER, &qdev->flags);
3424 
3425 	ql_disable_interrupts(qdev);
3426 
3427 	free_irq(qdev->pdev->irq, ndev);
3428 
3429 	if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3430 		netdev_info(qdev->ndev, "calling pci_disable_msi()\n");
3431 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
3432 		pci_disable_msi(qdev->pdev);
3433 	}
3434 
3435 	del_timer_sync(&qdev->adapter_timer);
3436 
3437 	napi_disable(&qdev->napi);
3438 
3439 	if (do_reset) {
3440 		int soft_reset;
3441 		unsigned long hw_flags;
3442 
3443 		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3444 		if (ql_wait_for_drvr_lock(qdev)) {
3445 			soft_reset = ql_adapter_reset(qdev);
3446 			if (soft_reset) {
3447 				netdev_err(ndev, "ql_adapter_reset(%d) FAILED!\n",
3448 					   qdev->index);
3449 			}
3450 			netdev_err(ndev,
3451 				   "Releasing driver lock via chip reset\n");
3452 		} else {
3453 			netdev_err(ndev,
3454 				   "Could not acquire driver lock to do reset!\n");
3455 			retval = -1;
3456 		}
3457 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3458 	}
3459 	ql_free_mem_resources(qdev);
3460 	return retval;
3461 }
3462 
3463 static int ql_adapter_up(struct ql3_adapter *qdev)
3464 {
3465 	struct net_device *ndev = qdev->ndev;
3466 	int err;
3467 	unsigned long irq_flags = IRQF_SHARED;
3468 	unsigned long hw_flags;
3469 
3470 	if (ql_alloc_mem_resources(qdev)) {
3471 		netdev_err(ndev, "Unable to  allocate buffers\n");
3472 		return -ENOMEM;
3473 	}
3474 
3475 	if (qdev->msi) {
3476 		if (pci_enable_msi(qdev->pdev)) {
3477 			netdev_err(ndev,
3478 				   "User requested MSI, but MSI failed to initialize.  Continuing without MSI.\n");
3479 			qdev->msi = 0;
3480 		} else {
3481 			netdev_info(ndev, "MSI Enabled...\n");
3482 			set_bit(QL_MSI_ENABLED, &qdev->flags);
3483 			irq_flags &= ~IRQF_SHARED;
3484 		}
3485 	}
3486 
3487 	err = request_irq(qdev->pdev->irq, ql3xxx_isr,
3488 			  irq_flags, ndev->name, ndev);
3489 	if (err) {
3490 		netdev_err(ndev,
3491 			   "Failed to reserve interrupt %d - already in use\n",
3492 			   qdev->pdev->irq);
3493 		goto err_irq;
3494 	}
3495 
3496 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3497 
3498 	err = ql_wait_for_drvr_lock(qdev);
3499 	if (err) {
3500 		err = ql_adapter_initialize(qdev);
3501 		if (err) {
3502 			netdev_err(ndev, "Unable to initialize adapter\n");
3503 			goto err_init;
3504 		}
3505 		netdev_err(ndev, "Releasing driver lock\n");
3506 		ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3507 	} else {
3508 		netdev_err(ndev, "Could not acquire driver lock\n");
3509 		goto err_lock;
3510 	}
3511 
3512 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3513 
3514 	set_bit(QL_ADAPTER_UP, &qdev->flags);
3515 
3516 	mod_timer(&qdev->adapter_timer, jiffies + HZ * 1);
3517 
3518 	napi_enable(&qdev->napi);
3519 	ql_enable_interrupts(qdev);
3520 	return 0;
3521 
3522 err_init:
3523 	ql_sem_unlock(qdev, QL_DRVR_SEM_MASK);
3524 err_lock:
3525 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3526 	free_irq(qdev->pdev->irq, ndev);
3527 err_irq:
3528 	if (qdev->msi && test_bit(QL_MSI_ENABLED, &qdev->flags)) {
3529 		netdev_info(ndev, "calling pci_disable_msi()\n");
3530 		clear_bit(QL_MSI_ENABLED, &qdev->flags);
3531 		pci_disable_msi(qdev->pdev);
3532 	}
3533 	return err;
3534 }
3535 
3536 static int ql_cycle_adapter(struct ql3_adapter *qdev, int reset)
3537 {
3538 	if (ql_adapter_down(qdev, reset) || ql_adapter_up(qdev)) {
3539 		netdev_err(qdev->ndev,
3540 			   "Driver up/down cycle failed, closing device\n");
3541 		rtnl_lock();
3542 		dev_close(qdev->ndev);
3543 		rtnl_unlock();
3544 		return -1;
3545 	}
3546 	return 0;
3547 }
3548 
3549 static int ql3xxx_close(struct net_device *ndev)
3550 {
3551 	struct ql3_adapter *qdev = netdev_priv(ndev);
3552 
3553 	/*
3554 	 * Wait for device to recover from a reset.
3555 	 * (Rarely happens, but possible.)
3556 	 */
3557 	while (!test_bit(QL_ADAPTER_UP, &qdev->flags))
3558 		msleep(50);
3559 
3560 	ql_adapter_down(qdev, QL_DO_RESET);
3561 	return 0;
3562 }
3563 
3564 static int ql3xxx_open(struct net_device *ndev)
3565 {
3566 	struct ql3_adapter *qdev = netdev_priv(ndev);
3567 	return ql_adapter_up(qdev);
3568 }
3569 
3570 static int ql3xxx_set_mac_address(struct net_device *ndev, void *p)
3571 {
3572 	struct ql3_adapter *qdev = netdev_priv(ndev);
3573 	struct ql3xxx_port_registers __iomem *port_regs =
3574 			qdev->mem_map_registers;
3575 	struct sockaddr *addr = p;
3576 	unsigned long hw_flags;
3577 
3578 	if (netif_running(ndev))
3579 		return -EBUSY;
3580 
3581 	if (!is_valid_ether_addr(addr->sa_data))
3582 		return -EADDRNOTAVAIL;
3583 
3584 	memcpy(ndev->dev_addr, addr->sa_data, ndev->addr_len);
3585 
3586 	spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3587 	/* Program lower 32 bits of the MAC address */
3588 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3589 			   (MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16));
3590 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3591 			   ((ndev->dev_addr[2] << 24) | (ndev->
3592 							 dev_addr[3] << 16) |
3593 			    (ndev->dev_addr[4] << 8) | ndev->dev_addr[5]));
3594 
3595 	/* Program top 16 bits of the MAC address */
3596 	ql_write_page0_reg(qdev, &port_regs->macAddrIndirectPtrReg,
3597 			   ((MAC_ADDR_INDIRECT_PTR_REG_RP_MASK << 16) | 1));
3598 	ql_write_page0_reg(qdev, &port_regs->macAddrDataReg,
3599 			   ((ndev->dev_addr[0] << 8) | ndev->dev_addr[1]));
3600 	spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3601 
3602 	return 0;
3603 }
3604 
3605 static void ql3xxx_tx_timeout(struct net_device *ndev, unsigned int txqueue)
3606 {
3607 	struct ql3_adapter *qdev = netdev_priv(ndev);
3608 
3609 	netdev_err(ndev, "Resetting...\n");
3610 	/*
3611 	 * Stop the queues, we've got a problem.
3612 	 */
3613 	netif_stop_queue(ndev);
3614 
3615 	/*
3616 	 * Wake up the worker to process this event.
3617 	 */
3618 	queue_delayed_work(qdev->workqueue, &qdev->tx_timeout_work, 0);
3619 }
3620 
3621 static void ql_reset_work(struct work_struct *work)
3622 {
3623 	struct ql3_adapter *qdev =
3624 		container_of(work, struct ql3_adapter, reset_work.work);
3625 	struct net_device *ndev = qdev->ndev;
3626 	u32 value;
3627 	struct ql_tx_buf_cb *tx_cb;
3628 	int max_wait_time, i;
3629 	struct ql3xxx_port_registers __iomem *port_regs =
3630 		qdev->mem_map_registers;
3631 	unsigned long hw_flags;
3632 
3633 	if (test_bit((QL_RESET_PER_SCSI | QL_RESET_START), &qdev->flags)) {
3634 		clear_bit(QL_LINK_MASTER, &qdev->flags);
3635 
3636 		/*
3637 		 * Loop through the active list and return the skb.
3638 		 */
3639 		for (i = 0; i < NUM_REQ_Q_ENTRIES; i++) {
3640 			int j;
3641 			tx_cb = &qdev->tx_buf[i];
3642 			if (tx_cb->skb) {
3643 				netdev_printk(KERN_DEBUG, ndev,
3644 					      "Freeing lost SKB\n");
3645 				pci_unmap_single(qdev->pdev,
3646 					 dma_unmap_addr(&tx_cb->map[0],
3647 							mapaddr),
3648 					 dma_unmap_len(&tx_cb->map[0], maplen),
3649 					 PCI_DMA_TODEVICE);
3650 				for (j = 1; j < tx_cb->seg_count; j++) {
3651 					pci_unmap_page(qdev->pdev,
3652 					       dma_unmap_addr(&tx_cb->map[j],
3653 							      mapaddr),
3654 					       dma_unmap_len(&tx_cb->map[j],
3655 							     maplen),
3656 					       PCI_DMA_TODEVICE);
3657 				}
3658 				dev_kfree_skb(tx_cb->skb);
3659 				tx_cb->skb = NULL;
3660 			}
3661 		}
3662 
3663 		netdev_err(ndev, "Clearing NRI after reset\n");
3664 		spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3665 		ql_write_common_reg(qdev,
3666 				    &port_regs->CommonRegs.
3667 				    ispControlStatus,
3668 				    ((ISP_CONTROL_RI << 16) | ISP_CONTROL_RI));
3669 		/*
3670 		 * Wait the for Soft Reset to Complete.
3671 		 */
3672 		max_wait_time = 10;
3673 		do {
3674 			value = ql_read_common_reg(qdev,
3675 						   &port_regs->CommonRegs.
3676 
3677 						   ispControlStatus);
3678 			if ((value & ISP_CONTROL_SR) == 0) {
3679 				netdev_printk(KERN_DEBUG, ndev,
3680 					      "reset completed\n");
3681 				break;
3682 			}
3683 
3684 			if (value & ISP_CONTROL_RI) {
3685 				netdev_printk(KERN_DEBUG, ndev,
3686 					      "clearing NRI after reset\n");
3687 				ql_write_common_reg(qdev,
3688 						    &port_regs->
3689 						    CommonRegs.
3690 						    ispControlStatus,
3691 						    ((ISP_CONTROL_RI <<
3692 						      16) | ISP_CONTROL_RI));
3693 			}
3694 
3695 			spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3696 			ssleep(1);
3697 			spin_lock_irqsave(&qdev->hw_lock, hw_flags);
3698 		} while (--max_wait_time);
3699 		spin_unlock_irqrestore(&qdev->hw_lock, hw_flags);
3700 
3701 		if (value & ISP_CONTROL_SR) {
3702 
3703 			/*
3704 			 * Set the reset flags and clear the board again.
3705 			 * Nothing else to do...
3706 			 */
3707 			netdev_err(ndev,
3708 				   "Timed out waiting for reset to complete\n");
3709 			netdev_err(ndev, "Do a reset\n");
3710 			clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3711 			clear_bit(QL_RESET_START, &qdev->flags);
3712 			ql_cycle_adapter(qdev, QL_DO_RESET);
3713 			return;
3714 		}
3715 
3716 		clear_bit(QL_RESET_ACTIVE, &qdev->flags);
3717 		clear_bit(QL_RESET_PER_SCSI, &qdev->flags);
3718 		clear_bit(QL_RESET_START, &qdev->flags);
3719 		ql_cycle_adapter(qdev, QL_NO_RESET);
3720 	}
3721 }
3722 
3723 static void ql_tx_timeout_work(struct work_struct *work)
3724 {
3725 	struct ql3_adapter *qdev =
3726 		container_of(work, struct ql3_adapter, tx_timeout_work.work);
3727 
3728 	ql_cycle_adapter(qdev, QL_DO_RESET);
3729 }
3730 
3731 static void ql_get_board_info(struct ql3_adapter *qdev)
3732 {
3733 	struct ql3xxx_port_registers __iomem *port_regs =
3734 		qdev->mem_map_registers;
3735 	u32 value;
3736 
3737 	value = ql_read_page0_reg_l(qdev, &port_regs->portStatus);
3738 
3739 	qdev->chip_rev_id = ((value & PORT_STATUS_REV_ID_MASK) >> 12);
3740 	if (value & PORT_STATUS_64)
3741 		qdev->pci_width = 64;
3742 	else
3743 		qdev->pci_width = 32;
3744 	if (value & PORT_STATUS_X)
3745 		qdev->pci_x = 1;
3746 	else
3747 		qdev->pci_x = 0;
3748 	qdev->pci_slot = (u8) PCI_SLOT(qdev->pdev->devfn);
3749 }
3750 
3751 static void ql3xxx_timer(struct timer_list *t)
3752 {
3753 	struct ql3_adapter *qdev = from_timer(qdev, t, adapter_timer);
3754 	queue_delayed_work(qdev->workqueue, &qdev->link_state_work, 0);
3755 }
3756 
3757 static const struct net_device_ops ql3xxx_netdev_ops = {
3758 	.ndo_open		= ql3xxx_open,
3759 	.ndo_start_xmit		= ql3xxx_send,
3760 	.ndo_stop		= ql3xxx_close,
3761 	.ndo_validate_addr	= eth_validate_addr,
3762 	.ndo_set_mac_address	= ql3xxx_set_mac_address,
3763 	.ndo_tx_timeout		= ql3xxx_tx_timeout,
3764 };
3765 
3766 static int ql3xxx_probe(struct pci_dev *pdev,
3767 			const struct pci_device_id *pci_entry)
3768 {
3769 	struct net_device *ndev = NULL;
3770 	struct ql3_adapter *qdev = NULL;
3771 	static int cards_found;
3772 	int uninitialized_var(pci_using_dac), err;
3773 
3774 	err = pci_enable_device(pdev);
3775 	if (err) {
3776 		pr_err("%s cannot enable PCI device\n", pci_name(pdev));
3777 		goto err_out;
3778 	}
3779 
3780 	err = pci_request_regions(pdev, DRV_NAME);
3781 	if (err) {
3782 		pr_err("%s cannot obtain PCI resources\n", pci_name(pdev));
3783 		goto err_out_disable_pdev;
3784 	}
3785 
3786 	pci_set_master(pdev);
3787 
3788 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3789 		pci_using_dac = 1;
3790 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3791 	} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3792 		pci_using_dac = 0;
3793 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3794 	}
3795 
3796 	if (err) {
3797 		pr_err("%s no usable DMA configuration\n", pci_name(pdev));
3798 		goto err_out_free_regions;
3799 	}
3800 
3801 	ndev = alloc_etherdev(sizeof(struct ql3_adapter));
3802 	if (!ndev) {
3803 		err = -ENOMEM;
3804 		goto err_out_free_regions;
3805 	}
3806 
3807 	SET_NETDEV_DEV(ndev, &pdev->dev);
3808 
3809 	pci_set_drvdata(pdev, ndev);
3810 
3811 	qdev = netdev_priv(ndev);
3812 	qdev->index = cards_found;
3813 	qdev->ndev = ndev;
3814 	qdev->pdev = pdev;
3815 	qdev->device_id = pci_entry->device;
3816 	qdev->port_link_state = LS_DOWN;
3817 	if (msi)
3818 		qdev->msi = 1;
3819 
3820 	qdev->msg_enable = netif_msg_init(debug, default_msg);
3821 
3822 	if (pci_using_dac)
3823 		ndev->features |= NETIF_F_HIGHDMA;
3824 	if (qdev->device_id == QL3032_DEVICE_ID)
3825 		ndev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
3826 
3827 	qdev->mem_map_registers = pci_ioremap_bar(pdev, 1);
3828 	if (!qdev->mem_map_registers) {
3829 		pr_err("%s: cannot map device registers\n", pci_name(pdev));
3830 		err = -EIO;
3831 		goto err_out_free_ndev;
3832 	}
3833 
3834 	spin_lock_init(&qdev->adapter_lock);
3835 	spin_lock_init(&qdev->hw_lock);
3836 
3837 	/* Set driver entry points */
3838 	ndev->netdev_ops = &ql3xxx_netdev_ops;
3839 	ndev->ethtool_ops = &ql3xxx_ethtool_ops;
3840 	ndev->watchdog_timeo = 5 * HZ;
3841 
3842 	netif_napi_add(ndev, &qdev->napi, ql_poll, 64);
3843 
3844 	ndev->irq = pdev->irq;
3845 
3846 	/* make sure the EEPROM is good */
3847 	if (ql_get_nvram_params(qdev)) {
3848 		pr_alert("%s: Adapter #%d, Invalid NVRAM parameters\n",
3849 			 __func__, qdev->index);
3850 		err = -EIO;
3851 		goto err_out_iounmap;
3852 	}
3853 
3854 	ql_set_mac_info(qdev);
3855 
3856 	/* Validate and set parameters */
3857 	if (qdev->mac_index) {
3858 		ndev->mtu = qdev->nvram_data.macCfg_port1.etherMtu_mac ;
3859 		ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn2.macAddress);
3860 	} else {
3861 		ndev->mtu = qdev->nvram_data.macCfg_port0.etherMtu_mac ;
3862 		ql_set_mac_addr(ndev, qdev->nvram_data.funcCfg_fn0.macAddress);
3863 	}
3864 
3865 	ndev->tx_queue_len = NUM_REQ_Q_ENTRIES;
3866 
3867 	/* Record PCI bus information. */
3868 	ql_get_board_info(qdev);
3869 
3870 	/*
3871 	 * Set the Maximum Memory Read Byte Count value. We do this to handle
3872 	 * jumbo frames.
3873 	 */
3874 	if (qdev->pci_x)
3875 		pci_write_config_word(pdev, (int)0x4e, (u16) 0x0036);
3876 
3877 	err = register_netdev(ndev);
3878 	if (err) {
3879 		pr_err("%s: cannot register net device\n", pci_name(pdev));
3880 		goto err_out_iounmap;
3881 	}
3882 
3883 	/* we're going to reset, so assume we have no link for now */
3884 
3885 	netif_carrier_off(ndev);
3886 	netif_stop_queue(ndev);
3887 
3888 	qdev->workqueue = create_singlethread_workqueue(ndev->name);
3889 	if (!qdev->workqueue) {
3890 		unregister_netdev(ndev);
3891 		err = -ENOMEM;
3892 		goto err_out_iounmap;
3893 	}
3894 
3895 	INIT_DELAYED_WORK(&qdev->reset_work, ql_reset_work);
3896 	INIT_DELAYED_WORK(&qdev->tx_timeout_work, ql_tx_timeout_work);
3897 	INIT_DELAYED_WORK(&qdev->link_state_work, ql_link_state_machine_work);
3898 
3899 	timer_setup(&qdev->adapter_timer, ql3xxx_timer, 0);
3900 	qdev->adapter_timer.expires = jiffies + HZ * 2;	/* two second delay */
3901 
3902 	if (!cards_found) {
3903 		pr_alert("%s\n", DRV_STRING);
3904 		pr_alert("Driver name: %s, Version: %s\n",
3905 			 DRV_NAME, DRV_VERSION);
3906 	}
3907 	ql_display_dev_info(ndev);
3908 
3909 	cards_found++;
3910 	return 0;
3911 
3912 err_out_iounmap:
3913 	iounmap(qdev->mem_map_registers);
3914 err_out_free_ndev:
3915 	free_netdev(ndev);
3916 err_out_free_regions:
3917 	pci_release_regions(pdev);
3918 err_out_disable_pdev:
3919 	pci_disable_device(pdev);
3920 err_out:
3921 	return err;
3922 }
3923 
3924 static void ql3xxx_remove(struct pci_dev *pdev)
3925 {
3926 	struct net_device *ndev = pci_get_drvdata(pdev);
3927 	struct ql3_adapter *qdev = netdev_priv(ndev);
3928 
3929 	unregister_netdev(ndev);
3930 
3931 	ql_disable_interrupts(qdev);
3932 
3933 	if (qdev->workqueue) {
3934 		cancel_delayed_work(&qdev->reset_work);
3935 		cancel_delayed_work(&qdev->tx_timeout_work);
3936 		destroy_workqueue(qdev->workqueue);
3937 		qdev->workqueue = NULL;
3938 	}
3939 
3940 	iounmap(qdev->mem_map_registers);
3941 	pci_release_regions(pdev);
3942 	free_netdev(ndev);
3943 }
3944 
3945 static struct pci_driver ql3xxx_driver = {
3946 
3947 	.name = DRV_NAME,
3948 	.id_table = ql3xxx_pci_tbl,
3949 	.probe = ql3xxx_probe,
3950 	.remove = ql3xxx_remove,
3951 };
3952 
3953 module_pci_driver(ql3xxx_driver);
3954