xref: /linux/drivers/net/ethernet/marvell/skge.c (revision 4413e16d9d21673bb5048a2e542f1aaa00015c2e)
1 /*
2  * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3  * Ethernet adapters. Based on earlier sk98lin, e100 and
4  * FreeBSD if_sk drivers.
5  *
6  * This driver intentionally does not support all the features
7  * of the original driver such as link fail-over and link management because
8  * those should be done at higher levels.
9  *
10  * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License as published by
14  * the Free Software Foundation; either version 2 of the License.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
19  * GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  */
25 
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
27 
28 #include <linux/in.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
37 #include <linux/ip.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <linux/dmi.h>
47 #include <linux/prefetch.h>
48 #include <asm/irq.h>
49 
50 #include "skge.h"
51 
52 #define DRV_NAME		"skge"
53 #define DRV_VERSION		"1.14"
54 
55 #define DEFAULT_TX_RING_SIZE	128
56 #define DEFAULT_RX_RING_SIZE	512
57 #define MAX_TX_RING_SIZE	1024
58 #define TX_LOW_WATER		(MAX_SKB_FRAGS + 1)
59 #define MAX_RX_RING_SIZE	4096
60 #define RX_COPY_THRESHOLD	128
61 #define RX_BUF_SIZE		1536
62 #define PHY_RETRIES	        1000
63 #define ETH_JUMBO_MTU		9000
64 #define TX_WATCHDOG		(5 * HZ)
65 #define NAPI_WEIGHT		64
66 #define BLINK_MS		250
67 #define LINK_HZ			HZ
68 
69 #define SKGE_EEPROM_MAGIC	0x9933aabb
70 
71 
72 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
73 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
74 MODULE_LICENSE("GPL");
75 MODULE_VERSION(DRV_VERSION);
76 
77 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
78 				NETIF_MSG_LINK | NETIF_MSG_IFUP |
79 				NETIF_MSG_IFDOWN);
80 
81 static int debug = -1;	/* defaults above */
82 module_param(debug, int, 0);
83 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
84 
85 static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
86 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x1700) },	  /* 3Com 3C940 */
87 	{ PCI_DEVICE(PCI_VENDOR_ID_3COM, 0x80EB) },	  /* 3Com 3C940B */
88 #ifdef CONFIG_SKGE_GENESIS
89 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4300) }, /* SK-9xx */
90 #endif
91 	{ PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, 0x4320) }, /* SK-98xx V2.0 */
92 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) },	  /* D-Link DGE-530T (rev.B) */
93 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4c00) },	  /* D-Link DGE-530T */
94 	{ PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4302) },	  /* D-Link DGE-530T Rev C1 */
95 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },	  /* Marvell Yukon 88E8001/8003/8010 */
96 	{ PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) },	  /* Belkin */
97 	{ PCI_DEVICE(PCI_VENDOR_ID_CNET, 0x434E) }, 	  /* CNet PowerG-2000 */
98 	{ PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, 0x1064) },	  /* Linksys EG1064 v2 */
99 	{ PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 }, /* Linksys EG1032 v2 */
100 	{ 0 }
101 };
102 MODULE_DEVICE_TABLE(pci, skge_id_table);
103 
104 static int skge_up(struct net_device *dev);
105 static int skge_down(struct net_device *dev);
106 static void skge_phy_reset(struct skge_port *skge);
107 static void skge_tx_clean(struct net_device *dev);
108 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
109 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
110 static void genesis_get_stats(struct skge_port *skge, u64 *data);
111 static void yukon_get_stats(struct skge_port *skge, u64 *data);
112 static void yukon_init(struct skge_hw *hw, int port);
113 static void genesis_mac_init(struct skge_hw *hw, int port);
114 static void genesis_link_up(struct skge_port *skge);
115 static void skge_set_multicast(struct net_device *dev);
116 static irqreturn_t skge_intr(int irq, void *dev_id);
117 
118 /* Avoid conditionals by using array */
119 static const int txqaddr[] = { Q_XA1, Q_XA2 };
120 static const int rxqaddr[] = { Q_R1, Q_R2 };
121 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
122 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
123 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
124 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
125 
126 static inline bool is_genesis(const struct skge_hw *hw)
127 {
128 #ifdef CONFIG_SKGE_GENESIS
129 	return hw->chip_id == CHIP_ID_GENESIS;
130 #else
131 	return false;
132 #endif
133 }
134 
135 static int skge_get_regs_len(struct net_device *dev)
136 {
137 	return 0x4000;
138 }
139 
140 /*
141  * Returns copy of whole control register region
142  * Note: skip RAM address register because accessing it will
143  * 	 cause bus hangs!
144  */
145 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
146 			  void *p)
147 {
148 	const struct skge_port *skge = netdev_priv(dev);
149 	const void __iomem *io = skge->hw->regs;
150 
151 	regs->version = 1;
152 	memset(p, 0, regs->len);
153 	memcpy_fromio(p, io, B3_RAM_ADDR);
154 
155 	memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
156 		      regs->len - B3_RI_WTO_R1);
157 }
158 
159 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
160 static u32 wol_supported(const struct skge_hw *hw)
161 {
162 	if (is_genesis(hw))
163 		return 0;
164 
165 	if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
166 		return 0;
167 
168 	return WAKE_MAGIC | WAKE_PHY;
169 }
170 
171 static void skge_wol_init(struct skge_port *skge)
172 {
173 	struct skge_hw *hw = skge->hw;
174 	int port = skge->port;
175 	u16 ctrl;
176 
177 	skge_write16(hw, B0_CTST, CS_RST_CLR);
178 	skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
179 
180 	/* Turn on Vaux */
181 	skge_write8(hw, B0_POWER_CTRL,
182 		    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
183 
184 	/* WA code for COMA mode -- clear PHY reset */
185 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
186 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
187 		u32 reg = skge_read32(hw, B2_GP_IO);
188 		reg |= GP_DIR_9;
189 		reg &= ~GP_IO_9;
190 		skge_write32(hw, B2_GP_IO, reg);
191 	}
192 
193 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
194 		     GPC_DIS_SLEEP |
195 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
196 		     GPC_ANEG_1 | GPC_RST_SET);
197 
198 	skge_write32(hw, SK_REG(port, GPHY_CTRL),
199 		     GPC_DIS_SLEEP |
200 		     GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
201 		     GPC_ANEG_1 | GPC_RST_CLR);
202 
203 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
204 
205 	/* Force to 10/100 skge_reset will re-enable on resume	 */
206 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
207 		     (PHY_AN_100FULL | PHY_AN_100HALF |
208 		      PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
209 	/* no 1000 HD/FD */
210 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
211 	gm_phy_write(hw, port, PHY_MARV_CTRL,
212 		     PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
213 		     PHY_CT_RE_CFG | PHY_CT_DUP_MD);
214 
215 
216 	/* Set GMAC to no flow control and auto update for speed/duplex */
217 	gma_write16(hw, port, GM_GP_CTRL,
218 		    GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
219 		    GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
220 
221 	/* Set WOL address */
222 	memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
223 		    skge->netdev->dev_addr, ETH_ALEN);
224 
225 	/* Turn on appropriate WOL control bits */
226 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
227 	ctrl = 0;
228 	if (skge->wol & WAKE_PHY)
229 		ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
230 	else
231 		ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
232 
233 	if (skge->wol & WAKE_MAGIC)
234 		ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
235 	else
236 		ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
237 
238 	ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
239 	skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
240 
241 	/* block receiver */
242 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
243 }
244 
245 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
246 {
247 	struct skge_port *skge = netdev_priv(dev);
248 
249 	wol->supported = wol_supported(skge->hw);
250 	wol->wolopts = skge->wol;
251 }
252 
253 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
254 {
255 	struct skge_port *skge = netdev_priv(dev);
256 	struct skge_hw *hw = skge->hw;
257 
258 	if ((wol->wolopts & ~wol_supported(hw)) ||
259 	    !device_can_wakeup(&hw->pdev->dev))
260 		return -EOPNOTSUPP;
261 
262 	skge->wol = wol->wolopts;
263 
264 	device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
265 
266 	return 0;
267 }
268 
269 /* Determine supported/advertised modes based on hardware.
270  * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
271  */
272 static u32 skge_supported_modes(const struct skge_hw *hw)
273 {
274 	u32 supported;
275 
276 	if (hw->copper) {
277 		supported = (SUPPORTED_10baseT_Half |
278 			     SUPPORTED_10baseT_Full |
279 			     SUPPORTED_100baseT_Half |
280 			     SUPPORTED_100baseT_Full |
281 			     SUPPORTED_1000baseT_Half |
282 			     SUPPORTED_1000baseT_Full |
283 			     SUPPORTED_Autoneg |
284 			     SUPPORTED_TP);
285 
286 		if (is_genesis(hw))
287 			supported &= ~(SUPPORTED_10baseT_Half |
288 				       SUPPORTED_10baseT_Full |
289 				       SUPPORTED_100baseT_Half |
290 				       SUPPORTED_100baseT_Full);
291 
292 		else if (hw->chip_id == CHIP_ID_YUKON)
293 			supported &= ~SUPPORTED_1000baseT_Half;
294 	} else
295 		supported = (SUPPORTED_1000baseT_Full |
296 			     SUPPORTED_1000baseT_Half |
297 			     SUPPORTED_FIBRE |
298 			     SUPPORTED_Autoneg);
299 
300 	return supported;
301 }
302 
303 static int skge_get_settings(struct net_device *dev,
304 			     struct ethtool_cmd *ecmd)
305 {
306 	struct skge_port *skge = netdev_priv(dev);
307 	struct skge_hw *hw = skge->hw;
308 
309 	ecmd->transceiver = XCVR_INTERNAL;
310 	ecmd->supported = skge_supported_modes(hw);
311 
312 	if (hw->copper) {
313 		ecmd->port = PORT_TP;
314 		ecmd->phy_address = hw->phy_addr;
315 	} else
316 		ecmd->port = PORT_FIBRE;
317 
318 	ecmd->advertising = skge->advertising;
319 	ecmd->autoneg = skge->autoneg;
320 	ethtool_cmd_speed_set(ecmd, skge->speed);
321 	ecmd->duplex = skge->duplex;
322 	return 0;
323 }
324 
325 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
326 {
327 	struct skge_port *skge = netdev_priv(dev);
328 	const struct skge_hw *hw = skge->hw;
329 	u32 supported = skge_supported_modes(hw);
330 	int err = 0;
331 
332 	if (ecmd->autoneg == AUTONEG_ENABLE) {
333 		ecmd->advertising = supported;
334 		skge->duplex = -1;
335 		skge->speed = -1;
336 	} else {
337 		u32 setting;
338 		u32 speed = ethtool_cmd_speed(ecmd);
339 
340 		switch (speed) {
341 		case SPEED_1000:
342 			if (ecmd->duplex == DUPLEX_FULL)
343 				setting = SUPPORTED_1000baseT_Full;
344 			else if (ecmd->duplex == DUPLEX_HALF)
345 				setting = SUPPORTED_1000baseT_Half;
346 			else
347 				return -EINVAL;
348 			break;
349 		case SPEED_100:
350 			if (ecmd->duplex == DUPLEX_FULL)
351 				setting = SUPPORTED_100baseT_Full;
352 			else if (ecmd->duplex == DUPLEX_HALF)
353 				setting = SUPPORTED_100baseT_Half;
354 			else
355 				return -EINVAL;
356 			break;
357 
358 		case SPEED_10:
359 			if (ecmd->duplex == DUPLEX_FULL)
360 				setting = SUPPORTED_10baseT_Full;
361 			else if (ecmd->duplex == DUPLEX_HALF)
362 				setting = SUPPORTED_10baseT_Half;
363 			else
364 				return -EINVAL;
365 			break;
366 		default:
367 			return -EINVAL;
368 		}
369 
370 		if ((setting & supported) == 0)
371 			return -EINVAL;
372 
373 		skge->speed = speed;
374 		skge->duplex = ecmd->duplex;
375 	}
376 
377 	skge->autoneg = ecmd->autoneg;
378 	skge->advertising = ecmd->advertising;
379 
380 	if (netif_running(dev)) {
381 		skge_down(dev);
382 		err = skge_up(dev);
383 		if (err) {
384 			dev_close(dev);
385 			return err;
386 		}
387 	}
388 
389 	return 0;
390 }
391 
392 static void skge_get_drvinfo(struct net_device *dev,
393 			     struct ethtool_drvinfo *info)
394 {
395 	struct skge_port *skge = netdev_priv(dev);
396 
397 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
398 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
399 	strlcpy(info->bus_info, pci_name(skge->hw->pdev),
400 		sizeof(info->bus_info));
401 }
402 
403 static const struct skge_stat {
404 	char 	   name[ETH_GSTRING_LEN];
405 	u16	   xmac_offset;
406 	u16	   gma_offset;
407 } skge_stats[] = {
408 	{ "tx_bytes",		XM_TXO_OK_HI,  GM_TXO_OK_HI },
409 	{ "rx_bytes",		XM_RXO_OK_HI,  GM_RXO_OK_HI },
410 
411 	{ "tx_broadcast",	XM_TXF_BC_OK,  GM_TXF_BC_OK },
412 	{ "rx_broadcast",	XM_RXF_BC_OK,  GM_RXF_BC_OK },
413 	{ "tx_multicast",	XM_TXF_MC_OK,  GM_TXF_MC_OK },
414 	{ "rx_multicast",	XM_RXF_MC_OK,  GM_RXF_MC_OK },
415 	{ "tx_unicast",		XM_TXF_UC_OK,  GM_TXF_UC_OK },
416 	{ "rx_unicast",		XM_RXF_UC_OK,  GM_RXF_UC_OK },
417 	{ "tx_mac_pause",	XM_TXF_MPAUSE, GM_TXF_MPAUSE },
418 	{ "rx_mac_pause",	XM_RXF_MPAUSE, GM_RXF_MPAUSE },
419 
420 	{ "collisions",		XM_TXF_SNG_COL, GM_TXF_SNG_COL },
421 	{ "multi_collisions",	XM_TXF_MUL_COL, GM_TXF_MUL_COL },
422 	{ "aborted",		XM_TXF_ABO_COL, GM_TXF_ABO_COL },
423 	{ "late_collision",	XM_TXF_LAT_COL, GM_TXF_LAT_COL },
424 	{ "fifo_underrun",	XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
425 	{ "fifo_overflow",	XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
426 
427 	{ "rx_toolong",		XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
428 	{ "rx_jabber",		XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
429 	{ "rx_runt",		XM_RXE_RUNT, 	GM_RXE_FRAG },
430 	{ "rx_too_long",	XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
431 	{ "rx_fcs_error",	XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
432 };
433 
434 static int skge_get_sset_count(struct net_device *dev, int sset)
435 {
436 	switch (sset) {
437 	case ETH_SS_STATS:
438 		return ARRAY_SIZE(skge_stats);
439 	default:
440 		return -EOPNOTSUPP;
441 	}
442 }
443 
444 static void skge_get_ethtool_stats(struct net_device *dev,
445 				   struct ethtool_stats *stats, u64 *data)
446 {
447 	struct skge_port *skge = netdev_priv(dev);
448 
449 	if (is_genesis(skge->hw))
450 		genesis_get_stats(skge, data);
451 	else
452 		yukon_get_stats(skge, data);
453 }
454 
455 /* Use hardware MIB variables for critical path statistics and
456  * transmit feedback not reported at interrupt.
457  * Other errors are accounted for in interrupt handler.
458  */
459 static struct net_device_stats *skge_get_stats(struct net_device *dev)
460 {
461 	struct skge_port *skge = netdev_priv(dev);
462 	u64 data[ARRAY_SIZE(skge_stats)];
463 
464 	if (is_genesis(skge->hw))
465 		genesis_get_stats(skge, data);
466 	else
467 		yukon_get_stats(skge, data);
468 
469 	dev->stats.tx_bytes = data[0];
470 	dev->stats.rx_bytes = data[1];
471 	dev->stats.tx_packets = data[2] + data[4] + data[6];
472 	dev->stats.rx_packets = data[3] + data[5] + data[7];
473 	dev->stats.multicast = data[3] + data[5];
474 	dev->stats.collisions = data[10];
475 	dev->stats.tx_aborted_errors = data[12];
476 
477 	return &dev->stats;
478 }
479 
480 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
481 {
482 	int i;
483 
484 	switch (stringset) {
485 	case ETH_SS_STATS:
486 		for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
487 			memcpy(data + i * ETH_GSTRING_LEN,
488 			       skge_stats[i].name, ETH_GSTRING_LEN);
489 		break;
490 	}
491 }
492 
493 static void skge_get_ring_param(struct net_device *dev,
494 				struct ethtool_ringparam *p)
495 {
496 	struct skge_port *skge = netdev_priv(dev);
497 
498 	p->rx_max_pending = MAX_RX_RING_SIZE;
499 	p->tx_max_pending = MAX_TX_RING_SIZE;
500 
501 	p->rx_pending = skge->rx_ring.count;
502 	p->tx_pending = skge->tx_ring.count;
503 }
504 
505 static int skge_set_ring_param(struct net_device *dev,
506 			       struct ethtool_ringparam *p)
507 {
508 	struct skge_port *skge = netdev_priv(dev);
509 	int err = 0;
510 
511 	if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
512 	    p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
513 		return -EINVAL;
514 
515 	skge->rx_ring.count = p->rx_pending;
516 	skge->tx_ring.count = p->tx_pending;
517 
518 	if (netif_running(dev)) {
519 		skge_down(dev);
520 		err = skge_up(dev);
521 		if (err)
522 			dev_close(dev);
523 	}
524 
525 	return err;
526 }
527 
528 static u32 skge_get_msglevel(struct net_device *netdev)
529 {
530 	struct skge_port *skge = netdev_priv(netdev);
531 	return skge->msg_enable;
532 }
533 
534 static void skge_set_msglevel(struct net_device *netdev, u32 value)
535 {
536 	struct skge_port *skge = netdev_priv(netdev);
537 	skge->msg_enable = value;
538 }
539 
540 static int skge_nway_reset(struct net_device *dev)
541 {
542 	struct skge_port *skge = netdev_priv(dev);
543 
544 	if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
545 		return -EINVAL;
546 
547 	skge_phy_reset(skge);
548 	return 0;
549 }
550 
551 static void skge_get_pauseparam(struct net_device *dev,
552 				struct ethtool_pauseparam *ecmd)
553 {
554 	struct skge_port *skge = netdev_priv(dev);
555 
556 	ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
557 			  (skge->flow_control == FLOW_MODE_SYM_OR_REM));
558 	ecmd->tx_pause = (ecmd->rx_pause ||
559 			  (skge->flow_control == FLOW_MODE_LOC_SEND));
560 
561 	ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
562 }
563 
564 static int skge_set_pauseparam(struct net_device *dev,
565 			       struct ethtool_pauseparam *ecmd)
566 {
567 	struct skge_port *skge = netdev_priv(dev);
568 	struct ethtool_pauseparam old;
569 	int err = 0;
570 
571 	skge_get_pauseparam(dev, &old);
572 
573 	if (ecmd->autoneg != old.autoneg)
574 		skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
575 	else {
576 		if (ecmd->rx_pause && ecmd->tx_pause)
577 			skge->flow_control = FLOW_MODE_SYMMETRIC;
578 		else if (ecmd->rx_pause && !ecmd->tx_pause)
579 			skge->flow_control = FLOW_MODE_SYM_OR_REM;
580 		else if (!ecmd->rx_pause && ecmd->tx_pause)
581 			skge->flow_control = FLOW_MODE_LOC_SEND;
582 		else
583 			skge->flow_control = FLOW_MODE_NONE;
584 	}
585 
586 	if (netif_running(dev)) {
587 		skge_down(dev);
588 		err = skge_up(dev);
589 		if (err) {
590 			dev_close(dev);
591 			return err;
592 		}
593 	}
594 
595 	return 0;
596 }
597 
598 /* Chip internal frequency for clock calculations */
599 static inline u32 hwkhz(const struct skge_hw *hw)
600 {
601 	return is_genesis(hw) ? 53125 : 78125;
602 }
603 
604 /* Chip HZ to microseconds */
605 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
606 {
607 	return (ticks * 1000) / hwkhz(hw);
608 }
609 
610 /* Microseconds to chip HZ */
611 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
612 {
613 	return hwkhz(hw) * usec / 1000;
614 }
615 
616 static int skge_get_coalesce(struct net_device *dev,
617 			     struct ethtool_coalesce *ecmd)
618 {
619 	struct skge_port *skge = netdev_priv(dev);
620 	struct skge_hw *hw = skge->hw;
621 	int port = skge->port;
622 
623 	ecmd->rx_coalesce_usecs = 0;
624 	ecmd->tx_coalesce_usecs = 0;
625 
626 	if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
627 		u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
628 		u32 msk = skge_read32(hw, B2_IRQM_MSK);
629 
630 		if (msk & rxirqmask[port])
631 			ecmd->rx_coalesce_usecs = delay;
632 		if (msk & txirqmask[port])
633 			ecmd->tx_coalesce_usecs = delay;
634 	}
635 
636 	return 0;
637 }
638 
639 /* Note: interrupt timer is per board, but can turn on/off per port */
640 static int skge_set_coalesce(struct net_device *dev,
641 			     struct ethtool_coalesce *ecmd)
642 {
643 	struct skge_port *skge = netdev_priv(dev);
644 	struct skge_hw *hw = skge->hw;
645 	int port = skge->port;
646 	u32 msk = skge_read32(hw, B2_IRQM_MSK);
647 	u32 delay = 25;
648 
649 	if (ecmd->rx_coalesce_usecs == 0)
650 		msk &= ~rxirqmask[port];
651 	else if (ecmd->rx_coalesce_usecs < 25 ||
652 		 ecmd->rx_coalesce_usecs > 33333)
653 		return -EINVAL;
654 	else {
655 		msk |= rxirqmask[port];
656 		delay = ecmd->rx_coalesce_usecs;
657 	}
658 
659 	if (ecmd->tx_coalesce_usecs == 0)
660 		msk &= ~txirqmask[port];
661 	else if (ecmd->tx_coalesce_usecs < 25 ||
662 		 ecmd->tx_coalesce_usecs > 33333)
663 		return -EINVAL;
664 	else {
665 		msk |= txirqmask[port];
666 		delay = min(delay, ecmd->rx_coalesce_usecs);
667 	}
668 
669 	skge_write32(hw, B2_IRQM_MSK, msk);
670 	if (msk == 0)
671 		skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
672 	else {
673 		skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
674 		skge_write32(hw, B2_IRQM_CTRL, TIM_START);
675 	}
676 	return 0;
677 }
678 
679 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
680 static void skge_led(struct skge_port *skge, enum led_mode mode)
681 {
682 	struct skge_hw *hw = skge->hw;
683 	int port = skge->port;
684 
685 	spin_lock_bh(&hw->phy_lock);
686 	if (is_genesis(hw)) {
687 		switch (mode) {
688 		case LED_MODE_OFF:
689 			if (hw->phy_type == SK_PHY_BCOM)
690 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
691 			else {
692 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
693 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
694 			}
695 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
696 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
697 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
698 			break;
699 
700 		case LED_MODE_ON:
701 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
702 			skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
703 
704 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
705 			skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
706 
707 			break;
708 
709 		case LED_MODE_TST:
710 			skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
711 			skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
712 			skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
713 
714 			if (hw->phy_type == SK_PHY_BCOM)
715 				xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
716 			else {
717 				skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
718 				skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
719 				skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
720 			}
721 
722 		}
723 	} else {
724 		switch (mode) {
725 		case LED_MODE_OFF:
726 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
727 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
728 				     PHY_M_LED_MO_DUP(MO_LED_OFF)  |
729 				     PHY_M_LED_MO_10(MO_LED_OFF)   |
730 				     PHY_M_LED_MO_100(MO_LED_OFF)  |
731 				     PHY_M_LED_MO_1000(MO_LED_OFF) |
732 				     PHY_M_LED_MO_RX(MO_LED_OFF));
733 			break;
734 		case LED_MODE_ON:
735 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
736 				     PHY_M_LED_PULS_DUR(PULS_170MS) |
737 				     PHY_M_LED_BLINK_RT(BLINK_84MS) |
738 				     PHY_M_LEDC_TX_CTRL |
739 				     PHY_M_LEDC_DP_CTRL);
740 
741 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
742 				     PHY_M_LED_MO_RX(MO_LED_OFF) |
743 				     (skge->speed == SPEED_100 ?
744 				      PHY_M_LED_MO_100(MO_LED_ON) : 0));
745 			break;
746 		case LED_MODE_TST:
747 			gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
748 			gm_phy_write(hw, port, PHY_MARV_LED_OVER,
749 				     PHY_M_LED_MO_DUP(MO_LED_ON)  |
750 				     PHY_M_LED_MO_10(MO_LED_ON)   |
751 				     PHY_M_LED_MO_100(MO_LED_ON)  |
752 				     PHY_M_LED_MO_1000(MO_LED_ON) |
753 				     PHY_M_LED_MO_RX(MO_LED_ON));
754 		}
755 	}
756 	spin_unlock_bh(&hw->phy_lock);
757 }
758 
759 /* blink LED's for finding board */
760 static int skge_set_phys_id(struct net_device *dev,
761 			    enum ethtool_phys_id_state state)
762 {
763 	struct skge_port *skge = netdev_priv(dev);
764 
765 	switch (state) {
766 	case ETHTOOL_ID_ACTIVE:
767 		return 2;	/* cycle on/off twice per second */
768 
769 	case ETHTOOL_ID_ON:
770 		skge_led(skge, LED_MODE_TST);
771 		break;
772 
773 	case ETHTOOL_ID_OFF:
774 		skge_led(skge, LED_MODE_OFF);
775 		break;
776 
777 	case ETHTOOL_ID_INACTIVE:
778 		/* back to regular LED state */
779 		skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
780 	}
781 
782 	return 0;
783 }
784 
785 static int skge_get_eeprom_len(struct net_device *dev)
786 {
787 	struct skge_port *skge = netdev_priv(dev);
788 	u32 reg2;
789 
790 	pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
791 	return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
792 }
793 
794 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
795 {
796 	u32 val;
797 
798 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
799 
800 	do {
801 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
802 	} while (!(offset & PCI_VPD_ADDR_F));
803 
804 	pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
805 	return val;
806 }
807 
808 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
809 {
810 	pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
811 	pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
812 			      offset | PCI_VPD_ADDR_F);
813 
814 	do {
815 		pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
816 	} while (offset & PCI_VPD_ADDR_F);
817 }
818 
819 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
820 			   u8 *data)
821 {
822 	struct skge_port *skge = netdev_priv(dev);
823 	struct pci_dev *pdev = skge->hw->pdev;
824 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
825 	int length = eeprom->len;
826 	u16 offset = eeprom->offset;
827 
828 	if (!cap)
829 		return -EINVAL;
830 
831 	eeprom->magic = SKGE_EEPROM_MAGIC;
832 
833 	while (length > 0) {
834 		u32 val = skge_vpd_read(pdev, cap, offset);
835 		int n = min_t(int, length, sizeof(val));
836 
837 		memcpy(data, &val, n);
838 		length -= n;
839 		data += n;
840 		offset += n;
841 	}
842 	return 0;
843 }
844 
845 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
846 			   u8 *data)
847 {
848 	struct skge_port *skge = netdev_priv(dev);
849 	struct pci_dev *pdev = skge->hw->pdev;
850 	int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
851 	int length = eeprom->len;
852 	u16 offset = eeprom->offset;
853 
854 	if (!cap)
855 		return -EINVAL;
856 
857 	if (eeprom->magic != SKGE_EEPROM_MAGIC)
858 		return -EINVAL;
859 
860 	while (length > 0) {
861 		u32 val;
862 		int n = min_t(int, length, sizeof(val));
863 
864 		if (n < sizeof(val))
865 			val = skge_vpd_read(pdev, cap, offset);
866 		memcpy(&val, data, n);
867 
868 		skge_vpd_write(pdev, cap, offset, val);
869 
870 		length -= n;
871 		data += n;
872 		offset += n;
873 	}
874 	return 0;
875 }
876 
877 static const struct ethtool_ops skge_ethtool_ops = {
878 	.get_settings	= skge_get_settings,
879 	.set_settings	= skge_set_settings,
880 	.get_drvinfo	= skge_get_drvinfo,
881 	.get_regs_len	= skge_get_regs_len,
882 	.get_regs	= skge_get_regs,
883 	.get_wol	= skge_get_wol,
884 	.set_wol	= skge_set_wol,
885 	.get_msglevel	= skge_get_msglevel,
886 	.set_msglevel	= skge_set_msglevel,
887 	.nway_reset	= skge_nway_reset,
888 	.get_link	= ethtool_op_get_link,
889 	.get_eeprom_len	= skge_get_eeprom_len,
890 	.get_eeprom	= skge_get_eeprom,
891 	.set_eeprom	= skge_set_eeprom,
892 	.get_ringparam	= skge_get_ring_param,
893 	.set_ringparam	= skge_set_ring_param,
894 	.get_pauseparam = skge_get_pauseparam,
895 	.set_pauseparam = skge_set_pauseparam,
896 	.get_coalesce	= skge_get_coalesce,
897 	.set_coalesce	= skge_set_coalesce,
898 	.get_strings	= skge_get_strings,
899 	.set_phys_id	= skge_set_phys_id,
900 	.get_sset_count = skge_get_sset_count,
901 	.get_ethtool_stats = skge_get_ethtool_stats,
902 };
903 
904 /*
905  * Allocate ring elements and chain them together
906  * One-to-one association of board descriptors with ring elements
907  */
908 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
909 {
910 	struct skge_tx_desc *d;
911 	struct skge_element *e;
912 	int i;
913 
914 	ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
915 	if (!ring->start)
916 		return -ENOMEM;
917 
918 	for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
919 		e->desc = d;
920 		if (i == ring->count - 1) {
921 			e->next = ring->start;
922 			d->next_offset = base;
923 		} else {
924 			e->next = e + 1;
925 			d->next_offset = base + (i+1) * sizeof(*d);
926 		}
927 	}
928 	ring->to_use = ring->to_clean = ring->start;
929 
930 	return 0;
931 }
932 
933 /* Allocate and setup a new buffer for receiving */
934 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
935 			  struct sk_buff *skb, unsigned int bufsize)
936 {
937 	struct skge_rx_desc *rd = e->desc;
938 	u64 map;
939 
940 	map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
941 			     PCI_DMA_FROMDEVICE);
942 
943 	rd->dma_lo = map;
944 	rd->dma_hi = map >> 32;
945 	e->skb = skb;
946 	rd->csum1_start = ETH_HLEN;
947 	rd->csum2_start = ETH_HLEN;
948 	rd->csum1 = 0;
949 	rd->csum2 = 0;
950 
951 	wmb();
952 
953 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
954 	dma_unmap_addr_set(e, mapaddr, map);
955 	dma_unmap_len_set(e, maplen, bufsize);
956 }
957 
958 /* Resume receiving using existing skb,
959  * Note: DMA address is not changed by chip.
960  * 	 MTU not changed while receiver active.
961  */
962 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
963 {
964 	struct skge_rx_desc *rd = e->desc;
965 
966 	rd->csum2 = 0;
967 	rd->csum2_start = ETH_HLEN;
968 
969 	wmb();
970 
971 	rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
972 }
973 
974 
975 /* Free all  buffers in receive ring, assumes receiver stopped */
976 static void skge_rx_clean(struct skge_port *skge)
977 {
978 	struct skge_hw *hw = skge->hw;
979 	struct skge_ring *ring = &skge->rx_ring;
980 	struct skge_element *e;
981 
982 	e = ring->start;
983 	do {
984 		struct skge_rx_desc *rd = e->desc;
985 		rd->control = 0;
986 		if (e->skb) {
987 			pci_unmap_single(hw->pdev,
988 					 dma_unmap_addr(e, mapaddr),
989 					 dma_unmap_len(e, maplen),
990 					 PCI_DMA_FROMDEVICE);
991 			dev_kfree_skb(e->skb);
992 			e->skb = NULL;
993 		}
994 	} while ((e = e->next) != ring->start);
995 }
996 
997 
998 /* Allocate buffers for receive ring
999  * For receive:  to_clean is next received frame.
1000  */
1001 static int skge_rx_fill(struct net_device *dev)
1002 {
1003 	struct skge_port *skge = netdev_priv(dev);
1004 	struct skge_ring *ring = &skge->rx_ring;
1005 	struct skge_element *e;
1006 
1007 	e = ring->start;
1008 	do {
1009 		struct sk_buff *skb;
1010 
1011 		skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1012 					 GFP_KERNEL);
1013 		if (!skb)
1014 			return -ENOMEM;
1015 
1016 		skb_reserve(skb, NET_IP_ALIGN);
1017 		skge_rx_setup(skge, e, skb, skge->rx_buf_size);
1018 	} while ((e = e->next) != ring->start);
1019 
1020 	ring->to_clean = ring->start;
1021 	return 0;
1022 }
1023 
1024 static const char *skge_pause(enum pause_status status)
1025 {
1026 	switch (status) {
1027 	case FLOW_STAT_NONE:
1028 		return "none";
1029 	case FLOW_STAT_REM_SEND:
1030 		return "rx only";
1031 	case FLOW_STAT_LOC_SEND:
1032 		return "tx_only";
1033 	case FLOW_STAT_SYMMETRIC:		/* Both station may send PAUSE */
1034 		return "both";
1035 	default:
1036 		return "indeterminated";
1037 	}
1038 }
1039 
1040 
1041 static void skge_link_up(struct skge_port *skge)
1042 {
1043 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1044 		    LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1045 
1046 	netif_carrier_on(skge->netdev);
1047 	netif_wake_queue(skge->netdev);
1048 
1049 	netif_info(skge, link, skge->netdev,
1050 		   "Link is up at %d Mbps, %s duplex, flow control %s\n",
1051 		   skge->speed,
1052 		   skge->duplex == DUPLEX_FULL ? "full" : "half",
1053 		   skge_pause(skge->flow_status));
1054 }
1055 
1056 static void skge_link_down(struct skge_port *skge)
1057 {
1058 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1059 	netif_carrier_off(skge->netdev);
1060 	netif_stop_queue(skge->netdev);
1061 
1062 	netif_info(skge, link, skge->netdev, "Link is down\n");
1063 }
1064 
1065 static void xm_link_down(struct skge_hw *hw, int port)
1066 {
1067 	struct net_device *dev = hw->dev[port];
1068 	struct skge_port *skge = netdev_priv(dev);
1069 
1070 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1071 
1072 	if (netif_carrier_ok(dev))
1073 		skge_link_down(skge);
1074 }
1075 
1076 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1077 {
1078 	int i;
1079 
1080 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1081 	*val = xm_read16(hw, port, XM_PHY_DATA);
1082 
1083 	if (hw->phy_type == SK_PHY_XMAC)
1084 		goto ready;
1085 
1086 	for (i = 0; i < PHY_RETRIES; i++) {
1087 		if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1088 			goto ready;
1089 		udelay(1);
1090 	}
1091 
1092 	return -ETIMEDOUT;
1093  ready:
1094 	*val = xm_read16(hw, port, XM_PHY_DATA);
1095 
1096 	return 0;
1097 }
1098 
1099 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1100 {
1101 	u16 v = 0;
1102 	if (__xm_phy_read(hw, port, reg, &v))
1103 		pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
1104 	return v;
1105 }
1106 
1107 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1108 {
1109 	int i;
1110 
1111 	xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1112 	for (i = 0; i < PHY_RETRIES; i++) {
1113 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1114 			goto ready;
1115 		udelay(1);
1116 	}
1117 	return -EIO;
1118 
1119  ready:
1120 	xm_write16(hw, port, XM_PHY_DATA, val);
1121 	for (i = 0; i < PHY_RETRIES; i++) {
1122 		if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1123 			return 0;
1124 		udelay(1);
1125 	}
1126 	return -ETIMEDOUT;
1127 }
1128 
1129 static void genesis_init(struct skge_hw *hw)
1130 {
1131 	/* set blink source counter */
1132 	skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1133 	skge_write8(hw, B2_BSC_CTRL, BSC_START);
1134 
1135 	/* configure mac arbiter */
1136 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1137 
1138 	/* configure mac arbiter timeout values */
1139 	skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1140 	skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1141 	skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1142 	skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1143 
1144 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1145 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1146 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1147 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1148 
1149 	/* configure packet arbiter timeout */
1150 	skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1151 	skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1152 	skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1153 	skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1154 	skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1155 }
1156 
1157 static void genesis_reset(struct skge_hw *hw, int port)
1158 {
1159 	static const u8 zero[8]  = { 0 };
1160 	u32 reg;
1161 
1162 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1163 
1164 	/* reset the statistics module */
1165 	xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1166 	xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1167 	xm_write32(hw, port, XM_MODE, 0);		/* clear Mode Reg */
1168 	xm_write16(hw, port, XM_TX_CMD, 0);	/* reset TX CMD Reg */
1169 	xm_write16(hw, port, XM_RX_CMD, 0);	/* reset RX CMD Reg */
1170 
1171 	/* disable Broadcom PHY IRQ */
1172 	if (hw->phy_type == SK_PHY_BCOM)
1173 		xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1174 
1175 	xm_outhash(hw, port, XM_HSM, zero);
1176 
1177 	/* Flush TX and RX fifo */
1178 	reg = xm_read32(hw, port, XM_MODE);
1179 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1180 	xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1181 }
1182 
1183 /* Convert mode to MII values  */
1184 static const u16 phy_pause_map[] = {
1185 	[FLOW_MODE_NONE] =	0,
1186 	[FLOW_MODE_LOC_SEND] =	PHY_AN_PAUSE_ASYM,
1187 	[FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1188 	[FLOW_MODE_SYM_OR_REM]  = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1189 };
1190 
1191 /* special defines for FIBER (88E1011S only) */
1192 static const u16 fiber_pause_map[] = {
1193 	[FLOW_MODE_NONE]	= PHY_X_P_NO_PAUSE,
1194 	[FLOW_MODE_LOC_SEND]	= PHY_X_P_ASYM_MD,
1195 	[FLOW_MODE_SYMMETRIC]	= PHY_X_P_SYM_MD,
1196 	[FLOW_MODE_SYM_OR_REM]	= PHY_X_P_BOTH_MD,
1197 };
1198 
1199 
1200 /* Check status of Broadcom phy link */
1201 static void bcom_check_link(struct skge_hw *hw, int port)
1202 {
1203 	struct net_device *dev = hw->dev[port];
1204 	struct skge_port *skge = netdev_priv(dev);
1205 	u16 status;
1206 
1207 	/* read twice because of latch */
1208 	xm_phy_read(hw, port, PHY_BCOM_STAT);
1209 	status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1210 
1211 	if ((status & PHY_ST_LSYNC) == 0) {
1212 		xm_link_down(hw, port);
1213 		return;
1214 	}
1215 
1216 	if (skge->autoneg == AUTONEG_ENABLE) {
1217 		u16 lpa, aux;
1218 
1219 		if (!(status & PHY_ST_AN_OVER))
1220 			return;
1221 
1222 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1223 		if (lpa & PHY_B_AN_RF) {
1224 			netdev_notice(dev, "remote fault\n");
1225 			return;
1226 		}
1227 
1228 		aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1229 
1230 		/* Check Duplex mismatch */
1231 		switch (aux & PHY_B_AS_AN_RES_MSK) {
1232 		case PHY_B_RES_1000FD:
1233 			skge->duplex = DUPLEX_FULL;
1234 			break;
1235 		case PHY_B_RES_1000HD:
1236 			skge->duplex = DUPLEX_HALF;
1237 			break;
1238 		default:
1239 			netdev_notice(dev, "duplex mismatch\n");
1240 			return;
1241 		}
1242 
1243 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1244 		switch (aux & PHY_B_AS_PAUSE_MSK) {
1245 		case PHY_B_AS_PAUSE_MSK:
1246 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1247 			break;
1248 		case PHY_B_AS_PRR:
1249 			skge->flow_status = FLOW_STAT_REM_SEND;
1250 			break;
1251 		case PHY_B_AS_PRT:
1252 			skge->flow_status = FLOW_STAT_LOC_SEND;
1253 			break;
1254 		default:
1255 			skge->flow_status = FLOW_STAT_NONE;
1256 		}
1257 		skge->speed = SPEED_1000;
1258 	}
1259 
1260 	if (!netif_carrier_ok(dev))
1261 		genesis_link_up(skge);
1262 }
1263 
1264 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1265  * Phy on for 100 or 10Mbit operation
1266  */
1267 static void bcom_phy_init(struct skge_port *skge)
1268 {
1269 	struct skge_hw *hw = skge->hw;
1270 	int port = skge->port;
1271 	int i;
1272 	u16 id1, r, ext, ctl;
1273 
1274 	/* magic workaround patterns for Broadcom */
1275 	static const struct {
1276 		u16 reg;
1277 		u16 val;
1278 	} A1hack[] = {
1279 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1280 		{ 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1281 		{ 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1282 		{ 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1283 	}, C0hack[] = {
1284 		{ 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1285 		{ 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1286 	};
1287 
1288 	/* read Id from external PHY (all have the same address) */
1289 	id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1290 
1291 	/* Optimize MDIO transfer by suppressing preamble. */
1292 	r = xm_read16(hw, port, XM_MMU_CMD);
1293 	r |=  XM_MMU_NO_PRE;
1294 	xm_write16(hw, port, XM_MMU_CMD, r);
1295 
1296 	switch (id1) {
1297 	case PHY_BCOM_ID1_C0:
1298 		/*
1299 		 * Workaround BCOM Errata for the C0 type.
1300 		 * Write magic patterns to reserved registers.
1301 		 */
1302 		for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1303 			xm_phy_write(hw, port,
1304 				     C0hack[i].reg, C0hack[i].val);
1305 
1306 		break;
1307 	case PHY_BCOM_ID1_A1:
1308 		/*
1309 		 * Workaround BCOM Errata for the A1 type.
1310 		 * Write magic patterns to reserved registers.
1311 		 */
1312 		for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1313 			xm_phy_write(hw, port,
1314 				     A1hack[i].reg, A1hack[i].val);
1315 		break;
1316 	}
1317 
1318 	/*
1319 	 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1320 	 * Disable Power Management after reset.
1321 	 */
1322 	r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1323 	r |= PHY_B_AC_DIS_PM;
1324 	xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1325 
1326 	/* Dummy read */
1327 	xm_read16(hw, port, XM_ISRC);
1328 
1329 	ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1330 	ctl = PHY_CT_SP1000;	/* always 1000mbit */
1331 
1332 	if (skge->autoneg == AUTONEG_ENABLE) {
1333 		/*
1334 		 * Workaround BCOM Errata #1 for the C5 type.
1335 		 * 1000Base-T Link Acquisition Failure in Slave Mode
1336 		 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1337 		 */
1338 		u16 adv = PHY_B_1000C_RD;
1339 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1340 			adv |= PHY_B_1000C_AHD;
1341 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1342 			adv |= PHY_B_1000C_AFD;
1343 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1344 
1345 		ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1346 	} else {
1347 		if (skge->duplex == DUPLEX_FULL)
1348 			ctl |= PHY_CT_DUP_MD;
1349 		/* Force to slave */
1350 		xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1351 	}
1352 
1353 	/* Set autonegotiation pause parameters */
1354 	xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1355 		     phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1356 
1357 	/* Handle Jumbo frames */
1358 	if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1359 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1360 			     PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1361 
1362 		ext |= PHY_B_PEC_HIGH_LA;
1363 
1364 	}
1365 
1366 	xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1367 	xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1368 
1369 	/* Use link status change interrupt */
1370 	xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1371 }
1372 
1373 static void xm_phy_init(struct skge_port *skge)
1374 {
1375 	struct skge_hw *hw = skge->hw;
1376 	int port = skge->port;
1377 	u16 ctrl = 0;
1378 
1379 	if (skge->autoneg == AUTONEG_ENABLE) {
1380 		if (skge->advertising & ADVERTISED_1000baseT_Half)
1381 			ctrl |= PHY_X_AN_HD;
1382 		if (skge->advertising & ADVERTISED_1000baseT_Full)
1383 			ctrl |= PHY_X_AN_FD;
1384 
1385 		ctrl |= fiber_pause_map[skge->flow_control];
1386 
1387 		xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1388 
1389 		/* Restart Auto-negotiation */
1390 		ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1391 	} else {
1392 		/* Set DuplexMode in Config register */
1393 		if (skge->duplex == DUPLEX_FULL)
1394 			ctrl |= PHY_CT_DUP_MD;
1395 		/*
1396 		 * Do NOT enable Auto-negotiation here. This would hold
1397 		 * the link down because no IDLEs are transmitted
1398 		 */
1399 	}
1400 
1401 	xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1402 
1403 	/* Poll PHY for status changes */
1404 	mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1405 }
1406 
1407 static int xm_check_link(struct net_device *dev)
1408 {
1409 	struct skge_port *skge = netdev_priv(dev);
1410 	struct skge_hw *hw = skge->hw;
1411 	int port = skge->port;
1412 	u16 status;
1413 
1414 	/* read twice because of latch */
1415 	xm_phy_read(hw, port, PHY_XMAC_STAT);
1416 	status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1417 
1418 	if ((status & PHY_ST_LSYNC) == 0) {
1419 		xm_link_down(hw, port);
1420 		return 0;
1421 	}
1422 
1423 	if (skge->autoneg == AUTONEG_ENABLE) {
1424 		u16 lpa, res;
1425 
1426 		if (!(status & PHY_ST_AN_OVER))
1427 			return 0;
1428 
1429 		lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1430 		if (lpa & PHY_B_AN_RF) {
1431 			netdev_notice(dev, "remote fault\n");
1432 			return 0;
1433 		}
1434 
1435 		res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1436 
1437 		/* Check Duplex mismatch */
1438 		switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1439 		case PHY_X_RS_FD:
1440 			skge->duplex = DUPLEX_FULL;
1441 			break;
1442 		case PHY_X_RS_HD:
1443 			skge->duplex = DUPLEX_HALF;
1444 			break;
1445 		default:
1446 			netdev_notice(dev, "duplex mismatch\n");
1447 			return 0;
1448 		}
1449 
1450 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
1451 		if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1452 		     skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1453 		    (lpa & PHY_X_P_SYM_MD))
1454 			skge->flow_status = FLOW_STAT_SYMMETRIC;
1455 		else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1456 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1457 			/* Enable PAUSE receive, disable PAUSE transmit */
1458 			skge->flow_status  = FLOW_STAT_REM_SEND;
1459 		else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1460 			 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1461 			/* Disable PAUSE receive, enable PAUSE transmit */
1462 			skge->flow_status = FLOW_STAT_LOC_SEND;
1463 		else
1464 			skge->flow_status = FLOW_STAT_NONE;
1465 
1466 		skge->speed = SPEED_1000;
1467 	}
1468 
1469 	if (!netif_carrier_ok(dev))
1470 		genesis_link_up(skge);
1471 	return 1;
1472 }
1473 
1474 /* Poll to check for link coming up.
1475  *
1476  * Since internal PHY is wired to a level triggered pin, can't
1477  * get an interrupt when carrier is detected, need to poll for
1478  * link coming up.
1479  */
1480 static void xm_link_timer(unsigned long arg)
1481 {
1482 	struct skge_port *skge = (struct skge_port *) arg;
1483 	struct net_device *dev = skge->netdev;
1484 	struct skge_hw *hw = skge->hw;
1485 	int port = skge->port;
1486 	int i;
1487 	unsigned long flags;
1488 
1489 	if (!netif_running(dev))
1490 		return;
1491 
1492 	spin_lock_irqsave(&hw->phy_lock, flags);
1493 
1494 	/*
1495 	 * Verify that the link by checking GPIO register three times.
1496 	 * This pin has the signal from the link_sync pin connected to it.
1497 	 */
1498 	for (i = 0; i < 3; i++) {
1499 		if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1500 			goto link_down;
1501 	}
1502 
1503 	/* Re-enable interrupt to detect link down */
1504 	if (xm_check_link(dev)) {
1505 		u16 msk = xm_read16(hw, port, XM_IMSK);
1506 		msk &= ~XM_IS_INP_ASS;
1507 		xm_write16(hw, port, XM_IMSK, msk);
1508 		xm_read16(hw, port, XM_ISRC);
1509 	} else {
1510 link_down:
1511 		mod_timer(&skge->link_timer,
1512 			  round_jiffies(jiffies + LINK_HZ));
1513 	}
1514 	spin_unlock_irqrestore(&hw->phy_lock, flags);
1515 }
1516 
1517 static void genesis_mac_init(struct skge_hw *hw, int port)
1518 {
1519 	struct net_device *dev = hw->dev[port];
1520 	struct skge_port *skge = netdev_priv(dev);
1521 	int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1522 	int i;
1523 	u32 r;
1524 	static const u8 zero[6]  = { 0 };
1525 
1526 	for (i = 0; i < 10; i++) {
1527 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1528 			     MFF_SET_MAC_RST);
1529 		if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1530 			goto reset_ok;
1531 		udelay(1);
1532 	}
1533 
1534 	netdev_warn(dev, "genesis reset failed\n");
1535 
1536  reset_ok:
1537 	/* Unreset the XMAC. */
1538 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1539 
1540 	/*
1541 	 * Perform additional initialization for external PHYs,
1542 	 * namely for the 1000baseTX cards that use the XMAC's
1543 	 * GMII mode.
1544 	 */
1545 	if (hw->phy_type != SK_PHY_XMAC) {
1546 		/* Take external Phy out of reset */
1547 		r = skge_read32(hw, B2_GP_IO);
1548 		if (port == 0)
1549 			r |= GP_DIR_0|GP_IO_0;
1550 		else
1551 			r |= GP_DIR_2|GP_IO_2;
1552 
1553 		skge_write32(hw, B2_GP_IO, r);
1554 
1555 		/* Enable GMII interface */
1556 		xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1557 	}
1558 
1559 
1560 	switch (hw->phy_type) {
1561 	case SK_PHY_XMAC:
1562 		xm_phy_init(skge);
1563 		break;
1564 	case SK_PHY_BCOM:
1565 		bcom_phy_init(skge);
1566 		bcom_check_link(hw, port);
1567 	}
1568 
1569 	/* Set Station Address */
1570 	xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1571 
1572 	/* We don't use match addresses so clear */
1573 	for (i = 1; i < 16; i++)
1574 		xm_outaddr(hw, port, XM_EXM(i), zero);
1575 
1576 	/* Clear MIB counters */
1577 	xm_write16(hw, port, XM_STAT_CMD,
1578 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1579 	/* Clear two times according to Errata #3 */
1580 	xm_write16(hw, port, XM_STAT_CMD,
1581 			XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1582 
1583 	/* configure Rx High Water Mark (XM_RX_HI_WM) */
1584 	xm_write16(hw, port, XM_RX_HI_WM, 1450);
1585 
1586 	/* We don't need the FCS appended to the packet. */
1587 	r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1588 	if (jumbo)
1589 		r |= XM_RX_BIG_PK_OK;
1590 
1591 	if (skge->duplex == DUPLEX_HALF) {
1592 		/*
1593 		 * If in manual half duplex mode the other side might be in
1594 		 * full duplex mode, so ignore if a carrier extension is not seen
1595 		 * on frames received
1596 		 */
1597 		r |= XM_RX_DIS_CEXT;
1598 	}
1599 	xm_write16(hw, port, XM_RX_CMD, r);
1600 
1601 	/* We want short frames padded to 60 bytes. */
1602 	xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1603 
1604 	/* Increase threshold for jumbo frames on dual port */
1605 	if (hw->ports > 1 && jumbo)
1606 		xm_write16(hw, port, XM_TX_THR, 1020);
1607 	else
1608 		xm_write16(hw, port, XM_TX_THR, 512);
1609 
1610 	/*
1611 	 * Enable the reception of all error frames. This is is
1612 	 * a necessary evil due to the design of the XMAC. The
1613 	 * XMAC's receive FIFO is only 8K in size, however jumbo
1614 	 * frames can be up to 9000 bytes in length. When bad
1615 	 * frame filtering is enabled, the XMAC's RX FIFO operates
1616 	 * in 'store and forward' mode. For this to work, the
1617 	 * entire frame has to fit into the FIFO, but that means
1618 	 * that jumbo frames larger than 8192 bytes will be
1619 	 * truncated. Disabling all bad frame filtering causes
1620 	 * the RX FIFO to operate in streaming mode, in which
1621 	 * case the XMAC will start transferring frames out of the
1622 	 * RX FIFO as soon as the FIFO threshold is reached.
1623 	 */
1624 	xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1625 
1626 
1627 	/*
1628 	 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1629 	 *	- Enable all bits excepting 'Octets Rx OK Low CntOv'
1630 	 *	  and 'Octets Rx OK Hi Cnt Ov'.
1631 	 */
1632 	xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1633 
1634 	/*
1635 	 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1636 	 *	- Enable all bits excepting 'Octets Tx OK Low CntOv'
1637 	 *	  and 'Octets Tx OK Hi Cnt Ov'.
1638 	 */
1639 	xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1640 
1641 	/* Configure MAC arbiter */
1642 	skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1643 
1644 	/* configure timeout values */
1645 	skge_write8(hw, B3_MA_TOINI_RX1, 72);
1646 	skge_write8(hw, B3_MA_TOINI_RX2, 72);
1647 	skge_write8(hw, B3_MA_TOINI_TX1, 72);
1648 	skge_write8(hw, B3_MA_TOINI_TX2, 72);
1649 
1650 	skge_write8(hw, B3_MA_RCINI_RX1, 0);
1651 	skge_write8(hw, B3_MA_RCINI_RX2, 0);
1652 	skge_write8(hw, B3_MA_RCINI_TX1, 0);
1653 	skge_write8(hw, B3_MA_RCINI_TX2, 0);
1654 
1655 	/* Configure Rx MAC FIFO */
1656 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1657 	skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1658 	skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1659 
1660 	/* Configure Tx MAC FIFO */
1661 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1662 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1663 	skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1664 
1665 	if (jumbo) {
1666 		/* Enable frame flushing if jumbo frames used */
1667 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1668 	} else {
1669 		/* enable timeout timers if normal frames */
1670 		skge_write16(hw, B3_PA_CTRL,
1671 			     (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1672 	}
1673 }
1674 
1675 static void genesis_stop(struct skge_port *skge)
1676 {
1677 	struct skge_hw *hw = skge->hw;
1678 	int port = skge->port;
1679 	unsigned retries = 1000;
1680 	u16 cmd;
1681 
1682 	/* Disable Tx and Rx */
1683 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1684 	cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1685 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1686 
1687 	genesis_reset(hw, port);
1688 
1689 	/* Clear Tx packet arbiter timeout IRQ */
1690 	skge_write16(hw, B3_PA_CTRL,
1691 		     port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1692 
1693 	/* Reset the MAC */
1694 	skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1695 	do {
1696 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1697 		if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1698 			break;
1699 	} while (--retries > 0);
1700 
1701 	/* For external PHYs there must be special handling */
1702 	if (hw->phy_type != SK_PHY_XMAC) {
1703 		u32 reg = skge_read32(hw, B2_GP_IO);
1704 		if (port == 0) {
1705 			reg |= GP_DIR_0;
1706 			reg &= ~GP_IO_0;
1707 		} else {
1708 			reg |= GP_DIR_2;
1709 			reg &= ~GP_IO_2;
1710 		}
1711 		skge_write32(hw, B2_GP_IO, reg);
1712 		skge_read32(hw, B2_GP_IO);
1713 	}
1714 
1715 	xm_write16(hw, port, XM_MMU_CMD,
1716 			xm_read16(hw, port, XM_MMU_CMD)
1717 			& ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1718 
1719 	xm_read16(hw, port, XM_MMU_CMD);
1720 }
1721 
1722 
1723 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1724 {
1725 	struct skge_hw *hw = skge->hw;
1726 	int port = skge->port;
1727 	int i;
1728 	unsigned long timeout = jiffies + HZ;
1729 
1730 	xm_write16(hw, port,
1731 			XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1732 
1733 	/* wait for update to complete */
1734 	while (xm_read16(hw, port, XM_STAT_CMD)
1735 	       & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1736 		if (time_after(jiffies, timeout))
1737 			break;
1738 		udelay(10);
1739 	}
1740 
1741 	/* special case for 64 bit octet counter */
1742 	data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1743 		| xm_read32(hw, port, XM_TXO_OK_LO);
1744 	data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1745 		| xm_read32(hw, port, XM_RXO_OK_LO);
1746 
1747 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1748 		data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1749 }
1750 
1751 static void genesis_mac_intr(struct skge_hw *hw, int port)
1752 {
1753 	struct net_device *dev = hw->dev[port];
1754 	struct skge_port *skge = netdev_priv(dev);
1755 	u16 status = xm_read16(hw, port, XM_ISRC);
1756 
1757 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1758 		     "mac interrupt status 0x%x\n", status);
1759 
1760 	if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1761 		xm_link_down(hw, port);
1762 		mod_timer(&skge->link_timer, jiffies + 1);
1763 	}
1764 
1765 	if (status & XM_IS_TXF_UR) {
1766 		xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1767 		++dev->stats.tx_fifo_errors;
1768 	}
1769 }
1770 
1771 static void genesis_link_up(struct skge_port *skge)
1772 {
1773 	struct skge_hw *hw = skge->hw;
1774 	int port = skge->port;
1775 	u16 cmd, msk;
1776 	u32 mode;
1777 
1778 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1779 
1780 	/*
1781 	 * enabling pause frame reception is required for 1000BT
1782 	 * because the XMAC is not reset if the link is going down
1783 	 */
1784 	if (skge->flow_status == FLOW_STAT_NONE ||
1785 	    skge->flow_status == FLOW_STAT_LOC_SEND)
1786 		/* Disable Pause Frame Reception */
1787 		cmd |= XM_MMU_IGN_PF;
1788 	else
1789 		/* Enable Pause Frame Reception */
1790 		cmd &= ~XM_MMU_IGN_PF;
1791 
1792 	xm_write16(hw, port, XM_MMU_CMD, cmd);
1793 
1794 	mode = xm_read32(hw, port, XM_MODE);
1795 	if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1796 	    skge->flow_status == FLOW_STAT_LOC_SEND) {
1797 		/*
1798 		 * Configure Pause Frame Generation
1799 		 * Use internal and external Pause Frame Generation.
1800 		 * Sending pause frames is edge triggered.
1801 		 * Send a Pause frame with the maximum pause time if
1802 		 * internal oder external FIFO full condition occurs.
1803 		 * Send a zero pause time frame to re-start transmission.
1804 		 */
1805 		/* XM_PAUSE_DA = '010000C28001' (default) */
1806 		/* XM_MAC_PTIME = 0xffff (maximum) */
1807 		/* remember this value is defined in big endian (!) */
1808 		xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1809 
1810 		mode |= XM_PAUSE_MODE;
1811 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1812 	} else {
1813 		/*
1814 		 * disable pause frame generation is required for 1000BT
1815 		 * because the XMAC is not reset if the link is going down
1816 		 */
1817 		/* Disable Pause Mode in Mode Register */
1818 		mode &= ~XM_PAUSE_MODE;
1819 
1820 		skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1821 	}
1822 
1823 	xm_write32(hw, port, XM_MODE, mode);
1824 
1825 	/* Turn on detection of Tx underrun */
1826 	msk = xm_read16(hw, port, XM_IMSK);
1827 	msk &= ~XM_IS_TXF_UR;
1828 	xm_write16(hw, port, XM_IMSK, msk);
1829 
1830 	xm_read16(hw, port, XM_ISRC);
1831 
1832 	/* get MMU Command Reg. */
1833 	cmd = xm_read16(hw, port, XM_MMU_CMD);
1834 	if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1835 		cmd |= XM_MMU_GMII_FD;
1836 
1837 	/*
1838 	 * Workaround BCOM Errata (#10523) for all BCom Phys
1839 	 * Enable Power Management after link up
1840 	 */
1841 	if (hw->phy_type == SK_PHY_BCOM) {
1842 		xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1843 			     xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1844 			     & ~PHY_B_AC_DIS_PM);
1845 		xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1846 	}
1847 
1848 	/* enable Rx/Tx */
1849 	xm_write16(hw, port, XM_MMU_CMD,
1850 			cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1851 	skge_link_up(skge);
1852 }
1853 
1854 
1855 static inline void bcom_phy_intr(struct skge_port *skge)
1856 {
1857 	struct skge_hw *hw = skge->hw;
1858 	int port = skge->port;
1859 	u16 isrc;
1860 
1861 	isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1862 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1863 		     "phy interrupt status 0x%x\n", isrc);
1864 
1865 	if (isrc & PHY_B_IS_PSE)
1866 		pr_err("%s: uncorrectable pair swap error\n",
1867 		       hw->dev[port]->name);
1868 
1869 	/* Workaround BCom Errata:
1870 	 *	enable and disable loopback mode if "NO HCD" occurs.
1871 	 */
1872 	if (isrc & PHY_B_IS_NO_HDCL) {
1873 		u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1874 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1875 				  ctrl | PHY_CT_LOOP);
1876 		xm_phy_write(hw, port, PHY_BCOM_CTRL,
1877 				  ctrl & ~PHY_CT_LOOP);
1878 	}
1879 
1880 	if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1881 		bcom_check_link(hw, port);
1882 
1883 }
1884 
1885 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1886 {
1887 	int i;
1888 
1889 	gma_write16(hw, port, GM_SMI_DATA, val);
1890 	gma_write16(hw, port, GM_SMI_CTRL,
1891 			 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1892 	for (i = 0; i < PHY_RETRIES; i++) {
1893 		udelay(1);
1894 
1895 		if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1896 			return 0;
1897 	}
1898 
1899 	pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
1900 	return -EIO;
1901 }
1902 
1903 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1904 {
1905 	int i;
1906 
1907 	gma_write16(hw, port, GM_SMI_CTRL,
1908 			 GM_SMI_CT_PHY_AD(hw->phy_addr)
1909 			 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1910 
1911 	for (i = 0; i < PHY_RETRIES; i++) {
1912 		udelay(1);
1913 		if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1914 			goto ready;
1915 	}
1916 
1917 	return -ETIMEDOUT;
1918  ready:
1919 	*val = gma_read16(hw, port, GM_SMI_DATA);
1920 	return 0;
1921 }
1922 
1923 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1924 {
1925 	u16 v = 0;
1926 	if (__gm_phy_read(hw, port, reg, &v))
1927 		pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
1928 	return v;
1929 }
1930 
1931 /* Marvell Phy Initialization */
1932 static void yukon_init(struct skge_hw *hw, int port)
1933 {
1934 	struct skge_port *skge = netdev_priv(hw->dev[port]);
1935 	u16 ctrl, ct1000, adv;
1936 
1937 	if (skge->autoneg == AUTONEG_ENABLE) {
1938 		u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1939 
1940 		ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1941 			  PHY_M_EC_MAC_S_MSK);
1942 		ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1943 
1944 		ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1945 
1946 		gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1947 	}
1948 
1949 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1950 	if (skge->autoneg == AUTONEG_DISABLE)
1951 		ctrl &= ~PHY_CT_ANE;
1952 
1953 	ctrl |= PHY_CT_RESET;
1954 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1955 
1956 	ctrl = 0;
1957 	ct1000 = 0;
1958 	adv = PHY_AN_CSMA;
1959 
1960 	if (skge->autoneg == AUTONEG_ENABLE) {
1961 		if (hw->copper) {
1962 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1963 				ct1000 |= PHY_M_1000C_AFD;
1964 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1965 				ct1000 |= PHY_M_1000C_AHD;
1966 			if (skge->advertising & ADVERTISED_100baseT_Full)
1967 				adv |= PHY_M_AN_100_FD;
1968 			if (skge->advertising & ADVERTISED_100baseT_Half)
1969 				adv |= PHY_M_AN_100_HD;
1970 			if (skge->advertising & ADVERTISED_10baseT_Full)
1971 				adv |= PHY_M_AN_10_FD;
1972 			if (skge->advertising & ADVERTISED_10baseT_Half)
1973 				adv |= PHY_M_AN_10_HD;
1974 
1975 			/* Set Flow-control capabilities */
1976 			adv |= phy_pause_map[skge->flow_control];
1977 		} else {
1978 			if (skge->advertising & ADVERTISED_1000baseT_Full)
1979 				adv |= PHY_M_AN_1000X_AFD;
1980 			if (skge->advertising & ADVERTISED_1000baseT_Half)
1981 				adv |= PHY_M_AN_1000X_AHD;
1982 
1983 			adv |= fiber_pause_map[skge->flow_control];
1984 		}
1985 
1986 		/* Restart Auto-negotiation */
1987 		ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1988 	} else {
1989 		/* forced speed/duplex settings */
1990 		ct1000 = PHY_M_1000C_MSE;
1991 
1992 		if (skge->duplex == DUPLEX_FULL)
1993 			ctrl |= PHY_CT_DUP_MD;
1994 
1995 		switch (skge->speed) {
1996 		case SPEED_1000:
1997 			ctrl |= PHY_CT_SP1000;
1998 			break;
1999 		case SPEED_100:
2000 			ctrl |= PHY_CT_SP100;
2001 			break;
2002 		}
2003 
2004 		ctrl |= PHY_CT_RESET;
2005 	}
2006 
2007 	gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2008 
2009 	gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2010 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2011 
2012 	/* Enable phy interrupt on autonegotiation complete (or link up) */
2013 	if (skge->autoneg == AUTONEG_ENABLE)
2014 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2015 	else
2016 		gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2017 }
2018 
2019 static void yukon_reset(struct skge_hw *hw, int port)
2020 {
2021 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2022 	gma_write16(hw, port, GM_MC_ADDR_H1, 0);	/* clear MC hash */
2023 	gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2024 	gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2025 	gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2026 
2027 	gma_write16(hw, port, GM_RX_CTRL,
2028 			 gma_read16(hw, port, GM_RX_CTRL)
2029 			 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2030 }
2031 
2032 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2033 static int is_yukon_lite_a0(struct skge_hw *hw)
2034 {
2035 	u32 reg;
2036 	int ret;
2037 
2038 	if (hw->chip_id != CHIP_ID_YUKON)
2039 		return 0;
2040 
2041 	reg = skge_read32(hw, B2_FAR);
2042 	skge_write8(hw, B2_FAR + 3, 0xff);
2043 	ret = (skge_read8(hw, B2_FAR + 3) != 0);
2044 	skge_write32(hw, B2_FAR, reg);
2045 	return ret;
2046 }
2047 
2048 static void yukon_mac_init(struct skge_hw *hw, int port)
2049 {
2050 	struct skge_port *skge = netdev_priv(hw->dev[port]);
2051 	int i;
2052 	u32 reg;
2053 	const u8 *addr = hw->dev[port]->dev_addr;
2054 
2055 	/* WA code for COMA mode -- set PHY reset */
2056 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2057 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2058 		reg = skge_read32(hw, B2_GP_IO);
2059 		reg |= GP_DIR_9 | GP_IO_9;
2060 		skge_write32(hw, B2_GP_IO, reg);
2061 	}
2062 
2063 	/* hard reset */
2064 	skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2065 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2066 
2067 	/* WA code for COMA mode -- clear PHY reset */
2068 	if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2069 	    hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2070 		reg = skge_read32(hw, B2_GP_IO);
2071 		reg |= GP_DIR_9;
2072 		reg &= ~GP_IO_9;
2073 		skge_write32(hw, B2_GP_IO, reg);
2074 	}
2075 
2076 	/* Set hardware config mode */
2077 	reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2078 		GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2079 	reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2080 
2081 	/* Clear GMC reset */
2082 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2083 	skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2084 	skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2085 
2086 	if (skge->autoneg == AUTONEG_DISABLE) {
2087 		reg = GM_GPCR_AU_ALL_DIS;
2088 		gma_write16(hw, port, GM_GP_CTRL,
2089 				 gma_read16(hw, port, GM_GP_CTRL) | reg);
2090 
2091 		switch (skge->speed) {
2092 		case SPEED_1000:
2093 			reg &= ~GM_GPCR_SPEED_100;
2094 			reg |= GM_GPCR_SPEED_1000;
2095 			break;
2096 		case SPEED_100:
2097 			reg &= ~GM_GPCR_SPEED_1000;
2098 			reg |= GM_GPCR_SPEED_100;
2099 			break;
2100 		case SPEED_10:
2101 			reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2102 			break;
2103 		}
2104 
2105 		if (skge->duplex == DUPLEX_FULL)
2106 			reg |= GM_GPCR_DUP_FULL;
2107 	} else
2108 		reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2109 
2110 	switch (skge->flow_control) {
2111 	case FLOW_MODE_NONE:
2112 		skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2113 		reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2114 		break;
2115 	case FLOW_MODE_LOC_SEND:
2116 		/* disable Rx flow-control */
2117 		reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2118 		break;
2119 	case FLOW_MODE_SYMMETRIC:
2120 	case FLOW_MODE_SYM_OR_REM:
2121 		/* enable Tx & Rx flow-control */
2122 		break;
2123 	}
2124 
2125 	gma_write16(hw, port, GM_GP_CTRL, reg);
2126 	skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2127 
2128 	yukon_init(hw, port);
2129 
2130 	/* MIB clear */
2131 	reg = gma_read16(hw, port, GM_PHY_ADDR);
2132 	gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2133 
2134 	for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2135 		gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2136 	gma_write16(hw, port, GM_PHY_ADDR, reg);
2137 
2138 	/* transmit control */
2139 	gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2140 
2141 	/* receive control reg: unicast + multicast + no FCS  */
2142 	gma_write16(hw, port, GM_RX_CTRL,
2143 			 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2144 
2145 	/* transmit flow control */
2146 	gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2147 
2148 	/* transmit parameter */
2149 	gma_write16(hw, port, GM_TX_PARAM,
2150 			 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2151 			 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2152 			 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2153 
2154 	/* configure the Serial Mode Register */
2155 	reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2156 		| GM_SMOD_VLAN_ENA
2157 		| IPG_DATA_VAL(IPG_DATA_DEF);
2158 
2159 	if (hw->dev[port]->mtu > ETH_DATA_LEN)
2160 		reg |= GM_SMOD_JUMBO_ENA;
2161 
2162 	gma_write16(hw, port, GM_SERIAL_MODE, reg);
2163 
2164 	/* physical address: used for pause frames */
2165 	gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2166 	/* virtual address for data */
2167 	gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2168 
2169 	/* enable interrupt mask for counter overflows */
2170 	gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2171 	gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2172 	gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2173 
2174 	/* Initialize Mac Fifo */
2175 
2176 	/* Configure Rx MAC FIFO */
2177 	skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2178 	reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2179 
2180 	/* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2181 	if (is_yukon_lite_a0(hw))
2182 		reg &= ~GMF_RX_F_FL_ON;
2183 
2184 	skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2185 	skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2186 	/*
2187 	 * because Pause Packet Truncation in GMAC is not working
2188 	 * we have to increase the Flush Threshold to 64 bytes
2189 	 * in order to flush pause packets in Rx FIFO on Yukon-1
2190 	 */
2191 	skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2192 
2193 	/* Configure Tx MAC FIFO */
2194 	skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2195 	skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2196 }
2197 
2198 /* Go into power down mode */
2199 static void yukon_suspend(struct skge_hw *hw, int port)
2200 {
2201 	u16 ctrl;
2202 
2203 	ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2204 	ctrl |= PHY_M_PC_POL_R_DIS;
2205 	gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2206 
2207 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2208 	ctrl |= PHY_CT_RESET;
2209 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2210 
2211 	/* switch IEEE compatible power down mode on */
2212 	ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2213 	ctrl |= PHY_CT_PDOWN;
2214 	gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2215 }
2216 
2217 static void yukon_stop(struct skge_port *skge)
2218 {
2219 	struct skge_hw *hw = skge->hw;
2220 	int port = skge->port;
2221 
2222 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2223 	yukon_reset(hw, port);
2224 
2225 	gma_write16(hw, port, GM_GP_CTRL,
2226 			 gma_read16(hw, port, GM_GP_CTRL)
2227 			 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2228 	gma_read16(hw, port, GM_GP_CTRL);
2229 
2230 	yukon_suspend(hw, port);
2231 
2232 	/* set GPHY Control reset */
2233 	skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2234 	skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2235 }
2236 
2237 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2238 {
2239 	struct skge_hw *hw = skge->hw;
2240 	int port = skge->port;
2241 	int i;
2242 
2243 	data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2244 		| gma_read32(hw, port, GM_TXO_OK_LO);
2245 	data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2246 		| gma_read32(hw, port, GM_RXO_OK_LO);
2247 
2248 	for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2249 		data[i] = gma_read32(hw, port,
2250 					  skge_stats[i].gma_offset);
2251 }
2252 
2253 static void yukon_mac_intr(struct skge_hw *hw, int port)
2254 {
2255 	struct net_device *dev = hw->dev[port];
2256 	struct skge_port *skge = netdev_priv(dev);
2257 	u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2258 
2259 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2260 		     "mac interrupt status 0x%x\n", status);
2261 
2262 	if (status & GM_IS_RX_FF_OR) {
2263 		++dev->stats.rx_fifo_errors;
2264 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2265 	}
2266 
2267 	if (status & GM_IS_TX_FF_UR) {
2268 		++dev->stats.tx_fifo_errors;
2269 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2270 	}
2271 
2272 }
2273 
2274 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2275 {
2276 	switch (aux & PHY_M_PS_SPEED_MSK) {
2277 	case PHY_M_PS_SPEED_1000:
2278 		return SPEED_1000;
2279 	case PHY_M_PS_SPEED_100:
2280 		return SPEED_100;
2281 	default:
2282 		return SPEED_10;
2283 	}
2284 }
2285 
2286 static void yukon_link_up(struct skge_port *skge)
2287 {
2288 	struct skge_hw *hw = skge->hw;
2289 	int port = skge->port;
2290 	u16 reg;
2291 
2292 	/* Enable Transmit FIFO Underrun */
2293 	skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2294 
2295 	reg = gma_read16(hw, port, GM_GP_CTRL);
2296 	if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2297 		reg |= GM_GPCR_DUP_FULL;
2298 
2299 	/* enable Rx/Tx */
2300 	reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2301 	gma_write16(hw, port, GM_GP_CTRL, reg);
2302 
2303 	gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2304 	skge_link_up(skge);
2305 }
2306 
2307 static void yukon_link_down(struct skge_port *skge)
2308 {
2309 	struct skge_hw *hw = skge->hw;
2310 	int port = skge->port;
2311 	u16 ctrl;
2312 
2313 	ctrl = gma_read16(hw, port, GM_GP_CTRL);
2314 	ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2315 	gma_write16(hw, port, GM_GP_CTRL, ctrl);
2316 
2317 	if (skge->flow_status == FLOW_STAT_REM_SEND) {
2318 		ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2319 		ctrl |= PHY_M_AN_ASP;
2320 		/* restore Asymmetric Pause bit */
2321 		gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2322 	}
2323 
2324 	skge_link_down(skge);
2325 
2326 	yukon_init(hw, port);
2327 }
2328 
2329 static void yukon_phy_intr(struct skge_port *skge)
2330 {
2331 	struct skge_hw *hw = skge->hw;
2332 	int port = skge->port;
2333 	const char *reason = NULL;
2334 	u16 istatus, phystat;
2335 
2336 	istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2337 	phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2338 
2339 	netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2340 		     "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2341 
2342 	if (istatus & PHY_M_IS_AN_COMPL) {
2343 		if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2344 		    & PHY_M_AN_RF) {
2345 			reason = "remote fault";
2346 			goto failed;
2347 		}
2348 
2349 		if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2350 			reason = "master/slave fault";
2351 			goto failed;
2352 		}
2353 
2354 		if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2355 			reason = "speed/duplex";
2356 			goto failed;
2357 		}
2358 
2359 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2360 			? DUPLEX_FULL : DUPLEX_HALF;
2361 		skge->speed = yukon_speed(hw, phystat);
2362 
2363 		/* We are using IEEE 802.3z/D5.0 Table 37-4 */
2364 		switch (phystat & PHY_M_PS_PAUSE_MSK) {
2365 		case PHY_M_PS_PAUSE_MSK:
2366 			skge->flow_status = FLOW_STAT_SYMMETRIC;
2367 			break;
2368 		case PHY_M_PS_RX_P_EN:
2369 			skge->flow_status = FLOW_STAT_REM_SEND;
2370 			break;
2371 		case PHY_M_PS_TX_P_EN:
2372 			skge->flow_status = FLOW_STAT_LOC_SEND;
2373 			break;
2374 		default:
2375 			skge->flow_status = FLOW_STAT_NONE;
2376 		}
2377 
2378 		if (skge->flow_status == FLOW_STAT_NONE ||
2379 		    (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2380 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2381 		else
2382 			skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2383 		yukon_link_up(skge);
2384 		return;
2385 	}
2386 
2387 	if (istatus & PHY_M_IS_LSP_CHANGE)
2388 		skge->speed = yukon_speed(hw, phystat);
2389 
2390 	if (istatus & PHY_M_IS_DUP_CHANGE)
2391 		skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2392 	if (istatus & PHY_M_IS_LST_CHANGE) {
2393 		if (phystat & PHY_M_PS_LINK_UP)
2394 			yukon_link_up(skge);
2395 		else
2396 			yukon_link_down(skge);
2397 	}
2398 	return;
2399  failed:
2400 	pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2401 
2402 	/* XXX restart autonegotiation? */
2403 }
2404 
2405 static void skge_phy_reset(struct skge_port *skge)
2406 {
2407 	struct skge_hw *hw = skge->hw;
2408 	int port = skge->port;
2409 	struct net_device *dev = hw->dev[port];
2410 
2411 	netif_stop_queue(skge->netdev);
2412 	netif_carrier_off(skge->netdev);
2413 
2414 	spin_lock_bh(&hw->phy_lock);
2415 	if (is_genesis(hw)) {
2416 		genesis_reset(hw, port);
2417 		genesis_mac_init(hw, port);
2418 	} else {
2419 		yukon_reset(hw, port);
2420 		yukon_init(hw, port);
2421 	}
2422 	spin_unlock_bh(&hw->phy_lock);
2423 
2424 	skge_set_multicast(dev);
2425 }
2426 
2427 /* Basic MII support */
2428 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2429 {
2430 	struct mii_ioctl_data *data = if_mii(ifr);
2431 	struct skge_port *skge = netdev_priv(dev);
2432 	struct skge_hw *hw = skge->hw;
2433 	int err = -EOPNOTSUPP;
2434 
2435 	if (!netif_running(dev))
2436 		return -ENODEV;	/* Phy still in reset */
2437 
2438 	switch (cmd) {
2439 	case SIOCGMIIPHY:
2440 		data->phy_id = hw->phy_addr;
2441 
2442 		/* fallthru */
2443 	case SIOCGMIIREG: {
2444 		u16 val = 0;
2445 		spin_lock_bh(&hw->phy_lock);
2446 
2447 		if (is_genesis(hw))
2448 			err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2449 		else
2450 			err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2451 		spin_unlock_bh(&hw->phy_lock);
2452 		data->val_out = val;
2453 		break;
2454 	}
2455 
2456 	case SIOCSMIIREG:
2457 		spin_lock_bh(&hw->phy_lock);
2458 		if (is_genesis(hw))
2459 			err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2460 				   data->val_in);
2461 		else
2462 			err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2463 				   data->val_in);
2464 		spin_unlock_bh(&hw->phy_lock);
2465 		break;
2466 	}
2467 	return err;
2468 }
2469 
2470 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2471 {
2472 	u32 end;
2473 
2474 	start /= 8;
2475 	len /= 8;
2476 	end = start + len - 1;
2477 
2478 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2479 	skge_write32(hw, RB_ADDR(q, RB_START), start);
2480 	skge_write32(hw, RB_ADDR(q, RB_WP), start);
2481 	skge_write32(hw, RB_ADDR(q, RB_RP), start);
2482 	skge_write32(hw, RB_ADDR(q, RB_END), end);
2483 
2484 	if (q == Q_R1 || q == Q_R2) {
2485 		/* Set thresholds on receive queue's */
2486 		skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2487 			     start + (2*len)/3);
2488 		skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2489 			     start + (len/3));
2490 	} else {
2491 		/* Enable store & forward on Tx queue's because
2492 		 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2493 		 */
2494 		skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2495 	}
2496 
2497 	skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2498 }
2499 
2500 /* Setup Bus Memory Interface */
2501 static void skge_qset(struct skge_port *skge, u16 q,
2502 		      const struct skge_element *e)
2503 {
2504 	struct skge_hw *hw = skge->hw;
2505 	u32 watermark = 0x600;
2506 	u64 base = skge->dma + (e->desc - skge->mem);
2507 
2508 	/* optimization to reduce window on 32bit/33mhz */
2509 	if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2510 		watermark /= 2;
2511 
2512 	skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2513 	skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2514 	skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2515 	skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2516 }
2517 
2518 static int skge_up(struct net_device *dev)
2519 {
2520 	struct skge_port *skge = netdev_priv(dev);
2521 	struct skge_hw *hw = skge->hw;
2522 	int port = skge->port;
2523 	u32 chunk, ram_addr;
2524 	size_t rx_size, tx_size;
2525 	int err;
2526 
2527 	if (!is_valid_ether_addr(dev->dev_addr))
2528 		return -EINVAL;
2529 
2530 	netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2531 
2532 	if (dev->mtu > RX_BUF_SIZE)
2533 		skge->rx_buf_size = dev->mtu + ETH_HLEN;
2534 	else
2535 		skge->rx_buf_size = RX_BUF_SIZE;
2536 
2537 
2538 	rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2539 	tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2540 	skge->mem_size = tx_size + rx_size;
2541 	skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2542 	if (!skge->mem)
2543 		return -ENOMEM;
2544 
2545 	BUG_ON(skge->dma & 7);
2546 
2547 	if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2548 		dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2549 		err = -EINVAL;
2550 		goto free_pci_mem;
2551 	}
2552 
2553 	memset(skge->mem, 0, skge->mem_size);
2554 
2555 	err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2556 	if (err)
2557 		goto free_pci_mem;
2558 
2559 	err = skge_rx_fill(dev);
2560 	if (err)
2561 		goto free_rx_ring;
2562 
2563 	err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2564 			      skge->dma + rx_size);
2565 	if (err)
2566 		goto free_rx_ring;
2567 
2568 	if (hw->ports == 1) {
2569 		err = request_irq(hw->pdev->irq, skge_intr, IRQF_SHARED,
2570 				  dev->name, hw);
2571 		if (err) {
2572 			netdev_err(dev, "Unable to allocate interrupt %d error: %d\n",
2573 				   hw->pdev->irq, err);
2574 			goto free_tx_ring;
2575 		}
2576 	}
2577 
2578 	/* Initialize MAC */
2579 	netif_carrier_off(dev);
2580 	spin_lock_bh(&hw->phy_lock);
2581 	if (is_genesis(hw))
2582 		genesis_mac_init(hw, port);
2583 	else
2584 		yukon_mac_init(hw, port);
2585 	spin_unlock_bh(&hw->phy_lock);
2586 
2587 	/* Configure RAMbuffers - equally between ports and tx/rx */
2588 	chunk = (hw->ram_size  - hw->ram_offset) / (hw->ports * 2);
2589 	ram_addr = hw->ram_offset + 2 * chunk * port;
2590 
2591 	skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2592 	skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2593 
2594 	BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2595 	skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2596 	skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2597 
2598 	/* Start receiver BMU */
2599 	wmb();
2600 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2601 	skge_led(skge, LED_MODE_ON);
2602 
2603 	spin_lock_irq(&hw->hw_lock);
2604 	hw->intr_mask |= portmask[port];
2605 	skge_write32(hw, B0_IMSK, hw->intr_mask);
2606 	skge_read32(hw, B0_IMSK);
2607 	spin_unlock_irq(&hw->hw_lock);
2608 
2609 	napi_enable(&skge->napi);
2610 
2611 	skge_set_multicast(dev);
2612 
2613 	return 0;
2614 
2615  free_tx_ring:
2616 	kfree(skge->tx_ring.start);
2617  free_rx_ring:
2618 	skge_rx_clean(skge);
2619 	kfree(skge->rx_ring.start);
2620  free_pci_mem:
2621 	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2622 	skge->mem = NULL;
2623 
2624 	return err;
2625 }
2626 
2627 /* stop receiver */
2628 static void skge_rx_stop(struct skge_hw *hw, int port)
2629 {
2630 	skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2631 	skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2632 		     RB_RST_SET|RB_DIS_OP_MD);
2633 	skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2634 }
2635 
2636 static int skge_down(struct net_device *dev)
2637 {
2638 	struct skge_port *skge = netdev_priv(dev);
2639 	struct skge_hw *hw = skge->hw;
2640 	int port = skge->port;
2641 
2642 	if (skge->mem == NULL)
2643 		return 0;
2644 
2645 	netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2646 
2647 	netif_tx_disable(dev);
2648 
2649 	if (is_genesis(hw) && hw->phy_type == SK_PHY_XMAC)
2650 		del_timer_sync(&skge->link_timer);
2651 
2652 	napi_disable(&skge->napi);
2653 	netif_carrier_off(dev);
2654 
2655 	spin_lock_irq(&hw->hw_lock);
2656 	hw->intr_mask &= ~portmask[port];
2657 	skge_write32(hw, B0_IMSK, (hw->ports == 1) ? 0 : hw->intr_mask);
2658 	skge_read32(hw, B0_IMSK);
2659 	spin_unlock_irq(&hw->hw_lock);
2660 
2661 	if (hw->ports == 1)
2662 		free_irq(hw->pdev->irq, hw);
2663 
2664 	skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2665 	if (is_genesis(hw))
2666 		genesis_stop(skge);
2667 	else
2668 		yukon_stop(skge);
2669 
2670 	/* Stop transmitter */
2671 	skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2672 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2673 		     RB_RST_SET|RB_DIS_OP_MD);
2674 
2675 
2676 	/* Disable Force Sync bit and Enable Alloc bit */
2677 	skge_write8(hw, SK_REG(port, TXA_CTRL),
2678 		    TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2679 
2680 	/* Stop Interval Timer and Limit Counter of Tx Arbiter */
2681 	skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2682 	skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2683 
2684 	/* Reset PCI FIFO */
2685 	skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2686 	skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2687 
2688 	/* Reset the RAM Buffer async Tx queue */
2689 	skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2690 
2691 	skge_rx_stop(hw, port);
2692 
2693 	if (is_genesis(hw)) {
2694 		skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2695 		skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2696 	} else {
2697 		skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2698 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2699 	}
2700 
2701 	skge_led(skge, LED_MODE_OFF);
2702 
2703 	netif_tx_lock_bh(dev);
2704 	skge_tx_clean(dev);
2705 	netif_tx_unlock_bh(dev);
2706 
2707 	skge_rx_clean(skge);
2708 
2709 	kfree(skge->rx_ring.start);
2710 	kfree(skge->tx_ring.start);
2711 	pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2712 	skge->mem = NULL;
2713 	return 0;
2714 }
2715 
2716 static inline int skge_avail(const struct skge_ring *ring)
2717 {
2718 	smp_mb();
2719 	return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2720 		+ (ring->to_clean - ring->to_use) - 1;
2721 }
2722 
2723 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2724 				   struct net_device *dev)
2725 {
2726 	struct skge_port *skge = netdev_priv(dev);
2727 	struct skge_hw *hw = skge->hw;
2728 	struct skge_element *e;
2729 	struct skge_tx_desc *td;
2730 	int i;
2731 	u32 control, len;
2732 	u64 map;
2733 
2734 	if (skb_padto(skb, ETH_ZLEN))
2735 		return NETDEV_TX_OK;
2736 
2737 	if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2738 		return NETDEV_TX_BUSY;
2739 
2740 	e = skge->tx_ring.to_use;
2741 	td = e->desc;
2742 	BUG_ON(td->control & BMU_OWN);
2743 	e->skb = skb;
2744 	len = skb_headlen(skb);
2745 	map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2746 	dma_unmap_addr_set(e, mapaddr, map);
2747 	dma_unmap_len_set(e, maplen, len);
2748 
2749 	td->dma_lo = map;
2750 	td->dma_hi = map >> 32;
2751 
2752 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
2753 		const int offset = skb_checksum_start_offset(skb);
2754 
2755 		/* This seems backwards, but it is what the sk98lin
2756 		 * does.  Looks like hardware is wrong?
2757 		 */
2758 		if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2759 		    hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2760 			control = BMU_TCP_CHECK;
2761 		else
2762 			control = BMU_UDP_CHECK;
2763 
2764 		td->csum_offs = 0;
2765 		td->csum_start = offset;
2766 		td->csum_write = offset + skb->csum_offset;
2767 	} else
2768 		control = BMU_CHECK;
2769 
2770 	if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2771 		control |= BMU_EOF | BMU_IRQ_EOF;
2772 	else {
2773 		struct skge_tx_desc *tf = td;
2774 
2775 		control |= BMU_STFWD;
2776 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2777 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2778 
2779 			map = skb_frag_dma_map(&hw->pdev->dev, frag, 0,
2780 					       skb_frag_size(frag), DMA_TO_DEVICE);
2781 
2782 			e = e->next;
2783 			e->skb = skb;
2784 			tf = e->desc;
2785 			BUG_ON(tf->control & BMU_OWN);
2786 
2787 			tf->dma_lo = map;
2788 			tf->dma_hi = (u64) map >> 32;
2789 			dma_unmap_addr_set(e, mapaddr, map);
2790 			dma_unmap_len_set(e, maplen, skb_frag_size(frag));
2791 
2792 			tf->control = BMU_OWN | BMU_SW | control | skb_frag_size(frag);
2793 		}
2794 		tf->control |= BMU_EOF | BMU_IRQ_EOF;
2795 	}
2796 	/* Make sure all the descriptors written */
2797 	wmb();
2798 	td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2799 	wmb();
2800 
2801 	netdev_sent_queue(dev, skb->len);
2802 
2803 	skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2804 
2805 	netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2806 		     "tx queued, slot %td, len %d\n",
2807 		     e - skge->tx_ring.start, skb->len);
2808 
2809 	skge->tx_ring.to_use = e->next;
2810 	smp_wmb();
2811 
2812 	if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2813 		netdev_dbg(dev, "transmit queue full\n");
2814 		netif_stop_queue(dev);
2815 	}
2816 
2817 	return NETDEV_TX_OK;
2818 }
2819 
2820 
2821 /* Free resources associated with this reing element */
2822 static inline void skge_tx_unmap(struct pci_dev *pdev, struct skge_element *e,
2823 				 u32 control)
2824 {
2825 	/* skb header vs. fragment */
2826 	if (control & BMU_STF)
2827 		pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2828 				 dma_unmap_len(e, maplen),
2829 				 PCI_DMA_TODEVICE);
2830 	else
2831 		pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2832 			       dma_unmap_len(e, maplen),
2833 			       PCI_DMA_TODEVICE);
2834 }
2835 
2836 /* Free all buffers in transmit ring */
2837 static void skge_tx_clean(struct net_device *dev)
2838 {
2839 	struct skge_port *skge = netdev_priv(dev);
2840 	struct skge_element *e;
2841 
2842 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2843 		struct skge_tx_desc *td = e->desc;
2844 
2845 		skge_tx_unmap(skge->hw->pdev, e, td->control);
2846 
2847 		if (td->control & BMU_EOF)
2848 			dev_kfree_skb(e->skb);
2849 		td->control = 0;
2850 	}
2851 
2852 	netdev_reset_queue(dev);
2853 	skge->tx_ring.to_clean = e;
2854 }
2855 
2856 static void skge_tx_timeout(struct net_device *dev)
2857 {
2858 	struct skge_port *skge = netdev_priv(dev);
2859 
2860 	netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2861 
2862 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2863 	skge_tx_clean(dev);
2864 	netif_wake_queue(dev);
2865 }
2866 
2867 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2868 {
2869 	int err;
2870 
2871 	if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2872 		return -EINVAL;
2873 
2874 	if (!netif_running(dev)) {
2875 		dev->mtu = new_mtu;
2876 		return 0;
2877 	}
2878 
2879 	skge_down(dev);
2880 
2881 	dev->mtu = new_mtu;
2882 
2883 	err = skge_up(dev);
2884 	if (err)
2885 		dev_close(dev);
2886 
2887 	return err;
2888 }
2889 
2890 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2891 
2892 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2893 {
2894 	u32 crc, bit;
2895 
2896 	crc = ether_crc_le(ETH_ALEN, addr);
2897 	bit = ~crc & 0x3f;
2898 	filter[bit/8] |= 1 << (bit%8);
2899 }
2900 
2901 static void genesis_set_multicast(struct net_device *dev)
2902 {
2903 	struct skge_port *skge = netdev_priv(dev);
2904 	struct skge_hw *hw = skge->hw;
2905 	int port = skge->port;
2906 	struct netdev_hw_addr *ha;
2907 	u32 mode;
2908 	u8 filter[8];
2909 
2910 	mode = xm_read32(hw, port, XM_MODE);
2911 	mode |= XM_MD_ENA_HASH;
2912 	if (dev->flags & IFF_PROMISC)
2913 		mode |= XM_MD_ENA_PROM;
2914 	else
2915 		mode &= ~XM_MD_ENA_PROM;
2916 
2917 	if (dev->flags & IFF_ALLMULTI)
2918 		memset(filter, 0xff, sizeof(filter));
2919 	else {
2920 		memset(filter, 0, sizeof(filter));
2921 
2922 		if (skge->flow_status == FLOW_STAT_REM_SEND ||
2923 		    skge->flow_status == FLOW_STAT_SYMMETRIC)
2924 			genesis_add_filter(filter, pause_mc_addr);
2925 
2926 		netdev_for_each_mc_addr(ha, dev)
2927 			genesis_add_filter(filter, ha->addr);
2928 	}
2929 
2930 	xm_write32(hw, port, XM_MODE, mode);
2931 	xm_outhash(hw, port, XM_HSM, filter);
2932 }
2933 
2934 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2935 {
2936 	 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2937 	 filter[bit/8] |= 1 << (bit%8);
2938 }
2939 
2940 static void yukon_set_multicast(struct net_device *dev)
2941 {
2942 	struct skge_port *skge = netdev_priv(dev);
2943 	struct skge_hw *hw = skge->hw;
2944 	int port = skge->port;
2945 	struct netdev_hw_addr *ha;
2946 	int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2947 			skge->flow_status == FLOW_STAT_SYMMETRIC);
2948 	u16 reg;
2949 	u8 filter[8];
2950 
2951 	memset(filter, 0, sizeof(filter));
2952 
2953 	reg = gma_read16(hw, port, GM_RX_CTRL);
2954 	reg |= GM_RXCR_UCF_ENA;
2955 
2956 	if (dev->flags & IFF_PROMISC) 		/* promiscuous */
2957 		reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2958 	else if (dev->flags & IFF_ALLMULTI)	/* all multicast */
2959 		memset(filter, 0xff, sizeof(filter));
2960 	else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2961 		reg &= ~GM_RXCR_MCF_ENA;
2962 	else {
2963 		reg |= GM_RXCR_MCF_ENA;
2964 
2965 		if (rx_pause)
2966 			yukon_add_filter(filter, pause_mc_addr);
2967 
2968 		netdev_for_each_mc_addr(ha, dev)
2969 			yukon_add_filter(filter, ha->addr);
2970 	}
2971 
2972 
2973 	gma_write16(hw, port, GM_MC_ADDR_H1,
2974 			 (u16)filter[0] | ((u16)filter[1] << 8));
2975 	gma_write16(hw, port, GM_MC_ADDR_H2,
2976 			 (u16)filter[2] | ((u16)filter[3] << 8));
2977 	gma_write16(hw, port, GM_MC_ADDR_H3,
2978 			 (u16)filter[4] | ((u16)filter[5] << 8));
2979 	gma_write16(hw, port, GM_MC_ADDR_H4,
2980 			 (u16)filter[6] | ((u16)filter[7] << 8));
2981 
2982 	gma_write16(hw, port, GM_RX_CTRL, reg);
2983 }
2984 
2985 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2986 {
2987 	if (is_genesis(hw))
2988 		return status >> XMR_FS_LEN_SHIFT;
2989 	else
2990 		return status >> GMR_FS_LEN_SHIFT;
2991 }
2992 
2993 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2994 {
2995 	if (is_genesis(hw))
2996 		return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2997 	else
2998 		return (status & GMR_FS_ANY_ERR) ||
2999 			(status & GMR_FS_RX_OK) == 0;
3000 }
3001 
3002 static void skge_set_multicast(struct net_device *dev)
3003 {
3004 	struct skge_port *skge = netdev_priv(dev);
3005 
3006 	if (is_genesis(skge->hw))
3007 		genesis_set_multicast(dev);
3008 	else
3009 		yukon_set_multicast(dev);
3010 
3011 }
3012 
3013 
3014 /* Get receive buffer from descriptor.
3015  * Handles copy of small buffers and reallocation failures
3016  */
3017 static struct sk_buff *skge_rx_get(struct net_device *dev,
3018 				   struct skge_element *e,
3019 				   u32 control, u32 status, u16 csum)
3020 {
3021 	struct skge_port *skge = netdev_priv(dev);
3022 	struct sk_buff *skb;
3023 	u16 len = control & BMU_BBC;
3024 
3025 	netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3026 		     "rx slot %td status 0x%x len %d\n",
3027 		     e - skge->rx_ring.start, status, len);
3028 
3029 	if (len > skge->rx_buf_size)
3030 		goto error;
3031 
3032 	if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3033 		goto error;
3034 
3035 	if (bad_phy_status(skge->hw, status))
3036 		goto error;
3037 
3038 	if (phy_length(skge->hw, status) != len)
3039 		goto error;
3040 
3041 	if (len < RX_COPY_THRESHOLD) {
3042 		skb = netdev_alloc_skb_ip_align(dev, len);
3043 		if (!skb)
3044 			goto resubmit;
3045 
3046 		pci_dma_sync_single_for_cpu(skge->hw->pdev,
3047 					    dma_unmap_addr(e, mapaddr),
3048 					    len, PCI_DMA_FROMDEVICE);
3049 		skb_copy_from_linear_data(e->skb, skb->data, len);
3050 		pci_dma_sync_single_for_device(skge->hw->pdev,
3051 					       dma_unmap_addr(e, mapaddr),
3052 					       len, PCI_DMA_FROMDEVICE);
3053 		skge_rx_reuse(e, skge->rx_buf_size);
3054 	} else {
3055 		struct sk_buff *nskb;
3056 
3057 		nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3058 		if (!nskb)
3059 			goto resubmit;
3060 
3061 		pci_unmap_single(skge->hw->pdev,
3062 				 dma_unmap_addr(e, mapaddr),
3063 				 dma_unmap_len(e, maplen),
3064 				 PCI_DMA_FROMDEVICE);
3065 		skb = e->skb;
3066 		prefetch(skb->data);
3067 		skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3068 	}
3069 
3070 	skb_put(skb, len);
3071 
3072 	if (dev->features & NETIF_F_RXCSUM) {
3073 		skb->csum = csum;
3074 		skb->ip_summed = CHECKSUM_COMPLETE;
3075 	}
3076 
3077 	skb->protocol = eth_type_trans(skb, dev);
3078 
3079 	return skb;
3080 error:
3081 
3082 	netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3083 		     "rx err, slot %td control 0x%x status 0x%x\n",
3084 		     e - skge->rx_ring.start, control, status);
3085 
3086 	if (is_genesis(skge->hw)) {
3087 		if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3088 			dev->stats.rx_length_errors++;
3089 		if (status & XMR_FS_FRA_ERR)
3090 			dev->stats.rx_frame_errors++;
3091 		if (status & XMR_FS_FCS_ERR)
3092 			dev->stats.rx_crc_errors++;
3093 	} else {
3094 		if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3095 			dev->stats.rx_length_errors++;
3096 		if (status & GMR_FS_FRAGMENT)
3097 			dev->stats.rx_frame_errors++;
3098 		if (status & GMR_FS_CRC_ERR)
3099 			dev->stats.rx_crc_errors++;
3100 	}
3101 
3102 resubmit:
3103 	skge_rx_reuse(e, skge->rx_buf_size);
3104 	return NULL;
3105 }
3106 
3107 /* Free all buffers in Tx ring which are no longer owned by device */
3108 static void skge_tx_done(struct net_device *dev)
3109 {
3110 	struct skge_port *skge = netdev_priv(dev);
3111 	struct skge_ring *ring = &skge->tx_ring;
3112 	struct skge_element *e;
3113 	unsigned int bytes_compl = 0, pkts_compl = 0;
3114 
3115 	skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3116 
3117 	for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3118 		u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3119 
3120 		if (control & BMU_OWN)
3121 			break;
3122 
3123 		skge_tx_unmap(skge->hw->pdev, e, control);
3124 
3125 		if (control & BMU_EOF) {
3126 			netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
3127 				     "tx done slot %td\n",
3128 				     e - skge->tx_ring.start);
3129 
3130 			pkts_compl++;
3131 			bytes_compl += e->skb->len;
3132 
3133 			dev_kfree_skb(e->skb);
3134 		}
3135 	}
3136 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
3137 	skge->tx_ring.to_clean = e;
3138 
3139 	/* Can run lockless until we need to synchronize to restart queue. */
3140 	smp_mb();
3141 
3142 	if (unlikely(netif_queue_stopped(dev) &&
3143 		     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3144 		netif_tx_lock(dev);
3145 		if (unlikely(netif_queue_stopped(dev) &&
3146 			     skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3147 			netif_wake_queue(dev);
3148 
3149 		}
3150 		netif_tx_unlock(dev);
3151 	}
3152 }
3153 
3154 static int skge_poll(struct napi_struct *napi, int to_do)
3155 {
3156 	struct skge_port *skge = container_of(napi, struct skge_port, napi);
3157 	struct net_device *dev = skge->netdev;
3158 	struct skge_hw *hw = skge->hw;
3159 	struct skge_ring *ring = &skge->rx_ring;
3160 	struct skge_element *e;
3161 	int work_done = 0;
3162 
3163 	skge_tx_done(dev);
3164 
3165 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3166 
3167 	for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3168 		struct skge_rx_desc *rd = e->desc;
3169 		struct sk_buff *skb;
3170 		u32 control;
3171 
3172 		rmb();
3173 		control = rd->control;
3174 		if (control & BMU_OWN)
3175 			break;
3176 
3177 		skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3178 		if (likely(skb)) {
3179 			napi_gro_receive(napi, skb);
3180 			++work_done;
3181 		}
3182 	}
3183 	ring->to_clean = e;
3184 
3185 	/* restart receiver */
3186 	wmb();
3187 	skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3188 
3189 	if (work_done < to_do) {
3190 		unsigned long flags;
3191 
3192 		napi_gro_flush(napi);
3193 		spin_lock_irqsave(&hw->hw_lock, flags);
3194 		__napi_complete(napi);
3195 		hw->intr_mask |= napimask[skge->port];
3196 		skge_write32(hw, B0_IMSK, hw->intr_mask);
3197 		skge_read32(hw, B0_IMSK);
3198 		spin_unlock_irqrestore(&hw->hw_lock, flags);
3199 	}
3200 
3201 	return work_done;
3202 }
3203 
3204 /* Parity errors seem to happen when Genesis is connected to a switch
3205  * with no other ports present. Heartbeat error??
3206  */
3207 static void skge_mac_parity(struct skge_hw *hw, int port)
3208 {
3209 	struct net_device *dev = hw->dev[port];
3210 
3211 	++dev->stats.tx_heartbeat_errors;
3212 
3213 	if (is_genesis(hw))
3214 		skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3215 			     MFF_CLR_PERR);
3216 	else
3217 		/* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3218 		skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3219 			    (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3220 			    ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3221 }
3222 
3223 static void skge_mac_intr(struct skge_hw *hw, int port)
3224 {
3225 	if (is_genesis(hw))
3226 		genesis_mac_intr(hw, port);
3227 	else
3228 		yukon_mac_intr(hw, port);
3229 }
3230 
3231 /* Handle device specific framing and timeout interrupts */
3232 static void skge_error_irq(struct skge_hw *hw)
3233 {
3234 	struct pci_dev *pdev = hw->pdev;
3235 	u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3236 
3237 	if (is_genesis(hw)) {
3238 		/* clear xmac errors */
3239 		if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3240 			skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3241 		if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3242 			skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3243 	} else {
3244 		/* Timestamp (unused) overflow */
3245 		if (hwstatus & IS_IRQ_TIST_OV)
3246 			skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3247 	}
3248 
3249 	if (hwstatus & IS_RAM_RD_PAR) {
3250 		dev_err(&pdev->dev, "Ram read data parity error\n");
3251 		skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3252 	}
3253 
3254 	if (hwstatus & IS_RAM_WR_PAR) {
3255 		dev_err(&pdev->dev, "Ram write data parity error\n");
3256 		skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3257 	}
3258 
3259 	if (hwstatus & IS_M1_PAR_ERR)
3260 		skge_mac_parity(hw, 0);
3261 
3262 	if (hwstatus & IS_M2_PAR_ERR)
3263 		skge_mac_parity(hw, 1);
3264 
3265 	if (hwstatus & IS_R1_PAR_ERR) {
3266 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3267 			hw->dev[0]->name);
3268 		skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3269 	}
3270 
3271 	if (hwstatus & IS_R2_PAR_ERR) {
3272 		dev_err(&pdev->dev, "%s: receive queue parity error\n",
3273 			hw->dev[1]->name);
3274 		skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3275 	}
3276 
3277 	if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3278 		u16 pci_status, pci_cmd;
3279 
3280 		pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3281 		pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3282 
3283 		dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3284 			pci_cmd, pci_status);
3285 
3286 		/* Write the error bits back to clear them. */
3287 		pci_status &= PCI_STATUS_ERROR_BITS;
3288 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3289 		pci_write_config_word(pdev, PCI_COMMAND,
3290 				      pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3291 		pci_write_config_word(pdev, PCI_STATUS, pci_status);
3292 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3293 
3294 		/* if error still set then just ignore it */
3295 		hwstatus = skge_read32(hw, B0_HWE_ISRC);
3296 		if (hwstatus & IS_IRQ_STAT) {
3297 			dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3298 			hw->intr_mask &= ~IS_HW_ERR;
3299 		}
3300 	}
3301 }
3302 
3303 /*
3304  * Interrupt from PHY are handled in tasklet (softirq)
3305  * because accessing phy registers requires spin wait which might
3306  * cause excess interrupt latency.
3307  */
3308 static void skge_extirq(unsigned long arg)
3309 {
3310 	struct skge_hw *hw = (struct skge_hw *) arg;
3311 	int port;
3312 
3313 	for (port = 0; port < hw->ports; port++) {
3314 		struct net_device *dev = hw->dev[port];
3315 
3316 		if (netif_running(dev)) {
3317 			struct skge_port *skge = netdev_priv(dev);
3318 
3319 			spin_lock(&hw->phy_lock);
3320 			if (!is_genesis(hw))
3321 				yukon_phy_intr(skge);
3322 			else if (hw->phy_type == SK_PHY_BCOM)
3323 				bcom_phy_intr(skge);
3324 			spin_unlock(&hw->phy_lock);
3325 		}
3326 	}
3327 
3328 	spin_lock_irq(&hw->hw_lock);
3329 	hw->intr_mask |= IS_EXT_REG;
3330 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3331 	skge_read32(hw, B0_IMSK);
3332 	spin_unlock_irq(&hw->hw_lock);
3333 }
3334 
3335 static irqreturn_t skge_intr(int irq, void *dev_id)
3336 {
3337 	struct skge_hw *hw = dev_id;
3338 	u32 status;
3339 	int handled = 0;
3340 
3341 	spin_lock(&hw->hw_lock);
3342 	/* Reading this register masks IRQ */
3343 	status = skge_read32(hw, B0_SP_ISRC);
3344 	if (status == 0 || status == ~0)
3345 		goto out;
3346 
3347 	handled = 1;
3348 	status &= hw->intr_mask;
3349 	if (status & IS_EXT_REG) {
3350 		hw->intr_mask &= ~IS_EXT_REG;
3351 		tasklet_schedule(&hw->phy_task);
3352 	}
3353 
3354 	if (status & (IS_XA1_F|IS_R1_F)) {
3355 		struct skge_port *skge = netdev_priv(hw->dev[0]);
3356 		hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3357 		napi_schedule(&skge->napi);
3358 	}
3359 
3360 	if (status & IS_PA_TO_TX1)
3361 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3362 
3363 	if (status & IS_PA_TO_RX1) {
3364 		++hw->dev[0]->stats.rx_over_errors;
3365 		skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3366 	}
3367 
3368 
3369 	if (status & IS_MAC1)
3370 		skge_mac_intr(hw, 0);
3371 
3372 	if (hw->dev[1]) {
3373 		struct skge_port *skge = netdev_priv(hw->dev[1]);
3374 
3375 		if (status & (IS_XA2_F|IS_R2_F)) {
3376 			hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3377 			napi_schedule(&skge->napi);
3378 		}
3379 
3380 		if (status & IS_PA_TO_RX2) {
3381 			++hw->dev[1]->stats.rx_over_errors;
3382 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3383 		}
3384 
3385 		if (status & IS_PA_TO_TX2)
3386 			skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3387 
3388 		if (status & IS_MAC2)
3389 			skge_mac_intr(hw, 1);
3390 	}
3391 
3392 	if (status & IS_HW_ERR)
3393 		skge_error_irq(hw);
3394 
3395 	skge_write32(hw, B0_IMSK, hw->intr_mask);
3396 	skge_read32(hw, B0_IMSK);
3397 out:
3398 	spin_unlock(&hw->hw_lock);
3399 
3400 	return IRQ_RETVAL(handled);
3401 }
3402 
3403 #ifdef CONFIG_NET_POLL_CONTROLLER
3404 static void skge_netpoll(struct net_device *dev)
3405 {
3406 	struct skge_port *skge = netdev_priv(dev);
3407 
3408 	disable_irq(dev->irq);
3409 	skge_intr(dev->irq, skge->hw);
3410 	enable_irq(dev->irq);
3411 }
3412 #endif
3413 
3414 static int skge_set_mac_address(struct net_device *dev, void *p)
3415 {
3416 	struct skge_port *skge = netdev_priv(dev);
3417 	struct skge_hw *hw = skge->hw;
3418 	unsigned port = skge->port;
3419 	const struct sockaddr *addr = p;
3420 	u16 ctrl;
3421 
3422 	if (!is_valid_ether_addr(addr->sa_data))
3423 		return -EADDRNOTAVAIL;
3424 
3425 	memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3426 
3427 	if (!netif_running(dev)) {
3428 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3429 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3430 	} else {
3431 		/* disable Rx */
3432 		spin_lock_bh(&hw->phy_lock);
3433 		ctrl = gma_read16(hw, port, GM_GP_CTRL);
3434 		gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3435 
3436 		memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3437 		memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3438 
3439 		if (is_genesis(hw))
3440 			xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3441 		else {
3442 			gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3443 			gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3444 		}
3445 
3446 		gma_write16(hw, port, GM_GP_CTRL, ctrl);
3447 		spin_unlock_bh(&hw->phy_lock);
3448 	}
3449 
3450 	return 0;
3451 }
3452 
3453 static const struct {
3454 	u8 id;
3455 	const char *name;
3456 } skge_chips[] = {
3457 	{ CHIP_ID_GENESIS,	"Genesis" },
3458 	{ CHIP_ID_YUKON,	 "Yukon" },
3459 	{ CHIP_ID_YUKON_LITE,	 "Yukon-Lite"},
3460 	{ CHIP_ID_YUKON_LP,	 "Yukon-LP"},
3461 };
3462 
3463 static const char *skge_board_name(const struct skge_hw *hw)
3464 {
3465 	int i;
3466 	static char buf[16];
3467 
3468 	for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3469 		if (skge_chips[i].id == hw->chip_id)
3470 			return skge_chips[i].name;
3471 
3472 	snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3473 	return buf;
3474 }
3475 
3476 
3477 /*
3478  * Setup the board data structure, but don't bring up
3479  * the port(s)
3480  */
3481 static int skge_reset(struct skge_hw *hw)
3482 {
3483 	u32 reg;
3484 	u16 ctst, pci_status;
3485 	u8 t8, mac_cfg, pmd_type;
3486 	int i;
3487 
3488 	ctst = skge_read16(hw, B0_CTST);
3489 
3490 	/* do a SW reset */
3491 	skge_write8(hw, B0_CTST, CS_RST_SET);
3492 	skge_write8(hw, B0_CTST, CS_RST_CLR);
3493 
3494 	/* clear PCI errors, if any */
3495 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3496 	skge_write8(hw, B2_TST_CTRL2, 0);
3497 
3498 	pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3499 	pci_write_config_word(hw->pdev, PCI_STATUS,
3500 			      pci_status | PCI_STATUS_ERROR_BITS);
3501 	skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3502 	skge_write8(hw, B0_CTST, CS_MRST_CLR);
3503 
3504 	/* restore CLK_RUN bits (for Yukon-Lite) */
3505 	skge_write16(hw, B0_CTST,
3506 		     ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3507 
3508 	hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3509 	hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3510 	pmd_type = skge_read8(hw, B2_PMD_TYP);
3511 	hw->copper = (pmd_type == 'T' || pmd_type == '1');
3512 
3513 	switch (hw->chip_id) {
3514 	case CHIP_ID_GENESIS:
3515 #ifdef CONFIG_SKGE_GENESIS
3516 		switch (hw->phy_type) {
3517 		case SK_PHY_XMAC:
3518 			hw->phy_addr = PHY_ADDR_XMAC;
3519 			break;
3520 		case SK_PHY_BCOM:
3521 			hw->phy_addr = PHY_ADDR_BCOM;
3522 			break;
3523 		default:
3524 			dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3525 			       hw->phy_type);
3526 			return -EOPNOTSUPP;
3527 		}
3528 		break;
3529 #else
3530 		dev_err(&hw->pdev->dev, "Genesis chip detected but not configured\n");
3531 		return -EOPNOTSUPP;
3532 #endif
3533 
3534 	case CHIP_ID_YUKON:
3535 	case CHIP_ID_YUKON_LITE:
3536 	case CHIP_ID_YUKON_LP:
3537 		if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3538 			hw->copper = 1;
3539 
3540 		hw->phy_addr = PHY_ADDR_MARV;
3541 		break;
3542 
3543 	default:
3544 		dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3545 		       hw->chip_id);
3546 		return -EOPNOTSUPP;
3547 	}
3548 
3549 	mac_cfg = skge_read8(hw, B2_MAC_CFG);
3550 	hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3551 	hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3552 
3553 	/* read the adapters RAM size */
3554 	t8 = skge_read8(hw, B2_E_0);
3555 	if (is_genesis(hw)) {
3556 		if (t8 == 3) {
3557 			/* special case: 4 x 64k x 36, offset = 0x80000 */
3558 			hw->ram_size = 0x100000;
3559 			hw->ram_offset = 0x80000;
3560 		} else
3561 			hw->ram_size = t8 * 512;
3562 	} else if (t8 == 0)
3563 		hw->ram_size = 0x20000;
3564 	else
3565 		hw->ram_size = t8 * 4096;
3566 
3567 	hw->intr_mask = IS_HW_ERR;
3568 
3569 	/* Use PHY IRQ for all but fiber based Genesis board */
3570 	if (!(is_genesis(hw) && hw->phy_type == SK_PHY_XMAC))
3571 		hw->intr_mask |= IS_EXT_REG;
3572 
3573 	if (is_genesis(hw))
3574 		genesis_init(hw);
3575 	else {
3576 		/* switch power to VCC (WA for VAUX problem) */
3577 		skge_write8(hw, B0_POWER_CTRL,
3578 			    PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3579 
3580 		/* avoid boards with stuck Hardware error bits */
3581 		if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3582 		    (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3583 			dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3584 			hw->intr_mask &= ~IS_HW_ERR;
3585 		}
3586 
3587 		/* Clear PHY COMA */
3588 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3589 		pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3590 		reg &= ~PCI_PHY_COMA;
3591 		pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3592 		skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3593 
3594 
3595 		for (i = 0; i < hw->ports; i++) {
3596 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3597 			skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3598 		}
3599 	}
3600 
3601 	/* turn off hardware timer (unused) */
3602 	skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3603 	skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3604 	skge_write8(hw, B0_LED, LED_STAT_ON);
3605 
3606 	/* enable the Tx Arbiters */
3607 	for (i = 0; i < hw->ports; i++)
3608 		skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3609 
3610 	/* Initialize ram interface */
3611 	skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3612 
3613 	skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3614 	skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3615 	skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3616 	skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3617 	skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3618 	skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3619 	skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3620 	skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3621 	skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3622 	skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3623 	skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3624 	skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3625 
3626 	skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3627 
3628 	/* Set interrupt moderation for Transmit only
3629 	 * Receive interrupts avoided by NAPI
3630 	 */
3631 	skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3632 	skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3633 	skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3634 
3635 	/* Leave irq disabled until first port is brought up. */
3636 	skge_write32(hw, B0_IMSK, 0);
3637 
3638 	for (i = 0; i < hw->ports; i++) {
3639 		if (is_genesis(hw))
3640 			genesis_reset(hw, i);
3641 		else
3642 			yukon_reset(hw, i);
3643 	}
3644 
3645 	return 0;
3646 }
3647 
3648 
3649 #ifdef CONFIG_SKGE_DEBUG
3650 
3651 static struct dentry *skge_debug;
3652 
3653 static int skge_debug_show(struct seq_file *seq, void *v)
3654 {
3655 	struct net_device *dev = seq->private;
3656 	const struct skge_port *skge = netdev_priv(dev);
3657 	const struct skge_hw *hw = skge->hw;
3658 	const struct skge_element *e;
3659 
3660 	if (!netif_running(dev))
3661 		return -ENETDOWN;
3662 
3663 	seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3664 		   skge_read32(hw, B0_IMSK));
3665 
3666 	seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3667 	for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3668 		const struct skge_tx_desc *t = e->desc;
3669 		seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3670 			   t->control, t->dma_hi, t->dma_lo, t->status,
3671 			   t->csum_offs, t->csum_write, t->csum_start);
3672 	}
3673 
3674 	seq_printf(seq, "\nRx Ring:\n");
3675 	for (e = skge->rx_ring.to_clean; ; e = e->next) {
3676 		const struct skge_rx_desc *r = e->desc;
3677 
3678 		if (r->control & BMU_OWN)
3679 			break;
3680 
3681 		seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3682 			   r->control, r->dma_hi, r->dma_lo, r->status,
3683 			   r->timestamp, r->csum1, r->csum1_start);
3684 	}
3685 
3686 	return 0;
3687 }
3688 
3689 static int skge_debug_open(struct inode *inode, struct file *file)
3690 {
3691 	return single_open(file, skge_debug_show, inode->i_private);
3692 }
3693 
3694 static const struct file_operations skge_debug_fops = {
3695 	.owner		= THIS_MODULE,
3696 	.open		= skge_debug_open,
3697 	.read		= seq_read,
3698 	.llseek		= seq_lseek,
3699 	.release	= single_release,
3700 };
3701 
3702 /*
3703  * Use network device events to create/remove/rename
3704  * debugfs file entries
3705  */
3706 static int skge_device_event(struct notifier_block *unused,
3707 			     unsigned long event, void *ptr)
3708 {
3709 	struct net_device *dev = ptr;
3710 	struct skge_port *skge;
3711 	struct dentry *d;
3712 
3713 	if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3714 		goto done;
3715 
3716 	skge = netdev_priv(dev);
3717 	switch (event) {
3718 	case NETDEV_CHANGENAME:
3719 		if (skge->debugfs) {
3720 			d = debugfs_rename(skge_debug, skge->debugfs,
3721 					   skge_debug, dev->name);
3722 			if (d)
3723 				skge->debugfs = d;
3724 			else {
3725 				netdev_info(dev, "rename failed\n");
3726 				debugfs_remove(skge->debugfs);
3727 			}
3728 		}
3729 		break;
3730 
3731 	case NETDEV_GOING_DOWN:
3732 		if (skge->debugfs) {
3733 			debugfs_remove(skge->debugfs);
3734 			skge->debugfs = NULL;
3735 		}
3736 		break;
3737 
3738 	case NETDEV_UP:
3739 		d = debugfs_create_file(dev->name, S_IRUGO,
3740 					skge_debug, dev,
3741 					&skge_debug_fops);
3742 		if (!d || IS_ERR(d))
3743 			netdev_info(dev, "debugfs create failed\n");
3744 		else
3745 			skge->debugfs = d;
3746 		break;
3747 	}
3748 
3749 done:
3750 	return NOTIFY_DONE;
3751 }
3752 
3753 static struct notifier_block skge_notifier = {
3754 	.notifier_call = skge_device_event,
3755 };
3756 
3757 
3758 static __init void skge_debug_init(void)
3759 {
3760 	struct dentry *ent;
3761 
3762 	ent = debugfs_create_dir("skge", NULL);
3763 	if (!ent || IS_ERR(ent)) {
3764 		pr_info("debugfs create directory failed\n");
3765 		return;
3766 	}
3767 
3768 	skge_debug = ent;
3769 	register_netdevice_notifier(&skge_notifier);
3770 }
3771 
3772 static __exit void skge_debug_cleanup(void)
3773 {
3774 	if (skge_debug) {
3775 		unregister_netdevice_notifier(&skge_notifier);
3776 		debugfs_remove(skge_debug);
3777 		skge_debug = NULL;
3778 	}
3779 }
3780 
3781 #else
3782 #define skge_debug_init()
3783 #define skge_debug_cleanup()
3784 #endif
3785 
3786 static const struct net_device_ops skge_netdev_ops = {
3787 	.ndo_open		= skge_up,
3788 	.ndo_stop		= skge_down,
3789 	.ndo_start_xmit		= skge_xmit_frame,
3790 	.ndo_do_ioctl		= skge_ioctl,
3791 	.ndo_get_stats		= skge_get_stats,
3792 	.ndo_tx_timeout		= skge_tx_timeout,
3793 	.ndo_change_mtu		= skge_change_mtu,
3794 	.ndo_validate_addr	= eth_validate_addr,
3795 	.ndo_set_rx_mode	= skge_set_multicast,
3796 	.ndo_set_mac_address	= skge_set_mac_address,
3797 #ifdef CONFIG_NET_POLL_CONTROLLER
3798 	.ndo_poll_controller	= skge_netpoll,
3799 #endif
3800 };
3801 
3802 
3803 /* Initialize network device */
3804 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3805 				       int highmem)
3806 {
3807 	struct skge_port *skge;
3808 	struct net_device *dev = alloc_etherdev(sizeof(*skge));
3809 
3810 	if (!dev)
3811 		return NULL;
3812 
3813 	SET_NETDEV_DEV(dev, &hw->pdev->dev);
3814 	dev->netdev_ops = &skge_netdev_ops;
3815 	dev->ethtool_ops = &skge_ethtool_ops;
3816 	dev->watchdog_timeo = TX_WATCHDOG;
3817 	dev->irq = hw->pdev->irq;
3818 
3819 	if (highmem)
3820 		dev->features |= NETIF_F_HIGHDMA;
3821 
3822 	skge = netdev_priv(dev);
3823 	netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3824 	skge->netdev = dev;
3825 	skge->hw = hw;
3826 	skge->msg_enable = netif_msg_init(debug, default_msg);
3827 
3828 	skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3829 	skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3830 
3831 	/* Auto speed and flow control */
3832 	skge->autoneg = AUTONEG_ENABLE;
3833 	skge->flow_control = FLOW_MODE_SYM_OR_REM;
3834 	skge->duplex = -1;
3835 	skge->speed = -1;
3836 	skge->advertising = skge_supported_modes(hw);
3837 
3838 	if (device_can_wakeup(&hw->pdev->dev)) {
3839 		skge->wol = wol_supported(hw) & WAKE_MAGIC;
3840 		device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3841 	}
3842 
3843 	hw->dev[port] = dev;
3844 
3845 	skge->port = port;
3846 
3847 	/* Only used for Genesis XMAC */
3848 	if (is_genesis(hw))
3849 	    setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3850 	else {
3851 		dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3852 		                   NETIF_F_RXCSUM;
3853 		dev->features |= dev->hw_features;
3854 	}
3855 
3856 	/* read the mac address */
3857 	memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3858 	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3859 
3860 	return dev;
3861 }
3862 
3863 static void __devinit skge_show_addr(struct net_device *dev)
3864 {
3865 	const struct skge_port *skge = netdev_priv(dev);
3866 
3867 	netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3868 }
3869 
3870 static int only_32bit_dma;
3871 
3872 static int __devinit skge_probe(struct pci_dev *pdev,
3873 				const struct pci_device_id *ent)
3874 {
3875 	struct net_device *dev, *dev1;
3876 	struct skge_hw *hw;
3877 	int err, using_dac = 0;
3878 
3879 	err = pci_enable_device(pdev);
3880 	if (err) {
3881 		dev_err(&pdev->dev, "cannot enable PCI device\n");
3882 		goto err_out;
3883 	}
3884 
3885 	err = pci_request_regions(pdev, DRV_NAME);
3886 	if (err) {
3887 		dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3888 		goto err_out_disable_pdev;
3889 	}
3890 
3891 	pci_set_master(pdev);
3892 
3893 	if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3894 		using_dac = 1;
3895 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3896 	} else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3897 		using_dac = 0;
3898 		err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3899 	}
3900 
3901 	if (err) {
3902 		dev_err(&pdev->dev, "no usable DMA configuration\n");
3903 		goto err_out_free_regions;
3904 	}
3905 
3906 #ifdef __BIG_ENDIAN
3907 	/* byte swap descriptors in hardware */
3908 	{
3909 		u32 reg;
3910 
3911 		pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3912 		reg |= PCI_REV_DESC;
3913 		pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3914 	}
3915 #endif
3916 
3917 	err = -ENOMEM;
3918 	/* space for skge@pci:0000:04:00.0 */
3919 	hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3920 		     + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3921 	if (!hw) {
3922 		dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3923 		goto err_out_free_regions;
3924 	}
3925 	sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3926 
3927 	hw->pdev = pdev;
3928 	spin_lock_init(&hw->hw_lock);
3929 	spin_lock_init(&hw->phy_lock);
3930 	tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3931 
3932 	hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3933 	if (!hw->regs) {
3934 		dev_err(&pdev->dev, "cannot map device registers\n");
3935 		goto err_out_free_hw;
3936 	}
3937 
3938 	err = skge_reset(hw);
3939 	if (err)
3940 		goto err_out_iounmap;
3941 
3942 	pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3943 		DRV_VERSION,
3944 		(unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3945 		skge_board_name(hw), hw->chip_rev);
3946 
3947 	dev = skge_devinit(hw, 0, using_dac);
3948 	if (!dev)
3949 		goto err_out_led_off;
3950 
3951 	/* Some motherboards are broken and has zero in ROM. */
3952 	if (!is_valid_ether_addr(dev->dev_addr))
3953 		dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3954 
3955 	err = register_netdev(dev);
3956 	if (err) {
3957 		dev_err(&pdev->dev, "cannot register net device\n");
3958 		goto err_out_free_netdev;
3959 	}
3960 
3961 	skge_show_addr(dev);
3962 
3963 	if (hw->ports > 1) {
3964 		dev1 = skge_devinit(hw, 1, using_dac);
3965 		if (!dev1) {
3966 			err = -ENOMEM;
3967 			goto err_out_unregister;
3968 		}
3969 
3970 		err = register_netdev(dev1);
3971 		if (err) {
3972 			dev_err(&pdev->dev, "cannot register second net device\n");
3973 			goto err_out_free_dev1;
3974 		}
3975 
3976 		err = request_irq(pdev->irq, skge_intr, IRQF_SHARED,
3977 				  hw->irq_name, hw);
3978 		if (err) {
3979 			dev_err(&pdev->dev, "cannot assign irq %d\n",
3980 				pdev->irq);
3981 			goto err_out_unregister_dev1;
3982 		}
3983 
3984 		skge_show_addr(dev1);
3985 	}
3986 	pci_set_drvdata(pdev, hw);
3987 
3988 	return 0;
3989 
3990 err_out_unregister_dev1:
3991 	unregister_netdev(dev1);
3992 err_out_free_dev1:
3993 	free_netdev(dev1);
3994 err_out_unregister:
3995 	unregister_netdev(dev);
3996 err_out_free_netdev:
3997 	free_netdev(dev);
3998 err_out_led_off:
3999 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4000 err_out_iounmap:
4001 	iounmap(hw->regs);
4002 err_out_free_hw:
4003 	kfree(hw);
4004 err_out_free_regions:
4005 	pci_release_regions(pdev);
4006 err_out_disable_pdev:
4007 	pci_disable_device(pdev);
4008 	pci_set_drvdata(pdev, NULL);
4009 err_out:
4010 	return err;
4011 }
4012 
4013 static void __devexit skge_remove(struct pci_dev *pdev)
4014 {
4015 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4016 	struct net_device *dev0, *dev1;
4017 
4018 	if (!hw)
4019 		return;
4020 
4021 	dev1 = hw->dev[1];
4022 	if (dev1)
4023 		unregister_netdev(dev1);
4024 	dev0 = hw->dev[0];
4025 	unregister_netdev(dev0);
4026 
4027 	tasklet_disable(&hw->phy_task);
4028 
4029 	spin_lock_irq(&hw->hw_lock);
4030 	hw->intr_mask = 0;
4031 
4032 	if (hw->ports > 1) {
4033 		skge_write32(hw, B0_IMSK, 0);
4034 		skge_read32(hw, B0_IMSK);
4035 		free_irq(pdev->irq, hw);
4036 	}
4037 	spin_unlock_irq(&hw->hw_lock);
4038 
4039 	skge_write16(hw, B0_LED, LED_STAT_OFF);
4040 	skge_write8(hw, B0_CTST, CS_RST_SET);
4041 
4042 	if (hw->ports > 1)
4043 		free_irq(pdev->irq, hw);
4044 	pci_release_regions(pdev);
4045 	pci_disable_device(pdev);
4046 	if (dev1)
4047 		free_netdev(dev1);
4048 	free_netdev(dev0);
4049 
4050 	iounmap(hw->regs);
4051 	kfree(hw);
4052 	pci_set_drvdata(pdev, NULL);
4053 }
4054 
4055 #ifdef CONFIG_PM_SLEEP
4056 static int skge_suspend(struct device *dev)
4057 {
4058 	struct pci_dev *pdev = to_pci_dev(dev);
4059 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4060 	int i;
4061 
4062 	if (!hw)
4063 		return 0;
4064 
4065 	for (i = 0; i < hw->ports; i++) {
4066 		struct net_device *dev = hw->dev[i];
4067 		struct skge_port *skge = netdev_priv(dev);
4068 
4069 		if (netif_running(dev))
4070 			skge_down(dev);
4071 
4072 		if (skge->wol)
4073 			skge_wol_init(skge);
4074 	}
4075 
4076 	skge_write32(hw, B0_IMSK, 0);
4077 
4078 	return 0;
4079 }
4080 
4081 static int skge_resume(struct device *dev)
4082 {
4083 	struct pci_dev *pdev = to_pci_dev(dev);
4084 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4085 	int i, err;
4086 
4087 	if (!hw)
4088 		return 0;
4089 
4090 	err = skge_reset(hw);
4091 	if (err)
4092 		goto out;
4093 
4094 	for (i = 0; i < hw->ports; i++) {
4095 		struct net_device *dev = hw->dev[i];
4096 
4097 		if (netif_running(dev)) {
4098 			err = skge_up(dev);
4099 
4100 			if (err) {
4101 				netdev_err(dev, "could not up: %d\n", err);
4102 				dev_close(dev);
4103 				goto out;
4104 			}
4105 		}
4106 	}
4107 out:
4108 	return err;
4109 }
4110 
4111 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4112 #define SKGE_PM_OPS (&skge_pm_ops)
4113 
4114 #else
4115 
4116 #define SKGE_PM_OPS NULL
4117 #endif /* CONFIG_PM_SLEEP */
4118 
4119 static void skge_shutdown(struct pci_dev *pdev)
4120 {
4121 	struct skge_hw *hw  = pci_get_drvdata(pdev);
4122 	int i;
4123 
4124 	if (!hw)
4125 		return;
4126 
4127 	for (i = 0; i < hw->ports; i++) {
4128 		struct net_device *dev = hw->dev[i];
4129 		struct skge_port *skge = netdev_priv(dev);
4130 
4131 		if (skge->wol)
4132 			skge_wol_init(skge);
4133 	}
4134 
4135 	pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4136 	pci_set_power_state(pdev, PCI_D3hot);
4137 }
4138 
4139 static struct pci_driver skge_driver = {
4140 	.name =         DRV_NAME,
4141 	.id_table =     skge_id_table,
4142 	.probe =        skge_probe,
4143 	.remove =       __devexit_p(skge_remove),
4144 	.shutdown =	skge_shutdown,
4145 	.driver.pm =	SKGE_PM_OPS,
4146 };
4147 
4148 static struct dmi_system_id skge_32bit_dma_boards[] = {
4149 	{
4150 		.ident = "Gigabyte nForce boards",
4151 		.matches = {
4152 			DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4153 			DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4154 		},
4155 	},
4156 	{}
4157 };
4158 
4159 static int __init skge_init_module(void)
4160 {
4161 	if (dmi_check_system(skge_32bit_dma_boards))
4162 		only_32bit_dma = 1;
4163 	skge_debug_init();
4164 	return pci_register_driver(&skge_driver);
4165 }
4166 
4167 static void __exit skge_cleanup_module(void)
4168 {
4169 	pci_unregister_driver(&skge_driver);
4170 	skge_debug_cleanup();
4171 }
4172 
4173 module_init(skge_init_module);
4174 module_exit(skge_cleanup_module);
4175