xref: /linux/drivers/net/ethernet/marvell/mvneta.c (revision ab520be8cd5d56867fc95cfbc34b90880faf1f9d)
1 /*
2  * Driver for Marvell NETA network card for Armada XP and Armada 370 SoCs.
3  *
4  * Copyright (C) 2012 Marvell
5  *
6  * Rami Rosen <rosenr@marvell.com>
7  * Thomas Petazzoni <thomas.petazzoni@free-electrons.com>
8  *
9  * This file is licensed under the terms of the GNU General Public
10  * License version 2. This program is licensed "as is" without any
11  * warranty of any kind, whether express or implied.
12  */
13 
14 #include <linux/clk.h>
15 #include <linux/cpu.h>
16 #include <linux/etherdevice.h>
17 #include <linux/if_vlan.h>
18 #include <linux/inetdevice.h>
19 #include <linux/interrupt.h>
20 #include <linux/io.h>
21 #include <linux/kernel.h>
22 #include <linux/mbus.h>
23 #include <linux/module.h>
24 #include <linux/netdevice.h>
25 #include <linux/of.h>
26 #include <linux/of_address.h>
27 #include <linux/of_irq.h>
28 #include <linux/of_mdio.h>
29 #include <linux/of_net.h>
30 #include <linux/phy.h>
31 #include <linux/platform_device.h>
32 #include <linux/skbuff.h>
33 #include <net/hwbm.h>
34 #include "mvneta_bm.h"
35 #include <net/ip.h>
36 #include <net/ipv6.h>
37 #include <net/tso.h>
38 
39 /* Registers */
40 #define MVNETA_RXQ_CONFIG_REG(q)                (0x1400 + ((q) << 2))
41 #define      MVNETA_RXQ_HW_BUF_ALLOC            BIT(0)
42 #define      MVNETA_RXQ_SHORT_POOL_ID_SHIFT	4
43 #define      MVNETA_RXQ_SHORT_POOL_ID_MASK	0x30
44 #define      MVNETA_RXQ_LONG_POOL_ID_SHIFT	6
45 #define      MVNETA_RXQ_LONG_POOL_ID_MASK	0xc0
46 #define      MVNETA_RXQ_PKT_OFFSET_ALL_MASK     (0xf    << 8)
47 #define      MVNETA_RXQ_PKT_OFFSET_MASK(offs)   ((offs) << 8)
48 #define MVNETA_RXQ_THRESHOLD_REG(q)             (0x14c0 + ((q) << 2))
49 #define      MVNETA_RXQ_NON_OCCUPIED(v)         ((v) << 16)
50 #define MVNETA_RXQ_BASE_ADDR_REG(q)             (0x1480 + ((q) << 2))
51 #define MVNETA_RXQ_SIZE_REG(q)                  (0x14a0 + ((q) << 2))
52 #define      MVNETA_RXQ_BUF_SIZE_SHIFT          19
53 #define      MVNETA_RXQ_BUF_SIZE_MASK           (0x1fff << 19)
54 #define MVNETA_RXQ_STATUS_REG(q)                (0x14e0 + ((q) << 2))
55 #define      MVNETA_RXQ_OCCUPIED_ALL_MASK       0x3fff
56 #define MVNETA_RXQ_STATUS_UPDATE_REG(q)         (0x1500 + ((q) << 2))
57 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT  16
58 #define      MVNETA_RXQ_ADD_NON_OCCUPIED_MAX    255
59 #define MVNETA_PORT_POOL_BUFFER_SZ_REG(pool)	(0x1700 + ((pool) << 2))
60 #define      MVNETA_PORT_POOL_BUFFER_SZ_SHIFT	3
61 #define      MVNETA_PORT_POOL_BUFFER_SZ_MASK	0xfff8
62 #define MVNETA_PORT_RX_RESET                    0x1cc0
63 #define      MVNETA_PORT_RX_DMA_RESET           BIT(0)
64 #define MVNETA_PHY_ADDR                         0x2000
65 #define      MVNETA_PHY_ADDR_MASK               0x1f
66 #define MVNETA_MBUS_RETRY                       0x2010
67 #define MVNETA_UNIT_INTR_CAUSE                  0x2080
68 #define MVNETA_UNIT_CONTROL                     0x20B0
69 #define      MVNETA_PHY_POLLING_ENABLE          BIT(1)
70 #define MVNETA_WIN_BASE(w)                      (0x2200 + ((w) << 3))
71 #define MVNETA_WIN_SIZE(w)                      (0x2204 + ((w) << 3))
72 #define MVNETA_WIN_REMAP(w)                     (0x2280 + ((w) << 2))
73 #define MVNETA_BASE_ADDR_ENABLE                 0x2290
74 #define MVNETA_ACCESS_PROTECT_ENABLE            0x2294
75 #define MVNETA_PORT_CONFIG                      0x2400
76 #define      MVNETA_UNI_PROMISC_MODE            BIT(0)
77 #define      MVNETA_DEF_RXQ(q)                  ((q) << 1)
78 #define      MVNETA_DEF_RXQ_ARP(q)              ((q) << 4)
79 #define      MVNETA_TX_UNSET_ERR_SUM            BIT(12)
80 #define      MVNETA_DEF_RXQ_TCP(q)              ((q) << 16)
81 #define      MVNETA_DEF_RXQ_UDP(q)              ((q) << 19)
82 #define      MVNETA_DEF_RXQ_BPDU(q)             ((q) << 22)
83 #define      MVNETA_RX_CSUM_WITH_PSEUDO_HDR     BIT(25)
84 #define      MVNETA_PORT_CONFIG_DEFL_VALUE(q)   (MVNETA_DEF_RXQ(q)       | \
85 						 MVNETA_DEF_RXQ_ARP(q)	 | \
86 						 MVNETA_DEF_RXQ_TCP(q)	 | \
87 						 MVNETA_DEF_RXQ_UDP(q)	 | \
88 						 MVNETA_DEF_RXQ_BPDU(q)	 | \
89 						 MVNETA_TX_UNSET_ERR_SUM | \
90 						 MVNETA_RX_CSUM_WITH_PSEUDO_HDR)
91 #define MVNETA_PORT_CONFIG_EXTEND                0x2404
92 #define MVNETA_MAC_ADDR_LOW                      0x2414
93 #define MVNETA_MAC_ADDR_HIGH                     0x2418
94 #define MVNETA_SDMA_CONFIG                       0x241c
95 #define      MVNETA_SDMA_BRST_SIZE_16            4
96 #define      MVNETA_RX_BRST_SZ_MASK(burst)       ((burst) << 1)
97 #define      MVNETA_RX_NO_DATA_SWAP              BIT(4)
98 #define      MVNETA_TX_NO_DATA_SWAP              BIT(5)
99 #define      MVNETA_DESC_SWAP                    BIT(6)
100 #define      MVNETA_TX_BRST_SZ_MASK(burst)       ((burst) << 22)
101 #define MVNETA_PORT_STATUS                       0x2444
102 #define      MVNETA_TX_IN_PRGRS                  BIT(1)
103 #define      MVNETA_TX_FIFO_EMPTY                BIT(8)
104 #define MVNETA_RX_MIN_FRAME_SIZE                 0x247c
105 #define MVNETA_SERDES_CFG			 0x24A0
106 #define      MVNETA_SGMII_SERDES_PROTO		 0x0cc7
107 #define      MVNETA_QSGMII_SERDES_PROTO		 0x0667
108 #define MVNETA_TYPE_PRIO                         0x24bc
109 #define      MVNETA_FORCE_UNI                    BIT(21)
110 #define MVNETA_TXQ_CMD_1                         0x24e4
111 #define MVNETA_TXQ_CMD                           0x2448
112 #define      MVNETA_TXQ_DISABLE_SHIFT            8
113 #define      MVNETA_TXQ_ENABLE_MASK              0x000000ff
114 #define MVNETA_RX_DISCARD_FRAME_COUNT		 0x2484
115 #define MVNETA_OVERRUN_FRAME_COUNT		 0x2488
116 #define MVNETA_GMAC_CLOCK_DIVIDER                0x24f4
117 #define      MVNETA_GMAC_1MS_CLOCK_ENABLE        BIT(31)
118 #define MVNETA_ACC_MODE                          0x2500
119 #define MVNETA_BM_ADDRESS                        0x2504
120 #define MVNETA_CPU_MAP(cpu)                      (0x2540 + ((cpu) << 2))
121 #define      MVNETA_CPU_RXQ_ACCESS_ALL_MASK      0x000000ff
122 #define      MVNETA_CPU_TXQ_ACCESS_ALL_MASK      0x0000ff00
123 #define      MVNETA_CPU_RXQ_ACCESS(rxq)		 BIT(rxq)
124 #define      MVNETA_CPU_TXQ_ACCESS(txq)		 BIT(txq + 8)
125 #define MVNETA_RXQ_TIME_COAL_REG(q)              (0x2580 + ((q) << 2))
126 
127 /* Exception Interrupt Port/Queue Cause register
128  *
129  * Their behavior depend of the mapping done using the PCPX2Q
130  * registers. For a given CPU if the bit associated to a queue is not
131  * set, then for the register a read from this CPU will always return
132  * 0 and a write won't do anything
133  */
134 
135 #define MVNETA_INTR_NEW_CAUSE                    0x25a0
136 #define MVNETA_INTR_NEW_MASK                     0x25a4
137 
138 /* bits  0..7  = TXQ SENT, one bit per queue.
139  * bits  8..15 = RXQ OCCUP, one bit per queue.
140  * bits 16..23 = RXQ FREE, one bit per queue.
141  * bit  29 = OLD_REG_SUM, see old reg ?
142  * bit  30 = TX_ERR_SUM, one bit for 4 ports
143  * bit  31 = MISC_SUM,   one bit for 4 ports
144  */
145 #define      MVNETA_TX_INTR_MASK(nr_txqs)        (((1 << nr_txqs) - 1) << 0)
146 #define      MVNETA_TX_INTR_MASK_ALL             (0xff << 0)
147 #define      MVNETA_RX_INTR_MASK(nr_rxqs)        (((1 << nr_rxqs) - 1) << 8)
148 #define      MVNETA_RX_INTR_MASK_ALL             (0xff << 8)
149 #define      MVNETA_MISCINTR_INTR_MASK           BIT(31)
150 
151 #define MVNETA_INTR_OLD_CAUSE                    0x25a8
152 #define MVNETA_INTR_OLD_MASK                     0x25ac
153 
154 /* Data Path Port/Queue Cause Register */
155 #define MVNETA_INTR_MISC_CAUSE                   0x25b0
156 #define MVNETA_INTR_MISC_MASK                    0x25b4
157 
158 #define      MVNETA_CAUSE_PHY_STATUS_CHANGE      BIT(0)
159 #define      MVNETA_CAUSE_LINK_CHANGE            BIT(1)
160 #define      MVNETA_CAUSE_PTP                    BIT(4)
161 
162 #define      MVNETA_CAUSE_INTERNAL_ADDR_ERR      BIT(7)
163 #define      MVNETA_CAUSE_RX_OVERRUN             BIT(8)
164 #define      MVNETA_CAUSE_RX_CRC_ERROR           BIT(9)
165 #define      MVNETA_CAUSE_RX_LARGE_PKT           BIT(10)
166 #define      MVNETA_CAUSE_TX_UNDERUN             BIT(11)
167 #define      MVNETA_CAUSE_PRBS_ERR               BIT(12)
168 #define      MVNETA_CAUSE_PSC_SYNC_CHANGE        BIT(13)
169 #define      MVNETA_CAUSE_SERDES_SYNC_ERR        BIT(14)
170 
171 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT    16
172 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_ALL_MASK   (0xF << MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT)
173 #define      MVNETA_CAUSE_BMU_ALLOC_ERR_MASK(pool) (1 << (MVNETA_CAUSE_BMU_ALLOC_ERR_SHIFT + (pool)))
174 
175 #define      MVNETA_CAUSE_TXQ_ERROR_SHIFT        24
176 #define      MVNETA_CAUSE_TXQ_ERROR_ALL_MASK     (0xFF << MVNETA_CAUSE_TXQ_ERROR_SHIFT)
177 #define      MVNETA_CAUSE_TXQ_ERROR_MASK(q)      (1 << (MVNETA_CAUSE_TXQ_ERROR_SHIFT + (q)))
178 
179 #define MVNETA_INTR_ENABLE                       0x25b8
180 #define      MVNETA_TXQ_INTR_ENABLE_ALL_MASK     0x0000ff00
181 #define      MVNETA_RXQ_INTR_ENABLE_ALL_MASK     0x000000ff
182 
183 #define MVNETA_RXQ_CMD                           0x2680
184 #define      MVNETA_RXQ_DISABLE_SHIFT            8
185 #define      MVNETA_RXQ_ENABLE_MASK              0x000000ff
186 #define MVETH_TXQ_TOKEN_COUNT_REG(q)             (0x2700 + ((q) << 4))
187 #define MVETH_TXQ_TOKEN_CFG_REG(q)               (0x2704 + ((q) << 4))
188 #define MVNETA_GMAC_CTRL_0                       0x2c00
189 #define      MVNETA_GMAC_MAX_RX_SIZE_SHIFT       2
190 #define      MVNETA_GMAC_MAX_RX_SIZE_MASK        0x7ffc
191 #define      MVNETA_GMAC0_PORT_ENABLE            BIT(0)
192 #define MVNETA_GMAC_CTRL_2                       0x2c08
193 #define      MVNETA_GMAC2_INBAND_AN_ENABLE       BIT(0)
194 #define      MVNETA_GMAC2_PCS_ENABLE             BIT(3)
195 #define      MVNETA_GMAC2_PORT_RGMII             BIT(4)
196 #define      MVNETA_GMAC2_PORT_RESET             BIT(6)
197 #define MVNETA_GMAC_STATUS                       0x2c10
198 #define      MVNETA_GMAC_LINK_UP                 BIT(0)
199 #define      MVNETA_GMAC_SPEED_1000              BIT(1)
200 #define      MVNETA_GMAC_SPEED_100               BIT(2)
201 #define      MVNETA_GMAC_FULL_DUPLEX             BIT(3)
202 #define      MVNETA_GMAC_RX_FLOW_CTRL_ENABLE     BIT(4)
203 #define      MVNETA_GMAC_TX_FLOW_CTRL_ENABLE     BIT(5)
204 #define      MVNETA_GMAC_RX_FLOW_CTRL_ACTIVE     BIT(6)
205 #define      MVNETA_GMAC_TX_FLOW_CTRL_ACTIVE     BIT(7)
206 #define MVNETA_GMAC_AUTONEG_CONFIG               0x2c0c
207 #define      MVNETA_GMAC_FORCE_LINK_DOWN         BIT(0)
208 #define      MVNETA_GMAC_FORCE_LINK_PASS         BIT(1)
209 #define      MVNETA_GMAC_INBAND_AN_ENABLE        BIT(2)
210 #define      MVNETA_GMAC_CONFIG_MII_SPEED        BIT(5)
211 #define      MVNETA_GMAC_CONFIG_GMII_SPEED       BIT(6)
212 #define      MVNETA_GMAC_AN_SPEED_EN             BIT(7)
213 #define      MVNETA_GMAC_AN_FLOW_CTRL_EN         BIT(11)
214 #define      MVNETA_GMAC_CONFIG_FULL_DUPLEX      BIT(12)
215 #define      MVNETA_GMAC_AN_DUPLEX_EN            BIT(13)
216 #define MVNETA_MIB_COUNTERS_BASE                 0x3000
217 #define      MVNETA_MIB_LATE_COLLISION           0x7c
218 #define MVNETA_DA_FILT_SPEC_MCAST                0x3400
219 #define MVNETA_DA_FILT_OTH_MCAST                 0x3500
220 #define MVNETA_DA_FILT_UCAST_BASE                0x3600
221 #define MVNETA_TXQ_BASE_ADDR_REG(q)              (0x3c00 + ((q) << 2))
222 #define MVNETA_TXQ_SIZE_REG(q)                   (0x3c20 + ((q) << 2))
223 #define      MVNETA_TXQ_SENT_THRESH_ALL_MASK     0x3fff0000
224 #define      MVNETA_TXQ_SENT_THRESH_MASK(coal)   ((coal) << 16)
225 #define MVNETA_TXQ_UPDATE_REG(q)                 (0x3c60 + ((q) << 2))
226 #define      MVNETA_TXQ_DEC_SENT_SHIFT           16
227 #define MVNETA_TXQ_STATUS_REG(q)                 (0x3c40 + ((q) << 2))
228 #define      MVNETA_TXQ_SENT_DESC_SHIFT          16
229 #define      MVNETA_TXQ_SENT_DESC_MASK           0x3fff0000
230 #define MVNETA_PORT_TX_RESET                     0x3cf0
231 #define      MVNETA_PORT_TX_DMA_RESET            BIT(0)
232 #define MVNETA_TX_MTU                            0x3e0c
233 #define MVNETA_TX_TOKEN_SIZE                     0x3e14
234 #define      MVNETA_TX_TOKEN_SIZE_MAX            0xffffffff
235 #define MVNETA_TXQ_TOKEN_SIZE_REG(q)             (0x3e40 + ((q) << 2))
236 #define      MVNETA_TXQ_TOKEN_SIZE_MAX           0x7fffffff
237 
238 #define MVNETA_CAUSE_TXQ_SENT_DESC_ALL_MASK	 0xff
239 
240 /* Descriptor ring Macros */
241 #define MVNETA_QUEUE_NEXT_DESC(q, index)	\
242 	(((index) < (q)->last_desc) ? ((index) + 1) : 0)
243 
244 /* Various constants */
245 
246 /* Coalescing */
247 #define MVNETA_TXDONE_COAL_PKTS		0	/* interrupt per packet */
248 #define MVNETA_RX_COAL_PKTS		32
249 #define MVNETA_RX_COAL_USEC		100
250 
251 /* The two bytes Marvell header. Either contains a special value used
252  * by Marvell switches when a specific hardware mode is enabled (not
253  * supported by this driver) or is filled automatically by zeroes on
254  * the RX side. Those two bytes being at the front of the Ethernet
255  * header, they allow to have the IP header aligned on a 4 bytes
256  * boundary automatically: the hardware skips those two bytes on its
257  * own.
258  */
259 #define MVNETA_MH_SIZE			2
260 
261 #define MVNETA_VLAN_TAG_LEN             4
262 
263 #define MVNETA_TX_CSUM_DEF_SIZE		1600
264 #define MVNETA_TX_CSUM_MAX_SIZE		9800
265 #define MVNETA_ACC_MODE_EXT1		1
266 #define MVNETA_ACC_MODE_EXT2		2
267 
268 #define MVNETA_MAX_DECODE_WIN		6
269 
270 /* Timeout constants */
271 #define MVNETA_TX_DISABLE_TIMEOUT_MSEC	1000
272 #define MVNETA_RX_DISABLE_TIMEOUT_MSEC	1000
273 #define MVNETA_TX_FIFO_EMPTY_TIMEOUT	10000
274 
275 #define MVNETA_TX_MTU_MAX		0x3ffff
276 
277 /* The RSS lookup table actually has 256 entries but we do not use
278  * them yet
279  */
280 #define MVNETA_RSS_LU_TABLE_SIZE	1
281 
282 /* TSO header size */
283 #define TSO_HEADER_SIZE 128
284 
285 /* Max number of Rx descriptors */
286 #define MVNETA_MAX_RXD 128
287 
288 /* Max number of Tx descriptors */
289 #define MVNETA_MAX_TXD 532
290 
291 /* Max number of allowed TCP segments for software TSO */
292 #define MVNETA_MAX_TSO_SEGS 100
293 
294 #define MVNETA_MAX_SKB_DESCS (MVNETA_MAX_TSO_SEGS * 2 + MAX_SKB_FRAGS)
295 
296 /* descriptor aligned size */
297 #define MVNETA_DESC_ALIGNED_SIZE	32
298 
299 /* Number of bytes to be taken into account by HW when putting incoming data
300  * to the buffers. It is needed in case NET_SKB_PAD exceeds maximum packet
301  * offset supported in MVNETA_RXQ_CONFIG_REG(q) registers.
302  */
303 #define MVNETA_RX_PKT_OFFSET_CORRECTION		64
304 
305 #define MVNETA_RX_PKT_SIZE(mtu) \
306 	ALIGN((mtu) + MVNETA_MH_SIZE + MVNETA_VLAN_TAG_LEN + \
307 	      ETH_HLEN + ETH_FCS_LEN,			     \
308 	      cache_line_size())
309 
310 #define IS_TSO_HEADER(txq, addr) \
311 	((addr >= txq->tso_hdrs_phys) && \
312 	 (addr < txq->tso_hdrs_phys + txq->size * TSO_HEADER_SIZE))
313 
314 #define MVNETA_RX_GET_BM_POOL_ID(rxd) \
315 	(((rxd)->status & MVNETA_RXD_BM_POOL_MASK) >> MVNETA_RXD_BM_POOL_SHIFT)
316 
317 struct mvneta_statistic {
318 	unsigned short offset;
319 	unsigned short type;
320 	const char name[ETH_GSTRING_LEN];
321 };
322 
323 #define T_REG_32	32
324 #define T_REG_64	64
325 
326 static const struct mvneta_statistic mvneta_statistics[] = {
327 	{ 0x3000, T_REG_64, "good_octets_received", },
328 	{ 0x3010, T_REG_32, "good_frames_received", },
329 	{ 0x3008, T_REG_32, "bad_octets_received", },
330 	{ 0x3014, T_REG_32, "bad_frames_received", },
331 	{ 0x3018, T_REG_32, "broadcast_frames_received", },
332 	{ 0x301c, T_REG_32, "multicast_frames_received", },
333 	{ 0x3050, T_REG_32, "unrec_mac_control_received", },
334 	{ 0x3058, T_REG_32, "good_fc_received", },
335 	{ 0x305c, T_REG_32, "bad_fc_received", },
336 	{ 0x3060, T_REG_32, "undersize_received", },
337 	{ 0x3064, T_REG_32, "fragments_received", },
338 	{ 0x3068, T_REG_32, "oversize_received", },
339 	{ 0x306c, T_REG_32, "jabber_received", },
340 	{ 0x3070, T_REG_32, "mac_receive_error", },
341 	{ 0x3074, T_REG_32, "bad_crc_event", },
342 	{ 0x3078, T_REG_32, "collision", },
343 	{ 0x307c, T_REG_32, "late_collision", },
344 	{ 0x2484, T_REG_32, "rx_discard", },
345 	{ 0x2488, T_REG_32, "rx_overrun", },
346 	{ 0x3020, T_REG_32, "frames_64_octets", },
347 	{ 0x3024, T_REG_32, "frames_65_to_127_octets", },
348 	{ 0x3028, T_REG_32, "frames_128_to_255_octets", },
349 	{ 0x302c, T_REG_32, "frames_256_to_511_octets", },
350 	{ 0x3030, T_REG_32, "frames_512_to_1023_octets", },
351 	{ 0x3034, T_REG_32, "frames_1024_to_max_octets", },
352 	{ 0x3038, T_REG_64, "good_octets_sent", },
353 	{ 0x3040, T_REG_32, "good_frames_sent", },
354 	{ 0x3044, T_REG_32, "excessive_collision", },
355 	{ 0x3048, T_REG_32, "multicast_frames_sent", },
356 	{ 0x304c, T_REG_32, "broadcast_frames_sent", },
357 	{ 0x3054, T_REG_32, "fc_sent", },
358 	{ 0x300c, T_REG_32, "internal_mac_transmit_err", },
359 };
360 
361 struct mvneta_pcpu_stats {
362 	struct	u64_stats_sync syncp;
363 	u64	rx_packets;
364 	u64	rx_bytes;
365 	u64	tx_packets;
366 	u64	tx_bytes;
367 };
368 
369 struct mvneta_pcpu_port {
370 	/* Pointer to the shared port */
371 	struct mvneta_port	*pp;
372 
373 	/* Pointer to the CPU-local NAPI struct */
374 	struct napi_struct	napi;
375 
376 	/* Cause of the previous interrupt */
377 	u32			cause_rx_tx;
378 };
379 
380 struct mvneta_port {
381 	u8 id;
382 	struct mvneta_pcpu_port __percpu	*ports;
383 	struct mvneta_pcpu_stats __percpu	*stats;
384 
385 	int pkt_size;
386 	unsigned int frag_size;
387 	void __iomem *base;
388 	struct mvneta_rx_queue *rxqs;
389 	struct mvneta_tx_queue *txqs;
390 	struct net_device *dev;
391 	struct hlist_node node_online;
392 	struct hlist_node node_dead;
393 	int rxq_def;
394 	/* Protect the access to the percpu interrupt registers,
395 	 * ensuring that the configuration remains coherent.
396 	 */
397 	spinlock_t lock;
398 	bool is_stopped;
399 
400 	u32 cause_rx_tx;
401 	struct napi_struct napi;
402 
403 	/* Core clock */
404 	struct clk *clk;
405 	/* AXI clock */
406 	struct clk *clk_bus;
407 	u8 mcast_count[256];
408 	u16 tx_ring_size;
409 	u16 rx_ring_size;
410 
411 	struct mii_bus *mii_bus;
412 	phy_interface_t phy_interface;
413 	struct device_node *phy_node;
414 	unsigned int link;
415 	unsigned int duplex;
416 	unsigned int speed;
417 	unsigned int tx_csum_limit;
418 	unsigned int use_inband_status:1;
419 
420 	struct mvneta_bm *bm_priv;
421 	struct mvneta_bm_pool *pool_long;
422 	struct mvneta_bm_pool *pool_short;
423 	int bm_win_id;
424 
425 	u64 ethtool_stats[ARRAY_SIZE(mvneta_statistics)];
426 
427 	u32 indir[MVNETA_RSS_LU_TABLE_SIZE];
428 
429 	/* Flags for special SoC configurations */
430 	bool neta_armada3700;
431 	u16 rx_offset_correction;
432 };
433 
434 /* The mvneta_tx_desc and mvneta_rx_desc structures describe the
435  * layout of the transmit and reception DMA descriptors, and their
436  * layout is therefore defined by the hardware design
437  */
438 
439 #define MVNETA_TX_L3_OFF_SHIFT	0
440 #define MVNETA_TX_IP_HLEN_SHIFT	8
441 #define MVNETA_TX_L4_UDP	BIT(16)
442 #define MVNETA_TX_L3_IP6	BIT(17)
443 #define MVNETA_TXD_IP_CSUM	BIT(18)
444 #define MVNETA_TXD_Z_PAD	BIT(19)
445 #define MVNETA_TXD_L_DESC	BIT(20)
446 #define MVNETA_TXD_F_DESC	BIT(21)
447 #define MVNETA_TXD_FLZ_DESC	(MVNETA_TXD_Z_PAD  | \
448 				 MVNETA_TXD_L_DESC | \
449 				 MVNETA_TXD_F_DESC)
450 #define MVNETA_TX_L4_CSUM_FULL	BIT(30)
451 #define MVNETA_TX_L4_CSUM_NOT	BIT(31)
452 
453 #define MVNETA_RXD_ERR_CRC		0x0
454 #define MVNETA_RXD_BM_POOL_SHIFT	13
455 #define MVNETA_RXD_BM_POOL_MASK		(BIT(13) | BIT(14))
456 #define MVNETA_RXD_ERR_SUMMARY		BIT(16)
457 #define MVNETA_RXD_ERR_OVERRUN		BIT(17)
458 #define MVNETA_RXD_ERR_LEN		BIT(18)
459 #define MVNETA_RXD_ERR_RESOURCE		(BIT(17) | BIT(18))
460 #define MVNETA_RXD_ERR_CODE_MASK	(BIT(17) | BIT(18))
461 #define MVNETA_RXD_L3_IP4		BIT(25)
462 #define MVNETA_RXD_FIRST_LAST_DESC	(BIT(26) | BIT(27))
463 #define MVNETA_RXD_L4_CSUM_OK		BIT(30)
464 
465 #if defined(__LITTLE_ENDIAN)
466 struct mvneta_tx_desc {
467 	u32  command;		/* Options used by HW for packet transmitting.*/
468 	u16  reserverd1;	/* csum_l4 (for future use)		*/
469 	u16  data_size;		/* Data size of transmitted packet in bytes */
470 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
471 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
472 	u32  reserved3[4];	/* Reserved - (for future use)		*/
473 };
474 
475 struct mvneta_rx_desc {
476 	u32  status;		/* Info about received packet		*/
477 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
478 	u16  data_size;		/* Size of received packet in bytes	*/
479 
480 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
481 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
482 
483 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
484 	u16  reserved3;		/* prefetch_cmd, for future use		*/
485 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
486 
487 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
488 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
489 };
490 #else
491 struct mvneta_tx_desc {
492 	u16  data_size;		/* Data size of transmitted packet in bytes */
493 	u16  reserverd1;	/* csum_l4 (for future use)		*/
494 	u32  command;		/* Options used by HW for packet transmitting.*/
495 	u32  reserved2;		/* hw_cmd - (for future use, PMT)	*/
496 	u32  buf_phys_addr;	/* Physical addr of transmitted buffer	*/
497 	u32  reserved3[4];	/* Reserved - (for future use)		*/
498 };
499 
500 struct mvneta_rx_desc {
501 	u16  data_size;		/* Size of received packet in bytes	*/
502 	u16  reserved1;		/* pnc_info - (for future use, PnC)	*/
503 	u32  status;		/* Info about received packet		*/
504 
505 	u32  reserved2;		/* pnc_flow_id  (for future use, PnC)	*/
506 	u32  buf_phys_addr;	/* Physical address of the buffer	*/
507 
508 	u16  reserved4;		/* csum_l4 - (for future use, PnC)	*/
509 	u16  reserved3;		/* prefetch_cmd, for future use		*/
510 	u32  buf_cookie;	/* cookie for access to RX buffer in rx path */
511 
512 	u32  reserved5;		/* pnc_extra PnC (for future use, PnC)	*/
513 	u32  reserved6;		/* hw_cmd (for future use, PnC and HWF)	*/
514 };
515 #endif
516 
517 struct mvneta_tx_queue {
518 	/* Number of this TX queue, in the range 0-7 */
519 	u8 id;
520 
521 	/* Number of TX DMA descriptors in the descriptor ring */
522 	int size;
523 
524 	/* Number of currently used TX DMA descriptor in the
525 	 * descriptor ring
526 	 */
527 	int count;
528 	int tx_stop_threshold;
529 	int tx_wake_threshold;
530 
531 	/* Array of transmitted skb */
532 	struct sk_buff **tx_skb;
533 
534 	/* Index of last TX DMA descriptor that was inserted */
535 	int txq_put_index;
536 
537 	/* Index of the TX DMA descriptor to be cleaned up */
538 	int txq_get_index;
539 
540 	u32 done_pkts_coal;
541 
542 	/* Virtual address of the TX DMA descriptors array */
543 	struct mvneta_tx_desc *descs;
544 
545 	/* DMA address of the TX DMA descriptors array */
546 	dma_addr_t descs_phys;
547 
548 	/* Index of the last TX DMA descriptor */
549 	int last_desc;
550 
551 	/* Index of the next TX DMA descriptor to process */
552 	int next_desc_to_proc;
553 
554 	/* DMA buffers for TSO headers */
555 	char *tso_hdrs;
556 
557 	/* DMA address of TSO headers */
558 	dma_addr_t tso_hdrs_phys;
559 
560 	/* Affinity mask for CPUs*/
561 	cpumask_t affinity_mask;
562 };
563 
564 struct mvneta_rx_queue {
565 	/* rx queue number, in the range 0-7 */
566 	u8 id;
567 
568 	/* num of rx descriptors in the rx descriptor ring */
569 	int size;
570 
571 	/* counter of times when mvneta_refill() failed */
572 	int missed;
573 
574 	u32 pkts_coal;
575 	u32 time_coal;
576 
577 	/* Virtual address of the RX buffer */
578 	void  **buf_virt_addr;
579 
580 	/* Virtual address of the RX DMA descriptors array */
581 	struct mvneta_rx_desc *descs;
582 
583 	/* DMA address of the RX DMA descriptors array */
584 	dma_addr_t descs_phys;
585 
586 	/* Index of the last RX DMA descriptor */
587 	int last_desc;
588 
589 	/* Index of the next RX DMA descriptor to process */
590 	int next_desc_to_proc;
591 };
592 
593 static enum cpuhp_state online_hpstate;
594 /* The hardware supports eight (8) rx queues, but we are only allowing
595  * the first one to be used. Therefore, let's just allocate one queue.
596  */
597 static int rxq_number = 8;
598 static int txq_number = 8;
599 
600 static int rxq_def;
601 
602 static int rx_copybreak __read_mostly = 256;
603 
604 /* HW BM need that each port be identify by a unique ID */
605 static int global_port_id;
606 
607 #define MVNETA_DRIVER_NAME "mvneta"
608 #define MVNETA_DRIVER_VERSION "1.0"
609 
610 /* Utility/helper methods */
611 
612 /* Write helper method */
613 static void mvreg_write(struct mvneta_port *pp, u32 offset, u32 data)
614 {
615 	writel(data, pp->base + offset);
616 }
617 
618 /* Read helper method */
619 static u32 mvreg_read(struct mvneta_port *pp, u32 offset)
620 {
621 	return readl(pp->base + offset);
622 }
623 
624 /* Increment txq get counter */
625 static void mvneta_txq_inc_get(struct mvneta_tx_queue *txq)
626 {
627 	txq->txq_get_index++;
628 	if (txq->txq_get_index == txq->size)
629 		txq->txq_get_index = 0;
630 }
631 
632 /* Increment txq put counter */
633 static void mvneta_txq_inc_put(struct mvneta_tx_queue *txq)
634 {
635 	txq->txq_put_index++;
636 	if (txq->txq_put_index == txq->size)
637 		txq->txq_put_index = 0;
638 }
639 
640 
641 /* Clear all MIB counters */
642 static void mvneta_mib_counters_clear(struct mvneta_port *pp)
643 {
644 	int i;
645 	u32 dummy;
646 
647 	/* Perform dummy reads from MIB counters */
648 	for (i = 0; i < MVNETA_MIB_LATE_COLLISION; i += 4)
649 		dummy = mvreg_read(pp, (MVNETA_MIB_COUNTERS_BASE + i));
650 	dummy = mvreg_read(pp, MVNETA_RX_DISCARD_FRAME_COUNT);
651 	dummy = mvreg_read(pp, MVNETA_OVERRUN_FRAME_COUNT);
652 }
653 
654 /* Get System Network Statistics */
655 static struct rtnl_link_stats64 *
656 mvneta_get_stats64(struct net_device *dev,
657 		   struct rtnl_link_stats64 *stats)
658 {
659 	struct mvneta_port *pp = netdev_priv(dev);
660 	unsigned int start;
661 	int cpu;
662 
663 	for_each_possible_cpu(cpu) {
664 		struct mvneta_pcpu_stats *cpu_stats;
665 		u64 rx_packets;
666 		u64 rx_bytes;
667 		u64 tx_packets;
668 		u64 tx_bytes;
669 
670 		cpu_stats = per_cpu_ptr(pp->stats, cpu);
671 		do {
672 			start = u64_stats_fetch_begin_irq(&cpu_stats->syncp);
673 			rx_packets = cpu_stats->rx_packets;
674 			rx_bytes   = cpu_stats->rx_bytes;
675 			tx_packets = cpu_stats->tx_packets;
676 			tx_bytes   = cpu_stats->tx_bytes;
677 		} while (u64_stats_fetch_retry_irq(&cpu_stats->syncp, start));
678 
679 		stats->rx_packets += rx_packets;
680 		stats->rx_bytes   += rx_bytes;
681 		stats->tx_packets += tx_packets;
682 		stats->tx_bytes   += tx_bytes;
683 	}
684 
685 	stats->rx_errors	= dev->stats.rx_errors;
686 	stats->rx_dropped	= dev->stats.rx_dropped;
687 
688 	stats->tx_dropped	= dev->stats.tx_dropped;
689 
690 	return stats;
691 }
692 
693 /* Rx descriptors helper methods */
694 
695 /* Checks whether the RX descriptor having this status is both the first
696  * and the last descriptor for the RX packet. Each RX packet is currently
697  * received through a single RX descriptor, so not having each RX
698  * descriptor with its first and last bits set is an error
699  */
700 static int mvneta_rxq_desc_is_first_last(u32 status)
701 {
702 	return (status & MVNETA_RXD_FIRST_LAST_DESC) ==
703 		MVNETA_RXD_FIRST_LAST_DESC;
704 }
705 
706 /* Add number of descriptors ready to receive new packets */
707 static void mvneta_rxq_non_occup_desc_add(struct mvneta_port *pp,
708 					  struct mvneta_rx_queue *rxq,
709 					  int ndescs)
710 {
711 	/* Only MVNETA_RXQ_ADD_NON_OCCUPIED_MAX (255) descriptors can
712 	 * be added at once
713 	 */
714 	while (ndescs > MVNETA_RXQ_ADD_NON_OCCUPIED_MAX) {
715 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
716 			    (MVNETA_RXQ_ADD_NON_OCCUPIED_MAX <<
717 			     MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
718 		ndescs -= MVNETA_RXQ_ADD_NON_OCCUPIED_MAX;
719 	}
720 
721 	mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id),
722 		    (ndescs << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT));
723 }
724 
725 /* Get number of RX descriptors occupied by received packets */
726 static int mvneta_rxq_busy_desc_num_get(struct mvneta_port *pp,
727 					struct mvneta_rx_queue *rxq)
728 {
729 	u32 val;
730 
731 	val = mvreg_read(pp, MVNETA_RXQ_STATUS_REG(rxq->id));
732 	return val & MVNETA_RXQ_OCCUPIED_ALL_MASK;
733 }
734 
735 /* Update num of rx desc called upon return from rx path or
736  * from mvneta_rxq_drop_pkts().
737  */
738 static void mvneta_rxq_desc_num_update(struct mvneta_port *pp,
739 				       struct mvneta_rx_queue *rxq,
740 				       int rx_done, int rx_filled)
741 {
742 	u32 val;
743 
744 	if ((rx_done <= 0xff) && (rx_filled <= 0xff)) {
745 		val = rx_done |
746 		  (rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT);
747 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
748 		return;
749 	}
750 
751 	/* Only 255 descriptors can be added at once */
752 	while ((rx_done > 0) || (rx_filled > 0)) {
753 		if (rx_done <= 0xff) {
754 			val = rx_done;
755 			rx_done = 0;
756 		} else {
757 			val = 0xff;
758 			rx_done -= 0xff;
759 		}
760 		if (rx_filled <= 0xff) {
761 			val |= rx_filled << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
762 			rx_filled = 0;
763 		} else {
764 			val |= 0xff << MVNETA_RXQ_ADD_NON_OCCUPIED_SHIFT;
765 			rx_filled -= 0xff;
766 		}
767 		mvreg_write(pp, MVNETA_RXQ_STATUS_UPDATE_REG(rxq->id), val);
768 	}
769 }
770 
771 /* Get pointer to next RX descriptor to be processed by SW */
772 static struct mvneta_rx_desc *
773 mvneta_rxq_next_desc_get(struct mvneta_rx_queue *rxq)
774 {
775 	int rx_desc = rxq->next_desc_to_proc;
776 
777 	rxq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(rxq, rx_desc);
778 	prefetch(rxq->descs + rxq->next_desc_to_proc);
779 	return rxq->descs + rx_desc;
780 }
781 
782 /* Change maximum receive size of the port. */
783 static void mvneta_max_rx_size_set(struct mvneta_port *pp, int max_rx_size)
784 {
785 	u32 val;
786 
787 	val =  mvreg_read(pp, MVNETA_GMAC_CTRL_0);
788 	val &= ~MVNETA_GMAC_MAX_RX_SIZE_MASK;
789 	val |= ((max_rx_size - MVNETA_MH_SIZE) / 2) <<
790 		MVNETA_GMAC_MAX_RX_SIZE_SHIFT;
791 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
792 }
793 
794 
795 /* Set rx queue offset */
796 static void mvneta_rxq_offset_set(struct mvneta_port *pp,
797 				  struct mvneta_rx_queue *rxq,
798 				  int offset)
799 {
800 	u32 val;
801 
802 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
803 	val &= ~MVNETA_RXQ_PKT_OFFSET_ALL_MASK;
804 
805 	/* Offset is in */
806 	val |= MVNETA_RXQ_PKT_OFFSET_MASK(offset >> 3);
807 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
808 }
809 
810 
811 /* Tx descriptors helper methods */
812 
813 /* Update HW with number of TX descriptors to be sent */
814 static void mvneta_txq_pend_desc_add(struct mvneta_port *pp,
815 				     struct mvneta_tx_queue *txq,
816 				     int pend_desc)
817 {
818 	u32 val;
819 
820 	/* Only 255 descriptors can be added at once ; Assume caller
821 	 * process TX desriptors in quanta less than 256
822 	 */
823 	val = pend_desc;
824 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
825 }
826 
827 /* Get pointer to next TX descriptor to be processed (send) by HW */
828 static struct mvneta_tx_desc *
829 mvneta_txq_next_desc_get(struct mvneta_tx_queue *txq)
830 {
831 	int tx_desc = txq->next_desc_to_proc;
832 
833 	txq->next_desc_to_proc = MVNETA_QUEUE_NEXT_DESC(txq, tx_desc);
834 	return txq->descs + tx_desc;
835 }
836 
837 /* Release the last allocated TX descriptor. Useful to handle DMA
838  * mapping failures in the TX path.
839  */
840 static void mvneta_txq_desc_put(struct mvneta_tx_queue *txq)
841 {
842 	if (txq->next_desc_to_proc == 0)
843 		txq->next_desc_to_proc = txq->last_desc - 1;
844 	else
845 		txq->next_desc_to_proc--;
846 }
847 
848 /* Set rxq buf size */
849 static void mvneta_rxq_buf_size_set(struct mvneta_port *pp,
850 				    struct mvneta_rx_queue *rxq,
851 				    int buf_size)
852 {
853 	u32 val;
854 
855 	val = mvreg_read(pp, MVNETA_RXQ_SIZE_REG(rxq->id));
856 
857 	val &= ~MVNETA_RXQ_BUF_SIZE_MASK;
858 	val |= ((buf_size >> 3) << MVNETA_RXQ_BUF_SIZE_SHIFT);
859 
860 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), val);
861 }
862 
863 /* Disable buffer management (BM) */
864 static void mvneta_rxq_bm_disable(struct mvneta_port *pp,
865 				  struct mvneta_rx_queue *rxq)
866 {
867 	u32 val;
868 
869 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
870 	val &= ~MVNETA_RXQ_HW_BUF_ALLOC;
871 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
872 }
873 
874 /* Enable buffer management (BM) */
875 static void mvneta_rxq_bm_enable(struct mvneta_port *pp,
876 				 struct mvneta_rx_queue *rxq)
877 {
878 	u32 val;
879 
880 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
881 	val |= MVNETA_RXQ_HW_BUF_ALLOC;
882 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
883 }
884 
885 /* Notify HW about port's assignment of pool for bigger packets */
886 static void mvneta_rxq_long_pool_set(struct mvneta_port *pp,
887 				     struct mvneta_rx_queue *rxq)
888 {
889 	u32 val;
890 
891 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
892 	val &= ~MVNETA_RXQ_LONG_POOL_ID_MASK;
893 	val |= (pp->pool_long->id << MVNETA_RXQ_LONG_POOL_ID_SHIFT);
894 
895 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
896 }
897 
898 /* Notify HW about port's assignment of pool for smaller packets */
899 static void mvneta_rxq_short_pool_set(struct mvneta_port *pp,
900 				      struct mvneta_rx_queue *rxq)
901 {
902 	u32 val;
903 
904 	val = mvreg_read(pp, MVNETA_RXQ_CONFIG_REG(rxq->id));
905 	val &= ~MVNETA_RXQ_SHORT_POOL_ID_MASK;
906 	val |= (pp->pool_short->id << MVNETA_RXQ_SHORT_POOL_ID_SHIFT);
907 
908 	mvreg_write(pp, MVNETA_RXQ_CONFIG_REG(rxq->id), val);
909 }
910 
911 /* Set port's receive buffer size for assigned BM pool */
912 static inline void mvneta_bm_pool_bufsize_set(struct mvneta_port *pp,
913 					      int buf_size,
914 					      u8 pool_id)
915 {
916 	u32 val;
917 
918 	if (!IS_ALIGNED(buf_size, 8)) {
919 		dev_warn(pp->dev->dev.parent,
920 			 "illegal buf_size value %d, round to %d\n",
921 			 buf_size, ALIGN(buf_size, 8));
922 		buf_size = ALIGN(buf_size, 8);
923 	}
924 
925 	val = mvreg_read(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id));
926 	val |= buf_size & MVNETA_PORT_POOL_BUFFER_SZ_MASK;
927 	mvreg_write(pp, MVNETA_PORT_POOL_BUFFER_SZ_REG(pool_id), val);
928 }
929 
930 /* Configure MBUS window in order to enable access BM internal SRAM */
931 static int mvneta_mbus_io_win_set(struct mvneta_port *pp, u32 base, u32 wsize,
932 				  u8 target, u8 attr)
933 {
934 	u32 win_enable, win_protect;
935 	int i;
936 
937 	win_enable = mvreg_read(pp, MVNETA_BASE_ADDR_ENABLE);
938 
939 	if (pp->bm_win_id < 0) {
940 		/* Find first not occupied window */
941 		for (i = 0; i < MVNETA_MAX_DECODE_WIN; i++) {
942 			if (win_enable & (1 << i)) {
943 				pp->bm_win_id = i;
944 				break;
945 			}
946 		}
947 		if (i == MVNETA_MAX_DECODE_WIN)
948 			return -ENOMEM;
949 	} else {
950 		i = pp->bm_win_id;
951 	}
952 
953 	mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
954 	mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
955 
956 	if (i < 4)
957 		mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
958 
959 	mvreg_write(pp, MVNETA_WIN_BASE(i), (base & 0xffff0000) |
960 		    (attr << 8) | target);
961 
962 	mvreg_write(pp, MVNETA_WIN_SIZE(i), (wsize - 1) & 0xffff0000);
963 
964 	win_protect = mvreg_read(pp, MVNETA_ACCESS_PROTECT_ENABLE);
965 	win_protect |= 3 << (2 * i);
966 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
967 
968 	win_enable &= ~(1 << i);
969 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
970 
971 	return 0;
972 }
973 
974 static  int mvneta_bm_port_mbus_init(struct mvneta_port *pp)
975 {
976 	u32 wsize;
977 	u8 target, attr;
978 	int err;
979 
980 	/* Get BM window information */
981 	err = mvebu_mbus_get_io_win_info(pp->bm_priv->bppi_phys_addr, &wsize,
982 					 &target, &attr);
983 	if (err < 0)
984 		return err;
985 
986 	pp->bm_win_id = -1;
987 
988 	/* Open NETA -> BM window */
989 	err = mvneta_mbus_io_win_set(pp, pp->bm_priv->bppi_phys_addr, wsize,
990 				     target, attr);
991 	if (err < 0) {
992 		netdev_info(pp->dev, "fail to configure mbus window to BM\n");
993 		return err;
994 	}
995 	return 0;
996 }
997 
998 /* Assign and initialize pools for port. In case of fail
999  * buffer manager will remain disabled for current port.
1000  */
1001 static int mvneta_bm_port_init(struct platform_device *pdev,
1002 			       struct mvneta_port *pp)
1003 {
1004 	struct device_node *dn = pdev->dev.of_node;
1005 	u32 long_pool_id, short_pool_id;
1006 
1007 	if (!pp->neta_armada3700) {
1008 		int ret;
1009 
1010 		ret = mvneta_bm_port_mbus_init(pp);
1011 		if (ret)
1012 			return ret;
1013 	}
1014 
1015 	if (of_property_read_u32(dn, "bm,pool-long", &long_pool_id)) {
1016 		netdev_info(pp->dev, "missing long pool id\n");
1017 		return -EINVAL;
1018 	}
1019 
1020 	/* Create port's long pool depending on mtu */
1021 	pp->pool_long = mvneta_bm_pool_use(pp->bm_priv, long_pool_id,
1022 					   MVNETA_BM_LONG, pp->id,
1023 					   MVNETA_RX_PKT_SIZE(pp->dev->mtu));
1024 	if (!pp->pool_long) {
1025 		netdev_info(pp->dev, "fail to obtain long pool for port\n");
1026 		return -ENOMEM;
1027 	}
1028 
1029 	pp->pool_long->port_map |= 1 << pp->id;
1030 
1031 	mvneta_bm_pool_bufsize_set(pp, pp->pool_long->buf_size,
1032 				   pp->pool_long->id);
1033 
1034 	/* If short pool id is not defined, assume using single pool */
1035 	if (of_property_read_u32(dn, "bm,pool-short", &short_pool_id))
1036 		short_pool_id = long_pool_id;
1037 
1038 	/* Create port's short pool */
1039 	pp->pool_short = mvneta_bm_pool_use(pp->bm_priv, short_pool_id,
1040 					    MVNETA_BM_SHORT, pp->id,
1041 					    MVNETA_BM_SHORT_PKT_SIZE);
1042 	if (!pp->pool_short) {
1043 		netdev_info(pp->dev, "fail to obtain short pool for port\n");
1044 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1045 		return -ENOMEM;
1046 	}
1047 
1048 	if (short_pool_id != long_pool_id) {
1049 		pp->pool_short->port_map |= 1 << pp->id;
1050 		mvneta_bm_pool_bufsize_set(pp, pp->pool_short->buf_size,
1051 					   pp->pool_short->id);
1052 	}
1053 
1054 	return 0;
1055 }
1056 
1057 /* Update settings of a pool for bigger packets */
1058 static void mvneta_bm_update_mtu(struct mvneta_port *pp, int mtu)
1059 {
1060 	struct mvneta_bm_pool *bm_pool = pp->pool_long;
1061 	struct hwbm_pool *hwbm_pool = &bm_pool->hwbm_pool;
1062 	int num;
1063 
1064 	/* Release all buffers from long pool */
1065 	mvneta_bm_bufs_free(pp->bm_priv, bm_pool, 1 << pp->id);
1066 	if (hwbm_pool->buf_num) {
1067 		WARN(1, "cannot free all buffers in pool %d\n",
1068 		     bm_pool->id);
1069 		goto bm_mtu_err;
1070 	}
1071 
1072 	bm_pool->pkt_size = MVNETA_RX_PKT_SIZE(mtu);
1073 	bm_pool->buf_size = MVNETA_RX_BUF_SIZE(bm_pool->pkt_size);
1074 	hwbm_pool->frag_size = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1075 			SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(bm_pool->pkt_size));
1076 
1077 	/* Fill entire long pool */
1078 	num = hwbm_pool_add(hwbm_pool, hwbm_pool->size, GFP_ATOMIC);
1079 	if (num != hwbm_pool->size) {
1080 		WARN(1, "pool %d: %d of %d allocated\n",
1081 		     bm_pool->id, num, hwbm_pool->size);
1082 		goto bm_mtu_err;
1083 	}
1084 	mvneta_bm_pool_bufsize_set(pp, bm_pool->buf_size, bm_pool->id);
1085 
1086 	return;
1087 
1088 bm_mtu_err:
1089 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
1090 	mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short, 1 << pp->id);
1091 
1092 	pp->bm_priv = NULL;
1093 	mvreg_write(pp, MVNETA_ACC_MODE, MVNETA_ACC_MODE_EXT1);
1094 	netdev_info(pp->dev, "fail to update MTU, fall back to software BM\n");
1095 }
1096 
1097 /* Start the Ethernet port RX and TX activity */
1098 static void mvneta_port_up(struct mvneta_port *pp)
1099 {
1100 	int queue;
1101 	u32 q_map;
1102 
1103 	/* Enable all initialized TXs. */
1104 	q_map = 0;
1105 	for (queue = 0; queue < txq_number; queue++) {
1106 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
1107 		if (txq->descs != NULL)
1108 			q_map |= (1 << queue);
1109 	}
1110 	mvreg_write(pp, MVNETA_TXQ_CMD, q_map);
1111 
1112 	/* Enable all initialized RXQs. */
1113 	for (queue = 0; queue < rxq_number; queue++) {
1114 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
1115 
1116 		if (rxq->descs != NULL)
1117 			q_map |= (1 << queue);
1118 	}
1119 	mvreg_write(pp, MVNETA_RXQ_CMD, q_map);
1120 }
1121 
1122 /* Stop the Ethernet port activity */
1123 static void mvneta_port_down(struct mvneta_port *pp)
1124 {
1125 	u32 val;
1126 	int count;
1127 
1128 	/* Stop Rx port activity. Check port Rx activity. */
1129 	val = mvreg_read(pp, MVNETA_RXQ_CMD) & MVNETA_RXQ_ENABLE_MASK;
1130 
1131 	/* Issue stop command for active channels only */
1132 	if (val != 0)
1133 		mvreg_write(pp, MVNETA_RXQ_CMD,
1134 			    val << MVNETA_RXQ_DISABLE_SHIFT);
1135 
1136 	/* Wait for all Rx activity to terminate. */
1137 	count = 0;
1138 	do {
1139 		if (count++ >= MVNETA_RX_DISABLE_TIMEOUT_MSEC) {
1140 			netdev_warn(pp->dev,
1141 				    "TIMEOUT for RX stopped ! rx_queue_cmd: 0x%08x\n",
1142 				    val);
1143 			break;
1144 		}
1145 		mdelay(1);
1146 
1147 		val = mvreg_read(pp, MVNETA_RXQ_CMD);
1148 	} while (val & MVNETA_RXQ_ENABLE_MASK);
1149 
1150 	/* Stop Tx port activity. Check port Tx activity. Issue stop
1151 	 * command for active channels only
1152 	 */
1153 	val = (mvreg_read(pp, MVNETA_TXQ_CMD)) & MVNETA_TXQ_ENABLE_MASK;
1154 
1155 	if (val != 0)
1156 		mvreg_write(pp, MVNETA_TXQ_CMD,
1157 			    (val << MVNETA_TXQ_DISABLE_SHIFT));
1158 
1159 	/* Wait for all Tx activity to terminate. */
1160 	count = 0;
1161 	do {
1162 		if (count++ >= MVNETA_TX_DISABLE_TIMEOUT_MSEC) {
1163 			netdev_warn(pp->dev,
1164 				    "TIMEOUT for TX stopped status=0x%08x\n",
1165 				    val);
1166 			break;
1167 		}
1168 		mdelay(1);
1169 
1170 		/* Check TX Command reg that all Txqs are stopped */
1171 		val = mvreg_read(pp, MVNETA_TXQ_CMD);
1172 
1173 	} while (val & MVNETA_TXQ_ENABLE_MASK);
1174 
1175 	/* Double check to verify that TX FIFO is empty */
1176 	count = 0;
1177 	do {
1178 		if (count++ >= MVNETA_TX_FIFO_EMPTY_TIMEOUT) {
1179 			netdev_warn(pp->dev,
1180 				    "TX FIFO empty timeout status=0x%08x\n",
1181 				    val);
1182 			break;
1183 		}
1184 		mdelay(1);
1185 
1186 		val = mvreg_read(pp, MVNETA_PORT_STATUS);
1187 	} while (!(val & MVNETA_TX_FIFO_EMPTY) &&
1188 		 (val & MVNETA_TX_IN_PRGRS));
1189 
1190 	udelay(200);
1191 }
1192 
1193 /* Enable the port by setting the port enable bit of the MAC control register */
1194 static void mvneta_port_enable(struct mvneta_port *pp)
1195 {
1196 	u32 val;
1197 
1198 	/* Enable port */
1199 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1200 	val |= MVNETA_GMAC0_PORT_ENABLE;
1201 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1202 }
1203 
1204 /* Disable the port and wait for about 200 usec before retuning */
1205 static void mvneta_port_disable(struct mvneta_port *pp)
1206 {
1207 	u32 val;
1208 
1209 	/* Reset the Enable bit in the Serial Control Register */
1210 	val = mvreg_read(pp, MVNETA_GMAC_CTRL_0);
1211 	val &= ~MVNETA_GMAC0_PORT_ENABLE;
1212 	mvreg_write(pp, MVNETA_GMAC_CTRL_0, val);
1213 
1214 	udelay(200);
1215 }
1216 
1217 /* Multicast tables methods */
1218 
1219 /* Set all entries in Unicast MAC Table; queue==-1 means reject all */
1220 static void mvneta_set_ucast_table(struct mvneta_port *pp, int queue)
1221 {
1222 	int offset;
1223 	u32 val;
1224 
1225 	if (queue == -1) {
1226 		val = 0;
1227 	} else {
1228 		val = 0x1 | (queue << 1);
1229 		val |= (val << 24) | (val << 16) | (val << 8);
1230 	}
1231 
1232 	for (offset = 0; offset <= 0xc; offset += 4)
1233 		mvreg_write(pp, MVNETA_DA_FILT_UCAST_BASE + offset, val);
1234 }
1235 
1236 /* Set all entries in Special Multicast MAC Table; queue==-1 means reject all */
1237 static void mvneta_set_special_mcast_table(struct mvneta_port *pp, int queue)
1238 {
1239 	int offset;
1240 	u32 val;
1241 
1242 	if (queue == -1) {
1243 		val = 0;
1244 	} else {
1245 		val = 0x1 | (queue << 1);
1246 		val |= (val << 24) | (val << 16) | (val << 8);
1247 	}
1248 
1249 	for (offset = 0; offset <= 0xfc; offset += 4)
1250 		mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + offset, val);
1251 
1252 }
1253 
1254 /* Set all entries in Other Multicast MAC Table. queue==-1 means reject all */
1255 static void mvneta_set_other_mcast_table(struct mvneta_port *pp, int queue)
1256 {
1257 	int offset;
1258 	u32 val;
1259 
1260 	if (queue == -1) {
1261 		memset(pp->mcast_count, 0, sizeof(pp->mcast_count));
1262 		val = 0;
1263 	} else {
1264 		memset(pp->mcast_count, 1, sizeof(pp->mcast_count));
1265 		val = 0x1 | (queue << 1);
1266 		val |= (val << 24) | (val << 16) | (val << 8);
1267 	}
1268 
1269 	for (offset = 0; offset <= 0xfc; offset += 4)
1270 		mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + offset, val);
1271 }
1272 
1273 static void mvneta_set_autoneg(struct mvneta_port *pp, int enable)
1274 {
1275 	u32 val;
1276 
1277 	if (enable) {
1278 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1279 		val &= ~(MVNETA_GMAC_FORCE_LINK_PASS |
1280 			 MVNETA_GMAC_FORCE_LINK_DOWN |
1281 			 MVNETA_GMAC_AN_FLOW_CTRL_EN);
1282 		val |= MVNETA_GMAC_INBAND_AN_ENABLE |
1283 		       MVNETA_GMAC_AN_SPEED_EN |
1284 		       MVNETA_GMAC_AN_DUPLEX_EN;
1285 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1286 
1287 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1288 		val |= MVNETA_GMAC_1MS_CLOCK_ENABLE;
1289 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1290 
1291 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1292 		val |= MVNETA_GMAC2_INBAND_AN_ENABLE;
1293 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1294 	} else {
1295 		val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
1296 		val &= ~(MVNETA_GMAC_INBAND_AN_ENABLE |
1297 		       MVNETA_GMAC_AN_SPEED_EN |
1298 		       MVNETA_GMAC_AN_DUPLEX_EN);
1299 		mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
1300 
1301 		val = mvreg_read(pp, MVNETA_GMAC_CLOCK_DIVIDER);
1302 		val &= ~MVNETA_GMAC_1MS_CLOCK_ENABLE;
1303 		mvreg_write(pp, MVNETA_GMAC_CLOCK_DIVIDER, val);
1304 
1305 		val = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
1306 		val &= ~MVNETA_GMAC2_INBAND_AN_ENABLE;
1307 		mvreg_write(pp, MVNETA_GMAC_CTRL_2, val);
1308 	}
1309 }
1310 
1311 static void mvneta_percpu_unmask_interrupt(void *arg)
1312 {
1313 	struct mvneta_port *pp = arg;
1314 
1315 	/* All the queue are unmasked, but actually only the ones
1316 	 * mapped to this CPU will be unmasked
1317 	 */
1318 	mvreg_write(pp, MVNETA_INTR_NEW_MASK,
1319 		    MVNETA_RX_INTR_MASK_ALL |
1320 		    MVNETA_TX_INTR_MASK_ALL |
1321 		    MVNETA_MISCINTR_INTR_MASK);
1322 }
1323 
1324 static void mvneta_percpu_mask_interrupt(void *arg)
1325 {
1326 	struct mvneta_port *pp = arg;
1327 
1328 	/* All the queue are masked, but actually only the ones
1329 	 * mapped to this CPU will be masked
1330 	 */
1331 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
1332 	mvreg_write(pp, MVNETA_INTR_OLD_MASK, 0);
1333 	mvreg_write(pp, MVNETA_INTR_MISC_MASK, 0);
1334 }
1335 
1336 static void mvneta_percpu_clear_intr_cause(void *arg)
1337 {
1338 	struct mvneta_port *pp = arg;
1339 
1340 	/* All the queue are cleared, but actually only the ones
1341 	 * mapped to this CPU will be cleared
1342 	 */
1343 	mvreg_write(pp, MVNETA_INTR_NEW_CAUSE, 0);
1344 	mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
1345 	mvreg_write(pp, MVNETA_INTR_OLD_CAUSE, 0);
1346 }
1347 
1348 /* This method sets defaults to the NETA port:
1349  *	Clears interrupt Cause and Mask registers.
1350  *	Clears all MAC tables.
1351  *	Sets defaults to all registers.
1352  *	Resets RX and TX descriptor rings.
1353  *	Resets PHY.
1354  * This method can be called after mvneta_port_down() to return the port
1355  *	settings to defaults.
1356  */
1357 static void mvneta_defaults_set(struct mvneta_port *pp)
1358 {
1359 	int cpu;
1360 	int queue;
1361 	u32 val;
1362 	int max_cpu = num_present_cpus();
1363 
1364 	/* Clear all Cause registers */
1365 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
1366 
1367 	/* Mask all interrupts */
1368 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
1369 	mvreg_write(pp, MVNETA_INTR_ENABLE, 0);
1370 
1371 	/* Enable MBUS Retry bit16 */
1372 	mvreg_write(pp, MVNETA_MBUS_RETRY, 0x20);
1373 
1374 	/* Set CPU queue access map. CPUs are assigned to the RX and
1375 	 * TX queues modulo their number. If there is only one TX
1376 	 * queue then it is assigned to the CPU associated to the
1377 	 * default RX queue.
1378 	 */
1379 	for_each_present_cpu(cpu) {
1380 		int rxq_map = 0, txq_map = 0;
1381 		int rxq, txq;
1382 		if (!pp->neta_armada3700) {
1383 			for (rxq = 0; rxq < rxq_number; rxq++)
1384 				if ((rxq % max_cpu) == cpu)
1385 					rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
1386 
1387 			for (txq = 0; txq < txq_number; txq++)
1388 				if ((txq % max_cpu) == cpu)
1389 					txq_map |= MVNETA_CPU_TXQ_ACCESS(txq);
1390 
1391 			/* With only one TX queue we configure a special case
1392 			 * which will allow to get all the irq on a single
1393 			 * CPU
1394 			 */
1395 			if (txq_number == 1)
1396 				txq_map = (cpu == pp->rxq_def) ?
1397 					MVNETA_CPU_TXQ_ACCESS(1) : 0;
1398 
1399 		} else {
1400 			txq_map = MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
1401 			rxq_map = MVNETA_CPU_RXQ_ACCESS_ALL_MASK;
1402 		}
1403 
1404 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
1405 	}
1406 
1407 	/* Reset RX and TX DMAs */
1408 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
1409 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
1410 
1411 	/* Disable Legacy WRR, Disable EJP, Release from reset */
1412 	mvreg_write(pp, MVNETA_TXQ_CMD_1, 0);
1413 	for (queue = 0; queue < txq_number; queue++) {
1414 		mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(queue), 0);
1415 		mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(queue), 0);
1416 	}
1417 
1418 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
1419 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
1420 
1421 	/* Set Port Acceleration Mode */
1422 	if (pp->bm_priv)
1423 		/* HW buffer management + legacy parser */
1424 		val = MVNETA_ACC_MODE_EXT2;
1425 	else
1426 		/* SW buffer management + legacy parser */
1427 		val = MVNETA_ACC_MODE_EXT1;
1428 	mvreg_write(pp, MVNETA_ACC_MODE, val);
1429 
1430 	if (pp->bm_priv)
1431 		mvreg_write(pp, MVNETA_BM_ADDRESS, pp->bm_priv->bppi_phys_addr);
1432 
1433 	/* Update val of portCfg register accordingly with all RxQueue types */
1434 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
1435 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
1436 
1437 	val = 0;
1438 	mvreg_write(pp, MVNETA_PORT_CONFIG_EXTEND, val);
1439 	mvreg_write(pp, MVNETA_RX_MIN_FRAME_SIZE, 64);
1440 
1441 	/* Build PORT_SDMA_CONFIG_REG */
1442 	val = 0;
1443 
1444 	/* Default burst size */
1445 	val |= MVNETA_TX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1446 	val |= MVNETA_RX_BRST_SZ_MASK(MVNETA_SDMA_BRST_SIZE_16);
1447 	val |= MVNETA_RX_NO_DATA_SWAP | MVNETA_TX_NO_DATA_SWAP;
1448 
1449 #if defined(__BIG_ENDIAN)
1450 	val |= MVNETA_DESC_SWAP;
1451 #endif
1452 
1453 	/* Assign port SDMA configuration */
1454 	mvreg_write(pp, MVNETA_SDMA_CONFIG, val);
1455 
1456 	/* Disable PHY polling in hardware, since we're using the
1457 	 * kernel phylib to do this.
1458 	 */
1459 	val = mvreg_read(pp, MVNETA_UNIT_CONTROL);
1460 	val &= ~MVNETA_PHY_POLLING_ENABLE;
1461 	mvreg_write(pp, MVNETA_UNIT_CONTROL, val);
1462 
1463 	mvneta_set_autoneg(pp, pp->use_inband_status);
1464 	mvneta_set_ucast_table(pp, -1);
1465 	mvneta_set_special_mcast_table(pp, -1);
1466 	mvneta_set_other_mcast_table(pp, -1);
1467 
1468 	/* Set port interrupt enable register - default enable all */
1469 	mvreg_write(pp, MVNETA_INTR_ENABLE,
1470 		    (MVNETA_RXQ_INTR_ENABLE_ALL_MASK
1471 		     | MVNETA_TXQ_INTR_ENABLE_ALL_MASK));
1472 
1473 	mvneta_mib_counters_clear(pp);
1474 }
1475 
1476 /* Set max sizes for tx queues */
1477 static void mvneta_txq_max_tx_size_set(struct mvneta_port *pp, int max_tx_size)
1478 
1479 {
1480 	u32 val, size, mtu;
1481 	int queue;
1482 
1483 	mtu = max_tx_size * 8;
1484 	if (mtu > MVNETA_TX_MTU_MAX)
1485 		mtu = MVNETA_TX_MTU_MAX;
1486 
1487 	/* Set MTU */
1488 	val = mvreg_read(pp, MVNETA_TX_MTU);
1489 	val &= ~MVNETA_TX_MTU_MAX;
1490 	val |= mtu;
1491 	mvreg_write(pp, MVNETA_TX_MTU, val);
1492 
1493 	/* TX token size and all TXQs token size must be larger that MTU */
1494 	val = mvreg_read(pp, MVNETA_TX_TOKEN_SIZE);
1495 
1496 	size = val & MVNETA_TX_TOKEN_SIZE_MAX;
1497 	if (size < mtu) {
1498 		size = mtu;
1499 		val &= ~MVNETA_TX_TOKEN_SIZE_MAX;
1500 		val |= size;
1501 		mvreg_write(pp, MVNETA_TX_TOKEN_SIZE, val);
1502 	}
1503 	for (queue = 0; queue < txq_number; queue++) {
1504 		val = mvreg_read(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue));
1505 
1506 		size = val & MVNETA_TXQ_TOKEN_SIZE_MAX;
1507 		if (size < mtu) {
1508 			size = mtu;
1509 			val &= ~MVNETA_TXQ_TOKEN_SIZE_MAX;
1510 			val |= size;
1511 			mvreg_write(pp, MVNETA_TXQ_TOKEN_SIZE_REG(queue), val);
1512 		}
1513 	}
1514 }
1515 
1516 /* Set unicast address */
1517 static void mvneta_set_ucast_addr(struct mvneta_port *pp, u8 last_nibble,
1518 				  int queue)
1519 {
1520 	unsigned int unicast_reg;
1521 	unsigned int tbl_offset;
1522 	unsigned int reg_offset;
1523 
1524 	/* Locate the Unicast table entry */
1525 	last_nibble = (0xf & last_nibble);
1526 
1527 	/* offset from unicast tbl base */
1528 	tbl_offset = (last_nibble / 4) * 4;
1529 
1530 	/* offset within the above reg  */
1531 	reg_offset = last_nibble % 4;
1532 
1533 	unicast_reg = mvreg_read(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset));
1534 
1535 	if (queue == -1) {
1536 		/* Clear accepts frame bit at specified unicast DA tbl entry */
1537 		unicast_reg &= ~(0xff << (8 * reg_offset));
1538 	} else {
1539 		unicast_reg &= ~(0xff << (8 * reg_offset));
1540 		unicast_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
1541 	}
1542 
1543 	mvreg_write(pp, (MVNETA_DA_FILT_UCAST_BASE + tbl_offset), unicast_reg);
1544 }
1545 
1546 /* Set mac address */
1547 static void mvneta_mac_addr_set(struct mvneta_port *pp, unsigned char *addr,
1548 				int queue)
1549 {
1550 	unsigned int mac_h;
1551 	unsigned int mac_l;
1552 
1553 	if (queue != -1) {
1554 		mac_l = (addr[4] << 8) | (addr[5]);
1555 		mac_h = (addr[0] << 24) | (addr[1] << 16) |
1556 			(addr[2] << 8) | (addr[3] << 0);
1557 
1558 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, mac_l);
1559 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, mac_h);
1560 	}
1561 
1562 	/* Accept frames of this address */
1563 	mvneta_set_ucast_addr(pp, addr[5], queue);
1564 }
1565 
1566 /* Set the number of packets that will be received before RX interrupt
1567  * will be generated by HW.
1568  */
1569 static void mvneta_rx_pkts_coal_set(struct mvneta_port *pp,
1570 				    struct mvneta_rx_queue *rxq, u32 value)
1571 {
1572 	mvreg_write(pp, MVNETA_RXQ_THRESHOLD_REG(rxq->id),
1573 		    value | MVNETA_RXQ_NON_OCCUPIED(0));
1574 	rxq->pkts_coal = value;
1575 }
1576 
1577 /* Set the time delay in usec before RX interrupt will be generated by
1578  * HW.
1579  */
1580 static void mvneta_rx_time_coal_set(struct mvneta_port *pp,
1581 				    struct mvneta_rx_queue *rxq, u32 value)
1582 {
1583 	u32 val;
1584 	unsigned long clk_rate;
1585 
1586 	clk_rate = clk_get_rate(pp->clk);
1587 	val = (clk_rate / 1000000) * value;
1588 
1589 	mvreg_write(pp, MVNETA_RXQ_TIME_COAL_REG(rxq->id), val);
1590 	rxq->time_coal = value;
1591 }
1592 
1593 /* Set threshold for TX_DONE pkts coalescing */
1594 static void mvneta_tx_done_pkts_coal_set(struct mvneta_port *pp,
1595 					 struct mvneta_tx_queue *txq, u32 value)
1596 {
1597 	u32 val;
1598 
1599 	val = mvreg_read(pp, MVNETA_TXQ_SIZE_REG(txq->id));
1600 
1601 	val &= ~MVNETA_TXQ_SENT_THRESH_ALL_MASK;
1602 	val |= MVNETA_TXQ_SENT_THRESH_MASK(value);
1603 
1604 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), val);
1605 
1606 	txq->done_pkts_coal = value;
1607 }
1608 
1609 /* Handle rx descriptor fill by setting buf_cookie and buf_phys_addr */
1610 static void mvneta_rx_desc_fill(struct mvneta_rx_desc *rx_desc,
1611 				u32 phys_addr, void *virt_addr,
1612 				struct mvneta_rx_queue *rxq)
1613 {
1614 	int i;
1615 
1616 	rx_desc->buf_phys_addr = phys_addr;
1617 	i = rx_desc - rxq->descs;
1618 	rxq->buf_virt_addr[i] = virt_addr;
1619 }
1620 
1621 /* Decrement sent descriptors counter */
1622 static void mvneta_txq_sent_desc_dec(struct mvneta_port *pp,
1623 				     struct mvneta_tx_queue *txq,
1624 				     int sent_desc)
1625 {
1626 	u32 val;
1627 
1628 	/* Only 255 TX descriptors can be updated at once */
1629 	while (sent_desc > 0xff) {
1630 		val = 0xff << MVNETA_TXQ_DEC_SENT_SHIFT;
1631 		mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1632 		sent_desc = sent_desc - 0xff;
1633 	}
1634 
1635 	val = sent_desc << MVNETA_TXQ_DEC_SENT_SHIFT;
1636 	mvreg_write(pp, MVNETA_TXQ_UPDATE_REG(txq->id), val);
1637 }
1638 
1639 /* Get number of TX descriptors already sent by HW */
1640 static int mvneta_txq_sent_desc_num_get(struct mvneta_port *pp,
1641 					struct mvneta_tx_queue *txq)
1642 {
1643 	u32 val;
1644 	int sent_desc;
1645 
1646 	val = mvreg_read(pp, MVNETA_TXQ_STATUS_REG(txq->id));
1647 	sent_desc = (val & MVNETA_TXQ_SENT_DESC_MASK) >>
1648 		MVNETA_TXQ_SENT_DESC_SHIFT;
1649 
1650 	return sent_desc;
1651 }
1652 
1653 /* Get number of sent descriptors and decrement counter.
1654  *  The number of sent descriptors is returned.
1655  */
1656 static int mvneta_txq_sent_desc_proc(struct mvneta_port *pp,
1657 				     struct mvneta_tx_queue *txq)
1658 {
1659 	int sent_desc;
1660 
1661 	/* Get number of sent descriptors */
1662 	sent_desc = mvneta_txq_sent_desc_num_get(pp, txq);
1663 
1664 	/* Decrement sent descriptors counter */
1665 	if (sent_desc)
1666 		mvneta_txq_sent_desc_dec(pp, txq, sent_desc);
1667 
1668 	return sent_desc;
1669 }
1670 
1671 /* Set TXQ descriptors fields relevant for CSUM calculation */
1672 static u32 mvneta_txq_desc_csum(int l3_offs, int l3_proto,
1673 				int ip_hdr_len, int l4_proto)
1674 {
1675 	u32 command;
1676 
1677 	/* Fields: L3_offset, IP_hdrlen, L3_type, G_IPv4_chk,
1678 	 * G_L4_chk, L4_type; required only for checksum
1679 	 * calculation
1680 	 */
1681 	command =  l3_offs    << MVNETA_TX_L3_OFF_SHIFT;
1682 	command |= ip_hdr_len << MVNETA_TX_IP_HLEN_SHIFT;
1683 
1684 	if (l3_proto == htons(ETH_P_IP))
1685 		command |= MVNETA_TXD_IP_CSUM;
1686 	else
1687 		command |= MVNETA_TX_L3_IP6;
1688 
1689 	if (l4_proto == IPPROTO_TCP)
1690 		command |=  MVNETA_TX_L4_CSUM_FULL;
1691 	else if (l4_proto == IPPROTO_UDP)
1692 		command |= MVNETA_TX_L4_UDP | MVNETA_TX_L4_CSUM_FULL;
1693 	else
1694 		command |= MVNETA_TX_L4_CSUM_NOT;
1695 
1696 	return command;
1697 }
1698 
1699 
1700 /* Display more error info */
1701 static void mvneta_rx_error(struct mvneta_port *pp,
1702 			    struct mvneta_rx_desc *rx_desc)
1703 {
1704 	u32 status = rx_desc->status;
1705 
1706 	if (!mvneta_rxq_desc_is_first_last(status)) {
1707 		netdev_err(pp->dev,
1708 			   "bad rx status %08x (buffer oversize), size=%d\n",
1709 			   status, rx_desc->data_size);
1710 		return;
1711 	}
1712 
1713 	switch (status & MVNETA_RXD_ERR_CODE_MASK) {
1714 	case MVNETA_RXD_ERR_CRC:
1715 		netdev_err(pp->dev, "bad rx status %08x (crc error), size=%d\n",
1716 			   status, rx_desc->data_size);
1717 		break;
1718 	case MVNETA_RXD_ERR_OVERRUN:
1719 		netdev_err(pp->dev, "bad rx status %08x (overrun error), size=%d\n",
1720 			   status, rx_desc->data_size);
1721 		break;
1722 	case MVNETA_RXD_ERR_LEN:
1723 		netdev_err(pp->dev, "bad rx status %08x (max frame length error), size=%d\n",
1724 			   status, rx_desc->data_size);
1725 		break;
1726 	case MVNETA_RXD_ERR_RESOURCE:
1727 		netdev_err(pp->dev, "bad rx status %08x (resource error), size=%d\n",
1728 			   status, rx_desc->data_size);
1729 		break;
1730 	}
1731 }
1732 
1733 /* Handle RX checksum offload based on the descriptor's status */
1734 static void mvneta_rx_csum(struct mvneta_port *pp, u32 status,
1735 			   struct sk_buff *skb)
1736 {
1737 	if ((status & MVNETA_RXD_L3_IP4) &&
1738 	    (status & MVNETA_RXD_L4_CSUM_OK)) {
1739 		skb->csum = 0;
1740 		skb->ip_summed = CHECKSUM_UNNECESSARY;
1741 		return;
1742 	}
1743 
1744 	skb->ip_summed = CHECKSUM_NONE;
1745 }
1746 
1747 /* Return tx queue pointer (find last set bit) according to <cause> returned
1748  * form tx_done reg. <cause> must not be null. The return value is always a
1749  * valid queue for matching the first one found in <cause>.
1750  */
1751 static struct mvneta_tx_queue *mvneta_tx_done_policy(struct mvneta_port *pp,
1752 						     u32 cause)
1753 {
1754 	int queue = fls(cause) - 1;
1755 
1756 	return &pp->txqs[queue];
1757 }
1758 
1759 /* Free tx queue skbuffs */
1760 static void mvneta_txq_bufs_free(struct mvneta_port *pp,
1761 				 struct mvneta_tx_queue *txq, int num)
1762 {
1763 	int i;
1764 
1765 	for (i = 0; i < num; i++) {
1766 		struct mvneta_tx_desc *tx_desc = txq->descs +
1767 			txq->txq_get_index;
1768 		struct sk_buff *skb = txq->tx_skb[txq->txq_get_index];
1769 
1770 		mvneta_txq_inc_get(txq);
1771 
1772 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
1773 			dma_unmap_single(pp->dev->dev.parent,
1774 					 tx_desc->buf_phys_addr,
1775 					 tx_desc->data_size, DMA_TO_DEVICE);
1776 		if (!skb)
1777 			continue;
1778 		dev_kfree_skb_any(skb);
1779 	}
1780 }
1781 
1782 /* Handle end of transmission */
1783 static void mvneta_txq_done(struct mvneta_port *pp,
1784 			   struct mvneta_tx_queue *txq)
1785 {
1786 	struct netdev_queue *nq = netdev_get_tx_queue(pp->dev, txq->id);
1787 	int tx_done;
1788 
1789 	tx_done = mvneta_txq_sent_desc_proc(pp, txq);
1790 	if (!tx_done)
1791 		return;
1792 
1793 	mvneta_txq_bufs_free(pp, txq, tx_done);
1794 
1795 	txq->count -= tx_done;
1796 
1797 	if (netif_tx_queue_stopped(nq)) {
1798 		if (txq->count <= txq->tx_wake_threshold)
1799 			netif_tx_wake_queue(nq);
1800 	}
1801 }
1802 
1803 void *mvneta_frag_alloc(unsigned int frag_size)
1804 {
1805 	if (likely(frag_size <= PAGE_SIZE))
1806 		return netdev_alloc_frag(frag_size);
1807 	else
1808 		return kmalloc(frag_size, GFP_ATOMIC);
1809 }
1810 EXPORT_SYMBOL_GPL(mvneta_frag_alloc);
1811 
1812 void mvneta_frag_free(unsigned int frag_size, void *data)
1813 {
1814 	if (likely(frag_size <= PAGE_SIZE))
1815 		skb_free_frag(data);
1816 	else
1817 		kfree(data);
1818 }
1819 EXPORT_SYMBOL_GPL(mvneta_frag_free);
1820 
1821 /* Refill processing for SW buffer management */
1822 static int mvneta_rx_refill(struct mvneta_port *pp,
1823 			    struct mvneta_rx_desc *rx_desc,
1824 			    struct mvneta_rx_queue *rxq)
1825 
1826 {
1827 	dma_addr_t phys_addr;
1828 	void *data;
1829 
1830 	data = mvneta_frag_alloc(pp->frag_size);
1831 	if (!data)
1832 		return -ENOMEM;
1833 
1834 	phys_addr = dma_map_single(pp->dev->dev.parent, data,
1835 				   MVNETA_RX_BUF_SIZE(pp->pkt_size),
1836 				   DMA_FROM_DEVICE);
1837 	if (unlikely(dma_mapping_error(pp->dev->dev.parent, phys_addr))) {
1838 		mvneta_frag_free(pp->frag_size, data);
1839 		return -ENOMEM;
1840 	}
1841 
1842 	phys_addr += pp->rx_offset_correction;
1843 	mvneta_rx_desc_fill(rx_desc, phys_addr, data, rxq);
1844 	return 0;
1845 }
1846 
1847 /* Handle tx checksum */
1848 static u32 mvneta_skb_tx_csum(struct mvneta_port *pp, struct sk_buff *skb)
1849 {
1850 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1851 		int ip_hdr_len = 0;
1852 		__be16 l3_proto = vlan_get_protocol(skb);
1853 		u8 l4_proto;
1854 
1855 		if (l3_proto == htons(ETH_P_IP)) {
1856 			struct iphdr *ip4h = ip_hdr(skb);
1857 
1858 			/* Calculate IPv4 checksum and L4 checksum */
1859 			ip_hdr_len = ip4h->ihl;
1860 			l4_proto = ip4h->protocol;
1861 		} else if (l3_proto == htons(ETH_P_IPV6)) {
1862 			struct ipv6hdr *ip6h = ipv6_hdr(skb);
1863 
1864 			/* Read l4_protocol from one of IPv6 extra headers */
1865 			if (skb_network_header_len(skb) > 0)
1866 				ip_hdr_len = (skb_network_header_len(skb) >> 2);
1867 			l4_proto = ip6h->nexthdr;
1868 		} else
1869 			return MVNETA_TX_L4_CSUM_NOT;
1870 
1871 		return mvneta_txq_desc_csum(skb_network_offset(skb),
1872 					    l3_proto, ip_hdr_len, l4_proto);
1873 	}
1874 
1875 	return MVNETA_TX_L4_CSUM_NOT;
1876 }
1877 
1878 /* Drop packets received by the RXQ and free buffers */
1879 static void mvneta_rxq_drop_pkts(struct mvneta_port *pp,
1880 				 struct mvneta_rx_queue *rxq)
1881 {
1882 	int rx_done, i;
1883 
1884 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1885 	if (rx_done)
1886 		mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
1887 
1888 	if (pp->bm_priv) {
1889 		for (i = 0; i < rx_done; i++) {
1890 			struct mvneta_rx_desc *rx_desc =
1891 						  mvneta_rxq_next_desc_get(rxq);
1892 			u8 pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
1893 			struct mvneta_bm_pool *bm_pool;
1894 
1895 			bm_pool = &pp->bm_priv->bm_pools[pool_id];
1896 			/* Return dropped buffer to the pool */
1897 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
1898 					      rx_desc->buf_phys_addr);
1899 		}
1900 		return;
1901 	}
1902 
1903 	for (i = 0; i < rxq->size; i++) {
1904 		struct mvneta_rx_desc *rx_desc = rxq->descs + i;
1905 		void *data = rxq->buf_virt_addr[i];
1906 
1907 		dma_unmap_single(pp->dev->dev.parent, rx_desc->buf_phys_addr,
1908 				 MVNETA_RX_BUF_SIZE(pp->pkt_size), DMA_FROM_DEVICE);
1909 		mvneta_frag_free(pp->frag_size, data);
1910 	}
1911 }
1912 
1913 /* Main rx processing when using software buffer management */
1914 static int mvneta_rx_swbm(struct mvneta_port *pp, int rx_todo,
1915 			  struct mvneta_rx_queue *rxq)
1916 {
1917 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
1918 	struct net_device *dev = pp->dev;
1919 	int rx_done;
1920 	u32 rcvd_pkts = 0;
1921 	u32 rcvd_bytes = 0;
1922 
1923 	/* Get number of received packets */
1924 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
1925 
1926 	if (rx_todo > rx_done)
1927 		rx_todo = rx_done;
1928 
1929 	rx_done = 0;
1930 
1931 	/* Fairness NAPI loop */
1932 	while (rx_done < rx_todo) {
1933 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
1934 		struct sk_buff *skb;
1935 		unsigned char *data;
1936 		dma_addr_t phys_addr;
1937 		u32 rx_status, frag_size;
1938 		int rx_bytes, err, index;
1939 
1940 		rx_done++;
1941 		rx_status = rx_desc->status;
1942 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
1943 		index = rx_desc - rxq->descs;
1944 		data = rxq->buf_virt_addr[index];
1945 		phys_addr = rx_desc->buf_phys_addr;
1946 
1947 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
1948 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
1949 err_drop_frame:
1950 			dev->stats.rx_errors++;
1951 			mvneta_rx_error(pp, rx_desc);
1952 			/* leave the descriptor untouched */
1953 			continue;
1954 		}
1955 
1956 		if (rx_bytes <= rx_copybreak) {
1957 		/* better copy a small frame and not unmap the DMA region */
1958 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
1959 			if (unlikely(!skb))
1960 				goto err_drop_frame;
1961 
1962 			dma_sync_single_range_for_cpu(dev->dev.parent,
1963 						      phys_addr,
1964 						      MVNETA_MH_SIZE + NET_SKB_PAD,
1965 						      rx_bytes,
1966 						      DMA_FROM_DEVICE);
1967 			memcpy(skb_put(skb, rx_bytes),
1968 			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
1969 			       rx_bytes);
1970 
1971 			skb->protocol = eth_type_trans(skb, dev);
1972 			mvneta_rx_csum(pp, rx_status, skb);
1973 			napi_gro_receive(&port->napi, skb);
1974 
1975 			rcvd_pkts++;
1976 			rcvd_bytes += rx_bytes;
1977 
1978 			/* leave the descriptor and buffer untouched */
1979 			continue;
1980 		}
1981 
1982 		/* Refill processing */
1983 		err = mvneta_rx_refill(pp, rx_desc, rxq);
1984 		if (err) {
1985 			netdev_err(dev, "Linux processing - Can't refill\n");
1986 			rxq->missed++;
1987 			goto err_drop_frame;
1988 		}
1989 
1990 		frag_size = pp->frag_size;
1991 
1992 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
1993 
1994 		/* After refill old buffer has to be unmapped regardless
1995 		 * the skb is successfully built or not.
1996 		 */
1997 		dma_unmap_single(dev->dev.parent, phys_addr,
1998 				 MVNETA_RX_BUF_SIZE(pp->pkt_size),
1999 				 DMA_FROM_DEVICE);
2000 
2001 		if (!skb)
2002 			goto err_drop_frame;
2003 
2004 		rcvd_pkts++;
2005 		rcvd_bytes += rx_bytes;
2006 
2007 		/* Linux processing */
2008 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2009 		skb_put(skb, rx_bytes);
2010 
2011 		skb->protocol = eth_type_trans(skb, dev);
2012 
2013 		mvneta_rx_csum(pp, rx_status, skb);
2014 
2015 		napi_gro_receive(&port->napi, skb);
2016 	}
2017 
2018 	if (rcvd_pkts) {
2019 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2020 
2021 		u64_stats_update_begin(&stats->syncp);
2022 		stats->rx_packets += rcvd_pkts;
2023 		stats->rx_bytes   += rcvd_bytes;
2024 		u64_stats_update_end(&stats->syncp);
2025 	}
2026 
2027 	/* Update rxq management counters */
2028 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2029 
2030 	return rx_done;
2031 }
2032 
2033 /* Main rx processing when using hardware buffer management */
2034 static int mvneta_rx_hwbm(struct mvneta_port *pp, int rx_todo,
2035 			  struct mvneta_rx_queue *rxq)
2036 {
2037 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2038 	struct net_device *dev = pp->dev;
2039 	int rx_done;
2040 	u32 rcvd_pkts = 0;
2041 	u32 rcvd_bytes = 0;
2042 
2043 	/* Get number of received packets */
2044 	rx_done = mvneta_rxq_busy_desc_num_get(pp, rxq);
2045 
2046 	if (rx_todo > rx_done)
2047 		rx_todo = rx_done;
2048 
2049 	rx_done = 0;
2050 
2051 	/* Fairness NAPI loop */
2052 	while (rx_done < rx_todo) {
2053 		struct mvneta_rx_desc *rx_desc = mvneta_rxq_next_desc_get(rxq);
2054 		struct mvneta_bm_pool *bm_pool = NULL;
2055 		struct sk_buff *skb;
2056 		unsigned char *data;
2057 		dma_addr_t phys_addr;
2058 		u32 rx_status, frag_size;
2059 		int rx_bytes, err;
2060 		u8 pool_id;
2061 
2062 		rx_done++;
2063 		rx_status = rx_desc->status;
2064 		rx_bytes = rx_desc->data_size - (ETH_FCS_LEN + MVNETA_MH_SIZE);
2065 		data = (u8 *)(uintptr_t)rx_desc->buf_cookie;
2066 		phys_addr = rx_desc->buf_phys_addr;
2067 		pool_id = MVNETA_RX_GET_BM_POOL_ID(rx_desc);
2068 		bm_pool = &pp->bm_priv->bm_pools[pool_id];
2069 
2070 		if (!mvneta_rxq_desc_is_first_last(rx_status) ||
2071 		    (rx_status & MVNETA_RXD_ERR_SUMMARY)) {
2072 err_drop_frame_ret_pool:
2073 			/* Return the buffer to the pool */
2074 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2075 					      rx_desc->buf_phys_addr);
2076 err_drop_frame:
2077 			dev->stats.rx_errors++;
2078 			mvneta_rx_error(pp, rx_desc);
2079 			/* leave the descriptor untouched */
2080 			continue;
2081 		}
2082 
2083 		if (rx_bytes <= rx_copybreak) {
2084 			/* better copy a small frame and not unmap the DMA region */
2085 			skb = netdev_alloc_skb_ip_align(dev, rx_bytes);
2086 			if (unlikely(!skb))
2087 				goto err_drop_frame_ret_pool;
2088 
2089 			dma_sync_single_range_for_cpu(dev->dev.parent,
2090 			                              rx_desc->buf_phys_addr,
2091 			                              MVNETA_MH_SIZE + NET_SKB_PAD,
2092 			                              rx_bytes,
2093 			                              DMA_FROM_DEVICE);
2094 			memcpy(skb_put(skb, rx_bytes),
2095 			       data + MVNETA_MH_SIZE + NET_SKB_PAD,
2096 			       rx_bytes);
2097 
2098 			skb->protocol = eth_type_trans(skb, dev);
2099 			mvneta_rx_csum(pp, rx_status, skb);
2100 			napi_gro_receive(&port->napi, skb);
2101 
2102 			rcvd_pkts++;
2103 			rcvd_bytes += rx_bytes;
2104 
2105 			/* Return the buffer to the pool */
2106 			mvneta_bm_pool_put_bp(pp->bm_priv, bm_pool,
2107 					      rx_desc->buf_phys_addr);
2108 
2109 			/* leave the descriptor and buffer untouched */
2110 			continue;
2111 		}
2112 
2113 		/* Refill processing */
2114 		err = hwbm_pool_refill(&bm_pool->hwbm_pool, GFP_ATOMIC);
2115 		if (err) {
2116 			netdev_err(dev, "Linux processing - Can't refill\n");
2117 			rxq->missed++;
2118 			goto err_drop_frame_ret_pool;
2119 		}
2120 
2121 		frag_size = bm_pool->hwbm_pool.frag_size;
2122 
2123 		skb = build_skb(data, frag_size > PAGE_SIZE ? 0 : frag_size);
2124 
2125 		/* After refill old buffer has to be unmapped regardless
2126 		 * the skb is successfully built or not.
2127 		 */
2128 		dma_unmap_single(&pp->bm_priv->pdev->dev, phys_addr,
2129 				 bm_pool->buf_size, DMA_FROM_DEVICE);
2130 		if (!skb)
2131 			goto err_drop_frame;
2132 
2133 		rcvd_pkts++;
2134 		rcvd_bytes += rx_bytes;
2135 
2136 		/* Linux processing */
2137 		skb_reserve(skb, MVNETA_MH_SIZE + NET_SKB_PAD);
2138 		skb_put(skb, rx_bytes);
2139 
2140 		skb->protocol = eth_type_trans(skb, dev);
2141 
2142 		mvneta_rx_csum(pp, rx_status, skb);
2143 
2144 		napi_gro_receive(&port->napi, skb);
2145 	}
2146 
2147 	if (rcvd_pkts) {
2148 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2149 
2150 		u64_stats_update_begin(&stats->syncp);
2151 		stats->rx_packets += rcvd_pkts;
2152 		stats->rx_bytes   += rcvd_bytes;
2153 		u64_stats_update_end(&stats->syncp);
2154 	}
2155 
2156 	/* Update rxq management counters */
2157 	mvneta_rxq_desc_num_update(pp, rxq, rx_done, rx_done);
2158 
2159 	return rx_done;
2160 }
2161 
2162 static inline void
2163 mvneta_tso_put_hdr(struct sk_buff *skb,
2164 		   struct mvneta_port *pp, struct mvneta_tx_queue *txq)
2165 {
2166 	struct mvneta_tx_desc *tx_desc;
2167 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2168 
2169 	txq->tx_skb[txq->txq_put_index] = NULL;
2170 	tx_desc = mvneta_txq_next_desc_get(txq);
2171 	tx_desc->data_size = hdr_len;
2172 	tx_desc->command = mvneta_skb_tx_csum(pp, skb);
2173 	tx_desc->command |= MVNETA_TXD_F_DESC;
2174 	tx_desc->buf_phys_addr = txq->tso_hdrs_phys +
2175 				 txq->txq_put_index * TSO_HEADER_SIZE;
2176 	mvneta_txq_inc_put(txq);
2177 }
2178 
2179 static inline int
2180 mvneta_tso_put_data(struct net_device *dev, struct mvneta_tx_queue *txq,
2181 		    struct sk_buff *skb, char *data, int size,
2182 		    bool last_tcp, bool is_last)
2183 {
2184 	struct mvneta_tx_desc *tx_desc;
2185 
2186 	tx_desc = mvneta_txq_next_desc_get(txq);
2187 	tx_desc->data_size = size;
2188 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, data,
2189 						size, DMA_TO_DEVICE);
2190 	if (unlikely(dma_mapping_error(dev->dev.parent,
2191 		     tx_desc->buf_phys_addr))) {
2192 		mvneta_txq_desc_put(txq);
2193 		return -ENOMEM;
2194 	}
2195 
2196 	tx_desc->command = 0;
2197 	txq->tx_skb[txq->txq_put_index] = NULL;
2198 
2199 	if (last_tcp) {
2200 		/* last descriptor in the TCP packet */
2201 		tx_desc->command = MVNETA_TXD_L_DESC;
2202 
2203 		/* last descriptor in SKB */
2204 		if (is_last)
2205 			txq->tx_skb[txq->txq_put_index] = skb;
2206 	}
2207 	mvneta_txq_inc_put(txq);
2208 	return 0;
2209 }
2210 
2211 static int mvneta_tx_tso(struct sk_buff *skb, struct net_device *dev,
2212 			 struct mvneta_tx_queue *txq)
2213 {
2214 	int total_len, data_left;
2215 	int desc_count = 0;
2216 	struct mvneta_port *pp = netdev_priv(dev);
2217 	struct tso_t tso;
2218 	int hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
2219 	int i;
2220 
2221 	/* Count needed descriptors */
2222 	if ((txq->count + tso_count_descs(skb)) >= txq->size)
2223 		return 0;
2224 
2225 	if (skb_headlen(skb) < (skb_transport_offset(skb) + tcp_hdrlen(skb))) {
2226 		pr_info("*** Is this even  possible???!?!?\n");
2227 		return 0;
2228 	}
2229 
2230 	/* Initialize the TSO handler, and prepare the first payload */
2231 	tso_start(skb, &tso);
2232 
2233 	total_len = skb->len - hdr_len;
2234 	while (total_len > 0) {
2235 		char *hdr;
2236 
2237 		data_left = min_t(int, skb_shinfo(skb)->gso_size, total_len);
2238 		total_len -= data_left;
2239 		desc_count++;
2240 
2241 		/* prepare packet headers: MAC + IP + TCP */
2242 		hdr = txq->tso_hdrs + txq->txq_put_index * TSO_HEADER_SIZE;
2243 		tso_build_hdr(skb, hdr, &tso, data_left, total_len == 0);
2244 
2245 		mvneta_tso_put_hdr(skb, pp, txq);
2246 
2247 		while (data_left > 0) {
2248 			int size;
2249 			desc_count++;
2250 
2251 			size = min_t(int, tso.size, data_left);
2252 
2253 			if (mvneta_tso_put_data(dev, txq, skb,
2254 						 tso.data, size,
2255 						 size == data_left,
2256 						 total_len == 0))
2257 				goto err_release;
2258 			data_left -= size;
2259 
2260 			tso_build_data(skb, &tso, size);
2261 		}
2262 	}
2263 
2264 	return desc_count;
2265 
2266 err_release:
2267 	/* Release all used data descriptors; header descriptors must not
2268 	 * be DMA-unmapped.
2269 	 */
2270 	for (i = desc_count - 1; i >= 0; i--) {
2271 		struct mvneta_tx_desc *tx_desc = txq->descs + i;
2272 		if (!IS_TSO_HEADER(txq, tx_desc->buf_phys_addr))
2273 			dma_unmap_single(pp->dev->dev.parent,
2274 					 tx_desc->buf_phys_addr,
2275 					 tx_desc->data_size,
2276 					 DMA_TO_DEVICE);
2277 		mvneta_txq_desc_put(txq);
2278 	}
2279 	return 0;
2280 }
2281 
2282 /* Handle tx fragmentation processing */
2283 static int mvneta_tx_frag_process(struct mvneta_port *pp, struct sk_buff *skb,
2284 				  struct mvneta_tx_queue *txq)
2285 {
2286 	struct mvneta_tx_desc *tx_desc;
2287 	int i, nr_frags = skb_shinfo(skb)->nr_frags;
2288 
2289 	for (i = 0; i < nr_frags; i++) {
2290 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2291 		void *addr = page_address(frag->page.p) + frag->page_offset;
2292 
2293 		tx_desc = mvneta_txq_next_desc_get(txq);
2294 		tx_desc->data_size = frag->size;
2295 
2296 		tx_desc->buf_phys_addr =
2297 			dma_map_single(pp->dev->dev.parent, addr,
2298 				       tx_desc->data_size, DMA_TO_DEVICE);
2299 
2300 		if (dma_mapping_error(pp->dev->dev.parent,
2301 				      tx_desc->buf_phys_addr)) {
2302 			mvneta_txq_desc_put(txq);
2303 			goto error;
2304 		}
2305 
2306 		if (i == nr_frags - 1) {
2307 			/* Last descriptor */
2308 			tx_desc->command = MVNETA_TXD_L_DESC | MVNETA_TXD_Z_PAD;
2309 			txq->tx_skb[txq->txq_put_index] = skb;
2310 		} else {
2311 			/* Descriptor in the middle: Not First, Not Last */
2312 			tx_desc->command = 0;
2313 			txq->tx_skb[txq->txq_put_index] = NULL;
2314 		}
2315 		mvneta_txq_inc_put(txq);
2316 	}
2317 
2318 	return 0;
2319 
2320 error:
2321 	/* Release all descriptors that were used to map fragments of
2322 	 * this packet, as well as the corresponding DMA mappings
2323 	 */
2324 	for (i = i - 1; i >= 0; i--) {
2325 		tx_desc = txq->descs + i;
2326 		dma_unmap_single(pp->dev->dev.parent,
2327 				 tx_desc->buf_phys_addr,
2328 				 tx_desc->data_size,
2329 				 DMA_TO_DEVICE);
2330 		mvneta_txq_desc_put(txq);
2331 	}
2332 
2333 	return -ENOMEM;
2334 }
2335 
2336 /* Main tx processing */
2337 static int mvneta_tx(struct sk_buff *skb, struct net_device *dev)
2338 {
2339 	struct mvneta_port *pp = netdev_priv(dev);
2340 	u16 txq_id = skb_get_queue_mapping(skb);
2341 	struct mvneta_tx_queue *txq = &pp->txqs[txq_id];
2342 	struct mvneta_tx_desc *tx_desc;
2343 	int len = skb->len;
2344 	int frags = 0;
2345 	u32 tx_cmd;
2346 
2347 	if (!netif_running(dev))
2348 		goto out;
2349 
2350 	if (skb_is_gso(skb)) {
2351 		frags = mvneta_tx_tso(skb, dev, txq);
2352 		goto out;
2353 	}
2354 
2355 	frags = skb_shinfo(skb)->nr_frags + 1;
2356 
2357 	/* Get a descriptor for the first part of the packet */
2358 	tx_desc = mvneta_txq_next_desc_get(txq);
2359 
2360 	tx_cmd = mvneta_skb_tx_csum(pp, skb);
2361 
2362 	tx_desc->data_size = skb_headlen(skb);
2363 
2364 	tx_desc->buf_phys_addr = dma_map_single(dev->dev.parent, skb->data,
2365 						tx_desc->data_size,
2366 						DMA_TO_DEVICE);
2367 	if (unlikely(dma_mapping_error(dev->dev.parent,
2368 				       tx_desc->buf_phys_addr))) {
2369 		mvneta_txq_desc_put(txq);
2370 		frags = 0;
2371 		goto out;
2372 	}
2373 
2374 	if (frags == 1) {
2375 		/* First and Last descriptor */
2376 		tx_cmd |= MVNETA_TXD_FLZ_DESC;
2377 		tx_desc->command = tx_cmd;
2378 		txq->tx_skb[txq->txq_put_index] = skb;
2379 		mvneta_txq_inc_put(txq);
2380 	} else {
2381 		/* First but not Last */
2382 		tx_cmd |= MVNETA_TXD_F_DESC;
2383 		txq->tx_skb[txq->txq_put_index] = NULL;
2384 		mvneta_txq_inc_put(txq);
2385 		tx_desc->command = tx_cmd;
2386 		/* Continue with other skb fragments */
2387 		if (mvneta_tx_frag_process(pp, skb, txq)) {
2388 			dma_unmap_single(dev->dev.parent,
2389 					 tx_desc->buf_phys_addr,
2390 					 tx_desc->data_size,
2391 					 DMA_TO_DEVICE);
2392 			mvneta_txq_desc_put(txq);
2393 			frags = 0;
2394 			goto out;
2395 		}
2396 	}
2397 
2398 out:
2399 	if (frags > 0) {
2400 		struct mvneta_pcpu_stats *stats = this_cpu_ptr(pp->stats);
2401 		struct netdev_queue *nq = netdev_get_tx_queue(dev, txq_id);
2402 
2403 		txq->count += frags;
2404 		mvneta_txq_pend_desc_add(pp, txq, frags);
2405 
2406 		if (txq->count >= txq->tx_stop_threshold)
2407 			netif_tx_stop_queue(nq);
2408 
2409 		u64_stats_update_begin(&stats->syncp);
2410 		stats->tx_packets++;
2411 		stats->tx_bytes  += len;
2412 		u64_stats_update_end(&stats->syncp);
2413 	} else {
2414 		dev->stats.tx_dropped++;
2415 		dev_kfree_skb_any(skb);
2416 	}
2417 
2418 	return NETDEV_TX_OK;
2419 }
2420 
2421 
2422 /* Free tx resources, when resetting a port */
2423 static void mvneta_txq_done_force(struct mvneta_port *pp,
2424 				  struct mvneta_tx_queue *txq)
2425 
2426 {
2427 	int tx_done = txq->count;
2428 
2429 	mvneta_txq_bufs_free(pp, txq, tx_done);
2430 
2431 	/* reset txq */
2432 	txq->count = 0;
2433 	txq->txq_put_index = 0;
2434 	txq->txq_get_index = 0;
2435 }
2436 
2437 /* Handle tx done - called in softirq context. The <cause_tx_done> argument
2438  * must be a valid cause according to MVNETA_TXQ_INTR_MASK_ALL.
2439  */
2440 static void mvneta_tx_done_gbe(struct mvneta_port *pp, u32 cause_tx_done)
2441 {
2442 	struct mvneta_tx_queue *txq;
2443 	struct netdev_queue *nq;
2444 
2445 	while (cause_tx_done) {
2446 		txq = mvneta_tx_done_policy(pp, cause_tx_done);
2447 
2448 		nq = netdev_get_tx_queue(pp->dev, txq->id);
2449 		__netif_tx_lock(nq, smp_processor_id());
2450 
2451 		if (txq->count)
2452 			mvneta_txq_done(pp, txq);
2453 
2454 		__netif_tx_unlock(nq);
2455 		cause_tx_done &= ~((1 << txq->id));
2456 	}
2457 }
2458 
2459 /* Compute crc8 of the specified address, using a unique algorithm ,
2460  * according to hw spec, different than generic crc8 algorithm
2461  */
2462 static int mvneta_addr_crc(unsigned char *addr)
2463 {
2464 	int crc = 0;
2465 	int i;
2466 
2467 	for (i = 0; i < ETH_ALEN; i++) {
2468 		int j;
2469 
2470 		crc = (crc ^ addr[i]) << 8;
2471 		for (j = 7; j >= 0; j--) {
2472 			if (crc & (0x100 << j))
2473 				crc ^= 0x107 << j;
2474 		}
2475 	}
2476 
2477 	return crc;
2478 }
2479 
2480 /* This method controls the net device special MAC multicast support.
2481  * The Special Multicast Table for MAC addresses supports MAC of the form
2482  * 0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2483  * The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2484  * Table entries in the DA-Filter table. This method set the Special
2485  * Multicast Table appropriate entry.
2486  */
2487 static void mvneta_set_special_mcast_addr(struct mvneta_port *pp,
2488 					  unsigned char last_byte,
2489 					  int queue)
2490 {
2491 	unsigned int smc_table_reg;
2492 	unsigned int tbl_offset;
2493 	unsigned int reg_offset;
2494 
2495 	/* Register offset from SMC table base    */
2496 	tbl_offset = (last_byte / 4);
2497 	/* Entry offset within the above reg */
2498 	reg_offset = last_byte % 4;
2499 
2500 	smc_table_reg = mvreg_read(pp, (MVNETA_DA_FILT_SPEC_MCAST
2501 					+ tbl_offset * 4));
2502 
2503 	if (queue == -1)
2504 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2505 	else {
2506 		smc_table_reg &= ~(0xff << (8 * reg_offset));
2507 		smc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2508 	}
2509 
2510 	mvreg_write(pp, MVNETA_DA_FILT_SPEC_MCAST + tbl_offset * 4,
2511 		    smc_table_reg);
2512 }
2513 
2514 /* This method controls the network device Other MAC multicast support.
2515  * The Other Multicast Table is used for multicast of another type.
2516  * A CRC-8 is used as an index to the Other Multicast Table entries
2517  * in the DA-Filter table.
2518  * The method gets the CRC-8 value from the calling routine and
2519  * sets the Other Multicast Table appropriate entry according to the
2520  * specified CRC-8 .
2521  */
2522 static void mvneta_set_other_mcast_addr(struct mvneta_port *pp,
2523 					unsigned char crc8,
2524 					int queue)
2525 {
2526 	unsigned int omc_table_reg;
2527 	unsigned int tbl_offset;
2528 	unsigned int reg_offset;
2529 
2530 	tbl_offset = (crc8 / 4) * 4; /* Register offset from OMC table base */
2531 	reg_offset = crc8 % 4;	     /* Entry offset within the above reg   */
2532 
2533 	omc_table_reg = mvreg_read(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset);
2534 
2535 	if (queue == -1) {
2536 		/* Clear accepts frame bit at specified Other DA table entry */
2537 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2538 	} else {
2539 		omc_table_reg &= ~(0xff << (8 * reg_offset));
2540 		omc_table_reg |= ((0x01 | (queue << 1)) << (8 * reg_offset));
2541 	}
2542 
2543 	mvreg_write(pp, MVNETA_DA_FILT_OTH_MCAST + tbl_offset, omc_table_reg);
2544 }
2545 
2546 /* The network device supports multicast using two tables:
2547  *    1) Special Multicast Table for MAC addresses of the form
2548  *       0x01-00-5E-00-00-XX (where XX is between 0x00 and 0xFF).
2549  *       The MAC DA[7:0] bits are used as a pointer to the Special Multicast
2550  *       Table entries in the DA-Filter table.
2551  *    2) Other Multicast Table for multicast of another type. A CRC-8 value
2552  *       is used as an index to the Other Multicast Table entries in the
2553  *       DA-Filter table.
2554  */
2555 static int mvneta_mcast_addr_set(struct mvneta_port *pp, unsigned char *p_addr,
2556 				 int queue)
2557 {
2558 	unsigned char crc_result = 0;
2559 
2560 	if (memcmp(p_addr, "\x01\x00\x5e\x00\x00", 5) == 0) {
2561 		mvneta_set_special_mcast_addr(pp, p_addr[5], queue);
2562 		return 0;
2563 	}
2564 
2565 	crc_result = mvneta_addr_crc(p_addr);
2566 	if (queue == -1) {
2567 		if (pp->mcast_count[crc_result] == 0) {
2568 			netdev_info(pp->dev, "No valid Mcast for crc8=0x%02x\n",
2569 				    crc_result);
2570 			return -EINVAL;
2571 		}
2572 
2573 		pp->mcast_count[crc_result]--;
2574 		if (pp->mcast_count[crc_result] != 0) {
2575 			netdev_info(pp->dev,
2576 				    "After delete there are %d valid Mcast for crc8=0x%02x\n",
2577 				    pp->mcast_count[crc_result], crc_result);
2578 			return -EINVAL;
2579 		}
2580 	} else
2581 		pp->mcast_count[crc_result]++;
2582 
2583 	mvneta_set_other_mcast_addr(pp, crc_result, queue);
2584 
2585 	return 0;
2586 }
2587 
2588 /* Configure Fitering mode of Ethernet port */
2589 static void mvneta_rx_unicast_promisc_set(struct mvneta_port *pp,
2590 					  int is_promisc)
2591 {
2592 	u32 port_cfg_reg, val;
2593 
2594 	port_cfg_reg = mvreg_read(pp, MVNETA_PORT_CONFIG);
2595 
2596 	val = mvreg_read(pp, MVNETA_TYPE_PRIO);
2597 
2598 	/* Set / Clear UPM bit in port configuration register */
2599 	if (is_promisc) {
2600 		/* Accept all Unicast addresses */
2601 		port_cfg_reg |= MVNETA_UNI_PROMISC_MODE;
2602 		val |= MVNETA_FORCE_UNI;
2603 		mvreg_write(pp, MVNETA_MAC_ADDR_LOW, 0xffff);
2604 		mvreg_write(pp, MVNETA_MAC_ADDR_HIGH, 0xffffffff);
2605 	} else {
2606 		/* Reject all Unicast addresses */
2607 		port_cfg_reg &= ~MVNETA_UNI_PROMISC_MODE;
2608 		val &= ~MVNETA_FORCE_UNI;
2609 	}
2610 
2611 	mvreg_write(pp, MVNETA_PORT_CONFIG, port_cfg_reg);
2612 	mvreg_write(pp, MVNETA_TYPE_PRIO, val);
2613 }
2614 
2615 /* register unicast and multicast addresses */
2616 static void mvneta_set_rx_mode(struct net_device *dev)
2617 {
2618 	struct mvneta_port *pp = netdev_priv(dev);
2619 	struct netdev_hw_addr *ha;
2620 
2621 	if (dev->flags & IFF_PROMISC) {
2622 		/* Accept all: Multicast + Unicast */
2623 		mvneta_rx_unicast_promisc_set(pp, 1);
2624 		mvneta_set_ucast_table(pp, pp->rxq_def);
2625 		mvneta_set_special_mcast_table(pp, pp->rxq_def);
2626 		mvneta_set_other_mcast_table(pp, pp->rxq_def);
2627 	} else {
2628 		/* Accept single Unicast */
2629 		mvneta_rx_unicast_promisc_set(pp, 0);
2630 		mvneta_set_ucast_table(pp, -1);
2631 		mvneta_mac_addr_set(pp, dev->dev_addr, pp->rxq_def);
2632 
2633 		if (dev->flags & IFF_ALLMULTI) {
2634 			/* Accept all multicast */
2635 			mvneta_set_special_mcast_table(pp, pp->rxq_def);
2636 			mvneta_set_other_mcast_table(pp, pp->rxq_def);
2637 		} else {
2638 			/* Accept only initialized multicast */
2639 			mvneta_set_special_mcast_table(pp, -1);
2640 			mvneta_set_other_mcast_table(pp, -1);
2641 
2642 			if (!netdev_mc_empty(dev)) {
2643 				netdev_for_each_mc_addr(ha, dev) {
2644 					mvneta_mcast_addr_set(pp, ha->addr,
2645 							      pp->rxq_def);
2646 				}
2647 			}
2648 		}
2649 	}
2650 }
2651 
2652 /* Interrupt handling - the callback for request_irq() */
2653 static irqreturn_t mvneta_isr(int irq, void *dev_id)
2654 {
2655 	struct mvneta_port *pp = (struct mvneta_port *)dev_id;
2656 
2657 	mvreg_write(pp, MVNETA_INTR_NEW_MASK, 0);
2658 	napi_schedule(&pp->napi);
2659 
2660 	return IRQ_HANDLED;
2661 }
2662 
2663 /* Interrupt handling - the callback for request_percpu_irq() */
2664 static irqreturn_t mvneta_percpu_isr(int irq, void *dev_id)
2665 {
2666 	struct mvneta_pcpu_port *port = (struct mvneta_pcpu_port *)dev_id;
2667 
2668 	disable_percpu_irq(port->pp->dev->irq);
2669 	napi_schedule(&port->napi);
2670 
2671 	return IRQ_HANDLED;
2672 }
2673 
2674 static int mvneta_fixed_link_update(struct mvneta_port *pp,
2675 				    struct phy_device *phy)
2676 {
2677 	struct fixed_phy_status status;
2678 	struct fixed_phy_status changed = {};
2679 	u32 gmac_stat = mvreg_read(pp, MVNETA_GMAC_STATUS);
2680 
2681 	status.link = !!(gmac_stat & MVNETA_GMAC_LINK_UP);
2682 	if (gmac_stat & MVNETA_GMAC_SPEED_1000)
2683 		status.speed = SPEED_1000;
2684 	else if (gmac_stat & MVNETA_GMAC_SPEED_100)
2685 		status.speed = SPEED_100;
2686 	else
2687 		status.speed = SPEED_10;
2688 	status.duplex = !!(gmac_stat & MVNETA_GMAC_FULL_DUPLEX);
2689 	changed.link = 1;
2690 	changed.speed = 1;
2691 	changed.duplex = 1;
2692 	fixed_phy_update_state(phy, &status, &changed);
2693 	return 0;
2694 }
2695 
2696 /* NAPI handler
2697  * Bits 0 - 7 of the causeRxTx register indicate that are transmitted
2698  * packets on the corresponding TXQ (Bit 0 is for TX queue 1).
2699  * Bits 8 -15 of the cause Rx Tx register indicate that are received
2700  * packets on the corresponding RXQ (Bit 8 is for RX queue 0).
2701  * Each CPU has its own causeRxTx register
2702  */
2703 static int mvneta_poll(struct napi_struct *napi, int budget)
2704 {
2705 	int rx_done = 0;
2706 	u32 cause_rx_tx;
2707 	int rx_queue;
2708 	struct mvneta_port *pp = netdev_priv(napi->dev);
2709 	struct net_device *ndev = pp->dev;
2710 	struct mvneta_pcpu_port *port = this_cpu_ptr(pp->ports);
2711 
2712 	if (!netif_running(pp->dev)) {
2713 		napi_complete(napi);
2714 		return rx_done;
2715 	}
2716 
2717 	/* Read cause register */
2718 	cause_rx_tx = mvreg_read(pp, MVNETA_INTR_NEW_CAUSE);
2719 	if (cause_rx_tx & MVNETA_MISCINTR_INTR_MASK) {
2720 		u32 cause_misc = mvreg_read(pp, MVNETA_INTR_MISC_CAUSE);
2721 
2722 		mvreg_write(pp, MVNETA_INTR_MISC_CAUSE, 0);
2723 		if (pp->use_inband_status && (cause_misc &
2724 				(MVNETA_CAUSE_PHY_STATUS_CHANGE |
2725 				 MVNETA_CAUSE_LINK_CHANGE |
2726 				 MVNETA_CAUSE_PSC_SYNC_CHANGE))) {
2727 			mvneta_fixed_link_update(pp, ndev->phydev);
2728 		}
2729 	}
2730 
2731 	/* Release Tx descriptors */
2732 	if (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL) {
2733 		mvneta_tx_done_gbe(pp, (cause_rx_tx & MVNETA_TX_INTR_MASK_ALL));
2734 		cause_rx_tx &= ~MVNETA_TX_INTR_MASK_ALL;
2735 	}
2736 
2737 	/* For the case where the last mvneta_poll did not process all
2738 	 * RX packets
2739 	 */
2740 	rx_queue = fls(((cause_rx_tx >> 8) & 0xff));
2741 
2742 	cause_rx_tx |= pp->neta_armada3700 ? pp->cause_rx_tx :
2743 		port->cause_rx_tx;
2744 
2745 	if (rx_queue) {
2746 		rx_queue = rx_queue - 1;
2747 		if (pp->bm_priv)
2748 			rx_done = mvneta_rx_hwbm(pp, budget, &pp->rxqs[rx_queue]);
2749 		else
2750 			rx_done = mvneta_rx_swbm(pp, budget, &pp->rxqs[rx_queue]);
2751 	}
2752 
2753 	budget -= rx_done;
2754 
2755 	if (budget > 0) {
2756 		cause_rx_tx = 0;
2757 		napi_complete(napi);
2758 
2759 		if (pp->neta_armada3700) {
2760 			unsigned long flags;
2761 
2762 			local_irq_save(flags);
2763 			mvreg_write(pp, MVNETA_INTR_NEW_MASK,
2764 				    MVNETA_RX_INTR_MASK(rxq_number) |
2765 				    MVNETA_TX_INTR_MASK(txq_number) |
2766 				    MVNETA_MISCINTR_INTR_MASK);
2767 			local_irq_restore(flags);
2768 		} else {
2769 			enable_percpu_irq(pp->dev->irq, 0);
2770 		}
2771 	}
2772 
2773 	if (pp->neta_armada3700)
2774 		pp->cause_rx_tx = cause_rx_tx;
2775 	else
2776 		port->cause_rx_tx = cause_rx_tx;
2777 
2778 	return rx_done;
2779 }
2780 
2781 /* Handle rxq fill: allocates rxq skbs; called when initializing a port */
2782 static int mvneta_rxq_fill(struct mvneta_port *pp, struct mvneta_rx_queue *rxq,
2783 			   int num)
2784 {
2785 	int i;
2786 
2787 	for (i = 0; i < num; i++) {
2788 		memset(rxq->descs + i, 0, sizeof(struct mvneta_rx_desc));
2789 		if (mvneta_rx_refill(pp, rxq->descs + i, rxq) != 0) {
2790 			netdev_err(pp->dev, "%s:rxq %d, %d of %d buffs  filled\n",
2791 				__func__, rxq->id, i, num);
2792 			break;
2793 		}
2794 	}
2795 
2796 	/* Add this number of RX descriptors as non occupied (ready to
2797 	 * get packets)
2798 	 */
2799 	mvneta_rxq_non_occup_desc_add(pp, rxq, i);
2800 
2801 	return i;
2802 }
2803 
2804 /* Free all packets pending transmit from all TXQs and reset TX port */
2805 static void mvneta_tx_reset(struct mvneta_port *pp)
2806 {
2807 	int queue;
2808 
2809 	/* free the skb's in the tx ring */
2810 	for (queue = 0; queue < txq_number; queue++)
2811 		mvneta_txq_done_force(pp, &pp->txqs[queue]);
2812 
2813 	mvreg_write(pp, MVNETA_PORT_TX_RESET, MVNETA_PORT_TX_DMA_RESET);
2814 	mvreg_write(pp, MVNETA_PORT_TX_RESET, 0);
2815 }
2816 
2817 static void mvneta_rx_reset(struct mvneta_port *pp)
2818 {
2819 	mvreg_write(pp, MVNETA_PORT_RX_RESET, MVNETA_PORT_RX_DMA_RESET);
2820 	mvreg_write(pp, MVNETA_PORT_RX_RESET, 0);
2821 }
2822 
2823 /* Rx/Tx queue initialization/cleanup methods */
2824 
2825 /* Create a specified RX queue */
2826 static int mvneta_rxq_init(struct mvneta_port *pp,
2827 			   struct mvneta_rx_queue *rxq)
2828 
2829 {
2830 	rxq->size = pp->rx_ring_size;
2831 
2832 	/* Allocate memory for RX descriptors */
2833 	rxq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2834 					rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2835 					&rxq->descs_phys, GFP_KERNEL);
2836 	if (rxq->descs == NULL)
2837 		return -ENOMEM;
2838 
2839 	rxq->last_desc = rxq->size - 1;
2840 
2841 	/* Set Rx descriptors queue starting address */
2842 	mvreg_write(pp, MVNETA_RXQ_BASE_ADDR_REG(rxq->id), rxq->descs_phys);
2843 	mvreg_write(pp, MVNETA_RXQ_SIZE_REG(rxq->id), rxq->size);
2844 
2845 	/* Set Offset */
2846 	mvneta_rxq_offset_set(pp, rxq, NET_SKB_PAD - pp->rx_offset_correction);
2847 
2848 	/* Set coalescing pkts and time */
2849 	mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
2850 	mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
2851 
2852 	if (!pp->bm_priv) {
2853 		/* Fill RXQ with buffers from RX pool */
2854 		mvneta_rxq_buf_size_set(pp, rxq,
2855 					MVNETA_RX_BUF_SIZE(pp->pkt_size));
2856 		mvneta_rxq_bm_disable(pp, rxq);
2857 		mvneta_rxq_fill(pp, rxq, rxq->size);
2858 	} else {
2859 		mvneta_rxq_bm_enable(pp, rxq);
2860 		mvneta_rxq_long_pool_set(pp, rxq);
2861 		mvneta_rxq_short_pool_set(pp, rxq);
2862 		mvneta_rxq_non_occup_desc_add(pp, rxq, rxq->size);
2863 	}
2864 
2865 	return 0;
2866 }
2867 
2868 /* Cleanup Rx queue */
2869 static void mvneta_rxq_deinit(struct mvneta_port *pp,
2870 			      struct mvneta_rx_queue *rxq)
2871 {
2872 	mvneta_rxq_drop_pkts(pp, rxq);
2873 
2874 	if (rxq->descs)
2875 		dma_free_coherent(pp->dev->dev.parent,
2876 				  rxq->size * MVNETA_DESC_ALIGNED_SIZE,
2877 				  rxq->descs,
2878 				  rxq->descs_phys);
2879 
2880 	rxq->descs             = NULL;
2881 	rxq->last_desc         = 0;
2882 	rxq->next_desc_to_proc = 0;
2883 	rxq->descs_phys        = 0;
2884 }
2885 
2886 /* Create and initialize a tx queue */
2887 static int mvneta_txq_init(struct mvneta_port *pp,
2888 			   struct mvneta_tx_queue *txq)
2889 {
2890 	int cpu;
2891 
2892 	txq->size = pp->tx_ring_size;
2893 
2894 	/* A queue must always have room for at least one skb.
2895 	 * Therefore, stop the queue when the free entries reaches
2896 	 * the maximum number of descriptors per skb.
2897 	 */
2898 	txq->tx_stop_threshold = txq->size - MVNETA_MAX_SKB_DESCS;
2899 	txq->tx_wake_threshold = txq->tx_stop_threshold / 2;
2900 
2901 
2902 	/* Allocate memory for TX descriptors */
2903 	txq->descs = dma_alloc_coherent(pp->dev->dev.parent,
2904 					txq->size * MVNETA_DESC_ALIGNED_SIZE,
2905 					&txq->descs_phys, GFP_KERNEL);
2906 	if (txq->descs == NULL)
2907 		return -ENOMEM;
2908 
2909 	txq->last_desc = txq->size - 1;
2910 
2911 	/* Set maximum bandwidth for enabled TXQs */
2912 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0x03ffffff);
2913 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0x3fffffff);
2914 
2915 	/* Set Tx descriptors queue starting address */
2916 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), txq->descs_phys);
2917 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), txq->size);
2918 
2919 	txq->tx_skb = kmalloc(txq->size * sizeof(*txq->tx_skb), GFP_KERNEL);
2920 	if (txq->tx_skb == NULL) {
2921 		dma_free_coherent(pp->dev->dev.parent,
2922 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2923 				  txq->descs, txq->descs_phys);
2924 		return -ENOMEM;
2925 	}
2926 
2927 	/* Allocate DMA buffers for TSO MAC/IP/TCP headers */
2928 	txq->tso_hdrs = dma_alloc_coherent(pp->dev->dev.parent,
2929 					   txq->size * TSO_HEADER_SIZE,
2930 					   &txq->tso_hdrs_phys, GFP_KERNEL);
2931 	if (txq->tso_hdrs == NULL) {
2932 		kfree(txq->tx_skb);
2933 		dma_free_coherent(pp->dev->dev.parent,
2934 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2935 				  txq->descs, txq->descs_phys);
2936 		return -ENOMEM;
2937 	}
2938 	mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
2939 
2940 	/* Setup XPS mapping */
2941 	if (txq_number > 1)
2942 		cpu = txq->id % num_present_cpus();
2943 	else
2944 		cpu = pp->rxq_def % num_present_cpus();
2945 	cpumask_set_cpu(cpu, &txq->affinity_mask);
2946 	netif_set_xps_queue(pp->dev, &txq->affinity_mask, txq->id);
2947 
2948 	return 0;
2949 }
2950 
2951 /* Free allocated resources when mvneta_txq_init() fails to allocate memory*/
2952 static void mvneta_txq_deinit(struct mvneta_port *pp,
2953 			      struct mvneta_tx_queue *txq)
2954 {
2955 	kfree(txq->tx_skb);
2956 
2957 	if (txq->tso_hdrs)
2958 		dma_free_coherent(pp->dev->dev.parent,
2959 				  txq->size * TSO_HEADER_SIZE,
2960 				  txq->tso_hdrs, txq->tso_hdrs_phys);
2961 	if (txq->descs)
2962 		dma_free_coherent(pp->dev->dev.parent,
2963 				  txq->size * MVNETA_DESC_ALIGNED_SIZE,
2964 				  txq->descs, txq->descs_phys);
2965 
2966 	txq->descs             = NULL;
2967 	txq->last_desc         = 0;
2968 	txq->next_desc_to_proc = 0;
2969 	txq->descs_phys        = 0;
2970 
2971 	/* Set minimum bandwidth for disabled TXQs */
2972 	mvreg_write(pp, MVETH_TXQ_TOKEN_CFG_REG(txq->id), 0);
2973 	mvreg_write(pp, MVETH_TXQ_TOKEN_COUNT_REG(txq->id), 0);
2974 
2975 	/* Set Tx descriptors queue starting address and size */
2976 	mvreg_write(pp, MVNETA_TXQ_BASE_ADDR_REG(txq->id), 0);
2977 	mvreg_write(pp, MVNETA_TXQ_SIZE_REG(txq->id), 0);
2978 }
2979 
2980 /* Cleanup all Tx queues */
2981 static void mvneta_cleanup_txqs(struct mvneta_port *pp)
2982 {
2983 	int queue;
2984 
2985 	for (queue = 0; queue < txq_number; queue++)
2986 		mvneta_txq_deinit(pp, &pp->txqs[queue]);
2987 }
2988 
2989 /* Cleanup all Rx queues */
2990 static void mvneta_cleanup_rxqs(struct mvneta_port *pp)
2991 {
2992 	int queue;
2993 
2994 	for (queue = 0; queue < txq_number; queue++)
2995 		mvneta_rxq_deinit(pp, &pp->rxqs[queue]);
2996 }
2997 
2998 
2999 /* Init all Rx queues */
3000 static int mvneta_setup_rxqs(struct mvneta_port *pp)
3001 {
3002 	int queue;
3003 
3004 	for (queue = 0; queue < rxq_number; queue++) {
3005 		int err = mvneta_rxq_init(pp, &pp->rxqs[queue]);
3006 
3007 		if (err) {
3008 			netdev_err(pp->dev, "%s: can't create rxq=%d\n",
3009 				   __func__, queue);
3010 			mvneta_cleanup_rxqs(pp);
3011 			return err;
3012 		}
3013 	}
3014 
3015 	return 0;
3016 }
3017 
3018 /* Init all tx queues */
3019 static int mvneta_setup_txqs(struct mvneta_port *pp)
3020 {
3021 	int queue;
3022 
3023 	for (queue = 0; queue < txq_number; queue++) {
3024 		int err = mvneta_txq_init(pp, &pp->txqs[queue]);
3025 		if (err) {
3026 			netdev_err(pp->dev, "%s: can't create txq=%d\n",
3027 				   __func__, queue);
3028 			mvneta_cleanup_txqs(pp);
3029 			return err;
3030 		}
3031 	}
3032 
3033 	return 0;
3034 }
3035 
3036 static void mvneta_start_dev(struct mvneta_port *pp)
3037 {
3038 	int cpu;
3039 	struct net_device *ndev = pp->dev;
3040 
3041 	mvneta_max_rx_size_set(pp, pp->pkt_size);
3042 	mvneta_txq_max_tx_size_set(pp, pp->pkt_size);
3043 
3044 	/* start the Rx/Tx activity */
3045 	mvneta_port_enable(pp);
3046 
3047 	if (!pp->neta_armada3700) {
3048 		/* Enable polling on the port */
3049 		for_each_online_cpu(cpu) {
3050 			struct mvneta_pcpu_port *port =
3051 				per_cpu_ptr(pp->ports, cpu);
3052 
3053 			napi_enable(&port->napi);
3054 		}
3055 	} else {
3056 		napi_enable(&pp->napi);
3057 	}
3058 
3059 	/* Unmask interrupts. It has to be done from each CPU */
3060 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3061 
3062 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3063 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3064 		    MVNETA_CAUSE_LINK_CHANGE |
3065 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3066 
3067 	phy_start(ndev->phydev);
3068 	netif_tx_start_all_queues(pp->dev);
3069 }
3070 
3071 static void mvneta_stop_dev(struct mvneta_port *pp)
3072 {
3073 	unsigned int cpu;
3074 	struct net_device *ndev = pp->dev;
3075 
3076 	phy_stop(ndev->phydev);
3077 
3078 	if (!pp->neta_armada3700) {
3079 		for_each_online_cpu(cpu) {
3080 			struct mvneta_pcpu_port *port =
3081 				per_cpu_ptr(pp->ports, cpu);
3082 
3083 			napi_disable(&port->napi);
3084 		}
3085 	} else {
3086 		napi_disable(&pp->napi);
3087 	}
3088 
3089 	netif_carrier_off(pp->dev);
3090 
3091 	mvneta_port_down(pp);
3092 	netif_tx_stop_all_queues(pp->dev);
3093 
3094 	/* Stop the port activity */
3095 	mvneta_port_disable(pp);
3096 
3097 	/* Clear all ethernet port interrupts */
3098 	on_each_cpu(mvneta_percpu_clear_intr_cause, pp, true);
3099 
3100 	/* Mask all ethernet port interrupts */
3101 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3102 
3103 	mvneta_tx_reset(pp);
3104 	mvneta_rx_reset(pp);
3105 }
3106 
3107 static void mvneta_percpu_enable(void *arg)
3108 {
3109 	struct mvneta_port *pp = arg;
3110 
3111 	enable_percpu_irq(pp->dev->irq, IRQ_TYPE_NONE);
3112 }
3113 
3114 static void mvneta_percpu_disable(void *arg)
3115 {
3116 	struct mvneta_port *pp = arg;
3117 
3118 	disable_percpu_irq(pp->dev->irq);
3119 }
3120 
3121 /* Change the device mtu */
3122 static int mvneta_change_mtu(struct net_device *dev, int mtu)
3123 {
3124 	struct mvneta_port *pp = netdev_priv(dev);
3125 	int ret;
3126 
3127 	if (!IS_ALIGNED(MVNETA_RX_PKT_SIZE(mtu), 8)) {
3128 		netdev_info(dev, "Illegal MTU value %d, rounding to %d\n",
3129 			    mtu, ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8));
3130 		mtu = ALIGN(MVNETA_RX_PKT_SIZE(mtu), 8);
3131 	}
3132 
3133 	dev->mtu = mtu;
3134 
3135 	if (!netif_running(dev)) {
3136 		if (pp->bm_priv)
3137 			mvneta_bm_update_mtu(pp, mtu);
3138 
3139 		netdev_update_features(dev);
3140 		return 0;
3141 	}
3142 
3143 	/* The interface is running, so we have to force a
3144 	 * reallocation of the queues
3145 	 */
3146 	mvneta_stop_dev(pp);
3147 	on_each_cpu(mvneta_percpu_disable, pp, true);
3148 
3149 	mvneta_cleanup_txqs(pp);
3150 	mvneta_cleanup_rxqs(pp);
3151 
3152 	if (pp->bm_priv)
3153 		mvneta_bm_update_mtu(pp, mtu);
3154 
3155 	pp->pkt_size = MVNETA_RX_PKT_SIZE(dev->mtu);
3156 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3157 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3158 
3159 	ret = mvneta_setup_rxqs(pp);
3160 	if (ret) {
3161 		netdev_err(dev, "unable to setup rxqs after MTU change\n");
3162 		return ret;
3163 	}
3164 
3165 	ret = mvneta_setup_txqs(pp);
3166 	if (ret) {
3167 		netdev_err(dev, "unable to setup txqs after MTU change\n");
3168 		return ret;
3169 	}
3170 
3171 	on_each_cpu(mvneta_percpu_enable, pp, true);
3172 	mvneta_start_dev(pp);
3173 	mvneta_port_up(pp);
3174 
3175 	netdev_update_features(dev);
3176 
3177 	return 0;
3178 }
3179 
3180 static netdev_features_t mvneta_fix_features(struct net_device *dev,
3181 					     netdev_features_t features)
3182 {
3183 	struct mvneta_port *pp = netdev_priv(dev);
3184 
3185 	if (pp->tx_csum_limit && dev->mtu > pp->tx_csum_limit) {
3186 		features &= ~(NETIF_F_IP_CSUM | NETIF_F_TSO);
3187 		netdev_info(dev,
3188 			    "Disable IP checksum for MTU greater than %dB\n",
3189 			    pp->tx_csum_limit);
3190 	}
3191 
3192 	return features;
3193 }
3194 
3195 /* Get mac address */
3196 static void mvneta_get_mac_addr(struct mvneta_port *pp, unsigned char *addr)
3197 {
3198 	u32 mac_addr_l, mac_addr_h;
3199 
3200 	mac_addr_l = mvreg_read(pp, MVNETA_MAC_ADDR_LOW);
3201 	mac_addr_h = mvreg_read(pp, MVNETA_MAC_ADDR_HIGH);
3202 	addr[0] = (mac_addr_h >> 24) & 0xFF;
3203 	addr[1] = (mac_addr_h >> 16) & 0xFF;
3204 	addr[2] = (mac_addr_h >> 8) & 0xFF;
3205 	addr[3] = mac_addr_h & 0xFF;
3206 	addr[4] = (mac_addr_l >> 8) & 0xFF;
3207 	addr[5] = mac_addr_l & 0xFF;
3208 }
3209 
3210 /* Handle setting mac address */
3211 static int mvneta_set_mac_addr(struct net_device *dev, void *addr)
3212 {
3213 	struct mvneta_port *pp = netdev_priv(dev);
3214 	struct sockaddr *sockaddr = addr;
3215 	int ret;
3216 
3217 	ret = eth_prepare_mac_addr_change(dev, addr);
3218 	if (ret < 0)
3219 		return ret;
3220 	/* Remove previous address table entry */
3221 	mvneta_mac_addr_set(pp, dev->dev_addr, -1);
3222 
3223 	/* Set new addr in hw */
3224 	mvneta_mac_addr_set(pp, sockaddr->sa_data, pp->rxq_def);
3225 
3226 	eth_commit_mac_addr_change(dev, addr);
3227 	return 0;
3228 }
3229 
3230 static void mvneta_adjust_link(struct net_device *ndev)
3231 {
3232 	struct mvneta_port *pp = netdev_priv(ndev);
3233 	struct phy_device *phydev = ndev->phydev;
3234 	int status_change = 0;
3235 
3236 	if (phydev->link) {
3237 		if ((pp->speed != phydev->speed) ||
3238 		    (pp->duplex != phydev->duplex)) {
3239 			u32 val;
3240 
3241 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3242 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3243 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3244 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3245 
3246 			if (phydev->duplex)
3247 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3248 
3249 			if (phydev->speed == SPEED_1000)
3250 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3251 			else if (phydev->speed == SPEED_100)
3252 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3253 
3254 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3255 
3256 			pp->duplex = phydev->duplex;
3257 			pp->speed  = phydev->speed;
3258 		}
3259 	}
3260 
3261 	if (phydev->link != pp->link) {
3262 		if (!phydev->link) {
3263 			pp->duplex = -1;
3264 			pp->speed = 0;
3265 		}
3266 
3267 		pp->link = phydev->link;
3268 		status_change = 1;
3269 	}
3270 
3271 	if (status_change) {
3272 		if (phydev->link) {
3273 			if (!pp->use_inband_status) {
3274 				u32 val = mvreg_read(pp,
3275 						  MVNETA_GMAC_AUTONEG_CONFIG);
3276 				val &= ~MVNETA_GMAC_FORCE_LINK_DOWN;
3277 				val |= MVNETA_GMAC_FORCE_LINK_PASS;
3278 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3279 					    val);
3280 			}
3281 			mvneta_port_up(pp);
3282 		} else {
3283 			if (!pp->use_inband_status) {
3284 				u32 val = mvreg_read(pp,
3285 						  MVNETA_GMAC_AUTONEG_CONFIG);
3286 				val &= ~MVNETA_GMAC_FORCE_LINK_PASS;
3287 				val |= MVNETA_GMAC_FORCE_LINK_DOWN;
3288 				mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG,
3289 					    val);
3290 			}
3291 			mvneta_port_down(pp);
3292 		}
3293 		phy_print_status(phydev);
3294 	}
3295 }
3296 
3297 static int mvneta_mdio_probe(struct mvneta_port *pp)
3298 {
3299 	struct phy_device *phy_dev;
3300 
3301 	phy_dev = of_phy_connect(pp->dev, pp->phy_node, mvneta_adjust_link, 0,
3302 				 pp->phy_interface);
3303 	if (!phy_dev) {
3304 		netdev_err(pp->dev, "could not find the PHY\n");
3305 		return -ENODEV;
3306 	}
3307 
3308 	phy_dev->supported &= PHY_GBIT_FEATURES;
3309 	phy_dev->advertising = phy_dev->supported;
3310 
3311 	pp->link    = 0;
3312 	pp->duplex  = 0;
3313 	pp->speed   = 0;
3314 
3315 	return 0;
3316 }
3317 
3318 static void mvneta_mdio_remove(struct mvneta_port *pp)
3319 {
3320 	struct net_device *ndev = pp->dev;
3321 
3322 	phy_disconnect(ndev->phydev);
3323 }
3324 
3325 /* Electing a CPU must be done in an atomic way: it should be done
3326  * after or before the removal/insertion of a CPU and this function is
3327  * not reentrant.
3328  */
3329 static void mvneta_percpu_elect(struct mvneta_port *pp)
3330 {
3331 	int elected_cpu = 0, max_cpu, cpu, i = 0;
3332 
3333 	/* Use the cpu associated to the rxq when it is online, in all
3334 	 * the other cases, use the cpu 0 which can't be offline.
3335 	 */
3336 	if (cpu_online(pp->rxq_def))
3337 		elected_cpu = pp->rxq_def;
3338 
3339 	max_cpu = num_present_cpus();
3340 
3341 	for_each_online_cpu(cpu) {
3342 		int rxq_map = 0, txq_map = 0;
3343 		int rxq;
3344 
3345 		for (rxq = 0; rxq < rxq_number; rxq++)
3346 			if ((rxq % max_cpu) == cpu)
3347 				rxq_map |= MVNETA_CPU_RXQ_ACCESS(rxq);
3348 
3349 		if (cpu == elected_cpu)
3350 			/* Map the default receive queue queue to the
3351 			 * elected CPU
3352 			 */
3353 			rxq_map |= MVNETA_CPU_RXQ_ACCESS(pp->rxq_def);
3354 
3355 		/* We update the TX queue map only if we have one
3356 		 * queue. In this case we associate the TX queue to
3357 		 * the CPU bound to the default RX queue
3358 		 */
3359 		if (txq_number == 1)
3360 			txq_map = (cpu == elected_cpu) ?
3361 				MVNETA_CPU_TXQ_ACCESS(1) : 0;
3362 		else
3363 			txq_map = mvreg_read(pp, MVNETA_CPU_MAP(cpu)) &
3364 				MVNETA_CPU_TXQ_ACCESS_ALL_MASK;
3365 
3366 		mvreg_write(pp, MVNETA_CPU_MAP(cpu), rxq_map | txq_map);
3367 
3368 		/* Update the interrupt mask on each CPU according the
3369 		 * new mapping
3370 		 */
3371 		smp_call_function_single(cpu, mvneta_percpu_unmask_interrupt,
3372 					 pp, true);
3373 		i++;
3374 
3375 	}
3376 };
3377 
3378 static int mvneta_cpu_online(unsigned int cpu, struct hlist_node *node)
3379 {
3380 	int other_cpu;
3381 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3382 						  node_online);
3383 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3384 
3385 
3386 	spin_lock(&pp->lock);
3387 	/*
3388 	 * Configuring the driver for a new CPU while the driver is
3389 	 * stopping is racy, so just avoid it.
3390 	 */
3391 	if (pp->is_stopped) {
3392 		spin_unlock(&pp->lock);
3393 		return 0;
3394 	}
3395 	netif_tx_stop_all_queues(pp->dev);
3396 
3397 	/*
3398 	 * We have to synchronise on tha napi of each CPU except the one
3399 	 * just being woken up
3400 	 */
3401 	for_each_online_cpu(other_cpu) {
3402 		if (other_cpu != cpu) {
3403 			struct mvneta_pcpu_port *other_port =
3404 				per_cpu_ptr(pp->ports, other_cpu);
3405 
3406 			napi_synchronize(&other_port->napi);
3407 		}
3408 	}
3409 
3410 	/* Mask all ethernet port interrupts */
3411 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3412 	napi_enable(&port->napi);
3413 
3414 	/*
3415 	 * Enable per-CPU interrupts on the CPU that is
3416 	 * brought up.
3417 	 */
3418 	mvneta_percpu_enable(pp);
3419 
3420 	/*
3421 	 * Enable per-CPU interrupt on the one CPU we care
3422 	 * about.
3423 	 */
3424 	mvneta_percpu_elect(pp);
3425 
3426 	/* Unmask all ethernet port interrupts */
3427 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3428 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3429 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3430 		    MVNETA_CAUSE_LINK_CHANGE |
3431 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3432 	netif_tx_start_all_queues(pp->dev);
3433 	spin_unlock(&pp->lock);
3434 	return 0;
3435 }
3436 
3437 static int mvneta_cpu_down_prepare(unsigned int cpu, struct hlist_node *node)
3438 {
3439 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3440 						  node_online);
3441 	struct mvneta_pcpu_port *port = per_cpu_ptr(pp->ports, cpu);
3442 
3443 	/*
3444 	 * Thanks to this lock we are sure that any pending cpu election is
3445 	 * done.
3446 	 */
3447 	spin_lock(&pp->lock);
3448 	/* Mask all ethernet port interrupts */
3449 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3450 	spin_unlock(&pp->lock);
3451 
3452 	napi_synchronize(&port->napi);
3453 	napi_disable(&port->napi);
3454 	/* Disable per-CPU interrupts on the CPU that is brought down. */
3455 	mvneta_percpu_disable(pp);
3456 	return 0;
3457 }
3458 
3459 static int mvneta_cpu_dead(unsigned int cpu, struct hlist_node *node)
3460 {
3461 	struct mvneta_port *pp = hlist_entry_safe(node, struct mvneta_port,
3462 						  node_dead);
3463 
3464 	/* Check if a new CPU must be elected now this on is down */
3465 	spin_lock(&pp->lock);
3466 	mvneta_percpu_elect(pp);
3467 	spin_unlock(&pp->lock);
3468 	/* Unmask all ethernet port interrupts */
3469 	on_each_cpu(mvneta_percpu_unmask_interrupt, pp, true);
3470 	mvreg_write(pp, MVNETA_INTR_MISC_MASK,
3471 		    MVNETA_CAUSE_PHY_STATUS_CHANGE |
3472 		    MVNETA_CAUSE_LINK_CHANGE |
3473 		    MVNETA_CAUSE_PSC_SYNC_CHANGE);
3474 	netif_tx_start_all_queues(pp->dev);
3475 	return 0;
3476 }
3477 
3478 static int mvneta_open(struct net_device *dev)
3479 {
3480 	struct mvneta_port *pp = netdev_priv(dev);
3481 	int ret;
3482 
3483 	pp->pkt_size = MVNETA_RX_PKT_SIZE(pp->dev->mtu);
3484 	pp->frag_size = SKB_DATA_ALIGN(MVNETA_RX_BUF_SIZE(pp->pkt_size)) +
3485 	                SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
3486 
3487 	ret = mvneta_setup_rxqs(pp);
3488 	if (ret)
3489 		return ret;
3490 
3491 	ret = mvneta_setup_txqs(pp);
3492 	if (ret)
3493 		goto err_cleanup_rxqs;
3494 
3495 	/* Connect to port interrupt line */
3496 	if (pp->neta_armada3700)
3497 		ret = request_irq(pp->dev->irq, mvneta_isr, 0,
3498 				  dev->name, pp);
3499 	else
3500 		ret = request_percpu_irq(pp->dev->irq, mvneta_percpu_isr,
3501 					 dev->name, pp->ports);
3502 	if (ret) {
3503 		netdev_err(pp->dev, "cannot request irq %d\n", pp->dev->irq);
3504 		goto err_cleanup_txqs;
3505 	}
3506 
3507 	if (!pp->neta_armada3700) {
3508 		/* Enable per-CPU interrupt on all the CPU to handle our RX
3509 		 * queue interrupts
3510 		 */
3511 		on_each_cpu(mvneta_percpu_enable, pp, true);
3512 
3513 		pp->is_stopped = false;
3514 		/* Register a CPU notifier to handle the case where our CPU
3515 		 * might be taken offline.
3516 		 */
3517 		ret = cpuhp_state_add_instance_nocalls(online_hpstate,
3518 						       &pp->node_online);
3519 		if (ret)
3520 			goto err_free_irq;
3521 
3522 		ret = cpuhp_state_add_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3523 						       &pp->node_dead);
3524 		if (ret)
3525 			goto err_free_online_hp;
3526 	}
3527 
3528 	/* In default link is down */
3529 	netif_carrier_off(pp->dev);
3530 
3531 	ret = mvneta_mdio_probe(pp);
3532 	if (ret < 0) {
3533 		netdev_err(dev, "cannot probe MDIO bus\n");
3534 		goto err_free_dead_hp;
3535 	}
3536 
3537 	mvneta_start_dev(pp);
3538 
3539 	return 0;
3540 
3541 err_free_dead_hp:
3542 	if (!pp->neta_armada3700)
3543 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3544 						    &pp->node_dead);
3545 err_free_online_hp:
3546 	if (!pp->neta_armada3700)
3547 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3548 						    &pp->node_online);
3549 err_free_irq:
3550 	if (pp->neta_armada3700) {
3551 		free_irq(pp->dev->irq, pp);
3552 	} else {
3553 		on_each_cpu(mvneta_percpu_disable, pp, true);
3554 		free_percpu_irq(pp->dev->irq, pp->ports);
3555 	}
3556 err_cleanup_txqs:
3557 	mvneta_cleanup_txqs(pp);
3558 err_cleanup_rxqs:
3559 	mvneta_cleanup_rxqs(pp);
3560 	return ret;
3561 }
3562 
3563 /* Stop the port, free port interrupt line */
3564 static int mvneta_stop(struct net_device *dev)
3565 {
3566 	struct mvneta_port *pp = netdev_priv(dev);
3567 
3568 	if (!pp->neta_armada3700) {
3569 		/* Inform that we are stopping so we don't want to setup the
3570 		 * driver for new CPUs in the notifiers. The code of the
3571 		 * notifier for CPU online is protected by the same spinlock,
3572 		 * so when we get the lock, the notifer work is done.
3573 		 */
3574 		spin_lock(&pp->lock);
3575 		pp->is_stopped = true;
3576 		spin_unlock(&pp->lock);
3577 
3578 		mvneta_stop_dev(pp);
3579 		mvneta_mdio_remove(pp);
3580 
3581 		cpuhp_state_remove_instance_nocalls(online_hpstate,
3582 						    &pp->node_online);
3583 		cpuhp_state_remove_instance_nocalls(CPUHP_NET_MVNETA_DEAD,
3584 						    &pp->node_dead);
3585 		on_each_cpu(mvneta_percpu_disable, pp, true);
3586 		free_percpu_irq(dev->irq, pp->ports);
3587 	} else {
3588 		mvneta_stop_dev(pp);
3589 		mvneta_mdio_remove(pp);
3590 		free_irq(dev->irq, pp);
3591 	}
3592 
3593 	mvneta_cleanup_rxqs(pp);
3594 	mvneta_cleanup_txqs(pp);
3595 
3596 	return 0;
3597 }
3598 
3599 static int mvneta_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
3600 {
3601 	if (!dev->phydev)
3602 		return -ENOTSUPP;
3603 
3604 	return phy_mii_ioctl(dev->phydev, ifr, cmd);
3605 }
3606 
3607 /* Ethtool methods */
3608 
3609 /* Set link ksettings (phy address, speed) for ethtools */
3610 static int
3611 mvneta_ethtool_set_link_ksettings(struct net_device *ndev,
3612 				  const struct ethtool_link_ksettings *cmd)
3613 {
3614 	struct mvneta_port *pp = netdev_priv(ndev);
3615 	struct phy_device *phydev = ndev->phydev;
3616 
3617 	if (!phydev)
3618 		return -ENODEV;
3619 
3620 	if ((cmd->base.autoneg == AUTONEG_ENABLE) != pp->use_inband_status) {
3621 		u32 val;
3622 
3623 		mvneta_set_autoneg(pp, cmd->base.autoneg == AUTONEG_ENABLE);
3624 
3625 		if (cmd->base.autoneg == AUTONEG_DISABLE) {
3626 			val = mvreg_read(pp, MVNETA_GMAC_AUTONEG_CONFIG);
3627 			val &= ~(MVNETA_GMAC_CONFIG_MII_SPEED |
3628 				 MVNETA_GMAC_CONFIG_GMII_SPEED |
3629 				 MVNETA_GMAC_CONFIG_FULL_DUPLEX);
3630 
3631 			if (phydev->duplex)
3632 				val |= MVNETA_GMAC_CONFIG_FULL_DUPLEX;
3633 
3634 			if (phydev->speed == SPEED_1000)
3635 				val |= MVNETA_GMAC_CONFIG_GMII_SPEED;
3636 			else if (phydev->speed == SPEED_100)
3637 				val |= MVNETA_GMAC_CONFIG_MII_SPEED;
3638 
3639 			mvreg_write(pp, MVNETA_GMAC_AUTONEG_CONFIG, val);
3640 		}
3641 
3642 		pp->use_inband_status = (cmd->base.autoneg == AUTONEG_ENABLE);
3643 		netdev_info(pp->dev, "autoneg status set to %i\n",
3644 			    pp->use_inband_status);
3645 
3646 		if (netif_running(ndev)) {
3647 			mvneta_port_down(pp);
3648 			mvneta_port_up(pp);
3649 		}
3650 	}
3651 
3652 	return phy_ethtool_ksettings_set(ndev->phydev, cmd);
3653 }
3654 
3655 /* Set interrupt coalescing for ethtools */
3656 static int mvneta_ethtool_set_coalesce(struct net_device *dev,
3657 				       struct ethtool_coalesce *c)
3658 {
3659 	struct mvneta_port *pp = netdev_priv(dev);
3660 	int queue;
3661 
3662 	for (queue = 0; queue < rxq_number; queue++) {
3663 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3664 		rxq->time_coal = c->rx_coalesce_usecs;
3665 		rxq->pkts_coal = c->rx_max_coalesced_frames;
3666 		mvneta_rx_pkts_coal_set(pp, rxq, rxq->pkts_coal);
3667 		mvneta_rx_time_coal_set(pp, rxq, rxq->time_coal);
3668 	}
3669 
3670 	for (queue = 0; queue < txq_number; queue++) {
3671 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3672 		txq->done_pkts_coal = c->tx_max_coalesced_frames;
3673 		mvneta_tx_done_pkts_coal_set(pp, txq, txq->done_pkts_coal);
3674 	}
3675 
3676 	return 0;
3677 }
3678 
3679 /* get coalescing for ethtools */
3680 static int mvneta_ethtool_get_coalesce(struct net_device *dev,
3681 				       struct ethtool_coalesce *c)
3682 {
3683 	struct mvneta_port *pp = netdev_priv(dev);
3684 
3685 	c->rx_coalesce_usecs        = pp->rxqs[0].time_coal;
3686 	c->rx_max_coalesced_frames  = pp->rxqs[0].pkts_coal;
3687 
3688 	c->tx_max_coalesced_frames =  pp->txqs[0].done_pkts_coal;
3689 	return 0;
3690 }
3691 
3692 
3693 static void mvneta_ethtool_get_drvinfo(struct net_device *dev,
3694 				    struct ethtool_drvinfo *drvinfo)
3695 {
3696 	strlcpy(drvinfo->driver, MVNETA_DRIVER_NAME,
3697 		sizeof(drvinfo->driver));
3698 	strlcpy(drvinfo->version, MVNETA_DRIVER_VERSION,
3699 		sizeof(drvinfo->version));
3700 	strlcpy(drvinfo->bus_info, dev_name(&dev->dev),
3701 		sizeof(drvinfo->bus_info));
3702 }
3703 
3704 
3705 static void mvneta_ethtool_get_ringparam(struct net_device *netdev,
3706 					 struct ethtool_ringparam *ring)
3707 {
3708 	struct mvneta_port *pp = netdev_priv(netdev);
3709 
3710 	ring->rx_max_pending = MVNETA_MAX_RXD;
3711 	ring->tx_max_pending = MVNETA_MAX_TXD;
3712 	ring->rx_pending = pp->rx_ring_size;
3713 	ring->tx_pending = pp->tx_ring_size;
3714 }
3715 
3716 static int mvneta_ethtool_set_ringparam(struct net_device *dev,
3717 					struct ethtool_ringparam *ring)
3718 {
3719 	struct mvneta_port *pp = netdev_priv(dev);
3720 
3721 	if ((ring->rx_pending == 0) || (ring->tx_pending == 0))
3722 		return -EINVAL;
3723 	pp->rx_ring_size = ring->rx_pending < MVNETA_MAX_RXD ?
3724 		ring->rx_pending : MVNETA_MAX_RXD;
3725 
3726 	pp->tx_ring_size = clamp_t(u16, ring->tx_pending,
3727 				   MVNETA_MAX_SKB_DESCS * 2, MVNETA_MAX_TXD);
3728 	if (pp->tx_ring_size != ring->tx_pending)
3729 		netdev_warn(dev, "TX queue size set to %u (requested %u)\n",
3730 			    pp->tx_ring_size, ring->tx_pending);
3731 
3732 	if (netif_running(dev)) {
3733 		mvneta_stop(dev);
3734 		if (mvneta_open(dev)) {
3735 			netdev_err(dev,
3736 				   "error on opening device after ring param change\n");
3737 			return -ENOMEM;
3738 		}
3739 	}
3740 
3741 	return 0;
3742 }
3743 
3744 static void mvneta_ethtool_get_strings(struct net_device *netdev, u32 sset,
3745 				       u8 *data)
3746 {
3747 	if (sset == ETH_SS_STATS) {
3748 		int i;
3749 
3750 		for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3751 			memcpy(data + i * ETH_GSTRING_LEN,
3752 			       mvneta_statistics[i].name, ETH_GSTRING_LEN);
3753 	}
3754 }
3755 
3756 static void mvneta_ethtool_update_stats(struct mvneta_port *pp)
3757 {
3758 	const struct mvneta_statistic *s;
3759 	void __iomem *base = pp->base;
3760 	u32 high, low, val;
3761 	u64 val64;
3762 	int i;
3763 
3764 	for (i = 0, s = mvneta_statistics;
3765 	     s < mvneta_statistics + ARRAY_SIZE(mvneta_statistics);
3766 	     s++, i++) {
3767 		switch (s->type) {
3768 		case T_REG_32:
3769 			val = readl_relaxed(base + s->offset);
3770 			pp->ethtool_stats[i] += val;
3771 			break;
3772 		case T_REG_64:
3773 			/* Docs say to read low 32-bit then high */
3774 			low = readl_relaxed(base + s->offset);
3775 			high = readl_relaxed(base + s->offset + 4);
3776 			val64 = (u64)high << 32 | low;
3777 			pp->ethtool_stats[i] += val64;
3778 			break;
3779 		}
3780 	}
3781 }
3782 
3783 static void mvneta_ethtool_get_stats(struct net_device *dev,
3784 				     struct ethtool_stats *stats, u64 *data)
3785 {
3786 	struct mvneta_port *pp = netdev_priv(dev);
3787 	int i;
3788 
3789 	mvneta_ethtool_update_stats(pp);
3790 
3791 	for (i = 0; i < ARRAY_SIZE(mvneta_statistics); i++)
3792 		*data++ = pp->ethtool_stats[i];
3793 }
3794 
3795 static int mvneta_ethtool_get_sset_count(struct net_device *dev, int sset)
3796 {
3797 	if (sset == ETH_SS_STATS)
3798 		return ARRAY_SIZE(mvneta_statistics);
3799 	return -EOPNOTSUPP;
3800 }
3801 
3802 static u32 mvneta_ethtool_get_rxfh_indir_size(struct net_device *dev)
3803 {
3804 	return MVNETA_RSS_LU_TABLE_SIZE;
3805 }
3806 
3807 static int mvneta_ethtool_get_rxnfc(struct net_device *dev,
3808 				    struct ethtool_rxnfc *info,
3809 				    u32 *rules __always_unused)
3810 {
3811 	switch (info->cmd) {
3812 	case ETHTOOL_GRXRINGS:
3813 		info->data =  rxq_number;
3814 		return 0;
3815 	case ETHTOOL_GRXFH:
3816 		return -EOPNOTSUPP;
3817 	default:
3818 		return -EOPNOTSUPP;
3819 	}
3820 }
3821 
3822 static int  mvneta_config_rss(struct mvneta_port *pp)
3823 {
3824 	int cpu;
3825 	u32 val;
3826 
3827 	netif_tx_stop_all_queues(pp->dev);
3828 
3829 	on_each_cpu(mvneta_percpu_mask_interrupt, pp, true);
3830 
3831 	/* We have to synchronise on the napi of each CPU */
3832 	for_each_online_cpu(cpu) {
3833 		struct mvneta_pcpu_port *pcpu_port =
3834 			per_cpu_ptr(pp->ports, cpu);
3835 
3836 		napi_synchronize(&pcpu_port->napi);
3837 		napi_disable(&pcpu_port->napi);
3838 	}
3839 
3840 	pp->rxq_def = pp->indir[0];
3841 
3842 	/* Update unicast mapping */
3843 	mvneta_set_rx_mode(pp->dev);
3844 
3845 	/* Update val of portCfg register accordingly with all RxQueue types */
3846 	val = MVNETA_PORT_CONFIG_DEFL_VALUE(pp->rxq_def);
3847 	mvreg_write(pp, MVNETA_PORT_CONFIG, val);
3848 
3849 	/* Update the elected CPU matching the new rxq_def */
3850 	spin_lock(&pp->lock);
3851 	mvneta_percpu_elect(pp);
3852 	spin_unlock(&pp->lock);
3853 
3854 	/* We have to synchronise on the napi of each CPU */
3855 	for_each_online_cpu(cpu) {
3856 		struct mvneta_pcpu_port *pcpu_port =
3857 			per_cpu_ptr(pp->ports, cpu);
3858 
3859 		napi_enable(&pcpu_port->napi);
3860 	}
3861 
3862 	netif_tx_start_all_queues(pp->dev);
3863 
3864 	return 0;
3865 }
3866 
3867 static int mvneta_ethtool_set_rxfh(struct net_device *dev, const u32 *indir,
3868 				   const u8 *key, const u8 hfunc)
3869 {
3870 	struct mvneta_port *pp = netdev_priv(dev);
3871 
3872 	/* Current code for Armada 3700 doesn't support RSS features yet */
3873 	if (pp->neta_armada3700)
3874 		return -EOPNOTSUPP;
3875 
3876 	/* We require at least one supported parameter to be changed
3877 	 * and no change in any of the unsupported parameters
3878 	 */
3879 	if (key ||
3880 	    (hfunc != ETH_RSS_HASH_NO_CHANGE && hfunc != ETH_RSS_HASH_TOP))
3881 		return -EOPNOTSUPP;
3882 
3883 	if (!indir)
3884 		return 0;
3885 
3886 	memcpy(pp->indir, indir, MVNETA_RSS_LU_TABLE_SIZE);
3887 
3888 	return mvneta_config_rss(pp);
3889 }
3890 
3891 static int mvneta_ethtool_get_rxfh(struct net_device *dev, u32 *indir, u8 *key,
3892 				   u8 *hfunc)
3893 {
3894 	struct mvneta_port *pp = netdev_priv(dev);
3895 
3896 	/* Current code for Armada 3700 doesn't support RSS features yet */
3897 	if (pp->neta_armada3700)
3898 		return -EOPNOTSUPP;
3899 
3900 	if (hfunc)
3901 		*hfunc = ETH_RSS_HASH_TOP;
3902 
3903 	if (!indir)
3904 		return 0;
3905 
3906 	memcpy(indir, pp->indir, MVNETA_RSS_LU_TABLE_SIZE);
3907 
3908 	return 0;
3909 }
3910 
3911 static const struct net_device_ops mvneta_netdev_ops = {
3912 	.ndo_open            = mvneta_open,
3913 	.ndo_stop            = mvneta_stop,
3914 	.ndo_start_xmit      = mvneta_tx,
3915 	.ndo_set_rx_mode     = mvneta_set_rx_mode,
3916 	.ndo_set_mac_address = mvneta_set_mac_addr,
3917 	.ndo_change_mtu      = mvneta_change_mtu,
3918 	.ndo_fix_features    = mvneta_fix_features,
3919 	.ndo_get_stats64     = mvneta_get_stats64,
3920 	.ndo_do_ioctl        = mvneta_ioctl,
3921 };
3922 
3923 const struct ethtool_ops mvneta_eth_tool_ops = {
3924 	.nway_reset	= phy_ethtool_nway_reset,
3925 	.get_link       = ethtool_op_get_link,
3926 	.set_coalesce   = mvneta_ethtool_set_coalesce,
3927 	.get_coalesce   = mvneta_ethtool_get_coalesce,
3928 	.get_drvinfo    = mvneta_ethtool_get_drvinfo,
3929 	.get_ringparam  = mvneta_ethtool_get_ringparam,
3930 	.set_ringparam	= mvneta_ethtool_set_ringparam,
3931 	.get_strings	= mvneta_ethtool_get_strings,
3932 	.get_ethtool_stats = mvneta_ethtool_get_stats,
3933 	.get_sset_count	= mvneta_ethtool_get_sset_count,
3934 	.get_rxfh_indir_size = mvneta_ethtool_get_rxfh_indir_size,
3935 	.get_rxnfc	= mvneta_ethtool_get_rxnfc,
3936 	.get_rxfh	= mvneta_ethtool_get_rxfh,
3937 	.set_rxfh	= mvneta_ethtool_set_rxfh,
3938 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
3939 	.set_link_ksettings = mvneta_ethtool_set_link_ksettings,
3940 };
3941 
3942 /* Initialize hw */
3943 static int mvneta_init(struct device *dev, struct mvneta_port *pp)
3944 {
3945 	int queue;
3946 
3947 	/* Disable port */
3948 	mvneta_port_disable(pp);
3949 
3950 	/* Set port default values */
3951 	mvneta_defaults_set(pp);
3952 
3953 	pp->txqs = devm_kcalloc(dev, txq_number, sizeof(struct mvneta_tx_queue),
3954 				GFP_KERNEL);
3955 	if (!pp->txqs)
3956 		return -ENOMEM;
3957 
3958 	/* Initialize TX descriptor rings */
3959 	for (queue = 0; queue < txq_number; queue++) {
3960 		struct mvneta_tx_queue *txq = &pp->txqs[queue];
3961 		txq->id = queue;
3962 		txq->size = pp->tx_ring_size;
3963 		txq->done_pkts_coal = MVNETA_TXDONE_COAL_PKTS;
3964 	}
3965 
3966 	pp->rxqs = devm_kcalloc(dev, rxq_number, sizeof(struct mvneta_rx_queue),
3967 				GFP_KERNEL);
3968 	if (!pp->rxqs)
3969 		return -ENOMEM;
3970 
3971 	/* Create Rx descriptor rings */
3972 	for (queue = 0; queue < rxq_number; queue++) {
3973 		struct mvneta_rx_queue *rxq = &pp->rxqs[queue];
3974 		rxq->id = queue;
3975 		rxq->size = pp->rx_ring_size;
3976 		rxq->pkts_coal = MVNETA_RX_COAL_PKTS;
3977 		rxq->time_coal = MVNETA_RX_COAL_USEC;
3978 		rxq->buf_virt_addr = devm_kmalloc(pp->dev->dev.parent,
3979 						  rxq->size * sizeof(void *),
3980 						  GFP_KERNEL);
3981 		if (!rxq->buf_virt_addr)
3982 			return -ENOMEM;
3983 	}
3984 
3985 	return 0;
3986 }
3987 
3988 /* platform glue : initialize decoding windows */
3989 static void mvneta_conf_mbus_windows(struct mvneta_port *pp,
3990 				     const struct mbus_dram_target_info *dram)
3991 {
3992 	u32 win_enable;
3993 	u32 win_protect;
3994 	int i;
3995 
3996 	for (i = 0; i < 6; i++) {
3997 		mvreg_write(pp, MVNETA_WIN_BASE(i), 0);
3998 		mvreg_write(pp, MVNETA_WIN_SIZE(i), 0);
3999 
4000 		if (i < 4)
4001 			mvreg_write(pp, MVNETA_WIN_REMAP(i), 0);
4002 	}
4003 
4004 	win_enable = 0x3f;
4005 	win_protect = 0;
4006 
4007 	if (dram) {
4008 		for (i = 0; i < dram->num_cs; i++) {
4009 			const struct mbus_dram_window *cs = dram->cs + i;
4010 
4011 			mvreg_write(pp, MVNETA_WIN_BASE(i),
4012 				    (cs->base & 0xffff0000) |
4013 				    (cs->mbus_attr << 8) |
4014 				    dram->mbus_dram_target_id);
4015 
4016 			mvreg_write(pp, MVNETA_WIN_SIZE(i),
4017 				    (cs->size - 1) & 0xffff0000);
4018 
4019 			win_enable &= ~(1 << i);
4020 			win_protect |= 3 << (2 * i);
4021 		}
4022 	} else {
4023 		/* For Armada3700 open default 4GB Mbus window, leaving
4024 		 * arbitration of target/attribute to a different layer
4025 		 * of configuration.
4026 		 */
4027 		mvreg_write(pp, MVNETA_WIN_SIZE(0), 0xffff0000);
4028 		win_enable &= ~BIT(0);
4029 		win_protect = 3;
4030 	}
4031 
4032 	mvreg_write(pp, MVNETA_BASE_ADDR_ENABLE, win_enable);
4033 	mvreg_write(pp, MVNETA_ACCESS_PROTECT_ENABLE, win_protect);
4034 }
4035 
4036 /* Power up the port */
4037 static int mvneta_port_power_up(struct mvneta_port *pp, int phy_mode)
4038 {
4039 	u32 ctrl;
4040 
4041 	/* MAC Cause register should be cleared */
4042 	mvreg_write(pp, MVNETA_UNIT_INTR_CAUSE, 0);
4043 
4044 	ctrl = mvreg_read(pp, MVNETA_GMAC_CTRL_2);
4045 
4046 	/* Even though it might look weird, when we're configured in
4047 	 * SGMII or QSGMII mode, the RGMII bit needs to be set.
4048 	 */
4049 	switch(phy_mode) {
4050 	case PHY_INTERFACE_MODE_QSGMII:
4051 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_QSGMII_SERDES_PROTO);
4052 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
4053 		break;
4054 	case PHY_INTERFACE_MODE_SGMII:
4055 		mvreg_write(pp, MVNETA_SERDES_CFG, MVNETA_SGMII_SERDES_PROTO);
4056 		ctrl |= MVNETA_GMAC2_PCS_ENABLE | MVNETA_GMAC2_PORT_RGMII;
4057 		break;
4058 	case PHY_INTERFACE_MODE_RGMII:
4059 	case PHY_INTERFACE_MODE_RGMII_ID:
4060 		ctrl |= MVNETA_GMAC2_PORT_RGMII;
4061 		break;
4062 	default:
4063 		return -EINVAL;
4064 	}
4065 
4066 	/* Cancel Port Reset */
4067 	ctrl &= ~MVNETA_GMAC2_PORT_RESET;
4068 	mvreg_write(pp, MVNETA_GMAC_CTRL_2, ctrl);
4069 
4070 	while ((mvreg_read(pp, MVNETA_GMAC_CTRL_2) &
4071 		MVNETA_GMAC2_PORT_RESET) != 0)
4072 		continue;
4073 
4074 	return 0;
4075 }
4076 
4077 /* Device initialization routine */
4078 static int mvneta_probe(struct platform_device *pdev)
4079 {
4080 	const struct mbus_dram_target_info *dram_target_info;
4081 	struct resource *res;
4082 	struct device_node *dn = pdev->dev.of_node;
4083 	struct device_node *phy_node;
4084 	struct device_node *bm_node;
4085 	struct mvneta_port *pp;
4086 	struct net_device *dev;
4087 	const char *dt_mac_addr;
4088 	char hw_mac_addr[ETH_ALEN];
4089 	const char *mac_from;
4090 	const char *managed;
4091 	int tx_csum_limit;
4092 	int phy_mode;
4093 	int err;
4094 	int cpu;
4095 
4096 	dev = alloc_etherdev_mqs(sizeof(struct mvneta_port), txq_number, rxq_number);
4097 	if (!dev)
4098 		return -ENOMEM;
4099 
4100 	dev->irq = irq_of_parse_and_map(dn, 0);
4101 	if (dev->irq == 0) {
4102 		err = -EINVAL;
4103 		goto err_free_netdev;
4104 	}
4105 
4106 	phy_node = of_parse_phandle(dn, "phy", 0);
4107 	if (!phy_node) {
4108 		if (!of_phy_is_fixed_link(dn)) {
4109 			dev_err(&pdev->dev, "no PHY specified\n");
4110 			err = -ENODEV;
4111 			goto err_free_irq;
4112 		}
4113 
4114 		err = of_phy_register_fixed_link(dn);
4115 		if (err < 0) {
4116 			dev_err(&pdev->dev, "cannot register fixed PHY\n");
4117 			goto err_free_irq;
4118 		}
4119 
4120 		/* In the case of a fixed PHY, the DT node associated
4121 		 * to the PHY is the Ethernet MAC DT node.
4122 		 */
4123 		phy_node = of_node_get(dn);
4124 	}
4125 
4126 	phy_mode = of_get_phy_mode(dn);
4127 	if (phy_mode < 0) {
4128 		dev_err(&pdev->dev, "incorrect phy-mode\n");
4129 		err = -EINVAL;
4130 		goto err_put_phy_node;
4131 	}
4132 
4133 	dev->tx_queue_len = MVNETA_MAX_TXD;
4134 	dev->watchdog_timeo = 5 * HZ;
4135 	dev->netdev_ops = &mvneta_netdev_ops;
4136 
4137 	dev->ethtool_ops = &mvneta_eth_tool_ops;
4138 
4139 	pp = netdev_priv(dev);
4140 	spin_lock_init(&pp->lock);
4141 	pp->phy_node = phy_node;
4142 	pp->phy_interface = phy_mode;
4143 
4144 	err = of_property_read_string(dn, "managed", &managed);
4145 	pp->use_inband_status = (err == 0 &&
4146 				 strcmp(managed, "in-band-status") == 0);
4147 
4148 	pp->rxq_def = rxq_def;
4149 
4150 	/* Set RX packet offset correction for platforms, whose
4151 	 * NET_SKB_PAD, exceeds 64B. It should be 64B for 64-bit
4152 	 * platforms and 0B for 32-bit ones.
4153 	 */
4154 	pp->rx_offset_correction =
4155 		max(0, NET_SKB_PAD - MVNETA_RX_PKT_OFFSET_CORRECTION);
4156 
4157 	pp->indir[0] = rxq_def;
4158 
4159 	/* Get special SoC configurations */
4160 	if (of_device_is_compatible(dn, "marvell,armada-3700-neta"))
4161 		pp->neta_armada3700 = true;
4162 
4163 	pp->clk = devm_clk_get(&pdev->dev, "core");
4164 	if (IS_ERR(pp->clk))
4165 		pp->clk = devm_clk_get(&pdev->dev, NULL);
4166 	if (IS_ERR(pp->clk)) {
4167 		err = PTR_ERR(pp->clk);
4168 		goto err_put_phy_node;
4169 	}
4170 
4171 	clk_prepare_enable(pp->clk);
4172 
4173 	pp->clk_bus = devm_clk_get(&pdev->dev, "bus");
4174 	if (!IS_ERR(pp->clk_bus))
4175 		clk_prepare_enable(pp->clk_bus);
4176 
4177 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
4178 	pp->base = devm_ioremap_resource(&pdev->dev, res);
4179 	if (IS_ERR(pp->base)) {
4180 		err = PTR_ERR(pp->base);
4181 		goto err_clk;
4182 	}
4183 
4184 	/* Alloc per-cpu port structure */
4185 	pp->ports = alloc_percpu(struct mvneta_pcpu_port);
4186 	if (!pp->ports) {
4187 		err = -ENOMEM;
4188 		goto err_clk;
4189 	}
4190 
4191 	/* Alloc per-cpu stats */
4192 	pp->stats = netdev_alloc_pcpu_stats(struct mvneta_pcpu_stats);
4193 	if (!pp->stats) {
4194 		err = -ENOMEM;
4195 		goto err_free_ports;
4196 	}
4197 
4198 	dt_mac_addr = of_get_mac_address(dn);
4199 	if (dt_mac_addr) {
4200 		mac_from = "device tree";
4201 		memcpy(dev->dev_addr, dt_mac_addr, ETH_ALEN);
4202 	} else {
4203 		mvneta_get_mac_addr(pp, hw_mac_addr);
4204 		if (is_valid_ether_addr(hw_mac_addr)) {
4205 			mac_from = "hardware";
4206 			memcpy(dev->dev_addr, hw_mac_addr, ETH_ALEN);
4207 		} else {
4208 			mac_from = "random";
4209 			eth_hw_addr_random(dev);
4210 		}
4211 	}
4212 
4213 	if (!of_property_read_u32(dn, "tx-csum-limit", &tx_csum_limit)) {
4214 		if (tx_csum_limit < 0 ||
4215 		    tx_csum_limit > MVNETA_TX_CSUM_MAX_SIZE) {
4216 			tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4217 			dev_info(&pdev->dev,
4218 				 "Wrong TX csum limit in DT, set to %dB\n",
4219 				 MVNETA_TX_CSUM_DEF_SIZE);
4220 		}
4221 	} else if (of_device_is_compatible(dn, "marvell,armada-370-neta")) {
4222 		tx_csum_limit = MVNETA_TX_CSUM_DEF_SIZE;
4223 	} else {
4224 		tx_csum_limit = MVNETA_TX_CSUM_MAX_SIZE;
4225 	}
4226 
4227 	pp->tx_csum_limit = tx_csum_limit;
4228 
4229 	dram_target_info = mv_mbus_dram_info();
4230 	/* Armada3700 requires setting default configuration of Mbus
4231 	 * windows, however without using filled mbus_dram_target_info
4232 	 * structure.
4233 	 */
4234 	if (dram_target_info || pp->neta_armada3700)
4235 		mvneta_conf_mbus_windows(pp, dram_target_info);
4236 
4237 	pp->tx_ring_size = MVNETA_MAX_TXD;
4238 	pp->rx_ring_size = MVNETA_MAX_RXD;
4239 
4240 	pp->dev = dev;
4241 	SET_NETDEV_DEV(dev, &pdev->dev);
4242 
4243 	pp->id = global_port_id++;
4244 
4245 	/* Obtain access to BM resources if enabled and already initialized */
4246 	bm_node = of_parse_phandle(dn, "buffer-manager", 0);
4247 	if (bm_node && bm_node->data) {
4248 		pp->bm_priv = bm_node->data;
4249 		err = mvneta_bm_port_init(pdev, pp);
4250 		if (err < 0) {
4251 			dev_info(&pdev->dev, "use SW buffer management\n");
4252 			pp->bm_priv = NULL;
4253 		}
4254 	}
4255 	of_node_put(bm_node);
4256 
4257 	err = mvneta_init(&pdev->dev, pp);
4258 	if (err < 0)
4259 		goto err_netdev;
4260 
4261 	err = mvneta_port_power_up(pp, phy_mode);
4262 	if (err < 0) {
4263 		dev_err(&pdev->dev, "can't power up port\n");
4264 		goto err_netdev;
4265 	}
4266 
4267 	/* Armada3700 network controller does not support per-cpu
4268 	 * operation, so only single NAPI should be initialized.
4269 	 */
4270 	if (pp->neta_armada3700) {
4271 		netif_napi_add(dev, &pp->napi, mvneta_poll, NAPI_POLL_WEIGHT);
4272 	} else {
4273 		for_each_present_cpu(cpu) {
4274 			struct mvneta_pcpu_port *port =
4275 				per_cpu_ptr(pp->ports, cpu);
4276 
4277 			netif_napi_add(dev, &port->napi, mvneta_poll,
4278 				       NAPI_POLL_WEIGHT);
4279 			port->pp = pp;
4280 		}
4281 	}
4282 
4283 	dev->features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_TSO;
4284 	dev->hw_features |= dev->features;
4285 	dev->vlan_features |= dev->features;
4286 	dev->priv_flags |= IFF_LIVE_ADDR_CHANGE;
4287 	dev->gso_max_segs = MVNETA_MAX_TSO_SEGS;
4288 
4289 	/* MTU range: 68 - 9676 */
4290 	dev->min_mtu = ETH_MIN_MTU;
4291 	/* 9676 == 9700 - 20 and rounding to 8 */
4292 	dev->max_mtu = 9676;
4293 
4294 	err = register_netdev(dev);
4295 	if (err < 0) {
4296 		dev_err(&pdev->dev, "failed to register\n");
4297 		goto err_free_stats;
4298 	}
4299 
4300 	netdev_info(dev, "Using %s mac address %pM\n", mac_from,
4301 		    dev->dev_addr);
4302 
4303 	platform_set_drvdata(pdev, pp->dev);
4304 
4305 	if (pp->use_inband_status) {
4306 		struct phy_device *phy = of_phy_find_device(dn);
4307 
4308 		mvneta_fixed_link_update(pp, phy);
4309 
4310 		put_device(&phy->mdio.dev);
4311 	}
4312 
4313 	return 0;
4314 
4315 err_netdev:
4316 	unregister_netdev(dev);
4317 	if (pp->bm_priv) {
4318 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4319 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4320 				       1 << pp->id);
4321 	}
4322 err_free_stats:
4323 	free_percpu(pp->stats);
4324 err_free_ports:
4325 	free_percpu(pp->ports);
4326 err_clk:
4327 	clk_disable_unprepare(pp->clk_bus);
4328 	clk_disable_unprepare(pp->clk);
4329 err_put_phy_node:
4330 	of_node_put(phy_node);
4331 	if (of_phy_is_fixed_link(dn))
4332 		of_phy_deregister_fixed_link(dn);
4333 err_free_irq:
4334 	irq_dispose_mapping(dev->irq);
4335 err_free_netdev:
4336 	free_netdev(dev);
4337 	return err;
4338 }
4339 
4340 /* Device removal routine */
4341 static int mvneta_remove(struct platform_device *pdev)
4342 {
4343 	struct net_device  *dev = platform_get_drvdata(pdev);
4344 	struct device_node *dn = pdev->dev.of_node;
4345 	struct mvneta_port *pp = netdev_priv(dev);
4346 
4347 	unregister_netdev(dev);
4348 	clk_disable_unprepare(pp->clk_bus);
4349 	clk_disable_unprepare(pp->clk);
4350 	free_percpu(pp->ports);
4351 	free_percpu(pp->stats);
4352 	if (of_phy_is_fixed_link(dn))
4353 		of_phy_deregister_fixed_link(dn);
4354 	irq_dispose_mapping(dev->irq);
4355 	of_node_put(pp->phy_node);
4356 	free_netdev(dev);
4357 
4358 	if (pp->bm_priv) {
4359 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_long, 1 << pp->id);
4360 		mvneta_bm_pool_destroy(pp->bm_priv, pp->pool_short,
4361 				       1 << pp->id);
4362 	}
4363 
4364 	return 0;
4365 }
4366 
4367 static const struct of_device_id mvneta_match[] = {
4368 	{ .compatible = "marvell,armada-370-neta" },
4369 	{ .compatible = "marvell,armada-xp-neta" },
4370 	{ .compatible = "marvell,armada-3700-neta" },
4371 	{ }
4372 };
4373 MODULE_DEVICE_TABLE(of, mvneta_match);
4374 
4375 static struct platform_driver mvneta_driver = {
4376 	.probe = mvneta_probe,
4377 	.remove = mvneta_remove,
4378 	.driver = {
4379 		.name = MVNETA_DRIVER_NAME,
4380 		.of_match_table = mvneta_match,
4381 	},
4382 };
4383 
4384 static int __init mvneta_driver_init(void)
4385 {
4386 	int ret;
4387 
4388 	ret = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN, "net/mvmeta:online",
4389 				      mvneta_cpu_online,
4390 				      mvneta_cpu_down_prepare);
4391 	if (ret < 0)
4392 		goto out;
4393 	online_hpstate = ret;
4394 	ret = cpuhp_setup_state_multi(CPUHP_NET_MVNETA_DEAD, "net/mvneta:dead",
4395 				      NULL, mvneta_cpu_dead);
4396 	if (ret)
4397 		goto err_dead;
4398 
4399 	ret = platform_driver_register(&mvneta_driver);
4400 	if (ret)
4401 		goto err;
4402 	return 0;
4403 
4404 err:
4405 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4406 err_dead:
4407 	cpuhp_remove_multi_state(online_hpstate);
4408 out:
4409 	return ret;
4410 }
4411 module_init(mvneta_driver_init);
4412 
4413 static void __exit mvneta_driver_exit(void)
4414 {
4415 	platform_driver_unregister(&mvneta_driver);
4416 	cpuhp_remove_multi_state(CPUHP_NET_MVNETA_DEAD);
4417 	cpuhp_remove_multi_state(online_hpstate);
4418 }
4419 module_exit(mvneta_driver_exit);
4420 
4421 MODULE_DESCRIPTION("Marvell NETA Ethernet Driver - www.marvell.com");
4422 MODULE_AUTHOR("Rami Rosen <rosenr@marvell.com>, Thomas Petazzoni <thomas.petazzoni@free-electrons.com>");
4423 MODULE_LICENSE("GPL");
4424 
4425 module_param(rxq_number, int, S_IRUGO);
4426 module_param(txq_number, int, S_IRUGO);
4427 
4428 module_param(rxq_def, int, S_IRUGO);
4429 module_param(rx_copybreak, int, S_IRUGO | S_IWUSR);
4430