xref: /linux/drivers/net/ethernet/intel/ice/ice_ptp.c (revision eeb9f5c2dcec90009d7cf12e780e7f9631993fc5)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (C) 2021, Intel Corporation. */
3 
4 #include "ice.h"
5 #include "ice_lib.h"
6 #include "ice_trace.h"
7 
8 #define E810_OUT_PROP_DELAY_NS 1
9 
10 #define UNKNOWN_INCVAL_E82X 0x100000000ULL
11 
12 static const struct ptp_pin_desc ice_pin_desc_e810t[] = {
13 	/* name    idx   func         chan */
14 	{ "GNSS",  GNSS, PTP_PF_EXTTS, 0, { 0, } },
15 	{ "SMA1",  SMA1, PTP_PF_NONE, 1, { 0, } },
16 	{ "U.FL1", UFL1, PTP_PF_NONE, 1, { 0, } },
17 	{ "SMA2",  SMA2, PTP_PF_NONE, 2, { 0, } },
18 	{ "U.FL2", UFL2, PTP_PF_NONE, 2, { 0, } },
19 };
20 
21 /**
22  * ice_get_sma_config_e810t
23  * @hw: pointer to the hw struct
24  * @ptp_pins: pointer to the ptp_pin_desc struture
25  *
26  * Read the configuration of the SMA control logic and put it into the
27  * ptp_pin_desc structure
28  */
29 static int
30 ice_get_sma_config_e810t(struct ice_hw *hw, struct ptp_pin_desc *ptp_pins)
31 {
32 	u8 data, i;
33 	int status;
34 
35 	/* Read initial pin state */
36 	status = ice_read_sma_ctrl_e810t(hw, &data);
37 	if (status)
38 		return status;
39 
40 	/* initialize with defaults */
41 	for (i = 0; i < NUM_PTP_PINS_E810T; i++) {
42 		strscpy(ptp_pins[i].name, ice_pin_desc_e810t[i].name,
43 			sizeof(ptp_pins[i].name));
44 		ptp_pins[i].index = ice_pin_desc_e810t[i].index;
45 		ptp_pins[i].func = ice_pin_desc_e810t[i].func;
46 		ptp_pins[i].chan = ice_pin_desc_e810t[i].chan;
47 	}
48 
49 	/* Parse SMA1/UFL1 */
50 	switch (data & ICE_SMA1_MASK_E810T) {
51 	case ICE_SMA1_MASK_E810T:
52 	default:
53 		ptp_pins[SMA1].func = PTP_PF_NONE;
54 		ptp_pins[UFL1].func = PTP_PF_NONE;
55 		break;
56 	case ICE_SMA1_DIR_EN_E810T:
57 		ptp_pins[SMA1].func = PTP_PF_PEROUT;
58 		ptp_pins[UFL1].func = PTP_PF_NONE;
59 		break;
60 	case ICE_SMA1_TX_EN_E810T:
61 		ptp_pins[SMA1].func = PTP_PF_EXTTS;
62 		ptp_pins[UFL1].func = PTP_PF_NONE;
63 		break;
64 	case 0:
65 		ptp_pins[SMA1].func = PTP_PF_EXTTS;
66 		ptp_pins[UFL1].func = PTP_PF_PEROUT;
67 		break;
68 	}
69 
70 	/* Parse SMA2/UFL2 */
71 	switch (data & ICE_SMA2_MASK_E810T) {
72 	case ICE_SMA2_MASK_E810T:
73 	default:
74 		ptp_pins[SMA2].func = PTP_PF_NONE;
75 		ptp_pins[UFL2].func = PTP_PF_NONE;
76 		break;
77 	case (ICE_SMA2_TX_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
78 		ptp_pins[SMA2].func = PTP_PF_EXTTS;
79 		ptp_pins[UFL2].func = PTP_PF_NONE;
80 		break;
81 	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_UFL2_RX_DIS_E810T):
82 		ptp_pins[SMA2].func = PTP_PF_PEROUT;
83 		ptp_pins[UFL2].func = PTP_PF_NONE;
84 		break;
85 	case (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T):
86 		ptp_pins[SMA2].func = PTP_PF_NONE;
87 		ptp_pins[UFL2].func = PTP_PF_EXTTS;
88 		break;
89 	case ICE_SMA2_DIR_EN_E810T:
90 		ptp_pins[SMA2].func = PTP_PF_PEROUT;
91 		ptp_pins[UFL2].func = PTP_PF_EXTTS;
92 		break;
93 	}
94 
95 	return 0;
96 }
97 
98 /**
99  * ice_ptp_set_sma_config_e810t
100  * @hw: pointer to the hw struct
101  * @ptp_pins: pointer to the ptp_pin_desc struture
102  *
103  * Set the configuration of the SMA control logic based on the configuration in
104  * num_pins parameter
105  */
106 static int
107 ice_ptp_set_sma_config_e810t(struct ice_hw *hw,
108 			     const struct ptp_pin_desc *ptp_pins)
109 {
110 	int status;
111 	u8 data;
112 
113 	/* SMA1 and UFL1 cannot be set to TX at the same time */
114 	if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
115 	    ptp_pins[UFL1].func == PTP_PF_PEROUT)
116 		return -EINVAL;
117 
118 	/* SMA2 and UFL2 cannot be set to RX at the same time */
119 	if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
120 	    ptp_pins[UFL2].func == PTP_PF_EXTTS)
121 		return -EINVAL;
122 
123 	/* Read initial pin state value */
124 	status = ice_read_sma_ctrl_e810t(hw, &data);
125 	if (status)
126 		return status;
127 
128 	/* Set the right sate based on the desired configuration */
129 	data &= ~ICE_SMA1_MASK_E810T;
130 	if (ptp_pins[SMA1].func == PTP_PF_NONE &&
131 	    ptp_pins[UFL1].func == PTP_PF_NONE) {
132 		dev_info(ice_hw_to_dev(hw), "SMA1 + U.FL1 disabled");
133 		data |= ICE_SMA1_MASK_E810T;
134 	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
135 		   ptp_pins[UFL1].func == PTP_PF_NONE) {
136 		dev_info(ice_hw_to_dev(hw), "SMA1 RX");
137 		data |= ICE_SMA1_TX_EN_E810T;
138 	} else if (ptp_pins[SMA1].func == PTP_PF_NONE &&
139 		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
140 		/* U.FL 1 TX will always enable SMA 1 RX */
141 		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
142 	} else if (ptp_pins[SMA1].func == PTP_PF_EXTTS &&
143 		   ptp_pins[UFL1].func == PTP_PF_PEROUT) {
144 		dev_info(ice_hw_to_dev(hw), "SMA1 RX + U.FL1 TX");
145 	} else if (ptp_pins[SMA1].func == PTP_PF_PEROUT &&
146 		   ptp_pins[UFL1].func == PTP_PF_NONE) {
147 		dev_info(ice_hw_to_dev(hw), "SMA1 TX");
148 		data |= ICE_SMA1_DIR_EN_E810T;
149 	}
150 
151 	data &= ~ICE_SMA2_MASK_E810T;
152 	if (ptp_pins[SMA2].func == PTP_PF_NONE &&
153 	    ptp_pins[UFL2].func == PTP_PF_NONE) {
154 		dev_info(ice_hw_to_dev(hw), "SMA2 + U.FL2 disabled");
155 		data |= ICE_SMA2_MASK_E810T;
156 	} else if (ptp_pins[SMA2].func == PTP_PF_EXTTS &&
157 			ptp_pins[UFL2].func == PTP_PF_NONE) {
158 		dev_info(ice_hw_to_dev(hw), "SMA2 RX");
159 		data |= (ICE_SMA2_TX_EN_E810T |
160 			 ICE_SMA2_UFL2_RX_DIS_E810T);
161 	} else if (ptp_pins[SMA2].func == PTP_PF_NONE &&
162 		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
163 		dev_info(ice_hw_to_dev(hw), "UFL2 RX");
164 		data |= (ICE_SMA2_DIR_EN_E810T | ICE_SMA2_TX_EN_E810T);
165 	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
166 		   ptp_pins[UFL2].func == PTP_PF_NONE) {
167 		dev_info(ice_hw_to_dev(hw), "SMA2 TX");
168 		data |= (ICE_SMA2_DIR_EN_E810T |
169 			 ICE_SMA2_UFL2_RX_DIS_E810T);
170 	} else if (ptp_pins[SMA2].func == PTP_PF_PEROUT &&
171 		   ptp_pins[UFL2].func == PTP_PF_EXTTS) {
172 		dev_info(ice_hw_to_dev(hw), "SMA2 TX + U.FL2 RX");
173 		data |= ICE_SMA2_DIR_EN_E810T;
174 	}
175 
176 	return ice_write_sma_ctrl_e810t(hw, data);
177 }
178 
179 /**
180  * ice_ptp_set_sma_e810t
181  * @info: the driver's PTP info structure
182  * @pin: pin index in kernel structure
183  * @func: Pin function to be set (PTP_PF_NONE, PTP_PF_EXTTS or PTP_PF_PEROUT)
184  *
185  * Set the configuration of a single SMA pin
186  */
187 static int
188 ice_ptp_set_sma_e810t(struct ptp_clock_info *info, unsigned int pin,
189 		      enum ptp_pin_function func)
190 {
191 	struct ptp_pin_desc ptp_pins[NUM_PTP_PINS_E810T];
192 	struct ice_pf *pf = ptp_info_to_pf(info);
193 	struct ice_hw *hw = &pf->hw;
194 	int err;
195 
196 	if (pin < SMA1 || func > PTP_PF_PEROUT)
197 		return -EOPNOTSUPP;
198 
199 	err = ice_get_sma_config_e810t(hw, ptp_pins);
200 	if (err)
201 		return err;
202 
203 	/* Disable the same function on the other pin sharing the channel */
204 	if (pin == SMA1 && ptp_pins[UFL1].func == func)
205 		ptp_pins[UFL1].func = PTP_PF_NONE;
206 	if (pin == UFL1 && ptp_pins[SMA1].func == func)
207 		ptp_pins[SMA1].func = PTP_PF_NONE;
208 
209 	if (pin == SMA2 && ptp_pins[UFL2].func == func)
210 		ptp_pins[UFL2].func = PTP_PF_NONE;
211 	if (pin == UFL2 && ptp_pins[SMA2].func == func)
212 		ptp_pins[SMA2].func = PTP_PF_NONE;
213 
214 	/* Set up new pin function in the temp table */
215 	ptp_pins[pin].func = func;
216 
217 	return ice_ptp_set_sma_config_e810t(hw, ptp_pins);
218 }
219 
220 /**
221  * ice_verify_pin_e810t
222  * @info: the driver's PTP info structure
223  * @pin: Pin index
224  * @func: Assigned function
225  * @chan: Assigned channel
226  *
227  * Verify if pin supports requested pin function. If the Check pins consistency.
228  * Reconfigure the SMA logic attached to the given pin to enable its
229  * desired functionality
230  */
231 static int
232 ice_verify_pin_e810t(struct ptp_clock_info *info, unsigned int pin,
233 		     enum ptp_pin_function func, unsigned int chan)
234 {
235 	/* Don't allow channel reassignment */
236 	if (chan != ice_pin_desc_e810t[pin].chan)
237 		return -EOPNOTSUPP;
238 
239 	/* Check if functions are properly assigned */
240 	switch (func) {
241 	case PTP_PF_NONE:
242 		break;
243 	case PTP_PF_EXTTS:
244 		if (pin == UFL1)
245 			return -EOPNOTSUPP;
246 		break;
247 	case PTP_PF_PEROUT:
248 		if (pin == UFL2 || pin == GNSS)
249 			return -EOPNOTSUPP;
250 		break;
251 	case PTP_PF_PHYSYNC:
252 		return -EOPNOTSUPP;
253 	}
254 
255 	return ice_ptp_set_sma_e810t(info, pin, func);
256 }
257 
258 /**
259  * ice_ptp_cfg_tx_interrupt - Configure Tx timestamp interrupt for the device
260  * @pf: Board private structure
261  *
262  * Program the device to respond appropriately to the Tx timestamp interrupt
263  * cause.
264  */
265 static void ice_ptp_cfg_tx_interrupt(struct ice_pf *pf)
266 {
267 	struct ice_hw *hw = &pf->hw;
268 	bool enable;
269 	u32 val;
270 
271 	switch (pf->ptp.tx_interrupt_mode) {
272 	case ICE_PTP_TX_INTERRUPT_ALL:
273 		/* React to interrupts across all quads. */
274 		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x1f);
275 		enable = true;
276 		break;
277 	case ICE_PTP_TX_INTERRUPT_NONE:
278 		/* Do not react to interrupts on any quad. */
279 		wr32(hw, PFINT_TSYN_MSK + (0x4 * hw->pf_id), (u32)0x0);
280 		enable = false;
281 		break;
282 	case ICE_PTP_TX_INTERRUPT_SELF:
283 	default:
284 		enable = pf->ptp.tstamp_config.tx_type == HWTSTAMP_TX_ON;
285 		break;
286 	}
287 
288 	/* Configure the Tx timestamp interrupt */
289 	val = rd32(hw, PFINT_OICR_ENA);
290 	if (enable)
291 		val |= PFINT_OICR_TSYN_TX_M;
292 	else
293 		val &= ~PFINT_OICR_TSYN_TX_M;
294 	wr32(hw, PFINT_OICR_ENA, val);
295 }
296 
297 /**
298  * ice_set_rx_tstamp - Enable or disable Rx timestamping
299  * @pf: The PF pointer to search in
300  * @on: bool value for whether timestamps are enabled or disabled
301  */
302 static void ice_set_rx_tstamp(struct ice_pf *pf, bool on)
303 {
304 	struct ice_vsi *vsi;
305 	u16 i;
306 
307 	vsi = ice_get_main_vsi(pf);
308 	if (!vsi || !vsi->rx_rings)
309 		return;
310 
311 	/* Set the timestamp flag for all the Rx rings */
312 	ice_for_each_rxq(vsi, i) {
313 		if (!vsi->rx_rings[i])
314 			continue;
315 		vsi->rx_rings[i]->ptp_rx = on;
316 	}
317 }
318 
319 /**
320  * ice_ptp_disable_timestamp_mode - Disable current timestamp mode
321  * @pf: Board private structure
322  *
323  * Called during preparation for reset to temporarily disable timestamping on
324  * the device. Called during remove to disable timestamping while cleaning up
325  * driver resources.
326  */
327 static void ice_ptp_disable_timestamp_mode(struct ice_pf *pf)
328 {
329 	struct ice_hw *hw = &pf->hw;
330 	u32 val;
331 
332 	val = rd32(hw, PFINT_OICR_ENA);
333 	val &= ~PFINT_OICR_TSYN_TX_M;
334 	wr32(hw, PFINT_OICR_ENA, val);
335 
336 	ice_set_rx_tstamp(pf, false);
337 }
338 
339 /**
340  * ice_ptp_restore_timestamp_mode - Restore timestamp configuration
341  * @pf: Board private structure
342  *
343  * Called at the end of rebuild to restore timestamp configuration after
344  * a device reset.
345  */
346 void ice_ptp_restore_timestamp_mode(struct ice_pf *pf)
347 {
348 	struct ice_hw *hw = &pf->hw;
349 	bool enable_rx;
350 
351 	ice_ptp_cfg_tx_interrupt(pf);
352 
353 	enable_rx = pf->ptp.tstamp_config.rx_filter == HWTSTAMP_FILTER_ALL;
354 	ice_set_rx_tstamp(pf, enable_rx);
355 
356 	/* Trigger an immediate software interrupt to ensure that timestamps
357 	 * which occurred during reset are handled now.
358 	 */
359 	wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
360 	ice_flush(hw);
361 }
362 
363 /**
364  * ice_ptp_read_src_clk_reg - Read the source clock register
365  * @pf: Board private structure
366  * @sts: Optional parameter for holding a pair of system timestamps from
367  *       the system clock. Will be ignored if NULL is given.
368  */
369 static u64
370 ice_ptp_read_src_clk_reg(struct ice_pf *pf, struct ptp_system_timestamp *sts)
371 {
372 	struct ice_hw *hw = &pf->hw;
373 	u32 hi, lo, lo2;
374 	u8 tmr_idx;
375 
376 	tmr_idx = ice_get_ptp_src_clock_index(hw);
377 	/* Read the system timestamp pre PHC read */
378 	ptp_read_system_prets(sts);
379 
380 	lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
381 
382 	/* Read the system timestamp post PHC read */
383 	ptp_read_system_postts(sts);
384 
385 	hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
386 	lo2 = rd32(hw, GLTSYN_TIME_L(tmr_idx));
387 
388 	if (lo2 < lo) {
389 		/* if TIME_L rolled over read TIME_L again and update
390 		 * system timestamps
391 		 */
392 		ptp_read_system_prets(sts);
393 		lo = rd32(hw, GLTSYN_TIME_L(tmr_idx));
394 		ptp_read_system_postts(sts);
395 		hi = rd32(hw, GLTSYN_TIME_H(tmr_idx));
396 	}
397 
398 	return ((u64)hi << 32) | lo;
399 }
400 
401 /**
402  * ice_ptp_extend_32b_ts - Convert a 32b nanoseconds timestamp to 64b
403  * @cached_phc_time: recently cached copy of PHC time
404  * @in_tstamp: Ingress/egress 32b nanoseconds timestamp value
405  *
406  * Hardware captures timestamps which contain only 32 bits of nominal
407  * nanoseconds, as opposed to the 64bit timestamps that the stack expects.
408  * Note that the captured timestamp values may be 40 bits, but the lower
409  * 8 bits are sub-nanoseconds and generally discarded.
410  *
411  * Extend the 32bit nanosecond timestamp using the following algorithm and
412  * assumptions:
413  *
414  * 1) have a recently cached copy of the PHC time
415  * 2) assume that the in_tstamp was captured 2^31 nanoseconds (~2.1
416  *    seconds) before or after the PHC time was captured.
417  * 3) calculate the delta between the cached time and the timestamp
418  * 4) if the delta is smaller than 2^31 nanoseconds, then the timestamp was
419  *    captured after the PHC time. In this case, the full timestamp is just
420  *    the cached PHC time plus the delta.
421  * 5) otherwise, if the delta is larger than 2^31 nanoseconds, then the
422  *    timestamp was captured *before* the PHC time, i.e. because the PHC
423  *    cache was updated after the timestamp was captured by hardware. In this
424  *    case, the full timestamp is the cached time minus the inverse delta.
425  *
426  * This algorithm works even if the PHC time was updated after a Tx timestamp
427  * was requested, but before the Tx timestamp event was reported from
428  * hardware.
429  *
430  * This calculation primarily relies on keeping the cached PHC time up to
431  * date. If the timestamp was captured more than 2^31 nanoseconds after the
432  * PHC time, it is possible that the lower 32bits of PHC time have
433  * overflowed more than once, and we might generate an incorrect timestamp.
434  *
435  * This is prevented by (a) periodically updating the cached PHC time once
436  * a second, and (b) discarding any Tx timestamp packet if it has waited for
437  * a timestamp for more than one second.
438  */
439 static u64 ice_ptp_extend_32b_ts(u64 cached_phc_time, u32 in_tstamp)
440 {
441 	u32 delta, phc_time_lo;
442 	u64 ns;
443 
444 	/* Extract the lower 32 bits of the PHC time */
445 	phc_time_lo = (u32)cached_phc_time;
446 
447 	/* Calculate the delta between the lower 32bits of the cached PHC
448 	 * time and the in_tstamp value
449 	 */
450 	delta = (in_tstamp - phc_time_lo);
451 
452 	/* Do not assume that the in_tstamp is always more recent than the
453 	 * cached PHC time. If the delta is large, it indicates that the
454 	 * in_tstamp was taken in the past, and should be converted
455 	 * forward.
456 	 */
457 	if (delta > (U32_MAX / 2)) {
458 		/* reverse the delta calculation here */
459 		delta = (phc_time_lo - in_tstamp);
460 		ns = cached_phc_time - delta;
461 	} else {
462 		ns = cached_phc_time + delta;
463 	}
464 
465 	return ns;
466 }
467 
468 /**
469  * ice_ptp_extend_40b_ts - Convert a 40b timestamp to 64b nanoseconds
470  * @pf: Board private structure
471  * @in_tstamp: Ingress/egress 40b timestamp value
472  *
473  * The Tx and Rx timestamps are 40 bits wide, including 32 bits of nominal
474  * nanoseconds, 7 bits of sub-nanoseconds, and a valid bit.
475  *
476  *  *--------------------------------------------------------------*
477  *  | 32 bits of nanoseconds | 7 high bits of sub ns underflow | v |
478  *  *--------------------------------------------------------------*
479  *
480  * The low bit is an indicator of whether the timestamp is valid. The next
481  * 7 bits are a capture of the upper 7 bits of the sub-nanosecond underflow,
482  * and the remaining 32 bits are the lower 32 bits of the PHC timer.
483  *
484  * It is assumed that the caller verifies the timestamp is valid prior to
485  * calling this function.
486  *
487  * Extract the 32bit nominal nanoseconds and extend them. Use the cached PHC
488  * time stored in the device private PTP structure as the basis for timestamp
489  * extension.
490  *
491  * See ice_ptp_extend_32b_ts for a detailed explanation of the extension
492  * algorithm.
493  */
494 static u64 ice_ptp_extend_40b_ts(struct ice_pf *pf, u64 in_tstamp)
495 {
496 	const u64 mask = GENMASK_ULL(31, 0);
497 	unsigned long discard_time;
498 
499 	/* Discard the hardware timestamp if the cached PHC time is too old */
500 	discard_time = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
501 	if (time_is_before_jiffies(discard_time)) {
502 		pf->ptp.tx_hwtstamp_discarded++;
503 		return 0;
504 	}
505 
506 	return ice_ptp_extend_32b_ts(pf->ptp.cached_phc_time,
507 				     (in_tstamp >> 8) & mask);
508 }
509 
510 /**
511  * ice_ptp_is_tx_tracker_up - Check if Tx tracker is ready for new timestamps
512  * @tx: the PTP Tx timestamp tracker to check
513  *
514  * Check that a given PTP Tx timestamp tracker is up, i.e. that it is ready
515  * to accept new timestamp requests.
516  *
517  * Assumes the tx->lock spinlock is already held.
518  */
519 static bool
520 ice_ptp_is_tx_tracker_up(struct ice_ptp_tx *tx)
521 {
522 	lockdep_assert_held(&tx->lock);
523 
524 	return tx->init && !tx->calibrating;
525 }
526 
527 /**
528  * ice_ptp_req_tx_single_tstamp - Request Tx timestamp for a port from FW
529  * @tx: the PTP Tx timestamp tracker
530  * @idx: index of the timestamp to request
531  */
532 void ice_ptp_req_tx_single_tstamp(struct ice_ptp_tx *tx, u8 idx)
533 {
534 	struct ice_ptp_port *ptp_port;
535 	struct sk_buff *skb;
536 	struct ice_pf *pf;
537 
538 	if (!tx->init)
539 		return;
540 
541 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
542 	pf = ptp_port_to_pf(ptp_port);
543 
544 	/* Drop packets which have waited for more than 2 seconds */
545 	if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
546 		/* Count the number of Tx timestamps that timed out */
547 		pf->ptp.tx_hwtstamp_timeouts++;
548 
549 		skb = tx->tstamps[idx].skb;
550 		tx->tstamps[idx].skb = NULL;
551 		clear_bit(idx, tx->in_use);
552 
553 		dev_kfree_skb_any(skb);
554 		return;
555 	}
556 
557 	ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
558 
559 	/* Write TS index to read to the PF register so the FW can read it */
560 	wr32(&pf->hw, PF_SB_ATQBAL,
561 	     TS_LL_READ_TS_INTR | FIELD_PREP(TS_LL_READ_TS_IDX, idx) |
562 	     TS_LL_READ_TS);
563 	tx->last_ll_ts_idx_read = idx;
564 }
565 
566 /**
567  * ice_ptp_complete_tx_single_tstamp - Complete Tx timestamp for a port
568  * @tx: the PTP Tx timestamp tracker
569  */
570 void ice_ptp_complete_tx_single_tstamp(struct ice_ptp_tx *tx)
571 {
572 	struct skb_shared_hwtstamps shhwtstamps = {};
573 	u8 idx = tx->last_ll_ts_idx_read;
574 	struct ice_ptp_port *ptp_port;
575 	u64 raw_tstamp, tstamp;
576 	bool drop_ts = false;
577 	struct sk_buff *skb;
578 	struct ice_pf *pf;
579 	u32 val;
580 
581 	if (!tx->init || tx->last_ll_ts_idx_read < 0)
582 		return;
583 
584 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
585 	pf = ptp_port_to_pf(ptp_port);
586 
587 	ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
588 
589 	val = rd32(&pf->hw, PF_SB_ATQBAL);
590 
591 	/* When the bit is cleared, the TS is ready in the register */
592 	if (val & TS_LL_READ_TS) {
593 		dev_err(ice_pf_to_dev(pf), "Failed to get the Tx tstamp - FW not ready");
594 		return;
595 	}
596 
597 	/* High 8 bit value of the TS is on the bits 16:23 */
598 	raw_tstamp = FIELD_GET(TS_LL_READ_TS_HIGH, val);
599 	raw_tstamp <<= 32;
600 
601 	/* Read the low 32 bit value */
602 	raw_tstamp |= (u64)rd32(&pf->hw, PF_SB_ATQBAH);
603 
604 	/* For PHYs which don't implement a proper timestamp ready bitmap,
605 	 * verify that the timestamp value is different from the last cached
606 	 * timestamp. If it is not, skip this for now assuming it hasn't yet
607 	 * been captured by hardware.
608 	 */
609 	if (!drop_ts && tx->verify_cached &&
610 	    raw_tstamp == tx->tstamps[idx].cached_tstamp)
611 		return;
612 
613 	if (tx->verify_cached && raw_tstamp)
614 		tx->tstamps[idx].cached_tstamp = raw_tstamp;
615 	clear_bit(idx, tx->in_use);
616 	skb = tx->tstamps[idx].skb;
617 	tx->tstamps[idx].skb = NULL;
618 	if (test_and_clear_bit(idx, tx->stale))
619 		drop_ts = true;
620 
621 	if (!skb)
622 		return;
623 
624 	if (drop_ts) {
625 		dev_kfree_skb_any(skb);
626 		return;
627 	}
628 
629 	/* Extend the timestamp using cached PHC time */
630 	tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
631 	if (tstamp) {
632 		shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
633 		ice_trace(tx_tstamp_complete, skb, idx);
634 	}
635 
636 	skb_tstamp_tx(skb, &shhwtstamps);
637 	dev_kfree_skb_any(skb);
638 }
639 
640 /**
641  * ice_ptp_process_tx_tstamp - Process Tx timestamps for a port
642  * @tx: the PTP Tx timestamp tracker
643  *
644  * Process timestamps captured by the PHY associated with this port. To do
645  * this, loop over each index with a waiting skb.
646  *
647  * If a given index has a valid timestamp, perform the following steps:
648  *
649  * 1) check that the timestamp request is not stale
650  * 2) check that a timestamp is ready and available in the PHY memory bank
651  * 3) read and copy the timestamp out of the PHY register
652  * 4) unlock the index by clearing the associated in_use bit
653  * 5) check if the timestamp is stale, and discard if so
654  * 6) extend the 40 bit timestamp value to get a 64 bit timestamp value
655  * 7) send this 64 bit timestamp to the stack
656  *
657  * Note that we do not hold the tracking lock while reading the Tx timestamp.
658  * This is because reading the timestamp requires taking a mutex that might
659  * sleep.
660  *
661  * The only place where we set in_use is when a new timestamp is initiated
662  * with a slot index. This is only called in the hard xmit routine where an
663  * SKB has a request flag set. The only places where we clear this bit is this
664  * function, or during teardown when the Tx timestamp tracker is being
665  * removed. A timestamp index will never be re-used until the in_use bit for
666  * that index is cleared.
667  *
668  * If a Tx thread starts a new timestamp, we might not begin processing it
669  * right away but we will notice it at the end when we re-queue the task.
670  *
671  * If a Tx thread starts a new timestamp just after this function exits, the
672  * interrupt for that timestamp should re-trigger this function once
673  * a timestamp is ready.
674  *
675  * In cases where the PTP hardware clock was directly adjusted, some
676  * timestamps may not be able to safely use the timestamp extension math. In
677  * this case, software will set the stale bit for any outstanding Tx
678  * timestamps when the clock is adjusted. Then this function will discard
679  * those captured timestamps instead of sending them to the stack.
680  *
681  * If a Tx packet has been waiting for more than 2 seconds, it is not possible
682  * to correctly extend the timestamp using the cached PHC time. It is
683  * extremely unlikely that a packet will ever take this long to timestamp. If
684  * we detect a Tx timestamp request that has waited for this long we assume
685  * the packet will never be sent by hardware and discard it without reading
686  * the timestamp register.
687  */
688 static void ice_ptp_process_tx_tstamp(struct ice_ptp_tx *tx)
689 {
690 	struct ice_ptp_port *ptp_port;
691 	unsigned long flags;
692 	struct ice_pf *pf;
693 	struct ice_hw *hw;
694 	u64 tstamp_ready;
695 	bool link_up;
696 	int err;
697 	u8 idx;
698 
699 	ptp_port = container_of(tx, struct ice_ptp_port, tx);
700 	pf = ptp_port_to_pf(ptp_port);
701 	hw = &pf->hw;
702 
703 	/* Read the Tx ready status first */
704 	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
705 	if (err)
706 		return;
707 
708 	/* Drop packets if the link went down */
709 	link_up = ptp_port->link_up;
710 
711 	for_each_set_bit(idx, tx->in_use, tx->len) {
712 		struct skb_shared_hwtstamps shhwtstamps = {};
713 		u8 phy_idx = idx + tx->offset;
714 		u64 raw_tstamp = 0, tstamp;
715 		bool drop_ts = !link_up;
716 		struct sk_buff *skb;
717 
718 		/* Drop packets which have waited for more than 2 seconds */
719 		if (time_is_before_jiffies(tx->tstamps[idx].start + 2 * HZ)) {
720 			drop_ts = true;
721 
722 			/* Count the number of Tx timestamps that timed out */
723 			pf->ptp.tx_hwtstamp_timeouts++;
724 		}
725 
726 		/* Only read a timestamp from the PHY if its marked as ready
727 		 * by the tstamp_ready register. This avoids unnecessary
728 		 * reading of timestamps which are not yet valid. This is
729 		 * important as we must read all timestamps which are valid
730 		 * and only timestamps which are valid during each interrupt.
731 		 * If we do not, the hardware logic for generating a new
732 		 * interrupt can get stuck on some devices.
733 		 */
734 		if (!(tstamp_ready & BIT_ULL(phy_idx))) {
735 			if (drop_ts)
736 				goto skip_ts_read;
737 
738 			continue;
739 		}
740 
741 		ice_trace(tx_tstamp_fw_req, tx->tstamps[idx].skb, idx);
742 
743 		err = ice_read_phy_tstamp(hw, tx->block, phy_idx, &raw_tstamp);
744 		if (err && !drop_ts)
745 			continue;
746 
747 		ice_trace(tx_tstamp_fw_done, tx->tstamps[idx].skb, idx);
748 
749 		/* For PHYs which don't implement a proper timestamp ready
750 		 * bitmap, verify that the timestamp value is different
751 		 * from the last cached timestamp. If it is not, skip this for
752 		 * now assuming it hasn't yet been captured by hardware.
753 		 */
754 		if (!drop_ts && tx->verify_cached &&
755 		    raw_tstamp == tx->tstamps[idx].cached_tstamp)
756 			continue;
757 
758 		/* Discard any timestamp value without the valid bit set */
759 		if (!(raw_tstamp & ICE_PTP_TS_VALID))
760 			drop_ts = true;
761 
762 skip_ts_read:
763 		spin_lock_irqsave(&tx->lock, flags);
764 		if (tx->verify_cached && raw_tstamp)
765 			tx->tstamps[idx].cached_tstamp = raw_tstamp;
766 		clear_bit(idx, tx->in_use);
767 		skb = tx->tstamps[idx].skb;
768 		tx->tstamps[idx].skb = NULL;
769 		if (test_and_clear_bit(idx, tx->stale))
770 			drop_ts = true;
771 		spin_unlock_irqrestore(&tx->lock, flags);
772 
773 		/* It is unlikely but possible that the SKB will have been
774 		 * flushed at this point due to link change or teardown.
775 		 */
776 		if (!skb)
777 			continue;
778 
779 		if (drop_ts) {
780 			dev_kfree_skb_any(skb);
781 			continue;
782 		}
783 
784 		/* Extend the timestamp using cached PHC time */
785 		tstamp = ice_ptp_extend_40b_ts(pf, raw_tstamp);
786 		if (tstamp) {
787 			shhwtstamps.hwtstamp = ns_to_ktime(tstamp);
788 			ice_trace(tx_tstamp_complete, skb, idx);
789 		}
790 
791 		skb_tstamp_tx(skb, &shhwtstamps);
792 		dev_kfree_skb_any(skb);
793 	}
794 }
795 
796 /**
797  * ice_ptp_tx_tstamp_owner - Process Tx timestamps for all ports on the device
798  * @pf: Board private structure
799  */
800 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp_owner(struct ice_pf *pf)
801 {
802 	struct ice_ptp_port *port;
803 	unsigned int i;
804 
805 	mutex_lock(&pf->ptp.ports_owner.lock);
806 	list_for_each_entry(port, &pf->ptp.ports_owner.ports, list_member) {
807 		struct ice_ptp_tx *tx = &port->tx;
808 
809 		if (!tx || !tx->init)
810 			continue;
811 
812 		ice_ptp_process_tx_tstamp(tx);
813 	}
814 	mutex_unlock(&pf->ptp.ports_owner.lock);
815 
816 	for (i = 0; i < ICE_MAX_QUAD; i++) {
817 		u64 tstamp_ready;
818 		int err;
819 
820 		/* Read the Tx ready status first */
821 		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
822 		if (err)
823 			break;
824 		else if (tstamp_ready)
825 			return ICE_TX_TSTAMP_WORK_PENDING;
826 	}
827 
828 	return ICE_TX_TSTAMP_WORK_DONE;
829 }
830 
831 /**
832  * ice_ptp_tx_tstamp - Process Tx timestamps for this function.
833  * @tx: Tx tracking structure to initialize
834  *
835  * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding incomplete
836  * Tx timestamps, or ICE_TX_TSTAMP_WORK_DONE otherwise.
837  */
838 static enum ice_tx_tstamp_work ice_ptp_tx_tstamp(struct ice_ptp_tx *tx)
839 {
840 	bool more_timestamps;
841 	unsigned long flags;
842 
843 	if (!tx->init)
844 		return ICE_TX_TSTAMP_WORK_DONE;
845 
846 	/* Process the Tx timestamp tracker */
847 	ice_ptp_process_tx_tstamp(tx);
848 
849 	/* Check if there are outstanding Tx timestamps */
850 	spin_lock_irqsave(&tx->lock, flags);
851 	more_timestamps = tx->init && !bitmap_empty(tx->in_use, tx->len);
852 	spin_unlock_irqrestore(&tx->lock, flags);
853 
854 	if (more_timestamps)
855 		return ICE_TX_TSTAMP_WORK_PENDING;
856 
857 	return ICE_TX_TSTAMP_WORK_DONE;
858 }
859 
860 /**
861  * ice_ptp_alloc_tx_tracker - Initialize tracking for Tx timestamps
862  * @tx: Tx tracking structure to initialize
863  *
864  * Assumes that the length has already been initialized. Do not call directly,
865  * use the ice_ptp_init_tx_* instead.
866  */
867 static int
868 ice_ptp_alloc_tx_tracker(struct ice_ptp_tx *tx)
869 {
870 	unsigned long *in_use, *stale;
871 	struct ice_tx_tstamp *tstamps;
872 
873 	tstamps = kcalloc(tx->len, sizeof(*tstamps), GFP_KERNEL);
874 	in_use = bitmap_zalloc(tx->len, GFP_KERNEL);
875 	stale = bitmap_zalloc(tx->len, GFP_KERNEL);
876 
877 	if (!tstamps || !in_use || !stale) {
878 		kfree(tstamps);
879 		bitmap_free(in_use);
880 		bitmap_free(stale);
881 
882 		return -ENOMEM;
883 	}
884 
885 	tx->tstamps = tstamps;
886 	tx->in_use = in_use;
887 	tx->stale = stale;
888 	tx->init = 1;
889 	tx->last_ll_ts_idx_read = -1;
890 
891 	spin_lock_init(&tx->lock);
892 
893 	return 0;
894 }
895 
896 /**
897  * ice_ptp_flush_tx_tracker - Flush any remaining timestamps from the tracker
898  * @pf: Board private structure
899  * @tx: the tracker to flush
900  *
901  * Called during teardown when a Tx tracker is being removed.
902  */
903 static void
904 ice_ptp_flush_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
905 {
906 	struct ice_hw *hw = &pf->hw;
907 	unsigned long flags;
908 	u64 tstamp_ready;
909 	int err;
910 	u8 idx;
911 
912 	err = ice_get_phy_tx_tstamp_ready(hw, tx->block, &tstamp_ready);
913 	if (err) {
914 		dev_dbg(ice_pf_to_dev(pf), "Failed to get the Tx tstamp ready bitmap for block %u, err %d\n",
915 			tx->block, err);
916 
917 		/* If we fail to read the Tx timestamp ready bitmap just
918 		 * skip clearing the PHY timestamps.
919 		 */
920 		tstamp_ready = 0;
921 	}
922 
923 	for_each_set_bit(idx, tx->in_use, tx->len) {
924 		u8 phy_idx = idx + tx->offset;
925 		struct sk_buff *skb;
926 
927 		/* In case this timestamp is ready, we need to clear it. */
928 		if (!hw->reset_ongoing && (tstamp_ready & BIT_ULL(phy_idx)))
929 			ice_clear_phy_tstamp(hw, tx->block, phy_idx);
930 
931 		spin_lock_irqsave(&tx->lock, flags);
932 		skb = tx->tstamps[idx].skb;
933 		tx->tstamps[idx].skb = NULL;
934 		clear_bit(idx, tx->in_use);
935 		clear_bit(idx, tx->stale);
936 		spin_unlock_irqrestore(&tx->lock, flags);
937 
938 		/* Count the number of Tx timestamps flushed */
939 		pf->ptp.tx_hwtstamp_flushed++;
940 
941 		/* Free the SKB after we've cleared the bit */
942 		dev_kfree_skb_any(skb);
943 	}
944 }
945 
946 /**
947  * ice_ptp_mark_tx_tracker_stale - Mark unfinished timestamps as stale
948  * @tx: the tracker to mark
949  *
950  * Mark currently outstanding Tx timestamps as stale. This prevents sending
951  * their timestamp value to the stack. This is required to prevent extending
952  * the 40bit hardware timestamp incorrectly.
953  *
954  * This should be called when the PTP clock is modified such as after a set
955  * time request.
956  */
957 static void
958 ice_ptp_mark_tx_tracker_stale(struct ice_ptp_tx *tx)
959 {
960 	unsigned long flags;
961 
962 	spin_lock_irqsave(&tx->lock, flags);
963 	bitmap_or(tx->stale, tx->stale, tx->in_use, tx->len);
964 	spin_unlock_irqrestore(&tx->lock, flags);
965 }
966 
967 /**
968  * ice_ptp_release_tx_tracker - Release allocated memory for Tx tracker
969  * @pf: Board private structure
970  * @tx: Tx tracking structure to release
971  *
972  * Free memory associated with the Tx timestamp tracker.
973  */
974 static void
975 ice_ptp_release_tx_tracker(struct ice_pf *pf, struct ice_ptp_tx *tx)
976 {
977 	unsigned long flags;
978 
979 	spin_lock_irqsave(&tx->lock, flags);
980 	tx->init = 0;
981 	spin_unlock_irqrestore(&tx->lock, flags);
982 
983 	/* wait for potentially outstanding interrupt to complete */
984 	synchronize_irq(pf->oicr_irq.virq);
985 
986 	ice_ptp_flush_tx_tracker(pf, tx);
987 
988 	kfree(tx->tstamps);
989 	tx->tstamps = NULL;
990 
991 	bitmap_free(tx->in_use);
992 	tx->in_use = NULL;
993 
994 	bitmap_free(tx->stale);
995 	tx->stale = NULL;
996 
997 	tx->len = 0;
998 }
999 
1000 /**
1001  * ice_ptp_init_tx_e82x - Initialize tracking for Tx timestamps
1002  * @pf: Board private structure
1003  * @tx: the Tx tracking structure to initialize
1004  * @port: the port this structure tracks
1005  *
1006  * Initialize the Tx timestamp tracker for this port. For generic MAC devices,
1007  * the timestamp block is shared for all ports in the same quad. To avoid
1008  * ports using the same timestamp index, logically break the block of
1009  * registers into chunks based on the port number.
1010  */
1011 static int
1012 ice_ptp_init_tx_e82x(struct ice_pf *pf, struct ice_ptp_tx *tx, u8 port)
1013 {
1014 	tx->block = port / ICE_PORTS_PER_QUAD;
1015 	tx->offset = (port % ICE_PORTS_PER_QUAD) * INDEX_PER_PORT_E82X;
1016 	tx->len = INDEX_PER_PORT_E82X;
1017 	tx->verify_cached = 0;
1018 
1019 	return ice_ptp_alloc_tx_tracker(tx);
1020 }
1021 
1022 /**
1023  * ice_ptp_init_tx_e810 - Initialize tracking for Tx timestamps
1024  * @pf: Board private structure
1025  * @tx: the Tx tracking structure to initialize
1026  *
1027  * Initialize the Tx timestamp tracker for this PF. For E810 devices, each
1028  * port has its own block of timestamps, independent of the other ports.
1029  */
1030 static int
1031 ice_ptp_init_tx_e810(struct ice_pf *pf, struct ice_ptp_tx *tx)
1032 {
1033 	tx->block = pf->hw.port_info->lport;
1034 	tx->offset = 0;
1035 	tx->len = INDEX_PER_PORT_E810;
1036 	/* The E810 PHY does not provide a timestamp ready bitmap. Instead,
1037 	 * verify new timestamps against cached copy of the last read
1038 	 * timestamp.
1039 	 */
1040 	tx->verify_cached = 1;
1041 
1042 	return ice_ptp_alloc_tx_tracker(tx);
1043 }
1044 
1045 /**
1046  * ice_ptp_update_cached_phctime - Update the cached PHC time values
1047  * @pf: Board specific private structure
1048  *
1049  * This function updates the system time values which are cached in the PF
1050  * structure and the Rx rings.
1051  *
1052  * This function must be called periodically to ensure that the cached value
1053  * is never more than 2 seconds old.
1054  *
1055  * Note that the cached copy in the PF PTP structure is always updated, even
1056  * if we can't update the copy in the Rx rings.
1057  *
1058  * Return:
1059  * * 0 - OK, successfully updated
1060  * * -EAGAIN - PF was busy, need to reschedule the update
1061  */
1062 static int ice_ptp_update_cached_phctime(struct ice_pf *pf)
1063 {
1064 	struct device *dev = ice_pf_to_dev(pf);
1065 	unsigned long update_before;
1066 	u64 systime;
1067 	int i;
1068 
1069 	update_before = pf->ptp.cached_phc_jiffies + msecs_to_jiffies(2000);
1070 	if (pf->ptp.cached_phc_time &&
1071 	    time_is_before_jiffies(update_before)) {
1072 		unsigned long time_taken = jiffies - pf->ptp.cached_phc_jiffies;
1073 
1074 		dev_warn(dev, "%u msecs passed between update to cached PHC time\n",
1075 			 jiffies_to_msecs(time_taken));
1076 		pf->ptp.late_cached_phc_updates++;
1077 	}
1078 
1079 	/* Read the current PHC time */
1080 	systime = ice_ptp_read_src_clk_reg(pf, NULL);
1081 
1082 	/* Update the cached PHC time stored in the PF structure */
1083 	WRITE_ONCE(pf->ptp.cached_phc_time, systime);
1084 	WRITE_ONCE(pf->ptp.cached_phc_jiffies, jiffies);
1085 
1086 	if (test_and_set_bit(ICE_CFG_BUSY, pf->state))
1087 		return -EAGAIN;
1088 
1089 	ice_for_each_vsi(pf, i) {
1090 		struct ice_vsi *vsi = pf->vsi[i];
1091 		int j;
1092 
1093 		if (!vsi)
1094 			continue;
1095 
1096 		if (vsi->type != ICE_VSI_PF)
1097 			continue;
1098 
1099 		ice_for_each_rxq(vsi, j) {
1100 			if (!vsi->rx_rings[j])
1101 				continue;
1102 			WRITE_ONCE(vsi->rx_rings[j]->cached_phctime, systime);
1103 		}
1104 	}
1105 	clear_bit(ICE_CFG_BUSY, pf->state);
1106 
1107 	return 0;
1108 }
1109 
1110 /**
1111  * ice_ptp_reset_cached_phctime - Reset cached PHC time after an update
1112  * @pf: Board specific private structure
1113  *
1114  * This function must be called when the cached PHC time is no longer valid,
1115  * such as after a time adjustment. It marks any currently outstanding Tx
1116  * timestamps as stale and updates the cached PHC time for both the PF and Rx
1117  * rings.
1118  *
1119  * If updating the PHC time cannot be done immediately, a warning message is
1120  * logged and the work item is scheduled immediately to minimize the window
1121  * with a wrong cached timestamp.
1122  */
1123 static void ice_ptp_reset_cached_phctime(struct ice_pf *pf)
1124 {
1125 	struct device *dev = ice_pf_to_dev(pf);
1126 	int err;
1127 
1128 	/* Update the cached PHC time immediately if possible, otherwise
1129 	 * schedule the work item to execute soon.
1130 	 */
1131 	err = ice_ptp_update_cached_phctime(pf);
1132 	if (err) {
1133 		/* If another thread is updating the Rx rings, we won't
1134 		 * properly reset them here. This could lead to reporting of
1135 		 * invalid timestamps, but there isn't much we can do.
1136 		 */
1137 		dev_warn(dev, "%s: ICE_CFG_BUSY, unable to immediately update cached PHC time\n",
1138 			 __func__);
1139 
1140 		/* Queue the work item to update the Rx rings when possible */
1141 		kthread_queue_delayed_work(pf->ptp.kworker, &pf->ptp.work,
1142 					   msecs_to_jiffies(10));
1143 	}
1144 
1145 	/* Mark any outstanding timestamps as stale, since they might have
1146 	 * been captured in hardware before the time update. This could lead
1147 	 * to us extending them with the wrong cached value resulting in
1148 	 * incorrect timestamp values.
1149 	 */
1150 	ice_ptp_mark_tx_tracker_stale(&pf->ptp.port.tx);
1151 }
1152 
1153 /**
1154  * ice_ptp_read_time - Read the time from the device
1155  * @pf: Board private structure
1156  * @ts: timespec structure to hold the current time value
1157  * @sts: Optional parameter for holding a pair of system timestamps from
1158  *       the system clock. Will be ignored if NULL is given.
1159  *
1160  * This function reads the source clock registers and stores them in a timespec.
1161  * However, since the registers are 64 bits of nanoseconds, we must convert the
1162  * result to a timespec before we can return.
1163  */
1164 static void
1165 ice_ptp_read_time(struct ice_pf *pf, struct timespec64 *ts,
1166 		  struct ptp_system_timestamp *sts)
1167 {
1168 	u64 time_ns = ice_ptp_read_src_clk_reg(pf, sts);
1169 
1170 	*ts = ns_to_timespec64(time_ns);
1171 }
1172 
1173 /**
1174  * ice_ptp_write_init - Set PHC time to provided value
1175  * @pf: Board private structure
1176  * @ts: timespec structure that holds the new time value
1177  *
1178  * Set the PHC time to the specified time provided in the timespec.
1179  */
1180 static int ice_ptp_write_init(struct ice_pf *pf, struct timespec64 *ts)
1181 {
1182 	u64 ns = timespec64_to_ns(ts);
1183 	struct ice_hw *hw = &pf->hw;
1184 
1185 	return ice_ptp_init_time(hw, ns);
1186 }
1187 
1188 /**
1189  * ice_ptp_write_adj - Adjust PHC clock time atomically
1190  * @pf: Board private structure
1191  * @adj: Adjustment in nanoseconds
1192  *
1193  * Perform an atomic adjustment of the PHC time by the specified number of
1194  * nanoseconds.
1195  */
1196 static int ice_ptp_write_adj(struct ice_pf *pf, s32 adj)
1197 {
1198 	struct ice_hw *hw = &pf->hw;
1199 
1200 	return ice_ptp_adj_clock(hw, adj);
1201 }
1202 
1203 /**
1204  * ice_base_incval - Get base timer increment value
1205  * @pf: Board private structure
1206  *
1207  * Look up the base timer increment value for this device. The base increment
1208  * value is used to define the nominal clock tick rate. This increment value
1209  * is programmed during device initialization. It is also used as the basis
1210  * for calculating adjustments using scaled_ppm.
1211  */
1212 static u64 ice_base_incval(struct ice_pf *pf)
1213 {
1214 	struct ice_hw *hw = &pf->hw;
1215 	u64 incval;
1216 
1217 	if (ice_is_e810(hw))
1218 		incval = ICE_PTP_NOMINAL_INCVAL_E810;
1219 	else if (ice_e82x_time_ref(hw) < NUM_ICE_TIME_REF_FREQ)
1220 		incval = ice_e82x_nominal_incval(ice_e82x_time_ref(hw));
1221 	else
1222 		incval = UNKNOWN_INCVAL_E82X;
1223 
1224 	dev_dbg(ice_pf_to_dev(pf), "PTP: using base increment value of 0x%016llx\n",
1225 		incval);
1226 
1227 	return incval;
1228 }
1229 
1230 /**
1231  * ice_ptp_check_tx_fifo - Check whether Tx FIFO is in an OK state
1232  * @port: PTP port for which Tx FIFO is checked
1233  */
1234 static int ice_ptp_check_tx_fifo(struct ice_ptp_port *port)
1235 {
1236 	int quad = port->port_num / ICE_PORTS_PER_QUAD;
1237 	int offs = port->port_num % ICE_PORTS_PER_QUAD;
1238 	struct ice_pf *pf;
1239 	struct ice_hw *hw;
1240 	u32 val, phy_sts;
1241 	int err;
1242 
1243 	pf = ptp_port_to_pf(port);
1244 	hw = &pf->hw;
1245 
1246 	if (port->tx_fifo_busy_cnt == FIFO_OK)
1247 		return 0;
1248 
1249 	/* need to read FIFO state */
1250 	if (offs == 0 || offs == 1)
1251 		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO01_STATUS,
1252 					     &val);
1253 	else
1254 		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_FIFO23_STATUS,
1255 					     &val);
1256 
1257 	if (err) {
1258 		dev_err(ice_pf_to_dev(pf), "PTP failed to check port %d Tx FIFO, err %d\n",
1259 			port->port_num, err);
1260 		return err;
1261 	}
1262 
1263 	if (offs & 0x1)
1264 		phy_sts = FIELD_GET(Q_REG_FIFO13_M, val);
1265 	else
1266 		phy_sts = FIELD_GET(Q_REG_FIFO02_M, val);
1267 
1268 	if (phy_sts & FIFO_EMPTY) {
1269 		port->tx_fifo_busy_cnt = FIFO_OK;
1270 		return 0;
1271 	}
1272 
1273 	port->tx_fifo_busy_cnt++;
1274 
1275 	dev_dbg(ice_pf_to_dev(pf), "Try %d, port %d FIFO not empty\n",
1276 		port->tx_fifo_busy_cnt, port->port_num);
1277 
1278 	if (port->tx_fifo_busy_cnt == ICE_PTP_FIFO_NUM_CHECKS) {
1279 		dev_dbg(ice_pf_to_dev(pf),
1280 			"Port %d Tx FIFO still not empty; resetting quad %d\n",
1281 			port->port_num, quad);
1282 		ice_ptp_reset_ts_memory_quad_e82x(hw, quad);
1283 		port->tx_fifo_busy_cnt = FIFO_OK;
1284 		return 0;
1285 	}
1286 
1287 	return -EAGAIN;
1288 }
1289 
1290 /**
1291  * ice_ptp_wait_for_offsets - Check for valid Tx and Rx offsets
1292  * @work: Pointer to the kthread_work structure for this task
1293  *
1294  * Check whether hardware has completed measuring the Tx and Rx offset values
1295  * used to configure and enable vernier timestamp calibration.
1296  *
1297  * Once the offset in either direction is measured, configure the associated
1298  * registers with the calibrated offset values and enable timestamping. The Tx
1299  * and Rx directions are configured independently as soon as their associated
1300  * offsets are known.
1301  *
1302  * This function reschedules itself until both Tx and Rx calibration have
1303  * completed.
1304  */
1305 static void ice_ptp_wait_for_offsets(struct kthread_work *work)
1306 {
1307 	struct ice_ptp_port *port;
1308 	struct ice_pf *pf;
1309 	struct ice_hw *hw;
1310 	int tx_err;
1311 	int rx_err;
1312 
1313 	port = container_of(work, struct ice_ptp_port, ov_work.work);
1314 	pf = ptp_port_to_pf(port);
1315 	hw = &pf->hw;
1316 
1317 	if (ice_is_reset_in_progress(pf->state)) {
1318 		/* wait for device driver to complete reset */
1319 		kthread_queue_delayed_work(pf->ptp.kworker,
1320 					   &port->ov_work,
1321 					   msecs_to_jiffies(100));
1322 		return;
1323 	}
1324 
1325 	tx_err = ice_ptp_check_tx_fifo(port);
1326 	if (!tx_err)
1327 		tx_err = ice_phy_cfg_tx_offset_e82x(hw, port->port_num);
1328 	rx_err = ice_phy_cfg_rx_offset_e82x(hw, port->port_num);
1329 	if (tx_err || rx_err) {
1330 		/* Tx and/or Rx offset not yet configured, try again later */
1331 		kthread_queue_delayed_work(pf->ptp.kworker,
1332 					   &port->ov_work,
1333 					   msecs_to_jiffies(100));
1334 		return;
1335 	}
1336 }
1337 
1338 /**
1339  * ice_ptp_port_phy_stop - Stop timestamping for a PHY port
1340  * @ptp_port: PTP port to stop
1341  */
1342 static int
1343 ice_ptp_port_phy_stop(struct ice_ptp_port *ptp_port)
1344 {
1345 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1346 	u8 port = ptp_port->port_num;
1347 	struct ice_hw *hw = &pf->hw;
1348 	int err;
1349 
1350 	if (ice_is_e810(hw))
1351 		return 0;
1352 
1353 	mutex_lock(&ptp_port->ps_lock);
1354 
1355 	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1356 
1357 	err = ice_stop_phy_timer_e82x(hw, port, true);
1358 	if (err)
1359 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d down, err %d\n",
1360 			port, err);
1361 
1362 	mutex_unlock(&ptp_port->ps_lock);
1363 
1364 	return err;
1365 }
1366 
1367 /**
1368  * ice_ptp_port_phy_restart - (Re)start and calibrate PHY timestamping
1369  * @ptp_port: PTP port for which the PHY start is set
1370  *
1371  * Start the PHY timestamping block, and initiate Vernier timestamping
1372  * calibration. If timestamping cannot be calibrated (such as if link is down)
1373  * then disable the timestamping block instead.
1374  */
1375 static int
1376 ice_ptp_port_phy_restart(struct ice_ptp_port *ptp_port)
1377 {
1378 	struct ice_pf *pf = ptp_port_to_pf(ptp_port);
1379 	u8 port = ptp_port->port_num;
1380 	struct ice_hw *hw = &pf->hw;
1381 	unsigned long flags;
1382 	int err;
1383 
1384 	if (ice_is_e810(hw))
1385 		return 0;
1386 
1387 	if (!ptp_port->link_up)
1388 		return ice_ptp_port_phy_stop(ptp_port);
1389 
1390 	mutex_lock(&ptp_port->ps_lock);
1391 
1392 	kthread_cancel_delayed_work_sync(&ptp_port->ov_work);
1393 
1394 	/* temporarily disable Tx timestamps while calibrating PHY offset */
1395 	spin_lock_irqsave(&ptp_port->tx.lock, flags);
1396 	ptp_port->tx.calibrating = true;
1397 	spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1398 	ptp_port->tx_fifo_busy_cnt = 0;
1399 
1400 	/* Start the PHY timer in Vernier mode */
1401 	err = ice_start_phy_timer_e82x(hw, port);
1402 	if (err)
1403 		goto out_unlock;
1404 
1405 	/* Enable Tx timestamps right away */
1406 	spin_lock_irqsave(&ptp_port->tx.lock, flags);
1407 	ptp_port->tx.calibrating = false;
1408 	spin_unlock_irqrestore(&ptp_port->tx.lock, flags);
1409 
1410 	kthread_queue_delayed_work(pf->ptp.kworker, &ptp_port->ov_work, 0);
1411 
1412 out_unlock:
1413 	if (err)
1414 		dev_err(ice_pf_to_dev(pf), "PTP failed to set PHY port %d up, err %d\n",
1415 			port, err);
1416 
1417 	mutex_unlock(&ptp_port->ps_lock);
1418 
1419 	return err;
1420 }
1421 
1422 /**
1423  * ice_ptp_link_change - Reconfigure PTP after link status change
1424  * @pf: Board private structure
1425  * @port: Port for which the PHY start is set
1426  * @linkup: Link is up or down
1427  */
1428 void ice_ptp_link_change(struct ice_pf *pf, u8 port, bool linkup)
1429 {
1430 	struct ice_ptp_port *ptp_port;
1431 	struct ice_hw *hw = &pf->hw;
1432 
1433 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
1434 		return;
1435 
1436 	if (WARN_ON_ONCE(port >= ICE_NUM_EXTERNAL_PORTS))
1437 		return;
1438 
1439 	ptp_port = &pf->ptp.port;
1440 	if (WARN_ON_ONCE(ptp_port->port_num != port))
1441 		return;
1442 
1443 	/* Update cached link status for this port immediately */
1444 	ptp_port->link_up = linkup;
1445 
1446 	switch (hw->phy_model) {
1447 	case ICE_PHY_E810:
1448 		/* Do not reconfigure E810 PHY */
1449 		return;
1450 	case ICE_PHY_E82X:
1451 		ice_ptp_port_phy_restart(ptp_port);
1452 		return;
1453 	default:
1454 		dev_warn(ice_pf_to_dev(pf), "%s: Unknown PHY type\n", __func__);
1455 	}
1456 }
1457 
1458 /**
1459  * ice_ptp_tx_ena_intr - Enable or disable the Tx timestamp interrupt
1460  * @pf: PF private structure
1461  * @ena: bool value to enable or disable interrupt
1462  * @threshold: Minimum number of packets at which intr is triggered
1463  *
1464  * Utility function to enable or disable Tx timestamp interrupt and threshold
1465  */
1466 static int ice_ptp_tx_ena_intr(struct ice_pf *pf, bool ena, u32 threshold)
1467 {
1468 	struct ice_hw *hw = &pf->hw;
1469 	int err = 0;
1470 	int quad;
1471 	u32 val;
1472 
1473 	ice_ptp_reset_ts_memory(hw);
1474 
1475 	for (quad = 0; quad < ICE_MAX_QUAD; quad++) {
1476 		err = ice_read_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1477 					     &val);
1478 		if (err)
1479 			break;
1480 
1481 		if (ena) {
1482 			val |= Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1483 			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_THR_M;
1484 			val |= FIELD_PREP(Q_REG_TX_MEM_GBL_CFG_INTR_THR_M,
1485 					  threshold);
1486 		} else {
1487 			val &= ~Q_REG_TX_MEM_GBL_CFG_INTR_ENA_M;
1488 		}
1489 
1490 		err = ice_write_quad_reg_e82x(hw, quad, Q_REG_TX_MEM_GBL_CFG,
1491 					      val);
1492 		if (err)
1493 			break;
1494 	}
1495 
1496 	if (err)
1497 		dev_err(ice_pf_to_dev(pf), "PTP failed in intr ena, err %d\n",
1498 			err);
1499 	return err;
1500 }
1501 
1502 /**
1503  * ice_ptp_reset_phy_timestamping - Reset PHY timestamping block
1504  * @pf: Board private structure
1505  */
1506 static void ice_ptp_reset_phy_timestamping(struct ice_pf *pf)
1507 {
1508 	ice_ptp_port_phy_restart(&pf->ptp.port);
1509 }
1510 
1511 /**
1512  * ice_ptp_restart_all_phy - Restart all PHYs to recalibrate timestamping
1513  * @pf: Board private structure
1514  */
1515 static void ice_ptp_restart_all_phy(struct ice_pf *pf)
1516 {
1517 	struct list_head *entry;
1518 
1519 	list_for_each(entry, &pf->ptp.ports_owner.ports) {
1520 		struct ice_ptp_port *port = list_entry(entry,
1521 						       struct ice_ptp_port,
1522 						       list_member);
1523 
1524 		if (port->link_up)
1525 			ice_ptp_port_phy_restart(port);
1526 	}
1527 }
1528 
1529 /**
1530  * ice_ptp_adjfine - Adjust clock increment rate
1531  * @info: the driver's PTP info structure
1532  * @scaled_ppm: Parts per million with 16-bit fractional field
1533  *
1534  * Adjust the frequency of the clock by the indicated scaled ppm from the
1535  * base frequency.
1536  */
1537 static int ice_ptp_adjfine(struct ptp_clock_info *info, long scaled_ppm)
1538 {
1539 	struct ice_pf *pf = ptp_info_to_pf(info);
1540 	struct ice_hw *hw = &pf->hw;
1541 	u64 incval;
1542 	int err;
1543 
1544 	incval = adjust_by_scaled_ppm(ice_base_incval(pf), scaled_ppm);
1545 	err = ice_ptp_write_incval_locked(hw, incval);
1546 	if (err) {
1547 		dev_err(ice_pf_to_dev(pf), "PTP failed to set incval, err %d\n",
1548 			err);
1549 		return -EIO;
1550 	}
1551 
1552 	return 0;
1553 }
1554 
1555 /**
1556  * ice_ptp_extts_event - Process PTP external clock event
1557  * @pf: Board private structure
1558  */
1559 void ice_ptp_extts_event(struct ice_pf *pf)
1560 {
1561 	struct ptp_clock_event event;
1562 	struct ice_hw *hw = &pf->hw;
1563 	u8 chan, tmr_idx;
1564 	u32 hi, lo;
1565 
1566 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1567 	/* Event time is captured by one of the two matched registers
1568 	 *      GLTSYN_EVNT_L: 32 LSB of sampled time event
1569 	 *      GLTSYN_EVNT_H: 32 MSB of sampled time event
1570 	 * Event is defined in GLTSYN_EVNT_0 register
1571 	 */
1572 	for (chan = 0; chan < GLTSYN_EVNT_H_IDX_MAX; chan++) {
1573 		/* Check if channel is enabled */
1574 		if (pf->ptp.ext_ts_irq & (1 << chan)) {
1575 			lo = rd32(hw, GLTSYN_EVNT_L(chan, tmr_idx));
1576 			hi = rd32(hw, GLTSYN_EVNT_H(chan, tmr_idx));
1577 			event.timestamp = (((u64)hi) << 32) | lo;
1578 			event.type = PTP_CLOCK_EXTTS;
1579 			event.index = chan;
1580 
1581 			/* Fire event */
1582 			ptp_clock_event(pf->ptp.clock, &event);
1583 			pf->ptp.ext_ts_irq &= ~(1 << chan);
1584 		}
1585 	}
1586 }
1587 
1588 /**
1589  * ice_ptp_cfg_extts - Configure EXTTS pin and channel
1590  * @pf: Board private structure
1591  * @ena: true to enable; false to disable
1592  * @chan: GPIO channel (0-3)
1593  * @gpio_pin: GPIO pin
1594  * @extts_flags: request flags from the ptp_extts_request.flags
1595  */
1596 static int
1597 ice_ptp_cfg_extts(struct ice_pf *pf, bool ena, unsigned int chan, u32 gpio_pin,
1598 		  unsigned int extts_flags)
1599 {
1600 	u32 func, aux_reg, gpio_reg, irq_reg;
1601 	struct ice_hw *hw = &pf->hw;
1602 	u8 tmr_idx;
1603 
1604 	if (chan > (unsigned int)pf->ptp.info.n_ext_ts)
1605 		return -EINVAL;
1606 
1607 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1608 
1609 	irq_reg = rd32(hw, PFINT_OICR_ENA);
1610 
1611 	if (ena) {
1612 		/* Enable the interrupt */
1613 		irq_reg |= PFINT_OICR_TSYN_EVNT_M;
1614 		aux_reg = GLTSYN_AUX_IN_0_INT_ENA_M;
1615 
1616 #define GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE	BIT(0)
1617 #define GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE	BIT(1)
1618 
1619 		/* set event level to requested edge */
1620 		if (extts_flags & PTP_FALLING_EDGE)
1621 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_FALLING_EDGE;
1622 		if (extts_flags & PTP_RISING_EDGE)
1623 			aux_reg |= GLTSYN_AUX_IN_0_EVNTLVL_RISING_EDGE;
1624 
1625 		/* Write GPIO CTL reg.
1626 		 * 0x1 is input sampled by EVENT register(channel)
1627 		 * + num_in_channels * tmr_idx
1628 		 */
1629 		func = 1 + chan + (tmr_idx * 3);
1630 		gpio_reg = FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func);
1631 		pf->ptp.ext_ts_chan |= (1 << chan);
1632 	} else {
1633 		/* clear the values we set to reset defaults */
1634 		aux_reg = 0;
1635 		gpio_reg = 0;
1636 		pf->ptp.ext_ts_chan &= ~(1 << chan);
1637 		if (!pf->ptp.ext_ts_chan)
1638 			irq_reg &= ~PFINT_OICR_TSYN_EVNT_M;
1639 	}
1640 
1641 	wr32(hw, PFINT_OICR_ENA, irq_reg);
1642 	wr32(hw, GLTSYN_AUX_IN(chan, tmr_idx), aux_reg);
1643 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), gpio_reg);
1644 
1645 	return 0;
1646 }
1647 
1648 /**
1649  * ice_ptp_cfg_clkout - Configure clock to generate periodic wave
1650  * @pf: Board private structure
1651  * @chan: GPIO channel (0-3)
1652  * @config: desired periodic clk configuration. NULL will disable channel
1653  * @store: If set to true the values will be stored
1654  *
1655  * Configure the internal clock generator modules to generate the clock wave of
1656  * specified period.
1657  */
1658 static int ice_ptp_cfg_clkout(struct ice_pf *pf, unsigned int chan,
1659 			      struct ice_perout_channel *config, bool store)
1660 {
1661 	u64 current_time, period, start_time, phase;
1662 	struct ice_hw *hw = &pf->hw;
1663 	u32 func, val, gpio_pin;
1664 	u8 tmr_idx;
1665 
1666 	tmr_idx = hw->func_caps.ts_func_info.tmr_index_owned;
1667 
1668 	/* 0. Reset mode & out_en in AUX_OUT */
1669 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), 0);
1670 
1671 	/* If we're disabling the output, clear out CLKO and TGT and keep
1672 	 * output level low
1673 	 */
1674 	if (!config || !config->ena) {
1675 		wr32(hw, GLTSYN_CLKO(chan, tmr_idx), 0);
1676 		wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), 0);
1677 		wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), 0);
1678 
1679 		val = GLGEN_GPIO_CTL_PIN_DIR_M;
1680 		gpio_pin = pf->ptp.perout_channels[chan].gpio_pin;
1681 		wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1682 
1683 		/* Store the value if requested */
1684 		if (store)
1685 			memset(&pf->ptp.perout_channels[chan], 0,
1686 			       sizeof(struct ice_perout_channel));
1687 
1688 		return 0;
1689 	}
1690 	period = config->period;
1691 	start_time = config->start_time;
1692 	div64_u64_rem(start_time, period, &phase);
1693 	gpio_pin = config->gpio_pin;
1694 
1695 	/* 1. Write clkout with half of required period value */
1696 	if (period & 0x1) {
1697 		dev_err(ice_pf_to_dev(pf), "CLK Period must be an even value\n");
1698 		goto err;
1699 	}
1700 
1701 	period >>= 1;
1702 
1703 	/* For proper operation, the GLTSYN_CLKO must be larger than clock tick
1704 	 */
1705 #define MIN_PULSE 3
1706 	if (period <= MIN_PULSE || period > U32_MAX) {
1707 		dev_err(ice_pf_to_dev(pf), "CLK Period must be > %d && < 2^33",
1708 			MIN_PULSE * 2);
1709 		goto err;
1710 	}
1711 
1712 	wr32(hw, GLTSYN_CLKO(chan, tmr_idx), lower_32_bits(period));
1713 
1714 	/* Allow time for programming before start_time is hit */
1715 	current_time = ice_ptp_read_src_clk_reg(pf, NULL);
1716 
1717 	/* if start time is in the past start the timer at the nearest second
1718 	 * maintaining phase
1719 	 */
1720 	if (start_time < current_time)
1721 		start_time = div64_u64(current_time + NSEC_PER_SEC - 1,
1722 				       NSEC_PER_SEC) * NSEC_PER_SEC + phase;
1723 
1724 	if (ice_is_e810(hw))
1725 		start_time -= E810_OUT_PROP_DELAY_NS;
1726 	else
1727 		start_time -= ice_e82x_pps_delay(ice_e82x_time_ref(hw));
1728 
1729 	/* 2. Write TARGET time */
1730 	wr32(hw, GLTSYN_TGT_L(chan, tmr_idx), lower_32_bits(start_time));
1731 	wr32(hw, GLTSYN_TGT_H(chan, tmr_idx), upper_32_bits(start_time));
1732 
1733 	/* 3. Write AUX_OUT register */
1734 	val = GLTSYN_AUX_OUT_0_OUT_ENA_M | GLTSYN_AUX_OUT_0_OUTMOD_M;
1735 	wr32(hw, GLTSYN_AUX_OUT(chan, tmr_idx), val);
1736 
1737 	/* 4. write GPIO CTL reg */
1738 	func = 8 + chan + (tmr_idx * 4);
1739 	val = GLGEN_GPIO_CTL_PIN_DIR_M |
1740 	      FIELD_PREP(GLGEN_GPIO_CTL_PIN_FUNC_M, func);
1741 	wr32(hw, GLGEN_GPIO_CTL(gpio_pin), val);
1742 
1743 	/* Store the value if requested */
1744 	if (store) {
1745 		memcpy(&pf->ptp.perout_channels[chan], config,
1746 		       sizeof(struct ice_perout_channel));
1747 		pf->ptp.perout_channels[chan].start_time = phase;
1748 	}
1749 
1750 	return 0;
1751 err:
1752 	dev_err(ice_pf_to_dev(pf), "PTP failed to cfg per_clk\n");
1753 	return -EFAULT;
1754 }
1755 
1756 /**
1757  * ice_ptp_disable_all_clkout - Disable all currently configured outputs
1758  * @pf: pointer to the PF structure
1759  *
1760  * Disable all currently configured clock outputs. This is necessary before
1761  * certain changes to the PTP hardware clock. Use ice_ptp_enable_all_clkout to
1762  * re-enable the clocks again.
1763  */
1764 static void ice_ptp_disable_all_clkout(struct ice_pf *pf)
1765 {
1766 	uint i;
1767 
1768 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1769 		if (pf->ptp.perout_channels[i].ena)
1770 			ice_ptp_cfg_clkout(pf, i, NULL, false);
1771 }
1772 
1773 /**
1774  * ice_ptp_enable_all_clkout - Enable all configured periodic clock outputs
1775  * @pf: pointer to the PF structure
1776  *
1777  * Enable all currently configured clock outputs. Use this after
1778  * ice_ptp_disable_all_clkout to reconfigure the output signals according to
1779  * their configuration.
1780  */
1781 static void ice_ptp_enable_all_clkout(struct ice_pf *pf)
1782 {
1783 	uint i;
1784 
1785 	for (i = 0; i < pf->ptp.info.n_per_out; i++)
1786 		if (pf->ptp.perout_channels[i].ena)
1787 			ice_ptp_cfg_clkout(pf, i, &pf->ptp.perout_channels[i],
1788 					   false);
1789 }
1790 
1791 /**
1792  * ice_ptp_gpio_enable_e810 - Enable/disable ancillary features of PHC
1793  * @info: the driver's PTP info structure
1794  * @rq: The requested feature to change
1795  * @on: Enable/disable flag
1796  */
1797 static int
1798 ice_ptp_gpio_enable_e810(struct ptp_clock_info *info,
1799 			 struct ptp_clock_request *rq, int on)
1800 {
1801 	struct ice_pf *pf = ptp_info_to_pf(info);
1802 	struct ice_perout_channel clk_cfg = {0};
1803 	bool sma_pres = false;
1804 	unsigned int chan;
1805 	u32 gpio_pin;
1806 	int err;
1807 
1808 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL))
1809 		sma_pres = true;
1810 
1811 	switch (rq->type) {
1812 	case PTP_CLK_REQ_PEROUT:
1813 		chan = rq->perout.index;
1814 		if (sma_pres) {
1815 			if (chan == ice_pin_desc_e810t[SMA1].chan)
1816 				clk_cfg.gpio_pin = GPIO_20;
1817 			else if (chan == ice_pin_desc_e810t[SMA2].chan)
1818 				clk_cfg.gpio_pin = GPIO_22;
1819 			else
1820 				return -1;
1821 		} else if (ice_is_e810t(&pf->hw)) {
1822 			if (chan == 0)
1823 				clk_cfg.gpio_pin = GPIO_20;
1824 			else
1825 				clk_cfg.gpio_pin = GPIO_22;
1826 		} else if (chan == PPS_CLK_GEN_CHAN) {
1827 			clk_cfg.gpio_pin = PPS_PIN_INDEX;
1828 		} else {
1829 			clk_cfg.gpio_pin = chan;
1830 		}
1831 
1832 		clk_cfg.period = ((rq->perout.period.sec * NSEC_PER_SEC) +
1833 				   rq->perout.period.nsec);
1834 		clk_cfg.start_time = ((rq->perout.start.sec * NSEC_PER_SEC) +
1835 				       rq->perout.start.nsec);
1836 		clk_cfg.ena = !!on;
1837 
1838 		err = ice_ptp_cfg_clkout(pf, chan, &clk_cfg, true);
1839 		break;
1840 	case PTP_CLK_REQ_EXTTS:
1841 		chan = rq->extts.index;
1842 		if (sma_pres) {
1843 			if (chan < ice_pin_desc_e810t[SMA2].chan)
1844 				gpio_pin = GPIO_21;
1845 			else
1846 				gpio_pin = GPIO_23;
1847 		} else if (ice_is_e810t(&pf->hw)) {
1848 			if (chan == 0)
1849 				gpio_pin = GPIO_21;
1850 			else
1851 				gpio_pin = GPIO_23;
1852 		} else {
1853 			gpio_pin = chan;
1854 		}
1855 
1856 		err = ice_ptp_cfg_extts(pf, !!on, chan, gpio_pin,
1857 					rq->extts.flags);
1858 		break;
1859 	default:
1860 		return -EOPNOTSUPP;
1861 	}
1862 
1863 	return err;
1864 }
1865 
1866 /**
1867  * ice_ptp_gpio_enable_e823 - Enable/disable ancillary features of PHC
1868  * @info: the driver's PTP info structure
1869  * @rq: The requested feature to change
1870  * @on: Enable/disable flag
1871  */
1872 static int ice_ptp_gpio_enable_e823(struct ptp_clock_info *info,
1873 				    struct ptp_clock_request *rq, int on)
1874 {
1875 	struct ice_pf *pf = ptp_info_to_pf(info);
1876 	struct ice_perout_channel clk_cfg = {0};
1877 	int err;
1878 
1879 	switch (rq->type) {
1880 	case PTP_CLK_REQ_PPS:
1881 		clk_cfg.gpio_pin = PPS_PIN_INDEX;
1882 		clk_cfg.period = NSEC_PER_SEC;
1883 		clk_cfg.ena = !!on;
1884 
1885 		err = ice_ptp_cfg_clkout(pf, PPS_CLK_GEN_CHAN, &clk_cfg, true);
1886 		break;
1887 	case PTP_CLK_REQ_EXTTS:
1888 		err = ice_ptp_cfg_extts(pf, !!on, rq->extts.index,
1889 					TIME_SYNC_PIN_INDEX, rq->extts.flags);
1890 		break;
1891 	default:
1892 		return -EOPNOTSUPP;
1893 	}
1894 
1895 	return err;
1896 }
1897 
1898 /**
1899  * ice_ptp_gettimex64 - Get the time of the clock
1900  * @info: the driver's PTP info structure
1901  * @ts: timespec64 structure to hold the current time value
1902  * @sts: Optional parameter for holding a pair of system timestamps from
1903  *       the system clock. Will be ignored if NULL is given.
1904  *
1905  * Read the device clock and return the correct value on ns, after converting it
1906  * into a timespec struct.
1907  */
1908 static int
1909 ice_ptp_gettimex64(struct ptp_clock_info *info, struct timespec64 *ts,
1910 		   struct ptp_system_timestamp *sts)
1911 {
1912 	struct ice_pf *pf = ptp_info_to_pf(info);
1913 	struct ice_hw *hw = &pf->hw;
1914 
1915 	if (!ice_ptp_lock(hw)) {
1916 		dev_err(ice_pf_to_dev(pf), "PTP failed to get time\n");
1917 		return -EBUSY;
1918 	}
1919 
1920 	ice_ptp_read_time(pf, ts, sts);
1921 	ice_ptp_unlock(hw);
1922 
1923 	return 0;
1924 }
1925 
1926 /**
1927  * ice_ptp_settime64 - Set the time of the clock
1928  * @info: the driver's PTP info structure
1929  * @ts: timespec64 structure that holds the new time value
1930  *
1931  * Set the device clock to the user input value. The conversion from timespec
1932  * to ns happens in the write function.
1933  */
1934 static int
1935 ice_ptp_settime64(struct ptp_clock_info *info, const struct timespec64 *ts)
1936 {
1937 	struct ice_pf *pf = ptp_info_to_pf(info);
1938 	struct timespec64 ts64 = *ts;
1939 	struct ice_hw *hw = &pf->hw;
1940 	int err;
1941 
1942 	/* For Vernier mode, we need to recalibrate after new settime
1943 	 * Start with disabling timestamp block
1944 	 */
1945 	if (pf->ptp.port.link_up)
1946 		ice_ptp_port_phy_stop(&pf->ptp.port);
1947 
1948 	if (!ice_ptp_lock(hw)) {
1949 		err = -EBUSY;
1950 		goto exit;
1951 	}
1952 
1953 	/* Disable periodic outputs */
1954 	ice_ptp_disable_all_clkout(pf);
1955 
1956 	err = ice_ptp_write_init(pf, &ts64);
1957 	ice_ptp_unlock(hw);
1958 
1959 	if (!err)
1960 		ice_ptp_reset_cached_phctime(pf);
1961 
1962 	/* Reenable periodic outputs */
1963 	ice_ptp_enable_all_clkout(pf);
1964 
1965 	/* Recalibrate and re-enable timestamp blocks for E822/E823 */
1966 	if (hw->phy_model == ICE_PHY_E82X)
1967 		ice_ptp_restart_all_phy(pf);
1968 exit:
1969 	if (err) {
1970 		dev_err(ice_pf_to_dev(pf), "PTP failed to set time %d\n", err);
1971 		return err;
1972 	}
1973 
1974 	return 0;
1975 }
1976 
1977 /**
1978  * ice_ptp_adjtime_nonatomic - Do a non-atomic clock adjustment
1979  * @info: the driver's PTP info structure
1980  * @delta: Offset in nanoseconds to adjust the time by
1981  */
1982 static int ice_ptp_adjtime_nonatomic(struct ptp_clock_info *info, s64 delta)
1983 {
1984 	struct timespec64 now, then;
1985 	int ret;
1986 
1987 	then = ns_to_timespec64(delta);
1988 	ret = ice_ptp_gettimex64(info, &now, NULL);
1989 	if (ret)
1990 		return ret;
1991 	now = timespec64_add(now, then);
1992 
1993 	return ice_ptp_settime64(info, (const struct timespec64 *)&now);
1994 }
1995 
1996 /**
1997  * ice_ptp_adjtime - Adjust the time of the clock by the indicated delta
1998  * @info: the driver's PTP info structure
1999  * @delta: Offset in nanoseconds to adjust the time by
2000  */
2001 static int ice_ptp_adjtime(struct ptp_clock_info *info, s64 delta)
2002 {
2003 	struct ice_pf *pf = ptp_info_to_pf(info);
2004 	struct ice_hw *hw = &pf->hw;
2005 	struct device *dev;
2006 	int err;
2007 
2008 	dev = ice_pf_to_dev(pf);
2009 
2010 	/* Hardware only supports atomic adjustments using signed 32-bit
2011 	 * integers. For any adjustment outside this range, perform
2012 	 * a non-atomic get->adjust->set flow.
2013 	 */
2014 	if (delta > S32_MAX || delta < S32_MIN) {
2015 		dev_dbg(dev, "delta = %lld, adjtime non-atomic\n", delta);
2016 		return ice_ptp_adjtime_nonatomic(info, delta);
2017 	}
2018 
2019 	if (!ice_ptp_lock(hw)) {
2020 		dev_err(dev, "PTP failed to acquire semaphore in adjtime\n");
2021 		return -EBUSY;
2022 	}
2023 
2024 	/* Disable periodic outputs */
2025 	ice_ptp_disable_all_clkout(pf);
2026 
2027 	err = ice_ptp_write_adj(pf, delta);
2028 
2029 	/* Reenable periodic outputs */
2030 	ice_ptp_enable_all_clkout(pf);
2031 
2032 	ice_ptp_unlock(hw);
2033 
2034 	if (err) {
2035 		dev_err(dev, "PTP failed to adjust time, err %d\n", err);
2036 		return err;
2037 	}
2038 
2039 	ice_ptp_reset_cached_phctime(pf);
2040 
2041 	return 0;
2042 }
2043 
2044 #ifdef CONFIG_ICE_HWTS
2045 /**
2046  * ice_ptp_get_syncdevicetime - Get the cross time stamp info
2047  * @device: Current device time
2048  * @system: System counter value read synchronously with device time
2049  * @ctx: Context provided by timekeeping code
2050  *
2051  * Read device and system (ART) clock simultaneously and return the corrected
2052  * clock values in ns.
2053  */
2054 static int
2055 ice_ptp_get_syncdevicetime(ktime_t *device,
2056 			   struct system_counterval_t *system,
2057 			   void *ctx)
2058 {
2059 	struct ice_pf *pf = (struct ice_pf *)ctx;
2060 	struct ice_hw *hw = &pf->hw;
2061 	u32 hh_lock, hh_art_ctl;
2062 	int i;
2063 
2064 #define MAX_HH_HW_LOCK_TRIES	5
2065 #define MAX_HH_CTL_LOCK_TRIES	100
2066 
2067 	for (i = 0; i < MAX_HH_HW_LOCK_TRIES; i++) {
2068 		/* Get the HW lock */
2069 		hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2070 		if (hh_lock & PFHH_SEM_BUSY_M) {
2071 			usleep_range(10000, 15000);
2072 			continue;
2073 		}
2074 		break;
2075 	}
2076 	if (hh_lock & PFHH_SEM_BUSY_M) {
2077 		dev_err(ice_pf_to_dev(pf), "PTP failed to get hh lock\n");
2078 		return -EBUSY;
2079 	}
2080 
2081 	/* Program cmd to master timer */
2082 	ice_ptp_src_cmd(hw, ICE_PTP_READ_TIME);
2083 
2084 	/* Start the ART and device clock sync sequence */
2085 	hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2086 	hh_art_ctl = hh_art_ctl | GLHH_ART_CTL_ACTIVE_M;
2087 	wr32(hw, GLHH_ART_CTL, hh_art_ctl);
2088 
2089 	for (i = 0; i < MAX_HH_CTL_LOCK_TRIES; i++) {
2090 		/* Wait for sync to complete */
2091 		hh_art_ctl = rd32(hw, GLHH_ART_CTL);
2092 		if (hh_art_ctl & GLHH_ART_CTL_ACTIVE_M) {
2093 			udelay(1);
2094 			continue;
2095 		} else {
2096 			u32 hh_ts_lo, hh_ts_hi, tmr_idx;
2097 			u64 hh_ts;
2098 
2099 			tmr_idx = hw->func_caps.ts_func_info.tmr_index_assoc;
2100 			/* Read ART time */
2101 			hh_ts_lo = rd32(hw, GLHH_ART_TIME_L);
2102 			hh_ts_hi = rd32(hw, GLHH_ART_TIME_H);
2103 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2104 			*system = convert_art_ns_to_tsc(hh_ts);
2105 			/* Read Device source clock time */
2106 			hh_ts_lo = rd32(hw, GLTSYN_HHTIME_L(tmr_idx));
2107 			hh_ts_hi = rd32(hw, GLTSYN_HHTIME_H(tmr_idx));
2108 			hh_ts = ((u64)hh_ts_hi << 32) | hh_ts_lo;
2109 			*device = ns_to_ktime(hh_ts);
2110 			break;
2111 		}
2112 	}
2113 
2114 	/* Clear the master timer */
2115 	ice_ptp_src_cmd(hw, ICE_PTP_NOP);
2116 
2117 	/* Release HW lock */
2118 	hh_lock = rd32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id));
2119 	hh_lock = hh_lock & ~PFHH_SEM_BUSY_M;
2120 	wr32(hw, PFHH_SEM + (PFTSYN_SEM_BYTES * hw->pf_id), hh_lock);
2121 
2122 	if (i == MAX_HH_CTL_LOCK_TRIES)
2123 		return -ETIMEDOUT;
2124 
2125 	return 0;
2126 }
2127 
2128 /**
2129  * ice_ptp_getcrosststamp_e82x - Capture a device cross timestamp
2130  * @info: the driver's PTP info structure
2131  * @cts: The memory to fill the cross timestamp info
2132  *
2133  * Capture a cross timestamp between the ART and the device PTP hardware
2134  * clock. Fill the cross timestamp information and report it back to the
2135  * caller.
2136  *
2137  * This is only valid for E822 and E823 devices which have support for
2138  * generating the cross timestamp via PCIe PTM.
2139  *
2140  * In order to correctly correlate the ART timestamp back to the TSC time, the
2141  * CPU must have X86_FEATURE_TSC_KNOWN_FREQ.
2142  */
2143 static int
2144 ice_ptp_getcrosststamp_e82x(struct ptp_clock_info *info,
2145 			    struct system_device_crosststamp *cts)
2146 {
2147 	struct ice_pf *pf = ptp_info_to_pf(info);
2148 
2149 	return get_device_system_crosststamp(ice_ptp_get_syncdevicetime,
2150 					     pf, NULL, cts);
2151 }
2152 #endif /* CONFIG_ICE_HWTS */
2153 
2154 /**
2155  * ice_ptp_get_ts_config - ioctl interface to read the timestamping config
2156  * @pf: Board private structure
2157  * @ifr: ioctl data
2158  *
2159  * Copy the timestamping config to user buffer
2160  */
2161 int ice_ptp_get_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2162 {
2163 	struct hwtstamp_config *config;
2164 
2165 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2166 		return -EIO;
2167 
2168 	config = &pf->ptp.tstamp_config;
2169 
2170 	return copy_to_user(ifr->ifr_data, config, sizeof(*config)) ?
2171 		-EFAULT : 0;
2172 }
2173 
2174 /**
2175  * ice_ptp_set_timestamp_mode - Setup driver for requested timestamp mode
2176  * @pf: Board private structure
2177  * @config: hwtstamp settings requested or saved
2178  */
2179 static int
2180 ice_ptp_set_timestamp_mode(struct ice_pf *pf, struct hwtstamp_config *config)
2181 {
2182 	switch (config->tx_type) {
2183 	case HWTSTAMP_TX_OFF:
2184 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_OFF;
2185 		break;
2186 	case HWTSTAMP_TX_ON:
2187 		pf->ptp.tstamp_config.tx_type = HWTSTAMP_TX_ON;
2188 		break;
2189 	default:
2190 		return -ERANGE;
2191 	}
2192 
2193 	switch (config->rx_filter) {
2194 	case HWTSTAMP_FILTER_NONE:
2195 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_NONE;
2196 		break;
2197 	case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
2198 	case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
2199 	case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
2200 	case HWTSTAMP_FILTER_PTP_V2_EVENT:
2201 	case HWTSTAMP_FILTER_PTP_V2_L2_EVENT:
2202 	case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
2203 	case HWTSTAMP_FILTER_PTP_V2_SYNC:
2204 	case HWTSTAMP_FILTER_PTP_V2_L2_SYNC:
2205 	case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
2206 	case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
2207 	case HWTSTAMP_FILTER_PTP_V2_L2_DELAY_REQ:
2208 	case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
2209 	case HWTSTAMP_FILTER_NTP_ALL:
2210 	case HWTSTAMP_FILTER_ALL:
2211 		pf->ptp.tstamp_config.rx_filter = HWTSTAMP_FILTER_ALL;
2212 		break;
2213 	default:
2214 		return -ERANGE;
2215 	}
2216 
2217 	/* Immediately update the device timestamping mode */
2218 	ice_ptp_restore_timestamp_mode(pf);
2219 
2220 	return 0;
2221 }
2222 
2223 /**
2224  * ice_ptp_set_ts_config - ioctl interface to control the timestamping
2225  * @pf: Board private structure
2226  * @ifr: ioctl data
2227  *
2228  * Get the user config and store it
2229  */
2230 int ice_ptp_set_ts_config(struct ice_pf *pf, struct ifreq *ifr)
2231 {
2232 	struct hwtstamp_config config;
2233 	int err;
2234 
2235 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2236 		return -EAGAIN;
2237 
2238 	if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
2239 		return -EFAULT;
2240 
2241 	err = ice_ptp_set_timestamp_mode(pf, &config);
2242 	if (err)
2243 		return err;
2244 
2245 	/* Return the actual configuration set */
2246 	config = pf->ptp.tstamp_config;
2247 
2248 	return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
2249 		-EFAULT : 0;
2250 }
2251 
2252 /**
2253  * ice_ptp_get_rx_hwts - Get packet Rx timestamp in ns
2254  * @rx_desc: Receive descriptor
2255  * @pkt_ctx: Packet context to get the cached time
2256  *
2257  * The driver receives a notification in the receive descriptor with timestamp.
2258  */
2259 u64 ice_ptp_get_rx_hwts(const union ice_32b_rx_flex_desc *rx_desc,
2260 			const struct ice_pkt_ctx *pkt_ctx)
2261 {
2262 	u64 ts_ns, cached_time;
2263 	u32 ts_high;
2264 
2265 	if (!(rx_desc->wb.time_stamp_low & ICE_PTP_TS_VALID))
2266 		return 0;
2267 
2268 	cached_time = READ_ONCE(pkt_ctx->cached_phctime);
2269 
2270 	/* Do not report a timestamp if we don't have a cached PHC time */
2271 	if (!cached_time)
2272 		return 0;
2273 
2274 	/* Use ice_ptp_extend_32b_ts directly, using the ring-specific cached
2275 	 * PHC value, rather than accessing the PF. This also allows us to
2276 	 * simply pass the upper 32bits of nanoseconds directly. Calling
2277 	 * ice_ptp_extend_40b_ts is unnecessary as it would just discard these
2278 	 * bits itself.
2279 	 */
2280 	ts_high = le32_to_cpu(rx_desc->wb.flex_ts.ts_high);
2281 	ts_ns = ice_ptp_extend_32b_ts(cached_time, ts_high);
2282 
2283 	return ts_ns;
2284 }
2285 
2286 /**
2287  * ice_ptp_disable_sma_pins_e810t - Disable E810-T SMA pins
2288  * @pf: pointer to the PF structure
2289  * @info: PTP clock info structure
2290  *
2291  * Disable the OS access to the SMA pins. Called to clear out the OS
2292  * indications of pin support when we fail to setup the E810-T SMA control
2293  * register.
2294  */
2295 static void
2296 ice_ptp_disable_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2297 {
2298 	struct device *dev = ice_pf_to_dev(pf);
2299 
2300 	dev_warn(dev, "Failed to configure E810-T SMA pin control\n");
2301 
2302 	info->enable = NULL;
2303 	info->verify = NULL;
2304 	info->n_pins = 0;
2305 	info->n_ext_ts = 0;
2306 	info->n_per_out = 0;
2307 }
2308 
2309 /**
2310  * ice_ptp_setup_sma_pins_e810t - Setup the SMA pins
2311  * @pf: pointer to the PF structure
2312  * @info: PTP clock info structure
2313  *
2314  * Finish setting up the SMA pins by allocating pin_config, and setting it up
2315  * according to the current status of the SMA. On failure, disable all of the
2316  * extended SMA pin support.
2317  */
2318 static void
2319 ice_ptp_setup_sma_pins_e810t(struct ice_pf *pf, struct ptp_clock_info *info)
2320 {
2321 	struct device *dev = ice_pf_to_dev(pf);
2322 	int err;
2323 
2324 	/* Allocate memory for kernel pins interface */
2325 	info->pin_config = devm_kcalloc(dev, info->n_pins,
2326 					sizeof(*info->pin_config), GFP_KERNEL);
2327 	if (!info->pin_config) {
2328 		ice_ptp_disable_sma_pins_e810t(pf, info);
2329 		return;
2330 	}
2331 
2332 	/* Read current SMA status */
2333 	err = ice_get_sma_config_e810t(&pf->hw, info->pin_config);
2334 	if (err)
2335 		ice_ptp_disable_sma_pins_e810t(pf, info);
2336 }
2337 
2338 /**
2339  * ice_ptp_setup_pins_e810 - Setup PTP pins in sysfs
2340  * @pf: pointer to the PF instance
2341  * @info: PTP clock capabilities
2342  */
2343 static void
2344 ice_ptp_setup_pins_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2345 {
2346 	if (ice_is_feature_supported(pf, ICE_F_SMA_CTRL)) {
2347 		info->n_ext_ts = N_EXT_TS_E810;
2348 		info->n_per_out = N_PER_OUT_E810T;
2349 		info->n_pins = NUM_PTP_PINS_E810T;
2350 		info->verify = ice_verify_pin_e810t;
2351 
2352 		/* Complete setup of the SMA pins */
2353 		ice_ptp_setup_sma_pins_e810t(pf, info);
2354 	} else if (ice_is_e810t(&pf->hw)) {
2355 		info->n_ext_ts = N_EXT_TS_NO_SMA_E810T;
2356 		info->n_per_out = N_PER_OUT_NO_SMA_E810T;
2357 	} else {
2358 		info->n_per_out = N_PER_OUT_E810;
2359 		info->n_ext_ts = N_EXT_TS_E810;
2360 	}
2361 }
2362 
2363 /**
2364  * ice_ptp_setup_pins_e823 - Setup PTP pins in sysfs
2365  * @pf: pointer to the PF instance
2366  * @info: PTP clock capabilities
2367  */
2368 static void
2369 ice_ptp_setup_pins_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2370 {
2371 	info->pps = 1;
2372 	info->n_per_out = 0;
2373 	info->n_ext_ts = 1;
2374 }
2375 
2376 /**
2377  * ice_ptp_set_funcs_e82x - Set specialized functions for E82x support
2378  * @pf: Board private structure
2379  * @info: PTP info to fill
2380  *
2381  * Assign functions to the PTP capabiltiies structure for E82x devices.
2382  * Functions which operate across all device families should be set directly
2383  * in ice_ptp_set_caps. Only add functions here which are distinct for E82x
2384  * devices.
2385  */
2386 static void
2387 ice_ptp_set_funcs_e82x(struct ice_pf *pf, struct ptp_clock_info *info)
2388 {
2389 #ifdef CONFIG_ICE_HWTS
2390 	if (boot_cpu_has(X86_FEATURE_ART) &&
2391 	    boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ))
2392 		info->getcrosststamp = ice_ptp_getcrosststamp_e82x;
2393 #endif /* CONFIG_ICE_HWTS */
2394 }
2395 
2396 /**
2397  * ice_ptp_set_funcs_e810 - Set specialized functions for E810 support
2398  * @pf: Board private structure
2399  * @info: PTP info to fill
2400  *
2401  * Assign functions to the PTP capabiltiies structure for E810 devices.
2402  * Functions which operate across all device families should be set directly
2403  * in ice_ptp_set_caps. Only add functions here which are distinct for e810
2404  * devices.
2405  */
2406 static void
2407 ice_ptp_set_funcs_e810(struct ice_pf *pf, struct ptp_clock_info *info)
2408 {
2409 	info->enable = ice_ptp_gpio_enable_e810;
2410 	ice_ptp_setup_pins_e810(pf, info);
2411 }
2412 
2413 /**
2414  * ice_ptp_set_funcs_e823 - Set specialized functions for E823 support
2415  * @pf: Board private structure
2416  * @info: PTP info to fill
2417  *
2418  * Assign functions to the PTP capabiltiies structure for E823 devices.
2419  * Functions which operate across all device families should be set directly
2420  * in ice_ptp_set_caps. Only add functions here which are distinct for e823
2421  * devices.
2422  */
2423 static void
2424 ice_ptp_set_funcs_e823(struct ice_pf *pf, struct ptp_clock_info *info)
2425 {
2426 	ice_ptp_set_funcs_e82x(pf, info);
2427 
2428 	info->enable = ice_ptp_gpio_enable_e823;
2429 	ice_ptp_setup_pins_e823(pf, info);
2430 }
2431 
2432 /**
2433  * ice_ptp_set_caps - Set PTP capabilities
2434  * @pf: Board private structure
2435  */
2436 static void ice_ptp_set_caps(struct ice_pf *pf)
2437 {
2438 	struct ptp_clock_info *info = &pf->ptp.info;
2439 	struct device *dev = ice_pf_to_dev(pf);
2440 
2441 	snprintf(info->name, sizeof(info->name) - 1, "%s-%s-clk",
2442 		 dev_driver_string(dev), dev_name(dev));
2443 	info->owner = THIS_MODULE;
2444 	info->max_adj = 100000000;
2445 	info->adjtime = ice_ptp_adjtime;
2446 	info->adjfine = ice_ptp_adjfine;
2447 	info->gettimex64 = ice_ptp_gettimex64;
2448 	info->settime64 = ice_ptp_settime64;
2449 
2450 	if (ice_is_e810(&pf->hw))
2451 		ice_ptp_set_funcs_e810(pf, info);
2452 	else if (ice_is_e823(&pf->hw))
2453 		ice_ptp_set_funcs_e823(pf, info);
2454 	else
2455 		ice_ptp_set_funcs_e82x(pf, info);
2456 }
2457 
2458 /**
2459  * ice_ptp_create_clock - Create PTP clock device for userspace
2460  * @pf: Board private structure
2461  *
2462  * This function creates a new PTP clock device. It only creates one if we
2463  * don't already have one. Will return error if it can't create one, but success
2464  * if we already have a device. Should be used by ice_ptp_init to create clock
2465  * initially, and prevent global resets from creating new clock devices.
2466  */
2467 static long ice_ptp_create_clock(struct ice_pf *pf)
2468 {
2469 	struct ptp_clock_info *info;
2470 	struct device *dev;
2471 
2472 	/* No need to create a clock device if we already have one */
2473 	if (pf->ptp.clock)
2474 		return 0;
2475 
2476 	ice_ptp_set_caps(pf);
2477 
2478 	info = &pf->ptp.info;
2479 	dev = ice_pf_to_dev(pf);
2480 
2481 	/* Attempt to register the clock before enabling the hardware. */
2482 	pf->ptp.clock = ptp_clock_register(info, dev);
2483 	if (IS_ERR(pf->ptp.clock)) {
2484 		dev_err(ice_pf_to_dev(pf), "Failed to register PTP clock device");
2485 		return PTR_ERR(pf->ptp.clock);
2486 	}
2487 
2488 	return 0;
2489 }
2490 
2491 /**
2492  * ice_ptp_request_ts - Request an available Tx timestamp index
2493  * @tx: the PTP Tx timestamp tracker to request from
2494  * @skb: the SKB to associate with this timestamp request
2495  */
2496 s8 ice_ptp_request_ts(struct ice_ptp_tx *tx, struct sk_buff *skb)
2497 {
2498 	unsigned long flags;
2499 	u8 idx;
2500 
2501 	spin_lock_irqsave(&tx->lock, flags);
2502 
2503 	/* Check that this tracker is accepting new timestamp requests */
2504 	if (!ice_ptp_is_tx_tracker_up(tx)) {
2505 		spin_unlock_irqrestore(&tx->lock, flags);
2506 		return -1;
2507 	}
2508 
2509 	/* Find and set the first available index */
2510 	idx = find_next_zero_bit(tx->in_use, tx->len,
2511 				 tx->last_ll_ts_idx_read + 1);
2512 	if (idx == tx->len)
2513 		idx = find_first_zero_bit(tx->in_use, tx->len);
2514 
2515 	if (idx < tx->len) {
2516 		/* We got a valid index that no other thread could have set. Store
2517 		 * a reference to the skb and the start time to allow discarding old
2518 		 * requests.
2519 		 */
2520 		set_bit(idx, tx->in_use);
2521 		clear_bit(idx, tx->stale);
2522 		tx->tstamps[idx].start = jiffies;
2523 		tx->tstamps[idx].skb = skb_get(skb);
2524 		skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2525 		ice_trace(tx_tstamp_request, skb, idx);
2526 	}
2527 
2528 	spin_unlock_irqrestore(&tx->lock, flags);
2529 
2530 	/* return the appropriate PHY timestamp register index, -1 if no
2531 	 * indexes were available.
2532 	 */
2533 	if (idx >= tx->len)
2534 		return -1;
2535 	else
2536 		return idx + tx->offset;
2537 }
2538 
2539 /**
2540  * ice_ptp_process_ts - Process the PTP Tx timestamps
2541  * @pf: Board private structure
2542  *
2543  * Returns: ICE_TX_TSTAMP_WORK_PENDING if there are any outstanding Tx
2544  * timestamps that need processing, and ICE_TX_TSTAMP_WORK_DONE otherwise.
2545  */
2546 enum ice_tx_tstamp_work ice_ptp_process_ts(struct ice_pf *pf)
2547 {
2548 	switch (pf->ptp.tx_interrupt_mode) {
2549 	case ICE_PTP_TX_INTERRUPT_NONE:
2550 		/* This device has the clock owner handle timestamps for it */
2551 		return ICE_TX_TSTAMP_WORK_DONE;
2552 	case ICE_PTP_TX_INTERRUPT_SELF:
2553 		/* This device handles its own timestamps */
2554 		return ice_ptp_tx_tstamp(&pf->ptp.port.tx);
2555 	case ICE_PTP_TX_INTERRUPT_ALL:
2556 		/* This device handles timestamps for all ports */
2557 		return ice_ptp_tx_tstamp_owner(pf);
2558 	default:
2559 		WARN_ONCE(1, "Unexpected Tx timestamp interrupt mode %u\n",
2560 			  pf->ptp.tx_interrupt_mode);
2561 		return ICE_TX_TSTAMP_WORK_DONE;
2562 	}
2563 }
2564 
2565 /**
2566  * ice_ptp_maybe_trigger_tx_interrupt - Trigger Tx timstamp interrupt
2567  * @pf: Board private structure
2568  *
2569  * The device PHY issues Tx timestamp interrupts to the driver for processing
2570  * timestamp data from the PHY. It will not interrupt again until all
2571  * current timestamp data is read. In rare circumstances, it is possible that
2572  * the driver fails to read all outstanding data.
2573  *
2574  * To avoid getting permanently stuck, periodically check if the PHY has
2575  * outstanding timestamp data. If so, trigger an interrupt from software to
2576  * process this data.
2577  */
2578 static void ice_ptp_maybe_trigger_tx_interrupt(struct ice_pf *pf)
2579 {
2580 	struct device *dev = ice_pf_to_dev(pf);
2581 	struct ice_hw *hw = &pf->hw;
2582 	bool trigger_oicr = false;
2583 	unsigned int i;
2584 
2585 	if (ice_is_e810(hw))
2586 		return;
2587 
2588 	if (!ice_pf_src_tmr_owned(pf))
2589 		return;
2590 
2591 	for (i = 0; i < ICE_MAX_QUAD; i++) {
2592 		u64 tstamp_ready;
2593 		int err;
2594 
2595 		err = ice_get_phy_tx_tstamp_ready(&pf->hw, i, &tstamp_ready);
2596 		if (!err && tstamp_ready) {
2597 			trigger_oicr = true;
2598 			break;
2599 		}
2600 	}
2601 
2602 	if (trigger_oicr) {
2603 		/* Trigger a software interrupt, to ensure this data
2604 		 * gets processed.
2605 		 */
2606 		dev_dbg(dev, "PTP periodic task detected waiting timestamps. Triggering Tx timestamp interrupt now.\n");
2607 
2608 		wr32(hw, PFINT_OICR, PFINT_OICR_TSYN_TX_M);
2609 		ice_flush(hw);
2610 	}
2611 }
2612 
2613 static void ice_ptp_periodic_work(struct kthread_work *work)
2614 {
2615 	struct ice_ptp *ptp = container_of(work, struct ice_ptp, work.work);
2616 	struct ice_pf *pf = container_of(ptp, struct ice_pf, ptp);
2617 	int err;
2618 
2619 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
2620 		return;
2621 
2622 	err = ice_ptp_update_cached_phctime(pf);
2623 
2624 	ice_ptp_maybe_trigger_tx_interrupt(pf);
2625 
2626 	/* Run twice a second or reschedule if phc update failed */
2627 	kthread_queue_delayed_work(ptp->kworker, &ptp->work,
2628 				   msecs_to_jiffies(err ? 10 : 500));
2629 }
2630 
2631 /**
2632  * ice_ptp_reset - Initialize PTP hardware clock support after reset
2633  * @pf: Board private structure
2634  */
2635 void ice_ptp_reset(struct ice_pf *pf)
2636 {
2637 	struct ice_ptp *ptp = &pf->ptp;
2638 	struct ice_hw *hw = &pf->hw;
2639 	struct timespec64 ts;
2640 	int err, itr = 1;
2641 	u64 time_diff;
2642 
2643 	if (test_bit(ICE_PFR_REQ, pf->state) ||
2644 	    !ice_pf_src_tmr_owned(pf))
2645 		goto pfr;
2646 
2647 	err = ice_ptp_init_phc(hw);
2648 	if (err)
2649 		goto err;
2650 
2651 	/* Acquire the global hardware lock */
2652 	if (!ice_ptp_lock(hw)) {
2653 		err = -EBUSY;
2654 		goto err;
2655 	}
2656 
2657 	/* Write the increment time value to PHY and LAN */
2658 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2659 	if (err) {
2660 		ice_ptp_unlock(hw);
2661 		goto err;
2662 	}
2663 
2664 	/* Write the initial Time value to PHY and LAN using the cached PHC
2665 	 * time before the reset and time difference between stopping and
2666 	 * starting the clock.
2667 	 */
2668 	if (ptp->cached_phc_time) {
2669 		time_diff = ktime_get_real_ns() - ptp->reset_time;
2670 		ts = ns_to_timespec64(ptp->cached_phc_time + time_diff);
2671 	} else {
2672 		ts = ktime_to_timespec64(ktime_get_real());
2673 	}
2674 	err = ice_ptp_write_init(pf, &ts);
2675 	if (err) {
2676 		ice_ptp_unlock(hw);
2677 		goto err;
2678 	}
2679 
2680 	/* Release the global hardware lock */
2681 	ice_ptp_unlock(hw);
2682 
2683 	if (!ice_is_e810(hw)) {
2684 		/* Enable quad interrupts */
2685 		err = ice_ptp_tx_ena_intr(pf, true, itr);
2686 		if (err)
2687 			goto err;
2688 	}
2689 
2690 pfr:
2691 	/* Init Tx structures */
2692 	if (ice_is_e810(&pf->hw)) {
2693 		err = ice_ptp_init_tx_e810(pf, &ptp->port.tx);
2694 	} else {
2695 		kthread_init_delayed_work(&ptp->port.ov_work,
2696 					  ice_ptp_wait_for_offsets);
2697 		err = ice_ptp_init_tx_e82x(pf, &ptp->port.tx,
2698 					   ptp->port.port_num);
2699 	}
2700 	if (err)
2701 		goto err;
2702 
2703 	set_bit(ICE_FLAG_PTP, pf->flags);
2704 
2705 	/* Restart the PHY timestamping block */
2706 	if (!test_bit(ICE_PFR_REQ, pf->state) &&
2707 	    ice_pf_src_tmr_owned(pf))
2708 		ice_ptp_restart_all_phy(pf);
2709 
2710 	/* Start periodic work going */
2711 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
2712 
2713 	dev_info(ice_pf_to_dev(pf), "PTP reset successful\n");
2714 	return;
2715 
2716 err:
2717 	dev_err(ice_pf_to_dev(pf), "PTP reset failed %d\n", err);
2718 }
2719 
2720 /**
2721  * ice_ptp_aux_dev_to_aux_pf - Get auxiliary PF handle for the auxiliary device
2722  * @aux_dev: auxiliary device to get the auxiliary PF for
2723  */
2724 static struct ice_pf *
2725 ice_ptp_aux_dev_to_aux_pf(struct auxiliary_device *aux_dev)
2726 {
2727 	struct ice_ptp_port *aux_port;
2728 	struct ice_ptp *aux_ptp;
2729 
2730 	aux_port = container_of(aux_dev, struct ice_ptp_port, aux_dev);
2731 	aux_ptp = container_of(aux_port, struct ice_ptp, port);
2732 
2733 	return container_of(aux_ptp, struct ice_pf, ptp);
2734 }
2735 
2736 /**
2737  * ice_ptp_aux_dev_to_owner_pf - Get PF handle for the auxiliary device
2738  * @aux_dev: auxiliary device to get the PF for
2739  */
2740 static struct ice_pf *
2741 ice_ptp_aux_dev_to_owner_pf(struct auxiliary_device *aux_dev)
2742 {
2743 	struct ice_ptp_port_owner *ports_owner;
2744 	struct auxiliary_driver *aux_drv;
2745 	struct ice_ptp *owner_ptp;
2746 
2747 	if (!aux_dev->dev.driver)
2748 		return NULL;
2749 
2750 	aux_drv = to_auxiliary_drv(aux_dev->dev.driver);
2751 	ports_owner = container_of(aux_drv, struct ice_ptp_port_owner,
2752 				   aux_driver);
2753 	owner_ptp = container_of(ports_owner, struct ice_ptp, ports_owner);
2754 	return container_of(owner_ptp, struct ice_pf, ptp);
2755 }
2756 
2757 /**
2758  * ice_ptp_auxbus_probe - Probe auxiliary devices
2759  * @aux_dev: PF's auxiliary device
2760  * @id: Auxiliary device ID
2761  */
2762 static int ice_ptp_auxbus_probe(struct auxiliary_device *aux_dev,
2763 				const struct auxiliary_device_id *id)
2764 {
2765 	struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2766 	struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);
2767 
2768 	if (WARN_ON(!owner_pf))
2769 		return -ENODEV;
2770 
2771 	INIT_LIST_HEAD(&aux_pf->ptp.port.list_member);
2772 	mutex_lock(&owner_pf->ptp.ports_owner.lock);
2773 	list_add(&aux_pf->ptp.port.list_member,
2774 		 &owner_pf->ptp.ports_owner.ports);
2775 	mutex_unlock(&owner_pf->ptp.ports_owner.lock);
2776 
2777 	return 0;
2778 }
2779 
2780 /**
2781  * ice_ptp_auxbus_remove - Remove auxiliary devices from the bus
2782  * @aux_dev: PF's auxiliary device
2783  */
2784 static void ice_ptp_auxbus_remove(struct auxiliary_device *aux_dev)
2785 {
2786 	struct ice_pf *owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2787 	struct ice_pf *aux_pf = ice_ptp_aux_dev_to_aux_pf(aux_dev);
2788 
2789 	mutex_lock(&owner_pf->ptp.ports_owner.lock);
2790 	list_del(&aux_pf->ptp.port.list_member);
2791 	mutex_unlock(&owner_pf->ptp.ports_owner.lock);
2792 }
2793 
2794 /**
2795  * ice_ptp_auxbus_shutdown
2796  * @aux_dev: PF's auxiliary device
2797  */
2798 static void ice_ptp_auxbus_shutdown(struct auxiliary_device *aux_dev)
2799 {
2800 	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2801 }
2802 
2803 /**
2804  * ice_ptp_auxbus_suspend
2805  * @aux_dev: PF's auxiliary device
2806  * @state: power management state indicator
2807  */
2808 static int
2809 ice_ptp_auxbus_suspend(struct auxiliary_device *aux_dev, pm_message_t state)
2810 {
2811 	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2812 	return 0;
2813 }
2814 
2815 /**
2816  * ice_ptp_auxbus_resume
2817  * @aux_dev: PF's auxiliary device
2818  */
2819 static int ice_ptp_auxbus_resume(struct auxiliary_device *aux_dev)
2820 {
2821 	/* Doing nothing here, but handle to auxbus driver must be satisfied */
2822 	return 0;
2823 }
2824 
2825 /**
2826  * ice_ptp_auxbus_create_id_table - Create auxiliary device ID table
2827  * @pf: Board private structure
2828  * @name: auxiliary bus driver name
2829  */
2830 static struct auxiliary_device_id *
2831 ice_ptp_auxbus_create_id_table(struct ice_pf *pf, const char *name)
2832 {
2833 	struct auxiliary_device_id *ids;
2834 
2835 	/* Second id left empty to terminate the array */
2836 	ids = devm_kcalloc(ice_pf_to_dev(pf), 2,
2837 			   sizeof(struct auxiliary_device_id), GFP_KERNEL);
2838 	if (!ids)
2839 		return NULL;
2840 
2841 	snprintf(ids[0].name, sizeof(ids[0].name), "ice.%s", name);
2842 
2843 	return ids;
2844 }
2845 
2846 /**
2847  * ice_ptp_register_auxbus_driver - Register PTP auxiliary bus driver
2848  * @pf: Board private structure
2849  */
2850 static int ice_ptp_register_auxbus_driver(struct ice_pf *pf)
2851 {
2852 	struct auxiliary_driver *aux_driver;
2853 	struct ice_ptp *ptp;
2854 	struct device *dev;
2855 	char *name;
2856 	int err;
2857 
2858 	ptp = &pf->ptp;
2859 	dev = ice_pf_to_dev(pf);
2860 	aux_driver = &ptp->ports_owner.aux_driver;
2861 	INIT_LIST_HEAD(&ptp->ports_owner.ports);
2862 	mutex_init(&ptp->ports_owner.lock);
2863 	name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
2864 			      pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
2865 			      ice_get_ptp_src_clock_index(&pf->hw));
2866 	if (!name)
2867 		return -ENOMEM;
2868 
2869 	aux_driver->name = name;
2870 	aux_driver->shutdown = ice_ptp_auxbus_shutdown;
2871 	aux_driver->suspend = ice_ptp_auxbus_suspend;
2872 	aux_driver->remove = ice_ptp_auxbus_remove;
2873 	aux_driver->resume = ice_ptp_auxbus_resume;
2874 	aux_driver->probe = ice_ptp_auxbus_probe;
2875 	aux_driver->id_table = ice_ptp_auxbus_create_id_table(pf, name);
2876 	if (!aux_driver->id_table)
2877 		return -ENOMEM;
2878 
2879 	err = auxiliary_driver_register(aux_driver);
2880 	if (err) {
2881 		devm_kfree(dev, aux_driver->id_table);
2882 		dev_err(dev, "Failed registering aux_driver, name <%s>\n",
2883 			name);
2884 	}
2885 
2886 	return err;
2887 }
2888 
2889 /**
2890  * ice_ptp_unregister_auxbus_driver - Unregister PTP auxiliary bus driver
2891  * @pf: Board private structure
2892  */
2893 static void ice_ptp_unregister_auxbus_driver(struct ice_pf *pf)
2894 {
2895 	struct auxiliary_driver *aux_driver = &pf->ptp.ports_owner.aux_driver;
2896 
2897 	auxiliary_driver_unregister(aux_driver);
2898 	devm_kfree(ice_pf_to_dev(pf), aux_driver->id_table);
2899 
2900 	mutex_destroy(&pf->ptp.ports_owner.lock);
2901 }
2902 
2903 /**
2904  * ice_ptp_clock_index - Get the PTP clock index for this device
2905  * @pf: Board private structure
2906  *
2907  * Returns: the PTP clock index associated with this PF, or -1 if no PTP clock
2908  * is associated.
2909  */
2910 int ice_ptp_clock_index(struct ice_pf *pf)
2911 {
2912 	struct auxiliary_device *aux_dev;
2913 	struct ice_pf *owner_pf;
2914 	struct ptp_clock *clock;
2915 
2916 	aux_dev = &pf->ptp.port.aux_dev;
2917 	owner_pf = ice_ptp_aux_dev_to_owner_pf(aux_dev);
2918 	if (!owner_pf)
2919 		return -1;
2920 	clock = owner_pf->ptp.clock;
2921 
2922 	return clock ? ptp_clock_index(clock) : -1;
2923 }
2924 
2925 /**
2926  * ice_ptp_prepare_for_reset - Prepare PTP for reset
2927  * @pf: Board private structure
2928  */
2929 void ice_ptp_prepare_for_reset(struct ice_pf *pf)
2930 {
2931 	struct ice_ptp *ptp = &pf->ptp;
2932 	u8 src_tmr;
2933 
2934 	clear_bit(ICE_FLAG_PTP, pf->flags);
2935 
2936 	/* Disable timestamping for both Tx and Rx */
2937 	ice_ptp_disable_timestamp_mode(pf);
2938 
2939 	kthread_cancel_delayed_work_sync(&ptp->work);
2940 
2941 	if (test_bit(ICE_PFR_REQ, pf->state))
2942 		return;
2943 
2944 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
2945 
2946 	/* Disable periodic outputs */
2947 	ice_ptp_disable_all_clkout(pf);
2948 
2949 	src_tmr = ice_get_ptp_src_clock_index(&pf->hw);
2950 
2951 	/* Disable source clock */
2952 	wr32(&pf->hw, GLTSYN_ENA(src_tmr), (u32)~GLTSYN_ENA_TSYN_ENA_M);
2953 
2954 	/* Acquire PHC and system timer to restore after reset */
2955 	ptp->reset_time = ktime_get_real_ns();
2956 }
2957 
2958 /**
2959  * ice_ptp_init_owner - Initialize PTP_1588_CLOCK device
2960  * @pf: Board private structure
2961  *
2962  * Setup and initialize a PTP clock device that represents the device hardware
2963  * clock. Save the clock index for other functions connected to the same
2964  * hardware resource.
2965  */
2966 static int ice_ptp_init_owner(struct ice_pf *pf)
2967 {
2968 	struct ice_hw *hw = &pf->hw;
2969 	struct timespec64 ts;
2970 	int err, itr = 1;
2971 
2972 	err = ice_ptp_init_phc(hw);
2973 	if (err) {
2974 		dev_err(ice_pf_to_dev(pf), "Failed to initialize PHC, err %d\n",
2975 			err);
2976 		return err;
2977 	}
2978 
2979 	/* Acquire the global hardware lock */
2980 	if (!ice_ptp_lock(hw)) {
2981 		err = -EBUSY;
2982 		goto err_exit;
2983 	}
2984 
2985 	/* Write the increment time value to PHY and LAN */
2986 	err = ice_ptp_write_incval(hw, ice_base_incval(pf));
2987 	if (err) {
2988 		ice_ptp_unlock(hw);
2989 		goto err_exit;
2990 	}
2991 
2992 	ts = ktime_to_timespec64(ktime_get_real());
2993 	/* Write the initial Time value to PHY and LAN */
2994 	err = ice_ptp_write_init(pf, &ts);
2995 	if (err) {
2996 		ice_ptp_unlock(hw);
2997 		goto err_exit;
2998 	}
2999 
3000 	/* Release the global hardware lock */
3001 	ice_ptp_unlock(hw);
3002 
3003 	if (!ice_is_e810(hw)) {
3004 		/* Enable quad interrupts */
3005 		err = ice_ptp_tx_ena_intr(pf, true, itr);
3006 		if (err)
3007 			goto err_exit;
3008 	}
3009 
3010 	/* Ensure we have a clock device */
3011 	err = ice_ptp_create_clock(pf);
3012 	if (err)
3013 		goto err_clk;
3014 
3015 	err = ice_ptp_register_auxbus_driver(pf);
3016 	if (err) {
3017 		dev_err(ice_pf_to_dev(pf), "Failed to register PTP auxbus driver");
3018 		goto err_aux;
3019 	}
3020 
3021 	return 0;
3022 err_aux:
3023 	ptp_clock_unregister(pf->ptp.clock);
3024 err_clk:
3025 	pf->ptp.clock = NULL;
3026 err_exit:
3027 	return err;
3028 }
3029 
3030 /**
3031  * ice_ptp_init_work - Initialize PTP work threads
3032  * @pf: Board private structure
3033  * @ptp: PF PTP structure
3034  */
3035 static int ice_ptp_init_work(struct ice_pf *pf, struct ice_ptp *ptp)
3036 {
3037 	struct kthread_worker *kworker;
3038 
3039 	/* Initialize work functions */
3040 	kthread_init_delayed_work(&ptp->work, ice_ptp_periodic_work);
3041 
3042 	/* Allocate a kworker for handling work required for the ports
3043 	 * connected to the PTP hardware clock.
3044 	 */
3045 	kworker = kthread_create_worker(0, "ice-ptp-%s",
3046 					dev_name(ice_pf_to_dev(pf)));
3047 	if (IS_ERR(kworker))
3048 		return PTR_ERR(kworker);
3049 
3050 	ptp->kworker = kworker;
3051 
3052 	/* Start periodic work going */
3053 	kthread_queue_delayed_work(ptp->kworker, &ptp->work, 0);
3054 
3055 	return 0;
3056 }
3057 
3058 /**
3059  * ice_ptp_init_port - Initialize PTP port structure
3060  * @pf: Board private structure
3061  * @ptp_port: PTP port structure
3062  */
3063 static int ice_ptp_init_port(struct ice_pf *pf, struct ice_ptp_port *ptp_port)
3064 {
3065 	struct ice_hw *hw = &pf->hw;
3066 
3067 	mutex_init(&ptp_port->ps_lock);
3068 
3069 	switch (hw->phy_model) {
3070 	case ICE_PHY_E810:
3071 		return ice_ptp_init_tx_e810(pf, &ptp_port->tx);
3072 	case ICE_PHY_E82X:
3073 		kthread_init_delayed_work(&ptp_port->ov_work,
3074 					  ice_ptp_wait_for_offsets);
3075 
3076 		return ice_ptp_init_tx_e82x(pf, &ptp_port->tx,
3077 					    ptp_port->port_num);
3078 	default:
3079 		return -ENODEV;
3080 	}
3081 }
3082 
3083 /**
3084  * ice_ptp_release_auxbus_device
3085  * @dev: device that utilizes the auxbus
3086  */
3087 static void ice_ptp_release_auxbus_device(struct device *dev)
3088 {
3089 	/* Doing nothing here, but handle to auxbux device must be satisfied */
3090 }
3091 
3092 /**
3093  * ice_ptp_create_auxbus_device - Create PTP auxiliary bus device
3094  * @pf: Board private structure
3095  */
3096 static int ice_ptp_create_auxbus_device(struct ice_pf *pf)
3097 {
3098 	struct auxiliary_device *aux_dev;
3099 	struct ice_ptp *ptp;
3100 	struct device *dev;
3101 	char *name;
3102 	int err;
3103 	u32 id;
3104 
3105 	ptp = &pf->ptp;
3106 	id = ptp->port.port_num;
3107 	dev = ice_pf_to_dev(pf);
3108 
3109 	aux_dev = &ptp->port.aux_dev;
3110 
3111 	name = devm_kasprintf(dev, GFP_KERNEL, "ptp_aux_dev_%u_%u_clk%u",
3112 			      pf->pdev->bus->number, PCI_SLOT(pf->pdev->devfn),
3113 			      ice_get_ptp_src_clock_index(&pf->hw));
3114 	if (!name)
3115 		return -ENOMEM;
3116 
3117 	aux_dev->name = name;
3118 	aux_dev->id = id;
3119 	aux_dev->dev.release = ice_ptp_release_auxbus_device;
3120 	aux_dev->dev.parent = dev;
3121 
3122 	err = auxiliary_device_init(aux_dev);
3123 	if (err)
3124 		goto aux_err;
3125 
3126 	err = auxiliary_device_add(aux_dev);
3127 	if (err) {
3128 		auxiliary_device_uninit(aux_dev);
3129 		goto aux_err;
3130 	}
3131 
3132 	return 0;
3133 aux_err:
3134 	dev_err(dev, "Failed to create PTP auxiliary bus device <%s>\n", name);
3135 	devm_kfree(dev, name);
3136 	return err;
3137 }
3138 
3139 /**
3140  * ice_ptp_remove_auxbus_device - Remove PTP auxiliary bus device
3141  * @pf: Board private structure
3142  */
3143 static void ice_ptp_remove_auxbus_device(struct ice_pf *pf)
3144 {
3145 	struct auxiliary_device *aux_dev = &pf->ptp.port.aux_dev;
3146 
3147 	auxiliary_device_delete(aux_dev);
3148 	auxiliary_device_uninit(aux_dev);
3149 
3150 	memset(aux_dev, 0, sizeof(*aux_dev));
3151 }
3152 
3153 /**
3154  * ice_ptp_init_tx_interrupt_mode - Initialize device Tx interrupt mode
3155  * @pf: Board private structure
3156  *
3157  * Initialize the Tx timestamp interrupt mode for this device. For most device
3158  * types, each PF processes the interrupt and manages its own timestamps. For
3159  * E822-based devices, only the clock owner processes the timestamps. Other
3160  * PFs disable the interrupt and do not process their own timestamps.
3161  */
3162 static void ice_ptp_init_tx_interrupt_mode(struct ice_pf *pf)
3163 {
3164 	switch (pf->hw.phy_model) {
3165 	case ICE_PHY_E82X:
3166 		/* E822 based PHY has the clock owner process the interrupt
3167 		 * for all ports.
3168 		 */
3169 		if (ice_pf_src_tmr_owned(pf))
3170 			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_ALL;
3171 		else
3172 			pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_NONE;
3173 		break;
3174 	default:
3175 		/* other PHY types handle their own Tx interrupt */
3176 		pf->ptp.tx_interrupt_mode = ICE_PTP_TX_INTERRUPT_SELF;
3177 	}
3178 }
3179 
3180 /**
3181  * ice_ptp_init - Initialize PTP hardware clock support
3182  * @pf: Board private structure
3183  *
3184  * Set up the device for interacting with the PTP hardware clock for all
3185  * functions, both the function that owns the clock hardware, and the
3186  * functions connected to the clock hardware.
3187  *
3188  * The clock owner will allocate and register a ptp_clock with the
3189  * PTP_1588_CLOCK infrastructure. All functions allocate a kthread and work
3190  * items used for asynchronous work such as Tx timestamps and periodic work.
3191  */
3192 void ice_ptp_init(struct ice_pf *pf)
3193 {
3194 	struct ice_ptp *ptp = &pf->ptp;
3195 	struct ice_hw *hw = &pf->hw;
3196 	int err;
3197 
3198 	ice_ptp_init_phy_model(hw);
3199 
3200 	ice_ptp_init_tx_interrupt_mode(pf);
3201 
3202 	/* If this function owns the clock hardware, it must allocate and
3203 	 * configure the PTP clock device to represent it.
3204 	 */
3205 	if (ice_pf_src_tmr_owned(pf)) {
3206 		err = ice_ptp_init_owner(pf);
3207 		if (err)
3208 			goto err;
3209 	}
3210 
3211 	ptp->port.port_num = hw->pf_id;
3212 	err = ice_ptp_init_port(pf, &ptp->port);
3213 	if (err)
3214 		goto err;
3215 
3216 	/* Start the PHY timestamping block */
3217 	ice_ptp_reset_phy_timestamping(pf);
3218 
3219 	/* Configure initial Tx interrupt settings */
3220 	ice_ptp_cfg_tx_interrupt(pf);
3221 
3222 	set_bit(ICE_FLAG_PTP, pf->flags);
3223 	err = ice_ptp_init_work(pf, ptp);
3224 	if (err)
3225 		goto err;
3226 
3227 	err = ice_ptp_create_auxbus_device(pf);
3228 	if (err)
3229 		goto err;
3230 
3231 	dev_info(ice_pf_to_dev(pf), "PTP init successful\n");
3232 	return;
3233 
3234 err:
3235 	/* If we registered a PTP clock, release it */
3236 	if (pf->ptp.clock) {
3237 		ptp_clock_unregister(ptp->clock);
3238 		pf->ptp.clock = NULL;
3239 	}
3240 	clear_bit(ICE_FLAG_PTP, pf->flags);
3241 	dev_err(ice_pf_to_dev(pf), "PTP failed %d\n", err);
3242 }
3243 
3244 /**
3245  * ice_ptp_release - Disable the driver/HW support and unregister the clock
3246  * @pf: Board private structure
3247  *
3248  * This function handles the cleanup work required from the initialization by
3249  * clearing out the important information and unregistering the clock
3250  */
3251 void ice_ptp_release(struct ice_pf *pf)
3252 {
3253 	if (!test_bit(ICE_FLAG_PTP, pf->flags))
3254 		return;
3255 
3256 	/* Disable timestamping for both Tx and Rx */
3257 	ice_ptp_disable_timestamp_mode(pf);
3258 
3259 	ice_ptp_remove_auxbus_device(pf);
3260 
3261 	ice_ptp_release_tx_tracker(pf, &pf->ptp.port.tx);
3262 
3263 	clear_bit(ICE_FLAG_PTP, pf->flags);
3264 
3265 	kthread_cancel_delayed_work_sync(&pf->ptp.work);
3266 
3267 	ice_ptp_port_phy_stop(&pf->ptp.port);
3268 	mutex_destroy(&pf->ptp.port.ps_lock);
3269 	if (pf->ptp.kworker) {
3270 		kthread_destroy_worker(pf->ptp.kworker);
3271 		pf->ptp.kworker = NULL;
3272 	}
3273 
3274 	if (!pf->ptp.clock)
3275 		return;
3276 
3277 	/* Disable periodic outputs */
3278 	ice_ptp_disable_all_clkout(pf);
3279 
3280 	ptp_clock_unregister(pf->ptp.clock);
3281 	pf->ptp.clock = NULL;
3282 
3283 	ice_ptp_unregister_auxbus_driver(pf);
3284 
3285 	dev_info(ice_pf_to_dev(pf), "Removed PTP clock\n");
3286 }
3287