xref: /linux/drivers/net/ethernet/intel/ice/ice_base.c (revision bf5802238dc181b1f7375d358af1d01cd72d1c11)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2019, Intel Corporation. */
3 
4 #include <net/xdp_sock_drv.h>
5 #include "ice_base.h"
6 #include "ice_lib.h"
7 #include "ice_dcb_lib.h"
8 #include "ice_sriov.h"
9 
10 /**
11  * __ice_vsi_get_qs_contig - Assign a contiguous chunk of queues to VSI
12  * @qs_cfg: gathered variables needed for PF->VSI queues assignment
13  *
14  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
15  */
16 static int __ice_vsi_get_qs_contig(struct ice_qs_cfg *qs_cfg)
17 {
18 	unsigned int offset, i;
19 
20 	mutex_lock(qs_cfg->qs_mutex);
21 	offset = bitmap_find_next_zero_area(qs_cfg->pf_map, qs_cfg->pf_map_size,
22 					    0, qs_cfg->q_count, 0);
23 	if (offset >= qs_cfg->pf_map_size) {
24 		mutex_unlock(qs_cfg->qs_mutex);
25 		return -ENOMEM;
26 	}
27 
28 	bitmap_set(qs_cfg->pf_map, offset, qs_cfg->q_count);
29 	for (i = 0; i < qs_cfg->q_count; i++)
30 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)(i + offset);
31 	mutex_unlock(qs_cfg->qs_mutex);
32 
33 	return 0;
34 }
35 
36 /**
37  * __ice_vsi_get_qs_sc - Assign a scattered queues from PF to VSI
38  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
39  *
40  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
41  */
42 static int __ice_vsi_get_qs_sc(struct ice_qs_cfg *qs_cfg)
43 {
44 	unsigned int i, index = 0;
45 
46 	mutex_lock(qs_cfg->qs_mutex);
47 	for (i = 0; i < qs_cfg->q_count; i++) {
48 		index = find_next_zero_bit(qs_cfg->pf_map,
49 					   qs_cfg->pf_map_size, index);
50 		if (index >= qs_cfg->pf_map_size)
51 			goto err_scatter;
52 		set_bit(index, qs_cfg->pf_map);
53 		qs_cfg->vsi_map[i + qs_cfg->vsi_map_offset] = (u16)index;
54 	}
55 	mutex_unlock(qs_cfg->qs_mutex);
56 
57 	return 0;
58 err_scatter:
59 	for (index = 0; index < i; index++) {
60 		clear_bit(qs_cfg->vsi_map[index], qs_cfg->pf_map);
61 		qs_cfg->vsi_map[index + qs_cfg->vsi_map_offset] = 0;
62 	}
63 	mutex_unlock(qs_cfg->qs_mutex);
64 
65 	return -ENOMEM;
66 }
67 
68 /**
69  * ice_pf_rxq_wait - Wait for a PF's Rx queue to be enabled or disabled
70  * @pf: the PF being configured
71  * @pf_q: the PF queue
72  * @ena: enable or disable state of the queue
73  *
74  * This routine will wait for the given Rx queue of the PF to reach the
75  * enabled or disabled state.
76  * Returns -ETIMEDOUT in case of failing to reach the requested state after
77  * multiple retries; else will return 0 in case of success.
78  */
79 static int ice_pf_rxq_wait(struct ice_pf *pf, int pf_q, bool ena)
80 {
81 	int i;
82 
83 	for (i = 0; i < ICE_Q_WAIT_MAX_RETRY; i++) {
84 		if (ena == !!(rd32(&pf->hw, QRX_CTRL(pf_q)) &
85 			      QRX_CTRL_QENA_STAT_M))
86 			return 0;
87 
88 		usleep_range(20, 40);
89 	}
90 
91 	return -ETIMEDOUT;
92 }
93 
94 /**
95  * ice_vsi_alloc_q_vector - Allocate memory for a single interrupt vector
96  * @vsi: the VSI being configured
97  * @v_idx: index of the vector in the VSI struct
98  *
99  * We allocate one q_vector and set default value for ITR setting associated
100  * with this q_vector. If allocation fails we return -ENOMEM.
101  */
102 static int ice_vsi_alloc_q_vector(struct ice_vsi *vsi, u16 v_idx)
103 {
104 	struct ice_pf *pf = vsi->back;
105 	struct ice_q_vector *q_vector;
106 	int err;
107 
108 	/* allocate q_vector */
109 	q_vector = kzalloc(sizeof(*q_vector), GFP_KERNEL);
110 	if (!q_vector)
111 		return -ENOMEM;
112 
113 	q_vector->vsi = vsi;
114 	q_vector->v_idx = v_idx;
115 	q_vector->tx.itr_setting = ICE_DFLT_TX_ITR;
116 	q_vector->rx.itr_setting = ICE_DFLT_RX_ITR;
117 	q_vector->tx.itr_mode = ITR_DYNAMIC;
118 	q_vector->rx.itr_mode = ITR_DYNAMIC;
119 	q_vector->tx.type = ICE_TX_CONTAINER;
120 	q_vector->rx.type = ICE_RX_CONTAINER;
121 	q_vector->irq.index = -ENOENT;
122 
123 	if (vsi->type == ICE_VSI_VF) {
124 		q_vector->reg_idx = ice_calc_vf_reg_idx(vsi->vf, q_vector);
125 		goto out;
126 	} else if (vsi->type == ICE_VSI_CTRL && vsi->vf) {
127 		struct ice_vsi *ctrl_vsi = ice_get_vf_ctrl_vsi(pf, vsi);
128 
129 		if (ctrl_vsi) {
130 			if (unlikely(!ctrl_vsi->q_vectors)) {
131 				err = -ENOENT;
132 				goto err_free_q_vector;
133 			}
134 
135 			q_vector->irq = ctrl_vsi->q_vectors[0]->irq;
136 			goto skip_alloc;
137 		}
138 	}
139 
140 	q_vector->irq = ice_alloc_irq(pf, vsi->irq_dyn_alloc);
141 	if (q_vector->irq.index < 0) {
142 		err = -ENOMEM;
143 		goto err_free_q_vector;
144 	}
145 
146 skip_alloc:
147 	q_vector->reg_idx = q_vector->irq.index;
148 
149 	/* only set affinity_mask if the CPU is online */
150 	if (cpu_online(v_idx))
151 		cpumask_set_cpu(v_idx, &q_vector->affinity_mask);
152 
153 	/* This will not be called in the driver load path because the netdev
154 	 * will not be created yet. All other cases with register the NAPI
155 	 * handler here (i.e. resume, reset/rebuild, etc.)
156 	 */
157 	if (vsi->netdev)
158 		netif_napi_add(vsi->netdev, &q_vector->napi, ice_napi_poll);
159 
160 out:
161 	/* tie q_vector and VSI together */
162 	vsi->q_vectors[v_idx] = q_vector;
163 
164 	return 0;
165 
166 err_free_q_vector:
167 	kfree(q_vector);
168 
169 	return err;
170 }
171 
172 /**
173  * ice_free_q_vector - Free memory allocated for a specific interrupt vector
174  * @vsi: VSI having the memory freed
175  * @v_idx: index of the vector to be freed
176  */
177 static void ice_free_q_vector(struct ice_vsi *vsi, int v_idx)
178 {
179 	struct ice_q_vector *q_vector;
180 	struct ice_pf *pf = vsi->back;
181 	struct ice_tx_ring *tx_ring;
182 	struct ice_rx_ring *rx_ring;
183 	struct device *dev;
184 
185 	dev = ice_pf_to_dev(pf);
186 	if (!vsi->q_vectors[v_idx]) {
187 		dev_dbg(dev, "Queue vector at index %d not found\n", v_idx);
188 		return;
189 	}
190 	q_vector = vsi->q_vectors[v_idx];
191 
192 	ice_for_each_tx_ring(tx_ring, q_vector->tx) {
193 		if (vsi->netdev)
194 			netif_queue_set_napi(vsi->netdev, tx_ring->q_index,
195 					     NETDEV_QUEUE_TYPE_TX, NULL);
196 		tx_ring->q_vector = NULL;
197 	}
198 	ice_for_each_rx_ring(rx_ring, q_vector->rx) {
199 		if (vsi->netdev)
200 			netif_queue_set_napi(vsi->netdev, rx_ring->q_index,
201 					     NETDEV_QUEUE_TYPE_RX, NULL);
202 		rx_ring->q_vector = NULL;
203 	}
204 
205 	/* only VSI with an associated netdev is set up with NAPI */
206 	if (vsi->netdev)
207 		netif_napi_del(&q_vector->napi);
208 
209 	/* release MSIX interrupt if q_vector had interrupt allocated */
210 	if (q_vector->irq.index < 0)
211 		goto free_q_vector;
212 
213 	/* only free last VF ctrl vsi interrupt */
214 	if (vsi->type == ICE_VSI_CTRL && vsi->vf &&
215 	    ice_get_vf_ctrl_vsi(pf, vsi))
216 		goto free_q_vector;
217 
218 	ice_free_irq(pf, q_vector->irq);
219 
220 free_q_vector:
221 	kfree(q_vector);
222 	vsi->q_vectors[v_idx] = NULL;
223 }
224 
225 /**
226  * ice_cfg_itr_gran - set the ITR granularity to 2 usecs if not already set
227  * @hw: board specific structure
228  */
229 static void ice_cfg_itr_gran(struct ice_hw *hw)
230 {
231 	u32 regval = rd32(hw, GLINT_CTL);
232 
233 	/* no need to update global register if ITR gran is already set */
234 	if (!(regval & GLINT_CTL_DIS_AUTOMASK_M) &&
235 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_200_M, regval) == ICE_ITR_GRAN_US) &&
236 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_100_M, regval) == ICE_ITR_GRAN_US) &&
237 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_50_M, regval) == ICE_ITR_GRAN_US) &&
238 	    (FIELD_GET(GLINT_CTL_ITR_GRAN_25_M, regval) == ICE_ITR_GRAN_US))
239 		return;
240 
241 	regval = FIELD_PREP(GLINT_CTL_ITR_GRAN_200_M, ICE_ITR_GRAN_US) |
242 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_100_M, ICE_ITR_GRAN_US) |
243 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_50_M, ICE_ITR_GRAN_US) |
244 		 FIELD_PREP(GLINT_CTL_ITR_GRAN_25_M, ICE_ITR_GRAN_US);
245 	wr32(hw, GLINT_CTL, regval);
246 }
247 
248 /**
249  * ice_calc_txq_handle - calculate the queue handle
250  * @vsi: VSI that ring belongs to
251  * @ring: ring to get the absolute queue index
252  * @tc: traffic class number
253  */
254 static u16 ice_calc_txq_handle(struct ice_vsi *vsi, struct ice_tx_ring *ring, u8 tc)
255 {
256 	WARN_ONCE(ice_ring_is_xdp(ring) && tc, "XDP ring can't belong to TC other than 0\n");
257 
258 	if (ring->ch)
259 		return ring->q_index - ring->ch->base_q;
260 
261 	/* Idea here for calculation is that we subtract the number of queue
262 	 * count from TC that ring belongs to from it's absolute queue index
263 	 * and as a result we get the queue's index within TC.
264 	 */
265 	return ring->q_index - vsi->tc_cfg.tc_info[tc].qoffset;
266 }
267 
268 /**
269  * ice_eswitch_calc_txq_handle
270  * @ring: pointer to ring which unique index is needed
271  *
272  * To correctly work with many netdevs ring->q_index of Tx rings on switchdev
273  * VSI can repeat. Hardware ring setup requires unique q_index. Calculate it
274  * here by finding index in vsi->tx_rings of this ring.
275  *
276  * Return ICE_INVAL_Q_INDEX when index wasn't found. Should never happen,
277  * because VSI is get from ring->vsi, so it has to be present in this VSI.
278  */
279 static u16 ice_eswitch_calc_txq_handle(struct ice_tx_ring *ring)
280 {
281 	const struct ice_vsi *vsi = ring->vsi;
282 	int i;
283 
284 	ice_for_each_txq(vsi, i) {
285 		if (vsi->tx_rings[i] == ring)
286 			return i;
287 	}
288 
289 	return ICE_INVAL_Q_INDEX;
290 }
291 
292 /**
293  * ice_cfg_xps_tx_ring - Configure XPS for a Tx ring
294  * @ring: The Tx ring to configure
295  *
296  * This enables/disables XPS for a given Tx descriptor ring
297  * based on the TCs enabled for the VSI that ring belongs to.
298  */
299 static void ice_cfg_xps_tx_ring(struct ice_tx_ring *ring)
300 {
301 	if (!ring->q_vector || !ring->netdev)
302 		return;
303 
304 	/* We only initialize XPS once, so as not to overwrite user settings */
305 	if (test_and_set_bit(ICE_TX_XPS_INIT_DONE, ring->xps_state))
306 		return;
307 
308 	netif_set_xps_queue(ring->netdev, &ring->q_vector->affinity_mask,
309 			    ring->q_index);
310 }
311 
312 /**
313  * ice_setup_tx_ctx - setup a struct ice_tlan_ctx instance
314  * @ring: The Tx ring to configure
315  * @tlan_ctx: Pointer to the Tx LAN queue context structure to be initialized
316  * @pf_q: queue index in the PF space
317  *
318  * Configure the Tx descriptor ring in TLAN context.
319  */
320 static void
321 ice_setup_tx_ctx(struct ice_tx_ring *ring, struct ice_tlan_ctx *tlan_ctx, u16 pf_q)
322 {
323 	struct ice_vsi *vsi = ring->vsi;
324 	struct ice_hw *hw = &vsi->back->hw;
325 
326 	tlan_ctx->base = ring->dma >> ICE_TLAN_CTX_BASE_S;
327 
328 	tlan_ctx->port_num = vsi->port_info->lport;
329 
330 	/* Transmit Queue Length */
331 	tlan_ctx->qlen = ring->count;
332 
333 	ice_set_cgd_num(tlan_ctx, ring->dcb_tc);
334 
335 	/* PF number */
336 	tlan_ctx->pf_num = hw->pf_id;
337 
338 	/* queue belongs to a specific VSI type
339 	 * VF / VM index should be programmed per vmvf_type setting:
340 	 * for vmvf_type = VF, it is VF number between 0-256
341 	 * for vmvf_type = VM, it is VM number between 0-767
342 	 * for PF or EMP this field should be set to zero
343 	 */
344 	switch (vsi->type) {
345 	case ICE_VSI_LB:
346 	case ICE_VSI_CTRL:
347 	case ICE_VSI_PF:
348 		if (ring->ch)
349 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
350 		else
351 			tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_PF;
352 		break;
353 	case ICE_VSI_VF:
354 		/* Firmware expects vmvf_num to be absolute VF ID */
355 		tlan_ctx->vmvf_num = hw->func_caps.vf_base_id + vsi->vf->vf_id;
356 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VF;
357 		break;
358 	case ICE_VSI_SWITCHDEV_CTRL:
359 		tlan_ctx->vmvf_type = ICE_TLAN_CTX_VMVF_TYPE_VMQ;
360 		break;
361 	default:
362 		return;
363 	}
364 
365 	/* make sure the context is associated with the right VSI */
366 	if (ring->ch)
367 		tlan_ctx->src_vsi = ring->ch->vsi_num;
368 	else
369 		tlan_ctx->src_vsi = ice_get_hw_vsi_num(hw, vsi->idx);
370 
371 	/* Restrict Tx timestamps to the PF VSI */
372 	switch (vsi->type) {
373 	case ICE_VSI_PF:
374 		tlan_ctx->tsyn_ena = 1;
375 		break;
376 	default:
377 		break;
378 	}
379 
380 	tlan_ctx->tso_ena = ICE_TX_LEGACY;
381 	tlan_ctx->tso_qnum = pf_q;
382 
383 	/* Legacy or Advanced Host Interface:
384 	 * 0: Advanced Host Interface
385 	 * 1: Legacy Host Interface
386 	 */
387 	tlan_ctx->legacy_int = ICE_TX_LEGACY;
388 }
389 
390 /**
391  * ice_rx_offset - Return expected offset into page to access data
392  * @rx_ring: Ring we are requesting offset of
393  *
394  * Returns the offset value for ring into the data buffer.
395  */
396 static unsigned int ice_rx_offset(struct ice_rx_ring *rx_ring)
397 {
398 	if (ice_ring_uses_build_skb(rx_ring))
399 		return ICE_SKB_PAD;
400 	return 0;
401 }
402 
403 /**
404  * ice_setup_rx_ctx - Configure a receive ring context
405  * @ring: The Rx ring to configure
406  *
407  * Configure the Rx descriptor ring in RLAN context.
408  */
409 static int ice_setup_rx_ctx(struct ice_rx_ring *ring)
410 {
411 	struct ice_vsi *vsi = ring->vsi;
412 	u32 rxdid = ICE_RXDID_FLEX_NIC;
413 	struct ice_rlan_ctx rlan_ctx;
414 	struct ice_hw *hw;
415 	u16 pf_q;
416 	int err;
417 
418 	hw = &vsi->back->hw;
419 
420 	/* what is Rx queue number in global space of 2K Rx queues */
421 	pf_q = vsi->rxq_map[ring->q_index];
422 
423 	/* clear the context structure first */
424 	memset(&rlan_ctx, 0, sizeof(rlan_ctx));
425 
426 	/* Receive Queue Base Address.
427 	 * Indicates the starting address of the descriptor queue defined in
428 	 * 128 Byte units.
429 	 */
430 	rlan_ctx.base = ring->dma >> ICE_RLAN_BASE_S;
431 
432 	rlan_ctx.qlen = ring->count;
433 
434 	/* Receive Packet Data Buffer Size.
435 	 * The Packet Data Buffer Size is defined in 128 byte units.
436 	 */
437 	rlan_ctx.dbuf = DIV_ROUND_UP(ring->rx_buf_len,
438 				     BIT_ULL(ICE_RLAN_CTX_DBUF_S));
439 
440 	/* use 32 byte descriptors */
441 	rlan_ctx.dsize = 1;
442 
443 	/* Strip the Ethernet CRC bytes before the packet is posted to host
444 	 * memory.
445 	 */
446 	rlan_ctx.crcstrip = !(ring->flags & ICE_RX_FLAGS_CRC_STRIP_DIS);
447 
448 	/* L2TSEL flag defines the reported L2 Tags in the receive descriptor
449 	 * and it needs to remain 1 for non-DVM capable configurations to not
450 	 * break backward compatibility for VF drivers. Setting this field to 0
451 	 * will cause the single/outer VLAN tag to be stripped to the L2TAG2_2ND
452 	 * field in the Rx descriptor. Setting it to 1 allows the VLAN tag to
453 	 * be stripped in L2TAG1 of the Rx descriptor, which is where VFs will
454 	 * check for the tag
455 	 */
456 	if (ice_is_dvm_ena(hw))
457 		if (vsi->type == ICE_VSI_VF &&
458 		    ice_vf_is_port_vlan_ena(vsi->vf))
459 			rlan_ctx.l2tsel = 1;
460 		else
461 			rlan_ctx.l2tsel = 0;
462 	else
463 		rlan_ctx.l2tsel = 1;
464 
465 	rlan_ctx.dtype = ICE_RX_DTYPE_NO_SPLIT;
466 	rlan_ctx.hsplit_0 = ICE_RLAN_RX_HSPLIT_0_NO_SPLIT;
467 	rlan_ctx.hsplit_1 = ICE_RLAN_RX_HSPLIT_1_NO_SPLIT;
468 
469 	/* This controls whether VLAN is stripped from inner headers
470 	 * The VLAN in the inner L2 header is stripped to the receive
471 	 * descriptor if enabled by this flag.
472 	 */
473 	rlan_ctx.showiv = 0;
474 
475 	/* Max packet size for this queue - must not be set to a larger value
476 	 * than 5 x DBUF
477 	 */
478 	rlan_ctx.rxmax = min_t(u32, vsi->max_frame,
479 			       ICE_MAX_CHAINED_RX_BUFS * ring->rx_buf_len);
480 
481 	/* Rx queue threshold in units of 64 */
482 	rlan_ctx.lrxqthresh = 1;
483 
484 	/* Enable Flexible Descriptors in the queue context which
485 	 * allows this driver to select a specific receive descriptor format
486 	 * increasing context priority to pick up profile ID; default is 0x01;
487 	 * setting to 0x03 to ensure profile is programming if prev context is
488 	 * of same priority
489 	 */
490 	if (vsi->type != ICE_VSI_VF)
491 		ice_write_qrxflxp_cntxt(hw, pf_q, rxdid, 0x3, true);
492 	else
493 		ice_write_qrxflxp_cntxt(hw, pf_q, ICE_RXDID_LEGACY_1, 0x3,
494 					false);
495 
496 	/* Absolute queue number out of 2K needs to be passed */
497 	err = ice_write_rxq_ctx(hw, &rlan_ctx, pf_q);
498 	if (err) {
499 		dev_err(ice_pf_to_dev(vsi->back), "Failed to set LAN Rx queue context for absolute Rx queue %d error: %d\n",
500 			pf_q, err);
501 		return -EIO;
502 	}
503 
504 	if (vsi->type == ICE_VSI_VF)
505 		return 0;
506 
507 	/* configure Rx buffer alignment */
508 	if (!vsi->netdev || test_bit(ICE_FLAG_LEGACY_RX, vsi->back->flags))
509 		ice_clear_ring_build_skb_ena(ring);
510 	else
511 		ice_set_ring_build_skb_ena(ring);
512 
513 	ring->rx_offset = ice_rx_offset(ring);
514 
515 	/* init queue specific tail register */
516 	ring->tail = hw->hw_addr + QRX_TAIL(pf_q);
517 	writel(0, ring->tail);
518 
519 	return 0;
520 }
521 
522 static void ice_xsk_pool_fill_cb(struct ice_rx_ring *ring)
523 {
524 	void *ctx_ptr = &ring->pkt_ctx;
525 	struct xsk_cb_desc desc = {};
526 
527 	XSK_CHECK_PRIV_TYPE(struct ice_xdp_buff);
528 	desc.src = &ctx_ptr;
529 	desc.off = offsetof(struct ice_xdp_buff, pkt_ctx) -
530 		   sizeof(struct xdp_buff);
531 	desc.bytes = sizeof(ctx_ptr);
532 	xsk_pool_fill_cb(ring->xsk_pool, &desc);
533 }
534 
535 /**
536  * ice_vsi_cfg_rxq - Configure an Rx queue
537  * @ring: the ring being configured
538  *
539  * Return 0 on success and a negative value on error.
540  */
541 int ice_vsi_cfg_rxq(struct ice_rx_ring *ring)
542 {
543 	struct device *dev = ice_pf_to_dev(ring->vsi->back);
544 	u32 num_bufs = ICE_RX_DESC_UNUSED(ring);
545 	int err;
546 
547 	ring->rx_buf_len = ring->vsi->rx_buf_len;
548 
549 	if (ring->vsi->type == ICE_VSI_PF) {
550 		if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
551 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
552 						 ring->q_index,
553 						 ring->q_vector->napi.napi_id,
554 						 ring->rx_buf_len);
555 			if (err)
556 				return err;
557 		}
558 
559 		ring->xsk_pool = ice_xsk_pool(ring);
560 		if (ring->xsk_pool) {
561 			xdp_rxq_info_unreg(&ring->xdp_rxq);
562 
563 			ring->rx_buf_len =
564 				xsk_pool_get_rx_frame_size(ring->xsk_pool);
565 			err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
566 						 ring->q_index,
567 						 ring->q_vector->napi.napi_id,
568 						 ring->rx_buf_len);
569 			if (err)
570 				return err;
571 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
572 							 MEM_TYPE_XSK_BUFF_POOL,
573 							 NULL);
574 			if (err)
575 				return err;
576 			xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
577 			ice_xsk_pool_fill_cb(ring);
578 
579 			dev_info(dev, "Registered XDP mem model MEM_TYPE_XSK_BUFF_POOL on Rx ring %d\n",
580 				 ring->q_index);
581 		} else {
582 			if (!xdp_rxq_info_is_reg(&ring->xdp_rxq)) {
583 				err = __xdp_rxq_info_reg(&ring->xdp_rxq, ring->netdev,
584 							 ring->q_index,
585 							 ring->q_vector->napi.napi_id,
586 							 ring->rx_buf_len);
587 				if (err)
588 					return err;
589 			}
590 
591 			err = xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
592 							 MEM_TYPE_PAGE_SHARED,
593 							 NULL);
594 			if (err)
595 				return err;
596 		}
597 	}
598 
599 	xdp_init_buff(&ring->xdp, ice_rx_pg_size(ring) / 2, &ring->xdp_rxq);
600 	ring->xdp.data = NULL;
601 	ring->xdp_ext.pkt_ctx = &ring->pkt_ctx;
602 	err = ice_setup_rx_ctx(ring);
603 	if (err) {
604 		dev_err(dev, "ice_setup_rx_ctx failed for RxQ %d, err %d\n",
605 			ring->q_index, err);
606 		return err;
607 	}
608 
609 	if (ring->xsk_pool) {
610 		bool ok;
611 
612 		if (!xsk_buff_can_alloc(ring->xsk_pool, num_bufs)) {
613 			dev_warn(dev, "XSK buffer pool does not provide enough addresses to fill %d buffers on Rx ring %d\n",
614 				 num_bufs, ring->q_index);
615 			dev_warn(dev, "Change Rx ring/fill queue size to avoid performance issues\n");
616 
617 			return 0;
618 		}
619 
620 		ok = ice_alloc_rx_bufs_zc(ring, num_bufs);
621 		if (!ok) {
622 			u16 pf_q = ring->vsi->rxq_map[ring->q_index];
623 
624 			dev_info(dev, "Failed to allocate some buffers on XSK buffer pool enabled Rx ring %d (pf_q %d)\n",
625 				 ring->q_index, pf_q);
626 		}
627 
628 		return 0;
629 	}
630 
631 	ice_alloc_rx_bufs(ring, num_bufs);
632 
633 	return 0;
634 }
635 
636 /**
637  * __ice_vsi_get_qs - helper function for assigning queues from PF to VSI
638  * @qs_cfg: gathered variables needed for pf->vsi queues assignment
639  *
640  * This function first tries to find contiguous space. If it is not successful,
641  * it tries with the scatter approach.
642  *
643  * Return 0 on success and -ENOMEM in case of no left space in PF queue bitmap
644  */
645 int __ice_vsi_get_qs(struct ice_qs_cfg *qs_cfg)
646 {
647 	int ret = 0;
648 
649 	ret = __ice_vsi_get_qs_contig(qs_cfg);
650 	if (ret) {
651 		/* contig failed, so try with scatter approach */
652 		qs_cfg->mapping_mode = ICE_VSI_MAP_SCATTER;
653 		qs_cfg->q_count = min_t(unsigned int, qs_cfg->q_count,
654 					qs_cfg->scatter_count);
655 		ret = __ice_vsi_get_qs_sc(qs_cfg);
656 	}
657 	return ret;
658 }
659 
660 /**
661  * ice_vsi_ctrl_one_rx_ring - start/stop VSI's Rx ring with no busy wait
662  * @vsi: the VSI being configured
663  * @ena: start or stop the Rx ring
664  * @rxq_idx: 0-based Rx queue index for the VSI passed in
665  * @wait: wait or don't wait for configuration to finish in hardware
666  *
667  * Return 0 on success and negative on error.
668  */
669 int
670 ice_vsi_ctrl_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx, bool wait)
671 {
672 	int pf_q = vsi->rxq_map[rxq_idx];
673 	struct ice_pf *pf = vsi->back;
674 	struct ice_hw *hw = &pf->hw;
675 	u32 rx_reg;
676 
677 	rx_reg = rd32(hw, QRX_CTRL(pf_q));
678 
679 	/* Skip if the queue is already in the requested state */
680 	if (ena == !!(rx_reg & QRX_CTRL_QENA_STAT_M))
681 		return 0;
682 
683 	/* turn on/off the queue */
684 	if (ena)
685 		rx_reg |= QRX_CTRL_QENA_REQ_M;
686 	else
687 		rx_reg &= ~QRX_CTRL_QENA_REQ_M;
688 	wr32(hw, QRX_CTRL(pf_q), rx_reg);
689 
690 	if (!wait)
691 		return 0;
692 
693 	ice_flush(hw);
694 	return ice_pf_rxq_wait(pf, pf_q, ena);
695 }
696 
697 /**
698  * ice_vsi_wait_one_rx_ring - wait for a VSI's Rx ring to be stopped/started
699  * @vsi: the VSI being configured
700  * @ena: true/false to verify Rx ring has been enabled/disabled respectively
701  * @rxq_idx: 0-based Rx queue index for the VSI passed in
702  *
703  * This routine will wait for the given Rx queue of the VSI to reach the
704  * enabled or disabled state. Returns -ETIMEDOUT in case of failing to reach
705  * the requested state after multiple retries; else will return 0 in case of
706  * success.
707  */
708 int ice_vsi_wait_one_rx_ring(struct ice_vsi *vsi, bool ena, u16 rxq_idx)
709 {
710 	int pf_q = vsi->rxq_map[rxq_idx];
711 	struct ice_pf *pf = vsi->back;
712 
713 	return ice_pf_rxq_wait(pf, pf_q, ena);
714 }
715 
716 /**
717  * ice_vsi_alloc_q_vectors - Allocate memory for interrupt vectors
718  * @vsi: the VSI being configured
719  *
720  * We allocate one q_vector per queue interrupt. If allocation fails we
721  * return -ENOMEM.
722  */
723 int ice_vsi_alloc_q_vectors(struct ice_vsi *vsi)
724 {
725 	struct device *dev = ice_pf_to_dev(vsi->back);
726 	u16 v_idx;
727 	int err;
728 
729 	if (vsi->q_vectors[0]) {
730 		dev_dbg(dev, "VSI %d has existing q_vectors\n", vsi->vsi_num);
731 		return -EEXIST;
732 	}
733 
734 	for (v_idx = 0; v_idx < vsi->num_q_vectors; v_idx++) {
735 		err = ice_vsi_alloc_q_vector(vsi, v_idx);
736 		if (err)
737 			goto err_out;
738 	}
739 
740 	return 0;
741 
742 err_out:
743 	while (v_idx--)
744 		ice_free_q_vector(vsi, v_idx);
745 
746 	dev_err(dev, "Failed to allocate %d q_vector for VSI %d, ret=%d\n",
747 		vsi->num_q_vectors, vsi->vsi_num, err);
748 	vsi->num_q_vectors = 0;
749 	return err;
750 }
751 
752 /**
753  * ice_vsi_map_rings_to_vectors - Map VSI rings to interrupt vectors
754  * @vsi: the VSI being configured
755  *
756  * This function maps descriptor rings to the queue-specific vectors allotted
757  * through the MSI-X enabling code. On a constrained vector budget, we map Tx
758  * and Rx rings to the vector as "efficiently" as possible.
759  */
760 void ice_vsi_map_rings_to_vectors(struct ice_vsi *vsi)
761 {
762 	int q_vectors = vsi->num_q_vectors;
763 	u16 tx_rings_rem, rx_rings_rem;
764 	int v_id;
765 
766 	/* initially assigning remaining rings count to VSIs num queue value */
767 	tx_rings_rem = vsi->num_txq;
768 	rx_rings_rem = vsi->num_rxq;
769 
770 	for (v_id = 0; v_id < q_vectors; v_id++) {
771 		struct ice_q_vector *q_vector = vsi->q_vectors[v_id];
772 		u8 tx_rings_per_v, rx_rings_per_v;
773 		u16 q_id, q_base;
774 
775 		/* Tx rings mapping to vector */
776 		tx_rings_per_v = (u8)DIV_ROUND_UP(tx_rings_rem,
777 						  q_vectors - v_id);
778 		q_vector->num_ring_tx = tx_rings_per_v;
779 		q_vector->tx.tx_ring = NULL;
780 		q_vector->tx.itr_idx = ICE_TX_ITR;
781 		q_base = vsi->num_txq - tx_rings_rem;
782 
783 		for (q_id = q_base; q_id < (q_base + tx_rings_per_v); q_id++) {
784 			struct ice_tx_ring *tx_ring = vsi->tx_rings[q_id];
785 
786 			tx_ring->q_vector = q_vector;
787 			tx_ring->next = q_vector->tx.tx_ring;
788 			q_vector->tx.tx_ring = tx_ring;
789 		}
790 		tx_rings_rem -= tx_rings_per_v;
791 
792 		/* Rx rings mapping to vector */
793 		rx_rings_per_v = (u8)DIV_ROUND_UP(rx_rings_rem,
794 						  q_vectors - v_id);
795 		q_vector->num_ring_rx = rx_rings_per_v;
796 		q_vector->rx.rx_ring = NULL;
797 		q_vector->rx.itr_idx = ICE_RX_ITR;
798 		q_base = vsi->num_rxq - rx_rings_rem;
799 
800 		for (q_id = q_base; q_id < (q_base + rx_rings_per_v); q_id++) {
801 			struct ice_rx_ring *rx_ring = vsi->rx_rings[q_id];
802 
803 			rx_ring->q_vector = q_vector;
804 			rx_ring->next = q_vector->rx.rx_ring;
805 			q_vector->rx.rx_ring = rx_ring;
806 		}
807 		rx_rings_rem -= rx_rings_per_v;
808 	}
809 }
810 
811 /**
812  * ice_vsi_free_q_vectors - Free memory allocated for interrupt vectors
813  * @vsi: the VSI having memory freed
814  */
815 void ice_vsi_free_q_vectors(struct ice_vsi *vsi)
816 {
817 	int v_idx;
818 
819 	ice_for_each_q_vector(vsi, v_idx)
820 		ice_free_q_vector(vsi, v_idx);
821 
822 	vsi->num_q_vectors = 0;
823 }
824 
825 /**
826  * ice_vsi_cfg_txq - Configure single Tx queue
827  * @vsi: the VSI that queue belongs to
828  * @ring: Tx ring to be configured
829  * @qg_buf: queue group buffer
830  */
831 int
832 ice_vsi_cfg_txq(struct ice_vsi *vsi, struct ice_tx_ring *ring,
833 		struct ice_aqc_add_tx_qgrp *qg_buf)
834 {
835 	u8 buf_len = struct_size(qg_buf, txqs, 1);
836 	struct ice_tlan_ctx tlan_ctx = { 0 };
837 	struct ice_aqc_add_txqs_perq *txq;
838 	struct ice_channel *ch = ring->ch;
839 	struct ice_pf *pf = vsi->back;
840 	struct ice_hw *hw = &pf->hw;
841 	int status;
842 	u16 pf_q;
843 	u8 tc;
844 
845 	/* Configure XPS */
846 	ice_cfg_xps_tx_ring(ring);
847 
848 	pf_q = ring->reg_idx;
849 	ice_setup_tx_ctx(ring, &tlan_ctx, pf_q);
850 	/* copy context contents into the qg_buf */
851 	qg_buf->txqs[0].txq_id = cpu_to_le16(pf_q);
852 	ice_set_ctx(hw, (u8 *)&tlan_ctx, qg_buf->txqs[0].txq_ctx,
853 		    ice_tlan_ctx_info);
854 
855 	/* init queue specific tail reg. It is referred as
856 	 * transmit comm scheduler queue doorbell.
857 	 */
858 	ring->tail = hw->hw_addr + QTX_COMM_DBELL(pf_q);
859 
860 	if (IS_ENABLED(CONFIG_DCB))
861 		tc = ring->dcb_tc;
862 	else
863 		tc = 0;
864 
865 	/* Add unique software queue handle of the Tx queue per
866 	 * TC into the VSI Tx ring
867 	 */
868 	if (vsi->type == ICE_VSI_SWITCHDEV_CTRL) {
869 		ring->q_handle = ice_eswitch_calc_txq_handle(ring);
870 
871 		if (ring->q_handle == ICE_INVAL_Q_INDEX)
872 			return -ENODEV;
873 	} else {
874 		ring->q_handle = ice_calc_txq_handle(vsi, ring, tc);
875 	}
876 
877 	if (ch)
878 		status = ice_ena_vsi_txq(vsi->port_info, ch->ch_vsi->idx, 0,
879 					 ring->q_handle, 1, qg_buf, buf_len,
880 					 NULL);
881 	else
882 		status = ice_ena_vsi_txq(vsi->port_info, vsi->idx, tc,
883 					 ring->q_handle, 1, qg_buf, buf_len,
884 					 NULL);
885 	if (status) {
886 		dev_err(ice_pf_to_dev(pf), "Failed to set LAN Tx queue context, error: %d\n",
887 			status);
888 		return status;
889 	}
890 
891 	/* Add Tx Queue TEID into the VSI Tx ring from the
892 	 * response. This will complete configuring and
893 	 * enabling the queue.
894 	 */
895 	txq = &qg_buf->txqs[0];
896 	if (pf_q == le16_to_cpu(txq->txq_id))
897 		ring->txq_teid = le32_to_cpu(txq->q_teid);
898 
899 	return 0;
900 }
901 
902 /**
903  * ice_cfg_itr - configure the initial interrupt throttle values
904  * @hw: pointer to the HW structure
905  * @q_vector: interrupt vector that's being configured
906  *
907  * Configure interrupt throttling values for the ring containers that are
908  * associated with the interrupt vector passed in.
909  */
910 void ice_cfg_itr(struct ice_hw *hw, struct ice_q_vector *q_vector)
911 {
912 	ice_cfg_itr_gran(hw);
913 
914 	if (q_vector->num_ring_rx)
915 		ice_write_itr(&q_vector->rx, q_vector->rx.itr_setting);
916 
917 	if (q_vector->num_ring_tx)
918 		ice_write_itr(&q_vector->tx, q_vector->tx.itr_setting);
919 
920 	ice_write_intrl(q_vector, q_vector->intrl);
921 }
922 
923 /**
924  * ice_cfg_txq_interrupt - configure interrupt on Tx queue
925  * @vsi: the VSI being configured
926  * @txq: Tx queue being mapped to MSI-X vector
927  * @msix_idx: MSI-X vector index within the function
928  * @itr_idx: ITR index of the interrupt cause
929  *
930  * Configure interrupt on Tx queue by associating Tx queue to MSI-X vector
931  * within the function space.
932  */
933 void
934 ice_cfg_txq_interrupt(struct ice_vsi *vsi, u16 txq, u16 msix_idx, u16 itr_idx)
935 {
936 	struct ice_pf *pf = vsi->back;
937 	struct ice_hw *hw = &pf->hw;
938 	u32 val;
939 
940 	itr_idx = FIELD_PREP(QINT_TQCTL_ITR_INDX_M, itr_idx);
941 
942 	val = QINT_TQCTL_CAUSE_ENA_M | itr_idx |
943 	      FIELD_PREP(QINT_TQCTL_MSIX_INDX_M, msix_idx);
944 
945 	wr32(hw, QINT_TQCTL(vsi->txq_map[txq]), val);
946 	if (ice_is_xdp_ena_vsi(vsi)) {
947 		u32 xdp_txq = txq + vsi->num_xdp_txq;
948 
949 		wr32(hw, QINT_TQCTL(vsi->txq_map[xdp_txq]),
950 		     val);
951 	}
952 	ice_flush(hw);
953 }
954 
955 /**
956  * ice_cfg_rxq_interrupt - configure interrupt on Rx queue
957  * @vsi: the VSI being configured
958  * @rxq: Rx queue being mapped to MSI-X vector
959  * @msix_idx: MSI-X vector index within the function
960  * @itr_idx: ITR index of the interrupt cause
961  *
962  * Configure interrupt on Rx queue by associating Rx queue to MSI-X vector
963  * within the function space.
964  */
965 void
966 ice_cfg_rxq_interrupt(struct ice_vsi *vsi, u16 rxq, u16 msix_idx, u16 itr_idx)
967 {
968 	struct ice_pf *pf = vsi->back;
969 	struct ice_hw *hw = &pf->hw;
970 	u32 val;
971 
972 	itr_idx = FIELD_PREP(QINT_RQCTL_ITR_INDX_M, itr_idx);
973 
974 	val = QINT_RQCTL_CAUSE_ENA_M | itr_idx |
975 	      FIELD_PREP(QINT_RQCTL_MSIX_INDX_M, msix_idx);
976 
977 	wr32(hw, QINT_RQCTL(vsi->rxq_map[rxq]), val);
978 
979 	ice_flush(hw);
980 }
981 
982 /**
983  * ice_trigger_sw_intr - trigger a software interrupt
984  * @hw: pointer to the HW structure
985  * @q_vector: interrupt vector to trigger the software interrupt for
986  */
987 void ice_trigger_sw_intr(struct ice_hw *hw, const struct ice_q_vector *q_vector)
988 {
989 	wr32(hw, GLINT_DYN_CTL(q_vector->reg_idx),
990 	     (ICE_ITR_NONE << GLINT_DYN_CTL_ITR_INDX_S) |
991 	     GLINT_DYN_CTL_SWINT_TRIG_M |
992 	     GLINT_DYN_CTL_INTENA_M);
993 }
994 
995 /**
996  * ice_vsi_stop_tx_ring - Disable single Tx ring
997  * @vsi: the VSI being configured
998  * @rst_src: reset source
999  * @rel_vmvf_num: Relative ID of VF/VM
1000  * @ring: Tx ring to be stopped
1001  * @txq_meta: Meta data of Tx ring to be stopped
1002  */
1003 int
1004 ice_vsi_stop_tx_ring(struct ice_vsi *vsi, enum ice_disq_rst_src rst_src,
1005 		     u16 rel_vmvf_num, struct ice_tx_ring *ring,
1006 		     struct ice_txq_meta *txq_meta)
1007 {
1008 	struct ice_pf *pf = vsi->back;
1009 	struct ice_q_vector *q_vector;
1010 	struct ice_hw *hw = &pf->hw;
1011 	int status;
1012 	u32 val;
1013 
1014 	/* clear cause_ena bit for disabled queues */
1015 	val = rd32(hw, QINT_TQCTL(ring->reg_idx));
1016 	val &= ~QINT_TQCTL_CAUSE_ENA_M;
1017 	wr32(hw, QINT_TQCTL(ring->reg_idx), val);
1018 
1019 	/* software is expected to wait for 100 ns */
1020 	ndelay(100);
1021 
1022 	/* trigger a software interrupt for the vector
1023 	 * associated to the queue to schedule NAPI handler
1024 	 */
1025 	q_vector = ring->q_vector;
1026 	if (q_vector && !(vsi->vf && ice_is_vf_disabled(vsi->vf)))
1027 		ice_trigger_sw_intr(hw, q_vector);
1028 
1029 	status = ice_dis_vsi_txq(vsi->port_info, txq_meta->vsi_idx,
1030 				 txq_meta->tc, 1, &txq_meta->q_handle,
1031 				 &txq_meta->q_id, &txq_meta->q_teid, rst_src,
1032 				 rel_vmvf_num, NULL);
1033 
1034 	/* if the disable queue command was exercised during an
1035 	 * active reset flow, -EBUSY is returned.
1036 	 * This is not an error as the reset operation disables
1037 	 * queues at the hardware level anyway.
1038 	 */
1039 	if (status == -EBUSY) {
1040 		dev_dbg(ice_pf_to_dev(vsi->back), "Reset in progress. LAN Tx queues already disabled\n");
1041 	} else if (status == -ENOENT) {
1042 		dev_dbg(ice_pf_to_dev(vsi->back), "LAN Tx queues do not exist, nothing to disable\n");
1043 	} else if (status) {
1044 		dev_dbg(ice_pf_to_dev(vsi->back), "Failed to disable LAN Tx queues, error: %d\n",
1045 			status);
1046 		return status;
1047 	}
1048 
1049 	return 0;
1050 }
1051 
1052 /**
1053  * ice_fill_txq_meta - Prepare the Tx queue's meta data
1054  * @vsi: VSI that ring belongs to
1055  * @ring: ring that txq_meta will be based on
1056  * @txq_meta: a helper struct that wraps Tx queue's information
1057  *
1058  * Set up a helper struct that will contain all the necessary fields that
1059  * are needed for stopping Tx queue
1060  */
1061 void
1062 ice_fill_txq_meta(const struct ice_vsi *vsi, struct ice_tx_ring *ring,
1063 		  struct ice_txq_meta *txq_meta)
1064 {
1065 	struct ice_channel *ch = ring->ch;
1066 	u8 tc;
1067 
1068 	if (IS_ENABLED(CONFIG_DCB))
1069 		tc = ring->dcb_tc;
1070 	else
1071 		tc = 0;
1072 
1073 	txq_meta->q_id = ring->reg_idx;
1074 	txq_meta->q_teid = ring->txq_teid;
1075 	txq_meta->q_handle = ring->q_handle;
1076 	if (ch) {
1077 		txq_meta->vsi_idx = ch->ch_vsi->idx;
1078 		txq_meta->tc = 0;
1079 	} else {
1080 		txq_meta->vsi_idx = vsi->idx;
1081 		txq_meta->tc = tc;
1082 	}
1083 }
1084