xref: /linux/drivers/net/ethernet/intel/e1000e/82571.c (revision 6ed7ffddcf61f668114edb676417e5fb33773b59)
1 /*******************************************************************************
2 
3   Intel PRO/1000 Linux driver
4   Copyright(c) 1999 - 2013 Intel Corporation.
5 
6   This program is free software; you can redistribute it and/or modify it
7   under the terms and conditions of the GNU General Public License,
8   version 2, as published by the Free Software Foundation.
9 
10   This program is distributed in the hope it will be useful, but WITHOUT
11   ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12   FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13   more details.
14 
15   You should have received a copy of the GNU General Public License along with
16   this program; if not, write to the Free Software Foundation, Inc.,
17   51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18 
19   The full GNU General Public License is included in this distribution in
20   the file called "COPYING".
21 
22   Contact Information:
23   Linux NICS <linux.nics@intel.com>
24   e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25   Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26 
27 *******************************************************************************/
28 
29 /* 82571EB Gigabit Ethernet Controller
30  * 82571EB Gigabit Ethernet Controller (Copper)
31  * 82571EB Gigabit Ethernet Controller (Fiber)
32  * 82571EB Dual Port Gigabit Mezzanine Adapter
33  * 82571EB Quad Port Gigabit Mezzanine Adapter
34  * 82571PT Gigabit PT Quad Port Server ExpressModule
35  * 82572EI Gigabit Ethernet Controller (Copper)
36  * 82572EI Gigabit Ethernet Controller (Fiber)
37  * 82572EI Gigabit Ethernet Controller
38  * 82573V Gigabit Ethernet Controller (Copper)
39  * 82573E Gigabit Ethernet Controller (Copper)
40  * 82573L Gigabit Ethernet Controller
41  * 82574L Gigabit Network Connection
42  * 82583V Gigabit Network Connection
43  */
44 
45 #include "e1000.h"
46 
47 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw);
48 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw);
49 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw);
50 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw);
51 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
52 				      u16 words, u16 *data);
53 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw);
54 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw);
55 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw);
56 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw);
57 static s32 e1000_led_on_82574(struct e1000_hw *hw);
58 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw);
59 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw);
60 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw);
61 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw);
62 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw);
63 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active);
64 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active);
65 
66 /**
67  *  e1000_init_phy_params_82571 - Init PHY func ptrs.
68  *  @hw: pointer to the HW structure
69  **/
70 static s32 e1000_init_phy_params_82571(struct e1000_hw *hw)
71 {
72 	struct e1000_phy_info *phy = &hw->phy;
73 	s32 ret_val;
74 
75 	if (hw->phy.media_type != e1000_media_type_copper) {
76 		phy->type = e1000_phy_none;
77 		return 0;
78 	}
79 
80 	phy->addr			 = 1;
81 	phy->autoneg_mask		 = AUTONEG_ADVERTISE_SPEED_DEFAULT;
82 	phy->reset_delay_us		 = 100;
83 
84 	phy->ops.power_up		 = e1000_power_up_phy_copper;
85 	phy->ops.power_down		 = e1000_power_down_phy_copper_82571;
86 
87 	switch (hw->mac.type) {
88 	case e1000_82571:
89 	case e1000_82572:
90 		phy->type		 = e1000_phy_igp_2;
91 		break;
92 	case e1000_82573:
93 		phy->type		 = e1000_phy_m88;
94 		break;
95 	case e1000_82574:
96 	case e1000_82583:
97 		phy->type		 = e1000_phy_bm;
98 		phy->ops.acquire = e1000_get_hw_semaphore_82574;
99 		phy->ops.release = e1000_put_hw_semaphore_82574;
100 		phy->ops.set_d0_lplu_state = e1000_set_d0_lplu_state_82574;
101 		phy->ops.set_d3_lplu_state = e1000_set_d3_lplu_state_82574;
102 		break;
103 	default:
104 		return -E1000_ERR_PHY;
105 		break;
106 	}
107 
108 	/* This can only be done after all function pointers are setup. */
109 	ret_val = e1000_get_phy_id_82571(hw);
110 	if (ret_val) {
111 		e_dbg("Error getting PHY ID\n");
112 		return ret_val;
113 	}
114 
115 	/* Verify phy id */
116 	switch (hw->mac.type) {
117 	case e1000_82571:
118 	case e1000_82572:
119 		if (phy->id != IGP01E1000_I_PHY_ID)
120 			ret_val = -E1000_ERR_PHY;
121 		break;
122 	case e1000_82573:
123 		if (phy->id != M88E1111_I_PHY_ID)
124 			ret_val = -E1000_ERR_PHY;
125 		break;
126 	case e1000_82574:
127 	case e1000_82583:
128 		if (phy->id != BME1000_E_PHY_ID_R2)
129 			ret_val = -E1000_ERR_PHY;
130 		break;
131 	default:
132 		ret_val = -E1000_ERR_PHY;
133 		break;
134 	}
135 
136 	if (ret_val)
137 		e_dbg("PHY ID unknown: type = 0x%08x\n", phy->id);
138 
139 	return ret_val;
140 }
141 
142 /**
143  *  e1000_init_nvm_params_82571 - Init NVM func ptrs.
144  *  @hw: pointer to the HW structure
145  **/
146 static s32 e1000_init_nvm_params_82571(struct e1000_hw *hw)
147 {
148 	struct e1000_nvm_info *nvm = &hw->nvm;
149 	u32 eecd = er32(EECD);
150 	u16 size;
151 
152 	nvm->opcode_bits = 8;
153 	nvm->delay_usec = 1;
154 	switch (nvm->override) {
155 	case e1000_nvm_override_spi_large:
156 		nvm->page_size = 32;
157 		nvm->address_bits = 16;
158 		break;
159 	case e1000_nvm_override_spi_small:
160 		nvm->page_size = 8;
161 		nvm->address_bits = 8;
162 		break;
163 	default:
164 		nvm->page_size = eecd & E1000_EECD_ADDR_BITS ? 32 : 8;
165 		nvm->address_bits = eecd & E1000_EECD_ADDR_BITS ? 16 : 8;
166 		break;
167 	}
168 
169 	switch (hw->mac.type) {
170 	case e1000_82573:
171 	case e1000_82574:
172 	case e1000_82583:
173 		if (((eecd >> 15) & 0x3) == 0x3) {
174 			nvm->type = e1000_nvm_flash_hw;
175 			nvm->word_size = 2048;
176 			/* Autonomous Flash update bit must be cleared due
177 			 * to Flash update issue.
178 			 */
179 			eecd &= ~E1000_EECD_AUPDEN;
180 			ew32(EECD, eecd);
181 			break;
182 		}
183 		/* Fall Through */
184 	default:
185 		nvm->type = e1000_nvm_eeprom_spi;
186 		size = (u16)((eecd & E1000_EECD_SIZE_EX_MASK) >>
187 				  E1000_EECD_SIZE_EX_SHIFT);
188 		/* Added to a constant, "size" becomes the left-shift value
189 		 * for setting word_size.
190 		 */
191 		size += NVM_WORD_SIZE_BASE_SHIFT;
192 
193 		/* EEPROM access above 16k is unsupported */
194 		if (size > 14)
195 			size = 14;
196 		nvm->word_size	= 1 << size;
197 		break;
198 	}
199 
200 	/* Function Pointers */
201 	switch (hw->mac.type) {
202 	case e1000_82574:
203 	case e1000_82583:
204 		nvm->ops.acquire = e1000_get_hw_semaphore_82574;
205 		nvm->ops.release = e1000_put_hw_semaphore_82574;
206 		break;
207 	default:
208 		break;
209 	}
210 
211 	return 0;
212 }
213 
214 /**
215  *  e1000_init_mac_params_82571 - Init MAC func ptrs.
216  *  @hw: pointer to the HW structure
217  **/
218 static s32 e1000_init_mac_params_82571(struct e1000_hw *hw)
219 {
220 	struct e1000_mac_info *mac = &hw->mac;
221 	u32 swsm = 0;
222 	u32 swsm2 = 0;
223 	bool force_clear_smbi = false;
224 
225 	/* Set media type and media-dependent function pointers */
226 	switch (hw->adapter->pdev->device) {
227 	case E1000_DEV_ID_82571EB_FIBER:
228 	case E1000_DEV_ID_82572EI_FIBER:
229 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
230 		hw->phy.media_type = e1000_media_type_fiber;
231 		mac->ops.setup_physical_interface =
232 		    e1000_setup_fiber_serdes_link_82571;
233 		mac->ops.check_for_link = e1000e_check_for_fiber_link;
234 		mac->ops.get_link_up_info =
235 		    e1000e_get_speed_and_duplex_fiber_serdes;
236 		break;
237 	case E1000_DEV_ID_82571EB_SERDES:
238 	case E1000_DEV_ID_82571EB_SERDES_DUAL:
239 	case E1000_DEV_ID_82571EB_SERDES_QUAD:
240 	case E1000_DEV_ID_82572EI_SERDES:
241 		hw->phy.media_type = e1000_media_type_internal_serdes;
242 		mac->ops.setup_physical_interface =
243 		    e1000_setup_fiber_serdes_link_82571;
244 		mac->ops.check_for_link = e1000_check_for_serdes_link_82571;
245 		mac->ops.get_link_up_info =
246 		    e1000e_get_speed_and_duplex_fiber_serdes;
247 		break;
248 	default:
249 		hw->phy.media_type = e1000_media_type_copper;
250 		mac->ops.setup_physical_interface =
251 		    e1000_setup_copper_link_82571;
252 		mac->ops.check_for_link = e1000e_check_for_copper_link;
253 		mac->ops.get_link_up_info = e1000e_get_speed_and_duplex_copper;
254 		break;
255 	}
256 
257 	/* Set mta register count */
258 	mac->mta_reg_count = 128;
259 	/* Set rar entry count */
260 	mac->rar_entry_count = E1000_RAR_ENTRIES;
261 	/* Adaptive IFS supported */
262 	mac->adaptive_ifs = true;
263 
264 	/* MAC-specific function pointers */
265 	switch (hw->mac.type) {
266 	case e1000_82573:
267 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
268 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
269 		mac->ops.led_on = e1000e_led_on_generic;
270 		mac->ops.blink_led = e1000e_blink_led_generic;
271 
272 		/* FWSM register */
273 		mac->has_fwsm = true;
274 		/* ARC supported; valid only if manageability features are
275 		 * enabled.
276 		 */
277 		mac->arc_subsystem_valid = !!(er32(FWSM) &
278 					      E1000_FWSM_MODE_MASK);
279 		break;
280 	case e1000_82574:
281 	case e1000_82583:
282 		mac->ops.set_lan_id = e1000_set_lan_id_single_port;
283 		mac->ops.check_mng_mode = e1000_check_mng_mode_82574;
284 		mac->ops.led_on = e1000_led_on_82574;
285 		break;
286 	default:
287 		mac->ops.check_mng_mode = e1000e_check_mng_mode_generic;
288 		mac->ops.led_on = e1000e_led_on_generic;
289 		mac->ops.blink_led = e1000e_blink_led_generic;
290 
291 		/* FWSM register */
292 		mac->has_fwsm = true;
293 		break;
294 	}
295 
296 	/* Ensure that the inter-port SWSM.SMBI lock bit is clear before
297 	 * first NVM or PHY access. This should be done for single-port
298 	 * devices, and for one port only on dual-port devices so that
299 	 * for those devices we can still use the SMBI lock to synchronize
300 	 * inter-port accesses to the PHY & NVM.
301 	 */
302 	switch (hw->mac.type) {
303 	case e1000_82571:
304 	case e1000_82572:
305 		swsm2 = er32(SWSM2);
306 
307 		if (!(swsm2 & E1000_SWSM2_LOCK)) {
308 			/* Only do this for the first interface on this card */
309 			ew32(SWSM2, swsm2 | E1000_SWSM2_LOCK);
310 			force_clear_smbi = true;
311 		} else {
312 			force_clear_smbi = false;
313 		}
314 		break;
315 	default:
316 		force_clear_smbi = true;
317 		break;
318 	}
319 
320 	if (force_clear_smbi) {
321 		/* Make sure SWSM.SMBI is clear */
322 		swsm = er32(SWSM);
323 		if (swsm & E1000_SWSM_SMBI) {
324 			/* This bit should not be set on a first interface, and
325 			 * indicates that the bootagent or EFI code has
326 			 * improperly left this bit enabled
327 			 */
328 			e_dbg("Please update your 82571 Bootagent\n");
329 		}
330 		ew32(SWSM, swsm & ~E1000_SWSM_SMBI);
331 	}
332 
333 	/* Initialize device specific counter of SMBI acquisition timeouts. */
334 	hw->dev_spec.e82571.smb_counter = 0;
335 
336 	return 0;
337 }
338 
339 static s32 e1000_get_variants_82571(struct e1000_adapter *adapter)
340 {
341 	struct e1000_hw *hw = &adapter->hw;
342 	static int global_quad_port_a; /* global port a indication */
343 	struct pci_dev *pdev = adapter->pdev;
344 	int is_port_b = er32(STATUS) & E1000_STATUS_FUNC_1;
345 	s32 rc;
346 
347 	rc = e1000_init_mac_params_82571(hw);
348 	if (rc)
349 		return rc;
350 
351 	rc = e1000_init_nvm_params_82571(hw);
352 	if (rc)
353 		return rc;
354 
355 	rc = e1000_init_phy_params_82571(hw);
356 	if (rc)
357 		return rc;
358 
359 	/* tag quad port adapters first, it's used below */
360 	switch (pdev->device) {
361 	case E1000_DEV_ID_82571EB_QUAD_COPPER:
362 	case E1000_DEV_ID_82571EB_QUAD_FIBER:
363 	case E1000_DEV_ID_82571EB_QUAD_COPPER_LP:
364 	case E1000_DEV_ID_82571PT_QUAD_COPPER:
365 		adapter->flags |= FLAG_IS_QUAD_PORT;
366 		/* mark the first port */
367 		if (global_quad_port_a == 0)
368 			adapter->flags |= FLAG_IS_QUAD_PORT_A;
369 		/* Reset for multiple quad port adapters */
370 		global_quad_port_a++;
371 		if (global_quad_port_a == 4)
372 			global_quad_port_a = 0;
373 		break;
374 	default:
375 		break;
376 	}
377 
378 	switch (adapter->hw.mac.type) {
379 	case e1000_82571:
380 		/* these dual ports don't have WoL on port B at all */
381 		if (((pdev->device == E1000_DEV_ID_82571EB_FIBER) ||
382 		     (pdev->device == E1000_DEV_ID_82571EB_SERDES) ||
383 		     (pdev->device == E1000_DEV_ID_82571EB_COPPER)) &&
384 		    (is_port_b))
385 			adapter->flags &= ~FLAG_HAS_WOL;
386 		/* quad ports only support WoL on port A */
387 		if (adapter->flags & FLAG_IS_QUAD_PORT &&
388 		    (!(adapter->flags & FLAG_IS_QUAD_PORT_A)))
389 			adapter->flags &= ~FLAG_HAS_WOL;
390 		/* Does not support WoL on any port */
391 		if (pdev->device == E1000_DEV_ID_82571EB_SERDES_QUAD)
392 			adapter->flags &= ~FLAG_HAS_WOL;
393 		break;
394 	case e1000_82573:
395 		if (pdev->device == E1000_DEV_ID_82573L) {
396 			adapter->flags |= FLAG_HAS_JUMBO_FRAMES;
397 			adapter->max_hw_frame_size = DEFAULT_JUMBO;
398 		}
399 		break;
400 	default:
401 		break;
402 	}
403 
404 	return 0;
405 }
406 
407 /**
408  *  e1000_get_phy_id_82571 - Retrieve the PHY ID and revision
409  *  @hw: pointer to the HW structure
410  *
411  *  Reads the PHY registers and stores the PHY ID and possibly the PHY
412  *  revision in the hardware structure.
413  **/
414 static s32 e1000_get_phy_id_82571(struct e1000_hw *hw)
415 {
416 	struct e1000_phy_info *phy = &hw->phy;
417 	s32 ret_val;
418 	u16 phy_id = 0;
419 
420 	switch (hw->mac.type) {
421 	case e1000_82571:
422 	case e1000_82572:
423 		/* The 82571 firmware may still be configuring the PHY.
424 		 * In this case, we cannot access the PHY until the
425 		 * configuration is done.  So we explicitly set the
426 		 * PHY ID.
427 		 */
428 		phy->id = IGP01E1000_I_PHY_ID;
429 		break;
430 	case e1000_82573:
431 		return e1000e_get_phy_id(hw);
432 		break;
433 	case e1000_82574:
434 	case e1000_82583:
435 		ret_val = e1e_rphy(hw, MII_PHYSID1, &phy_id);
436 		if (ret_val)
437 			return ret_val;
438 
439 		phy->id = (u32)(phy_id << 16);
440 		udelay(20);
441 		ret_val = e1e_rphy(hw, MII_PHYSID2, &phy_id);
442 		if (ret_val)
443 			return ret_val;
444 
445 		phy->id |= (u32)(phy_id);
446 		phy->revision = (u32)(phy_id & ~PHY_REVISION_MASK);
447 		break;
448 	default:
449 		return -E1000_ERR_PHY;
450 		break;
451 	}
452 
453 	return 0;
454 }
455 
456 /**
457  *  e1000_get_hw_semaphore_82571 - Acquire hardware semaphore
458  *  @hw: pointer to the HW structure
459  *
460  *  Acquire the HW semaphore to access the PHY or NVM
461  **/
462 static s32 e1000_get_hw_semaphore_82571(struct e1000_hw *hw)
463 {
464 	u32 swsm;
465 	s32 sw_timeout = hw->nvm.word_size + 1;
466 	s32 fw_timeout = hw->nvm.word_size + 1;
467 	s32 i = 0;
468 
469 	/* If we have timedout 3 times on trying to acquire
470 	 * the inter-port SMBI semaphore, there is old code
471 	 * operating on the other port, and it is not
472 	 * releasing SMBI. Modify the number of times that
473 	 * we try for the semaphore to interwork with this
474 	 * older code.
475 	 */
476 	if (hw->dev_spec.e82571.smb_counter > 2)
477 		sw_timeout = 1;
478 
479 	/* Get the SW semaphore */
480 	while (i < sw_timeout) {
481 		swsm = er32(SWSM);
482 		if (!(swsm & E1000_SWSM_SMBI))
483 			break;
484 
485 		udelay(50);
486 		i++;
487 	}
488 
489 	if (i == sw_timeout) {
490 		e_dbg("Driver can't access device - SMBI bit is set.\n");
491 		hw->dev_spec.e82571.smb_counter++;
492 	}
493 	/* Get the FW semaphore. */
494 	for (i = 0; i < fw_timeout; i++) {
495 		swsm = er32(SWSM);
496 		ew32(SWSM, swsm | E1000_SWSM_SWESMBI);
497 
498 		/* Semaphore acquired if bit latched */
499 		if (er32(SWSM) & E1000_SWSM_SWESMBI)
500 			break;
501 
502 		udelay(50);
503 	}
504 
505 	if (i == fw_timeout) {
506 		/* Release semaphores */
507 		e1000_put_hw_semaphore_82571(hw);
508 		e_dbg("Driver can't access the NVM\n");
509 		return -E1000_ERR_NVM;
510 	}
511 
512 	return 0;
513 }
514 
515 /**
516  *  e1000_put_hw_semaphore_82571 - Release hardware semaphore
517  *  @hw: pointer to the HW structure
518  *
519  *  Release hardware semaphore used to access the PHY or NVM
520  **/
521 static void e1000_put_hw_semaphore_82571(struct e1000_hw *hw)
522 {
523 	u32 swsm;
524 
525 	swsm = er32(SWSM);
526 	swsm &= ~(E1000_SWSM_SMBI | E1000_SWSM_SWESMBI);
527 	ew32(SWSM, swsm);
528 }
529 /**
530  *  e1000_get_hw_semaphore_82573 - Acquire hardware semaphore
531  *  @hw: pointer to the HW structure
532  *
533  *  Acquire the HW semaphore during reset.
534  *
535  **/
536 static s32 e1000_get_hw_semaphore_82573(struct e1000_hw *hw)
537 {
538 	u32 extcnf_ctrl;
539 	s32 i = 0;
540 
541 	extcnf_ctrl = er32(EXTCNF_CTRL);
542 	do {
543 		extcnf_ctrl |= E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
544 		ew32(EXTCNF_CTRL, extcnf_ctrl);
545 		extcnf_ctrl = er32(EXTCNF_CTRL);
546 
547 		if (extcnf_ctrl & E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP)
548 			break;
549 
550 		usleep_range(2000, 4000);
551 		i++;
552 	} while (i < MDIO_OWNERSHIP_TIMEOUT);
553 
554 	if (i == MDIO_OWNERSHIP_TIMEOUT) {
555 		/* Release semaphores */
556 		e1000_put_hw_semaphore_82573(hw);
557 		e_dbg("Driver can't access the PHY\n");
558 		return -E1000_ERR_PHY;
559 	}
560 
561 	return 0;
562 }
563 
564 /**
565  *  e1000_put_hw_semaphore_82573 - Release hardware semaphore
566  *  @hw: pointer to the HW structure
567  *
568  *  Release hardware semaphore used during reset.
569  *
570  **/
571 static void e1000_put_hw_semaphore_82573(struct e1000_hw *hw)
572 {
573 	u32 extcnf_ctrl;
574 
575 	extcnf_ctrl = er32(EXTCNF_CTRL);
576 	extcnf_ctrl &= ~E1000_EXTCNF_CTRL_MDIO_SW_OWNERSHIP;
577 	ew32(EXTCNF_CTRL, extcnf_ctrl);
578 }
579 
580 static DEFINE_MUTEX(swflag_mutex);
581 
582 /**
583  *  e1000_get_hw_semaphore_82574 - Acquire hardware semaphore
584  *  @hw: pointer to the HW structure
585  *
586  *  Acquire the HW semaphore to access the PHY or NVM.
587  *
588  **/
589 static s32 e1000_get_hw_semaphore_82574(struct e1000_hw *hw)
590 {
591 	s32 ret_val;
592 
593 	mutex_lock(&swflag_mutex);
594 	ret_val = e1000_get_hw_semaphore_82573(hw);
595 	if (ret_val)
596 		mutex_unlock(&swflag_mutex);
597 	return ret_val;
598 }
599 
600 /**
601  *  e1000_put_hw_semaphore_82574 - Release hardware semaphore
602  *  @hw: pointer to the HW structure
603  *
604  *  Release hardware semaphore used to access the PHY or NVM
605  *
606  **/
607 static void e1000_put_hw_semaphore_82574(struct e1000_hw *hw)
608 {
609 	e1000_put_hw_semaphore_82573(hw);
610 	mutex_unlock(&swflag_mutex);
611 }
612 
613 /**
614  *  e1000_set_d0_lplu_state_82574 - Set Low Power Linkup D0 state
615  *  @hw: pointer to the HW structure
616  *  @active: true to enable LPLU, false to disable
617  *
618  *  Sets the LPLU D0 state according to the active flag.
619  *  LPLU will not be activated unless the
620  *  device autonegotiation advertisement meets standards of
621  *  either 10 or 10/100 or 10/100/1000 at all duplexes.
622  *  This is a function pointer entry point only called by
623  *  PHY setup routines.
624  **/
625 static s32 e1000_set_d0_lplu_state_82574(struct e1000_hw *hw, bool active)
626 {
627 	u32 data = er32(POEMB);
628 
629 	if (active)
630 		data |= E1000_PHY_CTRL_D0A_LPLU;
631 	else
632 		data &= ~E1000_PHY_CTRL_D0A_LPLU;
633 
634 	ew32(POEMB, data);
635 	return 0;
636 }
637 
638 /**
639  *  e1000_set_d3_lplu_state_82574 - Sets low power link up state for D3
640  *  @hw: pointer to the HW structure
641  *  @active: boolean used to enable/disable lplu
642  *
643  *  The low power link up (lplu) state is set to the power management level D3
644  *  when active is true, else clear lplu for D3. LPLU
645  *  is used during Dx states where the power conservation is most important.
646  *  During driver activity, SmartSpeed should be enabled so performance is
647  *  maintained.
648  **/
649 static s32 e1000_set_d3_lplu_state_82574(struct e1000_hw *hw, bool active)
650 {
651 	u32 data = er32(POEMB);
652 
653 	if (!active) {
654 		data &= ~E1000_PHY_CTRL_NOND0A_LPLU;
655 	} else if ((hw->phy.autoneg_advertised == E1000_ALL_SPEED_DUPLEX) ||
656 		   (hw->phy.autoneg_advertised == E1000_ALL_NOT_GIG) ||
657 		   (hw->phy.autoneg_advertised == E1000_ALL_10_SPEED)) {
658 		data |= E1000_PHY_CTRL_NOND0A_LPLU;
659 	}
660 
661 	ew32(POEMB, data);
662 	return 0;
663 }
664 
665 /**
666  *  e1000_acquire_nvm_82571 - Request for access to the EEPROM
667  *  @hw: pointer to the HW structure
668  *
669  *  To gain access to the EEPROM, first we must obtain a hardware semaphore.
670  *  Then for non-82573 hardware, set the EEPROM access request bit and wait
671  *  for EEPROM access grant bit.  If the access grant bit is not set, release
672  *  hardware semaphore.
673  **/
674 static s32 e1000_acquire_nvm_82571(struct e1000_hw *hw)
675 {
676 	s32 ret_val;
677 
678 	ret_val = e1000_get_hw_semaphore_82571(hw);
679 	if (ret_val)
680 		return ret_val;
681 
682 	switch (hw->mac.type) {
683 	case e1000_82573:
684 		break;
685 	default:
686 		ret_val = e1000e_acquire_nvm(hw);
687 		break;
688 	}
689 
690 	if (ret_val)
691 		e1000_put_hw_semaphore_82571(hw);
692 
693 	return ret_val;
694 }
695 
696 /**
697  *  e1000_release_nvm_82571 - Release exclusive access to EEPROM
698  *  @hw: pointer to the HW structure
699  *
700  *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
701  **/
702 static void e1000_release_nvm_82571(struct e1000_hw *hw)
703 {
704 	e1000e_release_nvm(hw);
705 	e1000_put_hw_semaphore_82571(hw);
706 }
707 
708 /**
709  *  e1000_write_nvm_82571 - Write to EEPROM using appropriate interface
710  *  @hw: pointer to the HW structure
711  *  @offset: offset within the EEPROM to be written to
712  *  @words: number of words to write
713  *  @data: 16 bit word(s) to be written to the EEPROM
714  *
715  *  For non-82573 silicon, write data to EEPROM at offset using SPI interface.
716  *
717  *  If e1000e_update_nvm_checksum is not called after this function, the
718  *  EEPROM will most likely contain an invalid checksum.
719  **/
720 static s32 e1000_write_nvm_82571(struct e1000_hw *hw, u16 offset, u16 words,
721 				 u16 *data)
722 {
723 	s32 ret_val;
724 
725 	switch (hw->mac.type) {
726 	case e1000_82573:
727 	case e1000_82574:
728 	case e1000_82583:
729 		ret_val = e1000_write_nvm_eewr_82571(hw, offset, words, data);
730 		break;
731 	case e1000_82571:
732 	case e1000_82572:
733 		ret_val = e1000e_write_nvm_spi(hw, offset, words, data);
734 		break;
735 	default:
736 		ret_val = -E1000_ERR_NVM;
737 		break;
738 	}
739 
740 	return ret_val;
741 }
742 
743 /**
744  *  e1000_update_nvm_checksum_82571 - Update EEPROM checksum
745  *  @hw: pointer to the HW structure
746  *
747  *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
748  *  up to the checksum.  Then calculates the EEPROM checksum and writes the
749  *  value to the EEPROM.
750  **/
751 static s32 e1000_update_nvm_checksum_82571(struct e1000_hw *hw)
752 {
753 	u32 eecd;
754 	s32 ret_val;
755 	u16 i;
756 
757 	ret_val = e1000e_update_nvm_checksum_generic(hw);
758 	if (ret_val)
759 		return ret_val;
760 
761 	/* If our nvm is an EEPROM, then we're done
762 	 * otherwise, commit the checksum to the flash NVM.
763 	 */
764 	if (hw->nvm.type != e1000_nvm_flash_hw)
765 		return 0;
766 
767 	/* Check for pending operations. */
768 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
769 		usleep_range(1000, 2000);
770 		if (!(er32(EECD) & E1000_EECD_FLUPD))
771 			break;
772 	}
773 
774 	if (i == E1000_FLASH_UPDATES)
775 		return -E1000_ERR_NVM;
776 
777 	/* Reset the firmware if using STM opcode. */
778 	if ((er32(FLOP) & 0xFF00) == E1000_STM_OPCODE) {
779 		/* The enabling of and the actual reset must be done
780 		 * in two write cycles.
781 		 */
782 		ew32(HICR, E1000_HICR_FW_RESET_ENABLE);
783 		e1e_flush();
784 		ew32(HICR, E1000_HICR_FW_RESET);
785 	}
786 
787 	/* Commit the write to flash */
788 	eecd = er32(EECD) | E1000_EECD_FLUPD;
789 	ew32(EECD, eecd);
790 
791 	for (i = 0; i < E1000_FLASH_UPDATES; i++) {
792 		usleep_range(1000, 2000);
793 		if (!(er32(EECD) & E1000_EECD_FLUPD))
794 			break;
795 	}
796 
797 	if (i == E1000_FLASH_UPDATES)
798 		return -E1000_ERR_NVM;
799 
800 	return 0;
801 }
802 
803 /**
804  *  e1000_validate_nvm_checksum_82571 - Validate EEPROM checksum
805  *  @hw: pointer to the HW structure
806  *
807  *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
808  *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
809  **/
810 static s32 e1000_validate_nvm_checksum_82571(struct e1000_hw *hw)
811 {
812 	if (hw->nvm.type == e1000_nvm_flash_hw)
813 		e1000_fix_nvm_checksum_82571(hw);
814 
815 	return e1000e_validate_nvm_checksum_generic(hw);
816 }
817 
818 /**
819  *  e1000_write_nvm_eewr_82571 - Write to EEPROM for 82573 silicon
820  *  @hw: pointer to the HW structure
821  *  @offset: offset within the EEPROM to be written to
822  *  @words: number of words to write
823  *  @data: 16 bit word(s) to be written to the EEPROM
824  *
825  *  After checking for invalid values, poll the EEPROM to ensure the previous
826  *  command has completed before trying to write the next word.  After write
827  *  poll for completion.
828  *
829  *  If e1000e_update_nvm_checksum is not called after this function, the
830  *  EEPROM will most likely contain an invalid checksum.
831  **/
832 static s32 e1000_write_nvm_eewr_82571(struct e1000_hw *hw, u16 offset,
833 				      u16 words, u16 *data)
834 {
835 	struct e1000_nvm_info *nvm = &hw->nvm;
836 	u32 i, eewr = 0;
837 	s32 ret_val = 0;
838 
839 	/* A check for invalid values:  offset too large, too many words,
840 	 * and not enough words.
841 	 */
842 	if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
843 	    (words == 0)) {
844 		e_dbg("nvm parameter(s) out of bounds\n");
845 		return -E1000_ERR_NVM;
846 	}
847 
848 	for (i = 0; i < words; i++) {
849 		eewr = (data[i] << E1000_NVM_RW_REG_DATA) |
850 		       ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) |
851 		       E1000_NVM_RW_REG_START;
852 
853 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
854 		if (ret_val)
855 			break;
856 
857 		ew32(EEWR, eewr);
858 
859 		ret_val = e1000e_poll_eerd_eewr_done(hw, E1000_NVM_POLL_WRITE);
860 		if (ret_val)
861 			break;
862 	}
863 
864 	return ret_val;
865 }
866 
867 /**
868  *  e1000_get_cfg_done_82571 - Poll for configuration done
869  *  @hw: pointer to the HW structure
870  *
871  *  Reads the management control register for the config done bit to be set.
872  **/
873 static s32 e1000_get_cfg_done_82571(struct e1000_hw *hw)
874 {
875 	s32 timeout = PHY_CFG_TIMEOUT;
876 
877 	while (timeout) {
878 		if (er32(EEMNGCTL) &
879 		    E1000_NVM_CFG_DONE_PORT_0)
880 			break;
881 		usleep_range(1000, 2000);
882 		timeout--;
883 	}
884 	if (!timeout) {
885 		e_dbg("MNG configuration cycle has not completed.\n");
886 		return -E1000_ERR_RESET;
887 	}
888 
889 	return 0;
890 }
891 
892 /**
893  *  e1000_set_d0_lplu_state_82571 - Set Low Power Linkup D0 state
894  *  @hw: pointer to the HW structure
895  *  @active: true to enable LPLU, false to disable
896  *
897  *  Sets the LPLU D0 state according to the active flag.  When activating LPLU
898  *  this function also disables smart speed and vice versa.  LPLU will not be
899  *  activated unless the device autonegotiation advertisement meets standards
900  *  of either 10 or 10/100 or 10/100/1000 at all duplexes.  This is a function
901  *  pointer entry point only called by PHY setup routines.
902  **/
903 static s32 e1000_set_d0_lplu_state_82571(struct e1000_hw *hw, bool active)
904 {
905 	struct e1000_phy_info *phy = &hw->phy;
906 	s32 ret_val;
907 	u16 data;
908 
909 	ret_val = e1e_rphy(hw, IGP02E1000_PHY_POWER_MGMT, &data);
910 	if (ret_val)
911 		return ret_val;
912 
913 	if (active) {
914 		data |= IGP02E1000_PM_D0_LPLU;
915 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
916 		if (ret_val)
917 			return ret_val;
918 
919 		/* When LPLU is enabled, we should disable SmartSpeed */
920 		ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG, &data);
921 		if (ret_val)
922 			return ret_val;
923 		data &= ~IGP01E1000_PSCFR_SMART_SPEED;
924 		ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG, data);
925 		if (ret_val)
926 			return ret_val;
927 	} else {
928 		data &= ~IGP02E1000_PM_D0_LPLU;
929 		ret_val = e1e_wphy(hw, IGP02E1000_PHY_POWER_MGMT, data);
930 		/* LPLU and SmartSpeed are mutually exclusive.  LPLU is used
931 		 * during Dx states where the power conservation is most
932 		 * important.  During driver activity we should enable
933 		 * SmartSpeed, so performance is maintained.
934 		 */
935 		if (phy->smart_speed == e1000_smart_speed_on) {
936 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
937 					   &data);
938 			if (ret_val)
939 				return ret_val;
940 
941 			data |= IGP01E1000_PSCFR_SMART_SPEED;
942 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
943 					   data);
944 			if (ret_val)
945 				return ret_val;
946 		} else if (phy->smart_speed == e1000_smart_speed_off) {
947 			ret_val = e1e_rphy(hw, IGP01E1000_PHY_PORT_CONFIG,
948 					   &data);
949 			if (ret_val)
950 				return ret_val;
951 
952 			data &= ~IGP01E1000_PSCFR_SMART_SPEED;
953 			ret_val = e1e_wphy(hw, IGP01E1000_PHY_PORT_CONFIG,
954 					   data);
955 			if (ret_val)
956 				return ret_val;
957 		}
958 	}
959 
960 	return 0;
961 }
962 
963 /**
964  *  e1000_reset_hw_82571 - Reset hardware
965  *  @hw: pointer to the HW structure
966  *
967  *  This resets the hardware into a known state.
968  **/
969 static s32 e1000_reset_hw_82571(struct e1000_hw *hw)
970 {
971 	u32 ctrl, ctrl_ext, eecd, tctl;
972 	s32 ret_val;
973 
974 	/* Prevent the PCI-E bus from sticking if there is no TLP connection
975 	 * on the last TLP read/write transaction when MAC is reset.
976 	 */
977 	ret_val = e1000e_disable_pcie_master(hw);
978 	if (ret_val)
979 		e_dbg("PCI-E Master disable polling has failed.\n");
980 
981 	e_dbg("Masking off all interrupts\n");
982 	ew32(IMC, 0xffffffff);
983 
984 	ew32(RCTL, 0);
985 	tctl = er32(TCTL);
986 	tctl &= ~E1000_TCTL_EN;
987 	ew32(TCTL, tctl);
988 	e1e_flush();
989 
990 	usleep_range(10000, 20000);
991 
992 	/* Must acquire the MDIO ownership before MAC reset.
993 	 * Ownership defaults to firmware after a reset.
994 	 */
995 	switch (hw->mac.type) {
996 	case e1000_82573:
997 		ret_val = e1000_get_hw_semaphore_82573(hw);
998 		break;
999 	case e1000_82574:
1000 	case e1000_82583:
1001 		ret_val = e1000_get_hw_semaphore_82574(hw);
1002 		break;
1003 	default:
1004 		break;
1005 	}
1006 	if (ret_val)
1007 		e_dbg("Cannot acquire MDIO ownership\n");
1008 
1009 	ctrl = er32(CTRL);
1010 
1011 	e_dbg("Issuing a global reset to MAC\n");
1012 	ew32(CTRL, ctrl | E1000_CTRL_RST);
1013 
1014 	/* Must release MDIO ownership and mutex after MAC reset. */
1015 	switch (hw->mac.type) {
1016 	case e1000_82574:
1017 	case e1000_82583:
1018 		e1000_put_hw_semaphore_82574(hw);
1019 		break;
1020 	default:
1021 		break;
1022 	}
1023 
1024 	if (hw->nvm.type == e1000_nvm_flash_hw) {
1025 		udelay(10);
1026 		ctrl_ext = er32(CTRL_EXT);
1027 		ctrl_ext |= E1000_CTRL_EXT_EE_RST;
1028 		ew32(CTRL_EXT, ctrl_ext);
1029 		e1e_flush();
1030 	}
1031 
1032 	ret_val = e1000e_get_auto_rd_done(hw);
1033 	if (ret_val)
1034 		/* We don't want to continue accessing MAC registers. */
1035 		return ret_val;
1036 
1037 	/* Phy configuration from NVM just starts after EECD_AUTO_RD is set.
1038 	 * Need to wait for Phy configuration completion before accessing
1039 	 * NVM and Phy.
1040 	 */
1041 
1042 	switch (hw->mac.type) {
1043 	case e1000_82571:
1044 	case e1000_82572:
1045 		/* REQ and GNT bits need to be cleared when using AUTO_RD
1046 		 * to access the EEPROM.
1047 		 */
1048 		eecd = er32(EECD);
1049 		eecd &= ~(E1000_EECD_REQ | E1000_EECD_GNT);
1050 		ew32(EECD, eecd);
1051 		break;
1052 	case e1000_82573:
1053 	case e1000_82574:
1054 	case e1000_82583:
1055 		msleep(25);
1056 		break;
1057 	default:
1058 		break;
1059 	}
1060 
1061 	/* Clear any pending interrupt events. */
1062 	ew32(IMC, 0xffffffff);
1063 	er32(ICR);
1064 
1065 	if (hw->mac.type == e1000_82571) {
1066 		/* Install any alternate MAC address into RAR0 */
1067 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1068 		if (ret_val)
1069 			return ret_val;
1070 
1071 		e1000e_set_laa_state_82571(hw, true);
1072 	}
1073 
1074 	/* Reinitialize the 82571 serdes link state machine */
1075 	if (hw->phy.media_type == e1000_media_type_internal_serdes)
1076 		hw->mac.serdes_link_state = e1000_serdes_link_down;
1077 
1078 	return 0;
1079 }
1080 
1081 /**
1082  *  e1000_init_hw_82571 - Initialize hardware
1083  *  @hw: pointer to the HW structure
1084  *
1085  *  This inits the hardware readying it for operation.
1086  **/
1087 static s32 e1000_init_hw_82571(struct e1000_hw *hw)
1088 {
1089 	struct e1000_mac_info *mac = &hw->mac;
1090 	u32 reg_data;
1091 	s32 ret_val;
1092 	u16 i, rar_count = mac->rar_entry_count;
1093 
1094 	e1000_initialize_hw_bits_82571(hw);
1095 
1096 	/* Initialize identification LED */
1097 	ret_val = mac->ops.id_led_init(hw);
1098 	if (ret_val)
1099 		e_dbg("Error initializing identification LED\n");
1100 		/* This is not fatal and we should not stop init due to this */
1101 
1102 	/* Disabling VLAN filtering */
1103 	e_dbg("Initializing the IEEE VLAN\n");
1104 	mac->ops.clear_vfta(hw);
1105 
1106 	/* Setup the receive address.
1107 	 * If, however, a locally administered address was assigned to the
1108 	 * 82571, we must reserve a RAR for it to work around an issue where
1109 	 * resetting one port will reload the MAC on the other port.
1110 	 */
1111 	if (e1000e_get_laa_state_82571(hw))
1112 		rar_count--;
1113 	e1000e_init_rx_addrs(hw, rar_count);
1114 
1115 	/* Zero out the Multicast HASH table */
1116 	e_dbg("Zeroing the MTA\n");
1117 	for (i = 0; i < mac->mta_reg_count; i++)
1118 		E1000_WRITE_REG_ARRAY(hw, E1000_MTA, i, 0);
1119 
1120 	/* Setup link and flow control */
1121 	ret_val = mac->ops.setup_link(hw);
1122 
1123 	/* Set the transmit descriptor write-back policy */
1124 	reg_data = er32(TXDCTL(0));
1125 	reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1126 		   E1000_TXDCTL_FULL_TX_DESC_WB |
1127 		   E1000_TXDCTL_COUNT_DESC;
1128 	ew32(TXDCTL(0), reg_data);
1129 
1130 	/* ...for both queues. */
1131 	switch (mac->type) {
1132 	case e1000_82573:
1133 		e1000e_enable_tx_pkt_filtering(hw);
1134 		/* fall through */
1135 	case e1000_82574:
1136 	case e1000_82583:
1137 		reg_data = er32(GCR);
1138 		reg_data |= E1000_GCR_L1_ACT_WITHOUT_L0S_RX;
1139 		ew32(GCR, reg_data);
1140 		break;
1141 	default:
1142 		reg_data = er32(TXDCTL(1));
1143 		reg_data = (reg_data & ~E1000_TXDCTL_WTHRESH) |
1144 			   E1000_TXDCTL_FULL_TX_DESC_WB |
1145 			   E1000_TXDCTL_COUNT_DESC;
1146 		ew32(TXDCTL(1), reg_data);
1147 		break;
1148 	}
1149 
1150 	/* Clear all of the statistics registers (clear on read).  It is
1151 	 * important that we do this after we have tried to establish link
1152 	 * because the symbol error count will increment wildly if there
1153 	 * is no link.
1154 	 */
1155 	e1000_clear_hw_cntrs_82571(hw);
1156 
1157 	return ret_val;
1158 }
1159 
1160 /**
1161  *  e1000_initialize_hw_bits_82571 - Initialize hardware-dependent bits
1162  *  @hw: pointer to the HW structure
1163  *
1164  *  Initializes required hardware-dependent bits needed for normal operation.
1165  **/
1166 static void e1000_initialize_hw_bits_82571(struct e1000_hw *hw)
1167 {
1168 	u32 reg;
1169 
1170 	/* Transmit Descriptor Control 0 */
1171 	reg = er32(TXDCTL(0));
1172 	reg |= (1 << 22);
1173 	ew32(TXDCTL(0), reg);
1174 
1175 	/* Transmit Descriptor Control 1 */
1176 	reg = er32(TXDCTL(1));
1177 	reg |= (1 << 22);
1178 	ew32(TXDCTL(1), reg);
1179 
1180 	/* Transmit Arbitration Control 0 */
1181 	reg = er32(TARC(0));
1182 	reg &= ~(0xF << 27); /* 30:27 */
1183 	switch (hw->mac.type) {
1184 	case e1000_82571:
1185 	case e1000_82572:
1186 		reg |= (1 << 23) | (1 << 24) | (1 << 25) | (1 << 26);
1187 		break;
1188 	case e1000_82574:
1189 	case e1000_82583:
1190 		reg |= (1 << 26);
1191 		break;
1192 	default:
1193 		break;
1194 	}
1195 	ew32(TARC(0), reg);
1196 
1197 	/* Transmit Arbitration Control 1 */
1198 	reg = er32(TARC(1));
1199 	switch (hw->mac.type) {
1200 	case e1000_82571:
1201 	case e1000_82572:
1202 		reg &= ~((1 << 29) | (1 << 30));
1203 		reg |= (1 << 22) | (1 << 24) | (1 << 25) | (1 << 26);
1204 		if (er32(TCTL) & E1000_TCTL_MULR)
1205 			reg &= ~(1 << 28);
1206 		else
1207 			reg |= (1 << 28);
1208 		ew32(TARC(1), reg);
1209 		break;
1210 	default:
1211 		break;
1212 	}
1213 
1214 	/* Device Control */
1215 	switch (hw->mac.type) {
1216 	case e1000_82573:
1217 	case e1000_82574:
1218 	case e1000_82583:
1219 		reg = er32(CTRL);
1220 		reg &= ~(1 << 29);
1221 		ew32(CTRL, reg);
1222 		break;
1223 	default:
1224 		break;
1225 	}
1226 
1227 	/* Extended Device Control */
1228 	switch (hw->mac.type) {
1229 	case e1000_82573:
1230 	case e1000_82574:
1231 	case e1000_82583:
1232 		reg = er32(CTRL_EXT);
1233 		reg &= ~(1 << 23);
1234 		reg |= (1 << 22);
1235 		ew32(CTRL_EXT, reg);
1236 		break;
1237 	default:
1238 		break;
1239 	}
1240 
1241 	if (hw->mac.type == e1000_82571) {
1242 		reg = er32(PBA_ECC);
1243 		reg |= E1000_PBA_ECC_CORR_EN;
1244 		ew32(PBA_ECC, reg);
1245 	}
1246 
1247 	/* Workaround for hardware errata.
1248 	 * Ensure that DMA Dynamic Clock gating is disabled on 82571 and 82572
1249 	 */
1250 	if ((hw->mac.type == e1000_82571) || (hw->mac.type == e1000_82572)) {
1251 		reg = er32(CTRL_EXT);
1252 		reg &= ~E1000_CTRL_EXT_DMA_DYN_CLK_EN;
1253 		ew32(CTRL_EXT, reg);
1254 	}
1255 
1256 	/* Disable IPv6 extension header parsing because some malformed
1257 	 * IPv6 headers can hang the Rx.
1258 	 */
1259 	if (hw->mac.type <= e1000_82573) {
1260 		reg = er32(RFCTL);
1261 		reg |= (E1000_RFCTL_IPV6_EX_DIS | E1000_RFCTL_NEW_IPV6_EXT_DIS);
1262 		ew32(RFCTL, reg);
1263 	}
1264 
1265 	/* PCI-Ex Control Registers */
1266 	switch (hw->mac.type) {
1267 	case e1000_82574:
1268 	case e1000_82583:
1269 		reg = er32(GCR);
1270 		reg |= (1 << 22);
1271 		ew32(GCR, reg);
1272 
1273 		/* Workaround for hardware errata.
1274 		 * apply workaround for hardware errata documented in errata
1275 		 * docs Fixes issue where some error prone or unreliable PCIe
1276 		 * completions are occurring, particularly with ASPM enabled.
1277 		 * Without fix, issue can cause Tx timeouts.
1278 		 */
1279 		reg = er32(GCR2);
1280 		reg |= 1;
1281 		ew32(GCR2, reg);
1282 		break;
1283 	default:
1284 		break;
1285 	}
1286 }
1287 
1288 /**
1289  *  e1000_clear_vfta_82571 - Clear VLAN filter table
1290  *  @hw: pointer to the HW structure
1291  *
1292  *  Clears the register array which contains the VLAN filter table by
1293  *  setting all the values to 0.
1294  **/
1295 static void e1000_clear_vfta_82571(struct e1000_hw *hw)
1296 {
1297 	u32 offset;
1298 	u32 vfta_value = 0;
1299 	u32 vfta_offset = 0;
1300 	u32 vfta_bit_in_reg = 0;
1301 
1302 	switch (hw->mac.type) {
1303 	case e1000_82573:
1304 	case e1000_82574:
1305 	case e1000_82583:
1306 		if (hw->mng_cookie.vlan_id != 0) {
1307 			/* The VFTA is a 4096b bit-field, each identifying
1308 			 * a single VLAN ID.  The following operations
1309 			 * determine which 32b entry (i.e. offset) into the
1310 			 * array we want to set the VLAN ID (i.e. bit) of
1311 			 * the manageability unit.
1312 			 */
1313 			vfta_offset = (hw->mng_cookie.vlan_id >>
1314 				       E1000_VFTA_ENTRY_SHIFT) &
1315 			    E1000_VFTA_ENTRY_MASK;
1316 			vfta_bit_in_reg =
1317 			    1 << (hw->mng_cookie.vlan_id &
1318 				  E1000_VFTA_ENTRY_BIT_SHIFT_MASK);
1319 		}
1320 		break;
1321 	default:
1322 		break;
1323 	}
1324 	for (offset = 0; offset < E1000_VLAN_FILTER_TBL_SIZE; offset++) {
1325 		/* If the offset we want to clear is the same offset of the
1326 		 * manageability VLAN ID, then clear all bits except that of
1327 		 * the manageability unit.
1328 		 */
1329 		vfta_value = (offset == vfta_offset) ? vfta_bit_in_reg : 0;
1330 		E1000_WRITE_REG_ARRAY(hw, E1000_VFTA, offset, vfta_value);
1331 		e1e_flush();
1332 	}
1333 }
1334 
1335 /**
1336  *  e1000_check_mng_mode_82574 - Check manageability is enabled
1337  *  @hw: pointer to the HW structure
1338  *
1339  *  Reads the NVM Initialization Control Word 2 and returns true
1340  *  (>0) if any manageability is enabled, else false (0).
1341  **/
1342 static bool e1000_check_mng_mode_82574(struct e1000_hw *hw)
1343 {
1344 	u16 data;
1345 
1346 	e1000_read_nvm(hw, NVM_INIT_CONTROL2_REG, 1, &data);
1347 	return (data & E1000_NVM_INIT_CTRL2_MNGM) != 0;
1348 }
1349 
1350 /**
1351  *  e1000_led_on_82574 - Turn LED on
1352  *  @hw: pointer to the HW structure
1353  *
1354  *  Turn LED on.
1355  **/
1356 static s32 e1000_led_on_82574(struct e1000_hw *hw)
1357 {
1358 	u32 ctrl;
1359 	u32 i;
1360 
1361 	ctrl = hw->mac.ledctl_mode2;
1362 	if (!(E1000_STATUS_LU & er32(STATUS))) {
1363 		/* If no link, then turn LED on by setting the invert bit
1364 		 * for each LED that's "on" (0x0E) in ledctl_mode2.
1365 		 */
1366 		for (i = 0; i < 4; i++)
1367 			if (((hw->mac.ledctl_mode2 >> (i * 8)) & 0xFF) ==
1368 			    E1000_LEDCTL_MODE_LED_ON)
1369 				ctrl |= (E1000_LEDCTL_LED0_IVRT << (i * 8));
1370 	}
1371 	ew32(LEDCTL, ctrl);
1372 
1373 	return 0;
1374 }
1375 
1376 /**
1377  *  e1000_check_phy_82574 - check 82574 phy hung state
1378  *  @hw: pointer to the HW structure
1379  *
1380  *  Returns whether phy is hung or not
1381  **/
1382 bool e1000_check_phy_82574(struct e1000_hw *hw)
1383 {
1384 	u16 status_1kbt = 0;
1385 	u16 receive_errors = 0;
1386 	s32 ret_val;
1387 
1388 	/* Read PHY Receive Error counter first, if its is max - all F's then
1389 	 * read the Base1000T status register If both are max then PHY is hung.
1390 	 */
1391 	ret_val = e1e_rphy(hw, E1000_RECEIVE_ERROR_COUNTER, &receive_errors);
1392 	if (ret_val)
1393 		return false;
1394 	if (receive_errors == E1000_RECEIVE_ERROR_MAX)  {
1395 		ret_val = e1e_rphy(hw, E1000_BASE1000T_STATUS, &status_1kbt);
1396 		if (ret_val)
1397 			return false;
1398 		if ((status_1kbt & E1000_IDLE_ERROR_COUNT_MASK) ==
1399 		    E1000_IDLE_ERROR_COUNT_MASK)
1400 			return true;
1401 	}
1402 
1403 	return false;
1404 }
1405 
1406 /**
1407  *  e1000_setup_link_82571 - Setup flow control and link settings
1408  *  @hw: pointer to the HW structure
1409  *
1410  *  Determines which flow control settings to use, then configures flow
1411  *  control.  Calls the appropriate media-specific link configuration
1412  *  function.  Assuming the adapter has a valid link partner, a valid link
1413  *  should be established.  Assumes the hardware has previously been reset
1414  *  and the transmitter and receiver are not enabled.
1415  **/
1416 static s32 e1000_setup_link_82571(struct e1000_hw *hw)
1417 {
1418 	/* 82573 does not have a word in the NVM to determine
1419 	 * the default flow control setting, so we explicitly
1420 	 * set it to full.
1421 	 */
1422 	switch (hw->mac.type) {
1423 	case e1000_82573:
1424 	case e1000_82574:
1425 	case e1000_82583:
1426 		if (hw->fc.requested_mode == e1000_fc_default)
1427 			hw->fc.requested_mode = e1000_fc_full;
1428 		break;
1429 	default:
1430 		break;
1431 	}
1432 
1433 	return e1000e_setup_link_generic(hw);
1434 }
1435 
1436 /**
1437  *  e1000_setup_copper_link_82571 - Configure copper link settings
1438  *  @hw: pointer to the HW structure
1439  *
1440  *  Configures the link for auto-neg or forced speed and duplex.  Then we check
1441  *  for link, once link is established calls to configure collision distance
1442  *  and flow control are called.
1443  **/
1444 static s32 e1000_setup_copper_link_82571(struct e1000_hw *hw)
1445 {
1446 	u32 ctrl;
1447 	s32 ret_val;
1448 
1449 	ctrl = er32(CTRL);
1450 	ctrl |= E1000_CTRL_SLU;
1451 	ctrl &= ~(E1000_CTRL_FRCSPD | E1000_CTRL_FRCDPX);
1452 	ew32(CTRL, ctrl);
1453 
1454 	switch (hw->phy.type) {
1455 	case e1000_phy_m88:
1456 	case e1000_phy_bm:
1457 		ret_val = e1000e_copper_link_setup_m88(hw);
1458 		break;
1459 	case e1000_phy_igp_2:
1460 		ret_val = e1000e_copper_link_setup_igp(hw);
1461 		break;
1462 	default:
1463 		return -E1000_ERR_PHY;
1464 		break;
1465 	}
1466 
1467 	if (ret_val)
1468 		return ret_val;
1469 
1470 	return e1000e_setup_copper_link(hw);
1471 }
1472 
1473 /**
1474  *  e1000_setup_fiber_serdes_link_82571 - Setup link for fiber/serdes
1475  *  @hw: pointer to the HW structure
1476  *
1477  *  Configures collision distance and flow control for fiber and serdes links.
1478  *  Upon successful setup, poll for link.
1479  **/
1480 static s32 e1000_setup_fiber_serdes_link_82571(struct e1000_hw *hw)
1481 {
1482 	switch (hw->mac.type) {
1483 	case e1000_82571:
1484 	case e1000_82572:
1485 		/* If SerDes loopback mode is entered, there is no form
1486 		 * of reset to take the adapter out of that mode.  So we
1487 		 * have to explicitly take the adapter out of loopback
1488 		 * mode.  This prevents drivers from twiddling their thumbs
1489 		 * if another tool failed to take it out of loopback mode.
1490 		 */
1491 		ew32(SCTL, E1000_SCTL_DISABLE_SERDES_LOOPBACK);
1492 		break;
1493 	default:
1494 		break;
1495 	}
1496 
1497 	return e1000e_setup_fiber_serdes_link(hw);
1498 }
1499 
1500 /**
1501  *  e1000_check_for_serdes_link_82571 - Check for link (Serdes)
1502  *  @hw: pointer to the HW structure
1503  *
1504  *  Reports the link state as up or down.
1505  *
1506  *  If autonegotiation is supported by the link partner, the link state is
1507  *  determined by the result of autonegotiation. This is the most likely case.
1508  *  If autonegotiation is not supported by the link partner, and the link
1509  *  has a valid signal, force the link up.
1510  *
1511  *  The link state is represented internally here by 4 states:
1512  *
1513  *  1) down
1514  *  2) autoneg_progress
1515  *  3) autoneg_complete (the link successfully autonegotiated)
1516  *  4) forced_up (the link has been forced up, it did not autonegotiate)
1517  *
1518  **/
1519 static s32 e1000_check_for_serdes_link_82571(struct e1000_hw *hw)
1520 {
1521 	struct e1000_mac_info *mac = &hw->mac;
1522 	u32 rxcw;
1523 	u32 ctrl;
1524 	u32 status;
1525 	u32 txcw;
1526 	u32 i;
1527 	s32 ret_val = 0;
1528 
1529 	ctrl = er32(CTRL);
1530 	status = er32(STATUS);
1531 	er32(RXCW);
1532 	/* SYNCH bit and IV bit are sticky */
1533 	udelay(10);
1534 	rxcw = er32(RXCW);
1535 
1536 	if ((rxcw & E1000_RXCW_SYNCH) && !(rxcw & E1000_RXCW_IV)) {
1537 		/* Receiver is synchronized with no invalid bits.  */
1538 		switch (mac->serdes_link_state) {
1539 		case e1000_serdes_link_autoneg_complete:
1540 			if (!(status & E1000_STATUS_LU)) {
1541 				/* We have lost link, retry autoneg before
1542 				 * reporting link failure
1543 				 */
1544 				mac->serdes_link_state =
1545 				    e1000_serdes_link_autoneg_progress;
1546 				mac->serdes_has_link = false;
1547 				e_dbg("AN_UP     -> AN_PROG\n");
1548 			} else {
1549 				mac->serdes_has_link = true;
1550 			}
1551 			break;
1552 
1553 		case e1000_serdes_link_forced_up:
1554 			/* If we are receiving /C/ ordered sets, re-enable
1555 			 * auto-negotiation in the TXCW register and disable
1556 			 * forced link in the Device Control register in an
1557 			 * attempt to auto-negotiate with our link partner.
1558 			 */
1559 			if (rxcw & E1000_RXCW_C) {
1560 				/* Enable autoneg, and unforce link up */
1561 				ew32(TXCW, mac->txcw);
1562 				ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1563 				mac->serdes_link_state =
1564 				    e1000_serdes_link_autoneg_progress;
1565 				mac->serdes_has_link = false;
1566 				e_dbg("FORCED_UP -> AN_PROG\n");
1567 			} else {
1568 				mac->serdes_has_link = true;
1569 			}
1570 			break;
1571 
1572 		case e1000_serdes_link_autoneg_progress:
1573 			if (rxcw & E1000_RXCW_C) {
1574 				/* We received /C/ ordered sets, meaning the
1575 				 * link partner has autonegotiated, and we can
1576 				 * trust the Link Up (LU) status bit.
1577 				 */
1578 				if (status & E1000_STATUS_LU) {
1579 					mac->serdes_link_state =
1580 					    e1000_serdes_link_autoneg_complete;
1581 					e_dbg("AN_PROG   -> AN_UP\n");
1582 					mac->serdes_has_link = true;
1583 				} else {
1584 					/* Autoneg completed, but failed. */
1585 					mac->serdes_link_state =
1586 					    e1000_serdes_link_down;
1587 					e_dbg("AN_PROG   -> DOWN\n");
1588 				}
1589 			} else {
1590 				/* The link partner did not autoneg.
1591 				 * Force link up and full duplex, and change
1592 				 * state to forced.
1593 				 */
1594 				ew32(TXCW, (mac->txcw & ~E1000_TXCW_ANE));
1595 				ctrl |= (E1000_CTRL_SLU | E1000_CTRL_FD);
1596 				ew32(CTRL, ctrl);
1597 
1598 				/* Configure Flow Control after link up. */
1599 				ret_val = e1000e_config_fc_after_link_up(hw);
1600 				if (ret_val) {
1601 					e_dbg("Error config flow control\n");
1602 					break;
1603 				}
1604 				mac->serdes_link_state =
1605 				    e1000_serdes_link_forced_up;
1606 				mac->serdes_has_link = true;
1607 				e_dbg("AN_PROG   -> FORCED_UP\n");
1608 			}
1609 			break;
1610 
1611 		case e1000_serdes_link_down:
1612 		default:
1613 			/* The link was down but the receiver has now gained
1614 			 * valid sync, so lets see if we can bring the link
1615 			 * up.
1616 			 */
1617 			ew32(TXCW, mac->txcw);
1618 			ew32(CTRL, (ctrl & ~E1000_CTRL_SLU));
1619 			mac->serdes_link_state =
1620 			    e1000_serdes_link_autoneg_progress;
1621 			mac->serdes_has_link = false;
1622 			e_dbg("DOWN      -> AN_PROG\n");
1623 			break;
1624 		}
1625 	} else {
1626 		if (!(rxcw & E1000_RXCW_SYNCH)) {
1627 			mac->serdes_has_link = false;
1628 			mac->serdes_link_state = e1000_serdes_link_down;
1629 			e_dbg("ANYSTATE  -> DOWN\n");
1630 		} else {
1631 			/* Check several times, if SYNCH bit and CONFIG
1632 			 * bit both are consistently 1 then simply ignore
1633 			 * the IV bit and restart Autoneg
1634 			 */
1635 			for (i = 0; i < AN_RETRY_COUNT; i++) {
1636 				udelay(10);
1637 				rxcw = er32(RXCW);
1638 				if ((rxcw & E1000_RXCW_SYNCH) &&
1639 				    (rxcw & E1000_RXCW_C))
1640 					continue;
1641 
1642 				if (rxcw & E1000_RXCW_IV) {
1643 					mac->serdes_has_link = false;
1644 					mac->serdes_link_state =
1645 					    e1000_serdes_link_down;
1646 					e_dbg("ANYSTATE  -> DOWN\n");
1647 					break;
1648 				}
1649 			}
1650 
1651 			if (i == AN_RETRY_COUNT) {
1652 				txcw = er32(TXCW);
1653 				txcw |= E1000_TXCW_ANE;
1654 				ew32(TXCW, txcw);
1655 				mac->serdes_link_state =
1656 				    e1000_serdes_link_autoneg_progress;
1657 				mac->serdes_has_link = false;
1658 				e_dbg("ANYSTATE  -> AN_PROG\n");
1659 			}
1660 		}
1661 	}
1662 
1663 	return ret_val;
1664 }
1665 
1666 /**
1667  *  e1000_valid_led_default_82571 - Verify a valid default LED config
1668  *  @hw: pointer to the HW structure
1669  *  @data: pointer to the NVM (EEPROM)
1670  *
1671  *  Read the EEPROM for the current default LED configuration.  If the
1672  *  LED configuration is not valid, set to a valid LED configuration.
1673  **/
1674 static s32 e1000_valid_led_default_82571(struct e1000_hw *hw, u16 *data)
1675 {
1676 	s32 ret_val;
1677 
1678 	ret_val = e1000_read_nvm(hw, NVM_ID_LED_SETTINGS, 1, data);
1679 	if (ret_val) {
1680 		e_dbg("NVM Read Error\n");
1681 		return ret_val;
1682 	}
1683 
1684 	switch (hw->mac.type) {
1685 	case e1000_82573:
1686 	case e1000_82574:
1687 	case e1000_82583:
1688 		if (*data == ID_LED_RESERVED_F746)
1689 			*data = ID_LED_DEFAULT_82573;
1690 		break;
1691 	default:
1692 		if (*data == ID_LED_RESERVED_0000 ||
1693 		    *data == ID_LED_RESERVED_FFFF)
1694 			*data = ID_LED_DEFAULT;
1695 		break;
1696 	}
1697 
1698 	return 0;
1699 }
1700 
1701 /**
1702  *  e1000e_get_laa_state_82571 - Get locally administered address state
1703  *  @hw: pointer to the HW structure
1704  *
1705  *  Retrieve and return the current locally administered address state.
1706  **/
1707 bool e1000e_get_laa_state_82571(struct e1000_hw *hw)
1708 {
1709 	if (hw->mac.type != e1000_82571)
1710 		return false;
1711 
1712 	return hw->dev_spec.e82571.laa_is_present;
1713 }
1714 
1715 /**
1716  *  e1000e_set_laa_state_82571 - Set locally administered address state
1717  *  @hw: pointer to the HW structure
1718  *  @state: enable/disable locally administered address
1719  *
1720  *  Enable/Disable the current locally administered address state.
1721  **/
1722 void e1000e_set_laa_state_82571(struct e1000_hw *hw, bool state)
1723 {
1724 	if (hw->mac.type != e1000_82571)
1725 		return;
1726 
1727 	hw->dev_spec.e82571.laa_is_present = state;
1728 
1729 	/* If workaround is activated... */
1730 	if (state)
1731 		/* Hold a copy of the LAA in RAR[14] This is done so that
1732 		 * between the time RAR[0] gets clobbered and the time it
1733 		 * gets fixed, the actual LAA is in one of the RARs and no
1734 		 * incoming packets directed to this port are dropped.
1735 		 * Eventually the LAA will be in RAR[0] and RAR[14].
1736 		 */
1737 		hw->mac.ops.rar_set(hw, hw->mac.addr,
1738 				    hw->mac.rar_entry_count - 1);
1739 }
1740 
1741 /**
1742  *  e1000_fix_nvm_checksum_82571 - Fix EEPROM checksum
1743  *  @hw: pointer to the HW structure
1744  *
1745  *  Verifies that the EEPROM has completed the update.  After updating the
1746  *  EEPROM, we need to check bit 15 in work 0x23 for the checksum fix.  If
1747  *  the checksum fix is not implemented, we need to set the bit and update
1748  *  the checksum.  Otherwise, if bit 15 is set and the checksum is incorrect,
1749  *  we need to return bad checksum.
1750  **/
1751 static s32 e1000_fix_nvm_checksum_82571(struct e1000_hw *hw)
1752 {
1753 	struct e1000_nvm_info *nvm = &hw->nvm;
1754 	s32 ret_val;
1755 	u16 data;
1756 
1757 	if (nvm->type != e1000_nvm_flash_hw)
1758 		return 0;
1759 
1760 	/* Check bit 4 of word 10h.  If it is 0, firmware is done updating
1761 	 * 10h-12h.  Checksum may need to be fixed.
1762 	 */
1763 	ret_val = e1000_read_nvm(hw, 0x10, 1, &data);
1764 	if (ret_val)
1765 		return ret_val;
1766 
1767 	if (!(data & 0x10)) {
1768 		/* Read 0x23 and check bit 15.  This bit is a 1
1769 		 * when the checksum has already been fixed.  If
1770 		 * the checksum is still wrong and this bit is a
1771 		 * 1, we need to return bad checksum.  Otherwise,
1772 		 * we need to set this bit to a 1 and update the
1773 		 * checksum.
1774 		 */
1775 		ret_val = e1000_read_nvm(hw, 0x23, 1, &data);
1776 		if (ret_val)
1777 			return ret_val;
1778 
1779 		if (!(data & 0x8000)) {
1780 			data |= 0x8000;
1781 			ret_val = e1000_write_nvm(hw, 0x23, 1, &data);
1782 			if (ret_val)
1783 				return ret_val;
1784 			ret_val = e1000e_update_nvm_checksum(hw);
1785 			if (ret_val)
1786 				return ret_val;
1787 		}
1788 	}
1789 
1790 	return 0;
1791 }
1792 
1793 /**
1794  *  e1000_read_mac_addr_82571 - Read device MAC address
1795  *  @hw: pointer to the HW structure
1796  **/
1797 static s32 e1000_read_mac_addr_82571(struct e1000_hw *hw)
1798 {
1799 	if (hw->mac.type == e1000_82571) {
1800 		s32 ret_val;
1801 
1802 		/* If there's an alternate MAC address place it in RAR0
1803 		 * so that it will override the Si installed default perm
1804 		 * address.
1805 		 */
1806 		ret_val = e1000_check_alt_mac_addr_generic(hw);
1807 		if (ret_val)
1808 			return ret_val;
1809 	}
1810 
1811 	return e1000_read_mac_addr_generic(hw);
1812 }
1813 
1814 /**
1815  * e1000_power_down_phy_copper_82571 - Remove link during PHY power down
1816  * @hw: pointer to the HW structure
1817  *
1818  * In the case of a PHY power down to save power, or to turn off link during a
1819  * driver unload, or wake on lan is not enabled, remove the link.
1820  **/
1821 static void e1000_power_down_phy_copper_82571(struct e1000_hw *hw)
1822 {
1823 	struct e1000_phy_info *phy = &hw->phy;
1824 	struct e1000_mac_info *mac = &hw->mac;
1825 
1826 	if (!phy->ops.check_reset_block)
1827 		return;
1828 
1829 	/* If the management interface is not enabled, then power down */
1830 	if (!(mac->ops.check_mng_mode(hw) || phy->ops.check_reset_block(hw)))
1831 		e1000_power_down_phy_copper(hw);
1832 }
1833 
1834 /**
1835  *  e1000_clear_hw_cntrs_82571 - Clear device specific hardware counters
1836  *  @hw: pointer to the HW structure
1837  *
1838  *  Clears the hardware counters by reading the counter registers.
1839  **/
1840 static void e1000_clear_hw_cntrs_82571(struct e1000_hw *hw)
1841 {
1842 	e1000e_clear_hw_cntrs_base(hw);
1843 
1844 	er32(PRC64);
1845 	er32(PRC127);
1846 	er32(PRC255);
1847 	er32(PRC511);
1848 	er32(PRC1023);
1849 	er32(PRC1522);
1850 	er32(PTC64);
1851 	er32(PTC127);
1852 	er32(PTC255);
1853 	er32(PTC511);
1854 	er32(PTC1023);
1855 	er32(PTC1522);
1856 
1857 	er32(ALGNERRC);
1858 	er32(RXERRC);
1859 	er32(TNCRS);
1860 	er32(CEXTERR);
1861 	er32(TSCTC);
1862 	er32(TSCTFC);
1863 
1864 	er32(MGTPRC);
1865 	er32(MGTPDC);
1866 	er32(MGTPTC);
1867 
1868 	er32(IAC);
1869 	er32(ICRXOC);
1870 
1871 	er32(ICRXPTC);
1872 	er32(ICRXATC);
1873 	er32(ICTXPTC);
1874 	er32(ICTXATC);
1875 	er32(ICTXQEC);
1876 	er32(ICTXQMTC);
1877 	er32(ICRXDMTC);
1878 }
1879 
1880 static const struct e1000_mac_operations e82571_mac_ops = {
1881 	/* .check_mng_mode: mac type dependent */
1882 	/* .check_for_link: media type dependent */
1883 	.id_led_init		= e1000e_id_led_init_generic,
1884 	.cleanup_led		= e1000e_cleanup_led_generic,
1885 	.clear_hw_cntrs		= e1000_clear_hw_cntrs_82571,
1886 	.get_bus_info		= e1000e_get_bus_info_pcie,
1887 	.set_lan_id		= e1000_set_lan_id_multi_port_pcie,
1888 	/* .get_link_up_info: media type dependent */
1889 	/* .led_on: mac type dependent */
1890 	.led_off		= e1000e_led_off_generic,
1891 	.update_mc_addr_list	= e1000e_update_mc_addr_list_generic,
1892 	.write_vfta		= e1000_write_vfta_generic,
1893 	.clear_vfta		= e1000_clear_vfta_82571,
1894 	.reset_hw		= e1000_reset_hw_82571,
1895 	.init_hw		= e1000_init_hw_82571,
1896 	.setup_link		= e1000_setup_link_82571,
1897 	/* .setup_physical_interface: media type dependent */
1898 	.setup_led		= e1000e_setup_led_generic,
1899 	.config_collision_dist	= e1000e_config_collision_dist_generic,
1900 	.read_mac_addr		= e1000_read_mac_addr_82571,
1901 	.rar_set		= e1000e_rar_set_generic,
1902 };
1903 
1904 static const struct e1000_phy_operations e82_phy_ops_igp = {
1905 	.acquire		= e1000_get_hw_semaphore_82571,
1906 	.check_polarity		= e1000_check_polarity_igp,
1907 	.check_reset_block	= e1000e_check_reset_block_generic,
1908 	.commit			= NULL,
1909 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_igp,
1910 	.get_cfg_done		= e1000_get_cfg_done_82571,
1911 	.get_cable_length	= e1000e_get_cable_length_igp_2,
1912 	.get_info		= e1000e_get_phy_info_igp,
1913 	.read_reg		= e1000e_read_phy_reg_igp,
1914 	.release		= e1000_put_hw_semaphore_82571,
1915 	.reset			= e1000e_phy_hw_reset_generic,
1916 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1917 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1918 	.write_reg		= e1000e_write_phy_reg_igp,
1919 	.cfg_on_link_up		= NULL,
1920 };
1921 
1922 static const struct e1000_phy_operations e82_phy_ops_m88 = {
1923 	.acquire		= e1000_get_hw_semaphore_82571,
1924 	.check_polarity		= e1000_check_polarity_m88,
1925 	.check_reset_block	= e1000e_check_reset_block_generic,
1926 	.commit			= e1000e_phy_sw_reset,
1927 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1928 	.get_cfg_done		= e1000e_get_cfg_done_generic,
1929 	.get_cable_length	= e1000e_get_cable_length_m88,
1930 	.get_info		= e1000e_get_phy_info_m88,
1931 	.read_reg		= e1000e_read_phy_reg_m88,
1932 	.release		= e1000_put_hw_semaphore_82571,
1933 	.reset			= e1000e_phy_hw_reset_generic,
1934 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1935 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1936 	.write_reg		= e1000e_write_phy_reg_m88,
1937 	.cfg_on_link_up		= NULL,
1938 };
1939 
1940 static const struct e1000_phy_operations e82_phy_ops_bm = {
1941 	.acquire		= e1000_get_hw_semaphore_82571,
1942 	.check_polarity		= e1000_check_polarity_m88,
1943 	.check_reset_block	= e1000e_check_reset_block_generic,
1944 	.commit			= e1000e_phy_sw_reset,
1945 	.force_speed_duplex	= e1000e_phy_force_speed_duplex_m88,
1946 	.get_cfg_done		= e1000e_get_cfg_done_generic,
1947 	.get_cable_length	= e1000e_get_cable_length_m88,
1948 	.get_info		= e1000e_get_phy_info_m88,
1949 	.read_reg		= e1000e_read_phy_reg_bm2,
1950 	.release		= e1000_put_hw_semaphore_82571,
1951 	.reset			= e1000e_phy_hw_reset_generic,
1952 	.set_d0_lplu_state	= e1000_set_d0_lplu_state_82571,
1953 	.set_d3_lplu_state	= e1000e_set_d3_lplu_state,
1954 	.write_reg		= e1000e_write_phy_reg_bm2,
1955 	.cfg_on_link_up		= NULL,
1956 };
1957 
1958 static const struct e1000_nvm_operations e82571_nvm_ops = {
1959 	.acquire		= e1000_acquire_nvm_82571,
1960 	.read			= e1000e_read_nvm_eerd,
1961 	.release		= e1000_release_nvm_82571,
1962 	.reload			= e1000e_reload_nvm_generic,
1963 	.update			= e1000_update_nvm_checksum_82571,
1964 	.valid_led_default	= e1000_valid_led_default_82571,
1965 	.validate		= e1000_validate_nvm_checksum_82571,
1966 	.write			= e1000_write_nvm_82571,
1967 };
1968 
1969 const struct e1000_info e1000_82571_info = {
1970 	.mac			= e1000_82571,
1971 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1972 				  | FLAG_HAS_JUMBO_FRAMES
1973 				  | FLAG_HAS_WOL
1974 				  | FLAG_APME_IN_CTRL3
1975 				  | FLAG_HAS_CTRLEXT_ON_LOAD
1976 				  | FLAG_HAS_SMART_POWER_DOWN
1977 				  | FLAG_RESET_OVERWRITES_LAA /* errata */
1978 				  | FLAG_TARC_SPEED_MODE_BIT /* errata */
1979 				  | FLAG_APME_CHECK_PORT_B,
1980 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1981 				  | FLAG2_DMA_BURST,
1982 	.pba			= 38,
1983 	.max_hw_frame_size	= DEFAULT_JUMBO,
1984 	.get_variants		= e1000_get_variants_82571,
1985 	.mac_ops		= &e82571_mac_ops,
1986 	.phy_ops		= &e82_phy_ops_igp,
1987 	.nvm_ops		= &e82571_nvm_ops,
1988 };
1989 
1990 const struct e1000_info e1000_82572_info = {
1991 	.mac			= e1000_82572,
1992 	.flags			= FLAG_HAS_HW_VLAN_FILTER
1993 				  | FLAG_HAS_JUMBO_FRAMES
1994 				  | FLAG_HAS_WOL
1995 				  | FLAG_APME_IN_CTRL3
1996 				  | FLAG_HAS_CTRLEXT_ON_LOAD
1997 				  | FLAG_TARC_SPEED_MODE_BIT, /* errata */
1998 	.flags2			= FLAG2_DISABLE_ASPM_L1 /* errata 13 */
1999 				  | FLAG2_DMA_BURST,
2000 	.pba			= 38,
2001 	.max_hw_frame_size	= DEFAULT_JUMBO,
2002 	.get_variants		= e1000_get_variants_82571,
2003 	.mac_ops		= &e82571_mac_ops,
2004 	.phy_ops		= &e82_phy_ops_igp,
2005 	.nvm_ops		= &e82571_nvm_ops,
2006 };
2007 
2008 const struct e1000_info e1000_82573_info = {
2009 	.mac			= e1000_82573,
2010 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2011 				  | FLAG_HAS_WOL
2012 				  | FLAG_APME_IN_CTRL3
2013 				  | FLAG_HAS_SMART_POWER_DOWN
2014 				  | FLAG_HAS_AMT
2015 				  | FLAG_HAS_SWSM_ON_LOAD,
2016 	.flags2			= FLAG2_DISABLE_ASPM_L1
2017 				  | FLAG2_DISABLE_ASPM_L0S,
2018 	.pba			= 20,
2019 	.max_hw_frame_size	= ETH_FRAME_LEN + ETH_FCS_LEN,
2020 	.get_variants		= e1000_get_variants_82571,
2021 	.mac_ops		= &e82571_mac_ops,
2022 	.phy_ops		= &e82_phy_ops_m88,
2023 	.nvm_ops		= &e82571_nvm_ops,
2024 };
2025 
2026 const struct e1000_info e1000_82574_info = {
2027 	.mac			= e1000_82574,
2028 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2029 				  | FLAG_HAS_MSIX
2030 				  | FLAG_HAS_JUMBO_FRAMES
2031 				  | FLAG_HAS_WOL
2032 				  | FLAG_HAS_HW_TIMESTAMP
2033 				  | FLAG_APME_IN_CTRL3
2034 				  | FLAG_HAS_SMART_POWER_DOWN
2035 				  | FLAG_HAS_AMT
2036 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2037 	.flags2			 = FLAG2_CHECK_PHY_HANG
2038 				  | FLAG2_DISABLE_ASPM_L0S
2039 				  | FLAG2_DISABLE_ASPM_L1
2040 				  | FLAG2_NO_DISABLE_RX
2041 				  | FLAG2_DMA_BURST,
2042 	.pba			= 32,
2043 	.max_hw_frame_size	= DEFAULT_JUMBO,
2044 	.get_variants		= e1000_get_variants_82571,
2045 	.mac_ops		= &e82571_mac_ops,
2046 	.phy_ops		= &e82_phy_ops_bm,
2047 	.nvm_ops		= &e82571_nvm_ops,
2048 };
2049 
2050 const struct e1000_info e1000_82583_info = {
2051 	.mac			= e1000_82583,
2052 	.flags			= FLAG_HAS_HW_VLAN_FILTER
2053 				  | FLAG_HAS_WOL
2054 				  | FLAG_HAS_HW_TIMESTAMP
2055 				  | FLAG_APME_IN_CTRL3
2056 				  | FLAG_HAS_SMART_POWER_DOWN
2057 				  | FLAG_HAS_AMT
2058 				  | FLAG_HAS_JUMBO_FRAMES
2059 				  | FLAG_HAS_CTRLEXT_ON_LOAD,
2060 	.flags2			= FLAG2_DISABLE_ASPM_L0S
2061 				  | FLAG2_NO_DISABLE_RX,
2062 	.pba			= 32,
2063 	.max_hw_frame_size	= DEFAULT_JUMBO,
2064 	.get_variants		= e1000_get_variants_82571,
2065 	.mac_ops		= &e82571_mac_ops,
2066 	.phy_ops		= &e82_phy_ops_bm,
2067 	.nvm_ops		= &e82571_nvm_ops,
2068 };
2069 
2070