xref: /linux/drivers/net/ethernet/cavium/liquidio/request_manager.c (revision 3ad0876554cafa368f574d4d408468510543e9ff)
1 /**********************************************************************
2  * Author: Cavium, Inc.
3  *
4  * Contact: support@cavium.com
5  *          Please include "LiquidIO" in the subject.
6  *
7  * Copyright (c) 2003-2016 Cavium, Inc.
8  *
9  * This file is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License, Version 2, as
11  * published by the Free Software Foundation.
12  *
13  * This file is distributed in the hope that it will be useful, but
14  * AS-IS and WITHOUT ANY WARRANTY; without even the implied warranty
15  * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE, TITLE, or
16  * NONINFRINGEMENT.  See the GNU General Public License for more
17  * details.
18  **********************************************************************/
19 #include <linux/pci.h>
20 #include <linux/netdevice.h>
21 #include <linux/vmalloc.h>
22 #include "liquidio_common.h"
23 #include "octeon_droq.h"
24 #include "octeon_iq.h"
25 #include "response_manager.h"
26 #include "octeon_device.h"
27 #include "octeon_main.h"
28 #include "octeon_network.h"
29 #include "cn66xx_device.h"
30 #include "cn23xx_pf_device.h"
31 #include "cn23xx_vf_device.h"
32 
33 struct iq_post_status {
34 	int status;
35 	int index;
36 };
37 
38 static void check_db_timeout(struct work_struct *work);
39 static void  __check_db_timeout(struct octeon_device *oct, u64 iq_no);
40 
41 static void (*reqtype_free_fn[MAX_OCTEON_DEVICES][REQTYPE_LAST + 1]) (void *);
42 
43 static inline int IQ_INSTR_MODE_64B(struct octeon_device *oct, int iq_no)
44 {
45 	struct octeon_instr_queue *iq =
46 	    (struct octeon_instr_queue *)oct->instr_queue[iq_no];
47 	return iq->iqcmd_64B;
48 }
49 
50 #define IQ_INSTR_MODE_32B(oct, iq_no)  (!IQ_INSTR_MODE_64B(oct, iq_no))
51 
52 /* Define this to return the request status comaptible to old code */
53 /*#define OCTEON_USE_OLD_REQ_STATUS*/
54 
55 /* Return 0 on success, 1 on failure */
56 int octeon_init_instr_queue(struct octeon_device *oct,
57 			    union oct_txpciq txpciq,
58 			    u32 num_descs)
59 {
60 	struct octeon_instr_queue *iq;
61 	struct octeon_iq_config *conf = NULL;
62 	u32 iq_no = (u32)txpciq.s.q_no;
63 	u32 q_size;
64 	struct cavium_wq *db_wq;
65 	int numa_node = dev_to_node(&oct->pci_dev->dev);
66 
67 	if (OCTEON_CN6XXX(oct))
68 		conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn6xxx)));
69 	else if (OCTEON_CN23XX_PF(oct))
70 		conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_pf)));
71 	else if (OCTEON_CN23XX_VF(oct))
72 		conf = &(CFG_GET_IQ_CFG(CHIP_CONF(oct, cn23xx_vf)));
73 
74 	if (!conf) {
75 		dev_err(&oct->pci_dev->dev, "Unsupported Chip %x\n",
76 			oct->chip_id);
77 		return 1;
78 	}
79 
80 	q_size = (u32)conf->instr_type * num_descs;
81 
82 	iq = oct->instr_queue[iq_no];
83 
84 	iq->oct_dev = oct;
85 
86 	iq->base_addr = lio_dma_alloc(oct, q_size, &iq->base_addr_dma);
87 	if (!iq->base_addr) {
88 		dev_err(&oct->pci_dev->dev, "Cannot allocate memory for instr queue %d\n",
89 			iq_no);
90 		return 1;
91 	}
92 
93 	iq->max_count = num_descs;
94 
95 	/* Initialize a list to holds requests that have been posted to Octeon
96 	 * but has yet to be fetched by octeon
97 	 */
98 	iq->request_list = vmalloc_node((sizeof(*iq->request_list) * num_descs),
99 					       numa_node);
100 	if (!iq->request_list)
101 		iq->request_list = vmalloc(sizeof(*iq->request_list) *
102 						  num_descs);
103 	if (!iq->request_list) {
104 		lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
105 		dev_err(&oct->pci_dev->dev, "Alloc failed for IQ[%d] nr free list\n",
106 			iq_no);
107 		return 1;
108 	}
109 
110 	memset(iq->request_list, 0, sizeof(*iq->request_list) * num_descs);
111 
112 	dev_dbg(&oct->pci_dev->dev, "IQ[%d]: base: %p basedma: %llx count: %d\n",
113 		iq_no, iq->base_addr, iq->base_addr_dma, iq->max_count);
114 
115 	iq->txpciq.u64 = txpciq.u64;
116 	iq->fill_threshold = (u32)conf->db_min;
117 	iq->fill_cnt = 0;
118 	iq->host_write_index = 0;
119 	iq->octeon_read_index = 0;
120 	iq->flush_index = 0;
121 	iq->last_db_time = 0;
122 	iq->do_auto_flush = 1;
123 	iq->db_timeout = (u32)conf->db_timeout;
124 	atomic_set(&iq->instr_pending, 0);
125 
126 	/* Initialize the spinlock for this instruction queue */
127 	spin_lock_init(&iq->lock);
128 	spin_lock_init(&iq->post_lock);
129 
130 	spin_lock_init(&iq->iq_flush_running_lock);
131 
132 	oct->io_qmask.iq |= BIT_ULL(iq_no);
133 
134 	/* Set the 32B/64B mode for each input queue */
135 	oct->io_qmask.iq64B |= ((conf->instr_type == 64) << iq_no);
136 	iq->iqcmd_64B = (conf->instr_type == 64);
137 
138 	oct->fn_list.setup_iq_regs(oct, iq_no);
139 
140 	oct->check_db_wq[iq_no].wq = alloc_workqueue("check_iq_db",
141 						     WQ_MEM_RECLAIM,
142 						     0);
143 	if (!oct->check_db_wq[iq_no].wq) {
144 		vfree(iq->request_list);
145 		iq->request_list = NULL;
146 		lio_dma_free(oct, q_size, iq->base_addr, iq->base_addr_dma);
147 		dev_err(&oct->pci_dev->dev, "check db wq create failed for iq %d\n",
148 			iq_no);
149 		return 1;
150 	}
151 
152 	db_wq = &oct->check_db_wq[iq_no];
153 
154 	INIT_DELAYED_WORK(&db_wq->wk.work, check_db_timeout);
155 	db_wq->wk.ctxptr = oct;
156 	db_wq->wk.ctxul = iq_no;
157 	queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(1));
158 
159 	return 0;
160 }
161 
162 int octeon_delete_instr_queue(struct octeon_device *oct, u32 iq_no)
163 {
164 	u64 desc_size = 0, q_size;
165 	struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
166 
167 	cancel_delayed_work_sync(&oct->check_db_wq[iq_no].wk.work);
168 	destroy_workqueue(oct->check_db_wq[iq_no].wq);
169 
170 	if (OCTEON_CN6XXX(oct))
171 		desc_size =
172 		    CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn6xxx));
173 	else if (OCTEON_CN23XX_PF(oct))
174 		desc_size =
175 		    CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_pf));
176 	else if (OCTEON_CN23XX_VF(oct))
177 		desc_size =
178 		    CFG_GET_IQ_INSTR_TYPE(CHIP_CONF(oct, cn23xx_vf));
179 
180 	vfree(iq->request_list);
181 
182 	if (iq->base_addr) {
183 		q_size = iq->max_count * desc_size;
184 		lio_dma_free(oct, (u32)q_size, iq->base_addr,
185 			     iq->base_addr_dma);
186 		oct->io_qmask.iq &= ~(1ULL << iq_no);
187 		vfree(oct->instr_queue[iq_no]);
188 		oct->instr_queue[iq_no] = NULL;
189 		oct->num_iqs--;
190 		return 0;
191 	}
192 	return 1;
193 }
194 
195 /* Return 0 on success, 1 on failure */
196 int octeon_setup_iq(struct octeon_device *oct,
197 		    int ifidx,
198 		    int q_index,
199 		    union oct_txpciq txpciq,
200 		    u32 num_descs,
201 		    void *app_ctx)
202 {
203 	u32 iq_no = (u32)txpciq.s.q_no;
204 	int numa_node = dev_to_node(&oct->pci_dev->dev);
205 
206 	if (oct->instr_queue[iq_no]) {
207 		dev_dbg(&oct->pci_dev->dev, "IQ is in use. Cannot create the IQ: %d again\n",
208 			iq_no);
209 		oct->instr_queue[iq_no]->txpciq.u64 = txpciq.u64;
210 		oct->instr_queue[iq_no]->app_ctx = app_ctx;
211 		return 0;
212 	}
213 	oct->instr_queue[iq_no] =
214 	    vmalloc_node(sizeof(struct octeon_instr_queue), numa_node);
215 	if (!oct->instr_queue[iq_no])
216 		oct->instr_queue[iq_no] =
217 		    vmalloc(sizeof(struct octeon_instr_queue));
218 	if (!oct->instr_queue[iq_no])
219 		return 1;
220 
221 	memset(oct->instr_queue[iq_no], 0,
222 	       sizeof(struct octeon_instr_queue));
223 
224 	oct->instr_queue[iq_no]->q_index = q_index;
225 	oct->instr_queue[iq_no]->app_ctx = app_ctx;
226 	oct->instr_queue[iq_no]->ifidx = ifidx;
227 
228 	if (octeon_init_instr_queue(oct, txpciq, num_descs)) {
229 		vfree(oct->instr_queue[iq_no]);
230 		oct->instr_queue[iq_no] = NULL;
231 		return 1;
232 	}
233 
234 	oct->num_iqs++;
235 	if (oct->fn_list.enable_io_queues(oct))
236 		return 1;
237 
238 	return 0;
239 }
240 
241 int lio_wait_for_instr_fetch(struct octeon_device *oct)
242 {
243 	int i, retry = 1000, pending, instr_cnt = 0;
244 
245 	do {
246 		instr_cnt = 0;
247 
248 		for (i = 0; i < MAX_OCTEON_INSTR_QUEUES(oct); i++) {
249 			if (!(oct->io_qmask.iq & BIT_ULL(i)))
250 				continue;
251 			pending =
252 			    atomic_read(&oct->instr_queue[i]->instr_pending);
253 			if (pending)
254 				__check_db_timeout(oct, i);
255 			instr_cnt += pending;
256 		}
257 
258 		if (instr_cnt == 0)
259 			break;
260 
261 		schedule_timeout_uninterruptible(1);
262 
263 	} while (retry-- && instr_cnt);
264 
265 	return instr_cnt;
266 }
267 
268 static inline void
269 ring_doorbell(struct octeon_device *oct, struct octeon_instr_queue *iq)
270 {
271 	if (atomic_read(&oct->status) == OCT_DEV_RUNNING) {
272 		writel(iq->fill_cnt, iq->doorbell_reg);
273 		/* make sure doorbell write goes through */
274 		mmiowb();
275 		iq->fill_cnt = 0;
276 		iq->last_db_time = jiffies;
277 		return;
278 	}
279 }
280 
281 void
282 octeon_ring_doorbell_locked(struct octeon_device *oct, u32 iq_no)
283 {
284 	struct octeon_instr_queue *iq;
285 
286 	iq = oct->instr_queue[iq_no];
287 	spin_lock(&iq->post_lock);
288 	if (iq->fill_cnt)
289 		ring_doorbell(oct, iq);
290 	spin_unlock(&iq->post_lock);
291 }
292 
293 static inline void __copy_cmd_into_iq(struct octeon_instr_queue *iq,
294 				      u8 *cmd)
295 {
296 	u8 *iqptr, cmdsize;
297 
298 	cmdsize = ((iq->iqcmd_64B) ? 64 : 32);
299 	iqptr = iq->base_addr + (cmdsize * iq->host_write_index);
300 
301 	memcpy(iqptr, cmd, cmdsize);
302 }
303 
304 static inline struct iq_post_status
305 __post_command2(struct octeon_instr_queue *iq, u8 *cmd)
306 {
307 	struct iq_post_status st;
308 
309 	st.status = IQ_SEND_OK;
310 
311 	/* This ensures that the read index does not wrap around to the same
312 	 * position if queue gets full before Octeon could fetch any instr.
313 	 */
314 	if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 1)) {
315 		st.status = IQ_SEND_FAILED;
316 		st.index = -1;
317 		return st;
318 	}
319 
320 	if (atomic_read(&iq->instr_pending) >= (s32)(iq->max_count - 2))
321 		st.status = IQ_SEND_STOP;
322 
323 	__copy_cmd_into_iq(iq, cmd);
324 
325 	/* "index" is returned, host_write_index is modified. */
326 	st.index = iq->host_write_index;
327 	iq->host_write_index = incr_index(iq->host_write_index, 1,
328 					  iq->max_count);
329 	iq->fill_cnt++;
330 
331 	/* Flush the command into memory. We need to be sure the data is in
332 	 * memory before indicating that the instruction is pending.
333 	 */
334 	wmb();
335 
336 	atomic_inc(&iq->instr_pending);
337 
338 	return st;
339 }
340 
341 int
342 octeon_register_reqtype_free_fn(struct octeon_device *oct, int reqtype,
343 				void (*fn)(void *))
344 {
345 	if (reqtype > REQTYPE_LAST) {
346 		dev_err(&oct->pci_dev->dev, "%s: Invalid reqtype: %d\n",
347 			__func__, reqtype);
348 		return -EINVAL;
349 	}
350 
351 	reqtype_free_fn[oct->octeon_id][reqtype] = fn;
352 
353 	return 0;
354 }
355 
356 static inline void
357 __add_to_request_list(struct octeon_instr_queue *iq,
358 		      int idx, void *buf, int reqtype)
359 {
360 	iq->request_list[idx].buf = buf;
361 	iq->request_list[idx].reqtype = reqtype;
362 }
363 
364 /* Can only run in process context */
365 int
366 lio_process_iq_request_list(struct octeon_device *oct,
367 			    struct octeon_instr_queue *iq, u32 napi_budget)
368 {
369 	struct cavium_wq *cwq = &oct->dma_comp_wq;
370 	int reqtype;
371 	void *buf;
372 	u32 old = iq->flush_index;
373 	u32 inst_count = 0;
374 	unsigned int pkts_compl = 0, bytes_compl = 0;
375 	struct octeon_soft_command *sc;
376 	struct octeon_instr_irh *irh;
377 	unsigned long flags;
378 
379 	while (old != iq->octeon_read_index) {
380 		reqtype = iq->request_list[old].reqtype;
381 		buf     = iq->request_list[old].buf;
382 
383 		if (reqtype == REQTYPE_NONE)
384 			goto skip_this;
385 
386 		octeon_update_tx_completion_counters(buf, reqtype, &pkts_compl,
387 						     &bytes_compl);
388 
389 		switch (reqtype) {
390 		case REQTYPE_NORESP_NET:
391 		case REQTYPE_NORESP_NET_SG:
392 		case REQTYPE_RESP_NET_SG:
393 			reqtype_free_fn[oct->octeon_id][reqtype](buf);
394 			break;
395 		case REQTYPE_RESP_NET:
396 		case REQTYPE_SOFT_COMMAND:
397 			sc = buf;
398 
399 			if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct))
400 				irh = (struct octeon_instr_irh *)
401 					&sc->cmd.cmd3.irh;
402 			else
403 				irh = (struct octeon_instr_irh *)
404 					&sc->cmd.cmd2.irh;
405 			if (irh->rflag) {
406 				/* We're expecting a response from Octeon.
407 				 * It's up to lio_process_ordered_list() to
408 				 * process  sc. Add sc to the ordered soft
409 				 * command response list because we expect
410 				 * a response from Octeon.
411 				 */
412 				spin_lock_irqsave
413 					(&oct->response_list
414 					 [OCTEON_ORDERED_SC_LIST].lock,
415 					 flags);
416 				atomic_inc(&oct->response_list
417 					[OCTEON_ORDERED_SC_LIST].
418 					pending_req_count);
419 				list_add_tail(&sc->node, &oct->response_list
420 					[OCTEON_ORDERED_SC_LIST].head);
421 				spin_unlock_irqrestore
422 					(&oct->response_list
423 					 [OCTEON_ORDERED_SC_LIST].lock,
424 					 flags);
425 			} else {
426 				if (sc->callback) {
427 					/* This callback must not sleep */
428 					sc->callback(oct, OCTEON_REQUEST_DONE,
429 						     sc->callback_arg);
430 				}
431 			}
432 			break;
433 		default:
434 			dev_err(&oct->pci_dev->dev,
435 				"%s Unknown reqtype: %d buf: %p at idx %d\n",
436 				__func__, reqtype, buf, old);
437 		}
438 
439 		iq->request_list[old].buf = NULL;
440 		iq->request_list[old].reqtype = 0;
441 
442  skip_this:
443 		inst_count++;
444 		old = incr_index(old, 1, iq->max_count);
445 
446 		if ((napi_budget) && (inst_count >= napi_budget))
447 			break;
448 	}
449 	if (bytes_compl)
450 		octeon_report_tx_completion_to_bql(iq->app_ctx, pkts_compl,
451 						   bytes_compl);
452 	iq->flush_index = old;
453 
454 	if (atomic_read(&oct->response_list
455 			[OCTEON_ORDERED_SC_LIST].pending_req_count))
456 		queue_delayed_work(cwq->wq, &cwq->wk.work, msecs_to_jiffies(1));
457 
458 	return inst_count;
459 }
460 
461 /* Can only be called from process context */
462 int
463 octeon_flush_iq(struct octeon_device *oct, struct octeon_instr_queue *iq,
464 		u32 napi_budget)
465 {
466 	u32 inst_processed = 0;
467 	u32 tot_inst_processed = 0;
468 	int tx_done = 1;
469 
470 	if (!spin_trylock(&iq->iq_flush_running_lock))
471 		return tx_done;
472 
473 	spin_lock_bh(&iq->lock);
474 
475 	iq->octeon_read_index = oct->fn_list.update_iq_read_idx(iq);
476 
477 	do {
478 		/* Process any outstanding IQ packets. */
479 		if (iq->flush_index == iq->octeon_read_index)
480 			break;
481 
482 		if (napi_budget)
483 			inst_processed =
484 				lio_process_iq_request_list(oct, iq,
485 							    napi_budget -
486 							    tot_inst_processed);
487 		else
488 			inst_processed =
489 				lio_process_iq_request_list(oct, iq, 0);
490 
491 		if (inst_processed) {
492 			atomic_sub(inst_processed, &iq->instr_pending);
493 			iq->stats.instr_processed += inst_processed;
494 		}
495 
496 		tot_inst_processed += inst_processed;
497 	} while (tot_inst_processed < napi_budget);
498 
499 	if (napi_budget && (tot_inst_processed >= napi_budget))
500 		tx_done = 0;
501 
502 	iq->last_db_time = jiffies;
503 
504 	spin_unlock_bh(&iq->lock);
505 
506 	spin_unlock(&iq->iq_flush_running_lock);
507 
508 	return tx_done;
509 }
510 
511 /* Process instruction queue after timeout.
512  * This routine gets called from a workqueue or when removing the module.
513  */
514 static void __check_db_timeout(struct octeon_device *oct, u64 iq_no)
515 {
516 	struct octeon_instr_queue *iq;
517 	u64 next_time;
518 
519 	if (!oct)
520 		return;
521 
522 	iq = oct->instr_queue[iq_no];
523 	if (!iq)
524 		return;
525 
526 	/* return immediately, if no work pending */
527 	if (!atomic_read(&iq->instr_pending))
528 		return;
529 	/* If jiffies - last_db_time < db_timeout do nothing  */
530 	next_time = iq->last_db_time + iq->db_timeout;
531 	if (!time_after(jiffies, (unsigned long)next_time))
532 		return;
533 	iq->last_db_time = jiffies;
534 
535 	/* Flush the instruction queue */
536 	octeon_flush_iq(oct, iq, 0);
537 
538 	lio_enable_irq(NULL, iq);
539 }
540 
541 /* Called by the Poll thread at regular intervals to check the instruction
542  * queue for commands to be posted and for commands that were fetched by Octeon.
543  */
544 static void check_db_timeout(struct work_struct *work)
545 {
546 	struct cavium_wk *wk = (struct cavium_wk *)work;
547 	struct octeon_device *oct = (struct octeon_device *)wk->ctxptr;
548 	u64 iq_no = wk->ctxul;
549 	struct cavium_wq *db_wq = &oct->check_db_wq[iq_no];
550 	u32 delay = 10;
551 
552 	__check_db_timeout(oct, iq_no);
553 	queue_delayed_work(db_wq->wq, &db_wq->wk.work, msecs_to_jiffies(delay));
554 }
555 
556 int
557 octeon_send_command(struct octeon_device *oct, u32 iq_no,
558 		    u32 force_db, void *cmd, void *buf,
559 		    u32 datasize, u32 reqtype)
560 {
561 	int xmit_stopped;
562 	struct iq_post_status st;
563 	struct octeon_instr_queue *iq = oct->instr_queue[iq_no];
564 
565 	/* Get the lock and prevent other tasks and tx interrupt handler from
566 	 * running.
567 	 */
568 	spin_lock_bh(&iq->post_lock);
569 
570 	st = __post_command2(iq, cmd);
571 
572 	if (st.status != IQ_SEND_FAILED) {
573 		xmit_stopped = octeon_report_sent_bytes_to_bql(buf, reqtype);
574 		__add_to_request_list(iq, st.index, buf, reqtype);
575 		INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, bytes_sent, datasize);
576 		INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_posted, 1);
577 
578 		if (iq->fill_cnt >= MAX_OCTEON_FILL_COUNT || force_db ||
579 		    xmit_stopped || st.status == IQ_SEND_STOP)
580 			ring_doorbell(oct, iq);
581 	} else {
582 		INCR_INSTRQUEUE_PKT_COUNT(oct, iq_no, instr_dropped, 1);
583 	}
584 
585 	spin_unlock_bh(&iq->post_lock);
586 
587 	/* This is only done here to expedite packets being flushed
588 	 * for cases where there are no IQ completion interrupts.
589 	 */
590 
591 	return st.status;
592 }
593 
594 void
595 octeon_prepare_soft_command(struct octeon_device *oct,
596 			    struct octeon_soft_command *sc,
597 			    u8 opcode,
598 			    u8 subcode,
599 			    u32 irh_ossp,
600 			    u64 ossp0,
601 			    u64 ossp1)
602 {
603 	struct octeon_config *oct_cfg;
604 	struct octeon_instr_ih2 *ih2;
605 	struct octeon_instr_ih3 *ih3;
606 	struct octeon_instr_pki_ih3 *pki_ih3;
607 	struct octeon_instr_irh *irh;
608 	struct octeon_instr_rdp *rdp;
609 
610 	WARN_ON(opcode > 15);
611 	WARN_ON(subcode > 127);
612 
613 	oct_cfg = octeon_get_conf(oct);
614 
615 	if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
616 		ih3 = (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
617 
618 		ih3->pkind = oct->instr_queue[sc->iq_no]->txpciq.s.pkind;
619 
620 		pki_ih3 = (struct octeon_instr_pki_ih3 *)&sc->cmd.cmd3.pki_ih3;
621 
622 		pki_ih3->w           = 1;
623 		pki_ih3->raw         = 1;
624 		pki_ih3->utag        = 1;
625 		pki_ih3->uqpg        =
626 			oct->instr_queue[sc->iq_no]->txpciq.s.use_qpg;
627 		pki_ih3->utt         = 1;
628 		pki_ih3->tag     = LIO_CONTROL;
629 		pki_ih3->tagtype = ATOMIC_TAG;
630 		pki_ih3->qpg         =
631 			oct->instr_queue[sc->iq_no]->txpciq.s.ctrl_qpg;
632 
633 		pki_ih3->pm          = 0x7;
634 		pki_ih3->sl          = 8;
635 
636 		if (sc->datasize)
637 			ih3->dlengsz = sc->datasize;
638 
639 		irh            = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
640 		irh->opcode    = opcode;
641 		irh->subcode   = subcode;
642 
643 		/* opcode/subcode specific parameters (ossp) */
644 		irh->ossp       = irh_ossp;
645 		sc->cmd.cmd3.ossp[0] = ossp0;
646 		sc->cmd.cmd3.ossp[1] = ossp1;
647 
648 		if (sc->rdatasize) {
649 			rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd3.rdp;
650 			rdp->pcie_port = oct->pcie_port;
651 			rdp->rlen      = sc->rdatasize;
652 
653 			irh->rflag =  1;
654 			/*PKI IH3*/
655 			/* pki_ih3 irh+ossp[0]+ossp[1]+rdp+rptr = 48 bytes */
656 			ih3->fsz    = LIO_SOFTCMDRESP_IH3;
657 		} else {
658 			irh->rflag =  0;
659 			/*PKI IH3*/
660 			/* pki_h3 + irh + ossp[0] + ossp[1] = 32 bytes */
661 			ih3->fsz    = LIO_PCICMD_O3;
662 		}
663 
664 	} else {
665 		ih2          = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
666 		ih2->tagtype = ATOMIC_TAG;
667 		ih2->tag     = LIO_CONTROL;
668 		ih2->raw     = 1;
669 		ih2->grp     = CFG_GET_CTRL_Q_GRP(oct_cfg);
670 
671 		if (sc->datasize) {
672 			ih2->dlengsz = sc->datasize;
673 			ih2->rs = 1;
674 		}
675 
676 		irh            = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
677 		irh->opcode    = opcode;
678 		irh->subcode   = subcode;
679 
680 		/* opcode/subcode specific parameters (ossp) */
681 		irh->ossp       = irh_ossp;
682 		sc->cmd.cmd2.ossp[0] = ossp0;
683 		sc->cmd.cmd2.ossp[1] = ossp1;
684 
685 		if (sc->rdatasize) {
686 			rdp = (struct octeon_instr_rdp *)&sc->cmd.cmd2.rdp;
687 			rdp->pcie_port = oct->pcie_port;
688 			rdp->rlen      = sc->rdatasize;
689 
690 			irh->rflag =  1;
691 			/* irh+ossp[0]+ossp[1]+rdp+rptr = 40 bytes */
692 			ih2->fsz   = LIO_SOFTCMDRESP_IH2;
693 		} else {
694 			irh->rflag =  0;
695 			/* irh + ossp[0] + ossp[1] = 24 bytes */
696 			ih2->fsz   = LIO_PCICMD_O2;
697 		}
698 	}
699 }
700 
701 int octeon_send_soft_command(struct octeon_device *oct,
702 			     struct octeon_soft_command *sc)
703 {
704 	struct octeon_instr_ih2 *ih2;
705 	struct octeon_instr_ih3 *ih3;
706 	struct octeon_instr_irh *irh;
707 	u32 len;
708 
709 	if (OCTEON_CN23XX_PF(oct) || OCTEON_CN23XX_VF(oct)) {
710 		ih3 =  (struct octeon_instr_ih3 *)&sc->cmd.cmd3.ih3;
711 		if (ih3->dlengsz) {
712 			WARN_ON(!sc->dmadptr);
713 			sc->cmd.cmd3.dptr = sc->dmadptr;
714 		}
715 		irh = (struct octeon_instr_irh *)&sc->cmd.cmd3.irh;
716 		if (irh->rflag) {
717 			WARN_ON(!sc->dmarptr);
718 			WARN_ON(!sc->status_word);
719 			*sc->status_word = COMPLETION_WORD_INIT;
720 			sc->cmd.cmd3.rptr = sc->dmarptr;
721 		}
722 		len = (u32)ih3->dlengsz;
723 	} else {
724 		ih2 = (struct octeon_instr_ih2 *)&sc->cmd.cmd2.ih2;
725 		if (ih2->dlengsz) {
726 			WARN_ON(!sc->dmadptr);
727 			sc->cmd.cmd2.dptr = sc->dmadptr;
728 		}
729 		irh = (struct octeon_instr_irh *)&sc->cmd.cmd2.irh;
730 		if (irh->rflag) {
731 			WARN_ON(!sc->dmarptr);
732 			WARN_ON(!sc->status_word);
733 			*sc->status_word = COMPLETION_WORD_INIT;
734 			sc->cmd.cmd2.rptr = sc->dmarptr;
735 		}
736 		len = (u32)ih2->dlengsz;
737 	}
738 
739 	if (sc->wait_time)
740 		sc->timeout = jiffies + sc->wait_time;
741 
742 	return (octeon_send_command(oct, sc->iq_no, 1, &sc->cmd, sc,
743 				    len, REQTYPE_SOFT_COMMAND));
744 }
745 
746 int octeon_setup_sc_buffer_pool(struct octeon_device *oct)
747 {
748 	int i;
749 	u64 dma_addr;
750 	struct octeon_soft_command *sc;
751 
752 	INIT_LIST_HEAD(&oct->sc_buf_pool.head);
753 	spin_lock_init(&oct->sc_buf_pool.lock);
754 	atomic_set(&oct->sc_buf_pool.alloc_buf_count, 0);
755 
756 	for (i = 0; i < MAX_SOFT_COMMAND_BUFFERS; i++) {
757 		sc = (struct octeon_soft_command *)
758 			lio_dma_alloc(oct,
759 				      SOFT_COMMAND_BUFFER_SIZE,
760 					  (dma_addr_t *)&dma_addr);
761 		if (!sc) {
762 			octeon_free_sc_buffer_pool(oct);
763 			return 1;
764 		}
765 
766 		sc->dma_addr = dma_addr;
767 		sc->size = SOFT_COMMAND_BUFFER_SIZE;
768 
769 		list_add_tail(&sc->node, &oct->sc_buf_pool.head);
770 	}
771 
772 	return 0;
773 }
774 
775 int octeon_free_sc_buffer_pool(struct octeon_device *oct)
776 {
777 	struct list_head *tmp, *tmp2;
778 	struct octeon_soft_command *sc;
779 
780 	spin_lock_bh(&oct->sc_buf_pool.lock);
781 
782 	list_for_each_safe(tmp, tmp2, &oct->sc_buf_pool.head) {
783 		list_del(tmp);
784 
785 		sc = (struct octeon_soft_command *)tmp;
786 
787 		lio_dma_free(oct, sc->size, sc, sc->dma_addr);
788 	}
789 
790 	INIT_LIST_HEAD(&oct->sc_buf_pool.head);
791 
792 	spin_unlock_bh(&oct->sc_buf_pool.lock);
793 
794 	return 0;
795 }
796 
797 struct octeon_soft_command *octeon_alloc_soft_command(struct octeon_device *oct,
798 						      u32 datasize,
799 						      u32 rdatasize,
800 						      u32 ctxsize)
801 {
802 	u64 dma_addr;
803 	u32 size;
804 	u32 offset = sizeof(struct octeon_soft_command);
805 	struct octeon_soft_command *sc = NULL;
806 	struct list_head *tmp;
807 
808 	WARN_ON((offset + datasize + rdatasize + ctxsize) >
809 	       SOFT_COMMAND_BUFFER_SIZE);
810 
811 	spin_lock_bh(&oct->sc_buf_pool.lock);
812 
813 	if (list_empty(&oct->sc_buf_pool.head)) {
814 		spin_unlock_bh(&oct->sc_buf_pool.lock);
815 		return NULL;
816 	}
817 
818 	list_for_each(tmp, &oct->sc_buf_pool.head)
819 		break;
820 
821 	list_del(tmp);
822 
823 	atomic_inc(&oct->sc_buf_pool.alloc_buf_count);
824 
825 	spin_unlock_bh(&oct->sc_buf_pool.lock);
826 
827 	sc = (struct octeon_soft_command *)tmp;
828 
829 	dma_addr = sc->dma_addr;
830 	size = sc->size;
831 
832 	memset(sc, 0, sc->size);
833 
834 	sc->dma_addr = dma_addr;
835 	sc->size = size;
836 
837 	if (ctxsize) {
838 		sc->ctxptr = (u8 *)sc + offset;
839 		sc->ctxsize = ctxsize;
840 	}
841 
842 	/* Start data at 128 byte boundary */
843 	offset = (offset + ctxsize + 127) & 0xffffff80;
844 
845 	if (datasize) {
846 		sc->virtdptr = (u8 *)sc + offset;
847 		sc->dmadptr = dma_addr + offset;
848 		sc->datasize = datasize;
849 	}
850 
851 	/* Start rdata at 128 byte boundary */
852 	offset = (offset + datasize + 127) & 0xffffff80;
853 
854 	if (rdatasize) {
855 		WARN_ON(rdatasize < 16);
856 		sc->virtrptr = (u8 *)sc + offset;
857 		sc->dmarptr = dma_addr + offset;
858 		sc->rdatasize = rdatasize;
859 		sc->status_word = (u64 *)((u8 *)(sc->virtrptr) + rdatasize - 8);
860 	}
861 
862 	return sc;
863 }
864 
865 void octeon_free_soft_command(struct octeon_device *oct,
866 			      struct octeon_soft_command *sc)
867 {
868 	spin_lock_bh(&oct->sc_buf_pool.lock);
869 
870 	list_add_tail(&sc->node, &oct->sc_buf_pool.head);
871 
872 	atomic_dec(&oct->sc_buf_pool.alloc_buf_count);
873 
874 	spin_unlock_bh(&oct->sc_buf_pool.lock);
875 }
876