xref: /linux/drivers/net/ethernet/broadcom/bnx2x/bnx2x_cmn.c (revision fcc8487d477a3452a1d0ccbdd4c5e0e1e3cb8bed)
1 /* bnx2x_cmn.c: QLogic Everest network driver.
2  *
3  * Copyright (c) 2007-2013 Broadcom Corporation
4  * Copyright (c) 2014 QLogic Corporation
5  * All rights reserved
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License as published by
9  * the Free Software Foundation.
10  *
11  * Maintained by: Ariel Elior <ariel.elior@qlogic.com>
12  * Written by: Eliezer Tamir
13  * Based on code from Michael Chan's bnx2 driver
14  * UDP CSUM errata workaround by Arik Gendelman
15  * Slowpath and fastpath rework by Vladislav Zolotarov
16  * Statistics and Link management by Yitchak Gertner
17  *
18  */
19 
20 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
21 
22 #include <linux/etherdevice.h>
23 #include <linux/if_vlan.h>
24 #include <linux/interrupt.h>
25 #include <linux/ip.h>
26 #include <linux/crash_dump.h>
27 #include <net/tcp.h>
28 #include <net/ipv6.h>
29 #include <net/ip6_checksum.h>
30 #include <net/busy_poll.h>
31 #include <linux/prefetch.h>
32 #include "bnx2x_cmn.h"
33 #include "bnx2x_init.h"
34 #include "bnx2x_sp.h"
35 
36 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp);
37 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp);
38 static int bnx2x_alloc_fp_mem(struct bnx2x *bp);
39 static int bnx2x_poll(struct napi_struct *napi, int budget);
40 
41 static void bnx2x_add_all_napi_cnic(struct bnx2x *bp)
42 {
43 	int i;
44 
45 	/* Add NAPI objects */
46 	for_each_rx_queue_cnic(bp, i) {
47 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
48 			       bnx2x_poll, NAPI_POLL_WEIGHT);
49 	}
50 }
51 
52 static void bnx2x_add_all_napi(struct bnx2x *bp)
53 {
54 	int i;
55 
56 	/* Add NAPI objects */
57 	for_each_eth_queue(bp, i) {
58 		netif_napi_add(bp->dev, &bnx2x_fp(bp, i, napi),
59 			       bnx2x_poll, NAPI_POLL_WEIGHT);
60 	}
61 }
62 
63 static int bnx2x_calc_num_queues(struct bnx2x *bp)
64 {
65 	int nq = bnx2x_num_queues ? : netif_get_num_default_rss_queues();
66 
67 	/* Reduce memory usage in kdump environment by using only one queue */
68 	if (is_kdump_kernel())
69 		nq = 1;
70 
71 	nq = clamp(nq, 1, BNX2X_MAX_QUEUES(bp));
72 	return nq;
73 }
74 
75 /**
76  * bnx2x_move_fp - move content of the fastpath structure.
77  *
78  * @bp:		driver handle
79  * @from:	source FP index
80  * @to:		destination FP index
81  *
82  * Makes sure the contents of the bp->fp[to].napi is kept
83  * intact. This is done by first copying the napi struct from
84  * the target to the source, and then mem copying the entire
85  * source onto the target. Update txdata pointers and related
86  * content.
87  */
88 static inline void bnx2x_move_fp(struct bnx2x *bp, int from, int to)
89 {
90 	struct bnx2x_fastpath *from_fp = &bp->fp[from];
91 	struct bnx2x_fastpath *to_fp = &bp->fp[to];
92 	struct bnx2x_sp_objs *from_sp_objs = &bp->sp_objs[from];
93 	struct bnx2x_sp_objs *to_sp_objs = &bp->sp_objs[to];
94 	struct bnx2x_fp_stats *from_fp_stats = &bp->fp_stats[from];
95 	struct bnx2x_fp_stats *to_fp_stats = &bp->fp_stats[to];
96 	int old_max_eth_txqs, new_max_eth_txqs;
97 	int old_txdata_index = 0, new_txdata_index = 0;
98 	struct bnx2x_agg_info *old_tpa_info = to_fp->tpa_info;
99 
100 	/* Copy the NAPI object as it has been already initialized */
101 	from_fp->napi = to_fp->napi;
102 
103 	/* Move bnx2x_fastpath contents */
104 	memcpy(to_fp, from_fp, sizeof(*to_fp));
105 	to_fp->index = to;
106 
107 	/* Retain the tpa_info of the original `to' version as we don't want
108 	 * 2 FPs to contain the same tpa_info pointer.
109 	 */
110 	to_fp->tpa_info = old_tpa_info;
111 
112 	/* move sp_objs contents as well, as their indices match fp ones */
113 	memcpy(to_sp_objs, from_sp_objs, sizeof(*to_sp_objs));
114 
115 	/* move fp_stats contents as well, as their indices match fp ones */
116 	memcpy(to_fp_stats, from_fp_stats, sizeof(*to_fp_stats));
117 
118 	/* Update txdata pointers in fp and move txdata content accordingly:
119 	 * Each fp consumes 'max_cos' txdata structures, so the index should be
120 	 * decremented by max_cos x delta.
121 	 */
122 
123 	old_max_eth_txqs = BNX2X_NUM_ETH_QUEUES(bp) * (bp)->max_cos;
124 	new_max_eth_txqs = (BNX2X_NUM_ETH_QUEUES(bp) - from + to) *
125 				(bp)->max_cos;
126 	if (from == FCOE_IDX(bp)) {
127 		old_txdata_index = old_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
128 		new_txdata_index = new_max_eth_txqs + FCOE_TXQ_IDX_OFFSET;
129 	}
130 
131 	memcpy(&bp->bnx2x_txq[new_txdata_index],
132 	       &bp->bnx2x_txq[old_txdata_index],
133 	       sizeof(struct bnx2x_fp_txdata));
134 	to_fp->txdata_ptr[0] = &bp->bnx2x_txq[new_txdata_index];
135 }
136 
137 /**
138  * bnx2x_fill_fw_str - Fill buffer with FW version string.
139  *
140  * @bp:        driver handle
141  * @buf:       character buffer to fill with the fw name
142  * @buf_len:   length of the above buffer
143  *
144  */
145 void bnx2x_fill_fw_str(struct bnx2x *bp, char *buf, size_t buf_len)
146 {
147 	if (IS_PF(bp)) {
148 		u8 phy_fw_ver[PHY_FW_VER_LEN];
149 
150 		phy_fw_ver[0] = '\0';
151 		bnx2x_get_ext_phy_fw_version(&bp->link_params,
152 					     phy_fw_ver, PHY_FW_VER_LEN);
153 		strlcpy(buf, bp->fw_ver, buf_len);
154 		snprintf(buf + strlen(bp->fw_ver), 32 - strlen(bp->fw_ver),
155 			 "bc %d.%d.%d%s%s",
156 			 (bp->common.bc_ver & 0xff0000) >> 16,
157 			 (bp->common.bc_ver & 0xff00) >> 8,
158 			 (bp->common.bc_ver & 0xff),
159 			 ((phy_fw_ver[0] != '\0') ? " phy " : ""), phy_fw_ver);
160 	} else {
161 		bnx2x_vf_fill_fw_str(bp, buf, buf_len);
162 	}
163 }
164 
165 /**
166  * bnx2x_shrink_eth_fp - guarantees fastpath structures stay intact
167  *
168  * @bp:	driver handle
169  * @delta:	number of eth queues which were not allocated
170  */
171 static void bnx2x_shrink_eth_fp(struct bnx2x *bp, int delta)
172 {
173 	int i, cos, old_eth_num = BNX2X_NUM_ETH_QUEUES(bp);
174 
175 	/* Queue pointer cannot be re-set on an fp-basis, as moving pointer
176 	 * backward along the array could cause memory to be overridden
177 	 */
178 	for (cos = 1; cos < bp->max_cos; cos++) {
179 		for (i = 0; i < old_eth_num - delta; i++) {
180 			struct bnx2x_fastpath *fp = &bp->fp[i];
181 			int new_idx = cos * (old_eth_num - delta) + i;
182 
183 			memcpy(&bp->bnx2x_txq[new_idx], fp->txdata_ptr[cos],
184 			       sizeof(struct bnx2x_fp_txdata));
185 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[new_idx];
186 		}
187 	}
188 }
189 
190 int bnx2x_load_count[2][3] = { {0} }; /* per-path: 0-common, 1-port0, 2-port1 */
191 
192 /* free skb in the packet ring at pos idx
193  * return idx of last bd freed
194  */
195 static u16 bnx2x_free_tx_pkt(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata,
196 			     u16 idx, unsigned int *pkts_compl,
197 			     unsigned int *bytes_compl)
198 {
199 	struct sw_tx_bd *tx_buf = &txdata->tx_buf_ring[idx];
200 	struct eth_tx_start_bd *tx_start_bd;
201 	struct eth_tx_bd *tx_data_bd;
202 	struct sk_buff *skb = tx_buf->skb;
203 	u16 bd_idx = TX_BD(tx_buf->first_bd), new_cons;
204 	int nbd;
205 	u16 split_bd_len = 0;
206 
207 	/* prefetch skb end pointer to speedup dev_kfree_skb() */
208 	prefetch(&skb->end);
209 
210 	DP(NETIF_MSG_TX_DONE, "fp[%d]: pkt_idx %d  buff @(%p)->skb %p\n",
211 	   txdata->txq_index, idx, tx_buf, skb);
212 
213 	tx_start_bd = &txdata->tx_desc_ring[bd_idx].start_bd;
214 
215 	nbd = le16_to_cpu(tx_start_bd->nbd) - 1;
216 #ifdef BNX2X_STOP_ON_ERROR
217 	if ((nbd - 1) > (MAX_SKB_FRAGS + 2)) {
218 		BNX2X_ERR("BAD nbd!\n");
219 		bnx2x_panic();
220 	}
221 #endif
222 	new_cons = nbd + tx_buf->first_bd;
223 
224 	/* Get the next bd */
225 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
226 
227 	/* Skip a parse bd... */
228 	--nbd;
229 	bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
230 
231 	if (tx_buf->flags & BNX2X_HAS_SECOND_PBD) {
232 		/* Skip second parse bd... */
233 		--nbd;
234 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
235 	}
236 
237 	/* TSO headers+data bds share a common mapping. See bnx2x_tx_split() */
238 	if (tx_buf->flags & BNX2X_TSO_SPLIT_BD) {
239 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
240 		split_bd_len = BD_UNMAP_LEN(tx_data_bd);
241 		--nbd;
242 		bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
243 	}
244 
245 	/* unmap first bd */
246 	dma_unmap_single(&bp->pdev->dev, BD_UNMAP_ADDR(tx_start_bd),
247 			 BD_UNMAP_LEN(tx_start_bd) + split_bd_len,
248 			 DMA_TO_DEVICE);
249 
250 	/* now free frags */
251 	while (nbd > 0) {
252 
253 		tx_data_bd = &txdata->tx_desc_ring[bd_idx].reg_bd;
254 		dma_unmap_page(&bp->pdev->dev, BD_UNMAP_ADDR(tx_data_bd),
255 			       BD_UNMAP_LEN(tx_data_bd), DMA_TO_DEVICE);
256 		if (--nbd)
257 			bd_idx = TX_BD(NEXT_TX_IDX(bd_idx));
258 	}
259 
260 	/* release skb */
261 	WARN_ON(!skb);
262 	if (likely(skb)) {
263 		(*pkts_compl)++;
264 		(*bytes_compl) += skb->len;
265 		dev_kfree_skb_any(skb);
266 	}
267 
268 	tx_buf->first_bd = 0;
269 	tx_buf->skb = NULL;
270 
271 	return new_cons;
272 }
273 
274 int bnx2x_tx_int(struct bnx2x *bp, struct bnx2x_fp_txdata *txdata)
275 {
276 	struct netdev_queue *txq;
277 	u16 hw_cons, sw_cons, bd_cons = txdata->tx_bd_cons;
278 	unsigned int pkts_compl = 0, bytes_compl = 0;
279 
280 #ifdef BNX2X_STOP_ON_ERROR
281 	if (unlikely(bp->panic))
282 		return -1;
283 #endif
284 
285 	txq = netdev_get_tx_queue(bp->dev, txdata->txq_index);
286 	hw_cons = le16_to_cpu(*txdata->tx_cons_sb);
287 	sw_cons = txdata->tx_pkt_cons;
288 
289 	while (sw_cons != hw_cons) {
290 		u16 pkt_cons;
291 
292 		pkt_cons = TX_BD(sw_cons);
293 
294 		DP(NETIF_MSG_TX_DONE,
295 		   "queue[%d]: hw_cons %u  sw_cons %u  pkt_cons %u\n",
296 		   txdata->txq_index, hw_cons, sw_cons, pkt_cons);
297 
298 		bd_cons = bnx2x_free_tx_pkt(bp, txdata, pkt_cons,
299 					    &pkts_compl, &bytes_compl);
300 
301 		sw_cons++;
302 	}
303 
304 	netdev_tx_completed_queue(txq, pkts_compl, bytes_compl);
305 
306 	txdata->tx_pkt_cons = sw_cons;
307 	txdata->tx_bd_cons = bd_cons;
308 
309 	/* Need to make the tx_bd_cons update visible to start_xmit()
310 	 * before checking for netif_tx_queue_stopped().  Without the
311 	 * memory barrier, there is a small possibility that
312 	 * start_xmit() will miss it and cause the queue to be stopped
313 	 * forever.
314 	 * On the other hand we need an rmb() here to ensure the proper
315 	 * ordering of bit testing in the following
316 	 * netif_tx_queue_stopped(txq) call.
317 	 */
318 	smp_mb();
319 
320 	if (unlikely(netif_tx_queue_stopped(txq))) {
321 		/* Taking tx_lock() is needed to prevent re-enabling the queue
322 		 * while it's empty. This could have happen if rx_action() gets
323 		 * suspended in bnx2x_tx_int() after the condition before
324 		 * netif_tx_wake_queue(), while tx_action (bnx2x_start_xmit()):
325 		 *
326 		 * stops the queue->sees fresh tx_bd_cons->releases the queue->
327 		 * sends some packets consuming the whole queue again->
328 		 * stops the queue
329 		 */
330 
331 		__netif_tx_lock(txq, smp_processor_id());
332 
333 		if ((netif_tx_queue_stopped(txq)) &&
334 		    (bp->state == BNX2X_STATE_OPEN) &&
335 		    (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT))
336 			netif_tx_wake_queue(txq);
337 
338 		__netif_tx_unlock(txq);
339 	}
340 	return 0;
341 }
342 
343 static inline void bnx2x_update_last_max_sge(struct bnx2x_fastpath *fp,
344 					     u16 idx)
345 {
346 	u16 last_max = fp->last_max_sge;
347 
348 	if (SUB_S16(idx, last_max) > 0)
349 		fp->last_max_sge = idx;
350 }
351 
352 static inline void bnx2x_update_sge_prod(struct bnx2x_fastpath *fp,
353 					 u16 sge_len,
354 					 struct eth_end_agg_rx_cqe *cqe)
355 {
356 	struct bnx2x *bp = fp->bp;
357 	u16 last_max, last_elem, first_elem;
358 	u16 delta = 0;
359 	u16 i;
360 
361 	if (!sge_len)
362 		return;
363 
364 	/* First mark all used pages */
365 	for (i = 0; i < sge_len; i++)
366 		BIT_VEC64_CLEAR_BIT(fp->sge_mask,
367 			RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[i])));
368 
369 	DP(NETIF_MSG_RX_STATUS, "fp_cqe->sgl[%d] = %d\n",
370 	   sge_len - 1, le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
371 
372 	/* Here we assume that the last SGE index is the biggest */
373 	prefetch((void *)(fp->sge_mask));
374 	bnx2x_update_last_max_sge(fp,
375 		le16_to_cpu(cqe->sgl_or_raw_data.sgl[sge_len - 1]));
376 
377 	last_max = RX_SGE(fp->last_max_sge);
378 	last_elem = last_max >> BIT_VEC64_ELEM_SHIFT;
379 	first_elem = RX_SGE(fp->rx_sge_prod) >> BIT_VEC64_ELEM_SHIFT;
380 
381 	/* If ring is not full */
382 	if (last_elem + 1 != first_elem)
383 		last_elem++;
384 
385 	/* Now update the prod */
386 	for (i = first_elem; i != last_elem; i = NEXT_SGE_MASK_ELEM(i)) {
387 		if (likely(fp->sge_mask[i]))
388 			break;
389 
390 		fp->sge_mask[i] = BIT_VEC64_ELEM_ONE_MASK;
391 		delta += BIT_VEC64_ELEM_SZ;
392 	}
393 
394 	if (delta > 0) {
395 		fp->rx_sge_prod += delta;
396 		/* clear page-end entries */
397 		bnx2x_clear_sge_mask_next_elems(fp);
398 	}
399 
400 	DP(NETIF_MSG_RX_STATUS,
401 	   "fp->last_max_sge = %d  fp->rx_sge_prod = %d\n",
402 	   fp->last_max_sge, fp->rx_sge_prod);
403 }
404 
405 /* Get Toeplitz hash value in the skb using the value from the
406  * CQE (calculated by HW).
407  */
408 static u32 bnx2x_get_rxhash(const struct bnx2x *bp,
409 			    const struct eth_fast_path_rx_cqe *cqe,
410 			    enum pkt_hash_types *rxhash_type)
411 {
412 	/* Get Toeplitz hash from CQE */
413 	if ((bp->dev->features & NETIF_F_RXHASH) &&
414 	    (cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_FLG)) {
415 		enum eth_rss_hash_type htype;
416 
417 		htype = cqe->status_flags & ETH_FAST_PATH_RX_CQE_RSS_HASH_TYPE;
418 		*rxhash_type = ((htype == TCP_IPV4_HASH_TYPE) ||
419 				(htype == TCP_IPV6_HASH_TYPE)) ?
420 			       PKT_HASH_TYPE_L4 : PKT_HASH_TYPE_L3;
421 
422 		return le32_to_cpu(cqe->rss_hash_result);
423 	}
424 	*rxhash_type = PKT_HASH_TYPE_NONE;
425 	return 0;
426 }
427 
428 static void bnx2x_tpa_start(struct bnx2x_fastpath *fp, u16 queue,
429 			    u16 cons, u16 prod,
430 			    struct eth_fast_path_rx_cqe *cqe)
431 {
432 	struct bnx2x *bp = fp->bp;
433 	struct sw_rx_bd *cons_rx_buf = &fp->rx_buf_ring[cons];
434 	struct sw_rx_bd *prod_rx_buf = &fp->rx_buf_ring[prod];
435 	struct eth_rx_bd *prod_bd = &fp->rx_desc_ring[prod];
436 	dma_addr_t mapping;
437 	struct bnx2x_agg_info *tpa_info = &fp->tpa_info[queue];
438 	struct sw_rx_bd *first_buf = &tpa_info->first_buf;
439 
440 	/* print error if current state != stop */
441 	if (tpa_info->tpa_state != BNX2X_TPA_STOP)
442 		BNX2X_ERR("start of bin not in stop [%d]\n", queue);
443 
444 	/* Try to map an empty data buffer from the aggregation info  */
445 	mapping = dma_map_single(&bp->pdev->dev,
446 				 first_buf->data + NET_SKB_PAD,
447 				 fp->rx_buf_size, DMA_FROM_DEVICE);
448 	/*
449 	 *  ...if it fails - move the skb from the consumer to the producer
450 	 *  and set the current aggregation state as ERROR to drop it
451 	 *  when TPA_STOP arrives.
452 	 */
453 
454 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
455 		/* Move the BD from the consumer to the producer */
456 		bnx2x_reuse_rx_data(fp, cons, prod);
457 		tpa_info->tpa_state = BNX2X_TPA_ERROR;
458 		return;
459 	}
460 
461 	/* move empty data from pool to prod */
462 	prod_rx_buf->data = first_buf->data;
463 	dma_unmap_addr_set(prod_rx_buf, mapping, mapping);
464 	/* point prod_bd to new data */
465 	prod_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
466 	prod_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
467 
468 	/* move partial skb from cons to pool (don't unmap yet) */
469 	*first_buf = *cons_rx_buf;
470 
471 	/* mark bin state as START */
472 	tpa_info->parsing_flags =
473 		le16_to_cpu(cqe->pars_flags.flags);
474 	tpa_info->vlan_tag = le16_to_cpu(cqe->vlan_tag);
475 	tpa_info->tpa_state = BNX2X_TPA_START;
476 	tpa_info->len_on_bd = le16_to_cpu(cqe->len_on_bd);
477 	tpa_info->placement_offset = cqe->placement_offset;
478 	tpa_info->rxhash = bnx2x_get_rxhash(bp, cqe, &tpa_info->rxhash_type);
479 	if (fp->mode == TPA_MODE_GRO) {
480 		u16 gro_size = le16_to_cpu(cqe->pkt_len_or_gro_seg_len);
481 		tpa_info->full_page = SGE_PAGES / gro_size * gro_size;
482 		tpa_info->gro_size = gro_size;
483 	}
484 
485 #ifdef BNX2X_STOP_ON_ERROR
486 	fp->tpa_queue_used |= (1 << queue);
487 	DP(NETIF_MSG_RX_STATUS, "fp->tpa_queue_used = 0x%llx\n",
488 	   fp->tpa_queue_used);
489 #endif
490 }
491 
492 /* Timestamp option length allowed for TPA aggregation:
493  *
494  *		nop nop kind length echo val
495  */
496 #define TPA_TSTAMP_OPT_LEN	12
497 /**
498  * bnx2x_set_gro_params - compute GRO values
499  *
500  * @skb:		packet skb
501  * @parsing_flags:	parsing flags from the START CQE
502  * @len_on_bd:		total length of the first packet for the
503  *			aggregation.
504  * @pkt_len:		length of all segments
505  *
506  * Approximate value of the MSS for this aggregation calculated using
507  * the first packet of it.
508  * Compute number of aggregated segments, and gso_type.
509  */
510 static void bnx2x_set_gro_params(struct sk_buff *skb, u16 parsing_flags,
511 				 u16 len_on_bd, unsigned int pkt_len,
512 				 u16 num_of_coalesced_segs)
513 {
514 	/* TPA aggregation won't have either IP options or TCP options
515 	 * other than timestamp or IPv6 extension headers.
516 	 */
517 	u16 hdrs_len = ETH_HLEN + sizeof(struct tcphdr);
518 
519 	if (GET_FLAG(parsing_flags, PARSING_FLAGS_OVER_ETHERNET_PROTOCOL) ==
520 	    PRS_FLAG_OVERETH_IPV6) {
521 		hdrs_len += sizeof(struct ipv6hdr);
522 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV6;
523 	} else {
524 		hdrs_len += sizeof(struct iphdr);
525 		skb_shinfo(skb)->gso_type = SKB_GSO_TCPV4;
526 	}
527 
528 	/* Check if there was a TCP timestamp, if there is it's will
529 	 * always be 12 bytes length: nop nop kind length echo val.
530 	 *
531 	 * Otherwise FW would close the aggregation.
532 	 */
533 	if (parsing_flags & PARSING_FLAGS_TIME_STAMP_EXIST_FLAG)
534 		hdrs_len += TPA_TSTAMP_OPT_LEN;
535 
536 	skb_shinfo(skb)->gso_size = len_on_bd - hdrs_len;
537 
538 	/* tcp_gro_complete() will copy NAPI_GRO_CB(skb)->count
539 	 * to skb_shinfo(skb)->gso_segs
540 	 */
541 	NAPI_GRO_CB(skb)->count = num_of_coalesced_segs;
542 }
543 
544 static int bnx2x_alloc_rx_sge(struct bnx2x *bp, struct bnx2x_fastpath *fp,
545 			      u16 index, gfp_t gfp_mask)
546 {
547 	struct sw_rx_page *sw_buf = &fp->rx_page_ring[index];
548 	struct eth_rx_sge *sge = &fp->rx_sge_ring[index];
549 	struct bnx2x_alloc_pool *pool = &fp->page_pool;
550 	dma_addr_t mapping;
551 
552 	if (!pool->page) {
553 		pool->page = alloc_pages(gfp_mask, PAGES_PER_SGE_SHIFT);
554 		if (unlikely(!pool->page))
555 			return -ENOMEM;
556 
557 		pool->offset = 0;
558 	}
559 
560 	mapping = dma_map_page(&bp->pdev->dev, pool->page,
561 			       pool->offset, SGE_PAGE_SIZE, DMA_FROM_DEVICE);
562 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
563 		BNX2X_ERR("Can't map sge\n");
564 		return -ENOMEM;
565 	}
566 
567 	sw_buf->page = pool->page;
568 	sw_buf->offset = pool->offset;
569 
570 	dma_unmap_addr_set(sw_buf, mapping, mapping);
571 
572 	sge->addr_hi = cpu_to_le32(U64_HI(mapping));
573 	sge->addr_lo = cpu_to_le32(U64_LO(mapping));
574 
575 	pool->offset += SGE_PAGE_SIZE;
576 	if (PAGE_SIZE - pool->offset >= SGE_PAGE_SIZE)
577 		get_page(pool->page);
578 	else
579 		pool->page = NULL;
580 	return 0;
581 }
582 
583 static int bnx2x_fill_frag_skb(struct bnx2x *bp, struct bnx2x_fastpath *fp,
584 			       struct bnx2x_agg_info *tpa_info,
585 			       u16 pages,
586 			       struct sk_buff *skb,
587 			       struct eth_end_agg_rx_cqe *cqe,
588 			       u16 cqe_idx)
589 {
590 	struct sw_rx_page *rx_pg, old_rx_pg;
591 	u32 i, frag_len, frag_size;
592 	int err, j, frag_id = 0;
593 	u16 len_on_bd = tpa_info->len_on_bd;
594 	u16 full_page = 0, gro_size = 0;
595 
596 	frag_size = le16_to_cpu(cqe->pkt_len) - len_on_bd;
597 
598 	if (fp->mode == TPA_MODE_GRO) {
599 		gro_size = tpa_info->gro_size;
600 		full_page = tpa_info->full_page;
601 	}
602 
603 	/* This is needed in order to enable forwarding support */
604 	if (frag_size)
605 		bnx2x_set_gro_params(skb, tpa_info->parsing_flags, len_on_bd,
606 				     le16_to_cpu(cqe->pkt_len),
607 				     le16_to_cpu(cqe->num_of_coalesced_segs));
608 
609 #ifdef BNX2X_STOP_ON_ERROR
610 	if (pages > min_t(u32, 8, MAX_SKB_FRAGS) * SGE_PAGES) {
611 		BNX2X_ERR("SGL length is too long: %d. CQE index is %d\n",
612 			  pages, cqe_idx);
613 		BNX2X_ERR("cqe->pkt_len = %d\n", cqe->pkt_len);
614 		bnx2x_panic();
615 		return -EINVAL;
616 	}
617 #endif
618 
619 	/* Run through the SGL and compose the fragmented skb */
620 	for (i = 0, j = 0; i < pages; i += PAGES_PER_SGE, j++) {
621 		u16 sge_idx = RX_SGE(le16_to_cpu(cqe->sgl_or_raw_data.sgl[j]));
622 
623 		/* FW gives the indices of the SGE as if the ring is an array
624 		   (meaning that "next" element will consume 2 indices) */
625 		if (fp->mode == TPA_MODE_GRO)
626 			frag_len = min_t(u32, frag_size, (u32)full_page);
627 		else /* LRO */
628 			frag_len = min_t(u32, frag_size, (u32)SGE_PAGES);
629 
630 		rx_pg = &fp->rx_page_ring[sge_idx];
631 		old_rx_pg = *rx_pg;
632 
633 		/* If we fail to allocate a substitute page, we simply stop
634 		   where we are and drop the whole packet */
635 		err = bnx2x_alloc_rx_sge(bp, fp, sge_idx, GFP_ATOMIC);
636 		if (unlikely(err)) {
637 			bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
638 			return err;
639 		}
640 
641 		dma_unmap_page(&bp->pdev->dev,
642 			       dma_unmap_addr(&old_rx_pg, mapping),
643 			       SGE_PAGE_SIZE, DMA_FROM_DEVICE);
644 		/* Add one frag and update the appropriate fields in the skb */
645 		if (fp->mode == TPA_MODE_LRO)
646 			skb_fill_page_desc(skb, j, old_rx_pg.page,
647 					   old_rx_pg.offset, frag_len);
648 		else { /* GRO */
649 			int rem;
650 			int offset = 0;
651 			for (rem = frag_len; rem > 0; rem -= gro_size) {
652 				int len = rem > gro_size ? gro_size : rem;
653 				skb_fill_page_desc(skb, frag_id++,
654 						   old_rx_pg.page,
655 						   old_rx_pg.offset + offset,
656 						   len);
657 				if (offset)
658 					get_page(old_rx_pg.page);
659 				offset += len;
660 			}
661 		}
662 
663 		skb->data_len += frag_len;
664 		skb->truesize += SGE_PAGES;
665 		skb->len += frag_len;
666 
667 		frag_size -= frag_len;
668 	}
669 
670 	return 0;
671 }
672 
673 static void bnx2x_frag_free(const struct bnx2x_fastpath *fp, void *data)
674 {
675 	if (fp->rx_frag_size)
676 		skb_free_frag(data);
677 	else
678 		kfree(data);
679 }
680 
681 static void *bnx2x_frag_alloc(const struct bnx2x_fastpath *fp, gfp_t gfp_mask)
682 {
683 	if (fp->rx_frag_size) {
684 		/* GFP_KERNEL allocations are used only during initialization */
685 		if (unlikely(gfpflags_allow_blocking(gfp_mask)))
686 			return (void *)__get_free_page(gfp_mask);
687 
688 		return netdev_alloc_frag(fp->rx_frag_size);
689 	}
690 
691 	return kmalloc(fp->rx_buf_size + NET_SKB_PAD, gfp_mask);
692 }
693 
694 #ifdef CONFIG_INET
695 static void bnx2x_gro_ip_csum(struct bnx2x *bp, struct sk_buff *skb)
696 {
697 	const struct iphdr *iph = ip_hdr(skb);
698 	struct tcphdr *th;
699 
700 	skb_set_transport_header(skb, sizeof(struct iphdr));
701 	th = tcp_hdr(skb);
702 
703 	th->check = ~tcp_v4_check(skb->len - skb_transport_offset(skb),
704 				  iph->saddr, iph->daddr, 0);
705 }
706 
707 static void bnx2x_gro_ipv6_csum(struct bnx2x *bp, struct sk_buff *skb)
708 {
709 	struct ipv6hdr *iph = ipv6_hdr(skb);
710 	struct tcphdr *th;
711 
712 	skb_set_transport_header(skb, sizeof(struct ipv6hdr));
713 	th = tcp_hdr(skb);
714 
715 	th->check = ~tcp_v6_check(skb->len - skb_transport_offset(skb),
716 				  &iph->saddr, &iph->daddr, 0);
717 }
718 
719 static void bnx2x_gro_csum(struct bnx2x *bp, struct sk_buff *skb,
720 			    void (*gro_func)(struct bnx2x*, struct sk_buff*))
721 {
722 	skb_reset_network_header(skb);
723 	gro_func(bp, skb);
724 	tcp_gro_complete(skb);
725 }
726 #endif
727 
728 static void bnx2x_gro_receive(struct bnx2x *bp, struct bnx2x_fastpath *fp,
729 			       struct sk_buff *skb)
730 {
731 #ifdef CONFIG_INET
732 	if (skb_shinfo(skb)->gso_size) {
733 		switch (be16_to_cpu(skb->protocol)) {
734 		case ETH_P_IP:
735 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ip_csum);
736 			break;
737 		case ETH_P_IPV6:
738 			bnx2x_gro_csum(bp, skb, bnx2x_gro_ipv6_csum);
739 			break;
740 		default:
741 			WARN_ONCE(1, "Error: FW GRO supports only IPv4/IPv6, not 0x%04x\n",
742 				  be16_to_cpu(skb->protocol));
743 		}
744 	}
745 #endif
746 	skb_record_rx_queue(skb, fp->rx_queue);
747 	napi_gro_receive(&fp->napi, skb);
748 }
749 
750 static void bnx2x_tpa_stop(struct bnx2x *bp, struct bnx2x_fastpath *fp,
751 			   struct bnx2x_agg_info *tpa_info,
752 			   u16 pages,
753 			   struct eth_end_agg_rx_cqe *cqe,
754 			   u16 cqe_idx)
755 {
756 	struct sw_rx_bd *rx_buf = &tpa_info->first_buf;
757 	u8 pad = tpa_info->placement_offset;
758 	u16 len = tpa_info->len_on_bd;
759 	struct sk_buff *skb = NULL;
760 	u8 *new_data, *data = rx_buf->data;
761 	u8 old_tpa_state = tpa_info->tpa_state;
762 
763 	tpa_info->tpa_state = BNX2X_TPA_STOP;
764 
765 	/* If we there was an error during the handling of the TPA_START -
766 	 * drop this aggregation.
767 	 */
768 	if (old_tpa_state == BNX2X_TPA_ERROR)
769 		goto drop;
770 
771 	/* Try to allocate the new data */
772 	new_data = bnx2x_frag_alloc(fp, GFP_ATOMIC);
773 	/* Unmap skb in the pool anyway, as we are going to change
774 	   pool entry status to BNX2X_TPA_STOP even if new skb allocation
775 	   fails. */
776 	dma_unmap_single(&bp->pdev->dev, dma_unmap_addr(rx_buf, mapping),
777 			 fp->rx_buf_size, DMA_FROM_DEVICE);
778 	if (likely(new_data))
779 		skb = build_skb(data, fp->rx_frag_size);
780 
781 	if (likely(skb)) {
782 #ifdef BNX2X_STOP_ON_ERROR
783 		if (pad + len > fp->rx_buf_size) {
784 			BNX2X_ERR("skb_put is about to fail...  pad %d  len %d  rx_buf_size %d\n",
785 				  pad, len, fp->rx_buf_size);
786 			bnx2x_panic();
787 			return;
788 		}
789 #endif
790 
791 		skb_reserve(skb, pad + NET_SKB_PAD);
792 		skb_put(skb, len);
793 		skb_set_hash(skb, tpa_info->rxhash, tpa_info->rxhash_type);
794 
795 		skb->protocol = eth_type_trans(skb, bp->dev);
796 		skb->ip_summed = CHECKSUM_UNNECESSARY;
797 
798 		if (!bnx2x_fill_frag_skb(bp, fp, tpa_info, pages,
799 					 skb, cqe, cqe_idx)) {
800 			if (tpa_info->parsing_flags & PARSING_FLAGS_VLAN)
801 				__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), tpa_info->vlan_tag);
802 			bnx2x_gro_receive(bp, fp, skb);
803 		} else {
804 			DP(NETIF_MSG_RX_STATUS,
805 			   "Failed to allocate new pages - dropping packet!\n");
806 			dev_kfree_skb_any(skb);
807 		}
808 
809 		/* put new data in bin */
810 		rx_buf->data = new_data;
811 
812 		return;
813 	}
814 	if (new_data)
815 		bnx2x_frag_free(fp, new_data);
816 drop:
817 	/* drop the packet and keep the buffer in the bin */
818 	DP(NETIF_MSG_RX_STATUS,
819 	   "Failed to allocate or map a new skb - dropping packet!\n");
820 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed++;
821 }
822 
823 static int bnx2x_alloc_rx_data(struct bnx2x *bp, struct bnx2x_fastpath *fp,
824 			       u16 index, gfp_t gfp_mask)
825 {
826 	u8 *data;
827 	struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[index];
828 	struct eth_rx_bd *rx_bd = &fp->rx_desc_ring[index];
829 	dma_addr_t mapping;
830 
831 	data = bnx2x_frag_alloc(fp, gfp_mask);
832 	if (unlikely(data == NULL))
833 		return -ENOMEM;
834 
835 	mapping = dma_map_single(&bp->pdev->dev, data + NET_SKB_PAD,
836 				 fp->rx_buf_size,
837 				 DMA_FROM_DEVICE);
838 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
839 		bnx2x_frag_free(fp, data);
840 		BNX2X_ERR("Can't map rx data\n");
841 		return -ENOMEM;
842 	}
843 
844 	rx_buf->data = data;
845 	dma_unmap_addr_set(rx_buf, mapping, mapping);
846 
847 	rx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
848 	rx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
849 
850 	return 0;
851 }
852 
853 static
854 void bnx2x_csum_validate(struct sk_buff *skb, union eth_rx_cqe *cqe,
855 				 struct bnx2x_fastpath *fp,
856 				 struct bnx2x_eth_q_stats *qstats)
857 {
858 	/* Do nothing if no L4 csum validation was done.
859 	 * We do not check whether IP csum was validated. For IPv4 we assume
860 	 * that if the card got as far as validating the L4 csum, it also
861 	 * validated the IP csum. IPv6 has no IP csum.
862 	 */
863 	if (cqe->fast_path_cqe.status_flags &
864 	    ETH_FAST_PATH_RX_CQE_L4_XSUM_NO_VALIDATION_FLG)
865 		return;
866 
867 	/* If L4 validation was done, check if an error was found. */
868 
869 	if (cqe->fast_path_cqe.type_error_flags &
870 	    (ETH_FAST_PATH_RX_CQE_IP_BAD_XSUM_FLG |
871 	     ETH_FAST_PATH_RX_CQE_L4_BAD_XSUM_FLG))
872 		qstats->hw_csum_err++;
873 	else
874 		skb->ip_summed = CHECKSUM_UNNECESSARY;
875 }
876 
877 static int bnx2x_rx_int(struct bnx2x_fastpath *fp, int budget)
878 {
879 	struct bnx2x *bp = fp->bp;
880 	u16 bd_cons, bd_prod, bd_prod_fw, comp_ring_cons;
881 	u16 sw_comp_cons, sw_comp_prod;
882 	int rx_pkt = 0;
883 	union eth_rx_cqe *cqe;
884 	struct eth_fast_path_rx_cqe *cqe_fp;
885 
886 #ifdef BNX2X_STOP_ON_ERROR
887 	if (unlikely(bp->panic))
888 		return 0;
889 #endif
890 	if (budget <= 0)
891 		return rx_pkt;
892 
893 	bd_cons = fp->rx_bd_cons;
894 	bd_prod = fp->rx_bd_prod;
895 	bd_prod_fw = bd_prod;
896 	sw_comp_cons = fp->rx_comp_cons;
897 	sw_comp_prod = fp->rx_comp_prod;
898 
899 	comp_ring_cons = RCQ_BD(sw_comp_cons);
900 	cqe = &fp->rx_comp_ring[comp_ring_cons];
901 	cqe_fp = &cqe->fast_path_cqe;
902 
903 	DP(NETIF_MSG_RX_STATUS,
904 	   "queue[%d]: sw_comp_cons %u\n", fp->index, sw_comp_cons);
905 
906 	while (BNX2X_IS_CQE_COMPLETED(cqe_fp)) {
907 		struct sw_rx_bd *rx_buf = NULL;
908 		struct sk_buff *skb;
909 		u8 cqe_fp_flags;
910 		enum eth_rx_cqe_type cqe_fp_type;
911 		u16 len, pad, queue;
912 		u8 *data;
913 		u32 rxhash;
914 		enum pkt_hash_types rxhash_type;
915 
916 #ifdef BNX2X_STOP_ON_ERROR
917 		if (unlikely(bp->panic))
918 			return 0;
919 #endif
920 
921 		bd_prod = RX_BD(bd_prod);
922 		bd_cons = RX_BD(bd_cons);
923 
924 		/* A rmb() is required to ensure that the CQE is not read
925 		 * before it is written by the adapter DMA.  PCI ordering
926 		 * rules will make sure the other fields are written before
927 		 * the marker at the end of struct eth_fast_path_rx_cqe
928 		 * but without rmb() a weakly ordered processor can process
929 		 * stale data.  Without the barrier TPA state-machine might
930 		 * enter inconsistent state and kernel stack might be
931 		 * provided with incorrect packet description - these lead
932 		 * to various kernel crashed.
933 		 */
934 		rmb();
935 
936 		cqe_fp_flags = cqe_fp->type_error_flags;
937 		cqe_fp_type = cqe_fp_flags & ETH_FAST_PATH_RX_CQE_TYPE;
938 
939 		DP(NETIF_MSG_RX_STATUS,
940 		   "CQE type %x  err %x  status %x  queue %x  vlan %x  len %u\n",
941 		   CQE_TYPE(cqe_fp_flags),
942 		   cqe_fp_flags, cqe_fp->status_flags,
943 		   le32_to_cpu(cqe_fp->rss_hash_result),
944 		   le16_to_cpu(cqe_fp->vlan_tag),
945 		   le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len));
946 
947 		/* is this a slowpath msg? */
948 		if (unlikely(CQE_TYPE_SLOW(cqe_fp_type))) {
949 			bnx2x_sp_event(fp, cqe);
950 			goto next_cqe;
951 		}
952 
953 		rx_buf = &fp->rx_buf_ring[bd_cons];
954 		data = rx_buf->data;
955 
956 		if (!CQE_TYPE_FAST(cqe_fp_type)) {
957 			struct bnx2x_agg_info *tpa_info;
958 			u16 frag_size, pages;
959 #ifdef BNX2X_STOP_ON_ERROR
960 			/* sanity check */
961 			if (fp->mode == TPA_MODE_DISABLED &&
962 			    (CQE_TYPE_START(cqe_fp_type) ||
963 			     CQE_TYPE_STOP(cqe_fp_type)))
964 				BNX2X_ERR("START/STOP packet while TPA disabled, type %x\n",
965 					  CQE_TYPE(cqe_fp_type));
966 #endif
967 
968 			if (CQE_TYPE_START(cqe_fp_type)) {
969 				u16 queue = cqe_fp->queue_index;
970 				DP(NETIF_MSG_RX_STATUS,
971 				   "calling tpa_start on queue %d\n",
972 				   queue);
973 
974 				bnx2x_tpa_start(fp, queue,
975 						bd_cons, bd_prod,
976 						cqe_fp);
977 
978 				goto next_rx;
979 			}
980 			queue = cqe->end_agg_cqe.queue_index;
981 			tpa_info = &fp->tpa_info[queue];
982 			DP(NETIF_MSG_RX_STATUS,
983 			   "calling tpa_stop on queue %d\n",
984 			   queue);
985 
986 			frag_size = le16_to_cpu(cqe->end_agg_cqe.pkt_len) -
987 				    tpa_info->len_on_bd;
988 
989 			if (fp->mode == TPA_MODE_GRO)
990 				pages = (frag_size + tpa_info->full_page - 1) /
991 					 tpa_info->full_page;
992 			else
993 				pages = SGE_PAGE_ALIGN(frag_size) >>
994 					SGE_PAGE_SHIFT;
995 
996 			bnx2x_tpa_stop(bp, fp, tpa_info, pages,
997 				       &cqe->end_agg_cqe, comp_ring_cons);
998 #ifdef BNX2X_STOP_ON_ERROR
999 			if (bp->panic)
1000 				return 0;
1001 #endif
1002 
1003 			bnx2x_update_sge_prod(fp, pages, &cqe->end_agg_cqe);
1004 			goto next_cqe;
1005 		}
1006 		/* non TPA */
1007 		len = le16_to_cpu(cqe_fp->pkt_len_or_gro_seg_len);
1008 		pad = cqe_fp->placement_offset;
1009 		dma_sync_single_for_cpu(&bp->pdev->dev,
1010 					dma_unmap_addr(rx_buf, mapping),
1011 					pad + RX_COPY_THRESH,
1012 					DMA_FROM_DEVICE);
1013 		pad += NET_SKB_PAD;
1014 		prefetch(data + pad); /* speedup eth_type_trans() */
1015 		/* is this an error packet? */
1016 		if (unlikely(cqe_fp_flags & ETH_RX_ERROR_FALGS)) {
1017 			DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1018 			   "ERROR  flags %x  rx packet %u\n",
1019 			   cqe_fp_flags, sw_comp_cons);
1020 			bnx2x_fp_qstats(bp, fp)->rx_err_discard_pkt++;
1021 			goto reuse_rx;
1022 		}
1023 
1024 		/* Since we don't have a jumbo ring
1025 		 * copy small packets if mtu > 1500
1026 		 */
1027 		if ((bp->dev->mtu > ETH_MAX_PACKET_SIZE) &&
1028 		    (len <= RX_COPY_THRESH)) {
1029 			skb = napi_alloc_skb(&fp->napi, len);
1030 			if (skb == NULL) {
1031 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1032 				   "ERROR  packet dropped because of alloc failure\n");
1033 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1034 				goto reuse_rx;
1035 			}
1036 			memcpy(skb->data, data + pad, len);
1037 			bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1038 		} else {
1039 			if (likely(bnx2x_alloc_rx_data(bp, fp, bd_prod,
1040 						       GFP_ATOMIC) == 0)) {
1041 				dma_unmap_single(&bp->pdev->dev,
1042 						 dma_unmap_addr(rx_buf, mapping),
1043 						 fp->rx_buf_size,
1044 						 DMA_FROM_DEVICE);
1045 				skb = build_skb(data, fp->rx_frag_size);
1046 				if (unlikely(!skb)) {
1047 					bnx2x_frag_free(fp, data);
1048 					bnx2x_fp_qstats(bp, fp)->
1049 							rx_skb_alloc_failed++;
1050 					goto next_rx;
1051 				}
1052 				skb_reserve(skb, pad);
1053 			} else {
1054 				DP(NETIF_MSG_RX_ERR | NETIF_MSG_RX_STATUS,
1055 				   "ERROR  packet dropped because of alloc failure\n");
1056 				bnx2x_fp_qstats(bp, fp)->rx_skb_alloc_failed++;
1057 reuse_rx:
1058 				bnx2x_reuse_rx_data(fp, bd_cons, bd_prod);
1059 				goto next_rx;
1060 			}
1061 		}
1062 
1063 		skb_put(skb, len);
1064 		skb->protocol = eth_type_trans(skb, bp->dev);
1065 
1066 		/* Set Toeplitz hash for a none-LRO skb */
1067 		rxhash = bnx2x_get_rxhash(bp, cqe_fp, &rxhash_type);
1068 		skb_set_hash(skb, rxhash, rxhash_type);
1069 
1070 		skb_checksum_none_assert(skb);
1071 
1072 		if (bp->dev->features & NETIF_F_RXCSUM)
1073 			bnx2x_csum_validate(skb, cqe, fp,
1074 					    bnx2x_fp_qstats(bp, fp));
1075 
1076 		skb_record_rx_queue(skb, fp->rx_queue);
1077 
1078 		/* Check if this packet was timestamped */
1079 		if (unlikely(cqe->fast_path_cqe.type_error_flags &
1080 			     (1 << ETH_FAST_PATH_RX_CQE_PTP_PKT_SHIFT)))
1081 			bnx2x_set_rx_ts(bp, skb);
1082 
1083 		if (le16_to_cpu(cqe_fp->pars_flags.flags) &
1084 		    PARSING_FLAGS_VLAN)
1085 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q),
1086 					       le16_to_cpu(cqe_fp->vlan_tag));
1087 
1088 		napi_gro_receive(&fp->napi, skb);
1089 next_rx:
1090 		rx_buf->data = NULL;
1091 
1092 		bd_cons = NEXT_RX_IDX(bd_cons);
1093 		bd_prod = NEXT_RX_IDX(bd_prod);
1094 		bd_prod_fw = NEXT_RX_IDX(bd_prod_fw);
1095 		rx_pkt++;
1096 next_cqe:
1097 		sw_comp_prod = NEXT_RCQ_IDX(sw_comp_prod);
1098 		sw_comp_cons = NEXT_RCQ_IDX(sw_comp_cons);
1099 
1100 		/* mark CQE as free */
1101 		BNX2X_SEED_CQE(cqe_fp);
1102 
1103 		if (rx_pkt == budget)
1104 			break;
1105 
1106 		comp_ring_cons = RCQ_BD(sw_comp_cons);
1107 		cqe = &fp->rx_comp_ring[comp_ring_cons];
1108 		cqe_fp = &cqe->fast_path_cqe;
1109 	} /* while */
1110 
1111 	fp->rx_bd_cons = bd_cons;
1112 	fp->rx_bd_prod = bd_prod_fw;
1113 	fp->rx_comp_cons = sw_comp_cons;
1114 	fp->rx_comp_prod = sw_comp_prod;
1115 
1116 	/* Update producers */
1117 	bnx2x_update_rx_prod(bp, fp, bd_prod_fw, sw_comp_prod,
1118 			     fp->rx_sge_prod);
1119 
1120 	return rx_pkt;
1121 }
1122 
1123 static irqreturn_t bnx2x_msix_fp_int(int irq, void *fp_cookie)
1124 {
1125 	struct bnx2x_fastpath *fp = fp_cookie;
1126 	struct bnx2x *bp = fp->bp;
1127 	u8 cos;
1128 
1129 	DP(NETIF_MSG_INTR,
1130 	   "got an MSI-X interrupt on IDX:SB [fp %d fw_sd %d igusb %d]\n",
1131 	   fp->index, fp->fw_sb_id, fp->igu_sb_id);
1132 
1133 	bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID, 0, IGU_INT_DISABLE, 0);
1134 
1135 #ifdef BNX2X_STOP_ON_ERROR
1136 	if (unlikely(bp->panic))
1137 		return IRQ_HANDLED;
1138 #endif
1139 
1140 	/* Handle Rx and Tx according to MSI-X vector */
1141 	for_each_cos_in_tx_queue(fp, cos)
1142 		prefetch(fp->txdata_ptr[cos]->tx_cons_sb);
1143 
1144 	prefetch(&fp->sb_running_index[SM_RX_ID]);
1145 	napi_schedule_irqoff(&bnx2x_fp(bp, fp->index, napi));
1146 
1147 	return IRQ_HANDLED;
1148 }
1149 
1150 /* HW Lock for shared dual port PHYs */
1151 void bnx2x_acquire_phy_lock(struct bnx2x *bp)
1152 {
1153 	mutex_lock(&bp->port.phy_mutex);
1154 
1155 	bnx2x_acquire_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1156 }
1157 
1158 void bnx2x_release_phy_lock(struct bnx2x *bp)
1159 {
1160 	bnx2x_release_hw_lock(bp, HW_LOCK_RESOURCE_MDIO);
1161 
1162 	mutex_unlock(&bp->port.phy_mutex);
1163 }
1164 
1165 /* calculates MF speed according to current linespeed and MF configuration */
1166 u16 bnx2x_get_mf_speed(struct bnx2x *bp)
1167 {
1168 	u16 line_speed = bp->link_vars.line_speed;
1169 	if (IS_MF(bp)) {
1170 		u16 maxCfg = bnx2x_extract_max_cfg(bp,
1171 						   bp->mf_config[BP_VN(bp)]);
1172 
1173 		/* Calculate the current MAX line speed limit for the MF
1174 		 * devices
1175 		 */
1176 		if (IS_MF_PERCENT_BW(bp))
1177 			line_speed = (line_speed * maxCfg) / 100;
1178 		else { /* SD mode */
1179 			u16 vn_max_rate = maxCfg * 100;
1180 
1181 			if (vn_max_rate < line_speed)
1182 				line_speed = vn_max_rate;
1183 		}
1184 	}
1185 
1186 	return line_speed;
1187 }
1188 
1189 /**
1190  * bnx2x_fill_report_data - fill link report data to report
1191  *
1192  * @bp:		driver handle
1193  * @data:	link state to update
1194  *
1195  * It uses a none-atomic bit operations because is called under the mutex.
1196  */
1197 static void bnx2x_fill_report_data(struct bnx2x *bp,
1198 				   struct bnx2x_link_report_data *data)
1199 {
1200 	memset(data, 0, sizeof(*data));
1201 
1202 	if (IS_PF(bp)) {
1203 		/* Fill the report data: effective line speed */
1204 		data->line_speed = bnx2x_get_mf_speed(bp);
1205 
1206 		/* Link is down */
1207 		if (!bp->link_vars.link_up || (bp->flags & MF_FUNC_DIS))
1208 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1209 				  &data->link_report_flags);
1210 
1211 		if (!BNX2X_NUM_ETH_QUEUES(bp))
1212 			__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1213 				  &data->link_report_flags);
1214 
1215 		/* Full DUPLEX */
1216 		if (bp->link_vars.duplex == DUPLEX_FULL)
1217 			__set_bit(BNX2X_LINK_REPORT_FD,
1218 				  &data->link_report_flags);
1219 
1220 		/* Rx Flow Control is ON */
1221 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_RX)
1222 			__set_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1223 				  &data->link_report_flags);
1224 
1225 		/* Tx Flow Control is ON */
1226 		if (bp->link_vars.flow_ctrl & BNX2X_FLOW_CTRL_TX)
1227 			__set_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1228 				  &data->link_report_flags);
1229 	} else { /* VF */
1230 		*data = bp->vf_link_vars;
1231 	}
1232 }
1233 
1234 /**
1235  * bnx2x_link_report - report link status to OS.
1236  *
1237  * @bp:		driver handle
1238  *
1239  * Calls the __bnx2x_link_report() under the same locking scheme
1240  * as a link/PHY state managing code to ensure a consistent link
1241  * reporting.
1242  */
1243 
1244 void bnx2x_link_report(struct bnx2x *bp)
1245 {
1246 	bnx2x_acquire_phy_lock(bp);
1247 	__bnx2x_link_report(bp);
1248 	bnx2x_release_phy_lock(bp);
1249 }
1250 
1251 /**
1252  * __bnx2x_link_report - report link status to OS.
1253  *
1254  * @bp:		driver handle
1255  *
1256  * None atomic implementation.
1257  * Should be called under the phy_lock.
1258  */
1259 void __bnx2x_link_report(struct bnx2x *bp)
1260 {
1261 	struct bnx2x_link_report_data cur_data;
1262 
1263 	/* reread mf_cfg */
1264 	if (IS_PF(bp) && !CHIP_IS_E1(bp))
1265 		bnx2x_read_mf_cfg(bp);
1266 
1267 	/* Read the current link report info */
1268 	bnx2x_fill_report_data(bp, &cur_data);
1269 
1270 	/* Don't report link down or exactly the same link status twice */
1271 	if (!memcmp(&cur_data, &bp->last_reported_link, sizeof(cur_data)) ||
1272 	    (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1273 		      &bp->last_reported_link.link_report_flags) &&
1274 	     test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1275 		      &cur_data.link_report_flags)))
1276 		return;
1277 
1278 	bp->link_cnt++;
1279 
1280 	/* We are going to report a new link parameters now -
1281 	 * remember the current data for the next time.
1282 	 */
1283 	memcpy(&bp->last_reported_link, &cur_data, sizeof(cur_data));
1284 
1285 	/* propagate status to VFs */
1286 	if (IS_PF(bp))
1287 		bnx2x_iov_link_update(bp);
1288 
1289 	if (test_bit(BNX2X_LINK_REPORT_LINK_DOWN,
1290 		     &cur_data.link_report_flags)) {
1291 		netif_carrier_off(bp->dev);
1292 		netdev_err(bp->dev, "NIC Link is Down\n");
1293 		return;
1294 	} else {
1295 		const char *duplex;
1296 		const char *flow;
1297 
1298 		netif_carrier_on(bp->dev);
1299 
1300 		if (test_and_clear_bit(BNX2X_LINK_REPORT_FD,
1301 				       &cur_data.link_report_flags))
1302 			duplex = "full";
1303 		else
1304 			duplex = "half";
1305 
1306 		/* Handle the FC at the end so that only these flags would be
1307 		 * possibly set. This way we may easily check if there is no FC
1308 		 * enabled.
1309 		 */
1310 		if (cur_data.link_report_flags) {
1311 			if (test_bit(BNX2X_LINK_REPORT_RX_FC_ON,
1312 				     &cur_data.link_report_flags)) {
1313 				if (test_bit(BNX2X_LINK_REPORT_TX_FC_ON,
1314 				     &cur_data.link_report_flags))
1315 					flow = "ON - receive & transmit";
1316 				else
1317 					flow = "ON - receive";
1318 			} else {
1319 				flow = "ON - transmit";
1320 			}
1321 		} else {
1322 			flow = "none";
1323 		}
1324 		netdev_info(bp->dev, "NIC Link is Up, %d Mbps %s duplex, Flow control: %s\n",
1325 			    cur_data.line_speed, duplex, flow);
1326 	}
1327 }
1328 
1329 static void bnx2x_set_next_page_sgl(struct bnx2x_fastpath *fp)
1330 {
1331 	int i;
1332 
1333 	for (i = 1; i <= NUM_RX_SGE_PAGES; i++) {
1334 		struct eth_rx_sge *sge;
1335 
1336 		sge = &fp->rx_sge_ring[RX_SGE_CNT * i - 2];
1337 		sge->addr_hi =
1338 			cpu_to_le32(U64_HI(fp->rx_sge_mapping +
1339 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1340 
1341 		sge->addr_lo =
1342 			cpu_to_le32(U64_LO(fp->rx_sge_mapping +
1343 			BCM_PAGE_SIZE*(i % NUM_RX_SGE_PAGES)));
1344 	}
1345 }
1346 
1347 static void bnx2x_free_tpa_pool(struct bnx2x *bp,
1348 				struct bnx2x_fastpath *fp, int last)
1349 {
1350 	int i;
1351 
1352 	for (i = 0; i < last; i++) {
1353 		struct bnx2x_agg_info *tpa_info = &fp->tpa_info[i];
1354 		struct sw_rx_bd *first_buf = &tpa_info->first_buf;
1355 		u8 *data = first_buf->data;
1356 
1357 		if (data == NULL) {
1358 			DP(NETIF_MSG_IFDOWN, "tpa bin %d empty on free\n", i);
1359 			continue;
1360 		}
1361 		if (tpa_info->tpa_state == BNX2X_TPA_START)
1362 			dma_unmap_single(&bp->pdev->dev,
1363 					 dma_unmap_addr(first_buf, mapping),
1364 					 fp->rx_buf_size, DMA_FROM_DEVICE);
1365 		bnx2x_frag_free(fp, data);
1366 		first_buf->data = NULL;
1367 	}
1368 }
1369 
1370 void bnx2x_init_rx_rings_cnic(struct bnx2x *bp)
1371 {
1372 	int j;
1373 
1374 	for_each_rx_queue_cnic(bp, j) {
1375 		struct bnx2x_fastpath *fp = &bp->fp[j];
1376 
1377 		fp->rx_bd_cons = 0;
1378 
1379 		/* Activate BD ring */
1380 		/* Warning!
1381 		 * this will generate an interrupt (to the TSTORM)
1382 		 * must only be done after chip is initialized
1383 		 */
1384 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1385 				     fp->rx_sge_prod);
1386 	}
1387 }
1388 
1389 void bnx2x_init_rx_rings(struct bnx2x *bp)
1390 {
1391 	int func = BP_FUNC(bp);
1392 	u16 ring_prod;
1393 	int i, j;
1394 
1395 	/* Allocate TPA resources */
1396 	for_each_eth_queue(bp, j) {
1397 		struct bnx2x_fastpath *fp = &bp->fp[j];
1398 
1399 		DP(NETIF_MSG_IFUP,
1400 		   "mtu %d  rx_buf_size %d\n", bp->dev->mtu, fp->rx_buf_size);
1401 
1402 		if (fp->mode != TPA_MODE_DISABLED) {
1403 			/* Fill the per-aggregation pool */
1404 			for (i = 0; i < MAX_AGG_QS(bp); i++) {
1405 				struct bnx2x_agg_info *tpa_info =
1406 					&fp->tpa_info[i];
1407 				struct sw_rx_bd *first_buf =
1408 					&tpa_info->first_buf;
1409 
1410 				first_buf->data =
1411 					bnx2x_frag_alloc(fp, GFP_KERNEL);
1412 				if (!first_buf->data) {
1413 					BNX2X_ERR("Failed to allocate TPA skb pool for queue[%d] - disabling TPA on this queue!\n",
1414 						  j);
1415 					bnx2x_free_tpa_pool(bp, fp, i);
1416 					fp->mode = TPA_MODE_DISABLED;
1417 					break;
1418 				}
1419 				dma_unmap_addr_set(first_buf, mapping, 0);
1420 				tpa_info->tpa_state = BNX2X_TPA_STOP;
1421 			}
1422 
1423 			/* "next page" elements initialization */
1424 			bnx2x_set_next_page_sgl(fp);
1425 
1426 			/* set SGEs bit mask */
1427 			bnx2x_init_sge_ring_bit_mask(fp);
1428 
1429 			/* Allocate SGEs and initialize the ring elements */
1430 			for (i = 0, ring_prod = 0;
1431 			     i < MAX_RX_SGE_CNT*NUM_RX_SGE_PAGES; i++) {
1432 
1433 				if (bnx2x_alloc_rx_sge(bp, fp, ring_prod,
1434 						       GFP_KERNEL) < 0) {
1435 					BNX2X_ERR("was only able to allocate %d rx sges\n",
1436 						  i);
1437 					BNX2X_ERR("disabling TPA for queue[%d]\n",
1438 						  j);
1439 					/* Cleanup already allocated elements */
1440 					bnx2x_free_rx_sge_range(bp, fp,
1441 								ring_prod);
1442 					bnx2x_free_tpa_pool(bp, fp,
1443 							    MAX_AGG_QS(bp));
1444 					fp->mode = TPA_MODE_DISABLED;
1445 					ring_prod = 0;
1446 					break;
1447 				}
1448 				ring_prod = NEXT_SGE_IDX(ring_prod);
1449 			}
1450 
1451 			fp->rx_sge_prod = ring_prod;
1452 		}
1453 	}
1454 
1455 	for_each_eth_queue(bp, j) {
1456 		struct bnx2x_fastpath *fp = &bp->fp[j];
1457 
1458 		fp->rx_bd_cons = 0;
1459 
1460 		/* Activate BD ring */
1461 		/* Warning!
1462 		 * this will generate an interrupt (to the TSTORM)
1463 		 * must only be done after chip is initialized
1464 		 */
1465 		bnx2x_update_rx_prod(bp, fp, fp->rx_bd_prod, fp->rx_comp_prod,
1466 				     fp->rx_sge_prod);
1467 
1468 		if (j != 0)
1469 			continue;
1470 
1471 		if (CHIP_IS_E1(bp)) {
1472 			REG_WR(bp, BAR_USTRORM_INTMEM +
1473 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func),
1474 			       U64_LO(fp->rx_comp_mapping));
1475 			REG_WR(bp, BAR_USTRORM_INTMEM +
1476 			       USTORM_MEM_WORKAROUND_ADDRESS_OFFSET(func) + 4,
1477 			       U64_HI(fp->rx_comp_mapping));
1478 		}
1479 	}
1480 }
1481 
1482 static void bnx2x_free_tx_skbs_queue(struct bnx2x_fastpath *fp)
1483 {
1484 	u8 cos;
1485 	struct bnx2x *bp = fp->bp;
1486 
1487 	for_each_cos_in_tx_queue(fp, cos) {
1488 		struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
1489 		unsigned pkts_compl = 0, bytes_compl = 0;
1490 
1491 		u16 sw_prod = txdata->tx_pkt_prod;
1492 		u16 sw_cons = txdata->tx_pkt_cons;
1493 
1494 		while (sw_cons != sw_prod) {
1495 			bnx2x_free_tx_pkt(bp, txdata, TX_BD(sw_cons),
1496 					  &pkts_compl, &bytes_compl);
1497 			sw_cons++;
1498 		}
1499 
1500 		netdev_tx_reset_queue(
1501 			netdev_get_tx_queue(bp->dev,
1502 					    txdata->txq_index));
1503 	}
1504 }
1505 
1506 static void bnx2x_free_tx_skbs_cnic(struct bnx2x *bp)
1507 {
1508 	int i;
1509 
1510 	for_each_tx_queue_cnic(bp, i) {
1511 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1512 	}
1513 }
1514 
1515 static void bnx2x_free_tx_skbs(struct bnx2x *bp)
1516 {
1517 	int i;
1518 
1519 	for_each_eth_queue(bp, i) {
1520 		bnx2x_free_tx_skbs_queue(&bp->fp[i]);
1521 	}
1522 }
1523 
1524 static void bnx2x_free_rx_bds(struct bnx2x_fastpath *fp)
1525 {
1526 	struct bnx2x *bp = fp->bp;
1527 	int i;
1528 
1529 	/* ring wasn't allocated */
1530 	if (fp->rx_buf_ring == NULL)
1531 		return;
1532 
1533 	for (i = 0; i < NUM_RX_BD; i++) {
1534 		struct sw_rx_bd *rx_buf = &fp->rx_buf_ring[i];
1535 		u8 *data = rx_buf->data;
1536 
1537 		if (data == NULL)
1538 			continue;
1539 		dma_unmap_single(&bp->pdev->dev,
1540 				 dma_unmap_addr(rx_buf, mapping),
1541 				 fp->rx_buf_size, DMA_FROM_DEVICE);
1542 
1543 		rx_buf->data = NULL;
1544 		bnx2x_frag_free(fp, data);
1545 	}
1546 }
1547 
1548 static void bnx2x_free_rx_skbs_cnic(struct bnx2x *bp)
1549 {
1550 	int j;
1551 
1552 	for_each_rx_queue_cnic(bp, j) {
1553 		bnx2x_free_rx_bds(&bp->fp[j]);
1554 	}
1555 }
1556 
1557 static void bnx2x_free_rx_skbs(struct bnx2x *bp)
1558 {
1559 	int j;
1560 
1561 	for_each_eth_queue(bp, j) {
1562 		struct bnx2x_fastpath *fp = &bp->fp[j];
1563 
1564 		bnx2x_free_rx_bds(fp);
1565 
1566 		if (fp->mode != TPA_MODE_DISABLED)
1567 			bnx2x_free_tpa_pool(bp, fp, MAX_AGG_QS(bp));
1568 	}
1569 }
1570 
1571 static void bnx2x_free_skbs_cnic(struct bnx2x *bp)
1572 {
1573 	bnx2x_free_tx_skbs_cnic(bp);
1574 	bnx2x_free_rx_skbs_cnic(bp);
1575 }
1576 
1577 void bnx2x_free_skbs(struct bnx2x *bp)
1578 {
1579 	bnx2x_free_tx_skbs(bp);
1580 	bnx2x_free_rx_skbs(bp);
1581 }
1582 
1583 void bnx2x_update_max_mf_config(struct bnx2x *bp, u32 value)
1584 {
1585 	/* load old values */
1586 	u32 mf_cfg = bp->mf_config[BP_VN(bp)];
1587 
1588 	if (value != bnx2x_extract_max_cfg(bp, mf_cfg)) {
1589 		/* leave all but MAX value */
1590 		mf_cfg &= ~FUNC_MF_CFG_MAX_BW_MASK;
1591 
1592 		/* set new MAX value */
1593 		mf_cfg |= (value << FUNC_MF_CFG_MAX_BW_SHIFT)
1594 				& FUNC_MF_CFG_MAX_BW_MASK;
1595 
1596 		bnx2x_fw_command(bp, DRV_MSG_CODE_SET_MF_BW, mf_cfg);
1597 	}
1598 }
1599 
1600 /**
1601  * bnx2x_free_msix_irqs - free previously requested MSI-X IRQ vectors
1602  *
1603  * @bp:		driver handle
1604  * @nvecs:	number of vectors to be released
1605  */
1606 static void bnx2x_free_msix_irqs(struct bnx2x *bp, int nvecs)
1607 {
1608 	int i, offset = 0;
1609 
1610 	if (nvecs == offset)
1611 		return;
1612 
1613 	/* VFs don't have a default SB */
1614 	if (IS_PF(bp)) {
1615 		free_irq(bp->msix_table[offset].vector, bp->dev);
1616 		DP(NETIF_MSG_IFDOWN, "released sp irq (%d)\n",
1617 		   bp->msix_table[offset].vector);
1618 		offset++;
1619 	}
1620 
1621 	if (CNIC_SUPPORT(bp)) {
1622 		if (nvecs == offset)
1623 			return;
1624 		offset++;
1625 	}
1626 
1627 	for_each_eth_queue(bp, i) {
1628 		if (nvecs == offset)
1629 			return;
1630 		DP(NETIF_MSG_IFDOWN, "about to release fp #%d->%d irq\n",
1631 		   i, bp->msix_table[offset].vector);
1632 
1633 		free_irq(bp->msix_table[offset++].vector, &bp->fp[i]);
1634 	}
1635 }
1636 
1637 void bnx2x_free_irq(struct bnx2x *bp)
1638 {
1639 	if (bp->flags & USING_MSIX_FLAG &&
1640 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1641 		int nvecs = BNX2X_NUM_ETH_QUEUES(bp) + CNIC_SUPPORT(bp);
1642 
1643 		/* vfs don't have a default status block */
1644 		if (IS_PF(bp))
1645 			nvecs++;
1646 
1647 		bnx2x_free_msix_irqs(bp, nvecs);
1648 	} else {
1649 		free_irq(bp->dev->irq, bp->dev);
1650 	}
1651 }
1652 
1653 int bnx2x_enable_msix(struct bnx2x *bp)
1654 {
1655 	int msix_vec = 0, i, rc;
1656 
1657 	/* VFs don't have a default status block */
1658 	if (IS_PF(bp)) {
1659 		bp->msix_table[msix_vec].entry = msix_vec;
1660 		BNX2X_DEV_INFO("msix_table[0].entry = %d (slowpath)\n",
1661 			       bp->msix_table[0].entry);
1662 		msix_vec++;
1663 	}
1664 
1665 	/* Cnic requires an msix vector for itself */
1666 	if (CNIC_SUPPORT(bp)) {
1667 		bp->msix_table[msix_vec].entry = msix_vec;
1668 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (CNIC)\n",
1669 			       msix_vec, bp->msix_table[msix_vec].entry);
1670 		msix_vec++;
1671 	}
1672 
1673 	/* We need separate vectors for ETH queues only (not FCoE) */
1674 	for_each_eth_queue(bp, i) {
1675 		bp->msix_table[msix_vec].entry = msix_vec;
1676 		BNX2X_DEV_INFO("msix_table[%d].entry = %d (fastpath #%u)\n",
1677 			       msix_vec, msix_vec, i);
1678 		msix_vec++;
1679 	}
1680 
1681 	DP(BNX2X_MSG_SP, "about to request enable msix with %d vectors\n",
1682 	   msix_vec);
1683 
1684 	rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0],
1685 				   BNX2X_MIN_MSIX_VEC_CNT(bp), msix_vec);
1686 	/*
1687 	 * reconfigure number of tx/rx queues according to available
1688 	 * MSI-X vectors
1689 	 */
1690 	if (rc == -ENOSPC) {
1691 		/* Get by with single vector */
1692 		rc = pci_enable_msix_range(bp->pdev, &bp->msix_table[0], 1, 1);
1693 		if (rc < 0) {
1694 			BNX2X_DEV_INFO("Single MSI-X is not attainable rc %d\n",
1695 				       rc);
1696 			goto no_msix;
1697 		}
1698 
1699 		BNX2X_DEV_INFO("Using single MSI-X vector\n");
1700 		bp->flags |= USING_SINGLE_MSIX_FLAG;
1701 
1702 		BNX2X_DEV_INFO("set number of queues to 1\n");
1703 		bp->num_ethernet_queues = 1;
1704 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1705 	} else if (rc < 0) {
1706 		BNX2X_DEV_INFO("MSI-X is not attainable rc %d\n", rc);
1707 		goto no_msix;
1708 	} else if (rc < msix_vec) {
1709 		/* how less vectors we will have? */
1710 		int diff = msix_vec - rc;
1711 
1712 		BNX2X_DEV_INFO("Trying to use less MSI-X vectors: %d\n", rc);
1713 
1714 		/*
1715 		 * decrease number of queues by number of unallocated entries
1716 		 */
1717 		bp->num_ethernet_queues -= diff;
1718 		bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1719 
1720 		BNX2X_DEV_INFO("New queue configuration set: %d\n",
1721 			       bp->num_queues);
1722 	}
1723 
1724 	bp->flags |= USING_MSIX_FLAG;
1725 
1726 	return 0;
1727 
1728 no_msix:
1729 	/* fall to INTx if not enough memory */
1730 	if (rc == -ENOMEM)
1731 		bp->flags |= DISABLE_MSI_FLAG;
1732 
1733 	return rc;
1734 }
1735 
1736 static int bnx2x_req_msix_irqs(struct bnx2x *bp)
1737 {
1738 	int i, rc, offset = 0;
1739 
1740 	/* no default status block for vf */
1741 	if (IS_PF(bp)) {
1742 		rc = request_irq(bp->msix_table[offset++].vector,
1743 				 bnx2x_msix_sp_int, 0,
1744 				 bp->dev->name, bp->dev);
1745 		if (rc) {
1746 			BNX2X_ERR("request sp irq failed\n");
1747 			return -EBUSY;
1748 		}
1749 	}
1750 
1751 	if (CNIC_SUPPORT(bp))
1752 		offset++;
1753 
1754 	for_each_eth_queue(bp, i) {
1755 		struct bnx2x_fastpath *fp = &bp->fp[i];
1756 		snprintf(fp->name, sizeof(fp->name), "%s-fp-%d",
1757 			 bp->dev->name, i);
1758 
1759 		rc = request_irq(bp->msix_table[offset].vector,
1760 				 bnx2x_msix_fp_int, 0, fp->name, fp);
1761 		if (rc) {
1762 			BNX2X_ERR("request fp #%d irq (%d) failed  rc %d\n", i,
1763 			      bp->msix_table[offset].vector, rc);
1764 			bnx2x_free_msix_irqs(bp, offset);
1765 			return -EBUSY;
1766 		}
1767 
1768 		offset++;
1769 	}
1770 
1771 	i = BNX2X_NUM_ETH_QUEUES(bp);
1772 	if (IS_PF(bp)) {
1773 		offset = 1 + CNIC_SUPPORT(bp);
1774 		netdev_info(bp->dev,
1775 			    "using MSI-X  IRQs: sp %d  fp[%d] %d ... fp[%d] %d\n",
1776 			    bp->msix_table[0].vector,
1777 			    0, bp->msix_table[offset].vector,
1778 			    i - 1, bp->msix_table[offset + i - 1].vector);
1779 	} else {
1780 		offset = CNIC_SUPPORT(bp);
1781 		netdev_info(bp->dev,
1782 			    "using MSI-X  IRQs: fp[%d] %d ... fp[%d] %d\n",
1783 			    0, bp->msix_table[offset].vector,
1784 			    i - 1, bp->msix_table[offset + i - 1].vector);
1785 	}
1786 	return 0;
1787 }
1788 
1789 int bnx2x_enable_msi(struct bnx2x *bp)
1790 {
1791 	int rc;
1792 
1793 	rc = pci_enable_msi(bp->pdev);
1794 	if (rc) {
1795 		BNX2X_DEV_INFO("MSI is not attainable\n");
1796 		return -1;
1797 	}
1798 	bp->flags |= USING_MSI_FLAG;
1799 
1800 	return 0;
1801 }
1802 
1803 static int bnx2x_req_irq(struct bnx2x *bp)
1804 {
1805 	unsigned long flags;
1806 	unsigned int irq;
1807 
1808 	if (bp->flags & (USING_MSI_FLAG | USING_MSIX_FLAG))
1809 		flags = 0;
1810 	else
1811 		flags = IRQF_SHARED;
1812 
1813 	if (bp->flags & USING_MSIX_FLAG)
1814 		irq = bp->msix_table[0].vector;
1815 	else
1816 		irq = bp->pdev->irq;
1817 
1818 	return request_irq(irq, bnx2x_interrupt, flags, bp->dev->name, bp->dev);
1819 }
1820 
1821 static int bnx2x_setup_irqs(struct bnx2x *bp)
1822 {
1823 	int rc = 0;
1824 	if (bp->flags & USING_MSIX_FLAG &&
1825 	    !(bp->flags & USING_SINGLE_MSIX_FLAG)) {
1826 		rc = bnx2x_req_msix_irqs(bp);
1827 		if (rc)
1828 			return rc;
1829 	} else {
1830 		rc = bnx2x_req_irq(bp);
1831 		if (rc) {
1832 			BNX2X_ERR("IRQ request failed  rc %d, aborting\n", rc);
1833 			return rc;
1834 		}
1835 		if (bp->flags & USING_MSI_FLAG) {
1836 			bp->dev->irq = bp->pdev->irq;
1837 			netdev_info(bp->dev, "using MSI IRQ %d\n",
1838 				    bp->dev->irq);
1839 		}
1840 		if (bp->flags & USING_MSIX_FLAG) {
1841 			bp->dev->irq = bp->msix_table[0].vector;
1842 			netdev_info(bp->dev, "using MSIX IRQ %d\n",
1843 				    bp->dev->irq);
1844 		}
1845 	}
1846 
1847 	return 0;
1848 }
1849 
1850 static void bnx2x_napi_enable_cnic(struct bnx2x *bp)
1851 {
1852 	int i;
1853 
1854 	for_each_rx_queue_cnic(bp, i) {
1855 		napi_enable(&bnx2x_fp(bp, i, napi));
1856 	}
1857 }
1858 
1859 static void bnx2x_napi_enable(struct bnx2x *bp)
1860 {
1861 	int i;
1862 
1863 	for_each_eth_queue(bp, i) {
1864 		napi_enable(&bnx2x_fp(bp, i, napi));
1865 	}
1866 }
1867 
1868 static void bnx2x_napi_disable_cnic(struct bnx2x *bp)
1869 {
1870 	int i;
1871 
1872 	for_each_rx_queue_cnic(bp, i) {
1873 		napi_disable(&bnx2x_fp(bp, i, napi));
1874 	}
1875 }
1876 
1877 static void bnx2x_napi_disable(struct bnx2x *bp)
1878 {
1879 	int i;
1880 
1881 	for_each_eth_queue(bp, i) {
1882 		napi_disable(&bnx2x_fp(bp, i, napi));
1883 	}
1884 }
1885 
1886 void bnx2x_netif_start(struct bnx2x *bp)
1887 {
1888 	if (netif_running(bp->dev)) {
1889 		bnx2x_napi_enable(bp);
1890 		if (CNIC_LOADED(bp))
1891 			bnx2x_napi_enable_cnic(bp);
1892 		bnx2x_int_enable(bp);
1893 		if (bp->state == BNX2X_STATE_OPEN)
1894 			netif_tx_wake_all_queues(bp->dev);
1895 	}
1896 }
1897 
1898 void bnx2x_netif_stop(struct bnx2x *bp, int disable_hw)
1899 {
1900 	bnx2x_int_disable_sync(bp, disable_hw);
1901 	bnx2x_napi_disable(bp);
1902 	if (CNIC_LOADED(bp))
1903 		bnx2x_napi_disable_cnic(bp);
1904 }
1905 
1906 u16 bnx2x_select_queue(struct net_device *dev, struct sk_buff *skb,
1907 		       void *accel_priv, select_queue_fallback_t fallback)
1908 {
1909 	struct bnx2x *bp = netdev_priv(dev);
1910 
1911 	if (CNIC_LOADED(bp) && !NO_FCOE(bp)) {
1912 		struct ethhdr *hdr = (struct ethhdr *)skb->data;
1913 		u16 ether_type = ntohs(hdr->h_proto);
1914 
1915 		/* Skip VLAN tag if present */
1916 		if (ether_type == ETH_P_8021Q) {
1917 			struct vlan_ethhdr *vhdr =
1918 				(struct vlan_ethhdr *)skb->data;
1919 
1920 			ether_type = ntohs(vhdr->h_vlan_encapsulated_proto);
1921 		}
1922 
1923 		/* If ethertype is FCoE or FIP - use FCoE ring */
1924 		if ((ether_type == ETH_P_FCOE) || (ether_type == ETH_P_FIP))
1925 			return bnx2x_fcoe_tx(bp, txq_index);
1926 	}
1927 
1928 	/* select a non-FCoE queue */
1929 	return fallback(dev, skb) % BNX2X_NUM_ETH_QUEUES(bp);
1930 }
1931 
1932 void bnx2x_set_num_queues(struct bnx2x *bp)
1933 {
1934 	/* RSS queues */
1935 	bp->num_ethernet_queues = bnx2x_calc_num_queues(bp);
1936 
1937 	/* override in STORAGE SD modes */
1938 	if (IS_MF_STORAGE_ONLY(bp))
1939 		bp->num_ethernet_queues = 1;
1940 
1941 	/* Add special queues */
1942 	bp->num_cnic_queues = CNIC_SUPPORT(bp); /* For FCOE */
1943 	bp->num_queues = bp->num_ethernet_queues + bp->num_cnic_queues;
1944 
1945 	BNX2X_DEV_INFO("set number of queues to %d\n", bp->num_queues);
1946 }
1947 
1948 /**
1949  * bnx2x_set_real_num_queues - configure netdev->real_num_[tx,rx]_queues
1950  *
1951  * @bp:		Driver handle
1952  *
1953  * We currently support for at most 16 Tx queues for each CoS thus we will
1954  * allocate a multiple of 16 for ETH L2 rings according to the value of the
1955  * bp->max_cos.
1956  *
1957  * If there is an FCoE L2 queue the appropriate Tx queue will have the next
1958  * index after all ETH L2 indices.
1959  *
1960  * If the actual number of Tx queues (for each CoS) is less than 16 then there
1961  * will be the holes at the end of each group of 16 ETh L2 indices (0..15,
1962  * 16..31,...) with indices that are not coupled with any real Tx queue.
1963  *
1964  * The proper configuration of skb->queue_mapping is handled by
1965  * bnx2x_select_queue() and __skb_tx_hash().
1966  *
1967  * bnx2x_setup_tc() takes care of the proper TC mappings so that __skb_tx_hash()
1968  * will return a proper Tx index if TC is enabled (netdev->num_tc > 0).
1969  */
1970 static int bnx2x_set_real_num_queues(struct bnx2x *bp, int include_cnic)
1971 {
1972 	int rc, tx, rx;
1973 
1974 	tx = BNX2X_NUM_ETH_QUEUES(bp) * bp->max_cos;
1975 	rx = BNX2X_NUM_ETH_QUEUES(bp);
1976 
1977 /* account for fcoe queue */
1978 	if (include_cnic && !NO_FCOE(bp)) {
1979 		rx++;
1980 		tx++;
1981 	}
1982 
1983 	rc = netif_set_real_num_tx_queues(bp->dev, tx);
1984 	if (rc) {
1985 		BNX2X_ERR("Failed to set real number of Tx queues: %d\n", rc);
1986 		return rc;
1987 	}
1988 	rc = netif_set_real_num_rx_queues(bp->dev, rx);
1989 	if (rc) {
1990 		BNX2X_ERR("Failed to set real number of Rx queues: %d\n", rc);
1991 		return rc;
1992 	}
1993 
1994 	DP(NETIF_MSG_IFUP, "Setting real num queues to (tx, rx) (%d, %d)\n",
1995 			  tx, rx);
1996 
1997 	return rc;
1998 }
1999 
2000 static void bnx2x_set_rx_buf_size(struct bnx2x *bp)
2001 {
2002 	int i;
2003 
2004 	for_each_queue(bp, i) {
2005 		struct bnx2x_fastpath *fp = &bp->fp[i];
2006 		u32 mtu;
2007 
2008 		/* Always use a mini-jumbo MTU for the FCoE L2 ring */
2009 		if (IS_FCOE_IDX(i))
2010 			/*
2011 			 * Although there are no IP frames expected to arrive to
2012 			 * this ring we still want to add an
2013 			 * IP_HEADER_ALIGNMENT_PADDING to prevent a buffer
2014 			 * overrun attack.
2015 			 */
2016 			mtu = BNX2X_FCOE_MINI_JUMBO_MTU;
2017 		else
2018 			mtu = bp->dev->mtu;
2019 		fp->rx_buf_size = BNX2X_FW_RX_ALIGN_START +
2020 				  IP_HEADER_ALIGNMENT_PADDING +
2021 				  ETH_OVERHEAD +
2022 				  mtu +
2023 				  BNX2X_FW_RX_ALIGN_END;
2024 		fp->rx_buf_size = SKB_DATA_ALIGN(fp->rx_buf_size);
2025 		/* Note : rx_buf_size doesn't take into account NET_SKB_PAD */
2026 		if (fp->rx_buf_size + NET_SKB_PAD <= PAGE_SIZE)
2027 			fp->rx_frag_size = fp->rx_buf_size + NET_SKB_PAD;
2028 		else
2029 			fp->rx_frag_size = 0;
2030 	}
2031 }
2032 
2033 static int bnx2x_init_rss(struct bnx2x *bp)
2034 {
2035 	int i;
2036 	u8 num_eth_queues = BNX2X_NUM_ETH_QUEUES(bp);
2037 
2038 	/* Prepare the initial contents for the indirection table if RSS is
2039 	 * enabled
2040 	 */
2041 	for (i = 0; i < sizeof(bp->rss_conf_obj.ind_table); i++)
2042 		bp->rss_conf_obj.ind_table[i] =
2043 			bp->fp->cl_id +
2044 			ethtool_rxfh_indir_default(i, num_eth_queues);
2045 
2046 	/*
2047 	 * For 57710 and 57711 SEARCHER configuration (rss_keys) is
2048 	 * per-port, so if explicit configuration is needed , do it only
2049 	 * for a PMF.
2050 	 *
2051 	 * For 57712 and newer on the other hand it's a per-function
2052 	 * configuration.
2053 	 */
2054 	return bnx2x_config_rss_eth(bp, bp->port.pmf || !CHIP_IS_E1x(bp));
2055 }
2056 
2057 int bnx2x_rss(struct bnx2x *bp, struct bnx2x_rss_config_obj *rss_obj,
2058 	      bool config_hash, bool enable)
2059 {
2060 	struct bnx2x_config_rss_params params = {NULL};
2061 
2062 	/* Although RSS is meaningless when there is a single HW queue we
2063 	 * still need it enabled in order to have HW Rx hash generated.
2064 	 *
2065 	 * if (!is_eth_multi(bp))
2066 	 *      bp->multi_mode = ETH_RSS_MODE_DISABLED;
2067 	 */
2068 
2069 	params.rss_obj = rss_obj;
2070 
2071 	__set_bit(RAMROD_COMP_WAIT, &params.ramrod_flags);
2072 
2073 	if (enable) {
2074 		__set_bit(BNX2X_RSS_MODE_REGULAR, &params.rss_flags);
2075 
2076 		/* RSS configuration */
2077 		__set_bit(BNX2X_RSS_IPV4, &params.rss_flags);
2078 		__set_bit(BNX2X_RSS_IPV4_TCP, &params.rss_flags);
2079 		__set_bit(BNX2X_RSS_IPV6, &params.rss_flags);
2080 		__set_bit(BNX2X_RSS_IPV6_TCP, &params.rss_flags);
2081 		if (rss_obj->udp_rss_v4)
2082 			__set_bit(BNX2X_RSS_IPV4_UDP, &params.rss_flags);
2083 		if (rss_obj->udp_rss_v6)
2084 			__set_bit(BNX2X_RSS_IPV6_UDP, &params.rss_flags);
2085 
2086 		if (!CHIP_IS_E1x(bp)) {
2087 			/* valid only for TUNN_MODE_VXLAN tunnel mode */
2088 			__set_bit(BNX2X_RSS_IPV4_VXLAN, &params.rss_flags);
2089 			__set_bit(BNX2X_RSS_IPV6_VXLAN, &params.rss_flags);
2090 
2091 			/* valid only for TUNN_MODE_GRE tunnel mode */
2092 			__set_bit(BNX2X_RSS_TUNN_INNER_HDRS, &params.rss_flags);
2093 		}
2094 	} else {
2095 		__set_bit(BNX2X_RSS_MODE_DISABLED, &params.rss_flags);
2096 	}
2097 
2098 	/* Hash bits */
2099 	params.rss_result_mask = MULTI_MASK;
2100 
2101 	memcpy(params.ind_table, rss_obj->ind_table, sizeof(params.ind_table));
2102 
2103 	if (config_hash) {
2104 		/* RSS keys */
2105 		netdev_rss_key_fill(params.rss_key, T_ETH_RSS_KEY * 4);
2106 		__set_bit(BNX2X_RSS_SET_SRCH, &params.rss_flags);
2107 	}
2108 
2109 	if (IS_PF(bp))
2110 		return bnx2x_config_rss(bp, &params);
2111 	else
2112 		return bnx2x_vfpf_config_rss(bp, &params);
2113 }
2114 
2115 static int bnx2x_init_hw(struct bnx2x *bp, u32 load_code)
2116 {
2117 	struct bnx2x_func_state_params func_params = {NULL};
2118 
2119 	/* Prepare parameters for function state transitions */
2120 	__set_bit(RAMROD_COMP_WAIT, &func_params.ramrod_flags);
2121 
2122 	func_params.f_obj = &bp->func_obj;
2123 	func_params.cmd = BNX2X_F_CMD_HW_INIT;
2124 
2125 	func_params.params.hw_init.load_phase = load_code;
2126 
2127 	return bnx2x_func_state_change(bp, &func_params);
2128 }
2129 
2130 /*
2131  * Cleans the object that have internal lists without sending
2132  * ramrods. Should be run when interrupts are disabled.
2133  */
2134 void bnx2x_squeeze_objects(struct bnx2x *bp)
2135 {
2136 	int rc;
2137 	unsigned long ramrod_flags = 0, vlan_mac_flags = 0;
2138 	struct bnx2x_mcast_ramrod_params rparam = {NULL};
2139 	struct bnx2x_vlan_mac_obj *mac_obj = &bp->sp_objs->mac_obj;
2140 
2141 	/***************** Cleanup MACs' object first *************************/
2142 
2143 	/* Wait for completion of requested */
2144 	__set_bit(RAMROD_COMP_WAIT, &ramrod_flags);
2145 	/* Perform a dry cleanup */
2146 	__set_bit(RAMROD_DRV_CLR_ONLY, &ramrod_flags);
2147 
2148 	/* Clean ETH primary MAC */
2149 	__set_bit(BNX2X_ETH_MAC, &vlan_mac_flags);
2150 	rc = mac_obj->delete_all(bp, &bp->sp_objs->mac_obj, &vlan_mac_flags,
2151 				 &ramrod_flags);
2152 	if (rc != 0)
2153 		BNX2X_ERR("Failed to clean ETH MACs: %d\n", rc);
2154 
2155 	/* Cleanup UC list */
2156 	vlan_mac_flags = 0;
2157 	__set_bit(BNX2X_UC_LIST_MAC, &vlan_mac_flags);
2158 	rc = mac_obj->delete_all(bp, mac_obj, &vlan_mac_flags,
2159 				 &ramrod_flags);
2160 	if (rc != 0)
2161 		BNX2X_ERR("Failed to clean UC list MACs: %d\n", rc);
2162 
2163 	/***************** Now clean mcast object *****************************/
2164 	rparam.mcast_obj = &bp->mcast_obj;
2165 	__set_bit(RAMROD_DRV_CLR_ONLY, &rparam.ramrod_flags);
2166 
2167 	/* Add a DEL command... - Since we're doing a driver cleanup only,
2168 	 * we take a lock surrounding both the initial send and the CONTs,
2169 	 * as we don't want a true completion to disrupt us in the middle.
2170 	 */
2171 	netif_addr_lock_bh(bp->dev);
2172 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_DEL);
2173 	if (rc < 0)
2174 		BNX2X_ERR("Failed to add a new DEL command to a multi-cast object: %d\n",
2175 			  rc);
2176 
2177 	/* ...and wait until all pending commands are cleared */
2178 	rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2179 	while (rc != 0) {
2180 		if (rc < 0) {
2181 			BNX2X_ERR("Failed to clean multi-cast object: %d\n",
2182 				  rc);
2183 			netif_addr_unlock_bh(bp->dev);
2184 			return;
2185 		}
2186 
2187 		rc = bnx2x_config_mcast(bp, &rparam, BNX2X_MCAST_CMD_CONT);
2188 	}
2189 	netif_addr_unlock_bh(bp->dev);
2190 }
2191 
2192 #ifndef BNX2X_STOP_ON_ERROR
2193 #define LOAD_ERROR_EXIT(bp, label) \
2194 	do { \
2195 		(bp)->state = BNX2X_STATE_ERROR; \
2196 		goto label; \
2197 	} while (0)
2198 
2199 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2200 	do { \
2201 		bp->cnic_loaded = false; \
2202 		goto label; \
2203 	} while (0)
2204 #else /*BNX2X_STOP_ON_ERROR*/
2205 #define LOAD_ERROR_EXIT(bp, label) \
2206 	do { \
2207 		(bp)->state = BNX2X_STATE_ERROR; \
2208 		(bp)->panic = 1; \
2209 		return -EBUSY; \
2210 	} while (0)
2211 #define LOAD_ERROR_EXIT_CNIC(bp, label) \
2212 	do { \
2213 		bp->cnic_loaded = false; \
2214 		(bp)->panic = 1; \
2215 		return -EBUSY; \
2216 	} while (0)
2217 #endif /*BNX2X_STOP_ON_ERROR*/
2218 
2219 static void bnx2x_free_fw_stats_mem(struct bnx2x *bp)
2220 {
2221 	BNX2X_PCI_FREE(bp->fw_stats, bp->fw_stats_mapping,
2222 		       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2223 	return;
2224 }
2225 
2226 static int bnx2x_alloc_fw_stats_mem(struct bnx2x *bp)
2227 {
2228 	int num_groups, vf_headroom = 0;
2229 	int is_fcoe_stats = NO_FCOE(bp) ? 0 : 1;
2230 
2231 	/* number of queues for statistics is number of eth queues + FCoE */
2232 	u8 num_queue_stats = BNX2X_NUM_ETH_QUEUES(bp) + is_fcoe_stats;
2233 
2234 	/* Total number of FW statistics requests =
2235 	 * 1 for port stats + 1 for PF stats + potential 2 for FCoE (fcoe proper
2236 	 * and fcoe l2 queue) stats + num of queues (which includes another 1
2237 	 * for fcoe l2 queue if applicable)
2238 	 */
2239 	bp->fw_stats_num = 2 + is_fcoe_stats + num_queue_stats;
2240 
2241 	/* vf stats appear in the request list, but their data is allocated by
2242 	 * the VFs themselves. We don't include them in the bp->fw_stats_num as
2243 	 * it is used to determine where to place the vf stats queries in the
2244 	 * request struct
2245 	 */
2246 	if (IS_SRIOV(bp))
2247 		vf_headroom = bnx2x_vf_headroom(bp);
2248 
2249 	/* Request is built from stats_query_header and an array of
2250 	 * stats_query_cmd_group each of which contains
2251 	 * STATS_QUERY_CMD_COUNT rules. The real number or requests is
2252 	 * configured in the stats_query_header.
2253 	 */
2254 	num_groups =
2255 		(((bp->fw_stats_num + vf_headroom) / STATS_QUERY_CMD_COUNT) +
2256 		 (((bp->fw_stats_num + vf_headroom) % STATS_QUERY_CMD_COUNT) ?
2257 		 1 : 0));
2258 
2259 	DP(BNX2X_MSG_SP, "stats fw_stats_num %d, vf headroom %d, num_groups %d\n",
2260 	   bp->fw_stats_num, vf_headroom, num_groups);
2261 	bp->fw_stats_req_sz = sizeof(struct stats_query_header) +
2262 		num_groups * sizeof(struct stats_query_cmd_group);
2263 
2264 	/* Data for statistics requests + stats_counter
2265 	 * stats_counter holds per-STORM counters that are incremented
2266 	 * when STORM has finished with the current request.
2267 	 * memory for FCoE offloaded statistics are counted anyway,
2268 	 * even if they will not be sent.
2269 	 * VF stats are not accounted for here as the data of VF stats is stored
2270 	 * in memory allocated by the VF, not here.
2271 	 */
2272 	bp->fw_stats_data_sz = sizeof(struct per_port_stats) +
2273 		sizeof(struct per_pf_stats) +
2274 		sizeof(struct fcoe_statistics_params) +
2275 		sizeof(struct per_queue_stats) * num_queue_stats +
2276 		sizeof(struct stats_counter);
2277 
2278 	bp->fw_stats = BNX2X_PCI_ALLOC(&bp->fw_stats_mapping,
2279 				       bp->fw_stats_data_sz + bp->fw_stats_req_sz);
2280 	if (!bp->fw_stats)
2281 		goto alloc_mem_err;
2282 
2283 	/* Set shortcuts */
2284 	bp->fw_stats_req = (struct bnx2x_fw_stats_req *)bp->fw_stats;
2285 	bp->fw_stats_req_mapping = bp->fw_stats_mapping;
2286 	bp->fw_stats_data = (struct bnx2x_fw_stats_data *)
2287 		((u8 *)bp->fw_stats + bp->fw_stats_req_sz);
2288 	bp->fw_stats_data_mapping = bp->fw_stats_mapping +
2289 		bp->fw_stats_req_sz;
2290 
2291 	DP(BNX2X_MSG_SP, "statistics request base address set to %x %x\n",
2292 	   U64_HI(bp->fw_stats_req_mapping),
2293 	   U64_LO(bp->fw_stats_req_mapping));
2294 	DP(BNX2X_MSG_SP, "statistics data base address set to %x %x\n",
2295 	   U64_HI(bp->fw_stats_data_mapping),
2296 	   U64_LO(bp->fw_stats_data_mapping));
2297 	return 0;
2298 
2299 alloc_mem_err:
2300 	bnx2x_free_fw_stats_mem(bp);
2301 	BNX2X_ERR("Can't allocate FW stats memory\n");
2302 	return -ENOMEM;
2303 }
2304 
2305 /* send load request to mcp and analyze response */
2306 static int bnx2x_nic_load_request(struct bnx2x *bp, u32 *load_code)
2307 {
2308 	u32 param;
2309 
2310 	/* init fw_seq */
2311 	bp->fw_seq =
2312 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_mb_header) &
2313 		 DRV_MSG_SEQ_NUMBER_MASK);
2314 	BNX2X_DEV_INFO("fw_seq 0x%08x\n", bp->fw_seq);
2315 
2316 	/* Get current FW pulse sequence */
2317 	bp->fw_drv_pulse_wr_seq =
2318 		(SHMEM_RD(bp, func_mb[BP_FW_MB_IDX(bp)].drv_pulse_mb) &
2319 		 DRV_PULSE_SEQ_MASK);
2320 	BNX2X_DEV_INFO("drv_pulse 0x%x\n", bp->fw_drv_pulse_wr_seq);
2321 
2322 	param = DRV_MSG_CODE_LOAD_REQ_WITH_LFA;
2323 
2324 	if (IS_MF_SD(bp) && bnx2x_port_after_undi(bp))
2325 		param |= DRV_MSG_CODE_LOAD_REQ_FORCE_LFA;
2326 
2327 	/* load request */
2328 	(*load_code) = bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_REQ, param);
2329 
2330 	/* if mcp fails to respond we must abort */
2331 	if (!(*load_code)) {
2332 		BNX2X_ERR("MCP response failure, aborting\n");
2333 		return -EBUSY;
2334 	}
2335 
2336 	/* If mcp refused (e.g. other port is in diagnostic mode) we
2337 	 * must abort
2338 	 */
2339 	if ((*load_code) == FW_MSG_CODE_DRV_LOAD_REFUSED) {
2340 		BNX2X_ERR("MCP refused load request, aborting\n");
2341 		return -EBUSY;
2342 	}
2343 	return 0;
2344 }
2345 
2346 /* check whether another PF has already loaded FW to chip. In
2347  * virtualized environments a pf from another VM may have already
2348  * initialized the device including loading FW
2349  */
2350 int bnx2x_compare_fw_ver(struct bnx2x *bp, u32 load_code, bool print_err)
2351 {
2352 	/* is another pf loaded on this engine? */
2353 	if (load_code != FW_MSG_CODE_DRV_LOAD_COMMON_CHIP &&
2354 	    load_code != FW_MSG_CODE_DRV_LOAD_COMMON) {
2355 		/* build my FW version dword */
2356 		u32 my_fw = (BCM_5710_FW_MAJOR_VERSION) +
2357 			(BCM_5710_FW_MINOR_VERSION << 8) +
2358 			(BCM_5710_FW_REVISION_VERSION << 16) +
2359 			(BCM_5710_FW_ENGINEERING_VERSION << 24);
2360 
2361 		/* read loaded FW from chip */
2362 		u32 loaded_fw = REG_RD(bp, XSEM_REG_PRAM);
2363 
2364 		DP(BNX2X_MSG_SP, "loaded fw %x, my fw %x\n",
2365 		   loaded_fw, my_fw);
2366 
2367 		/* abort nic load if version mismatch */
2368 		if (my_fw != loaded_fw) {
2369 			if (print_err)
2370 				BNX2X_ERR("bnx2x with FW %x was already loaded which mismatches my %x FW. Aborting\n",
2371 					  loaded_fw, my_fw);
2372 			else
2373 				BNX2X_DEV_INFO("bnx2x with FW %x was already loaded which mismatches my %x FW, possibly due to MF UNDI\n",
2374 					       loaded_fw, my_fw);
2375 			return -EBUSY;
2376 		}
2377 	}
2378 	return 0;
2379 }
2380 
2381 /* returns the "mcp load_code" according to global load_count array */
2382 static int bnx2x_nic_load_no_mcp(struct bnx2x *bp, int port)
2383 {
2384 	int path = BP_PATH(bp);
2385 
2386 	DP(NETIF_MSG_IFUP, "NO MCP - load counts[%d]      %d, %d, %d\n",
2387 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2388 	   bnx2x_load_count[path][2]);
2389 	bnx2x_load_count[path][0]++;
2390 	bnx2x_load_count[path][1 + port]++;
2391 	DP(NETIF_MSG_IFUP, "NO MCP - new load counts[%d]  %d, %d, %d\n",
2392 	   path, bnx2x_load_count[path][0], bnx2x_load_count[path][1],
2393 	   bnx2x_load_count[path][2]);
2394 	if (bnx2x_load_count[path][0] == 1)
2395 		return FW_MSG_CODE_DRV_LOAD_COMMON;
2396 	else if (bnx2x_load_count[path][1 + port] == 1)
2397 		return FW_MSG_CODE_DRV_LOAD_PORT;
2398 	else
2399 		return FW_MSG_CODE_DRV_LOAD_FUNCTION;
2400 }
2401 
2402 /* mark PMF if applicable */
2403 static void bnx2x_nic_load_pmf(struct bnx2x *bp, u32 load_code)
2404 {
2405 	if ((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2406 	    (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP) ||
2407 	    (load_code == FW_MSG_CODE_DRV_LOAD_PORT)) {
2408 		bp->port.pmf = 1;
2409 		/* We need the barrier to ensure the ordering between the
2410 		 * writing to bp->port.pmf here and reading it from the
2411 		 * bnx2x_periodic_task().
2412 		 */
2413 		smp_mb();
2414 	} else {
2415 		bp->port.pmf = 0;
2416 	}
2417 
2418 	DP(NETIF_MSG_LINK, "pmf %d\n", bp->port.pmf);
2419 }
2420 
2421 static void bnx2x_nic_load_afex_dcc(struct bnx2x *bp, int load_code)
2422 {
2423 	if (((load_code == FW_MSG_CODE_DRV_LOAD_COMMON) ||
2424 	     (load_code == FW_MSG_CODE_DRV_LOAD_COMMON_CHIP)) &&
2425 	    (bp->common.shmem2_base)) {
2426 		if (SHMEM2_HAS(bp, dcc_support))
2427 			SHMEM2_WR(bp, dcc_support,
2428 				  (SHMEM_DCC_SUPPORT_DISABLE_ENABLE_PF_TLV |
2429 				   SHMEM_DCC_SUPPORT_BANDWIDTH_ALLOCATION_TLV));
2430 		if (SHMEM2_HAS(bp, afex_driver_support))
2431 			SHMEM2_WR(bp, afex_driver_support,
2432 				  SHMEM_AFEX_SUPPORTED_VERSION_ONE);
2433 	}
2434 
2435 	/* Set AFEX default VLAN tag to an invalid value */
2436 	bp->afex_def_vlan_tag = -1;
2437 }
2438 
2439 /**
2440  * bnx2x_bz_fp - zero content of the fastpath structure.
2441  *
2442  * @bp:		driver handle
2443  * @index:	fastpath index to be zeroed
2444  *
2445  * Makes sure the contents of the bp->fp[index].napi is kept
2446  * intact.
2447  */
2448 static void bnx2x_bz_fp(struct bnx2x *bp, int index)
2449 {
2450 	struct bnx2x_fastpath *fp = &bp->fp[index];
2451 	int cos;
2452 	struct napi_struct orig_napi = fp->napi;
2453 	struct bnx2x_agg_info *orig_tpa_info = fp->tpa_info;
2454 
2455 	/* bzero bnx2x_fastpath contents */
2456 	if (fp->tpa_info)
2457 		memset(fp->tpa_info, 0, ETH_MAX_AGGREGATION_QUEUES_E1H_E2 *
2458 		       sizeof(struct bnx2x_agg_info));
2459 	memset(fp, 0, sizeof(*fp));
2460 
2461 	/* Restore the NAPI object as it has been already initialized */
2462 	fp->napi = orig_napi;
2463 	fp->tpa_info = orig_tpa_info;
2464 	fp->bp = bp;
2465 	fp->index = index;
2466 	if (IS_ETH_FP(fp))
2467 		fp->max_cos = bp->max_cos;
2468 	else
2469 		/* Special queues support only one CoS */
2470 		fp->max_cos = 1;
2471 
2472 	/* Init txdata pointers */
2473 	if (IS_FCOE_FP(fp))
2474 		fp->txdata_ptr[0] = &bp->bnx2x_txq[FCOE_TXQ_IDX(bp)];
2475 	if (IS_ETH_FP(fp))
2476 		for_each_cos_in_tx_queue(fp, cos)
2477 			fp->txdata_ptr[cos] = &bp->bnx2x_txq[cos *
2478 				BNX2X_NUM_ETH_QUEUES(bp) + index];
2479 
2480 	/* set the tpa flag for each queue. The tpa flag determines the queue
2481 	 * minimal size so it must be set prior to queue memory allocation
2482 	 */
2483 	if (bp->dev->features & NETIF_F_LRO)
2484 		fp->mode = TPA_MODE_LRO;
2485 	else if (bp->dev->features & NETIF_F_GRO &&
2486 		 bnx2x_mtu_allows_gro(bp->dev->mtu))
2487 		fp->mode = TPA_MODE_GRO;
2488 	else
2489 		fp->mode = TPA_MODE_DISABLED;
2490 
2491 	/* We don't want TPA if it's disabled in bp
2492 	 * or if this is an FCoE L2 ring.
2493 	 */
2494 	if (bp->disable_tpa || IS_FCOE_FP(fp))
2495 		fp->mode = TPA_MODE_DISABLED;
2496 }
2497 
2498 void bnx2x_set_os_driver_state(struct bnx2x *bp, u32 state)
2499 {
2500 	u32 cur;
2501 
2502 	if (!IS_MF_BD(bp) || !SHMEM2_HAS(bp, os_driver_state) || IS_VF(bp))
2503 		return;
2504 
2505 	cur = SHMEM2_RD(bp, os_driver_state[BP_FW_MB_IDX(bp)]);
2506 	DP(NETIF_MSG_IFUP, "Driver state %08x-->%08x\n",
2507 	   cur, state);
2508 
2509 	SHMEM2_WR(bp, os_driver_state[BP_FW_MB_IDX(bp)], state);
2510 }
2511 
2512 int bnx2x_load_cnic(struct bnx2x *bp)
2513 {
2514 	int i, rc, port = BP_PORT(bp);
2515 
2516 	DP(NETIF_MSG_IFUP, "Starting CNIC-related load\n");
2517 
2518 	mutex_init(&bp->cnic_mutex);
2519 
2520 	if (IS_PF(bp)) {
2521 		rc = bnx2x_alloc_mem_cnic(bp);
2522 		if (rc) {
2523 			BNX2X_ERR("Unable to allocate bp memory for cnic\n");
2524 			LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2525 		}
2526 	}
2527 
2528 	rc = bnx2x_alloc_fp_mem_cnic(bp);
2529 	if (rc) {
2530 		BNX2X_ERR("Unable to allocate memory for cnic fps\n");
2531 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2532 	}
2533 
2534 	/* Update the number of queues with the cnic queues */
2535 	rc = bnx2x_set_real_num_queues(bp, 1);
2536 	if (rc) {
2537 		BNX2X_ERR("Unable to set real_num_queues including cnic\n");
2538 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic0);
2539 	}
2540 
2541 	/* Add all CNIC NAPI objects */
2542 	bnx2x_add_all_napi_cnic(bp);
2543 	DP(NETIF_MSG_IFUP, "cnic napi added\n");
2544 	bnx2x_napi_enable_cnic(bp);
2545 
2546 	rc = bnx2x_init_hw_func_cnic(bp);
2547 	if (rc)
2548 		LOAD_ERROR_EXIT_CNIC(bp, load_error_cnic1);
2549 
2550 	bnx2x_nic_init_cnic(bp);
2551 
2552 	if (IS_PF(bp)) {
2553 		/* Enable Timer scan */
2554 		REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 1);
2555 
2556 		/* setup cnic queues */
2557 		for_each_cnic_queue(bp, i) {
2558 			rc = bnx2x_setup_queue(bp, &bp->fp[i], 0);
2559 			if (rc) {
2560 				BNX2X_ERR("Queue setup failed\n");
2561 				LOAD_ERROR_EXIT(bp, load_error_cnic2);
2562 			}
2563 		}
2564 	}
2565 
2566 	/* Initialize Rx filter. */
2567 	bnx2x_set_rx_mode_inner(bp);
2568 
2569 	/* re-read iscsi info */
2570 	bnx2x_get_iscsi_info(bp);
2571 	bnx2x_setup_cnic_irq_info(bp);
2572 	bnx2x_setup_cnic_info(bp);
2573 	bp->cnic_loaded = true;
2574 	if (bp->state == BNX2X_STATE_OPEN)
2575 		bnx2x_cnic_notify(bp, CNIC_CTL_START_CMD);
2576 
2577 	DP(NETIF_MSG_IFUP, "Ending successfully CNIC-related load\n");
2578 
2579 	return 0;
2580 
2581 #ifndef BNX2X_STOP_ON_ERROR
2582 load_error_cnic2:
2583 	/* Disable Timer scan */
2584 	REG_WR(bp, TM_REG_EN_LINEAR0_TIMER + port*4, 0);
2585 
2586 load_error_cnic1:
2587 	bnx2x_napi_disable_cnic(bp);
2588 	/* Update the number of queues without the cnic queues */
2589 	if (bnx2x_set_real_num_queues(bp, 0))
2590 		BNX2X_ERR("Unable to set real_num_queues not including cnic\n");
2591 load_error_cnic0:
2592 	BNX2X_ERR("CNIC-related load failed\n");
2593 	bnx2x_free_fp_mem_cnic(bp);
2594 	bnx2x_free_mem_cnic(bp);
2595 	return rc;
2596 #endif /* ! BNX2X_STOP_ON_ERROR */
2597 }
2598 
2599 /* must be called with rtnl_lock */
2600 int bnx2x_nic_load(struct bnx2x *bp, int load_mode)
2601 {
2602 	int port = BP_PORT(bp);
2603 	int i, rc = 0, load_code = 0;
2604 
2605 	DP(NETIF_MSG_IFUP, "Starting NIC load\n");
2606 	DP(NETIF_MSG_IFUP,
2607 	   "CNIC is %s\n", CNIC_ENABLED(bp) ? "enabled" : "disabled");
2608 
2609 #ifdef BNX2X_STOP_ON_ERROR
2610 	if (unlikely(bp->panic)) {
2611 		BNX2X_ERR("Can't load NIC when there is panic\n");
2612 		return -EPERM;
2613 	}
2614 #endif
2615 
2616 	bp->state = BNX2X_STATE_OPENING_WAIT4_LOAD;
2617 
2618 	/* zero the structure w/o any lock, before SP handler is initialized */
2619 	memset(&bp->last_reported_link, 0, sizeof(bp->last_reported_link));
2620 	__set_bit(BNX2X_LINK_REPORT_LINK_DOWN,
2621 		&bp->last_reported_link.link_report_flags);
2622 
2623 	if (IS_PF(bp))
2624 		/* must be called before memory allocation and HW init */
2625 		bnx2x_ilt_set_info(bp);
2626 
2627 	/*
2628 	 * Zero fastpath structures preserving invariants like napi, which are
2629 	 * allocated only once, fp index, max_cos, bp pointer.
2630 	 * Also set fp->mode and txdata_ptr.
2631 	 */
2632 	DP(NETIF_MSG_IFUP, "num queues: %d", bp->num_queues);
2633 	for_each_queue(bp, i)
2634 		bnx2x_bz_fp(bp, i);
2635 	memset(bp->bnx2x_txq, 0, (BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS +
2636 				  bp->num_cnic_queues) *
2637 				  sizeof(struct bnx2x_fp_txdata));
2638 
2639 	bp->fcoe_init = false;
2640 
2641 	/* Set the receive queues buffer size */
2642 	bnx2x_set_rx_buf_size(bp);
2643 
2644 	if (IS_PF(bp)) {
2645 		rc = bnx2x_alloc_mem(bp);
2646 		if (rc) {
2647 			BNX2X_ERR("Unable to allocate bp memory\n");
2648 			return rc;
2649 		}
2650 	}
2651 
2652 	/* need to be done after alloc mem, since it's self adjusting to amount
2653 	 * of memory available for RSS queues
2654 	 */
2655 	rc = bnx2x_alloc_fp_mem(bp);
2656 	if (rc) {
2657 		BNX2X_ERR("Unable to allocate memory for fps\n");
2658 		LOAD_ERROR_EXIT(bp, load_error0);
2659 	}
2660 
2661 	/* Allocated memory for FW statistics  */
2662 	if (bnx2x_alloc_fw_stats_mem(bp))
2663 		LOAD_ERROR_EXIT(bp, load_error0);
2664 
2665 	/* request pf to initialize status blocks */
2666 	if (IS_VF(bp)) {
2667 		rc = bnx2x_vfpf_init(bp);
2668 		if (rc)
2669 			LOAD_ERROR_EXIT(bp, load_error0);
2670 	}
2671 
2672 	/* As long as bnx2x_alloc_mem() may possibly update
2673 	 * bp->num_queues, bnx2x_set_real_num_queues() should always
2674 	 * come after it. At this stage cnic queues are not counted.
2675 	 */
2676 	rc = bnx2x_set_real_num_queues(bp, 0);
2677 	if (rc) {
2678 		BNX2X_ERR("Unable to set real_num_queues\n");
2679 		LOAD_ERROR_EXIT(bp, load_error0);
2680 	}
2681 
2682 	/* configure multi cos mappings in kernel.
2683 	 * this configuration may be overridden by a multi class queue
2684 	 * discipline or by a dcbx negotiation result.
2685 	 */
2686 	bnx2x_setup_tc(bp->dev, bp->max_cos);
2687 
2688 	/* Add all NAPI objects */
2689 	bnx2x_add_all_napi(bp);
2690 	DP(NETIF_MSG_IFUP, "napi added\n");
2691 	bnx2x_napi_enable(bp);
2692 
2693 	if (IS_PF(bp)) {
2694 		/* set pf load just before approaching the MCP */
2695 		bnx2x_set_pf_load(bp);
2696 
2697 		/* if mcp exists send load request and analyze response */
2698 		if (!BP_NOMCP(bp)) {
2699 			/* attempt to load pf */
2700 			rc = bnx2x_nic_load_request(bp, &load_code);
2701 			if (rc)
2702 				LOAD_ERROR_EXIT(bp, load_error1);
2703 
2704 			/* what did mcp say? */
2705 			rc = bnx2x_compare_fw_ver(bp, load_code, true);
2706 			if (rc) {
2707 				bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2708 				LOAD_ERROR_EXIT(bp, load_error2);
2709 			}
2710 		} else {
2711 			load_code = bnx2x_nic_load_no_mcp(bp, port);
2712 		}
2713 
2714 		/* mark pmf if applicable */
2715 		bnx2x_nic_load_pmf(bp, load_code);
2716 
2717 		/* Init Function state controlling object */
2718 		bnx2x__init_func_obj(bp);
2719 
2720 		/* Initialize HW */
2721 		rc = bnx2x_init_hw(bp, load_code);
2722 		if (rc) {
2723 			BNX2X_ERR("HW init failed, aborting\n");
2724 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2725 			LOAD_ERROR_EXIT(bp, load_error2);
2726 		}
2727 	}
2728 
2729 	bnx2x_pre_irq_nic_init(bp);
2730 
2731 	/* Connect to IRQs */
2732 	rc = bnx2x_setup_irqs(bp);
2733 	if (rc) {
2734 		BNX2X_ERR("setup irqs failed\n");
2735 		if (IS_PF(bp))
2736 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2737 		LOAD_ERROR_EXIT(bp, load_error2);
2738 	}
2739 
2740 	/* Init per-function objects */
2741 	if (IS_PF(bp)) {
2742 		/* Setup NIC internals and enable interrupts */
2743 		bnx2x_post_irq_nic_init(bp, load_code);
2744 
2745 		bnx2x_init_bp_objs(bp);
2746 		bnx2x_iov_nic_init(bp);
2747 
2748 		/* Set AFEX default VLAN tag to an invalid value */
2749 		bp->afex_def_vlan_tag = -1;
2750 		bnx2x_nic_load_afex_dcc(bp, load_code);
2751 		bp->state = BNX2X_STATE_OPENING_WAIT4_PORT;
2752 		rc = bnx2x_func_start(bp);
2753 		if (rc) {
2754 			BNX2X_ERR("Function start failed!\n");
2755 			bnx2x_fw_command(bp, DRV_MSG_CODE_LOAD_DONE, 0);
2756 
2757 			LOAD_ERROR_EXIT(bp, load_error3);
2758 		}
2759 
2760 		/* Send LOAD_DONE command to MCP */
2761 		if (!BP_NOMCP(bp)) {
2762 			load_code = bnx2x_fw_command(bp,
2763 						     DRV_MSG_CODE_LOAD_DONE, 0);
2764 			if (!load_code) {
2765 				BNX2X_ERR("MCP response failure, aborting\n");
2766 				rc = -EBUSY;
2767 				LOAD_ERROR_EXIT(bp, load_error3);
2768 			}
2769 		}
2770 
2771 		/* initialize FW coalescing state machines in RAM */
2772 		bnx2x_update_coalesce(bp);
2773 	}
2774 
2775 	/* setup the leading queue */
2776 	rc = bnx2x_setup_leading(bp);
2777 	if (rc) {
2778 		BNX2X_ERR("Setup leading failed!\n");
2779 		LOAD_ERROR_EXIT(bp, load_error3);
2780 	}
2781 
2782 	/* set up the rest of the queues */
2783 	for_each_nondefault_eth_queue(bp, i) {
2784 		if (IS_PF(bp))
2785 			rc = bnx2x_setup_queue(bp, &bp->fp[i], false);
2786 		else /* VF */
2787 			rc = bnx2x_vfpf_setup_q(bp, &bp->fp[i], false);
2788 		if (rc) {
2789 			BNX2X_ERR("Queue %d setup failed\n", i);
2790 			LOAD_ERROR_EXIT(bp, load_error3);
2791 		}
2792 	}
2793 
2794 	/* setup rss */
2795 	rc = bnx2x_init_rss(bp);
2796 	if (rc) {
2797 		BNX2X_ERR("PF RSS init failed\n");
2798 		LOAD_ERROR_EXIT(bp, load_error3);
2799 	}
2800 
2801 	/* Now when Clients are configured we are ready to work */
2802 	bp->state = BNX2X_STATE_OPEN;
2803 
2804 	/* Configure a ucast MAC */
2805 	if (IS_PF(bp))
2806 		rc = bnx2x_set_eth_mac(bp, true);
2807 	else /* vf */
2808 		rc = bnx2x_vfpf_config_mac(bp, bp->dev->dev_addr, bp->fp->index,
2809 					   true);
2810 	if (rc) {
2811 		BNX2X_ERR("Setting Ethernet MAC failed\n");
2812 		LOAD_ERROR_EXIT(bp, load_error3);
2813 	}
2814 
2815 	if (IS_PF(bp) && bp->pending_max) {
2816 		bnx2x_update_max_mf_config(bp, bp->pending_max);
2817 		bp->pending_max = 0;
2818 	}
2819 
2820 	if (bp->port.pmf) {
2821 		rc = bnx2x_initial_phy_init(bp, load_mode);
2822 		if (rc)
2823 			LOAD_ERROR_EXIT(bp, load_error3);
2824 	}
2825 	bp->link_params.feature_config_flags &= ~FEATURE_CONFIG_BOOT_FROM_SAN;
2826 
2827 	/* Start fast path */
2828 
2829 	/* Re-configure vlan filters */
2830 	rc = bnx2x_vlan_reconfigure_vid(bp);
2831 	if (rc)
2832 		LOAD_ERROR_EXIT(bp, load_error3);
2833 
2834 	/* Initialize Rx filter. */
2835 	bnx2x_set_rx_mode_inner(bp);
2836 
2837 	if (bp->flags & PTP_SUPPORTED) {
2838 		bnx2x_init_ptp(bp);
2839 		bnx2x_configure_ptp_filters(bp);
2840 	}
2841 	/* Start Tx */
2842 	switch (load_mode) {
2843 	case LOAD_NORMAL:
2844 		/* Tx queue should be only re-enabled */
2845 		netif_tx_wake_all_queues(bp->dev);
2846 		break;
2847 
2848 	case LOAD_OPEN:
2849 		netif_tx_start_all_queues(bp->dev);
2850 		smp_mb__after_atomic();
2851 		break;
2852 
2853 	case LOAD_DIAG:
2854 	case LOAD_LOOPBACK_EXT:
2855 		bp->state = BNX2X_STATE_DIAG;
2856 		break;
2857 
2858 	default:
2859 		break;
2860 	}
2861 
2862 	if (bp->port.pmf)
2863 		bnx2x_update_drv_flags(bp, 1 << DRV_FLAGS_PORT_MASK, 0);
2864 	else
2865 		bnx2x__link_status_update(bp);
2866 
2867 	/* start the timer */
2868 	mod_timer(&bp->timer, jiffies + bp->current_interval);
2869 
2870 	if (CNIC_ENABLED(bp))
2871 		bnx2x_load_cnic(bp);
2872 
2873 	if (IS_PF(bp))
2874 		bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_GET_DRV_VERSION, 0);
2875 
2876 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2877 		/* mark driver is loaded in shmem2 */
2878 		u32 val;
2879 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2880 		val &= ~DRV_FLAGS_MTU_MASK;
2881 		val |= (bp->dev->mtu << DRV_FLAGS_MTU_SHIFT);
2882 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2883 			  val | DRV_FLAGS_CAPABILITIES_LOADED_SUPPORTED |
2884 			  DRV_FLAGS_CAPABILITIES_LOADED_L2);
2885 	}
2886 
2887 	/* Wait for all pending SP commands to complete */
2888 	if (IS_PF(bp) && !bnx2x_wait_sp_comp(bp, ~0x0UL)) {
2889 		BNX2X_ERR("Timeout waiting for SP elements to complete\n");
2890 		bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
2891 		return -EBUSY;
2892 	}
2893 
2894 	/* Update driver data for On-Chip MFW dump. */
2895 	if (IS_PF(bp))
2896 		bnx2x_update_mfw_dump(bp);
2897 
2898 	/* If PMF - send ADMIN DCBX msg to MFW to initiate DCBX FSM */
2899 	if (bp->port.pmf && (bp->state != BNX2X_STATE_DIAG))
2900 		bnx2x_dcbx_init(bp, false);
2901 
2902 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2903 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_ACTIVE);
2904 
2905 	DP(NETIF_MSG_IFUP, "Ending successfully NIC load\n");
2906 
2907 	return 0;
2908 
2909 #ifndef BNX2X_STOP_ON_ERROR
2910 load_error3:
2911 	if (IS_PF(bp)) {
2912 		bnx2x_int_disable_sync(bp, 1);
2913 
2914 		/* Clean queueable objects */
2915 		bnx2x_squeeze_objects(bp);
2916 	}
2917 
2918 	/* Free SKBs, SGEs, TPA pool and driver internals */
2919 	bnx2x_free_skbs(bp);
2920 	for_each_rx_queue(bp, i)
2921 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
2922 
2923 	/* Release IRQs */
2924 	bnx2x_free_irq(bp);
2925 load_error2:
2926 	if (IS_PF(bp) && !BP_NOMCP(bp)) {
2927 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_REQ_WOL_MCP, 0);
2928 		bnx2x_fw_command(bp, DRV_MSG_CODE_UNLOAD_DONE, 0);
2929 	}
2930 
2931 	bp->port.pmf = 0;
2932 load_error1:
2933 	bnx2x_napi_disable(bp);
2934 	bnx2x_del_all_napi(bp);
2935 
2936 	/* clear pf_load status, as it was already set */
2937 	if (IS_PF(bp))
2938 		bnx2x_clear_pf_load(bp);
2939 load_error0:
2940 	bnx2x_free_fw_stats_mem(bp);
2941 	bnx2x_free_fp_mem(bp);
2942 	bnx2x_free_mem(bp);
2943 
2944 	return rc;
2945 #endif /* ! BNX2X_STOP_ON_ERROR */
2946 }
2947 
2948 int bnx2x_drain_tx_queues(struct bnx2x *bp)
2949 {
2950 	u8 rc = 0, cos, i;
2951 
2952 	/* Wait until tx fastpath tasks complete */
2953 	for_each_tx_queue(bp, i) {
2954 		struct bnx2x_fastpath *fp = &bp->fp[i];
2955 
2956 		for_each_cos_in_tx_queue(fp, cos)
2957 			rc = bnx2x_clean_tx_queue(bp, fp->txdata_ptr[cos]);
2958 		if (rc)
2959 			return rc;
2960 	}
2961 	return 0;
2962 }
2963 
2964 /* must be called with rtnl_lock */
2965 int bnx2x_nic_unload(struct bnx2x *bp, int unload_mode, bool keep_link)
2966 {
2967 	int i;
2968 	bool global = false;
2969 
2970 	DP(NETIF_MSG_IFUP, "Starting NIC unload\n");
2971 
2972 	if (!IS_MF_SD_STORAGE_PERSONALITY_ONLY(bp))
2973 		bnx2x_set_os_driver_state(bp, OS_DRIVER_STATE_DISABLED);
2974 
2975 	/* mark driver is unloaded in shmem2 */
2976 	if (IS_PF(bp) && SHMEM2_HAS(bp, drv_capabilities_flag)) {
2977 		u32 val;
2978 		val = SHMEM2_RD(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)]);
2979 		SHMEM2_WR(bp, drv_capabilities_flag[BP_FW_MB_IDX(bp)],
2980 			  val & ~DRV_FLAGS_CAPABILITIES_LOADED_L2);
2981 	}
2982 
2983 	if (IS_PF(bp) && bp->recovery_state != BNX2X_RECOVERY_DONE &&
2984 	    (bp->state == BNX2X_STATE_CLOSED ||
2985 	     bp->state == BNX2X_STATE_ERROR)) {
2986 		/* We can get here if the driver has been unloaded
2987 		 * during parity error recovery and is either waiting for a
2988 		 * leader to complete or for other functions to unload and
2989 		 * then ifdown has been issued. In this case we want to
2990 		 * unload and let other functions to complete a recovery
2991 		 * process.
2992 		 */
2993 		bp->recovery_state = BNX2X_RECOVERY_DONE;
2994 		bp->is_leader = 0;
2995 		bnx2x_release_leader_lock(bp);
2996 		smp_mb();
2997 
2998 		DP(NETIF_MSG_IFDOWN, "Releasing a leadership...\n");
2999 		BNX2X_ERR("Can't unload in closed or error state\n");
3000 		return -EINVAL;
3001 	}
3002 
3003 	/* Nothing to do during unload if previous bnx2x_nic_load()
3004 	 * have not completed successfully - all resources are released.
3005 	 *
3006 	 * we can get here only after unsuccessful ndo_* callback, during which
3007 	 * dev->IFF_UP flag is still on.
3008 	 */
3009 	if (bp->state == BNX2X_STATE_CLOSED || bp->state == BNX2X_STATE_ERROR)
3010 		return 0;
3011 
3012 	/* It's important to set the bp->state to the value different from
3013 	 * BNX2X_STATE_OPEN and only then stop the Tx. Otherwise bnx2x_tx_int()
3014 	 * may restart the Tx from the NAPI context (see bnx2x_tx_int()).
3015 	 */
3016 	bp->state = BNX2X_STATE_CLOSING_WAIT4_HALT;
3017 	smp_mb();
3018 
3019 	/* indicate to VFs that the PF is going down */
3020 	bnx2x_iov_channel_down(bp);
3021 
3022 	if (CNIC_LOADED(bp))
3023 		bnx2x_cnic_notify(bp, CNIC_CTL_STOP_CMD);
3024 
3025 	/* Stop Tx */
3026 	bnx2x_tx_disable(bp);
3027 	netdev_reset_tc(bp->dev);
3028 
3029 	bp->rx_mode = BNX2X_RX_MODE_NONE;
3030 
3031 	del_timer_sync(&bp->timer);
3032 
3033 	if (IS_PF(bp)) {
3034 		/* Set ALWAYS_ALIVE bit in shmem */
3035 		bp->fw_drv_pulse_wr_seq |= DRV_PULSE_ALWAYS_ALIVE;
3036 		bnx2x_drv_pulse(bp);
3037 		bnx2x_stats_handle(bp, STATS_EVENT_STOP);
3038 		bnx2x_save_statistics(bp);
3039 	}
3040 
3041 	/* wait till consumers catch up with producers in all queues.
3042 	 * If we're recovering, FW can't write to host so no reason
3043 	 * to wait for the queues to complete all Tx.
3044 	 */
3045 	if (unload_mode != UNLOAD_RECOVERY)
3046 		bnx2x_drain_tx_queues(bp);
3047 
3048 	/* if VF indicate to PF this function is going down (PF will delete sp
3049 	 * elements and clear initializations
3050 	 */
3051 	if (IS_VF(bp))
3052 		bnx2x_vfpf_close_vf(bp);
3053 	else if (unload_mode != UNLOAD_RECOVERY)
3054 		/* if this is a normal/close unload need to clean up chip*/
3055 		bnx2x_chip_cleanup(bp, unload_mode, keep_link);
3056 	else {
3057 		/* Send the UNLOAD_REQUEST to the MCP */
3058 		bnx2x_send_unload_req(bp, unload_mode);
3059 
3060 		/* Prevent transactions to host from the functions on the
3061 		 * engine that doesn't reset global blocks in case of global
3062 		 * attention once global blocks are reset and gates are opened
3063 		 * (the engine which leader will perform the recovery
3064 		 * last).
3065 		 */
3066 		if (!CHIP_IS_E1x(bp))
3067 			bnx2x_pf_disable(bp);
3068 
3069 		/* Disable HW interrupts, NAPI */
3070 		bnx2x_netif_stop(bp, 1);
3071 		/* Delete all NAPI objects */
3072 		bnx2x_del_all_napi(bp);
3073 		if (CNIC_LOADED(bp))
3074 			bnx2x_del_all_napi_cnic(bp);
3075 		/* Release IRQs */
3076 		bnx2x_free_irq(bp);
3077 
3078 		/* Report UNLOAD_DONE to MCP */
3079 		bnx2x_send_unload_done(bp, false);
3080 	}
3081 
3082 	/*
3083 	 * At this stage no more interrupts will arrive so we may safely clean
3084 	 * the queueable objects here in case they failed to get cleaned so far.
3085 	 */
3086 	if (IS_PF(bp))
3087 		bnx2x_squeeze_objects(bp);
3088 
3089 	/* There should be no more pending SP commands at this stage */
3090 	bp->sp_state = 0;
3091 
3092 	bp->port.pmf = 0;
3093 
3094 	/* clear pending work in rtnl task */
3095 	bp->sp_rtnl_state = 0;
3096 	smp_mb();
3097 
3098 	/* Free SKBs, SGEs, TPA pool and driver internals */
3099 	bnx2x_free_skbs(bp);
3100 	if (CNIC_LOADED(bp))
3101 		bnx2x_free_skbs_cnic(bp);
3102 	for_each_rx_queue(bp, i)
3103 		bnx2x_free_rx_sge_range(bp, bp->fp + i, NUM_RX_SGE);
3104 
3105 	bnx2x_free_fp_mem(bp);
3106 	if (CNIC_LOADED(bp))
3107 		bnx2x_free_fp_mem_cnic(bp);
3108 
3109 	if (IS_PF(bp)) {
3110 		if (CNIC_LOADED(bp))
3111 			bnx2x_free_mem_cnic(bp);
3112 	}
3113 	bnx2x_free_mem(bp);
3114 
3115 	bp->state = BNX2X_STATE_CLOSED;
3116 	bp->cnic_loaded = false;
3117 
3118 	/* Clear driver version indication in shmem */
3119 	if (IS_PF(bp))
3120 		bnx2x_update_mng_version(bp);
3121 
3122 	/* Check if there are pending parity attentions. If there are - set
3123 	 * RECOVERY_IN_PROGRESS.
3124 	 */
3125 	if (IS_PF(bp) && bnx2x_chk_parity_attn(bp, &global, false)) {
3126 		bnx2x_set_reset_in_progress(bp);
3127 
3128 		/* Set RESET_IS_GLOBAL if needed */
3129 		if (global)
3130 			bnx2x_set_reset_global(bp);
3131 	}
3132 
3133 	/* The last driver must disable a "close the gate" if there is no
3134 	 * parity attention or "process kill" pending.
3135 	 */
3136 	if (IS_PF(bp) &&
3137 	    !bnx2x_clear_pf_load(bp) &&
3138 	    bnx2x_reset_is_done(bp, BP_PATH(bp)))
3139 		bnx2x_disable_close_the_gate(bp);
3140 
3141 	DP(NETIF_MSG_IFUP, "Ending NIC unload\n");
3142 
3143 	return 0;
3144 }
3145 
3146 int bnx2x_set_power_state(struct bnx2x *bp, pci_power_t state)
3147 {
3148 	u16 pmcsr;
3149 
3150 	/* If there is no power capability, silently succeed */
3151 	if (!bp->pdev->pm_cap) {
3152 		BNX2X_DEV_INFO("No power capability. Breaking.\n");
3153 		return 0;
3154 	}
3155 
3156 	pci_read_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL, &pmcsr);
3157 
3158 	switch (state) {
3159 	case PCI_D0:
3160 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3161 				      ((pmcsr & ~PCI_PM_CTRL_STATE_MASK) |
3162 				       PCI_PM_CTRL_PME_STATUS));
3163 
3164 		if (pmcsr & PCI_PM_CTRL_STATE_MASK)
3165 			/* delay required during transition out of D3hot */
3166 			msleep(20);
3167 		break;
3168 
3169 	case PCI_D3hot:
3170 		/* If there are other clients above don't
3171 		   shut down the power */
3172 		if (atomic_read(&bp->pdev->enable_cnt) != 1)
3173 			return 0;
3174 		/* Don't shut down the power for emulation and FPGA */
3175 		if (CHIP_REV_IS_SLOW(bp))
3176 			return 0;
3177 
3178 		pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3179 		pmcsr |= 3;
3180 
3181 		if (bp->wol)
3182 			pmcsr |= PCI_PM_CTRL_PME_ENABLE;
3183 
3184 		pci_write_config_word(bp->pdev, bp->pdev->pm_cap + PCI_PM_CTRL,
3185 				      pmcsr);
3186 
3187 		/* No more memory access after this point until
3188 		* device is brought back to D0.
3189 		*/
3190 		break;
3191 
3192 	default:
3193 		dev_err(&bp->pdev->dev, "Can't support state = %d\n", state);
3194 		return -EINVAL;
3195 	}
3196 	return 0;
3197 }
3198 
3199 /*
3200  * net_device service functions
3201  */
3202 static int bnx2x_poll(struct napi_struct *napi, int budget)
3203 {
3204 	struct bnx2x_fastpath *fp = container_of(napi, struct bnx2x_fastpath,
3205 						 napi);
3206 	struct bnx2x *bp = fp->bp;
3207 	int rx_work_done;
3208 	u8 cos;
3209 
3210 #ifdef BNX2X_STOP_ON_ERROR
3211 	if (unlikely(bp->panic)) {
3212 		napi_complete(napi);
3213 		return 0;
3214 	}
3215 #endif
3216 	for_each_cos_in_tx_queue(fp, cos)
3217 		if (bnx2x_tx_queue_has_work(fp->txdata_ptr[cos]))
3218 			bnx2x_tx_int(bp, fp->txdata_ptr[cos]);
3219 
3220 	rx_work_done = (bnx2x_has_rx_work(fp)) ? bnx2x_rx_int(fp, budget) : 0;
3221 
3222 	if (rx_work_done < budget) {
3223 		/* No need to update SB for FCoE L2 ring as long as
3224 		 * it's connected to the default SB and the SB
3225 		 * has been updated when NAPI was scheduled.
3226 		 */
3227 		if (IS_FCOE_FP(fp)) {
3228 			napi_complete_done(napi, rx_work_done);
3229 		} else {
3230 			bnx2x_update_fpsb_idx(fp);
3231 			/* bnx2x_has_rx_work() reads the status block,
3232 			 * thus we need to ensure that status block indices
3233 			 * have been actually read (bnx2x_update_fpsb_idx)
3234 			 * prior to this check (bnx2x_has_rx_work) so that
3235 			 * we won't write the "newer" value of the status block
3236 			 * to IGU (if there was a DMA right after
3237 			 * bnx2x_has_rx_work and if there is no rmb, the memory
3238 			 * reading (bnx2x_update_fpsb_idx) may be postponed
3239 			 * to right before bnx2x_ack_sb). In this case there
3240 			 * will never be another interrupt until there is
3241 			 * another update of the status block, while there
3242 			 * is still unhandled work.
3243 			 */
3244 			rmb();
3245 
3246 			if (!(bnx2x_has_rx_work(fp) || bnx2x_has_tx_work(fp))) {
3247 				if (napi_complete_done(napi, rx_work_done)) {
3248 					/* Re-enable interrupts */
3249 					DP(NETIF_MSG_RX_STATUS,
3250 					   "Update index to %d\n", fp->fp_hc_idx);
3251 					bnx2x_ack_sb(bp, fp->igu_sb_id, USTORM_ID,
3252 						     le16_to_cpu(fp->fp_hc_idx),
3253 						     IGU_INT_ENABLE, 1);
3254 				}
3255 			} else {
3256 				rx_work_done = budget;
3257 			}
3258 		}
3259 	}
3260 
3261 	return rx_work_done;
3262 }
3263 
3264 /* we split the first BD into headers and data BDs
3265  * to ease the pain of our fellow microcode engineers
3266  * we use one mapping for both BDs
3267  */
3268 static u16 bnx2x_tx_split(struct bnx2x *bp,
3269 			  struct bnx2x_fp_txdata *txdata,
3270 			  struct sw_tx_bd *tx_buf,
3271 			  struct eth_tx_start_bd **tx_bd, u16 hlen,
3272 			  u16 bd_prod)
3273 {
3274 	struct eth_tx_start_bd *h_tx_bd = *tx_bd;
3275 	struct eth_tx_bd *d_tx_bd;
3276 	dma_addr_t mapping;
3277 	int old_len = le16_to_cpu(h_tx_bd->nbytes);
3278 
3279 	/* first fix first BD */
3280 	h_tx_bd->nbytes = cpu_to_le16(hlen);
3281 
3282 	DP(NETIF_MSG_TX_QUEUED,	"TSO split header size is %d (%x:%x)\n",
3283 	   h_tx_bd->nbytes, h_tx_bd->addr_hi, h_tx_bd->addr_lo);
3284 
3285 	/* now get a new data BD
3286 	 * (after the pbd) and fill it */
3287 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3288 	d_tx_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
3289 
3290 	mapping = HILO_U64(le32_to_cpu(h_tx_bd->addr_hi),
3291 			   le32_to_cpu(h_tx_bd->addr_lo)) + hlen;
3292 
3293 	d_tx_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
3294 	d_tx_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
3295 	d_tx_bd->nbytes = cpu_to_le16(old_len - hlen);
3296 
3297 	/* this marks the BD as one that has no individual mapping */
3298 	tx_buf->flags |= BNX2X_TSO_SPLIT_BD;
3299 
3300 	DP(NETIF_MSG_TX_QUEUED,
3301 	   "TSO split data size is %d (%x:%x)\n",
3302 	   d_tx_bd->nbytes, d_tx_bd->addr_hi, d_tx_bd->addr_lo);
3303 
3304 	/* update tx_bd */
3305 	*tx_bd = (struct eth_tx_start_bd *)d_tx_bd;
3306 
3307 	return bd_prod;
3308 }
3309 
3310 #define bswab32(b32) ((__force __le32) swab32((__force __u32) (b32)))
3311 #define bswab16(b16) ((__force __le16) swab16((__force __u16) (b16)))
3312 static __le16 bnx2x_csum_fix(unsigned char *t_header, u16 csum, s8 fix)
3313 {
3314 	__sum16 tsum = (__force __sum16) csum;
3315 
3316 	if (fix > 0)
3317 		tsum = ~csum_fold(csum_sub((__force __wsum) csum,
3318 				  csum_partial(t_header - fix, fix, 0)));
3319 
3320 	else if (fix < 0)
3321 		tsum = ~csum_fold(csum_add((__force __wsum) csum,
3322 				  csum_partial(t_header, -fix, 0)));
3323 
3324 	return bswab16(tsum);
3325 }
3326 
3327 static u32 bnx2x_xmit_type(struct bnx2x *bp, struct sk_buff *skb)
3328 {
3329 	u32 rc;
3330 	__u8 prot = 0;
3331 	__be16 protocol;
3332 
3333 	if (skb->ip_summed != CHECKSUM_PARTIAL)
3334 		return XMIT_PLAIN;
3335 
3336 	protocol = vlan_get_protocol(skb);
3337 	if (protocol == htons(ETH_P_IPV6)) {
3338 		rc = XMIT_CSUM_V6;
3339 		prot = ipv6_hdr(skb)->nexthdr;
3340 	} else {
3341 		rc = XMIT_CSUM_V4;
3342 		prot = ip_hdr(skb)->protocol;
3343 	}
3344 
3345 	if (!CHIP_IS_E1x(bp) && skb->encapsulation) {
3346 		if (inner_ip_hdr(skb)->version == 6) {
3347 			rc |= XMIT_CSUM_ENC_V6;
3348 			if (inner_ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
3349 				rc |= XMIT_CSUM_TCP;
3350 		} else {
3351 			rc |= XMIT_CSUM_ENC_V4;
3352 			if (inner_ip_hdr(skb)->protocol == IPPROTO_TCP)
3353 				rc |= XMIT_CSUM_TCP;
3354 		}
3355 	}
3356 	if (prot == IPPROTO_TCP)
3357 		rc |= XMIT_CSUM_TCP;
3358 
3359 	if (skb_is_gso(skb)) {
3360 		if (skb_is_gso_v6(skb)) {
3361 			rc |= (XMIT_GSO_V6 | XMIT_CSUM_TCP);
3362 			if (rc & XMIT_CSUM_ENC)
3363 				rc |= XMIT_GSO_ENC_V6;
3364 		} else {
3365 			rc |= (XMIT_GSO_V4 | XMIT_CSUM_TCP);
3366 			if (rc & XMIT_CSUM_ENC)
3367 				rc |= XMIT_GSO_ENC_V4;
3368 		}
3369 	}
3370 
3371 	return rc;
3372 }
3373 
3374 /* VXLAN: 4 = 1 (for linear data BD) + 3 (2 for PBD and last BD) */
3375 #define BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS         4
3376 
3377 /* Regular: 3 = 1 (for linear data BD) + 2 (for PBD and last BD) */
3378 #define BNX2X_NUM_TSO_WIN_SUB_BDS               3
3379 
3380 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3381 /* check if packet requires linearization (packet is too fragmented)
3382    no need to check fragmentation if page size > 8K (there will be no
3383    violation to FW restrictions) */
3384 static int bnx2x_pkt_req_lin(struct bnx2x *bp, struct sk_buff *skb,
3385 			     u32 xmit_type)
3386 {
3387 	int first_bd_sz = 0, num_tso_win_sub = BNX2X_NUM_TSO_WIN_SUB_BDS;
3388 	int to_copy = 0, hlen = 0;
3389 
3390 	if (xmit_type & XMIT_GSO_ENC)
3391 		num_tso_win_sub = BNX2X_NUM_VXLAN_TSO_WIN_SUB_BDS;
3392 
3393 	if (skb_shinfo(skb)->nr_frags >= (MAX_FETCH_BD - num_tso_win_sub)) {
3394 		if (xmit_type & XMIT_GSO) {
3395 			unsigned short lso_mss = skb_shinfo(skb)->gso_size;
3396 			int wnd_size = MAX_FETCH_BD - num_tso_win_sub;
3397 			/* Number of windows to check */
3398 			int num_wnds = skb_shinfo(skb)->nr_frags - wnd_size;
3399 			int wnd_idx = 0;
3400 			int frag_idx = 0;
3401 			u32 wnd_sum = 0;
3402 
3403 			/* Headers length */
3404 			if (xmit_type & XMIT_GSO_ENC)
3405 				hlen = (int)(skb_inner_transport_header(skb) -
3406 					     skb->data) +
3407 					     inner_tcp_hdrlen(skb);
3408 			else
3409 				hlen = (int)(skb_transport_header(skb) -
3410 					     skb->data) + tcp_hdrlen(skb);
3411 
3412 			/* Amount of data (w/o headers) on linear part of SKB*/
3413 			first_bd_sz = skb_headlen(skb) - hlen;
3414 
3415 			wnd_sum  = first_bd_sz;
3416 
3417 			/* Calculate the first sum - it's special */
3418 			for (frag_idx = 0; frag_idx < wnd_size - 1; frag_idx++)
3419 				wnd_sum +=
3420 					skb_frag_size(&skb_shinfo(skb)->frags[frag_idx]);
3421 
3422 			/* If there was data on linear skb data - check it */
3423 			if (first_bd_sz > 0) {
3424 				if (unlikely(wnd_sum < lso_mss)) {
3425 					to_copy = 1;
3426 					goto exit_lbl;
3427 				}
3428 
3429 				wnd_sum -= first_bd_sz;
3430 			}
3431 
3432 			/* Others are easier: run through the frag list and
3433 			   check all windows */
3434 			for (wnd_idx = 0; wnd_idx <= num_wnds; wnd_idx++) {
3435 				wnd_sum +=
3436 			  skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx + wnd_size - 1]);
3437 
3438 				if (unlikely(wnd_sum < lso_mss)) {
3439 					to_copy = 1;
3440 					break;
3441 				}
3442 				wnd_sum -=
3443 					skb_frag_size(&skb_shinfo(skb)->frags[wnd_idx]);
3444 			}
3445 		} else {
3446 			/* in non-LSO too fragmented packet should always
3447 			   be linearized */
3448 			to_copy = 1;
3449 		}
3450 	}
3451 
3452 exit_lbl:
3453 	if (unlikely(to_copy))
3454 		DP(NETIF_MSG_TX_QUEUED,
3455 		   "Linearization IS REQUIRED for %s packet. num_frags %d  hlen %d  first_bd_sz %d\n",
3456 		   (xmit_type & XMIT_GSO) ? "LSO" : "non-LSO",
3457 		   skb_shinfo(skb)->nr_frags, hlen, first_bd_sz);
3458 
3459 	return to_copy;
3460 }
3461 #endif
3462 
3463 /**
3464  * bnx2x_set_pbd_gso - update PBD in GSO case.
3465  *
3466  * @skb:	packet skb
3467  * @pbd:	parse BD
3468  * @xmit_type:	xmit flags
3469  */
3470 static void bnx2x_set_pbd_gso(struct sk_buff *skb,
3471 			      struct eth_tx_parse_bd_e1x *pbd,
3472 			      u32 xmit_type)
3473 {
3474 	pbd->lso_mss = cpu_to_le16(skb_shinfo(skb)->gso_size);
3475 	pbd->tcp_send_seq = bswab32(tcp_hdr(skb)->seq);
3476 	pbd->tcp_flags = pbd_tcp_flags(tcp_hdr(skb));
3477 
3478 	if (xmit_type & XMIT_GSO_V4) {
3479 		pbd->ip_id = bswab16(ip_hdr(skb)->id);
3480 		pbd->tcp_pseudo_csum =
3481 			bswab16(~csum_tcpudp_magic(ip_hdr(skb)->saddr,
3482 						   ip_hdr(skb)->daddr,
3483 						   0, IPPROTO_TCP, 0));
3484 	} else {
3485 		pbd->tcp_pseudo_csum =
3486 			bswab16(~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
3487 						 &ipv6_hdr(skb)->daddr,
3488 						 0, IPPROTO_TCP, 0));
3489 	}
3490 
3491 	pbd->global_data |=
3492 		cpu_to_le16(ETH_TX_PARSE_BD_E1X_PSEUDO_CS_WITHOUT_LEN);
3493 }
3494 
3495 /**
3496  * bnx2x_set_pbd_csum_enc - update PBD with checksum and return header length
3497  *
3498  * @bp:			driver handle
3499  * @skb:		packet skb
3500  * @parsing_data:	data to be updated
3501  * @xmit_type:		xmit flags
3502  *
3503  * 57712/578xx related, when skb has encapsulation
3504  */
3505 static u8 bnx2x_set_pbd_csum_enc(struct bnx2x *bp, struct sk_buff *skb,
3506 				 u32 *parsing_data, u32 xmit_type)
3507 {
3508 	*parsing_data |=
3509 		((((u8 *)skb_inner_transport_header(skb) - skb->data) >> 1) <<
3510 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3511 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3512 
3513 	if (xmit_type & XMIT_CSUM_TCP) {
3514 		*parsing_data |= ((inner_tcp_hdrlen(skb) / 4) <<
3515 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3516 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3517 
3518 		return skb_inner_transport_header(skb) +
3519 			inner_tcp_hdrlen(skb) - skb->data;
3520 	}
3521 
3522 	/* We support checksum offload for TCP and UDP only.
3523 	 * No need to pass the UDP header length - it's a constant.
3524 	 */
3525 	return skb_inner_transport_header(skb) +
3526 		sizeof(struct udphdr) - skb->data;
3527 }
3528 
3529 /**
3530  * bnx2x_set_pbd_csum_e2 - update PBD with checksum and return header length
3531  *
3532  * @bp:			driver handle
3533  * @skb:		packet skb
3534  * @parsing_data:	data to be updated
3535  * @xmit_type:		xmit flags
3536  *
3537  * 57712/578xx related
3538  */
3539 static u8 bnx2x_set_pbd_csum_e2(struct bnx2x *bp, struct sk_buff *skb,
3540 				u32 *parsing_data, u32 xmit_type)
3541 {
3542 	*parsing_data |=
3543 		((((u8 *)skb_transport_header(skb) - skb->data) >> 1) <<
3544 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W_SHIFT) &
3545 		ETH_TX_PARSE_BD_E2_L4_HDR_START_OFFSET_W;
3546 
3547 	if (xmit_type & XMIT_CSUM_TCP) {
3548 		*parsing_data |= ((tcp_hdrlen(skb) / 4) <<
3549 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW_SHIFT) &
3550 			ETH_TX_PARSE_BD_E2_TCP_HDR_LENGTH_DW;
3551 
3552 		return skb_transport_header(skb) + tcp_hdrlen(skb) - skb->data;
3553 	}
3554 	/* We support checksum offload for TCP and UDP only.
3555 	 * No need to pass the UDP header length - it's a constant.
3556 	 */
3557 	return skb_transport_header(skb) + sizeof(struct udphdr) - skb->data;
3558 }
3559 
3560 /* set FW indication according to inner or outer protocols if tunneled */
3561 static void bnx2x_set_sbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3562 			       struct eth_tx_start_bd *tx_start_bd,
3563 			       u32 xmit_type)
3564 {
3565 	tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_L4_CSUM;
3566 
3567 	if (xmit_type & (XMIT_CSUM_ENC_V6 | XMIT_CSUM_V6))
3568 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IPV6;
3569 
3570 	if (!(xmit_type & XMIT_CSUM_TCP))
3571 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_IS_UDP;
3572 }
3573 
3574 /**
3575  * bnx2x_set_pbd_csum - update PBD with checksum and return header length
3576  *
3577  * @bp:		driver handle
3578  * @skb:	packet skb
3579  * @pbd:	parse BD to be updated
3580  * @xmit_type:	xmit flags
3581  */
3582 static u8 bnx2x_set_pbd_csum(struct bnx2x *bp, struct sk_buff *skb,
3583 			     struct eth_tx_parse_bd_e1x *pbd,
3584 			     u32 xmit_type)
3585 {
3586 	u8 hlen = (skb_network_header(skb) - skb->data) >> 1;
3587 
3588 	/* for now NS flag is not used in Linux */
3589 	pbd->global_data =
3590 		cpu_to_le16(hlen |
3591 			    ((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3592 			     ETH_TX_PARSE_BD_E1X_LLC_SNAP_EN_SHIFT));
3593 
3594 	pbd->ip_hlen_w = (skb_transport_header(skb) -
3595 			skb_network_header(skb)) >> 1;
3596 
3597 	hlen += pbd->ip_hlen_w;
3598 
3599 	/* We support checksum offload for TCP and UDP only */
3600 	if (xmit_type & XMIT_CSUM_TCP)
3601 		hlen += tcp_hdrlen(skb) / 2;
3602 	else
3603 		hlen += sizeof(struct udphdr) / 2;
3604 
3605 	pbd->total_hlen_w = cpu_to_le16(hlen);
3606 	hlen = hlen*2;
3607 
3608 	if (xmit_type & XMIT_CSUM_TCP) {
3609 		pbd->tcp_pseudo_csum = bswab16(tcp_hdr(skb)->check);
3610 
3611 	} else {
3612 		s8 fix = SKB_CS_OFF(skb); /* signed! */
3613 
3614 		DP(NETIF_MSG_TX_QUEUED,
3615 		   "hlen %d  fix %d  csum before fix %x\n",
3616 		   le16_to_cpu(pbd->total_hlen_w), fix, SKB_CS(skb));
3617 
3618 		/* HW bug: fixup the CSUM */
3619 		pbd->tcp_pseudo_csum =
3620 			bnx2x_csum_fix(skb_transport_header(skb),
3621 				       SKB_CS(skb), fix);
3622 
3623 		DP(NETIF_MSG_TX_QUEUED, "csum after fix %x\n",
3624 		   pbd->tcp_pseudo_csum);
3625 	}
3626 
3627 	return hlen;
3628 }
3629 
3630 static void bnx2x_update_pbds_gso_enc(struct sk_buff *skb,
3631 				      struct eth_tx_parse_bd_e2 *pbd_e2,
3632 				      struct eth_tx_parse_2nd_bd *pbd2,
3633 				      u16 *global_data,
3634 				      u32 xmit_type)
3635 {
3636 	u16 hlen_w = 0;
3637 	u8 outerip_off, outerip_len = 0;
3638 
3639 	/* from outer IP to transport */
3640 	hlen_w = (skb_inner_transport_header(skb) -
3641 		  skb_network_header(skb)) >> 1;
3642 
3643 	/* transport len */
3644 	hlen_w += inner_tcp_hdrlen(skb) >> 1;
3645 
3646 	pbd2->fw_ip_hdr_to_payload_w = hlen_w;
3647 
3648 	/* outer IP header info */
3649 	if (xmit_type & XMIT_CSUM_V4) {
3650 		struct iphdr *iph = ip_hdr(skb);
3651 		u32 csum = (__force u32)(~iph->check) -
3652 			   (__force u32)iph->tot_len -
3653 			   (__force u32)iph->frag_off;
3654 
3655 		outerip_len = iph->ihl << 1;
3656 
3657 		pbd2->fw_ip_csum_wo_len_flags_frag =
3658 			bswab16(csum_fold((__force __wsum)csum));
3659 	} else {
3660 		pbd2->fw_ip_hdr_to_payload_w =
3661 			hlen_w - ((sizeof(struct ipv6hdr)) >> 1);
3662 		pbd_e2->data.tunnel_data.flags |=
3663 			ETH_TUNNEL_DATA_IPV6_OUTER;
3664 	}
3665 
3666 	pbd2->tcp_send_seq = bswab32(inner_tcp_hdr(skb)->seq);
3667 
3668 	pbd2->tcp_flags = pbd_tcp_flags(inner_tcp_hdr(skb));
3669 
3670 	/* inner IP header info */
3671 	if (xmit_type & XMIT_CSUM_ENC_V4) {
3672 		pbd2->hw_ip_id = bswab16(inner_ip_hdr(skb)->id);
3673 
3674 		pbd_e2->data.tunnel_data.pseudo_csum =
3675 			bswab16(~csum_tcpudp_magic(
3676 					inner_ip_hdr(skb)->saddr,
3677 					inner_ip_hdr(skb)->daddr,
3678 					0, IPPROTO_TCP, 0));
3679 	} else {
3680 		pbd_e2->data.tunnel_data.pseudo_csum =
3681 			bswab16(~csum_ipv6_magic(
3682 					&inner_ipv6_hdr(skb)->saddr,
3683 					&inner_ipv6_hdr(skb)->daddr,
3684 					0, IPPROTO_TCP, 0));
3685 	}
3686 
3687 	outerip_off = (skb_network_header(skb) - skb->data) >> 1;
3688 
3689 	*global_data |=
3690 		outerip_off |
3691 		(outerip_len <<
3692 			ETH_TX_PARSE_2ND_BD_IP_HDR_LEN_OUTER_W_SHIFT) |
3693 		((skb->protocol == cpu_to_be16(ETH_P_8021Q)) <<
3694 			ETH_TX_PARSE_2ND_BD_LLC_SNAP_EN_SHIFT);
3695 
3696 	if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
3697 		SET_FLAG(*global_data, ETH_TX_PARSE_2ND_BD_TUNNEL_UDP_EXIST, 1);
3698 		pbd2->tunnel_udp_hdr_start_w = skb_transport_offset(skb) >> 1;
3699 	}
3700 }
3701 
3702 static inline void bnx2x_set_ipv6_ext_e2(struct sk_buff *skb, u32 *parsing_data,
3703 					 u32 xmit_type)
3704 {
3705 	struct ipv6hdr *ipv6;
3706 
3707 	if (!(xmit_type & (XMIT_GSO_ENC_V6 | XMIT_GSO_V6)))
3708 		return;
3709 
3710 	if (xmit_type & XMIT_GSO_ENC_V6)
3711 		ipv6 = inner_ipv6_hdr(skb);
3712 	else /* XMIT_GSO_V6 */
3713 		ipv6 = ipv6_hdr(skb);
3714 
3715 	if (ipv6->nexthdr == NEXTHDR_IPV6)
3716 		*parsing_data |= ETH_TX_PARSE_BD_E2_IPV6_WITH_EXT_HDR;
3717 }
3718 
3719 /* called with netif_tx_lock
3720  * bnx2x_tx_int() runs without netif_tx_lock unless it needs to call
3721  * netif_wake_queue()
3722  */
3723 netdev_tx_t bnx2x_start_xmit(struct sk_buff *skb, struct net_device *dev)
3724 {
3725 	struct bnx2x *bp = netdev_priv(dev);
3726 
3727 	struct netdev_queue *txq;
3728 	struct bnx2x_fp_txdata *txdata;
3729 	struct sw_tx_bd *tx_buf;
3730 	struct eth_tx_start_bd *tx_start_bd, *first_bd;
3731 	struct eth_tx_bd *tx_data_bd, *total_pkt_bd = NULL;
3732 	struct eth_tx_parse_bd_e1x *pbd_e1x = NULL;
3733 	struct eth_tx_parse_bd_e2 *pbd_e2 = NULL;
3734 	struct eth_tx_parse_2nd_bd *pbd2 = NULL;
3735 	u32 pbd_e2_parsing_data = 0;
3736 	u16 pkt_prod, bd_prod;
3737 	int nbd, txq_index;
3738 	dma_addr_t mapping;
3739 	u32 xmit_type = bnx2x_xmit_type(bp, skb);
3740 	int i;
3741 	u8 hlen = 0;
3742 	__le16 pkt_size = 0;
3743 	struct ethhdr *eth;
3744 	u8 mac_type = UNICAST_ADDRESS;
3745 
3746 #ifdef BNX2X_STOP_ON_ERROR
3747 	if (unlikely(bp->panic))
3748 		return NETDEV_TX_BUSY;
3749 #endif
3750 
3751 	txq_index = skb_get_queue_mapping(skb);
3752 	txq = netdev_get_tx_queue(dev, txq_index);
3753 
3754 	BUG_ON(txq_index >= MAX_ETH_TXQ_IDX(bp) + (CNIC_LOADED(bp) ? 1 : 0));
3755 
3756 	txdata = &bp->bnx2x_txq[txq_index];
3757 
3758 	/* enable this debug print to view the transmission queue being used
3759 	DP(NETIF_MSG_TX_QUEUED, "indices: txq %d, fp %d, txdata %d\n",
3760 	   txq_index, fp_index, txdata_index); */
3761 
3762 	/* enable this debug print to view the transmission details
3763 	DP(NETIF_MSG_TX_QUEUED,
3764 	   "transmitting packet cid %d fp index %d txdata_index %d tx_data ptr %p fp pointer %p\n",
3765 	   txdata->cid, fp_index, txdata_index, txdata, fp); */
3766 
3767 	if (unlikely(bnx2x_tx_avail(bp, txdata) <
3768 			skb_shinfo(skb)->nr_frags +
3769 			BDS_PER_TX_PKT +
3770 			NEXT_CNT_PER_TX_PKT(MAX_BDS_PER_TX_PKT))) {
3771 		/* Handle special storage cases separately */
3772 		if (txdata->tx_ring_size == 0) {
3773 			struct bnx2x_eth_q_stats *q_stats =
3774 				bnx2x_fp_qstats(bp, txdata->parent_fp);
3775 			q_stats->driver_filtered_tx_pkt++;
3776 			dev_kfree_skb(skb);
3777 			return NETDEV_TX_OK;
3778 		}
3779 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
3780 		netif_tx_stop_queue(txq);
3781 		BNX2X_ERR("BUG! Tx ring full when queue awake!\n");
3782 
3783 		return NETDEV_TX_BUSY;
3784 	}
3785 
3786 	DP(NETIF_MSG_TX_QUEUED,
3787 	   "queue[%d]: SKB: summed %x  protocol %x protocol(%x,%x) gso type %x  xmit_type %x len %d\n",
3788 	   txq_index, skb->ip_summed, skb->protocol, ipv6_hdr(skb)->nexthdr,
3789 	   ip_hdr(skb)->protocol, skb_shinfo(skb)->gso_type, xmit_type,
3790 	   skb->len);
3791 
3792 	eth = (struct ethhdr *)skb->data;
3793 
3794 	/* set flag according to packet type (UNICAST_ADDRESS is default)*/
3795 	if (unlikely(is_multicast_ether_addr(eth->h_dest))) {
3796 		if (is_broadcast_ether_addr(eth->h_dest))
3797 			mac_type = BROADCAST_ADDRESS;
3798 		else
3799 			mac_type = MULTICAST_ADDRESS;
3800 	}
3801 
3802 #if (MAX_SKB_FRAGS >= MAX_FETCH_BD - BDS_PER_TX_PKT)
3803 	/* First, check if we need to linearize the skb (due to FW
3804 	   restrictions). No need to check fragmentation if page size > 8K
3805 	   (there will be no violation to FW restrictions) */
3806 	if (bnx2x_pkt_req_lin(bp, skb, xmit_type)) {
3807 		/* Statistics of linearization */
3808 		bp->lin_cnt++;
3809 		if (skb_linearize(skb) != 0) {
3810 			DP(NETIF_MSG_TX_QUEUED,
3811 			   "SKB linearization failed - silently dropping this SKB\n");
3812 			dev_kfree_skb_any(skb);
3813 			return NETDEV_TX_OK;
3814 		}
3815 	}
3816 #endif
3817 	/* Map skb linear data for DMA */
3818 	mapping = dma_map_single(&bp->pdev->dev, skb->data,
3819 				 skb_headlen(skb), DMA_TO_DEVICE);
3820 	if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
3821 		DP(NETIF_MSG_TX_QUEUED,
3822 		   "SKB mapping failed - silently dropping this SKB\n");
3823 		dev_kfree_skb_any(skb);
3824 		return NETDEV_TX_OK;
3825 	}
3826 	/*
3827 	Please read carefully. First we use one BD which we mark as start,
3828 	then we have a parsing info BD (used for TSO or xsum),
3829 	and only then we have the rest of the TSO BDs.
3830 	(don't forget to mark the last one as last,
3831 	and to unmap only AFTER you write to the BD ...)
3832 	And above all, all pdb sizes are in words - NOT DWORDS!
3833 	*/
3834 
3835 	/* get current pkt produced now - advance it just before sending packet
3836 	 * since mapping of pages may fail and cause packet to be dropped
3837 	 */
3838 	pkt_prod = txdata->tx_pkt_prod;
3839 	bd_prod = TX_BD(txdata->tx_bd_prod);
3840 
3841 	/* get a tx_buf and first BD
3842 	 * tx_start_bd may be changed during SPLIT,
3843 	 * but first_bd will always stay first
3844 	 */
3845 	tx_buf = &txdata->tx_buf_ring[TX_BD(pkt_prod)];
3846 	tx_start_bd = &txdata->tx_desc_ring[bd_prod].start_bd;
3847 	first_bd = tx_start_bd;
3848 
3849 	tx_start_bd->bd_flags.as_bitfield = ETH_TX_BD_FLAGS_START_BD;
3850 
3851 	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
3852 		if (!(bp->flags & TX_TIMESTAMPING_EN)) {
3853 			BNX2X_ERR("Tx timestamping was not enabled, this packet will not be timestamped\n");
3854 		} else if (bp->ptp_tx_skb) {
3855 			BNX2X_ERR("The device supports only a single outstanding packet to timestamp, this packet will not be timestamped\n");
3856 		} else {
3857 			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
3858 			/* schedule check for Tx timestamp */
3859 			bp->ptp_tx_skb = skb_get(skb);
3860 			bp->ptp_tx_start = jiffies;
3861 			schedule_work(&bp->ptp_task);
3862 		}
3863 	}
3864 
3865 	/* header nbd: indirectly zero other flags! */
3866 	tx_start_bd->general_data = 1 << ETH_TX_START_BD_HDR_NBDS_SHIFT;
3867 
3868 	/* remember the first BD of the packet */
3869 	tx_buf->first_bd = txdata->tx_bd_prod;
3870 	tx_buf->skb = skb;
3871 	tx_buf->flags = 0;
3872 
3873 	DP(NETIF_MSG_TX_QUEUED,
3874 	   "sending pkt %u @%p  next_idx %u  bd %u @%p\n",
3875 	   pkt_prod, tx_buf, txdata->tx_pkt_prod, bd_prod, tx_start_bd);
3876 
3877 	if (skb_vlan_tag_present(skb)) {
3878 		tx_start_bd->vlan_or_ethertype =
3879 		    cpu_to_le16(skb_vlan_tag_get(skb));
3880 		tx_start_bd->bd_flags.as_bitfield |=
3881 		    (X_ETH_OUTBAND_VLAN << ETH_TX_BD_FLAGS_VLAN_MODE_SHIFT);
3882 	} else {
3883 		/* when transmitting in a vf, start bd must hold the ethertype
3884 		 * for fw to enforce it
3885 		 */
3886 #ifndef BNX2X_STOP_ON_ERROR
3887 		if (IS_VF(bp))
3888 #endif
3889 			tx_start_bd->vlan_or_ethertype =
3890 				cpu_to_le16(ntohs(eth->h_proto));
3891 #ifndef BNX2X_STOP_ON_ERROR
3892 		else
3893 			/* used by FW for packet accounting */
3894 			tx_start_bd->vlan_or_ethertype = cpu_to_le16(pkt_prod);
3895 #endif
3896 	}
3897 
3898 	nbd = 2; /* start_bd + pbd + frags (updated when pages are mapped) */
3899 
3900 	/* turn on parsing and get a BD */
3901 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3902 
3903 	if (xmit_type & XMIT_CSUM)
3904 		bnx2x_set_sbd_csum(bp, skb, tx_start_bd, xmit_type);
3905 
3906 	if (!CHIP_IS_E1x(bp)) {
3907 		pbd_e2 = &txdata->tx_desc_ring[bd_prod].parse_bd_e2;
3908 		memset(pbd_e2, 0, sizeof(struct eth_tx_parse_bd_e2));
3909 
3910 		if (xmit_type & XMIT_CSUM_ENC) {
3911 			u16 global_data = 0;
3912 
3913 			/* Set PBD in enc checksum offload case */
3914 			hlen = bnx2x_set_pbd_csum_enc(bp, skb,
3915 						      &pbd_e2_parsing_data,
3916 						      xmit_type);
3917 
3918 			/* turn on 2nd parsing and get a BD */
3919 			bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
3920 
3921 			pbd2 = &txdata->tx_desc_ring[bd_prod].parse_2nd_bd;
3922 
3923 			memset(pbd2, 0, sizeof(*pbd2));
3924 
3925 			pbd_e2->data.tunnel_data.ip_hdr_start_inner_w =
3926 				(skb_inner_network_header(skb) -
3927 				 skb->data) >> 1;
3928 
3929 			if (xmit_type & XMIT_GSO_ENC)
3930 				bnx2x_update_pbds_gso_enc(skb, pbd_e2, pbd2,
3931 							  &global_data,
3932 							  xmit_type);
3933 
3934 			pbd2->global_data = cpu_to_le16(global_data);
3935 
3936 			/* add addition parse BD indication to start BD */
3937 			SET_FLAG(tx_start_bd->general_data,
3938 				 ETH_TX_START_BD_PARSE_NBDS, 1);
3939 			/* set encapsulation flag in start BD */
3940 			SET_FLAG(tx_start_bd->general_data,
3941 				 ETH_TX_START_BD_TUNNEL_EXIST, 1);
3942 
3943 			tx_buf->flags |= BNX2X_HAS_SECOND_PBD;
3944 
3945 			nbd++;
3946 		} else if (xmit_type & XMIT_CSUM) {
3947 			/* Set PBD in checksum offload case w/o encapsulation */
3948 			hlen = bnx2x_set_pbd_csum_e2(bp, skb,
3949 						     &pbd_e2_parsing_data,
3950 						     xmit_type);
3951 		}
3952 
3953 		bnx2x_set_ipv6_ext_e2(skb, &pbd_e2_parsing_data, xmit_type);
3954 		/* Add the macs to the parsing BD if this is a vf or if
3955 		 * Tx Switching is enabled.
3956 		 */
3957 		if (IS_VF(bp)) {
3958 			/* override GRE parameters in BD */
3959 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3960 					      &pbd_e2->data.mac_addr.src_mid,
3961 					      &pbd_e2->data.mac_addr.src_lo,
3962 					      eth->h_source);
3963 
3964 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.dst_hi,
3965 					      &pbd_e2->data.mac_addr.dst_mid,
3966 					      &pbd_e2->data.mac_addr.dst_lo,
3967 					      eth->h_dest);
3968 		} else {
3969 			if (bp->flags & TX_SWITCHING)
3970 				bnx2x_set_fw_mac_addr(
3971 						&pbd_e2->data.mac_addr.dst_hi,
3972 						&pbd_e2->data.mac_addr.dst_mid,
3973 						&pbd_e2->data.mac_addr.dst_lo,
3974 						eth->h_dest);
3975 #ifdef BNX2X_STOP_ON_ERROR
3976 			/* Enforce security is always set in Stop on Error -
3977 			 * source mac should be present in the parsing BD
3978 			 */
3979 			bnx2x_set_fw_mac_addr(&pbd_e2->data.mac_addr.src_hi,
3980 					      &pbd_e2->data.mac_addr.src_mid,
3981 					      &pbd_e2->data.mac_addr.src_lo,
3982 					      eth->h_source);
3983 #endif
3984 		}
3985 
3986 		SET_FLAG(pbd_e2_parsing_data,
3987 			 ETH_TX_PARSE_BD_E2_ETH_ADDR_TYPE, mac_type);
3988 	} else {
3989 		u16 global_data = 0;
3990 		pbd_e1x = &txdata->tx_desc_ring[bd_prod].parse_bd_e1x;
3991 		memset(pbd_e1x, 0, sizeof(struct eth_tx_parse_bd_e1x));
3992 		/* Set PBD in checksum offload case */
3993 		if (xmit_type & XMIT_CSUM)
3994 			hlen = bnx2x_set_pbd_csum(bp, skb, pbd_e1x, xmit_type);
3995 
3996 		SET_FLAG(global_data,
3997 			 ETH_TX_PARSE_BD_E1X_ETH_ADDR_TYPE, mac_type);
3998 		pbd_e1x->global_data |= cpu_to_le16(global_data);
3999 	}
4000 
4001 	/* Setup the data pointer of the first BD of the packet */
4002 	tx_start_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4003 	tx_start_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4004 	tx_start_bd->nbytes = cpu_to_le16(skb_headlen(skb));
4005 	pkt_size = tx_start_bd->nbytes;
4006 
4007 	DP(NETIF_MSG_TX_QUEUED,
4008 	   "first bd @%p  addr (%x:%x)  nbytes %d  flags %x  vlan %x\n",
4009 	   tx_start_bd, tx_start_bd->addr_hi, tx_start_bd->addr_lo,
4010 	   le16_to_cpu(tx_start_bd->nbytes),
4011 	   tx_start_bd->bd_flags.as_bitfield,
4012 	   le16_to_cpu(tx_start_bd->vlan_or_ethertype));
4013 
4014 	if (xmit_type & XMIT_GSO) {
4015 
4016 		DP(NETIF_MSG_TX_QUEUED,
4017 		   "TSO packet len %d  hlen %d  total len %d  tso size %d\n",
4018 		   skb->len, hlen, skb_headlen(skb),
4019 		   skb_shinfo(skb)->gso_size);
4020 
4021 		tx_start_bd->bd_flags.as_bitfield |= ETH_TX_BD_FLAGS_SW_LSO;
4022 
4023 		if (unlikely(skb_headlen(skb) > hlen)) {
4024 			nbd++;
4025 			bd_prod = bnx2x_tx_split(bp, txdata, tx_buf,
4026 						 &tx_start_bd, hlen,
4027 						 bd_prod);
4028 		}
4029 		if (!CHIP_IS_E1x(bp))
4030 			pbd_e2_parsing_data |=
4031 				(skb_shinfo(skb)->gso_size <<
4032 				 ETH_TX_PARSE_BD_E2_LSO_MSS_SHIFT) &
4033 				 ETH_TX_PARSE_BD_E2_LSO_MSS;
4034 		else
4035 			bnx2x_set_pbd_gso(skb, pbd_e1x, xmit_type);
4036 	}
4037 
4038 	/* Set the PBD's parsing_data field if not zero
4039 	 * (for the chips newer than 57711).
4040 	 */
4041 	if (pbd_e2_parsing_data)
4042 		pbd_e2->parsing_data = cpu_to_le32(pbd_e2_parsing_data);
4043 
4044 	tx_data_bd = (struct eth_tx_bd *)tx_start_bd;
4045 
4046 	/* Handle fragmented skb */
4047 	for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
4048 		skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
4049 
4050 		mapping = skb_frag_dma_map(&bp->pdev->dev, frag, 0,
4051 					   skb_frag_size(frag), DMA_TO_DEVICE);
4052 		if (unlikely(dma_mapping_error(&bp->pdev->dev, mapping))) {
4053 			unsigned int pkts_compl = 0, bytes_compl = 0;
4054 
4055 			DP(NETIF_MSG_TX_QUEUED,
4056 			   "Unable to map page - dropping packet...\n");
4057 
4058 			/* we need unmap all buffers already mapped
4059 			 * for this SKB;
4060 			 * first_bd->nbd need to be properly updated
4061 			 * before call to bnx2x_free_tx_pkt
4062 			 */
4063 			first_bd->nbd = cpu_to_le16(nbd);
4064 			bnx2x_free_tx_pkt(bp, txdata,
4065 					  TX_BD(txdata->tx_pkt_prod),
4066 					  &pkts_compl, &bytes_compl);
4067 			return NETDEV_TX_OK;
4068 		}
4069 
4070 		bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4071 		tx_data_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4072 		if (total_pkt_bd == NULL)
4073 			total_pkt_bd = &txdata->tx_desc_ring[bd_prod].reg_bd;
4074 
4075 		tx_data_bd->addr_hi = cpu_to_le32(U64_HI(mapping));
4076 		tx_data_bd->addr_lo = cpu_to_le32(U64_LO(mapping));
4077 		tx_data_bd->nbytes = cpu_to_le16(skb_frag_size(frag));
4078 		le16_add_cpu(&pkt_size, skb_frag_size(frag));
4079 		nbd++;
4080 
4081 		DP(NETIF_MSG_TX_QUEUED,
4082 		   "frag %d  bd @%p  addr (%x:%x)  nbytes %d\n",
4083 		   i, tx_data_bd, tx_data_bd->addr_hi, tx_data_bd->addr_lo,
4084 		   le16_to_cpu(tx_data_bd->nbytes));
4085 	}
4086 
4087 	DP(NETIF_MSG_TX_QUEUED, "last bd @%p\n", tx_data_bd);
4088 
4089 	/* update with actual num BDs */
4090 	first_bd->nbd = cpu_to_le16(nbd);
4091 
4092 	bd_prod = TX_BD(NEXT_TX_IDX(bd_prod));
4093 
4094 	/* now send a tx doorbell, counting the next BD
4095 	 * if the packet contains or ends with it
4096 	 */
4097 	if (TX_BD_POFF(bd_prod) < nbd)
4098 		nbd++;
4099 
4100 	/* total_pkt_bytes should be set on the first data BD if
4101 	 * it's not an LSO packet and there is more than one
4102 	 * data BD. In this case pkt_size is limited by an MTU value.
4103 	 * However we prefer to set it for an LSO packet (while we don't
4104 	 * have to) in order to save some CPU cycles in a none-LSO
4105 	 * case, when we much more care about them.
4106 	 */
4107 	if (total_pkt_bd != NULL)
4108 		total_pkt_bd->total_pkt_bytes = pkt_size;
4109 
4110 	if (pbd_e1x)
4111 		DP(NETIF_MSG_TX_QUEUED,
4112 		   "PBD (E1X) @%p  ip_data %x  ip_hlen %u  ip_id %u  lso_mss %u  tcp_flags %x  xsum %x  seq %u  hlen %u\n",
4113 		   pbd_e1x, pbd_e1x->global_data, pbd_e1x->ip_hlen_w,
4114 		   pbd_e1x->ip_id, pbd_e1x->lso_mss, pbd_e1x->tcp_flags,
4115 		   pbd_e1x->tcp_pseudo_csum, pbd_e1x->tcp_send_seq,
4116 		    le16_to_cpu(pbd_e1x->total_hlen_w));
4117 	if (pbd_e2)
4118 		DP(NETIF_MSG_TX_QUEUED,
4119 		   "PBD (E2) @%p  dst %x %x %x src %x %x %x parsing_data %x\n",
4120 		   pbd_e2,
4121 		   pbd_e2->data.mac_addr.dst_hi,
4122 		   pbd_e2->data.mac_addr.dst_mid,
4123 		   pbd_e2->data.mac_addr.dst_lo,
4124 		   pbd_e2->data.mac_addr.src_hi,
4125 		   pbd_e2->data.mac_addr.src_mid,
4126 		   pbd_e2->data.mac_addr.src_lo,
4127 		   pbd_e2->parsing_data);
4128 	DP(NETIF_MSG_TX_QUEUED, "doorbell: nbd %d  bd %u\n", nbd, bd_prod);
4129 
4130 	netdev_tx_sent_queue(txq, skb->len);
4131 
4132 	skb_tx_timestamp(skb);
4133 
4134 	txdata->tx_pkt_prod++;
4135 	/*
4136 	 * Make sure that the BD data is updated before updating the producer
4137 	 * since FW might read the BD right after the producer is updated.
4138 	 * This is only applicable for weak-ordered memory model archs such
4139 	 * as IA-64. The following barrier is also mandatory since FW will
4140 	 * assumes packets must have BDs.
4141 	 */
4142 	wmb();
4143 
4144 	txdata->tx_db.data.prod += nbd;
4145 	barrier();
4146 
4147 	DOORBELL(bp, txdata->cid, txdata->tx_db.raw);
4148 
4149 	mmiowb();
4150 
4151 	txdata->tx_bd_prod += nbd;
4152 
4153 	if (unlikely(bnx2x_tx_avail(bp, txdata) < MAX_DESC_PER_TX_PKT)) {
4154 		netif_tx_stop_queue(txq);
4155 
4156 		/* paired memory barrier is in bnx2x_tx_int(), we have to keep
4157 		 * ordering of set_bit() in netif_tx_stop_queue() and read of
4158 		 * fp->bd_tx_cons */
4159 		smp_mb();
4160 
4161 		bnx2x_fp_qstats(bp, txdata->parent_fp)->driver_xoff++;
4162 		if (bnx2x_tx_avail(bp, txdata) >= MAX_DESC_PER_TX_PKT)
4163 			netif_tx_wake_queue(txq);
4164 	}
4165 	txdata->tx_pkt++;
4166 
4167 	return NETDEV_TX_OK;
4168 }
4169 
4170 void bnx2x_get_c2s_mapping(struct bnx2x *bp, u8 *c2s_map, u8 *c2s_default)
4171 {
4172 	int mfw_vn = BP_FW_MB_IDX(bp);
4173 	u32 tmp;
4174 
4175 	/* If the shmem shouldn't affect configuration, reflect */
4176 	if (!IS_MF_BD(bp)) {
4177 		int i;
4178 
4179 		for (i = 0; i < BNX2X_MAX_PRIORITY; i++)
4180 			c2s_map[i] = i;
4181 		*c2s_default = 0;
4182 
4183 		return;
4184 	}
4185 
4186 	tmp = SHMEM2_RD(bp, c2s_pcp_map_lower[mfw_vn]);
4187 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4188 	c2s_map[0] = tmp & 0xff;
4189 	c2s_map[1] = (tmp >> 8) & 0xff;
4190 	c2s_map[2] = (tmp >> 16) & 0xff;
4191 	c2s_map[3] = (tmp >> 24) & 0xff;
4192 
4193 	tmp = SHMEM2_RD(bp, c2s_pcp_map_upper[mfw_vn]);
4194 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4195 	c2s_map[4] = tmp & 0xff;
4196 	c2s_map[5] = (tmp >> 8) & 0xff;
4197 	c2s_map[6] = (tmp >> 16) & 0xff;
4198 	c2s_map[7] = (tmp >> 24) & 0xff;
4199 
4200 	tmp = SHMEM2_RD(bp, c2s_pcp_map_default[mfw_vn]);
4201 	tmp = (__force u32)be32_to_cpu((__force __be32)tmp);
4202 	*c2s_default = (tmp >> (8 * mfw_vn)) & 0xff;
4203 }
4204 
4205 /**
4206  * bnx2x_setup_tc - routine to configure net_device for multi tc
4207  *
4208  * @netdev: net device to configure
4209  * @tc: number of traffic classes to enable
4210  *
4211  * callback connected to the ndo_setup_tc function pointer
4212  */
4213 int bnx2x_setup_tc(struct net_device *dev, u8 num_tc)
4214 {
4215 	struct bnx2x *bp = netdev_priv(dev);
4216 	u8 c2s_map[BNX2X_MAX_PRIORITY], c2s_def;
4217 	int cos, prio, count, offset;
4218 
4219 	/* setup tc must be called under rtnl lock */
4220 	ASSERT_RTNL();
4221 
4222 	/* no traffic classes requested. Aborting */
4223 	if (!num_tc) {
4224 		netdev_reset_tc(dev);
4225 		return 0;
4226 	}
4227 
4228 	/* requested to support too many traffic classes */
4229 	if (num_tc > bp->max_cos) {
4230 		BNX2X_ERR("support for too many traffic classes requested: %d. Max supported is %d\n",
4231 			  num_tc, bp->max_cos);
4232 		return -EINVAL;
4233 	}
4234 
4235 	/* declare amount of supported traffic classes */
4236 	if (netdev_set_num_tc(dev, num_tc)) {
4237 		BNX2X_ERR("failed to declare %d traffic classes\n", num_tc);
4238 		return -EINVAL;
4239 	}
4240 
4241 	bnx2x_get_c2s_mapping(bp, c2s_map, &c2s_def);
4242 
4243 	/* configure priority to traffic class mapping */
4244 	for (prio = 0; prio < BNX2X_MAX_PRIORITY; prio++) {
4245 		int outer_prio = c2s_map[prio];
4246 
4247 		netdev_set_prio_tc_map(dev, prio, bp->prio_to_cos[outer_prio]);
4248 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4249 		   "mapping priority %d to tc %d\n",
4250 		   outer_prio, bp->prio_to_cos[outer_prio]);
4251 	}
4252 
4253 	/* Use this configuration to differentiate tc0 from other COSes
4254 	   This can be used for ets or pfc, and save the effort of setting
4255 	   up a multio class queue disc or negotiating DCBX with a switch
4256 	netdev_set_prio_tc_map(dev, 0, 0);
4257 	DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", 0, 0);
4258 	for (prio = 1; prio < 16; prio++) {
4259 		netdev_set_prio_tc_map(dev, prio, 1);
4260 		DP(BNX2X_MSG_SP, "mapping priority %d to tc %d\n", prio, 1);
4261 	} */
4262 
4263 	/* configure traffic class to transmission queue mapping */
4264 	for (cos = 0; cos < bp->max_cos; cos++) {
4265 		count = BNX2X_NUM_ETH_QUEUES(bp);
4266 		offset = cos * BNX2X_NUM_NON_CNIC_QUEUES(bp);
4267 		netdev_set_tc_queue(dev, cos, count, offset);
4268 		DP(BNX2X_MSG_SP | NETIF_MSG_IFUP,
4269 		   "mapping tc %d to offset %d count %d\n",
4270 		   cos, offset, count);
4271 	}
4272 
4273 	return 0;
4274 }
4275 
4276 int __bnx2x_setup_tc(struct net_device *dev, u32 handle, __be16 proto,
4277 		     struct tc_to_netdev *tc)
4278 {
4279 	if (tc->type != TC_SETUP_MQPRIO)
4280 		return -EINVAL;
4281 
4282 	tc->mqprio->hw = TC_MQPRIO_HW_OFFLOAD_TCS;
4283 
4284 	return bnx2x_setup_tc(dev, tc->mqprio->num_tc);
4285 }
4286 
4287 /* called with rtnl_lock */
4288 int bnx2x_change_mac_addr(struct net_device *dev, void *p)
4289 {
4290 	struct sockaddr *addr = p;
4291 	struct bnx2x *bp = netdev_priv(dev);
4292 	int rc = 0;
4293 
4294 	if (!is_valid_ether_addr(addr->sa_data)) {
4295 		BNX2X_ERR("Requested MAC address is not valid\n");
4296 		return -EINVAL;
4297 	}
4298 
4299 	if (IS_MF_STORAGE_ONLY(bp)) {
4300 		BNX2X_ERR("Can't change address on STORAGE ONLY function\n");
4301 		return -EINVAL;
4302 	}
4303 
4304 	if (netif_running(dev))  {
4305 		rc = bnx2x_set_eth_mac(bp, false);
4306 		if (rc)
4307 			return rc;
4308 	}
4309 
4310 	memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
4311 
4312 	if (netif_running(dev))
4313 		rc = bnx2x_set_eth_mac(bp, true);
4314 
4315 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4316 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4317 
4318 	return rc;
4319 }
4320 
4321 static void bnx2x_free_fp_mem_at(struct bnx2x *bp, int fp_index)
4322 {
4323 	union host_hc_status_block *sb = &bnx2x_fp(bp, fp_index, status_blk);
4324 	struct bnx2x_fastpath *fp = &bp->fp[fp_index];
4325 	u8 cos;
4326 
4327 	/* Common */
4328 
4329 	if (IS_FCOE_IDX(fp_index)) {
4330 		memset(sb, 0, sizeof(union host_hc_status_block));
4331 		fp->status_blk_mapping = 0;
4332 	} else {
4333 		/* status blocks */
4334 		if (!CHIP_IS_E1x(bp))
4335 			BNX2X_PCI_FREE(sb->e2_sb,
4336 				       bnx2x_fp(bp, fp_index,
4337 						status_blk_mapping),
4338 				       sizeof(struct host_hc_status_block_e2));
4339 		else
4340 			BNX2X_PCI_FREE(sb->e1x_sb,
4341 				       bnx2x_fp(bp, fp_index,
4342 						status_blk_mapping),
4343 				       sizeof(struct host_hc_status_block_e1x));
4344 	}
4345 
4346 	/* Rx */
4347 	if (!skip_rx_queue(bp, fp_index)) {
4348 		bnx2x_free_rx_bds(fp);
4349 
4350 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4351 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_buf_ring));
4352 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_desc_ring),
4353 			       bnx2x_fp(bp, fp_index, rx_desc_mapping),
4354 			       sizeof(struct eth_rx_bd) * NUM_RX_BD);
4355 
4356 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_comp_ring),
4357 			       bnx2x_fp(bp, fp_index, rx_comp_mapping),
4358 			       sizeof(struct eth_fast_path_rx_cqe) *
4359 			       NUM_RCQ_BD);
4360 
4361 		/* SGE ring */
4362 		BNX2X_FREE(bnx2x_fp(bp, fp_index, rx_page_ring));
4363 		BNX2X_PCI_FREE(bnx2x_fp(bp, fp_index, rx_sge_ring),
4364 			       bnx2x_fp(bp, fp_index, rx_sge_mapping),
4365 			       BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4366 	}
4367 
4368 	/* Tx */
4369 	if (!skip_tx_queue(bp, fp_index)) {
4370 		/* fastpath tx rings: tx_buf tx_desc */
4371 		for_each_cos_in_tx_queue(fp, cos) {
4372 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4373 
4374 			DP(NETIF_MSG_IFDOWN,
4375 			   "freeing tx memory of fp %d cos %d cid %d\n",
4376 			   fp_index, cos, txdata->cid);
4377 
4378 			BNX2X_FREE(txdata->tx_buf_ring);
4379 			BNX2X_PCI_FREE(txdata->tx_desc_ring,
4380 				txdata->tx_desc_mapping,
4381 				sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4382 		}
4383 	}
4384 	/* end of fastpath */
4385 }
4386 
4387 static void bnx2x_free_fp_mem_cnic(struct bnx2x *bp)
4388 {
4389 	int i;
4390 	for_each_cnic_queue(bp, i)
4391 		bnx2x_free_fp_mem_at(bp, i);
4392 }
4393 
4394 void bnx2x_free_fp_mem(struct bnx2x *bp)
4395 {
4396 	int i;
4397 	for_each_eth_queue(bp, i)
4398 		bnx2x_free_fp_mem_at(bp, i);
4399 }
4400 
4401 static void set_sb_shortcuts(struct bnx2x *bp, int index)
4402 {
4403 	union host_hc_status_block status_blk = bnx2x_fp(bp, index, status_blk);
4404 	if (!CHIP_IS_E1x(bp)) {
4405 		bnx2x_fp(bp, index, sb_index_values) =
4406 			(__le16 *)status_blk.e2_sb->sb.index_values;
4407 		bnx2x_fp(bp, index, sb_running_index) =
4408 			(__le16 *)status_blk.e2_sb->sb.running_index;
4409 	} else {
4410 		bnx2x_fp(bp, index, sb_index_values) =
4411 			(__le16 *)status_blk.e1x_sb->sb.index_values;
4412 		bnx2x_fp(bp, index, sb_running_index) =
4413 			(__le16 *)status_blk.e1x_sb->sb.running_index;
4414 	}
4415 }
4416 
4417 /* Returns the number of actually allocated BDs */
4418 static int bnx2x_alloc_rx_bds(struct bnx2x_fastpath *fp,
4419 			      int rx_ring_size)
4420 {
4421 	struct bnx2x *bp = fp->bp;
4422 	u16 ring_prod, cqe_ring_prod;
4423 	int i, failure_cnt = 0;
4424 
4425 	fp->rx_comp_cons = 0;
4426 	cqe_ring_prod = ring_prod = 0;
4427 
4428 	/* This routine is called only during fo init so
4429 	 * fp->eth_q_stats.rx_skb_alloc_failed = 0
4430 	 */
4431 	for (i = 0; i < rx_ring_size; i++) {
4432 		if (bnx2x_alloc_rx_data(bp, fp, ring_prod, GFP_KERNEL) < 0) {
4433 			failure_cnt++;
4434 			continue;
4435 		}
4436 		ring_prod = NEXT_RX_IDX(ring_prod);
4437 		cqe_ring_prod = NEXT_RCQ_IDX(cqe_ring_prod);
4438 		WARN_ON(ring_prod <= (i - failure_cnt));
4439 	}
4440 
4441 	if (failure_cnt)
4442 		BNX2X_ERR("was only able to allocate %d rx skbs on queue[%d]\n",
4443 			  i - failure_cnt, fp->index);
4444 
4445 	fp->rx_bd_prod = ring_prod;
4446 	/* Limit the CQE producer by the CQE ring size */
4447 	fp->rx_comp_prod = min_t(u16, NUM_RCQ_RINGS*RCQ_DESC_CNT,
4448 			       cqe_ring_prod);
4449 
4450 	bnx2x_fp_stats(bp, fp)->eth_q_stats.rx_skb_alloc_failed += failure_cnt;
4451 
4452 	return i - failure_cnt;
4453 }
4454 
4455 static void bnx2x_set_next_page_rx_cq(struct bnx2x_fastpath *fp)
4456 {
4457 	int i;
4458 
4459 	for (i = 1; i <= NUM_RCQ_RINGS; i++) {
4460 		struct eth_rx_cqe_next_page *nextpg;
4461 
4462 		nextpg = (struct eth_rx_cqe_next_page *)
4463 			&fp->rx_comp_ring[RCQ_DESC_CNT * i - 1];
4464 		nextpg->addr_hi =
4465 			cpu_to_le32(U64_HI(fp->rx_comp_mapping +
4466 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4467 		nextpg->addr_lo =
4468 			cpu_to_le32(U64_LO(fp->rx_comp_mapping +
4469 				   BCM_PAGE_SIZE*(i % NUM_RCQ_RINGS)));
4470 	}
4471 }
4472 
4473 static int bnx2x_alloc_fp_mem_at(struct bnx2x *bp, int index)
4474 {
4475 	union host_hc_status_block *sb;
4476 	struct bnx2x_fastpath *fp = &bp->fp[index];
4477 	int ring_size = 0;
4478 	u8 cos;
4479 	int rx_ring_size = 0;
4480 
4481 	if (!bp->rx_ring_size && IS_MF_STORAGE_ONLY(bp)) {
4482 		rx_ring_size = MIN_RX_SIZE_NONTPA;
4483 		bp->rx_ring_size = rx_ring_size;
4484 	} else if (!bp->rx_ring_size) {
4485 		rx_ring_size = MAX_RX_AVAIL/BNX2X_NUM_RX_QUEUES(bp);
4486 
4487 		if (CHIP_IS_E3(bp)) {
4488 			u32 cfg = SHMEM_RD(bp,
4489 					   dev_info.port_hw_config[BP_PORT(bp)].
4490 					   default_cfg);
4491 
4492 			/* Decrease ring size for 1G functions */
4493 			if ((cfg & PORT_HW_CFG_NET_SERDES_IF_MASK) ==
4494 			    PORT_HW_CFG_NET_SERDES_IF_SGMII)
4495 				rx_ring_size /= 10;
4496 		}
4497 
4498 		/* allocate at least number of buffers required by FW */
4499 		rx_ring_size = max_t(int, bp->disable_tpa ? MIN_RX_SIZE_NONTPA :
4500 				     MIN_RX_SIZE_TPA, rx_ring_size);
4501 
4502 		bp->rx_ring_size = rx_ring_size;
4503 	} else /* if rx_ring_size specified - use it */
4504 		rx_ring_size = bp->rx_ring_size;
4505 
4506 	DP(BNX2X_MSG_SP, "calculated rx_ring_size %d\n", rx_ring_size);
4507 
4508 	/* Common */
4509 	sb = &bnx2x_fp(bp, index, status_blk);
4510 
4511 	if (!IS_FCOE_IDX(index)) {
4512 		/* status blocks */
4513 		if (!CHIP_IS_E1x(bp)) {
4514 			sb->e2_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4515 						    sizeof(struct host_hc_status_block_e2));
4516 			if (!sb->e2_sb)
4517 				goto alloc_mem_err;
4518 		} else {
4519 			sb->e1x_sb = BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, status_blk_mapping),
4520 						     sizeof(struct host_hc_status_block_e1x));
4521 			if (!sb->e1x_sb)
4522 				goto alloc_mem_err;
4523 		}
4524 	}
4525 
4526 	/* FCoE Queue uses Default SB and doesn't ACK the SB, thus no need to
4527 	 * set shortcuts for it.
4528 	 */
4529 	if (!IS_FCOE_IDX(index))
4530 		set_sb_shortcuts(bp, index);
4531 
4532 	/* Tx */
4533 	if (!skip_tx_queue(bp, index)) {
4534 		/* fastpath tx rings: tx_buf tx_desc */
4535 		for_each_cos_in_tx_queue(fp, cos) {
4536 			struct bnx2x_fp_txdata *txdata = fp->txdata_ptr[cos];
4537 
4538 			DP(NETIF_MSG_IFUP,
4539 			   "allocating tx memory of fp %d cos %d\n",
4540 			   index, cos);
4541 
4542 			txdata->tx_buf_ring = kcalloc(NUM_TX_BD,
4543 						      sizeof(struct sw_tx_bd),
4544 						      GFP_KERNEL);
4545 			if (!txdata->tx_buf_ring)
4546 				goto alloc_mem_err;
4547 			txdata->tx_desc_ring = BNX2X_PCI_ALLOC(&txdata->tx_desc_mapping,
4548 							       sizeof(union eth_tx_bd_types) * NUM_TX_BD);
4549 			if (!txdata->tx_desc_ring)
4550 				goto alloc_mem_err;
4551 		}
4552 	}
4553 
4554 	/* Rx */
4555 	if (!skip_rx_queue(bp, index)) {
4556 		/* fastpath rx rings: rx_buf rx_desc rx_comp */
4557 		bnx2x_fp(bp, index, rx_buf_ring) =
4558 			kcalloc(NUM_RX_BD, sizeof(struct sw_rx_bd), GFP_KERNEL);
4559 		if (!bnx2x_fp(bp, index, rx_buf_ring))
4560 			goto alloc_mem_err;
4561 		bnx2x_fp(bp, index, rx_desc_ring) =
4562 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_desc_mapping),
4563 					sizeof(struct eth_rx_bd) * NUM_RX_BD);
4564 		if (!bnx2x_fp(bp, index, rx_desc_ring))
4565 			goto alloc_mem_err;
4566 
4567 		/* Seed all CQEs by 1s */
4568 		bnx2x_fp(bp, index, rx_comp_ring) =
4569 			BNX2X_PCI_FALLOC(&bnx2x_fp(bp, index, rx_comp_mapping),
4570 					 sizeof(struct eth_fast_path_rx_cqe) * NUM_RCQ_BD);
4571 		if (!bnx2x_fp(bp, index, rx_comp_ring))
4572 			goto alloc_mem_err;
4573 
4574 		/* SGE ring */
4575 		bnx2x_fp(bp, index, rx_page_ring) =
4576 			kcalloc(NUM_RX_SGE, sizeof(struct sw_rx_page),
4577 				GFP_KERNEL);
4578 		if (!bnx2x_fp(bp, index, rx_page_ring))
4579 			goto alloc_mem_err;
4580 		bnx2x_fp(bp, index, rx_sge_ring) =
4581 			BNX2X_PCI_ALLOC(&bnx2x_fp(bp, index, rx_sge_mapping),
4582 					BCM_PAGE_SIZE * NUM_RX_SGE_PAGES);
4583 		if (!bnx2x_fp(bp, index, rx_sge_ring))
4584 			goto alloc_mem_err;
4585 		/* RX BD ring */
4586 		bnx2x_set_next_page_rx_bd(fp);
4587 
4588 		/* CQ ring */
4589 		bnx2x_set_next_page_rx_cq(fp);
4590 
4591 		/* BDs */
4592 		ring_size = bnx2x_alloc_rx_bds(fp, rx_ring_size);
4593 		if (ring_size < rx_ring_size)
4594 			goto alloc_mem_err;
4595 	}
4596 
4597 	return 0;
4598 
4599 /* handles low memory cases */
4600 alloc_mem_err:
4601 	BNX2X_ERR("Unable to allocate full memory for queue %d (size %d)\n",
4602 						index, ring_size);
4603 	/* FW will drop all packets if queue is not big enough,
4604 	 * In these cases we disable the queue
4605 	 * Min size is different for OOO, TPA and non-TPA queues
4606 	 */
4607 	if (ring_size < (fp->mode == TPA_MODE_DISABLED ?
4608 				MIN_RX_SIZE_NONTPA : MIN_RX_SIZE_TPA)) {
4609 			/* release memory allocated for this queue */
4610 			bnx2x_free_fp_mem_at(bp, index);
4611 			return -ENOMEM;
4612 	}
4613 	return 0;
4614 }
4615 
4616 static int bnx2x_alloc_fp_mem_cnic(struct bnx2x *bp)
4617 {
4618 	if (!NO_FCOE(bp))
4619 		/* FCoE */
4620 		if (bnx2x_alloc_fp_mem_at(bp, FCOE_IDX(bp)))
4621 			/* we will fail load process instead of mark
4622 			 * NO_FCOE_FLAG
4623 			 */
4624 			return -ENOMEM;
4625 
4626 	return 0;
4627 }
4628 
4629 static int bnx2x_alloc_fp_mem(struct bnx2x *bp)
4630 {
4631 	int i;
4632 
4633 	/* 1. Allocate FP for leading - fatal if error
4634 	 * 2. Allocate RSS - fix number of queues if error
4635 	 */
4636 
4637 	/* leading */
4638 	if (bnx2x_alloc_fp_mem_at(bp, 0))
4639 		return -ENOMEM;
4640 
4641 	/* RSS */
4642 	for_each_nondefault_eth_queue(bp, i)
4643 		if (bnx2x_alloc_fp_mem_at(bp, i))
4644 			break;
4645 
4646 	/* handle memory failures */
4647 	if (i != BNX2X_NUM_ETH_QUEUES(bp)) {
4648 		int delta = BNX2X_NUM_ETH_QUEUES(bp) - i;
4649 
4650 		WARN_ON(delta < 0);
4651 		bnx2x_shrink_eth_fp(bp, delta);
4652 		if (CNIC_SUPPORT(bp))
4653 			/* move non eth FPs next to last eth FP
4654 			 * must be done in that order
4655 			 * FCOE_IDX < FWD_IDX < OOO_IDX
4656 			 */
4657 
4658 			/* move FCoE fp even NO_FCOE_FLAG is on */
4659 			bnx2x_move_fp(bp, FCOE_IDX(bp), FCOE_IDX(bp) - delta);
4660 		bp->num_ethernet_queues -= delta;
4661 		bp->num_queues = bp->num_ethernet_queues +
4662 				 bp->num_cnic_queues;
4663 		BNX2X_ERR("Adjusted num of queues from %d to %d\n",
4664 			  bp->num_queues + delta, bp->num_queues);
4665 	}
4666 
4667 	return 0;
4668 }
4669 
4670 void bnx2x_free_mem_bp(struct bnx2x *bp)
4671 {
4672 	int i;
4673 
4674 	for (i = 0; i < bp->fp_array_size; i++)
4675 		kfree(bp->fp[i].tpa_info);
4676 	kfree(bp->fp);
4677 	kfree(bp->sp_objs);
4678 	kfree(bp->fp_stats);
4679 	kfree(bp->bnx2x_txq);
4680 	kfree(bp->msix_table);
4681 	kfree(bp->ilt);
4682 }
4683 
4684 int bnx2x_alloc_mem_bp(struct bnx2x *bp)
4685 {
4686 	struct bnx2x_fastpath *fp;
4687 	struct msix_entry *tbl;
4688 	struct bnx2x_ilt *ilt;
4689 	int msix_table_size = 0;
4690 	int fp_array_size, txq_array_size;
4691 	int i;
4692 
4693 	/*
4694 	 * The biggest MSI-X table we might need is as a maximum number of fast
4695 	 * path IGU SBs plus default SB (for PF only).
4696 	 */
4697 	msix_table_size = bp->igu_sb_cnt;
4698 	if (IS_PF(bp))
4699 		msix_table_size++;
4700 	BNX2X_DEV_INFO("msix_table_size %d\n", msix_table_size);
4701 
4702 	/* fp array: RSS plus CNIC related L2 queues */
4703 	fp_array_size = BNX2X_MAX_RSS_COUNT(bp) + CNIC_SUPPORT(bp);
4704 	bp->fp_array_size = fp_array_size;
4705 	BNX2X_DEV_INFO("fp_array_size %d\n", bp->fp_array_size);
4706 
4707 	fp = kcalloc(bp->fp_array_size, sizeof(*fp), GFP_KERNEL);
4708 	if (!fp)
4709 		goto alloc_err;
4710 	for (i = 0; i < bp->fp_array_size; i++) {
4711 		fp[i].tpa_info =
4712 			kcalloc(ETH_MAX_AGGREGATION_QUEUES_E1H_E2,
4713 				sizeof(struct bnx2x_agg_info), GFP_KERNEL);
4714 		if (!(fp[i].tpa_info))
4715 			goto alloc_err;
4716 	}
4717 
4718 	bp->fp = fp;
4719 
4720 	/* allocate sp objs */
4721 	bp->sp_objs = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_sp_objs),
4722 			      GFP_KERNEL);
4723 	if (!bp->sp_objs)
4724 		goto alloc_err;
4725 
4726 	/* allocate fp_stats */
4727 	bp->fp_stats = kcalloc(bp->fp_array_size, sizeof(struct bnx2x_fp_stats),
4728 			       GFP_KERNEL);
4729 	if (!bp->fp_stats)
4730 		goto alloc_err;
4731 
4732 	/* Allocate memory for the transmission queues array */
4733 	txq_array_size =
4734 		BNX2X_MAX_RSS_COUNT(bp) * BNX2X_MULTI_TX_COS + CNIC_SUPPORT(bp);
4735 	BNX2X_DEV_INFO("txq_array_size %d", txq_array_size);
4736 
4737 	bp->bnx2x_txq = kcalloc(txq_array_size, sizeof(struct bnx2x_fp_txdata),
4738 				GFP_KERNEL);
4739 	if (!bp->bnx2x_txq)
4740 		goto alloc_err;
4741 
4742 	/* msix table */
4743 	tbl = kcalloc(msix_table_size, sizeof(*tbl), GFP_KERNEL);
4744 	if (!tbl)
4745 		goto alloc_err;
4746 	bp->msix_table = tbl;
4747 
4748 	/* ilt */
4749 	ilt = kzalloc(sizeof(*ilt), GFP_KERNEL);
4750 	if (!ilt)
4751 		goto alloc_err;
4752 	bp->ilt = ilt;
4753 
4754 	return 0;
4755 alloc_err:
4756 	bnx2x_free_mem_bp(bp);
4757 	return -ENOMEM;
4758 }
4759 
4760 int bnx2x_reload_if_running(struct net_device *dev)
4761 {
4762 	struct bnx2x *bp = netdev_priv(dev);
4763 
4764 	if (unlikely(!netif_running(dev)))
4765 		return 0;
4766 
4767 	bnx2x_nic_unload(bp, UNLOAD_NORMAL, true);
4768 	return bnx2x_nic_load(bp, LOAD_NORMAL);
4769 }
4770 
4771 int bnx2x_get_cur_phy_idx(struct bnx2x *bp)
4772 {
4773 	u32 sel_phy_idx = 0;
4774 	if (bp->link_params.num_phys <= 1)
4775 		return INT_PHY;
4776 
4777 	if (bp->link_vars.link_up) {
4778 		sel_phy_idx = EXT_PHY1;
4779 		/* In case link is SERDES, check if the EXT_PHY2 is the one */
4780 		if ((bp->link_vars.link_status & LINK_STATUS_SERDES_LINK) &&
4781 		    (bp->link_params.phy[EXT_PHY2].supported & SUPPORTED_FIBRE))
4782 			sel_phy_idx = EXT_PHY2;
4783 	} else {
4784 
4785 		switch (bnx2x_phy_selection(&bp->link_params)) {
4786 		case PORT_HW_CFG_PHY_SELECTION_HARDWARE_DEFAULT:
4787 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY:
4788 		case PORT_HW_CFG_PHY_SELECTION_FIRST_PHY_PRIORITY:
4789 		       sel_phy_idx = EXT_PHY1;
4790 		       break;
4791 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY:
4792 		case PORT_HW_CFG_PHY_SELECTION_SECOND_PHY_PRIORITY:
4793 		       sel_phy_idx = EXT_PHY2;
4794 		       break;
4795 		}
4796 	}
4797 
4798 	return sel_phy_idx;
4799 }
4800 int bnx2x_get_link_cfg_idx(struct bnx2x *bp)
4801 {
4802 	u32 sel_phy_idx = bnx2x_get_cur_phy_idx(bp);
4803 	/*
4804 	 * The selected activated PHY is always after swapping (in case PHY
4805 	 * swapping is enabled). So when swapping is enabled, we need to reverse
4806 	 * the configuration
4807 	 */
4808 
4809 	if (bp->link_params.multi_phy_config &
4810 	    PORT_HW_CFG_PHY_SWAPPED_ENABLED) {
4811 		if (sel_phy_idx == EXT_PHY1)
4812 			sel_phy_idx = EXT_PHY2;
4813 		else if (sel_phy_idx == EXT_PHY2)
4814 			sel_phy_idx = EXT_PHY1;
4815 	}
4816 	return LINK_CONFIG_IDX(sel_phy_idx);
4817 }
4818 
4819 #ifdef NETDEV_FCOE_WWNN
4820 int bnx2x_fcoe_get_wwn(struct net_device *dev, u64 *wwn, int type)
4821 {
4822 	struct bnx2x *bp = netdev_priv(dev);
4823 	struct cnic_eth_dev *cp = &bp->cnic_eth_dev;
4824 
4825 	switch (type) {
4826 	case NETDEV_FCOE_WWNN:
4827 		*wwn = HILO_U64(cp->fcoe_wwn_node_name_hi,
4828 				cp->fcoe_wwn_node_name_lo);
4829 		break;
4830 	case NETDEV_FCOE_WWPN:
4831 		*wwn = HILO_U64(cp->fcoe_wwn_port_name_hi,
4832 				cp->fcoe_wwn_port_name_lo);
4833 		break;
4834 	default:
4835 		BNX2X_ERR("Wrong WWN type requested - %d\n", type);
4836 		return -EINVAL;
4837 	}
4838 
4839 	return 0;
4840 }
4841 #endif
4842 
4843 /* called with rtnl_lock */
4844 int bnx2x_change_mtu(struct net_device *dev, int new_mtu)
4845 {
4846 	struct bnx2x *bp = netdev_priv(dev);
4847 
4848 	if (pci_num_vf(bp->pdev)) {
4849 		DP(BNX2X_MSG_IOV, "VFs are enabled, can not change MTU\n");
4850 		return -EPERM;
4851 	}
4852 
4853 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
4854 		BNX2X_ERR("Can't perform change MTU during parity recovery\n");
4855 		return -EAGAIN;
4856 	}
4857 
4858 	/* This does not race with packet allocation
4859 	 * because the actual alloc size is
4860 	 * only updated as part of load
4861 	 */
4862 	dev->mtu = new_mtu;
4863 
4864 	if (IS_PF(bp) && SHMEM2_HAS(bp, curr_cfg))
4865 		SHMEM2_WR(bp, curr_cfg, CURR_CFG_MET_OS);
4866 
4867 	return bnx2x_reload_if_running(dev);
4868 }
4869 
4870 netdev_features_t bnx2x_fix_features(struct net_device *dev,
4871 				     netdev_features_t features)
4872 {
4873 	struct bnx2x *bp = netdev_priv(dev);
4874 
4875 	if (pci_num_vf(bp->pdev)) {
4876 		netdev_features_t changed = dev->features ^ features;
4877 
4878 		/* Revert the requested changes in features if they
4879 		 * would require internal reload of PF in bnx2x_set_features().
4880 		 */
4881 		if (!(features & NETIF_F_RXCSUM) && !bp->disable_tpa) {
4882 			features &= ~NETIF_F_RXCSUM;
4883 			features |= dev->features & NETIF_F_RXCSUM;
4884 		}
4885 
4886 		if (changed & NETIF_F_LOOPBACK) {
4887 			features &= ~NETIF_F_LOOPBACK;
4888 			features |= dev->features & NETIF_F_LOOPBACK;
4889 		}
4890 	}
4891 
4892 	/* TPA requires Rx CSUM offloading */
4893 	if (!(features & NETIF_F_RXCSUM)) {
4894 		features &= ~NETIF_F_LRO;
4895 		features &= ~NETIF_F_GRO;
4896 	}
4897 
4898 	return features;
4899 }
4900 
4901 int bnx2x_set_features(struct net_device *dev, netdev_features_t features)
4902 {
4903 	struct bnx2x *bp = netdev_priv(dev);
4904 	netdev_features_t changes = features ^ dev->features;
4905 	bool bnx2x_reload = false;
4906 	int rc;
4907 
4908 	/* VFs or non SRIOV PFs should be able to change loopback feature */
4909 	if (!pci_num_vf(bp->pdev)) {
4910 		if (features & NETIF_F_LOOPBACK) {
4911 			if (bp->link_params.loopback_mode != LOOPBACK_BMAC) {
4912 				bp->link_params.loopback_mode = LOOPBACK_BMAC;
4913 				bnx2x_reload = true;
4914 			}
4915 		} else {
4916 			if (bp->link_params.loopback_mode != LOOPBACK_NONE) {
4917 				bp->link_params.loopback_mode = LOOPBACK_NONE;
4918 				bnx2x_reload = true;
4919 			}
4920 		}
4921 	}
4922 
4923 	/* if GRO is changed while LRO is enabled, don't force a reload */
4924 	if ((changes & NETIF_F_GRO) && (features & NETIF_F_LRO))
4925 		changes &= ~NETIF_F_GRO;
4926 
4927 	/* if GRO is changed while HW TPA is off, don't force a reload */
4928 	if ((changes & NETIF_F_GRO) && bp->disable_tpa)
4929 		changes &= ~NETIF_F_GRO;
4930 
4931 	if (changes)
4932 		bnx2x_reload = true;
4933 
4934 	if (bnx2x_reload) {
4935 		if (bp->recovery_state == BNX2X_RECOVERY_DONE) {
4936 			dev->features = features;
4937 			rc = bnx2x_reload_if_running(dev);
4938 			return rc ? rc : 1;
4939 		}
4940 		/* else: bnx2x_nic_load() will be called at end of recovery */
4941 	}
4942 
4943 	return 0;
4944 }
4945 
4946 void bnx2x_tx_timeout(struct net_device *dev)
4947 {
4948 	struct bnx2x *bp = netdev_priv(dev);
4949 
4950 #ifdef BNX2X_STOP_ON_ERROR
4951 	if (!bp->panic)
4952 		bnx2x_panic();
4953 #endif
4954 
4955 	/* This allows the netif to be shutdown gracefully before resetting */
4956 	bnx2x_schedule_sp_rtnl(bp, BNX2X_SP_RTNL_TX_TIMEOUT, 0);
4957 }
4958 
4959 int bnx2x_suspend(struct pci_dev *pdev, pm_message_t state)
4960 {
4961 	struct net_device *dev = pci_get_drvdata(pdev);
4962 	struct bnx2x *bp;
4963 
4964 	if (!dev) {
4965 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4966 		return -ENODEV;
4967 	}
4968 	bp = netdev_priv(dev);
4969 
4970 	rtnl_lock();
4971 
4972 	pci_save_state(pdev);
4973 
4974 	if (!netif_running(dev)) {
4975 		rtnl_unlock();
4976 		return 0;
4977 	}
4978 
4979 	netif_device_detach(dev);
4980 
4981 	bnx2x_nic_unload(bp, UNLOAD_CLOSE, false);
4982 
4983 	bnx2x_set_power_state(bp, pci_choose_state(pdev, state));
4984 
4985 	rtnl_unlock();
4986 
4987 	return 0;
4988 }
4989 
4990 int bnx2x_resume(struct pci_dev *pdev)
4991 {
4992 	struct net_device *dev = pci_get_drvdata(pdev);
4993 	struct bnx2x *bp;
4994 	int rc;
4995 
4996 	if (!dev) {
4997 		dev_err(&pdev->dev, "BAD net device from bnx2x_init_one\n");
4998 		return -ENODEV;
4999 	}
5000 	bp = netdev_priv(dev);
5001 
5002 	if (bp->recovery_state != BNX2X_RECOVERY_DONE) {
5003 		BNX2X_ERR("Handling parity error recovery. Try again later\n");
5004 		return -EAGAIN;
5005 	}
5006 
5007 	rtnl_lock();
5008 
5009 	pci_restore_state(pdev);
5010 
5011 	if (!netif_running(dev)) {
5012 		rtnl_unlock();
5013 		return 0;
5014 	}
5015 
5016 	bnx2x_set_power_state(bp, PCI_D0);
5017 	netif_device_attach(dev);
5018 
5019 	rc = bnx2x_nic_load(bp, LOAD_OPEN);
5020 
5021 	rtnl_unlock();
5022 
5023 	return rc;
5024 }
5025 
5026 void bnx2x_set_ctx_validation(struct bnx2x *bp, struct eth_context *cxt,
5027 			      u32 cid)
5028 {
5029 	if (!cxt) {
5030 		BNX2X_ERR("bad context pointer %p\n", cxt);
5031 		return;
5032 	}
5033 
5034 	/* ustorm cxt validation */
5035 	cxt->ustorm_ag_context.cdu_usage =
5036 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5037 			CDU_REGION_NUMBER_UCM_AG, ETH_CONNECTION_TYPE);
5038 	/* xcontext validation */
5039 	cxt->xstorm_ag_context.cdu_reserved =
5040 		CDU_RSRVD_VALUE_TYPE_A(HW_CID(bp, cid),
5041 			CDU_REGION_NUMBER_XCM_AG, ETH_CONNECTION_TYPE);
5042 }
5043 
5044 static void storm_memset_hc_timeout(struct bnx2x *bp, u8 port,
5045 				    u8 fw_sb_id, u8 sb_index,
5046 				    u8 ticks)
5047 {
5048 	u32 addr = BAR_CSTRORM_INTMEM +
5049 		   CSTORM_STATUS_BLOCK_DATA_TIMEOUT_OFFSET(fw_sb_id, sb_index);
5050 	REG_WR8(bp, addr, ticks);
5051 	DP(NETIF_MSG_IFUP,
5052 	   "port %x fw_sb_id %d sb_index %d ticks %d\n",
5053 	   port, fw_sb_id, sb_index, ticks);
5054 }
5055 
5056 static void storm_memset_hc_disable(struct bnx2x *bp, u8 port,
5057 				    u16 fw_sb_id, u8 sb_index,
5058 				    u8 disable)
5059 {
5060 	u32 enable_flag = disable ? 0 : (1 << HC_INDEX_DATA_HC_ENABLED_SHIFT);
5061 	u32 addr = BAR_CSTRORM_INTMEM +
5062 		   CSTORM_STATUS_BLOCK_DATA_FLAGS_OFFSET(fw_sb_id, sb_index);
5063 	u8 flags = REG_RD8(bp, addr);
5064 	/* clear and set */
5065 	flags &= ~HC_INDEX_DATA_HC_ENABLED;
5066 	flags |= enable_flag;
5067 	REG_WR8(bp, addr, flags);
5068 	DP(NETIF_MSG_IFUP,
5069 	   "port %x fw_sb_id %d sb_index %d disable %d\n",
5070 	   port, fw_sb_id, sb_index, disable);
5071 }
5072 
5073 void bnx2x_update_coalesce_sb_index(struct bnx2x *bp, u8 fw_sb_id,
5074 				    u8 sb_index, u8 disable, u16 usec)
5075 {
5076 	int port = BP_PORT(bp);
5077 	u8 ticks = usec / BNX2X_BTR;
5078 
5079 	storm_memset_hc_timeout(bp, port, fw_sb_id, sb_index, ticks);
5080 
5081 	disable = disable ? 1 : (usec ? 0 : 1);
5082 	storm_memset_hc_disable(bp, port, fw_sb_id, sb_index, disable);
5083 }
5084 
5085 void bnx2x_schedule_sp_rtnl(struct bnx2x *bp, enum sp_rtnl_flag flag,
5086 			    u32 verbose)
5087 {
5088 	smp_mb__before_atomic();
5089 	set_bit(flag, &bp->sp_rtnl_state);
5090 	smp_mb__after_atomic();
5091 	DP((BNX2X_MSG_SP | verbose), "Scheduling sp_rtnl task [Flag: %d]\n",
5092 	   flag);
5093 	schedule_delayed_work(&bp->sp_rtnl_task, 0);
5094 }
5095