xref: /linux/drivers/mtd/spi-nor/sfdp.c (revision cbdb1f163af2bb90d01be1f0263df1d8d5c9d9d3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2005, Intec Automation Inc.
4  * Copyright (C) 2014, Freescale Semiconductor, Inc.
5  */
6 
7 #include <linux/bitfield.h>
8 #include <linux/slab.h>
9 #include <linux/sort.h>
10 #include <linux/mtd/spi-nor.h>
11 
12 #include "core.h"
13 
14 #define SFDP_PARAM_HEADER_ID(p)	(((p)->id_msb << 8) | (p)->id_lsb)
15 #define SFDP_PARAM_HEADER_PTP(p) \
16 	(((p)->parameter_table_pointer[2] << 16) | \
17 	 ((p)->parameter_table_pointer[1] <<  8) | \
18 	 ((p)->parameter_table_pointer[0] <<  0))
19 #define SFDP_PARAM_HEADER_PARAM_LEN(p) ((p)->length * 4)
20 
21 #define SFDP_BFPT_ID		0xff00	/* Basic Flash Parameter Table */
22 #define SFDP_SECTOR_MAP_ID	0xff81	/* Sector Map Table */
23 #define SFDP_4BAIT_ID		0xff84  /* 4-byte Address Instruction Table */
24 #define SFDP_PROFILE1_ID	0xff05	/* xSPI Profile 1.0 table. */
25 #define SFDP_SCCR_MAP_ID	0xff87	/*
26 					 * Status, Control and Configuration
27 					 * Register Map.
28 					 */
29 
30 #define SFDP_SIGNATURE		0x50444653U
31 
32 struct sfdp_header {
33 	u32		signature; /* Ox50444653U <=> "SFDP" */
34 	u8		minor;
35 	u8		major;
36 	u8		nph; /* 0-base number of parameter headers */
37 	u8		unused;
38 
39 	/* Basic Flash Parameter Table. */
40 	struct sfdp_parameter_header	bfpt_header;
41 };
42 
43 /* Fast Read settings. */
44 struct sfdp_bfpt_read {
45 	/* The Fast Read x-y-z hardware capability in params->hwcaps.mask. */
46 	u32			hwcaps;
47 
48 	/*
49 	 * The <supported_bit> bit in <supported_dword> BFPT DWORD tells us
50 	 * whether the Fast Read x-y-z command is supported.
51 	 */
52 	u32			supported_dword;
53 	u32			supported_bit;
54 
55 	/*
56 	 * The half-word at offset <setting_shift> in <setting_dword> BFPT DWORD
57 	 * encodes the op code, the number of mode clocks and the number of wait
58 	 * states to be used by Fast Read x-y-z command.
59 	 */
60 	u32			settings_dword;
61 	u32			settings_shift;
62 
63 	/* The SPI protocol for this Fast Read x-y-z command. */
64 	enum spi_nor_protocol	proto;
65 };
66 
67 struct sfdp_bfpt_erase {
68 	/*
69 	 * The half-word at offset <shift> in DWORD <dword> encodes the
70 	 * op code and erase sector size to be used by Sector Erase commands.
71 	 */
72 	u32			dword;
73 	u32			shift;
74 };
75 
76 #define SMPT_CMD_ADDRESS_LEN_MASK		GENMASK(23, 22)
77 #define SMPT_CMD_ADDRESS_LEN_0			(0x0UL << 22)
78 #define SMPT_CMD_ADDRESS_LEN_3			(0x1UL << 22)
79 #define SMPT_CMD_ADDRESS_LEN_4			(0x2UL << 22)
80 #define SMPT_CMD_ADDRESS_LEN_USE_CURRENT	(0x3UL << 22)
81 
82 #define SMPT_CMD_READ_DUMMY_MASK		GENMASK(19, 16)
83 #define SMPT_CMD_READ_DUMMY_SHIFT		16
84 #define SMPT_CMD_READ_DUMMY(_cmd) \
85 	(((_cmd) & SMPT_CMD_READ_DUMMY_MASK) >> SMPT_CMD_READ_DUMMY_SHIFT)
86 #define SMPT_CMD_READ_DUMMY_IS_VARIABLE		0xfUL
87 
88 #define SMPT_CMD_READ_DATA_MASK			GENMASK(31, 24)
89 #define SMPT_CMD_READ_DATA_SHIFT		24
90 #define SMPT_CMD_READ_DATA(_cmd) \
91 	(((_cmd) & SMPT_CMD_READ_DATA_MASK) >> SMPT_CMD_READ_DATA_SHIFT)
92 
93 #define SMPT_CMD_OPCODE_MASK			GENMASK(15, 8)
94 #define SMPT_CMD_OPCODE_SHIFT			8
95 #define SMPT_CMD_OPCODE(_cmd) \
96 	(((_cmd) & SMPT_CMD_OPCODE_MASK) >> SMPT_CMD_OPCODE_SHIFT)
97 
98 #define SMPT_MAP_REGION_COUNT_MASK		GENMASK(23, 16)
99 #define SMPT_MAP_REGION_COUNT_SHIFT		16
100 #define SMPT_MAP_REGION_COUNT(_header) \
101 	((((_header) & SMPT_MAP_REGION_COUNT_MASK) >> \
102 	  SMPT_MAP_REGION_COUNT_SHIFT) + 1)
103 
104 #define SMPT_MAP_ID_MASK			GENMASK(15, 8)
105 #define SMPT_MAP_ID_SHIFT			8
106 #define SMPT_MAP_ID(_header) \
107 	(((_header) & SMPT_MAP_ID_MASK) >> SMPT_MAP_ID_SHIFT)
108 
109 #define SMPT_MAP_REGION_SIZE_MASK		GENMASK(31, 8)
110 #define SMPT_MAP_REGION_SIZE_SHIFT		8
111 #define SMPT_MAP_REGION_SIZE(_region) \
112 	(((((_region) & SMPT_MAP_REGION_SIZE_MASK) >> \
113 	   SMPT_MAP_REGION_SIZE_SHIFT) + 1) * 256)
114 
115 #define SMPT_MAP_REGION_ERASE_TYPE_MASK		GENMASK(3, 0)
116 #define SMPT_MAP_REGION_ERASE_TYPE(_region) \
117 	((_region) & SMPT_MAP_REGION_ERASE_TYPE_MASK)
118 
119 #define SMPT_DESC_TYPE_MAP			BIT(1)
120 #define SMPT_DESC_END				BIT(0)
121 
122 #define SFDP_4BAIT_DWORD_MAX	2
123 
124 struct sfdp_4bait {
125 	/* The hardware capability. */
126 	u32		hwcaps;
127 
128 	/*
129 	 * The <supported_bit> bit in DWORD1 of the 4BAIT tells us whether
130 	 * the associated 4-byte address op code is supported.
131 	 */
132 	u32		supported_bit;
133 };
134 
135 /**
136  * spi_nor_read_raw() - raw read of serial flash memory. read_opcode,
137  *			addr_nbytes and read_dummy members of the struct spi_nor
138  *			should be previously set.
139  * @nor:	pointer to a 'struct spi_nor'
140  * @addr:	offset in the serial flash memory
141  * @len:	number of bytes to read
142  * @buf:	buffer where the data is copied into (dma-safe memory)
143  *
144  * Return: 0 on success, -errno otherwise.
145  */
146 static int spi_nor_read_raw(struct spi_nor *nor, u32 addr, size_t len, u8 *buf)
147 {
148 	ssize_t ret;
149 
150 	while (len) {
151 		ret = spi_nor_read_data(nor, addr, len, buf);
152 		if (ret < 0)
153 			return ret;
154 		if (!ret || ret > len)
155 			return -EIO;
156 
157 		buf += ret;
158 		addr += ret;
159 		len -= ret;
160 	}
161 	return 0;
162 }
163 
164 /**
165  * spi_nor_read_sfdp() - read Serial Flash Discoverable Parameters.
166  * @nor:	pointer to a 'struct spi_nor'
167  * @addr:	offset in the SFDP area to start reading data from
168  * @len:	number of bytes to read
169  * @buf:	buffer where the SFDP data are copied into (dma-safe memory)
170  *
171  * Whatever the actual numbers of bytes for address and dummy cycles are
172  * for (Fast) Read commands, the Read SFDP (5Ah) instruction is always
173  * followed by a 3-byte address and 8 dummy clock cycles.
174  *
175  * Return: 0 on success, -errno otherwise.
176  */
177 static int spi_nor_read_sfdp(struct spi_nor *nor, u32 addr,
178 			     size_t len, void *buf)
179 {
180 	u8 addr_nbytes, read_opcode, read_dummy;
181 	int ret;
182 
183 	read_opcode = nor->read_opcode;
184 	addr_nbytes = nor->addr_nbytes;
185 	read_dummy = nor->read_dummy;
186 
187 	nor->read_opcode = SPINOR_OP_RDSFDP;
188 	nor->addr_nbytes = 3;
189 	nor->read_dummy = 8;
190 
191 	ret = spi_nor_read_raw(nor, addr, len, buf);
192 
193 	nor->read_opcode = read_opcode;
194 	nor->addr_nbytes = addr_nbytes;
195 	nor->read_dummy = read_dummy;
196 
197 	return ret;
198 }
199 
200 /**
201  * spi_nor_read_sfdp_dma_unsafe() - read Serial Flash Discoverable Parameters.
202  * @nor:	pointer to a 'struct spi_nor'
203  * @addr:	offset in the SFDP area to start reading data from
204  * @len:	number of bytes to read
205  * @buf:	buffer where the SFDP data are copied into
206  *
207  * Wrap spi_nor_read_sfdp() using a kmalloc'ed bounce buffer as @buf is now not
208  * guaranteed to be dma-safe.
209  *
210  * Return: -ENOMEM if kmalloc() fails, the return code of spi_nor_read_sfdp()
211  *          otherwise.
212  */
213 static int spi_nor_read_sfdp_dma_unsafe(struct spi_nor *nor, u32 addr,
214 					size_t len, void *buf)
215 {
216 	void *dma_safe_buf;
217 	int ret;
218 
219 	dma_safe_buf = kmalloc(len, GFP_KERNEL);
220 	if (!dma_safe_buf)
221 		return -ENOMEM;
222 
223 	ret = spi_nor_read_sfdp(nor, addr, len, dma_safe_buf);
224 	memcpy(buf, dma_safe_buf, len);
225 	kfree(dma_safe_buf);
226 
227 	return ret;
228 }
229 
230 static void
231 spi_nor_set_read_settings_from_bfpt(struct spi_nor_read_command *read,
232 				    u16 half,
233 				    enum spi_nor_protocol proto)
234 {
235 	read->num_mode_clocks = (half >> 5) & 0x07;
236 	read->num_wait_states = (half >> 0) & 0x1f;
237 	read->opcode = (half >> 8) & 0xff;
238 	read->proto = proto;
239 }
240 
241 static const struct sfdp_bfpt_read sfdp_bfpt_reads[] = {
242 	/* Fast Read 1-1-2 */
243 	{
244 		SNOR_HWCAPS_READ_1_1_2,
245 		BFPT_DWORD(1), BIT(16),	/* Supported bit */
246 		BFPT_DWORD(4), 0,	/* Settings */
247 		SNOR_PROTO_1_1_2,
248 	},
249 
250 	/* Fast Read 1-2-2 */
251 	{
252 		SNOR_HWCAPS_READ_1_2_2,
253 		BFPT_DWORD(1), BIT(20),	/* Supported bit */
254 		BFPT_DWORD(4), 16,	/* Settings */
255 		SNOR_PROTO_1_2_2,
256 	},
257 
258 	/* Fast Read 2-2-2 */
259 	{
260 		SNOR_HWCAPS_READ_2_2_2,
261 		BFPT_DWORD(5),  BIT(0),	/* Supported bit */
262 		BFPT_DWORD(6), 16,	/* Settings */
263 		SNOR_PROTO_2_2_2,
264 	},
265 
266 	/* Fast Read 1-1-4 */
267 	{
268 		SNOR_HWCAPS_READ_1_1_4,
269 		BFPT_DWORD(1), BIT(22),	/* Supported bit */
270 		BFPT_DWORD(3), 16,	/* Settings */
271 		SNOR_PROTO_1_1_4,
272 	},
273 
274 	/* Fast Read 1-4-4 */
275 	{
276 		SNOR_HWCAPS_READ_1_4_4,
277 		BFPT_DWORD(1), BIT(21),	/* Supported bit */
278 		BFPT_DWORD(3), 0,	/* Settings */
279 		SNOR_PROTO_1_4_4,
280 	},
281 
282 	/* Fast Read 4-4-4 */
283 	{
284 		SNOR_HWCAPS_READ_4_4_4,
285 		BFPT_DWORD(5), BIT(4),	/* Supported bit */
286 		BFPT_DWORD(7), 16,	/* Settings */
287 		SNOR_PROTO_4_4_4,
288 	},
289 };
290 
291 static const struct sfdp_bfpt_erase sfdp_bfpt_erases[] = {
292 	/* Erase Type 1 in DWORD8 bits[15:0] */
293 	{BFPT_DWORD(8), 0},
294 
295 	/* Erase Type 2 in DWORD8 bits[31:16] */
296 	{BFPT_DWORD(8), 16},
297 
298 	/* Erase Type 3 in DWORD9 bits[15:0] */
299 	{BFPT_DWORD(9), 0},
300 
301 	/* Erase Type 4 in DWORD9 bits[31:16] */
302 	{BFPT_DWORD(9), 16},
303 };
304 
305 /**
306  * spi_nor_set_erase_settings_from_bfpt() - set erase type settings from BFPT
307  * @erase:	pointer to a structure that describes a SPI NOR erase type
308  * @size:	the size of the sector/block erased by the erase type
309  * @opcode:	the SPI command op code to erase the sector/block
310  * @i:		erase type index as sorted in the Basic Flash Parameter Table
311  *
312  * The supported Erase Types will be sorted at init in ascending order, with
313  * the smallest Erase Type size being the first member in the erase_type array
314  * of the spi_nor_erase_map structure. Save the Erase Type index as sorted in
315  * the Basic Flash Parameter Table since it will be used later on to
316  * synchronize with the supported Erase Types defined in SFDP optional tables.
317  */
318 static void
319 spi_nor_set_erase_settings_from_bfpt(struct spi_nor_erase_type *erase,
320 				     u32 size, u8 opcode, u8 i)
321 {
322 	erase->idx = i;
323 	spi_nor_set_erase_type(erase, size, opcode);
324 }
325 
326 /**
327  * spi_nor_map_cmp_erase_type() - compare the map's erase types by size
328  * @l:	member in the left half of the map's erase_type array
329  * @r:	member in the right half of the map's erase_type array
330  *
331  * Comparison function used in the sort() call to sort in ascending order the
332  * map's erase types, the smallest erase type size being the first member in the
333  * sorted erase_type array.
334  *
335  * Return: the result of @l->size - @r->size
336  */
337 static int spi_nor_map_cmp_erase_type(const void *l, const void *r)
338 {
339 	const struct spi_nor_erase_type *left = l, *right = r;
340 
341 	return left->size - right->size;
342 }
343 
344 /**
345  * spi_nor_sort_erase_mask() - sort erase mask
346  * @map:	the erase map of the SPI NOR
347  * @erase_mask:	the erase type mask to be sorted
348  *
349  * Replicate the sort done for the map's erase types in BFPT: sort the erase
350  * mask in ascending order with the smallest erase type size starting from
351  * BIT(0) in the sorted erase mask.
352  *
353  * Return: sorted erase mask.
354  */
355 static u8 spi_nor_sort_erase_mask(struct spi_nor_erase_map *map, u8 erase_mask)
356 {
357 	struct spi_nor_erase_type *erase_type = map->erase_type;
358 	int i;
359 	u8 sorted_erase_mask = 0;
360 
361 	if (!erase_mask)
362 		return 0;
363 
364 	/* Replicate the sort done for the map's erase types. */
365 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
366 		if (erase_type[i].size && erase_mask & BIT(erase_type[i].idx))
367 			sorted_erase_mask |= BIT(i);
368 
369 	return sorted_erase_mask;
370 }
371 
372 /**
373  * spi_nor_regions_sort_erase_types() - sort erase types in each region
374  * @map:	the erase map of the SPI NOR
375  *
376  * Function assumes that the erase types defined in the erase map are already
377  * sorted in ascending order, with the smallest erase type size being the first
378  * member in the erase_type array. It replicates the sort done for the map's
379  * erase types. Each region's erase bitmask will indicate which erase types are
380  * supported from the sorted erase types defined in the erase map.
381  * Sort the all region's erase type at init in order to speed up the process of
382  * finding the best erase command at runtime.
383  */
384 static void spi_nor_regions_sort_erase_types(struct spi_nor_erase_map *map)
385 {
386 	struct spi_nor_erase_region *region = map->regions;
387 	u8 region_erase_mask, sorted_erase_mask;
388 
389 	while (region) {
390 		region_erase_mask = region->offset & SNOR_ERASE_TYPE_MASK;
391 
392 		sorted_erase_mask = spi_nor_sort_erase_mask(map,
393 							    region_erase_mask);
394 
395 		/* Overwrite erase mask. */
396 		region->offset = (region->offset & ~SNOR_ERASE_TYPE_MASK) |
397 				 sorted_erase_mask;
398 
399 		region = spi_nor_region_next(region);
400 	}
401 }
402 
403 /**
404  * spi_nor_parse_bfpt() - read and parse the Basic Flash Parameter Table.
405  * @nor:		pointer to a 'struct spi_nor'
406  * @bfpt_header:	pointer to the 'struct sfdp_parameter_header' describing
407  *			the Basic Flash Parameter Table length and version
408  *
409  * The Basic Flash Parameter Table is the main and only mandatory table as
410  * defined by the SFDP (JESD216) specification.
411  * It provides us with the total size (memory density) of the data array and
412  * the number of address bytes for Fast Read, Page Program and Sector Erase
413  * commands.
414  * For Fast READ commands, it also gives the number of mode clock cycles and
415  * wait states (regrouped in the number of dummy clock cycles) for each
416  * supported instruction op code.
417  * For Page Program, the page size is now available since JESD216 rev A, however
418  * the supported instruction op codes are still not provided.
419  * For Sector Erase commands, this table stores the supported instruction op
420  * codes and the associated sector sizes.
421  * Finally, the Quad Enable Requirements (QER) are also available since JESD216
422  * rev A. The QER bits encode the manufacturer dependent procedure to be
423  * executed to set the Quad Enable (QE) bit in some internal register of the
424  * Quad SPI memory. Indeed the QE bit, when it exists, must be set before
425  * sending any Quad SPI command to the memory. Actually, setting the QE bit
426  * tells the memory to reassign its WP# and HOLD#/RESET# pins to functions IO2
427  * and IO3 hence enabling 4 (Quad) I/O lines.
428  *
429  * Return: 0 on success, -errno otherwise.
430  */
431 static int spi_nor_parse_bfpt(struct spi_nor *nor,
432 			      const struct sfdp_parameter_header *bfpt_header)
433 {
434 	struct spi_nor_flash_parameter *params = nor->params;
435 	struct spi_nor_erase_map *map = &params->erase_map;
436 	struct spi_nor_erase_type *erase_type = map->erase_type;
437 	struct sfdp_bfpt bfpt;
438 	size_t len;
439 	int i, cmd, err;
440 	u32 addr, val;
441 	u16 half;
442 	u8 erase_mask;
443 
444 	/* JESD216 Basic Flash Parameter Table length is at least 9 DWORDs. */
445 	if (bfpt_header->length < BFPT_DWORD_MAX_JESD216)
446 		return -EINVAL;
447 
448 	/* Read the Basic Flash Parameter Table. */
449 	len = min_t(size_t, sizeof(bfpt),
450 		    bfpt_header->length * sizeof(u32));
451 	addr = SFDP_PARAM_HEADER_PTP(bfpt_header);
452 	memset(&bfpt, 0, sizeof(bfpt));
453 	err = spi_nor_read_sfdp_dma_unsafe(nor,  addr, len, &bfpt);
454 	if (err < 0)
455 		return err;
456 
457 	/* Fix endianness of the BFPT DWORDs. */
458 	le32_to_cpu_array(bfpt.dwords, BFPT_DWORD_MAX);
459 
460 	/* Number of address bytes. */
461 	switch (bfpt.dwords[BFPT_DWORD(1)] & BFPT_DWORD1_ADDRESS_BYTES_MASK) {
462 	case BFPT_DWORD1_ADDRESS_BYTES_3_ONLY:
463 	case BFPT_DWORD1_ADDRESS_BYTES_3_OR_4:
464 		params->addr_nbytes = 3;
465 		params->addr_mode_nbytes = 3;
466 		break;
467 
468 	case BFPT_DWORD1_ADDRESS_BYTES_4_ONLY:
469 		params->addr_nbytes = 4;
470 		params->addr_mode_nbytes = 4;
471 		break;
472 
473 	default:
474 		break;
475 	}
476 
477 	/* Flash Memory Density (in bits). */
478 	val = bfpt.dwords[BFPT_DWORD(2)];
479 	if (val & BIT(31)) {
480 		val &= ~BIT(31);
481 
482 		/*
483 		 * Prevent overflows on params->size. Anyway, a NOR of 2^64
484 		 * bits is unlikely to exist so this error probably means
485 		 * the BFPT we are reading is corrupted/wrong.
486 		 */
487 		if (val > 63)
488 			return -EINVAL;
489 
490 		params->size = 1ULL << val;
491 	} else {
492 		params->size = val + 1;
493 	}
494 	params->size >>= 3; /* Convert to bytes. */
495 
496 	/* Fast Read settings. */
497 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_reads); i++) {
498 		const struct sfdp_bfpt_read *rd = &sfdp_bfpt_reads[i];
499 		struct spi_nor_read_command *read;
500 
501 		if (!(bfpt.dwords[rd->supported_dword] & rd->supported_bit)) {
502 			params->hwcaps.mask &= ~rd->hwcaps;
503 			continue;
504 		}
505 
506 		params->hwcaps.mask |= rd->hwcaps;
507 		cmd = spi_nor_hwcaps_read2cmd(rd->hwcaps);
508 		read = &params->reads[cmd];
509 		half = bfpt.dwords[rd->settings_dword] >> rd->settings_shift;
510 		spi_nor_set_read_settings_from_bfpt(read, half, rd->proto);
511 	}
512 
513 	/*
514 	 * Sector Erase settings. Reinitialize the uniform erase map using the
515 	 * Erase Types defined in the bfpt table.
516 	 */
517 	erase_mask = 0;
518 	memset(&params->erase_map, 0, sizeof(params->erase_map));
519 	for (i = 0; i < ARRAY_SIZE(sfdp_bfpt_erases); i++) {
520 		const struct sfdp_bfpt_erase *er = &sfdp_bfpt_erases[i];
521 		u32 erasesize;
522 		u8 opcode;
523 
524 		half = bfpt.dwords[er->dword] >> er->shift;
525 		erasesize = half & 0xff;
526 
527 		/* erasesize == 0 means this Erase Type is not supported. */
528 		if (!erasesize)
529 			continue;
530 
531 		erasesize = 1U << erasesize;
532 		opcode = (half >> 8) & 0xff;
533 		erase_mask |= BIT(i);
534 		spi_nor_set_erase_settings_from_bfpt(&erase_type[i], erasesize,
535 						     opcode, i);
536 	}
537 	spi_nor_init_uniform_erase_map(map, erase_mask, params->size);
538 	/*
539 	 * Sort all the map's Erase Types in ascending order with the smallest
540 	 * erase size being the first member in the erase_type array.
541 	 */
542 	sort(erase_type, SNOR_ERASE_TYPE_MAX, sizeof(erase_type[0]),
543 	     spi_nor_map_cmp_erase_type, NULL);
544 	/*
545 	 * Sort the erase types in the uniform region in order to update the
546 	 * uniform_erase_type bitmask. The bitmask will be used later on when
547 	 * selecting the uniform erase.
548 	 */
549 	spi_nor_regions_sort_erase_types(map);
550 	map->uniform_erase_type = map->uniform_region.offset &
551 				  SNOR_ERASE_TYPE_MASK;
552 
553 	/* Stop here if not JESD216 rev A or later. */
554 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216)
555 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
556 
557 	/* Page size: this field specifies 'N' so the page size = 2^N bytes. */
558 	val = bfpt.dwords[BFPT_DWORD(11)];
559 	val &= BFPT_DWORD11_PAGE_SIZE_MASK;
560 	val >>= BFPT_DWORD11_PAGE_SIZE_SHIFT;
561 	params->page_size = 1U << val;
562 
563 	/* Quad Enable Requirements. */
564 	switch (bfpt.dwords[BFPT_DWORD(15)] & BFPT_DWORD15_QER_MASK) {
565 	case BFPT_DWORD15_QER_NONE:
566 		params->quad_enable = NULL;
567 		break;
568 
569 	case BFPT_DWORD15_QER_SR2_BIT1_BUGGY:
570 		/*
571 		 * Writing only one byte to the Status Register has the
572 		 * side-effect of clearing Status Register 2.
573 		 */
574 	case BFPT_DWORD15_QER_SR2_BIT1_NO_RD:
575 		/*
576 		 * Read Configuration Register (35h) instruction is not
577 		 * supported.
578 		 */
579 		nor->flags |= SNOR_F_HAS_16BIT_SR | SNOR_F_NO_READ_CR;
580 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
581 		break;
582 
583 	case BFPT_DWORD15_QER_SR1_BIT6:
584 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
585 		params->quad_enable = spi_nor_sr1_bit6_quad_enable;
586 		break;
587 
588 	case BFPT_DWORD15_QER_SR2_BIT7:
589 		nor->flags &= ~SNOR_F_HAS_16BIT_SR;
590 		params->quad_enable = spi_nor_sr2_bit7_quad_enable;
591 		break;
592 
593 	case BFPT_DWORD15_QER_SR2_BIT1:
594 		/*
595 		 * JESD216 rev B or later does not specify if writing only one
596 		 * byte to the Status Register clears or not the Status
597 		 * Register 2, so let's be cautious and keep the default
598 		 * assumption of a 16-bit Write Status (01h) command.
599 		 */
600 		nor->flags |= SNOR_F_HAS_16BIT_SR;
601 
602 		params->quad_enable = spi_nor_sr2_bit1_quad_enable;
603 		break;
604 
605 	default:
606 		dev_dbg(nor->dev, "BFPT QER reserved value used\n");
607 		break;
608 	}
609 
610 	/* Soft Reset support. */
611 	if (bfpt.dwords[BFPT_DWORD(16)] & BFPT_DWORD16_SWRST_EN_RST)
612 		nor->flags |= SNOR_F_SOFT_RESET;
613 
614 	/* Stop here if not JESD216 rev C or later. */
615 	if (bfpt_header->length == BFPT_DWORD_MAX_JESD216B)
616 		return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
617 
618 	/* 8D-8D-8D command extension. */
619 	switch (bfpt.dwords[BFPT_DWORD(18)] & BFPT_DWORD18_CMD_EXT_MASK) {
620 	case BFPT_DWORD18_CMD_EXT_REP:
621 		nor->cmd_ext_type = SPI_NOR_EXT_REPEAT;
622 		break;
623 
624 	case BFPT_DWORD18_CMD_EXT_INV:
625 		nor->cmd_ext_type = SPI_NOR_EXT_INVERT;
626 		break;
627 
628 	case BFPT_DWORD18_CMD_EXT_RES:
629 		dev_dbg(nor->dev, "Reserved command extension used\n");
630 		break;
631 
632 	case BFPT_DWORD18_CMD_EXT_16B:
633 		dev_dbg(nor->dev, "16-bit opcodes not supported\n");
634 		return -EOPNOTSUPP;
635 	}
636 
637 	return spi_nor_post_bfpt_fixups(nor, bfpt_header, &bfpt);
638 }
639 
640 /**
641  * spi_nor_smpt_addr_nbytes() - return the number of address bytes used in the
642  *			       configuration detection command.
643  * @nor:	pointer to a 'struct spi_nor'
644  * @settings:	configuration detection command descriptor, dword1
645  */
646 static u8 spi_nor_smpt_addr_nbytes(const struct spi_nor *nor, const u32 settings)
647 {
648 	switch (settings & SMPT_CMD_ADDRESS_LEN_MASK) {
649 	case SMPT_CMD_ADDRESS_LEN_0:
650 		return 0;
651 	case SMPT_CMD_ADDRESS_LEN_3:
652 		return 3;
653 	case SMPT_CMD_ADDRESS_LEN_4:
654 		return 4;
655 	case SMPT_CMD_ADDRESS_LEN_USE_CURRENT:
656 	default:
657 		return nor->params->addr_mode_nbytes;
658 	}
659 }
660 
661 /**
662  * spi_nor_smpt_read_dummy() - return the configuration detection command read
663  *			       latency, in clock cycles.
664  * @nor:	pointer to a 'struct spi_nor'
665  * @settings:	configuration detection command descriptor, dword1
666  *
667  * Return: the number of dummy cycles for an SMPT read
668  */
669 static u8 spi_nor_smpt_read_dummy(const struct spi_nor *nor, const u32 settings)
670 {
671 	u8 read_dummy = SMPT_CMD_READ_DUMMY(settings);
672 
673 	if (read_dummy == SMPT_CMD_READ_DUMMY_IS_VARIABLE)
674 		return nor->read_dummy;
675 	return read_dummy;
676 }
677 
678 /**
679  * spi_nor_get_map_in_use() - get the configuration map in use
680  * @nor:	pointer to a 'struct spi_nor'
681  * @smpt:	pointer to the sector map parameter table
682  * @smpt_len:	sector map parameter table length
683  *
684  * Return: pointer to the map in use, ERR_PTR(-errno) otherwise.
685  */
686 static const u32 *spi_nor_get_map_in_use(struct spi_nor *nor, const u32 *smpt,
687 					 u8 smpt_len)
688 {
689 	const u32 *ret;
690 	u8 *buf;
691 	u32 addr;
692 	int err;
693 	u8 i;
694 	u8 addr_nbytes, read_opcode, read_dummy;
695 	u8 read_data_mask, map_id;
696 
697 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
698 	buf = kmalloc(sizeof(*buf), GFP_KERNEL);
699 	if (!buf)
700 		return ERR_PTR(-ENOMEM);
701 
702 	addr_nbytes = nor->addr_nbytes;
703 	read_dummy = nor->read_dummy;
704 	read_opcode = nor->read_opcode;
705 
706 	map_id = 0;
707 	/* Determine if there are any optional Detection Command Descriptors */
708 	for (i = 0; i < smpt_len; i += 2) {
709 		if (smpt[i] & SMPT_DESC_TYPE_MAP)
710 			break;
711 
712 		read_data_mask = SMPT_CMD_READ_DATA(smpt[i]);
713 		nor->addr_nbytes = spi_nor_smpt_addr_nbytes(nor, smpt[i]);
714 		nor->read_dummy = spi_nor_smpt_read_dummy(nor, smpt[i]);
715 		nor->read_opcode = SMPT_CMD_OPCODE(smpt[i]);
716 		addr = smpt[i + 1];
717 
718 		err = spi_nor_read_raw(nor, addr, 1, buf);
719 		if (err) {
720 			ret = ERR_PTR(err);
721 			goto out;
722 		}
723 
724 		/*
725 		 * Build an index value that is used to select the Sector Map
726 		 * Configuration that is currently in use.
727 		 */
728 		map_id = map_id << 1 | !!(*buf & read_data_mask);
729 	}
730 
731 	/*
732 	 * If command descriptors are provided, they always precede map
733 	 * descriptors in the table. There is no need to start the iteration
734 	 * over smpt array all over again.
735 	 *
736 	 * Find the matching configuration map.
737 	 */
738 	ret = ERR_PTR(-EINVAL);
739 	while (i < smpt_len) {
740 		if (SMPT_MAP_ID(smpt[i]) == map_id) {
741 			ret = smpt + i;
742 			break;
743 		}
744 
745 		/*
746 		 * If there are no more configuration map descriptors and no
747 		 * configuration ID matched the configuration identifier, the
748 		 * sector address map is unknown.
749 		 */
750 		if (smpt[i] & SMPT_DESC_END)
751 			break;
752 
753 		/* increment the table index to the next map */
754 		i += SMPT_MAP_REGION_COUNT(smpt[i]) + 1;
755 	}
756 
757 	/* fall through */
758 out:
759 	kfree(buf);
760 	nor->addr_nbytes = addr_nbytes;
761 	nor->read_dummy = read_dummy;
762 	nor->read_opcode = read_opcode;
763 	return ret;
764 }
765 
766 static void spi_nor_region_mark_end(struct spi_nor_erase_region *region)
767 {
768 	region->offset |= SNOR_LAST_REGION;
769 }
770 
771 static void spi_nor_region_mark_overlay(struct spi_nor_erase_region *region)
772 {
773 	region->offset |= SNOR_OVERLAID_REGION;
774 }
775 
776 /**
777  * spi_nor_region_check_overlay() - set overlay bit when the region is overlaid
778  * @region:	pointer to a structure that describes a SPI NOR erase region
779  * @erase:	pointer to a structure that describes a SPI NOR erase type
780  * @erase_type:	erase type bitmask
781  */
782 static void
783 spi_nor_region_check_overlay(struct spi_nor_erase_region *region,
784 			     const struct spi_nor_erase_type *erase,
785 			     const u8 erase_type)
786 {
787 	int i;
788 
789 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
790 		if (!(erase[i].size && erase_type & BIT(erase[i].idx)))
791 			continue;
792 		if (region->size & erase[i].size_mask) {
793 			spi_nor_region_mark_overlay(region);
794 			return;
795 		}
796 	}
797 }
798 
799 /**
800  * spi_nor_init_non_uniform_erase_map() - initialize the non-uniform erase map
801  * @nor:	pointer to a 'struct spi_nor'
802  * @smpt:	pointer to the sector map parameter table
803  *
804  * Return: 0 on success, -errno otherwise.
805  */
806 static int spi_nor_init_non_uniform_erase_map(struct spi_nor *nor,
807 					      const u32 *smpt)
808 {
809 	struct spi_nor_erase_map *map = &nor->params->erase_map;
810 	struct spi_nor_erase_type *erase = map->erase_type;
811 	struct spi_nor_erase_region *region;
812 	u64 offset;
813 	u32 region_count;
814 	int i, j;
815 	u8 uniform_erase_type, save_uniform_erase_type;
816 	u8 erase_type, regions_erase_type;
817 
818 	region_count = SMPT_MAP_REGION_COUNT(*smpt);
819 	/*
820 	 * The regions will be freed when the driver detaches from the
821 	 * device.
822 	 */
823 	region = devm_kcalloc(nor->dev, region_count, sizeof(*region),
824 			      GFP_KERNEL);
825 	if (!region)
826 		return -ENOMEM;
827 	map->regions = region;
828 
829 	uniform_erase_type = 0xff;
830 	regions_erase_type = 0;
831 	offset = 0;
832 	/* Populate regions. */
833 	for (i = 0; i < region_count; i++) {
834 		j = i + 1; /* index for the region dword */
835 		region[i].size = SMPT_MAP_REGION_SIZE(smpt[j]);
836 		erase_type = SMPT_MAP_REGION_ERASE_TYPE(smpt[j]);
837 		region[i].offset = offset | erase_type;
838 
839 		spi_nor_region_check_overlay(&region[i], erase, erase_type);
840 
841 		/*
842 		 * Save the erase types that are supported in all regions and
843 		 * can erase the entire flash memory.
844 		 */
845 		uniform_erase_type &= erase_type;
846 
847 		/*
848 		 * regions_erase_type mask will indicate all the erase types
849 		 * supported in this configuration map.
850 		 */
851 		regions_erase_type |= erase_type;
852 
853 		offset = (region[i].offset & ~SNOR_ERASE_FLAGS_MASK) +
854 			 region[i].size;
855 	}
856 	spi_nor_region_mark_end(&region[i - 1]);
857 
858 	save_uniform_erase_type = map->uniform_erase_type;
859 	map->uniform_erase_type = spi_nor_sort_erase_mask(map,
860 							  uniform_erase_type);
861 
862 	if (!regions_erase_type) {
863 		/*
864 		 * Roll back to the previous uniform_erase_type mask, SMPT is
865 		 * broken.
866 		 */
867 		map->uniform_erase_type = save_uniform_erase_type;
868 		return -EINVAL;
869 	}
870 
871 	/*
872 	 * BFPT advertises all the erase types supported by all the possible
873 	 * map configurations. Mask out the erase types that are not supported
874 	 * by the current map configuration.
875 	 */
876 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++)
877 		if (!(regions_erase_type & BIT(erase[i].idx)))
878 			spi_nor_set_erase_type(&erase[i], 0, 0xFF);
879 
880 	return 0;
881 }
882 
883 /**
884  * spi_nor_parse_smpt() - parse Sector Map Parameter Table
885  * @nor:		pointer to a 'struct spi_nor'
886  * @smpt_header:	sector map parameter table header
887  *
888  * This table is optional, but when available, we parse it to identify the
889  * location and size of sectors within the main data array of the flash memory
890  * device and to identify which Erase Types are supported by each sector.
891  *
892  * Return: 0 on success, -errno otherwise.
893  */
894 static int spi_nor_parse_smpt(struct spi_nor *nor,
895 			      const struct sfdp_parameter_header *smpt_header)
896 {
897 	const u32 *sector_map;
898 	u32 *smpt;
899 	size_t len;
900 	u32 addr;
901 	int ret;
902 
903 	/* Read the Sector Map Parameter Table. */
904 	len = smpt_header->length * sizeof(*smpt);
905 	smpt = kmalloc(len, GFP_KERNEL);
906 	if (!smpt)
907 		return -ENOMEM;
908 
909 	addr = SFDP_PARAM_HEADER_PTP(smpt_header);
910 	ret = spi_nor_read_sfdp(nor, addr, len, smpt);
911 	if (ret)
912 		goto out;
913 
914 	/* Fix endianness of the SMPT DWORDs. */
915 	le32_to_cpu_array(smpt, smpt_header->length);
916 
917 	sector_map = spi_nor_get_map_in_use(nor, smpt, smpt_header->length);
918 	if (IS_ERR(sector_map)) {
919 		ret = PTR_ERR(sector_map);
920 		goto out;
921 	}
922 
923 	ret = spi_nor_init_non_uniform_erase_map(nor, sector_map);
924 	if (ret)
925 		goto out;
926 
927 	spi_nor_regions_sort_erase_types(&nor->params->erase_map);
928 	/* fall through */
929 out:
930 	kfree(smpt);
931 	return ret;
932 }
933 
934 /**
935  * spi_nor_parse_4bait() - parse the 4-Byte Address Instruction Table
936  * @nor:		pointer to a 'struct spi_nor'.
937  * @param_header:	pointer to the 'struct sfdp_parameter_header' describing
938  *			the 4-Byte Address Instruction Table length and version.
939  *
940  * Return: 0 on success, -errno otherwise.
941  */
942 static int spi_nor_parse_4bait(struct spi_nor *nor,
943 			       const struct sfdp_parameter_header *param_header)
944 {
945 	static const struct sfdp_4bait reads[] = {
946 		{ SNOR_HWCAPS_READ,		BIT(0) },
947 		{ SNOR_HWCAPS_READ_FAST,	BIT(1) },
948 		{ SNOR_HWCAPS_READ_1_1_2,	BIT(2) },
949 		{ SNOR_HWCAPS_READ_1_2_2,	BIT(3) },
950 		{ SNOR_HWCAPS_READ_1_1_4,	BIT(4) },
951 		{ SNOR_HWCAPS_READ_1_4_4,	BIT(5) },
952 		{ SNOR_HWCAPS_READ_1_1_1_DTR,	BIT(13) },
953 		{ SNOR_HWCAPS_READ_1_2_2_DTR,	BIT(14) },
954 		{ SNOR_HWCAPS_READ_1_4_4_DTR,	BIT(15) },
955 	};
956 	static const struct sfdp_4bait programs[] = {
957 		{ SNOR_HWCAPS_PP,		BIT(6) },
958 		{ SNOR_HWCAPS_PP_1_1_4,		BIT(7) },
959 		{ SNOR_HWCAPS_PP_1_4_4,		BIT(8) },
960 	};
961 	static const struct sfdp_4bait erases[SNOR_ERASE_TYPE_MAX] = {
962 		{ 0u /* not used */,		BIT(9) },
963 		{ 0u /* not used */,		BIT(10) },
964 		{ 0u /* not used */,		BIT(11) },
965 		{ 0u /* not used */,		BIT(12) },
966 	};
967 	struct spi_nor_flash_parameter *params = nor->params;
968 	struct spi_nor_pp_command *params_pp = params->page_programs;
969 	struct spi_nor_erase_map *map = &params->erase_map;
970 	struct spi_nor_erase_type *erase_type = map->erase_type;
971 	u32 *dwords;
972 	size_t len;
973 	u32 addr, discard_hwcaps, read_hwcaps, pp_hwcaps, erase_mask;
974 	int i, ret;
975 
976 	if (param_header->major != SFDP_JESD216_MAJOR ||
977 	    param_header->length < SFDP_4BAIT_DWORD_MAX)
978 		return -EINVAL;
979 
980 	/* Read the 4-byte Address Instruction Table. */
981 	len = sizeof(*dwords) * SFDP_4BAIT_DWORD_MAX;
982 
983 	/* Use a kmalloc'ed bounce buffer to guarantee it is DMA-able. */
984 	dwords = kmalloc(len, GFP_KERNEL);
985 	if (!dwords)
986 		return -ENOMEM;
987 
988 	addr = SFDP_PARAM_HEADER_PTP(param_header);
989 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
990 	if (ret)
991 		goto out;
992 
993 	/* Fix endianness of the 4BAIT DWORDs. */
994 	le32_to_cpu_array(dwords, SFDP_4BAIT_DWORD_MAX);
995 
996 	/*
997 	 * Compute the subset of (Fast) Read commands for which the 4-byte
998 	 * version is supported.
999 	 */
1000 	discard_hwcaps = 0;
1001 	read_hwcaps = 0;
1002 	for (i = 0; i < ARRAY_SIZE(reads); i++) {
1003 		const struct sfdp_4bait *read = &reads[i];
1004 
1005 		discard_hwcaps |= read->hwcaps;
1006 		if ((params->hwcaps.mask & read->hwcaps) &&
1007 		    (dwords[0] & read->supported_bit))
1008 			read_hwcaps |= read->hwcaps;
1009 	}
1010 
1011 	/*
1012 	 * Compute the subset of Page Program commands for which the 4-byte
1013 	 * version is supported.
1014 	 */
1015 	pp_hwcaps = 0;
1016 	for (i = 0; i < ARRAY_SIZE(programs); i++) {
1017 		const struct sfdp_4bait *program = &programs[i];
1018 
1019 		/*
1020 		 * The 4 Byte Address Instruction (Optional) Table is the only
1021 		 * SFDP table that indicates support for Page Program Commands.
1022 		 * Bypass the params->hwcaps.mask and consider 4BAIT the biggest
1023 		 * authority for specifying Page Program support.
1024 		 */
1025 		discard_hwcaps |= program->hwcaps;
1026 		if (dwords[0] & program->supported_bit)
1027 			pp_hwcaps |= program->hwcaps;
1028 	}
1029 
1030 	/*
1031 	 * Compute the subset of Sector Erase commands for which the 4-byte
1032 	 * version is supported.
1033 	 */
1034 	erase_mask = 0;
1035 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1036 		const struct sfdp_4bait *erase = &erases[i];
1037 
1038 		if (dwords[0] & erase->supported_bit)
1039 			erase_mask |= BIT(i);
1040 	}
1041 
1042 	/* Replicate the sort done for the map's erase types in BFPT. */
1043 	erase_mask = spi_nor_sort_erase_mask(map, erase_mask);
1044 
1045 	/*
1046 	 * We need at least one 4-byte op code per read, program and erase
1047 	 * operation; the .read(), .write() and .erase() hooks share the
1048 	 * nor->addr_nbytes value.
1049 	 */
1050 	if (!read_hwcaps || !pp_hwcaps || !erase_mask)
1051 		goto out;
1052 
1053 	/*
1054 	 * Discard all operations from the 4-byte instruction set which are
1055 	 * not supported by this memory.
1056 	 */
1057 	params->hwcaps.mask &= ~discard_hwcaps;
1058 	params->hwcaps.mask |= (read_hwcaps | pp_hwcaps);
1059 
1060 	/* Use the 4-byte address instruction set. */
1061 	for (i = 0; i < SNOR_CMD_READ_MAX; i++) {
1062 		struct spi_nor_read_command *read_cmd = &params->reads[i];
1063 
1064 		read_cmd->opcode = spi_nor_convert_3to4_read(read_cmd->opcode);
1065 	}
1066 
1067 	/* 4BAIT is the only SFDP table that indicates page program support. */
1068 	if (pp_hwcaps & SNOR_HWCAPS_PP) {
1069 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP],
1070 					SPINOR_OP_PP_4B, SNOR_PROTO_1_1_1);
1071 		/*
1072 		 * Since xSPI Page Program opcode is backward compatible with
1073 		 * Legacy SPI, use Legacy SPI opcode there as well.
1074 		 */
1075 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_8_8_8_DTR],
1076 					SPINOR_OP_PP_4B, SNOR_PROTO_8_8_8_DTR);
1077 	}
1078 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_1_4)
1079 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_1_4],
1080 					SPINOR_OP_PP_1_1_4_4B,
1081 					SNOR_PROTO_1_1_4);
1082 	if (pp_hwcaps & SNOR_HWCAPS_PP_1_4_4)
1083 		spi_nor_set_pp_settings(&params_pp[SNOR_CMD_PP_1_4_4],
1084 					SPINOR_OP_PP_1_4_4_4B,
1085 					SNOR_PROTO_1_4_4);
1086 
1087 	for (i = 0; i < SNOR_ERASE_TYPE_MAX; i++) {
1088 		if (erase_mask & BIT(i))
1089 			erase_type[i].opcode = (dwords[1] >>
1090 						erase_type[i].idx * 8) & 0xFF;
1091 		else
1092 			spi_nor_set_erase_type(&erase_type[i], 0u, 0xFF);
1093 	}
1094 
1095 	/*
1096 	 * We set SNOR_F_HAS_4BAIT in order to skip spi_nor_set_4byte_opcodes()
1097 	 * later because we already did the conversion to 4byte opcodes. Also,
1098 	 * this latest function implements a legacy quirk for the erase size of
1099 	 * Spansion memory. However this quirk is no longer needed with new
1100 	 * SFDP compliant memories.
1101 	 */
1102 	params->addr_nbytes = 4;
1103 	nor->flags |= SNOR_F_4B_OPCODES | SNOR_F_HAS_4BAIT;
1104 
1105 	/* fall through */
1106 out:
1107 	kfree(dwords);
1108 	return ret;
1109 }
1110 
1111 #define PROFILE1_DWORD1_RDSR_ADDR_BYTES		BIT(29)
1112 #define PROFILE1_DWORD1_RDSR_DUMMY		BIT(28)
1113 #define PROFILE1_DWORD1_RD_FAST_CMD		GENMASK(15, 8)
1114 #define PROFILE1_DWORD4_DUMMY_200MHZ		GENMASK(11, 7)
1115 #define PROFILE1_DWORD5_DUMMY_166MHZ		GENMASK(31, 27)
1116 #define PROFILE1_DWORD5_DUMMY_133MHZ		GENMASK(21, 17)
1117 #define PROFILE1_DWORD5_DUMMY_100MHZ		GENMASK(11, 7)
1118 
1119 /**
1120  * spi_nor_parse_profile1() - parse the xSPI Profile 1.0 table
1121  * @nor:		pointer to a 'struct spi_nor'
1122  * @profile1_header:	pointer to the 'struct sfdp_parameter_header' describing
1123  *			the Profile 1.0 Table length and version.
1124  *
1125  * Return: 0 on success, -errno otherwise.
1126  */
1127 static int spi_nor_parse_profile1(struct spi_nor *nor,
1128 				  const struct sfdp_parameter_header *profile1_header)
1129 {
1130 	u32 *dwords, addr;
1131 	size_t len;
1132 	int ret;
1133 	u8 dummy, opcode;
1134 
1135 	len = profile1_header->length * sizeof(*dwords);
1136 	dwords = kmalloc(len, GFP_KERNEL);
1137 	if (!dwords)
1138 		return -ENOMEM;
1139 
1140 	addr = SFDP_PARAM_HEADER_PTP(profile1_header);
1141 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1142 	if (ret)
1143 		goto out;
1144 
1145 	le32_to_cpu_array(dwords, profile1_header->length);
1146 
1147 	/* Get 8D-8D-8D fast read opcode and dummy cycles. */
1148 	opcode = FIELD_GET(PROFILE1_DWORD1_RD_FAST_CMD, dwords[0]);
1149 
1150 	 /* Set the Read Status Register dummy cycles and dummy address bytes. */
1151 	if (dwords[0] & PROFILE1_DWORD1_RDSR_DUMMY)
1152 		nor->params->rdsr_dummy = 8;
1153 	else
1154 		nor->params->rdsr_dummy = 4;
1155 
1156 	if (dwords[0] & PROFILE1_DWORD1_RDSR_ADDR_BYTES)
1157 		nor->params->rdsr_addr_nbytes = 4;
1158 	else
1159 		nor->params->rdsr_addr_nbytes = 0;
1160 
1161 	/*
1162 	 * We don't know what speed the controller is running at. Find the
1163 	 * dummy cycles for the fastest frequency the flash can run at to be
1164 	 * sure we are never short of dummy cycles. A value of 0 means the
1165 	 * frequency is not supported.
1166 	 *
1167 	 * Default to PROFILE1_DUMMY_DEFAULT if we don't find anything, and let
1168 	 * flashes set the correct value if needed in their fixup hooks.
1169 	 */
1170 	dummy = FIELD_GET(PROFILE1_DWORD4_DUMMY_200MHZ, dwords[3]);
1171 	if (!dummy)
1172 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_166MHZ, dwords[4]);
1173 	if (!dummy)
1174 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_133MHZ, dwords[4]);
1175 	if (!dummy)
1176 		dummy = FIELD_GET(PROFILE1_DWORD5_DUMMY_100MHZ, dwords[4]);
1177 	if (!dummy)
1178 		dev_dbg(nor->dev,
1179 			"Can't find dummy cycles from Profile 1.0 table\n");
1180 
1181 	/* Round up to an even value to avoid tripping controllers up. */
1182 	dummy = round_up(dummy, 2);
1183 
1184 	/* Update the fast read settings. */
1185 	nor->params->hwcaps.mask |= SNOR_HWCAPS_READ_8_8_8_DTR;
1186 	spi_nor_set_read_settings(&nor->params->reads[SNOR_CMD_READ_8_8_8_DTR],
1187 				  0, dummy, opcode,
1188 				  SNOR_PROTO_8_8_8_DTR);
1189 
1190 	/*
1191 	 * Page Program is "Required Command" in the xSPI Profile 1.0. Update
1192 	 * the params->hwcaps.mask here.
1193 	 */
1194 	nor->params->hwcaps.mask |= SNOR_HWCAPS_PP_8_8_8_DTR;
1195 
1196 out:
1197 	kfree(dwords);
1198 	return ret;
1199 }
1200 
1201 #define SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE		BIT(31)
1202 
1203 /**
1204  * spi_nor_parse_sccr() - Parse the Status, Control and Configuration Register
1205  *                        Map.
1206  * @nor:		pointer to a 'struct spi_nor'
1207  * @sccr_header:	pointer to the 'struct sfdp_parameter_header' describing
1208  *			the SCCR Map table length and version.
1209  *
1210  * Return: 0 on success, -errno otherwise.
1211  */
1212 static int spi_nor_parse_sccr(struct spi_nor *nor,
1213 			      const struct sfdp_parameter_header *sccr_header)
1214 {
1215 	u32 *dwords, addr;
1216 	size_t len;
1217 	int ret;
1218 
1219 	len = sccr_header->length * sizeof(*dwords);
1220 	dwords = kmalloc(len, GFP_KERNEL);
1221 	if (!dwords)
1222 		return -ENOMEM;
1223 
1224 	addr = SFDP_PARAM_HEADER_PTP(sccr_header);
1225 	ret = spi_nor_read_sfdp(nor, addr, len, dwords);
1226 	if (ret)
1227 		goto out;
1228 
1229 	le32_to_cpu_array(dwords, sccr_header->length);
1230 
1231 	if (FIELD_GET(SCCR_DWORD22_OCTAL_DTR_EN_VOLATILE, dwords[22]))
1232 		nor->flags |= SNOR_F_IO_MODE_EN_VOLATILE;
1233 
1234 out:
1235 	kfree(dwords);
1236 	return ret;
1237 }
1238 
1239 /**
1240  * spi_nor_post_sfdp_fixups() - Updates the flash's parameters and settings
1241  * after SFDP has been parsed. Called only for flashes that define JESD216 SFDP
1242  * tables.
1243  * @nor:	pointer to a 'struct spi_nor'
1244  *
1245  * Used to tweak various flash parameters when information provided by the SFDP
1246  * tables are wrong.
1247  */
1248 static void spi_nor_post_sfdp_fixups(struct spi_nor *nor)
1249 {
1250 	if (nor->manufacturer && nor->manufacturer->fixups &&
1251 	    nor->manufacturer->fixups->post_sfdp)
1252 		nor->manufacturer->fixups->post_sfdp(nor);
1253 
1254 	if (nor->info->fixups && nor->info->fixups->post_sfdp)
1255 		nor->info->fixups->post_sfdp(nor);
1256 }
1257 
1258 /**
1259  * spi_nor_check_sfdp_signature() - check for a valid SFDP signature
1260  * @nor:	pointer to a 'struct spi_nor'
1261  *
1262  * Used to detect if the flash supports the RDSFDP command as well as the
1263  * presence of a valid SFDP table.
1264  *
1265  * Return: 0 on success, -errno otherwise.
1266  */
1267 int spi_nor_check_sfdp_signature(struct spi_nor *nor)
1268 {
1269 	u32 signature;
1270 	int err;
1271 
1272 	/* Get the SFDP header. */
1273 	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(signature),
1274 					   &signature);
1275 	if (err < 0)
1276 		return err;
1277 
1278 	/* Check the SFDP signature. */
1279 	if (le32_to_cpu(signature) != SFDP_SIGNATURE)
1280 		return -EINVAL;
1281 
1282 	return 0;
1283 }
1284 
1285 /**
1286  * spi_nor_parse_sfdp() - parse the Serial Flash Discoverable Parameters.
1287  * @nor:		pointer to a 'struct spi_nor'
1288  *
1289  * The Serial Flash Discoverable Parameters are described by the JEDEC JESD216
1290  * specification. This is a standard which tends to supported by almost all
1291  * (Q)SPI memory manufacturers. Those hard-coded tables allow us to learn at
1292  * runtime the main parameters needed to perform basic SPI flash operations such
1293  * as Fast Read, Page Program or Sector Erase commands.
1294  *
1295  * Return: 0 on success, -errno otherwise.
1296  */
1297 int spi_nor_parse_sfdp(struct spi_nor *nor)
1298 {
1299 	const struct sfdp_parameter_header *param_header, *bfpt_header;
1300 	struct sfdp_parameter_header *param_headers = NULL;
1301 	struct sfdp_header header;
1302 	struct device *dev = nor->dev;
1303 	struct sfdp *sfdp;
1304 	size_t sfdp_size;
1305 	size_t psize;
1306 	int i, err;
1307 
1308 	/* Get the SFDP header. */
1309 	err = spi_nor_read_sfdp_dma_unsafe(nor, 0, sizeof(header), &header);
1310 	if (err < 0)
1311 		return err;
1312 
1313 	/* Check the SFDP header version. */
1314 	if (le32_to_cpu(header.signature) != SFDP_SIGNATURE ||
1315 	    header.major != SFDP_JESD216_MAJOR)
1316 		return -EINVAL;
1317 
1318 	/*
1319 	 * Verify that the first and only mandatory parameter header is a
1320 	 * Basic Flash Parameter Table header as specified in JESD216.
1321 	 */
1322 	bfpt_header = &header.bfpt_header;
1323 	if (SFDP_PARAM_HEADER_ID(bfpt_header) != SFDP_BFPT_ID ||
1324 	    bfpt_header->major != SFDP_JESD216_MAJOR)
1325 		return -EINVAL;
1326 
1327 	sfdp_size = SFDP_PARAM_HEADER_PTP(bfpt_header) +
1328 		    SFDP_PARAM_HEADER_PARAM_LEN(bfpt_header);
1329 
1330 	/*
1331 	 * Allocate memory then read all parameter headers with a single
1332 	 * Read SFDP command. These parameter headers will actually be parsed
1333 	 * twice: a first time to get the latest revision of the basic flash
1334 	 * parameter table, then a second time to handle the supported optional
1335 	 * tables.
1336 	 * Hence we read the parameter headers once for all to reduce the
1337 	 * processing time. Also we use kmalloc() instead of devm_kmalloc()
1338 	 * because we don't need to keep these parameter headers: the allocated
1339 	 * memory is always released with kfree() before exiting this function.
1340 	 */
1341 	if (header.nph) {
1342 		psize = header.nph * sizeof(*param_headers);
1343 
1344 		param_headers = kmalloc(psize, GFP_KERNEL);
1345 		if (!param_headers)
1346 			return -ENOMEM;
1347 
1348 		err = spi_nor_read_sfdp(nor, sizeof(header),
1349 					psize, param_headers);
1350 		if (err < 0) {
1351 			dev_dbg(dev, "failed to read SFDP parameter headers\n");
1352 			goto exit;
1353 		}
1354 	}
1355 
1356 	/*
1357 	 * Cache the complete SFDP data. It is not (easily) possible to fetch
1358 	 * SFDP after probe time and we need it for the sysfs access.
1359 	 */
1360 	for (i = 0; i < header.nph; i++) {
1361 		param_header = &param_headers[i];
1362 		sfdp_size = max_t(size_t, sfdp_size,
1363 				  SFDP_PARAM_HEADER_PTP(param_header) +
1364 				  SFDP_PARAM_HEADER_PARAM_LEN(param_header));
1365 	}
1366 
1367 	/*
1368 	 * Limit the total size to a reasonable value to avoid allocating too
1369 	 * much memory just of because the flash returned some insane values.
1370 	 */
1371 	if (sfdp_size > PAGE_SIZE) {
1372 		dev_dbg(dev, "SFDP data (%zu) too big, truncating\n",
1373 			sfdp_size);
1374 		sfdp_size = PAGE_SIZE;
1375 	}
1376 
1377 	sfdp = devm_kzalloc(dev, sizeof(*sfdp), GFP_KERNEL);
1378 	if (!sfdp) {
1379 		err = -ENOMEM;
1380 		goto exit;
1381 	}
1382 
1383 	/*
1384 	 * The SFDP is organized in chunks of DWORDs. Thus, in theory, the
1385 	 * sfdp_size should be a multiple of DWORDs. But in case a flash
1386 	 * is not spec compliant, make sure that we have enough space to store
1387 	 * the complete SFDP data.
1388 	 */
1389 	sfdp->num_dwords = DIV_ROUND_UP(sfdp_size, sizeof(*sfdp->dwords));
1390 	sfdp->dwords = devm_kcalloc(dev, sfdp->num_dwords,
1391 				    sizeof(*sfdp->dwords), GFP_KERNEL);
1392 	if (!sfdp->dwords) {
1393 		err = -ENOMEM;
1394 		devm_kfree(dev, sfdp);
1395 		goto exit;
1396 	}
1397 
1398 	err = spi_nor_read_sfdp(nor, 0, sfdp_size, sfdp->dwords);
1399 	if (err < 0) {
1400 		dev_dbg(dev, "failed to read SFDP data\n");
1401 		devm_kfree(dev, sfdp->dwords);
1402 		devm_kfree(dev, sfdp);
1403 		goto exit;
1404 	}
1405 
1406 	nor->sfdp = sfdp;
1407 
1408 	/*
1409 	 * Check other parameter headers to get the latest revision of
1410 	 * the basic flash parameter table.
1411 	 */
1412 	for (i = 0; i < header.nph; i++) {
1413 		param_header = &param_headers[i];
1414 
1415 		if (SFDP_PARAM_HEADER_ID(param_header) == SFDP_BFPT_ID &&
1416 		    param_header->major == SFDP_JESD216_MAJOR &&
1417 		    (param_header->minor > bfpt_header->minor ||
1418 		     (param_header->minor == bfpt_header->minor &&
1419 		      param_header->length > bfpt_header->length)))
1420 			bfpt_header = param_header;
1421 	}
1422 
1423 	err = spi_nor_parse_bfpt(nor, bfpt_header);
1424 	if (err)
1425 		goto exit;
1426 
1427 	/* Parse optional parameter tables. */
1428 	for (i = 0; i < header.nph; i++) {
1429 		param_header = &param_headers[i];
1430 
1431 		switch (SFDP_PARAM_HEADER_ID(param_header)) {
1432 		case SFDP_SECTOR_MAP_ID:
1433 			err = spi_nor_parse_smpt(nor, param_header);
1434 			break;
1435 
1436 		case SFDP_4BAIT_ID:
1437 			err = spi_nor_parse_4bait(nor, param_header);
1438 			break;
1439 
1440 		case SFDP_PROFILE1_ID:
1441 			err = spi_nor_parse_profile1(nor, param_header);
1442 			break;
1443 
1444 		case SFDP_SCCR_MAP_ID:
1445 			err = spi_nor_parse_sccr(nor, param_header);
1446 			break;
1447 
1448 		default:
1449 			break;
1450 		}
1451 
1452 		if (err) {
1453 			dev_warn(dev, "Failed to parse optional parameter table: %04x\n",
1454 				 SFDP_PARAM_HEADER_ID(param_header));
1455 			/*
1456 			 * Let's not drop all information we extracted so far
1457 			 * if optional table parsers fail. In case of failing,
1458 			 * each optional parser is responsible to roll back to
1459 			 * the previously known spi_nor data.
1460 			 */
1461 			err = 0;
1462 		}
1463 	}
1464 
1465 	spi_nor_post_sfdp_fixups(nor);
1466 exit:
1467 	kfree(param_headers);
1468 	return err;
1469 }
1470