xref: /linux/drivers/mtd/mtdpart.c (revision 564eb714f5f09ac733c26860d5f0831f213fbdf1)
1 /*
2  * Simple MTD partitioning layer
3  *
4  * Copyright © 2000 Nicolas Pitre <nico@fluxnic.net>
5  * Copyright © 2002 Thomas Gleixner <gleixner@linutronix.de>
6  * Copyright © 2000-2010 David Woodhouse <dwmw2@infradead.org>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  * GNU General Public License for more details.
17  *
18  * You should have received a copy of the GNU General Public License
19  * along with this program; if not, write to the Free Software
20  * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
21  *
22  */
23 
24 #include <linux/module.h>
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/list.h>
29 #include <linux/kmod.h>
30 #include <linux/mtd/mtd.h>
31 #include <linux/mtd/partitions.h>
32 #include <linux/err.h>
33 
34 #include "mtdcore.h"
35 
36 /* Our partition linked list */
37 static LIST_HEAD(mtd_partitions);
38 static DEFINE_MUTEX(mtd_partitions_mutex);
39 
40 /* Our partition node structure */
41 struct mtd_part {
42 	struct mtd_info mtd;
43 	struct mtd_info *master;
44 	uint64_t offset;
45 	struct list_head list;
46 };
47 
48 /*
49  * Given a pointer to the MTD object in the mtd_part structure, we can retrieve
50  * the pointer to that structure with this macro.
51  */
52 #define PART(x)  ((struct mtd_part *)(x))
53 
54 
55 /*
56  * MTD methods which simply translate the effective address and pass through
57  * to the _real_ device.
58  */
59 
60 static int part_read(struct mtd_info *mtd, loff_t from, size_t len,
61 		size_t *retlen, u_char *buf)
62 {
63 	struct mtd_part *part = PART(mtd);
64 	struct mtd_ecc_stats stats;
65 	int res;
66 
67 	stats = part->master->ecc_stats;
68 	res = part->master->_read(part->master, from + part->offset, len,
69 				  retlen, buf);
70 	if (unlikely(mtd_is_eccerr(res)))
71 		mtd->ecc_stats.failed +=
72 			part->master->ecc_stats.failed - stats.failed;
73 	else
74 		mtd->ecc_stats.corrected +=
75 			part->master->ecc_stats.corrected - stats.corrected;
76 	return res;
77 }
78 
79 static int part_point(struct mtd_info *mtd, loff_t from, size_t len,
80 		size_t *retlen, void **virt, resource_size_t *phys)
81 {
82 	struct mtd_part *part = PART(mtd);
83 
84 	return part->master->_point(part->master, from + part->offset, len,
85 				    retlen, virt, phys);
86 }
87 
88 static int part_unpoint(struct mtd_info *mtd, loff_t from, size_t len)
89 {
90 	struct mtd_part *part = PART(mtd);
91 
92 	return part->master->_unpoint(part->master, from + part->offset, len);
93 }
94 
95 static unsigned long part_get_unmapped_area(struct mtd_info *mtd,
96 					    unsigned long len,
97 					    unsigned long offset,
98 					    unsigned long flags)
99 {
100 	struct mtd_part *part = PART(mtd);
101 
102 	offset += part->offset;
103 	return part->master->_get_unmapped_area(part->master, len, offset,
104 						flags);
105 }
106 
107 static int part_read_oob(struct mtd_info *mtd, loff_t from,
108 		struct mtd_oob_ops *ops)
109 {
110 	struct mtd_part *part = PART(mtd);
111 	int res;
112 
113 	if (from >= mtd->size)
114 		return -EINVAL;
115 	if (ops->datbuf && from + ops->len > mtd->size)
116 		return -EINVAL;
117 
118 	/*
119 	 * If OOB is also requested, make sure that we do not read past the end
120 	 * of this partition.
121 	 */
122 	if (ops->oobbuf) {
123 		size_t len, pages;
124 
125 		if (ops->mode == MTD_OPS_AUTO_OOB)
126 			len = mtd->oobavail;
127 		else
128 			len = mtd->oobsize;
129 		pages = mtd_div_by_ws(mtd->size, mtd);
130 		pages -= mtd_div_by_ws(from, mtd);
131 		if (ops->ooboffs + ops->ooblen > pages * len)
132 			return -EINVAL;
133 	}
134 
135 	res = part->master->_read_oob(part->master, from + part->offset, ops);
136 	if (unlikely(res)) {
137 		if (mtd_is_bitflip(res))
138 			mtd->ecc_stats.corrected++;
139 		if (mtd_is_eccerr(res))
140 			mtd->ecc_stats.failed++;
141 	}
142 	return res;
143 }
144 
145 static int part_read_user_prot_reg(struct mtd_info *mtd, loff_t from,
146 		size_t len, size_t *retlen, u_char *buf)
147 {
148 	struct mtd_part *part = PART(mtd);
149 	return part->master->_read_user_prot_reg(part->master, from, len,
150 						 retlen, buf);
151 }
152 
153 static int part_get_user_prot_info(struct mtd_info *mtd,
154 		struct otp_info *buf, size_t len)
155 {
156 	struct mtd_part *part = PART(mtd);
157 	return part->master->_get_user_prot_info(part->master, buf, len);
158 }
159 
160 static int part_read_fact_prot_reg(struct mtd_info *mtd, loff_t from,
161 		size_t len, size_t *retlen, u_char *buf)
162 {
163 	struct mtd_part *part = PART(mtd);
164 	return part->master->_read_fact_prot_reg(part->master, from, len,
165 						 retlen, buf);
166 }
167 
168 static int part_get_fact_prot_info(struct mtd_info *mtd, struct otp_info *buf,
169 		size_t len)
170 {
171 	struct mtd_part *part = PART(mtd);
172 	return part->master->_get_fact_prot_info(part->master, buf, len);
173 }
174 
175 static int part_write(struct mtd_info *mtd, loff_t to, size_t len,
176 		size_t *retlen, const u_char *buf)
177 {
178 	struct mtd_part *part = PART(mtd);
179 	return part->master->_write(part->master, to + part->offset, len,
180 				    retlen, buf);
181 }
182 
183 static int part_panic_write(struct mtd_info *mtd, loff_t to, size_t len,
184 		size_t *retlen, const u_char *buf)
185 {
186 	struct mtd_part *part = PART(mtd);
187 	return part->master->_panic_write(part->master, to + part->offset, len,
188 					  retlen, buf);
189 }
190 
191 static int part_write_oob(struct mtd_info *mtd, loff_t to,
192 		struct mtd_oob_ops *ops)
193 {
194 	struct mtd_part *part = PART(mtd);
195 
196 	if (to >= mtd->size)
197 		return -EINVAL;
198 	if (ops->datbuf && to + ops->len > mtd->size)
199 		return -EINVAL;
200 	return part->master->_write_oob(part->master, to + part->offset, ops);
201 }
202 
203 static int part_write_user_prot_reg(struct mtd_info *mtd, loff_t from,
204 		size_t len, size_t *retlen, u_char *buf)
205 {
206 	struct mtd_part *part = PART(mtd);
207 	return part->master->_write_user_prot_reg(part->master, from, len,
208 						  retlen, buf);
209 }
210 
211 static int part_lock_user_prot_reg(struct mtd_info *mtd, loff_t from,
212 		size_t len)
213 {
214 	struct mtd_part *part = PART(mtd);
215 	return part->master->_lock_user_prot_reg(part->master, from, len);
216 }
217 
218 static int part_writev(struct mtd_info *mtd, const struct kvec *vecs,
219 		unsigned long count, loff_t to, size_t *retlen)
220 {
221 	struct mtd_part *part = PART(mtd);
222 	return part->master->_writev(part->master, vecs, count,
223 				     to + part->offset, retlen);
224 }
225 
226 static int part_erase(struct mtd_info *mtd, struct erase_info *instr)
227 {
228 	struct mtd_part *part = PART(mtd);
229 	int ret;
230 
231 	instr->addr += part->offset;
232 	ret = part->master->_erase(part->master, instr);
233 	if (ret) {
234 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
235 			instr->fail_addr -= part->offset;
236 		instr->addr -= part->offset;
237 	}
238 	return ret;
239 }
240 
241 void mtd_erase_callback(struct erase_info *instr)
242 {
243 	if (instr->mtd->_erase == part_erase) {
244 		struct mtd_part *part = PART(instr->mtd);
245 
246 		if (instr->fail_addr != MTD_FAIL_ADDR_UNKNOWN)
247 			instr->fail_addr -= part->offset;
248 		instr->addr -= part->offset;
249 	}
250 	if (instr->callback)
251 		instr->callback(instr);
252 }
253 EXPORT_SYMBOL_GPL(mtd_erase_callback);
254 
255 static int part_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
256 {
257 	struct mtd_part *part = PART(mtd);
258 	return part->master->_lock(part->master, ofs + part->offset, len);
259 }
260 
261 static int part_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
262 {
263 	struct mtd_part *part = PART(mtd);
264 	return part->master->_unlock(part->master, ofs + part->offset, len);
265 }
266 
267 static int part_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len)
268 {
269 	struct mtd_part *part = PART(mtd);
270 	return part->master->_is_locked(part->master, ofs + part->offset, len);
271 }
272 
273 static void part_sync(struct mtd_info *mtd)
274 {
275 	struct mtd_part *part = PART(mtd);
276 	part->master->_sync(part->master);
277 }
278 
279 static int part_suspend(struct mtd_info *mtd)
280 {
281 	struct mtd_part *part = PART(mtd);
282 	return part->master->_suspend(part->master);
283 }
284 
285 static void part_resume(struct mtd_info *mtd)
286 {
287 	struct mtd_part *part = PART(mtd);
288 	part->master->_resume(part->master);
289 }
290 
291 static int part_block_isbad(struct mtd_info *mtd, loff_t ofs)
292 {
293 	struct mtd_part *part = PART(mtd);
294 	ofs += part->offset;
295 	return part->master->_block_isbad(part->master, ofs);
296 }
297 
298 static int part_block_markbad(struct mtd_info *mtd, loff_t ofs)
299 {
300 	struct mtd_part *part = PART(mtd);
301 	int res;
302 
303 	ofs += part->offset;
304 	res = part->master->_block_markbad(part->master, ofs);
305 	if (!res)
306 		mtd->ecc_stats.badblocks++;
307 	return res;
308 }
309 
310 static inline void free_partition(struct mtd_part *p)
311 {
312 	kfree(p->mtd.name);
313 	kfree(p);
314 }
315 
316 /*
317  * This function unregisters and destroy all slave MTD objects which are
318  * attached to the given master MTD object.
319  */
320 
321 int del_mtd_partitions(struct mtd_info *master)
322 {
323 	struct mtd_part *slave, *next;
324 	int ret, err = 0;
325 
326 	mutex_lock(&mtd_partitions_mutex);
327 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
328 		if (slave->master == master) {
329 			ret = del_mtd_device(&slave->mtd);
330 			if (ret < 0) {
331 				err = ret;
332 				continue;
333 			}
334 			list_del(&slave->list);
335 			free_partition(slave);
336 		}
337 	mutex_unlock(&mtd_partitions_mutex);
338 
339 	return err;
340 }
341 
342 static struct mtd_part *allocate_partition(struct mtd_info *master,
343 			const struct mtd_partition *part, int partno,
344 			uint64_t cur_offset)
345 {
346 	struct mtd_part *slave;
347 	char *name;
348 
349 	/* allocate the partition structure */
350 	slave = kzalloc(sizeof(*slave), GFP_KERNEL);
351 	name = kstrdup(part->name, GFP_KERNEL);
352 	if (!name || !slave) {
353 		printk(KERN_ERR"memory allocation error while creating partitions for \"%s\"\n",
354 		       master->name);
355 		kfree(name);
356 		kfree(slave);
357 		return ERR_PTR(-ENOMEM);
358 	}
359 
360 	/* set up the MTD object for this partition */
361 	slave->mtd.type = master->type;
362 	slave->mtd.flags = master->flags & ~part->mask_flags;
363 	slave->mtd.size = part->size;
364 	slave->mtd.writesize = master->writesize;
365 	slave->mtd.writebufsize = master->writebufsize;
366 	slave->mtd.oobsize = master->oobsize;
367 	slave->mtd.oobavail = master->oobavail;
368 	slave->mtd.subpage_sft = master->subpage_sft;
369 
370 	slave->mtd.name = name;
371 	slave->mtd.owner = master->owner;
372 	slave->mtd.backing_dev_info = master->backing_dev_info;
373 
374 	/* NOTE:  we don't arrange MTDs as a tree; it'd be error-prone
375 	 * to have the same data be in two different partitions.
376 	 */
377 	slave->mtd.dev.parent = master->dev.parent;
378 
379 	slave->mtd._read = part_read;
380 	slave->mtd._write = part_write;
381 
382 	if (master->_panic_write)
383 		slave->mtd._panic_write = part_panic_write;
384 
385 	if (master->_point && master->_unpoint) {
386 		slave->mtd._point = part_point;
387 		slave->mtd._unpoint = part_unpoint;
388 	}
389 
390 	if (master->_get_unmapped_area)
391 		slave->mtd._get_unmapped_area = part_get_unmapped_area;
392 	if (master->_read_oob)
393 		slave->mtd._read_oob = part_read_oob;
394 	if (master->_write_oob)
395 		slave->mtd._write_oob = part_write_oob;
396 	if (master->_read_user_prot_reg)
397 		slave->mtd._read_user_prot_reg = part_read_user_prot_reg;
398 	if (master->_read_fact_prot_reg)
399 		slave->mtd._read_fact_prot_reg = part_read_fact_prot_reg;
400 	if (master->_write_user_prot_reg)
401 		slave->mtd._write_user_prot_reg = part_write_user_prot_reg;
402 	if (master->_lock_user_prot_reg)
403 		slave->mtd._lock_user_prot_reg = part_lock_user_prot_reg;
404 	if (master->_get_user_prot_info)
405 		slave->mtd._get_user_prot_info = part_get_user_prot_info;
406 	if (master->_get_fact_prot_info)
407 		slave->mtd._get_fact_prot_info = part_get_fact_prot_info;
408 	if (master->_sync)
409 		slave->mtd._sync = part_sync;
410 	if (!partno && !master->dev.class && master->_suspend &&
411 	    master->_resume) {
412 			slave->mtd._suspend = part_suspend;
413 			slave->mtd._resume = part_resume;
414 	}
415 	if (master->_writev)
416 		slave->mtd._writev = part_writev;
417 	if (master->_lock)
418 		slave->mtd._lock = part_lock;
419 	if (master->_unlock)
420 		slave->mtd._unlock = part_unlock;
421 	if (master->_is_locked)
422 		slave->mtd._is_locked = part_is_locked;
423 	if (master->_block_isbad)
424 		slave->mtd._block_isbad = part_block_isbad;
425 	if (master->_block_markbad)
426 		slave->mtd._block_markbad = part_block_markbad;
427 	slave->mtd._erase = part_erase;
428 	slave->master = master;
429 	slave->offset = part->offset;
430 
431 	if (slave->offset == MTDPART_OFS_APPEND)
432 		slave->offset = cur_offset;
433 	if (slave->offset == MTDPART_OFS_NXTBLK) {
434 		slave->offset = cur_offset;
435 		if (mtd_mod_by_eb(cur_offset, master) != 0) {
436 			/* Round up to next erasesize */
437 			slave->offset = (mtd_div_by_eb(cur_offset, master) + 1) * master->erasesize;
438 			printk(KERN_NOTICE "Moving partition %d: "
439 			       "0x%012llx -> 0x%012llx\n", partno,
440 			       (unsigned long long)cur_offset, (unsigned long long)slave->offset);
441 		}
442 	}
443 	if (slave->offset == MTDPART_OFS_RETAIN) {
444 		slave->offset = cur_offset;
445 		if (master->size - slave->offset >= slave->mtd.size) {
446 			slave->mtd.size = master->size - slave->offset
447 							- slave->mtd.size;
448 		} else {
449 			printk(KERN_ERR "mtd partition \"%s\" doesn't have enough space: %#llx < %#llx, disabled\n",
450 				part->name, master->size - slave->offset,
451 				slave->mtd.size);
452 			/* register to preserve ordering */
453 			goto out_register;
454 		}
455 	}
456 	if (slave->mtd.size == MTDPART_SIZ_FULL)
457 		slave->mtd.size = master->size - slave->offset;
458 
459 	printk(KERN_NOTICE "0x%012llx-0x%012llx : \"%s\"\n", (unsigned long long)slave->offset,
460 		(unsigned long long)(slave->offset + slave->mtd.size), slave->mtd.name);
461 
462 	/* let's do some sanity checks */
463 	if (slave->offset >= master->size) {
464 		/* let's register it anyway to preserve ordering */
465 		slave->offset = 0;
466 		slave->mtd.size = 0;
467 		printk(KERN_ERR"mtd: partition \"%s\" is out of reach -- disabled\n",
468 			part->name);
469 		goto out_register;
470 	}
471 	if (slave->offset + slave->mtd.size > master->size) {
472 		slave->mtd.size = master->size - slave->offset;
473 		printk(KERN_WARNING"mtd: partition \"%s\" extends beyond the end of device \"%s\" -- size truncated to %#llx\n",
474 			part->name, master->name, (unsigned long long)slave->mtd.size);
475 	}
476 	if (master->numeraseregions > 1) {
477 		/* Deal with variable erase size stuff */
478 		int i, max = master->numeraseregions;
479 		u64 end = slave->offset + slave->mtd.size;
480 		struct mtd_erase_region_info *regions = master->eraseregions;
481 
482 		/* Find the first erase regions which is part of this
483 		 * partition. */
484 		for (i = 0; i < max && regions[i].offset <= slave->offset; i++)
485 			;
486 		/* The loop searched for the region _behind_ the first one */
487 		if (i > 0)
488 			i--;
489 
490 		/* Pick biggest erasesize */
491 		for (; i < max && regions[i].offset < end; i++) {
492 			if (slave->mtd.erasesize < regions[i].erasesize) {
493 				slave->mtd.erasesize = regions[i].erasesize;
494 			}
495 		}
496 		BUG_ON(slave->mtd.erasesize == 0);
497 	} else {
498 		/* Single erase size */
499 		slave->mtd.erasesize = master->erasesize;
500 	}
501 
502 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
503 	    mtd_mod_by_eb(slave->offset, &slave->mtd)) {
504 		/* Doesn't start on a boundary of major erase size */
505 		/* FIXME: Let it be writable if it is on a boundary of
506 		 * _minor_ erase size though */
507 		slave->mtd.flags &= ~MTD_WRITEABLE;
508 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't start on an erase block boundary -- force read-only\n",
509 			part->name);
510 	}
511 	if ((slave->mtd.flags & MTD_WRITEABLE) &&
512 	    mtd_mod_by_eb(slave->mtd.size, &slave->mtd)) {
513 		slave->mtd.flags &= ~MTD_WRITEABLE;
514 		printk(KERN_WARNING"mtd: partition \"%s\" doesn't end on an erase block -- force read-only\n",
515 			part->name);
516 	}
517 
518 	slave->mtd.ecclayout = master->ecclayout;
519 	slave->mtd.ecc_step_size = master->ecc_step_size;
520 	slave->mtd.ecc_strength = master->ecc_strength;
521 	slave->mtd.bitflip_threshold = master->bitflip_threshold;
522 
523 	if (master->_block_isbad) {
524 		uint64_t offs = 0;
525 
526 		while (offs < slave->mtd.size) {
527 			if (mtd_block_isbad(master, offs + slave->offset))
528 				slave->mtd.ecc_stats.badblocks++;
529 			offs += slave->mtd.erasesize;
530 		}
531 	}
532 
533 out_register:
534 	return slave;
535 }
536 
537 int mtd_add_partition(struct mtd_info *master, char *name,
538 		      long long offset, long long length)
539 {
540 	struct mtd_partition part;
541 	struct mtd_part *p, *new;
542 	uint64_t start, end;
543 	int ret = 0;
544 
545 	/* the direct offset is expected */
546 	if (offset == MTDPART_OFS_APPEND ||
547 	    offset == MTDPART_OFS_NXTBLK)
548 		return -EINVAL;
549 
550 	if (length == MTDPART_SIZ_FULL)
551 		length = master->size - offset;
552 
553 	if (length <= 0)
554 		return -EINVAL;
555 
556 	part.name = name;
557 	part.size = length;
558 	part.offset = offset;
559 	part.mask_flags = 0;
560 	part.ecclayout = NULL;
561 
562 	new = allocate_partition(master, &part, -1, offset);
563 	if (IS_ERR(new))
564 		return PTR_ERR(new);
565 
566 	start = offset;
567 	end = offset + length;
568 
569 	mutex_lock(&mtd_partitions_mutex);
570 	list_for_each_entry(p, &mtd_partitions, list)
571 		if (p->master == master) {
572 			if ((start >= p->offset) &&
573 			    (start < (p->offset + p->mtd.size)))
574 				goto err_inv;
575 
576 			if ((end >= p->offset) &&
577 			    (end < (p->offset + p->mtd.size)))
578 				goto err_inv;
579 		}
580 
581 	list_add(&new->list, &mtd_partitions);
582 	mutex_unlock(&mtd_partitions_mutex);
583 
584 	add_mtd_device(&new->mtd);
585 
586 	return ret;
587 err_inv:
588 	mutex_unlock(&mtd_partitions_mutex);
589 	free_partition(new);
590 	return -EINVAL;
591 }
592 EXPORT_SYMBOL_GPL(mtd_add_partition);
593 
594 int mtd_del_partition(struct mtd_info *master, int partno)
595 {
596 	struct mtd_part *slave, *next;
597 	int ret = -EINVAL;
598 
599 	mutex_lock(&mtd_partitions_mutex);
600 	list_for_each_entry_safe(slave, next, &mtd_partitions, list)
601 		if ((slave->master == master) &&
602 		    (slave->mtd.index == partno)) {
603 			ret = del_mtd_device(&slave->mtd);
604 			if (ret < 0)
605 				break;
606 
607 			list_del(&slave->list);
608 			free_partition(slave);
609 			break;
610 		}
611 	mutex_unlock(&mtd_partitions_mutex);
612 
613 	return ret;
614 }
615 EXPORT_SYMBOL_GPL(mtd_del_partition);
616 
617 /*
618  * This function, given a master MTD object and a partition table, creates
619  * and registers slave MTD objects which are bound to the master according to
620  * the partition definitions.
621  *
622  * We don't register the master, or expect the caller to have done so,
623  * for reasons of data integrity.
624  */
625 
626 int add_mtd_partitions(struct mtd_info *master,
627 		       const struct mtd_partition *parts,
628 		       int nbparts)
629 {
630 	struct mtd_part *slave;
631 	uint64_t cur_offset = 0;
632 	int i;
633 
634 	printk(KERN_NOTICE "Creating %d MTD partitions on \"%s\":\n", nbparts, master->name);
635 
636 	for (i = 0; i < nbparts; i++) {
637 		slave = allocate_partition(master, parts + i, i, cur_offset);
638 		if (IS_ERR(slave))
639 			return PTR_ERR(slave);
640 
641 		mutex_lock(&mtd_partitions_mutex);
642 		list_add(&slave->list, &mtd_partitions);
643 		mutex_unlock(&mtd_partitions_mutex);
644 
645 		add_mtd_device(&slave->mtd);
646 
647 		cur_offset = slave->offset + slave->mtd.size;
648 	}
649 
650 	return 0;
651 }
652 
653 static DEFINE_SPINLOCK(part_parser_lock);
654 static LIST_HEAD(part_parsers);
655 
656 static struct mtd_part_parser *get_partition_parser(const char *name)
657 {
658 	struct mtd_part_parser *p, *ret = NULL;
659 
660 	spin_lock(&part_parser_lock);
661 
662 	list_for_each_entry(p, &part_parsers, list)
663 		if (!strcmp(p->name, name) && try_module_get(p->owner)) {
664 			ret = p;
665 			break;
666 		}
667 
668 	spin_unlock(&part_parser_lock);
669 
670 	return ret;
671 }
672 
673 #define put_partition_parser(p) do { module_put((p)->owner); } while (0)
674 
675 int register_mtd_parser(struct mtd_part_parser *p)
676 {
677 	spin_lock(&part_parser_lock);
678 	list_add(&p->list, &part_parsers);
679 	spin_unlock(&part_parser_lock);
680 
681 	return 0;
682 }
683 EXPORT_SYMBOL_GPL(register_mtd_parser);
684 
685 int deregister_mtd_parser(struct mtd_part_parser *p)
686 {
687 	spin_lock(&part_parser_lock);
688 	list_del(&p->list);
689 	spin_unlock(&part_parser_lock);
690 	return 0;
691 }
692 EXPORT_SYMBOL_GPL(deregister_mtd_parser);
693 
694 /*
695  * Do not forget to update 'parse_mtd_partitions()' kerneldoc comment if you
696  * are changing this array!
697  */
698 static const char * const default_mtd_part_types[] = {
699 	"cmdlinepart",
700 	"ofpart",
701 	NULL
702 };
703 
704 /**
705  * parse_mtd_partitions - parse MTD partitions
706  * @master: the master partition (describes whole MTD device)
707  * @types: names of partition parsers to try or %NULL
708  * @pparts: array of partitions found is returned here
709  * @data: MTD partition parser-specific data
710  *
711  * This function tries to find partition on MTD device @master. It uses MTD
712  * partition parsers, specified in @types. However, if @types is %NULL, then
713  * the default list of parsers is used. The default list contains only the
714  * "cmdlinepart" and "ofpart" parsers ATM.
715  * Note: If there are more then one parser in @types, the kernel only takes the
716  * partitions parsed out by the first parser.
717  *
718  * This function may return:
719  * o a negative error code in case of failure
720  * o zero if no partitions were found
721  * o a positive number of found partitions, in which case on exit @pparts will
722  *   point to an array containing this number of &struct mtd_info objects.
723  */
724 int parse_mtd_partitions(struct mtd_info *master, const char *const *types,
725 			 struct mtd_partition **pparts,
726 			 struct mtd_part_parser_data *data)
727 {
728 	struct mtd_part_parser *parser;
729 	int ret = 0;
730 
731 	if (!types)
732 		types = default_mtd_part_types;
733 
734 	for ( ; ret <= 0 && *types; types++) {
735 		parser = get_partition_parser(*types);
736 		if (!parser && !request_module("%s", *types))
737 			parser = get_partition_parser(*types);
738 		if (!parser)
739 			continue;
740 		ret = (*parser->parse_fn)(master, pparts, data);
741 		put_partition_parser(parser);
742 		if (ret > 0) {
743 			printk(KERN_NOTICE "%d %s partitions found on MTD device %s\n",
744 			       ret, parser->name, master->name);
745 			break;
746 		}
747 	}
748 	return ret;
749 }
750 
751 int mtd_is_partition(const struct mtd_info *mtd)
752 {
753 	struct mtd_part *part;
754 	int ispart = 0;
755 
756 	mutex_lock(&mtd_partitions_mutex);
757 	list_for_each_entry(part, &mtd_partitions, list)
758 		if (&part->mtd == mtd) {
759 			ispart = 1;
760 			break;
761 		}
762 	mutex_unlock(&mtd_partitions_mutex);
763 
764 	return ispart;
765 }
766 EXPORT_SYMBOL_GPL(mtd_is_partition);
767 
768 /* Returns the size of the entire flash chip */
769 uint64_t mtd_get_device_size(const struct mtd_info *mtd)
770 {
771 	if (!mtd_is_partition(mtd))
772 		return mtd->size;
773 
774 	return PART(mtd)->master->size;
775 }
776 EXPORT_SYMBOL_GPL(mtd_get_device_size);
777