xref: /linux/drivers/mtd/chips/cfi_cmdset_0002.c (revision 14b9f27886ce69c5f11445d107dd020f6fc5754b)
1 /*
2  * Common Flash Interface support:
3  *   AMD & Fujitsu Standard Vendor Command Set (ID 0x0002)
4  *
5  * Copyright (C) 2000 Crossnet Co. <info@crossnet.co.jp>
6  * Copyright (C) 2004 Arcom Control Systems Ltd <linux@arcom.com>
7  * Copyright (C) 2005 MontaVista Software Inc. <source@mvista.com>
8  *
9  * 2_by_8 routines added by Simon Munton
10  *
11  * 4_by_16 work by Carolyn J. Smith
12  *
13  * XIP support hooks by Vitaly Wool (based on code for Intel flash
14  * by Nicolas Pitre)
15  *
16  * 25/09/2008 Christopher Moore: TopBottom fixup for many Macronix with CFI V1.0
17  *
18  * Occasionally maintained by Thayne Harbaugh tharbaugh at lnxi dot com
19  *
20  * This code is GPL
21  */
22 
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/kernel.h>
26 #include <linux/sched.h>
27 #include <linux/init.h>
28 #include <asm/io.h>
29 #include <asm/byteorder.h>
30 
31 #include <linux/errno.h>
32 #include <linux/slab.h>
33 #include <linux/delay.h>
34 #include <linux/interrupt.h>
35 #include <linux/reboot.h>
36 #include <linux/mtd/map.h>
37 #include <linux/mtd/mtd.h>
38 #include <linux/mtd/cfi.h>
39 #include <linux/mtd/xip.h>
40 
41 #define AMD_BOOTLOC_BUG
42 #define FORCE_WORD_WRITE 0
43 
44 #define MAX_WORD_RETRIES 3
45 
46 #define SST49LF004B	        0x0060
47 #define SST49LF040B	        0x0050
48 #define SST49LF008A		0x005a
49 #define AT49BV6416		0x00d6
50 
51 static int cfi_amdstd_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
52 static int cfi_amdstd_write_words(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
53 static int cfi_amdstd_write_buffers(struct mtd_info *, loff_t, size_t, size_t *, const u_char *);
54 static int cfi_amdstd_erase_chip(struct mtd_info *, struct erase_info *);
55 static int cfi_amdstd_erase_varsize(struct mtd_info *, struct erase_info *);
56 static void cfi_amdstd_sync (struct mtd_info *);
57 static int cfi_amdstd_suspend (struct mtd_info *);
58 static void cfi_amdstd_resume (struct mtd_info *);
59 static int cfi_amdstd_reboot(struct notifier_block *, unsigned long, void *);
60 static int cfi_amdstd_secsi_read (struct mtd_info *, loff_t, size_t, size_t *, u_char *);
61 
62 static void cfi_amdstd_destroy(struct mtd_info *);
63 
64 struct mtd_info *cfi_cmdset_0002(struct map_info *, int);
65 static struct mtd_info *cfi_amdstd_setup (struct mtd_info *);
66 
67 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode);
68 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr);
69 #include "fwh_lock.h"
70 
71 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
72 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
73 
74 static struct mtd_chip_driver cfi_amdstd_chipdrv = {
75 	.probe		= NULL, /* Not usable directly */
76 	.destroy	= cfi_amdstd_destroy,
77 	.name		= "cfi_cmdset_0002",
78 	.module		= THIS_MODULE
79 };
80 
81 
82 /* #define DEBUG_CFI_FEATURES */
83 
84 
85 #ifdef DEBUG_CFI_FEATURES
86 static void cfi_tell_features(struct cfi_pri_amdstd *extp)
87 {
88 	const char* erase_suspend[3] = {
89 		"Not supported", "Read only", "Read/write"
90 	};
91 	const char* top_bottom[6] = {
92 		"No WP", "8x8KiB sectors at top & bottom, no WP",
93 		"Bottom boot", "Top boot",
94 		"Uniform, Bottom WP", "Uniform, Top WP"
95 	};
96 
97 	printk("  Silicon revision: %d\n", extp->SiliconRevision >> 1);
98 	printk("  Address sensitive unlock: %s\n",
99 	       (extp->SiliconRevision & 1) ? "Not required" : "Required");
100 
101 	if (extp->EraseSuspend < ARRAY_SIZE(erase_suspend))
102 		printk("  Erase Suspend: %s\n", erase_suspend[extp->EraseSuspend]);
103 	else
104 		printk("  Erase Suspend: Unknown value %d\n", extp->EraseSuspend);
105 
106 	if (extp->BlkProt == 0)
107 		printk("  Block protection: Not supported\n");
108 	else
109 		printk("  Block protection: %d sectors per group\n", extp->BlkProt);
110 
111 
112 	printk("  Temporary block unprotect: %s\n",
113 	       extp->TmpBlkUnprotect ? "Supported" : "Not supported");
114 	printk("  Block protect/unprotect scheme: %d\n", extp->BlkProtUnprot);
115 	printk("  Number of simultaneous operations: %d\n", extp->SimultaneousOps);
116 	printk("  Burst mode: %s\n",
117 	       extp->BurstMode ? "Supported" : "Not supported");
118 	if (extp->PageMode == 0)
119 		printk("  Page mode: Not supported\n");
120 	else
121 		printk("  Page mode: %d word page\n", extp->PageMode << 2);
122 
123 	printk("  Vpp Supply Minimum Program/Erase Voltage: %d.%d V\n",
124 	       extp->VppMin >> 4, extp->VppMin & 0xf);
125 	printk("  Vpp Supply Maximum Program/Erase Voltage: %d.%d V\n",
126 	       extp->VppMax >> 4, extp->VppMax & 0xf);
127 
128 	if (extp->TopBottom < ARRAY_SIZE(top_bottom))
129 		printk("  Top/Bottom Boot Block: %s\n", top_bottom[extp->TopBottom]);
130 	else
131 		printk("  Top/Bottom Boot Block: Unknown value %d\n", extp->TopBottom);
132 }
133 #endif
134 
135 #ifdef AMD_BOOTLOC_BUG
136 /* Wheee. Bring me the head of someone at AMD. */
137 static void fixup_amd_bootblock(struct mtd_info *mtd)
138 {
139 	struct map_info *map = mtd->priv;
140 	struct cfi_private *cfi = map->fldrv_priv;
141 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
142 	__u8 major = extp->MajorVersion;
143 	__u8 minor = extp->MinorVersion;
144 
145 	if (((major << 8) | minor) < 0x3131) {
146 		/* CFI version 1.0 => don't trust bootloc */
147 
148 		DEBUG(MTD_DEBUG_LEVEL1,
149 			"%s: JEDEC Vendor ID is 0x%02X Device ID is 0x%02X\n",
150 			map->name, cfi->mfr, cfi->id);
151 
152 		/* AFAICS all 29LV400 with a bottom boot block have a device ID
153 		 * of 0x22BA in 16-bit mode and 0xBA in 8-bit mode.
154 		 * These were badly detected as they have the 0x80 bit set
155 		 * so treat them as a special case.
156 		 */
157 		if (((cfi->id == 0xBA) || (cfi->id == 0x22BA)) &&
158 
159 			/* Macronix added CFI to their 2nd generation
160 			 * MX29LV400C B/T but AFAICS no other 29LV400 (AMD,
161 			 * Fujitsu, Spansion, EON, ESI and older Macronix)
162 			 * has CFI.
163 			 *
164 			 * Therefore also check the manufacturer.
165 			 * This reduces the risk of false detection due to
166 			 * the 8-bit device ID.
167 			 */
168 			(cfi->mfr == CFI_MFR_MACRONIX)) {
169 			DEBUG(MTD_DEBUG_LEVEL1,
170 				"%s: Macronix MX29LV400C with bottom boot block"
171 				" detected\n", map->name);
172 			extp->TopBottom = 2;	/* bottom boot */
173 		} else
174 		if (cfi->id & 0x80) {
175 			printk(KERN_WARNING "%s: JEDEC Device ID is 0x%02X. Assuming broken CFI table.\n", map->name, cfi->id);
176 			extp->TopBottom = 3;	/* top boot */
177 		} else {
178 			extp->TopBottom = 2;	/* bottom boot */
179 		}
180 
181 		DEBUG(MTD_DEBUG_LEVEL1,
182 			"%s: AMD CFI PRI V%c.%c has no boot block field;"
183 			" deduced %s from Device ID\n", map->name, major, minor,
184 			extp->TopBottom == 2 ? "bottom" : "top");
185 	}
186 }
187 #endif
188 
189 static void fixup_use_write_buffers(struct mtd_info *mtd)
190 {
191 	struct map_info *map = mtd->priv;
192 	struct cfi_private *cfi = map->fldrv_priv;
193 	if (cfi->cfiq->BufWriteTimeoutTyp) {
194 		DEBUG(MTD_DEBUG_LEVEL1, "Using buffer write method\n" );
195 		mtd->write = cfi_amdstd_write_buffers;
196 	}
197 }
198 
199 /* Atmel chips don't use the same PRI format as AMD chips */
200 static void fixup_convert_atmel_pri(struct mtd_info *mtd)
201 {
202 	struct map_info *map = mtd->priv;
203 	struct cfi_private *cfi = map->fldrv_priv;
204 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
205 	struct cfi_pri_atmel atmel_pri;
206 
207 	memcpy(&atmel_pri, extp, sizeof(atmel_pri));
208 	memset((char *)extp + 5, 0, sizeof(*extp) - 5);
209 
210 	if (atmel_pri.Features & 0x02)
211 		extp->EraseSuspend = 2;
212 
213 	/* Some chips got it backwards... */
214 	if (cfi->id == AT49BV6416) {
215 		if (atmel_pri.BottomBoot)
216 			extp->TopBottom = 3;
217 		else
218 			extp->TopBottom = 2;
219 	} else {
220 		if (atmel_pri.BottomBoot)
221 			extp->TopBottom = 2;
222 		else
223 			extp->TopBottom = 3;
224 	}
225 
226 	/* burst write mode not supported */
227 	cfi->cfiq->BufWriteTimeoutTyp = 0;
228 	cfi->cfiq->BufWriteTimeoutMax = 0;
229 }
230 
231 static void fixup_use_secsi(struct mtd_info *mtd)
232 {
233 	/* Setup for chips with a secsi area */
234 	mtd->read_user_prot_reg = cfi_amdstd_secsi_read;
235 	mtd->read_fact_prot_reg = cfi_amdstd_secsi_read;
236 }
237 
238 static void fixup_use_erase_chip(struct mtd_info *mtd)
239 {
240 	struct map_info *map = mtd->priv;
241 	struct cfi_private *cfi = map->fldrv_priv;
242 	if ((cfi->cfiq->NumEraseRegions == 1) &&
243 		((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0)) {
244 		mtd->erase = cfi_amdstd_erase_chip;
245 	}
246 
247 }
248 
249 /*
250  * Some Atmel chips (e.g. the AT49BV6416) power-up with all sectors
251  * locked by default.
252  */
253 static void fixup_use_atmel_lock(struct mtd_info *mtd)
254 {
255 	mtd->lock = cfi_atmel_lock;
256 	mtd->unlock = cfi_atmel_unlock;
257 	mtd->flags |= MTD_POWERUP_LOCK;
258 }
259 
260 static void fixup_old_sst_eraseregion(struct mtd_info *mtd)
261 {
262 	struct map_info *map = mtd->priv;
263 	struct cfi_private *cfi = map->fldrv_priv;
264 
265 	/*
266 	 * These flashes report two separate eraseblock regions based on the
267 	 * sector_erase-size and block_erase-size, although they both operate on the
268 	 * same memory. This is not allowed according to CFI, so we just pick the
269 	 * sector_erase-size.
270 	 */
271 	cfi->cfiq->NumEraseRegions = 1;
272 }
273 
274 static void fixup_sst39vf(struct mtd_info *mtd)
275 {
276 	struct map_info *map = mtd->priv;
277 	struct cfi_private *cfi = map->fldrv_priv;
278 
279 	fixup_old_sst_eraseregion(mtd);
280 
281 	cfi->addr_unlock1 = 0x5555;
282 	cfi->addr_unlock2 = 0x2AAA;
283 }
284 
285 static void fixup_sst39vf_rev_b(struct mtd_info *mtd)
286 {
287 	struct map_info *map = mtd->priv;
288 	struct cfi_private *cfi = map->fldrv_priv;
289 
290 	fixup_old_sst_eraseregion(mtd);
291 
292 	cfi->addr_unlock1 = 0x555;
293 	cfi->addr_unlock2 = 0x2AA;
294 
295 	cfi->sector_erase_cmd = CMD(0x50);
296 }
297 
298 static void fixup_sst38vf640x_sectorsize(struct mtd_info *mtd)
299 {
300 	struct map_info *map = mtd->priv;
301 	struct cfi_private *cfi = map->fldrv_priv;
302 
303 	fixup_sst39vf_rev_b(mtd);
304 
305 	/*
306 	 * CFI reports 1024 sectors (0x03ff+1) of 64KBytes (0x0100*256) where
307 	 * it should report a size of 8KBytes (0x0020*256).
308 	 */
309 	cfi->cfiq->EraseRegionInfo[0] = 0x002003ff;
310 	pr_warning("%s: Bad 38VF640x CFI data; adjusting sector size from 64 to 8KiB\n", mtd->name);
311 }
312 
313 static void fixup_s29gl064n_sectors(struct mtd_info *mtd)
314 {
315 	struct map_info *map = mtd->priv;
316 	struct cfi_private *cfi = map->fldrv_priv;
317 
318 	if ((cfi->cfiq->EraseRegionInfo[0] & 0xffff) == 0x003f) {
319 		cfi->cfiq->EraseRegionInfo[0] |= 0x0040;
320 		pr_warning("%s: Bad S29GL064N CFI data, adjust from 64 to 128 sectors\n", mtd->name);
321 	}
322 }
323 
324 static void fixup_s29gl032n_sectors(struct mtd_info *mtd)
325 {
326 	struct map_info *map = mtd->priv;
327 	struct cfi_private *cfi = map->fldrv_priv;
328 
329 	if ((cfi->cfiq->EraseRegionInfo[1] & 0xffff) == 0x007e) {
330 		cfi->cfiq->EraseRegionInfo[1] &= ~0x0040;
331 		pr_warning("%s: Bad S29GL032N CFI data, adjust from 127 to 63 sectors\n", mtd->name);
332 	}
333 }
334 
335 /* Used to fix CFI-Tables of chips without Extended Query Tables */
336 static struct cfi_fixup cfi_nopri_fixup_table[] = {
337 	{ CFI_MFR_SST, 0x234a, fixup_sst39vf }, /* SST39VF1602 */
338 	{ CFI_MFR_SST, 0x234b, fixup_sst39vf }, /* SST39VF1601 */
339 	{ CFI_MFR_SST, 0x235a, fixup_sst39vf }, /* SST39VF3202 */
340 	{ CFI_MFR_SST, 0x235b, fixup_sst39vf }, /* SST39VF3201 */
341 	{ CFI_MFR_SST, 0x235c, fixup_sst39vf_rev_b }, /* SST39VF3202B */
342 	{ CFI_MFR_SST, 0x235d, fixup_sst39vf_rev_b }, /* SST39VF3201B */
343 	{ CFI_MFR_SST, 0x236c, fixup_sst39vf_rev_b }, /* SST39VF6402B */
344 	{ CFI_MFR_SST, 0x236d, fixup_sst39vf_rev_b }, /* SST39VF6401B */
345 	{ 0, 0, NULL }
346 };
347 
348 static struct cfi_fixup cfi_fixup_table[] = {
349 	{ CFI_MFR_ATMEL, CFI_ID_ANY, fixup_convert_atmel_pri },
350 #ifdef AMD_BOOTLOC_BUG
351 	{ CFI_MFR_AMD, CFI_ID_ANY, fixup_amd_bootblock },
352 	{ CFI_MFR_AMIC, CFI_ID_ANY, fixup_amd_bootblock },
353 	{ CFI_MFR_MACRONIX, CFI_ID_ANY, fixup_amd_bootblock },
354 #endif
355 	{ CFI_MFR_AMD, 0x0050, fixup_use_secsi },
356 	{ CFI_MFR_AMD, 0x0053, fixup_use_secsi },
357 	{ CFI_MFR_AMD, 0x0055, fixup_use_secsi },
358 	{ CFI_MFR_AMD, 0x0056, fixup_use_secsi },
359 	{ CFI_MFR_AMD, 0x005C, fixup_use_secsi },
360 	{ CFI_MFR_AMD, 0x005F, fixup_use_secsi },
361 	{ CFI_MFR_AMD, 0x0c01, fixup_s29gl064n_sectors },
362 	{ CFI_MFR_AMD, 0x1301, fixup_s29gl064n_sectors },
363 	{ CFI_MFR_AMD, 0x1a00, fixup_s29gl032n_sectors },
364 	{ CFI_MFR_AMD, 0x1a01, fixup_s29gl032n_sectors },
365 	{ CFI_MFR_SST, 0x536a, fixup_sst38vf640x_sectorsize }, /* SST38VF6402 */
366 	{ CFI_MFR_SST, 0x536b, fixup_sst38vf640x_sectorsize }, /* SST38VF6401 */
367 	{ CFI_MFR_SST, 0x536c, fixup_sst38vf640x_sectorsize }, /* SST38VF6404 */
368 	{ CFI_MFR_SST, 0x536d, fixup_sst38vf640x_sectorsize }, /* SST38VF6403 */
369 #if !FORCE_WORD_WRITE
370 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_write_buffers },
371 #endif
372 	{ 0, 0, NULL }
373 };
374 static struct cfi_fixup jedec_fixup_table[] = {
375 	{ CFI_MFR_SST, SST49LF004B, fixup_use_fwh_lock },
376 	{ CFI_MFR_SST, SST49LF040B, fixup_use_fwh_lock },
377 	{ CFI_MFR_SST, SST49LF008A, fixup_use_fwh_lock },
378 	{ 0, 0, NULL }
379 };
380 
381 static struct cfi_fixup fixup_table[] = {
382 	/* The CFI vendor ids and the JEDEC vendor IDs appear
383 	 * to be common.  It is like the devices id's are as
384 	 * well.  This table is to pick all cases where
385 	 * we know that is the case.
386 	 */
387 	{ CFI_MFR_ANY, CFI_ID_ANY, fixup_use_erase_chip },
388 	{ CFI_MFR_ATMEL, AT49BV6416, fixup_use_atmel_lock },
389 	{ 0, 0, NULL }
390 };
391 
392 
393 static void cfi_fixup_major_minor(struct cfi_private *cfi,
394 				  struct cfi_pri_amdstd *extp)
395 {
396 	if (cfi->mfr == CFI_MFR_SAMSUNG) {
397 		if ((extp->MajorVersion == '0' && extp->MinorVersion == '0') ||
398 		    (extp->MajorVersion == '3' && extp->MinorVersion == '3')) {
399 			/*
400 			 * Samsung K8P2815UQB and K8D6x16UxM chips
401 			 * report major=0 / minor=0.
402 			 * K8D3x16UxC chips report major=3 / minor=3.
403 			 */
404 			printk(KERN_NOTICE "  Fixing Samsung's Amd/Fujitsu"
405 			       " Extended Query version to 1.%c\n",
406 			       extp->MinorVersion);
407 			extp->MajorVersion = '1';
408 		}
409 	}
410 
411 	/*
412 	 * SST 38VF640x chips report major=0xFF / minor=0xFF.
413 	 */
414 	if (cfi->mfr == CFI_MFR_SST && (cfi->id >> 4) == 0x0536) {
415 		extp->MajorVersion = '1';
416 		extp->MinorVersion = '0';
417 	}
418 }
419 
420 struct mtd_info *cfi_cmdset_0002(struct map_info *map, int primary)
421 {
422 	struct cfi_private *cfi = map->fldrv_priv;
423 	struct mtd_info *mtd;
424 	int i;
425 
426 	mtd = kzalloc(sizeof(*mtd), GFP_KERNEL);
427 	if (!mtd) {
428 		printk(KERN_WARNING "Failed to allocate memory for MTD device\n");
429 		return NULL;
430 	}
431 	mtd->priv = map;
432 	mtd->type = MTD_NORFLASH;
433 
434 	/* Fill in the default mtd operations */
435 	mtd->erase   = cfi_amdstd_erase_varsize;
436 	mtd->write   = cfi_amdstd_write_words;
437 	mtd->read    = cfi_amdstd_read;
438 	mtd->sync    = cfi_amdstd_sync;
439 	mtd->suspend = cfi_amdstd_suspend;
440 	mtd->resume  = cfi_amdstd_resume;
441 	mtd->flags   = MTD_CAP_NORFLASH;
442 	mtd->name    = map->name;
443 	mtd->writesize = 1;
444 	mtd->writebufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
445 
446 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): write buffer size %d\n",
447 		__func__, mtd->writebufsize);
448 
449 	mtd->reboot_notifier.notifier_call = cfi_amdstd_reboot;
450 
451 	if (cfi->cfi_mode==CFI_MODE_CFI){
452 		unsigned char bootloc;
453 		__u16 adr = primary?cfi->cfiq->P_ADR:cfi->cfiq->A_ADR;
454 		struct cfi_pri_amdstd *extp;
455 
456 		extp = (struct cfi_pri_amdstd*)cfi_read_pri(map, adr, sizeof(*extp), "Amd/Fujitsu");
457 		if (extp) {
458 			/*
459 			 * It's a real CFI chip, not one for which the probe
460 			 * routine faked a CFI structure.
461 			 */
462 			cfi_fixup_major_minor(cfi, extp);
463 
464 			/*
465 			 * Valid primary extension versions are: 1.0, 1.1, 1.2, 1.3, 1.4, 1.5
466 			 * see: http://cs.ozerki.net/zap/pub/axim-x5/docs/cfi_r20.pdf, page 19
467 			 *      http://www.spansion.com/Support/AppNotes/cfi_100_20011201.pdf
468 			 *      http://www.spansion.com/Support/Datasheets/s29ws-p_00_a12_e.pdf
469 			 *      http://www.spansion.com/Support/Datasheets/S29GL_128S_01GS_00_02_e.pdf
470 			 */
471 			if (extp->MajorVersion != '1' ||
472 			    (extp->MajorVersion == '1' && (extp->MinorVersion < '0' || extp->MinorVersion > '5'))) {
473 				printk(KERN_ERR "  Unknown Amd/Fujitsu Extended Query "
474 				       "version %c.%c (%#02x/%#02x).\n",
475 				       extp->MajorVersion, extp->MinorVersion,
476 				       extp->MajorVersion, extp->MinorVersion);
477 				kfree(extp);
478 				kfree(mtd);
479 				return NULL;
480 			}
481 
482 			printk(KERN_INFO "  Amd/Fujitsu Extended Query version %c.%c.\n",
483 			       extp->MajorVersion, extp->MinorVersion);
484 
485 			/* Install our own private info structure */
486 			cfi->cmdset_priv = extp;
487 
488 			/* Apply cfi device specific fixups */
489 			cfi_fixup(mtd, cfi_fixup_table);
490 
491 #ifdef DEBUG_CFI_FEATURES
492 			/* Tell the user about it in lots of lovely detail */
493 			cfi_tell_features(extp);
494 #endif
495 
496 			bootloc = extp->TopBottom;
497 			if ((bootloc < 2) || (bootloc > 5)) {
498 				printk(KERN_WARNING "%s: CFI contains unrecognised boot "
499 				       "bank location (%d). Assuming bottom.\n",
500 				       map->name, bootloc);
501 				bootloc = 2;
502 			}
503 
504 			if (bootloc == 3 && cfi->cfiq->NumEraseRegions > 1) {
505 				printk(KERN_WARNING "%s: Swapping erase regions for top-boot CFI table.\n", map->name);
506 
507 				for (i=0; i<cfi->cfiq->NumEraseRegions / 2; i++) {
508 					int j = (cfi->cfiq->NumEraseRegions-1)-i;
509 					__u32 swap;
510 
511 					swap = cfi->cfiq->EraseRegionInfo[i];
512 					cfi->cfiq->EraseRegionInfo[i] = cfi->cfiq->EraseRegionInfo[j];
513 					cfi->cfiq->EraseRegionInfo[j] = swap;
514 				}
515 			}
516 			/* Set the default CFI lock/unlock addresses */
517 			cfi->addr_unlock1 = 0x555;
518 			cfi->addr_unlock2 = 0x2aa;
519 		}
520 		cfi_fixup(mtd, cfi_nopri_fixup_table);
521 
522 		if (!cfi->addr_unlock1 || !cfi->addr_unlock2) {
523 			kfree(mtd);
524 			return NULL;
525 		}
526 
527 	} /* CFI mode */
528 	else if (cfi->cfi_mode == CFI_MODE_JEDEC) {
529 		/* Apply jedec specific fixups */
530 		cfi_fixup(mtd, jedec_fixup_table);
531 	}
532 	/* Apply generic fixups */
533 	cfi_fixup(mtd, fixup_table);
534 
535 	for (i=0; i< cfi->numchips; i++) {
536 		cfi->chips[i].word_write_time = 1<<cfi->cfiq->WordWriteTimeoutTyp;
537 		cfi->chips[i].buffer_write_time = 1<<cfi->cfiq->BufWriteTimeoutTyp;
538 		cfi->chips[i].erase_time = 1<<cfi->cfiq->BlockEraseTimeoutTyp;
539 		cfi->chips[i].ref_point_counter = 0;
540 		init_waitqueue_head(&(cfi->chips[i].wq));
541 	}
542 
543 	map->fldrv = &cfi_amdstd_chipdrv;
544 
545 	return cfi_amdstd_setup(mtd);
546 }
547 struct mtd_info *cfi_cmdset_0006(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
548 struct mtd_info *cfi_cmdset_0701(struct map_info *map, int primary) __attribute__((alias("cfi_cmdset_0002")));
549 EXPORT_SYMBOL_GPL(cfi_cmdset_0002);
550 EXPORT_SYMBOL_GPL(cfi_cmdset_0006);
551 EXPORT_SYMBOL_GPL(cfi_cmdset_0701);
552 
553 static struct mtd_info *cfi_amdstd_setup(struct mtd_info *mtd)
554 {
555 	struct map_info *map = mtd->priv;
556 	struct cfi_private *cfi = map->fldrv_priv;
557 	unsigned long devsize = (1<<cfi->cfiq->DevSize) * cfi->interleave;
558 	unsigned long offset = 0;
559 	int i,j;
560 
561 	printk(KERN_NOTICE "number of %s chips: %d\n",
562 	       (cfi->cfi_mode == CFI_MODE_CFI)?"CFI":"JEDEC",cfi->numchips);
563 	/* Select the correct geometry setup */
564 	mtd->size = devsize * cfi->numchips;
565 
566 	mtd->numeraseregions = cfi->cfiq->NumEraseRegions * cfi->numchips;
567 	mtd->eraseregions = kmalloc(sizeof(struct mtd_erase_region_info)
568 				    * mtd->numeraseregions, GFP_KERNEL);
569 	if (!mtd->eraseregions) {
570 		printk(KERN_WARNING "Failed to allocate memory for MTD erase region info\n");
571 		goto setup_err;
572 	}
573 
574 	for (i=0; i<cfi->cfiq->NumEraseRegions; i++) {
575 		unsigned long ernum, ersize;
576 		ersize = ((cfi->cfiq->EraseRegionInfo[i] >> 8) & ~0xff) * cfi->interleave;
577 		ernum = (cfi->cfiq->EraseRegionInfo[i] & 0xffff) + 1;
578 
579 		if (mtd->erasesize < ersize) {
580 			mtd->erasesize = ersize;
581 		}
582 		for (j=0; j<cfi->numchips; j++) {
583 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].offset = (j*devsize)+offset;
584 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].erasesize = ersize;
585 			mtd->eraseregions[(j*cfi->cfiq->NumEraseRegions)+i].numblocks = ernum;
586 		}
587 		offset += (ersize * ernum);
588 	}
589 	if (offset != devsize) {
590 		/* Argh */
591 		printk(KERN_WARNING "Sum of regions (%lx) != total size of set of interleaved chips (%lx)\n", offset, devsize);
592 		goto setup_err;
593 	}
594 
595 	__module_get(THIS_MODULE);
596 	register_reboot_notifier(&mtd->reboot_notifier);
597 	return mtd;
598 
599  setup_err:
600 	kfree(mtd->eraseregions);
601 	kfree(mtd);
602 	kfree(cfi->cmdset_priv);
603 	kfree(cfi->cfiq);
604 	return NULL;
605 }
606 
607 /*
608  * Return true if the chip is ready.
609  *
610  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
611  * non-suspended sector) and is indicated by no toggle bits toggling.
612  *
613  * Note that anything more complicated than checking if no bits are toggling
614  * (including checking DQ5 for an error status) is tricky to get working
615  * correctly and is therefore not done	(particularly with interleaved chips
616  * as each chip must be checked independently of the others).
617  */
618 static int __xipram chip_ready(struct map_info *map, unsigned long addr)
619 {
620 	map_word d, t;
621 
622 	d = map_read(map, addr);
623 	t = map_read(map, addr);
624 
625 	return map_word_equal(map, d, t);
626 }
627 
628 /*
629  * Return true if the chip is ready and has the correct value.
630  *
631  * Ready is one of: read mode, query mode, erase-suspend-read mode (in any
632  * non-suspended sector) and it is indicated by no bits toggling.
633  *
634  * Error are indicated by toggling bits or bits held with the wrong value,
635  * or with bits toggling.
636  *
637  * Note that anything more complicated than checking if no bits are toggling
638  * (including checking DQ5 for an error status) is tricky to get working
639  * correctly and is therefore not done	(particularly with interleaved chips
640  * as each chip must be checked independently of the others).
641  *
642  */
643 static int __xipram chip_good(struct map_info *map, unsigned long addr, map_word expected)
644 {
645 	map_word oldd, curd;
646 
647 	oldd = map_read(map, addr);
648 	curd = map_read(map, addr);
649 
650 	return	map_word_equal(map, oldd, curd) &&
651 		map_word_equal(map, curd, expected);
652 }
653 
654 static int get_chip(struct map_info *map, struct flchip *chip, unsigned long adr, int mode)
655 {
656 	DECLARE_WAITQUEUE(wait, current);
657 	struct cfi_private *cfi = map->fldrv_priv;
658 	unsigned long timeo;
659 	struct cfi_pri_amdstd *cfip = (struct cfi_pri_amdstd *)cfi->cmdset_priv;
660 
661  resettime:
662 	timeo = jiffies + HZ;
663  retry:
664 	switch (chip->state) {
665 
666 	case FL_STATUS:
667 		for (;;) {
668 			if (chip_ready(map, adr))
669 				break;
670 
671 			if (time_after(jiffies, timeo)) {
672 				printk(KERN_ERR "Waiting for chip to be ready timed out.\n");
673 				return -EIO;
674 			}
675 			mutex_unlock(&chip->mutex);
676 			cfi_udelay(1);
677 			mutex_lock(&chip->mutex);
678 			/* Someone else might have been playing with it. */
679 			goto retry;
680 		}
681 
682 	case FL_READY:
683 	case FL_CFI_QUERY:
684 	case FL_JEDEC_QUERY:
685 		return 0;
686 
687 	case FL_ERASING:
688 		if (!cfip || !(cfip->EraseSuspend & (0x1|0x2)) ||
689 		    !(mode == FL_READY || mode == FL_POINT ||
690 		    (mode == FL_WRITING && (cfip->EraseSuspend & 0x2))))
691 			goto sleep;
692 
693 		/* We could check to see if we're trying to access the sector
694 		 * that is currently being erased. However, no user will try
695 		 * anything like that so we just wait for the timeout. */
696 
697 		/* Erase suspend */
698 		/* It's harmless to issue the Erase-Suspend and Erase-Resume
699 		 * commands when the erase algorithm isn't in progress. */
700 		map_write(map, CMD(0xB0), chip->in_progress_block_addr);
701 		chip->oldstate = FL_ERASING;
702 		chip->state = FL_ERASE_SUSPENDING;
703 		chip->erase_suspended = 1;
704 		for (;;) {
705 			if (chip_ready(map, adr))
706 				break;
707 
708 			if (time_after(jiffies, timeo)) {
709 				/* Should have suspended the erase by now.
710 				 * Send an Erase-Resume command as either
711 				 * there was an error (so leave the erase
712 				 * routine to recover from it) or we trying to
713 				 * use the erase-in-progress sector. */
714 				put_chip(map, chip, adr);
715 				printk(KERN_ERR "MTD %s(): chip not ready after erase suspend\n", __func__);
716 				return -EIO;
717 			}
718 
719 			mutex_unlock(&chip->mutex);
720 			cfi_udelay(1);
721 			mutex_lock(&chip->mutex);
722 			/* Nobody will touch it while it's in state FL_ERASE_SUSPENDING.
723 			   So we can just loop here. */
724 		}
725 		chip->state = FL_READY;
726 		return 0;
727 
728 	case FL_XIP_WHILE_ERASING:
729 		if (mode != FL_READY && mode != FL_POINT &&
730 		    (!cfip || !(cfip->EraseSuspend&2)))
731 			goto sleep;
732 		chip->oldstate = chip->state;
733 		chip->state = FL_READY;
734 		return 0;
735 
736 	case FL_SHUTDOWN:
737 		/* The machine is rebooting */
738 		return -EIO;
739 
740 	case FL_POINT:
741 		/* Only if there's no operation suspended... */
742 		if (mode == FL_READY && chip->oldstate == FL_READY)
743 			return 0;
744 
745 	default:
746 	sleep:
747 		set_current_state(TASK_UNINTERRUPTIBLE);
748 		add_wait_queue(&chip->wq, &wait);
749 		mutex_unlock(&chip->mutex);
750 		schedule();
751 		remove_wait_queue(&chip->wq, &wait);
752 		mutex_lock(&chip->mutex);
753 		goto resettime;
754 	}
755 }
756 
757 
758 static void put_chip(struct map_info *map, struct flchip *chip, unsigned long adr)
759 {
760 	struct cfi_private *cfi = map->fldrv_priv;
761 
762 	switch(chip->oldstate) {
763 	case FL_ERASING:
764 		map_write(map, cfi->sector_erase_cmd, chip->in_progress_block_addr);
765 		chip->oldstate = FL_READY;
766 		chip->state = FL_ERASING;
767 		break;
768 
769 	case FL_XIP_WHILE_ERASING:
770 		chip->state = chip->oldstate;
771 		chip->oldstate = FL_READY;
772 		break;
773 
774 	case FL_READY:
775 	case FL_STATUS:
776 		/* We should really make set_vpp() count, rather than doing this */
777 		DISABLE_VPP(map);
778 		break;
779 	default:
780 		printk(KERN_ERR "MTD: put_chip() called with oldstate %d!!\n", chip->oldstate);
781 	}
782 	wake_up(&chip->wq);
783 }
784 
785 #ifdef CONFIG_MTD_XIP
786 
787 /*
788  * No interrupt what so ever can be serviced while the flash isn't in array
789  * mode.  This is ensured by the xip_disable() and xip_enable() functions
790  * enclosing any code path where the flash is known not to be in array mode.
791  * And within a XIP disabled code path, only functions marked with __xipram
792  * may be called and nothing else (it's a good thing to inspect generated
793  * assembly to make sure inline functions were actually inlined and that gcc
794  * didn't emit calls to its own support functions). Also configuring MTD CFI
795  * support to a single buswidth and a single interleave is also recommended.
796  */
797 
798 static void xip_disable(struct map_info *map, struct flchip *chip,
799 			unsigned long adr)
800 {
801 	/* TODO: chips with no XIP use should ignore and return */
802 	(void) map_read(map, adr); /* ensure mmu mapping is up to date */
803 	local_irq_disable();
804 }
805 
806 static void __xipram xip_enable(struct map_info *map, struct flchip *chip,
807 				unsigned long adr)
808 {
809 	struct cfi_private *cfi = map->fldrv_priv;
810 
811 	if (chip->state != FL_POINT && chip->state != FL_READY) {
812 		map_write(map, CMD(0xf0), adr);
813 		chip->state = FL_READY;
814 	}
815 	(void) map_read(map, adr);
816 	xip_iprefetch();
817 	local_irq_enable();
818 }
819 
820 /*
821  * When a delay is required for the flash operation to complete, the
822  * xip_udelay() function is polling for both the given timeout and pending
823  * (but still masked) hardware interrupts.  Whenever there is an interrupt
824  * pending then the flash erase operation is suspended, array mode restored
825  * and interrupts unmasked.  Task scheduling might also happen at that
826  * point.  The CPU eventually returns from the interrupt or the call to
827  * schedule() and the suspended flash operation is resumed for the remaining
828  * of the delay period.
829  *
830  * Warning: this function _will_ fool interrupt latency tracing tools.
831  */
832 
833 static void __xipram xip_udelay(struct map_info *map, struct flchip *chip,
834 				unsigned long adr, int usec)
835 {
836 	struct cfi_private *cfi = map->fldrv_priv;
837 	struct cfi_pri_amdstd *extp = cfi->cmdset_priv;
838 	map_word status, OK = CMD(0x80);
839 	unsigned long suspended, start = xip_currtime();
840 	flstate_t oldstate;
841 
842 	do {
843 		cpu_relax();
844 		if (xip_irqpending() && extp &&
845 		    ((chip->state == FL_ERASING && (extp->EraseSuspend & 2))) &&
846 		    (cfi_interleave_is_1(cfi) || chip->oldstate == FL_READY)) {
847 			/*
848 			 * Let's suspend the erase operation when supported.
849 			 * Note that we currently don't try to suspend
850 			 * interleaved chips if there is already another
851 			 * operation suspended (imagine what happens
852 			 * when one chip was already done with the current
853 			 * operation while another chip suspended it, then
854 			 * we resume the whole thing at once).  Yes, it
855 			 * can happen!
856 			 */
857 			map_write(map, CMD(0xb0), adr);
858 			usec -= xip_elapsed_since(start);
859 			suspended = xip_currtime();
860 			do {
861 				if (xip_elapsed_since(suspended) > 100000) {
862 					/*
863 					 * The chip doesn't want to suspend
864 					 * after waiting for 100 msecs.
865 					 * This is a critical error but there
866 					 * is not much we can do here.
867 					 */
868 					return;
869 				}
870 				status = map_read(map, adr);
871 			} while (!map_word_andequal(map, status, OK, OK));
872 
873 			/* Suspend succeeded */
874 			oldstate = chip->state;
875 			if (!map_word_bitsset(map, status, CMD(0x40)))
876 				break;
877 			chip->state = FL_XIP_WHILE_ERASING;
878 			chip->erase_suspended = 1;
879 			map_write(map, CMD(0xf0), adr);
880 			(void) map_read(map, adr);
881 			xip_iprefetch();
882 			local_irq_enable();
883 			mutex_unlock(&chip->mutex);
884 			xip_iprefetch();
885 			cond_resched();
886 
887 			/*
888 			 * We're back.  However someone else might have
889 			 * decided to go write to the chip if we are in
890 			 * a suspended erase state.  If so let's wait
891 			 * until it's done.
892 			 */
893 			mutex_lock(&chip->mutex);
894 			while (chip->state != FL_XIP_WHILE_ERASING) {
895 				DECLARE_WAITQUEUE(wait, current);
896 				set_current_state(TASK_UNINTERRUPTIBLE);
897 				add_wait_queue(&chip->wq, &wait);
898 				mutex_unlock(&chip->mutex);
899 				schedule();
900 				remove_wait_queue(&chip->wq, &wait);
901 				mutex_lock(&chip->mutex);
902 			}
903 			/* Disallow XIP again */
904 			local_irq_disable();
905 
906 			/* Resume the write or erase operation */
907 			map_write(map, cfi->sector_erase_cmd, adr);
908 			chip->state = oldstate;
909 			start = xip_currtime();
910 		} else if (usec >= 1000000/HZ) {
911 			/*
912 			 * Try to save on CPU power when waiting delay
913 			 * is at least a system timer tick period.
914 			 * No need to be extremely accurate here.
915 			 */
916 			xip_cpu_idle();
917 		}
918 		status = map_read(map, adr);
919 	} while (!map_word_andequal(map, status, OK, OK)
920 		 && xip_elapsed_since(start) < usec);
921 }
922 
923 #define UDELAY(map, chip, adr, usec)  xip_udelay(map, chip, adr, usec)
924 
925 /*
926  * The INVALIDATE_CACHED_RANGE() macro is normally used in parallel while
927  * the flash is actively programming or erasing since we have to poll for
928  * the operation to complete anyway.  We can't do that in a generic way with
929  * a XIP setup so do it before the actual flash operation in this case
930  * and stub it out from INVALIDATE_CACHE_UDELAY.
931  */
932 #define XIP_INVAL_CACHED_RANGE(map, from, size)  \
933 	INVALIDATE_CACHED_RANGE(map, from, size)
934 
935 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
936 	UDELAY(map, chip, adr, usec)
937 
938 /*
939  * Extra notes:
940  *
941  * Activating this XIP support changes the way the code works a bit.  For
942  * example the code to suspend the current process when concurrent access
943  * happens is never executed because xip_udelay() will always return with the
944  * same chip state as it was entered with.  This is why there is no care for
945  * the presence of add_wait_queue() or schedule() calls from within a couple
946  * xip_disable()'d  areas of code, like in do_erase_oneblock for example.
947  * The queueing and scheduling are always happening within xip_udelay().
948  *
949  * Similarly, get_chip() and put_chip() just happen to always be executed
950  * with chip->state set to FL_READY (or FL_XIP_WHILE_*) where flash state
951  * is in array mode, therefore never executing many cases therein and not
952  * causing any problem with XIP.
953  */
954 
955 #else
956 
957 #define xip_disable(map, chip, adr)
958 #define xip_enable(map, chip, adr)
959 #define XIP_INVAL_CACHED_RANGE(x...)
960 
961 #define UDELAY(map, chip, adr, usec)  \
962 do {  \
963 	mutex_unlock(&chip->mutex);  \
964 	cfi_udelay(usec);  \
965 	mutex_lock(&chip->mutex);  \
966 } while (0)
967 
968 #define INVALIDATE_CACHE_UDELAY(map, chip, adr, len, usec)  \
969 do {  \
970 	mutex_unlock(&chip->mutex);  \
971 	INVALIDATE_CACHED_RANGE(map, adr, len);  \
972 	cfi_udelay(usec);  \
973 	mutex_lock(&chip->mutex);  \
974 } while (0)
975 
976 #endif
977 
978 static inline int do_read_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
979 {
980 	unsigned long cmd_addr;
981 	struct cfi_private *cfi = map->fldrv_priv;
982 	int ret;
983 
984 	adr += chip->start;
985 
986 	/* Ensure cmd read/writes are aligned. */
987 	cmd_addr = adr & ~(map_bankwidth(map)-1);
988 
989 	mutex_lock(&chip->mutex);
990 	ret = get_chip(map, chip, cmd_addr, FL_READY);
991 	if (ret) {
992 		mutex_unlock(&chip->mutex);
993 		return ret;
994 	}
995 
996 	if (chip->state != FL_POINT && chip->state != FL_READY) {
997 		map_write(map, CMD(0xf0), cmd_addr);
998 		chip->state = FL_READY;
999 	}
1000 
1001 	map_copy_from(map, buf, adr, len);
1002 
1003 	put_chip(map, chip, cmd_addr);
1004 
1005 	mutex_unlock(&chip->mutex);
1006 	return 0;
1007 }
1008 
1009 
1010 static int cfi_amdstd_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1011 {
1012 	struct map_info *map = mtd->priv;
1013 	struct cfi_private *cfi = map->fldrv_priv;
1014 	unsigned long ofs;
1015 	int chipnum;
1016 	int ret = 0;
1017 
1018 	/* ofs: offset within the first chip that the first read should start */
1019 
1020 	chipnum = (from >> cfi->chipshift);
1021 	ofs = from - (chipnum <<  cfi->chipshift);
1022 
1023 
1024 	*retlen = 0;
1025 
1026 	while (len) {
1027 		unsigned long thislen;
1028 
1029 		if (chipnum >= cfi->numchips)
1030 			break;
1031 
1032 		if ((len + ofs -1) >> cfi->chipshift)
1033 			thislen = (1<<cfi->chipshift) - ofs;
1034 		else
1035 			thislen = len;
1036 
1037 		ret = do_read_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1038 		if (ret)
1039 			break;
1040 
1041 		*retlen += thislen;
1042 		len -= thislen;
1043 		buf += thislen;
1044 
1045 		ofs = 0;
1046 		chipnum++;
1047 	}
1048 	return ret;
1049 }
1050 
1051 
1052 static inline int do_read_secsi_onechip(struct map_info *map, struct flchip *chip, loff_t adr, size_t len, u_char *buf)
1053 {
1054 	DECLARE_WAITQUEUE(wait, current);
1055 	unsigned long timeo = jiffies + HZ;
1056 	struct cfi_private *cfi = map->fldrv_priv;
1057 
1058  retry:
1059 	mutex_lock(&chip->mutex);
1060 
1061 	if (chip->state != FL_READY){
1062 		set_current_state(TASK_UNINTERRUPTIBLE);
1063 		add_wait_queue(&chip->wq, &wait);
1064 
1065 		mutex_unlock(&chip->mutex);
1066 
1067 		schedule();
1068 		remove_wait_queue(&chip->wq, &wait);
1069 		timeo = jiffies + HZ;
1070 
1071 		goto retry;
1072 	}
1073 
1074 	adr += chip->start;
1075 
1076 	chip->state = FL_READY;
1077 
1078 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1079 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1080 	cfi_send_gen_cmd(0x88, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1081 
1082 	map_copy_from(map, buf, adr, len);
1083 
1084 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1085 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1086 	cfi_send_gen_cmd(0x90, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1087 	cfi_send_gen_cmd(0x00, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1088 
1089 	wake_up(&chip->wq);
1090 	mutex_unlock(&chip->mutex);
1091 
1092 	return 0;
1093 }
1094 
1095 static int cfi_amdstd_secsi_read (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf)
1096 {
1097 	struct map_info *map = mtd->priv;
1098 	struct cfi_private *cfi = map->fldrv_priv;
1099 	unsigned long ofs;
1100 	int chipnum;
1101 	int ret = 0;
1102 
1103 
1104 	/* ofs: offset within the first chip that the first read should start */
1105 
1106 	/* 8 secsi bytes per chip */
1107 	chipnum=from>>3;
1108 	ofs=from & 7;
1109 
1110 
1111 	*retlen = 0;
1112 
1113 	while (len) {
1114 		unsigned long thislen;
1115 
1116 		if (chipnum >= cfi->numchips)
1117 			break;
1118 
1119 		if ((len + ofs -1) >> 3)
1120 			thislen = (1<<3) - ofs;
1121 		else
1122 			thislen = len;
1123 
1124 		ret = do_read_secsi_onechip(map, &cfi->chips[chipnum], ofs, thislen, buf);
1125 		if (ret)
1126 			break;
1127 
1128 		*retlen += thislen;
1129 		len -= thislen;
1130 		buf += thislen;
1131 
1132 		ofs = 0;
1133 		chipnum++;
1134 	}
1135 	return ret;
1136 }
1137 
1138 
1139 static int __xipram do_write_oneword(struct map_info *map, struct flchip *chip, unsigned long adr, map_word datum)
1140 {
1141 	struct cfi_private *cfi = map->fldrv_priv;
1142 	unsigned long timeo = jiffies + HZ;
1143 	/*
1144 	 * We use a 1ms + 1 jiffies generic timeout for writes (most devices
1145 	 * have a max write time of a few hundreds usec). However, we should
1146 	 * use the maximum timeout value given by the chip at probe time
1147 	 * instead.  Unfortunately, struct flchip does have a field for
1148 	 * maximum timeout, only for typical which can be far too short
1149 	 * depending of the conditions.	 The ' + 1' is to avoid having a
1150 	 * timeout of 0 jiffies if HZ is smaller than 1000.
1151 	 */
1152 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1153 	int ret = 0;
1154 	map_word oldd;
1155 	int retry_cnt = 0;
1156 
1157 	adr += chip->start;
1158 
1159 	mutex_lock(&chip->mutex);
1160 	ret = get_chip(map, chip, adr, FL_WRITING);
1161 	if (ret) {
1162 		mutex_unlock(&chip->mutex);
1163 		return ret;
1164 	}
1165 
1166 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1167 	       __func__, adr, datum.x[0] );
1168 
1169 	/*
1170 	 * Check for a NOP for the case when the datum to write is already
1171 	 * present - it saves time and works around buggy chips that corrupt
1172 	 * data at other locations when 0xff is written to a location that
1173 	 * already contains 0xff.
1174 	 */
1175 	oldd = map_read(map, adr);
1176 	if (map_word_equal(map, oldd, datum)) {
1177 		DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): NOP\n",
1178 		       __func__);
1179 		goto op_done;
1180 	}
1181 
1182 	XIP_INVAL_CACHED_RANGE(map, adr, map_bankwidth(map));
1183 	ENABLE_VPP(map);
1184 	xip_disable(map, chip, adr);
1185  retry:
1186 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1187 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1188 	cfi_send_gen_cmd(0xA0, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1189 	map_write(map, datum, adr);
1190 	chip->state = FL_WRITING;
1191 
1192 	INVALIDATE_CACHE_UDELAY(map, chip,
1193 				adr, map_bankwidth(map),
1194 				chip->word_write_time);
1195 
1196 	/* See comment above for timeout value. */
1197 	timeo = jiffies + uWriteTimeout;
1198 	for (;;) {
1199 		if (chip->state != FL_WRITING) {
1200 			/* Someone's suspended the write. Sleep */
1201 			DECLARE_WAITQUEUE(wait, current);
1202 
1203 			set_current_state(TASK_UNINTERRUPTIBLE);
1204 			add_wait_queue(&chip->wq, &wait);
1205 			mutex_unlock(&chip->mutex);
1206 			schedule();
1207 			remove_wait_queue(&chip->wq, &wait);
1208 			timeo = jiffies + (HZ / 2); /* FIXME */
1209 			mutex_lock(&chip->mutex);
1210 			continue;
1211 		}
1212 
1213 		if (time_after(jiffies, timeo) && !chip_ready(map, adr)){
1214 			xip_enable(map, chip, adr);
1215 			printk(KERN_WARNING "MTD %s(): software timeout\n", __func__);
1216 			xip_disable(map, chip, adr);
1217 			break;
1218 		}
1219 
1220 		if (chip_ready(map, adr))
1221 			break;
1222 
1223 		/* Latency issues. Drop the lock, wait a while and retry */
1224 		UDELAY(map, chip, adr, 1);
1225 	}
1226 	/* Did we succeed? */
1227 	if (!chip_good(map, adr, datum)) {
1228 		/* reset on all failures. */
1229 		map_write( map, CMD(0xF0), chip->start );
1230 		/* FIXME - should have reset delay before continuing */
1231 
1232 		if (++retry_cnt <= MAX_WORD_RETRIES)
1233 			goto retry;
1234 
1235 		ret = -EIO;
1236 	}
1237 	xip_enable(map, chip, adr);
1238  op_done:
1239 	chip->state = FL_READY;
1240 	put_chip(map, chip, adr);
1241 	mutex_unlock(&chip->mutex);
1242 
1243 	return ret;
1244 }
1245 
1246 
1247 static int cfi_amdstd_write_words(struct mtd_info *mtd, loff_t to, size_t len,
1248 				  size_t *retlen, const u_char *buf)
1249 {
1250 	struct map_info *map = mtd->priv;
1251 	struct cfi_private *cfi = map->fldrv_priv;
1252 	int ret = 0;
1253 	int chipnum;
1254 	unsigned long ofs, chipstart;
1255 	DECLARE_WAITQUEUE(wait, current);
1256 
1257 	*retlen = 0;
1258 	if (!len)
1259 		return 0;
1260 
1261 	chipnum = to >> cfi->chipshift;
1262 	ofs = to  - (chipnum << cfi->chipshift);
1263 	chipstart = cfi->chips[chipnum].start;
1264 
1265 	/* If it's not bus-aligned, do the first byte write */
1266 	if (ofs & (map_bankwidth(map)-1)) {
1267 		unsigned long bus_ofs = ofs & ~(map_bankwidth(map)-1);
1268 		int i = ofs - bus_ofs;
1269 		int n = 0;
1270 		map_word tmp_buf;
1271 
1272  retry:
1273 		mutex_lock(&cfi->chips[chipnum].mutex);
1274 
1275 		if (cfi->chips[chipnum].state != FL_READY) {
1276 			set_current_state(TASK_UNINTERRUPTIBLE);
1277 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1278 
1279 			mutex_unlock(&cfi->chips[chipnum].mutex);
1280 
1281 			schedule();
1282 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1283 			goto retry;
1284 		}
1285 
1286 		/* Load 'tmp_buf' with old contents of flash */
1287 		tmp_buf = map_read(map, bus_ofs+chipstart);
1288 
1289 		mutex_unlock(&cfi->chips[chipnum].mutex);
1290 
1291 		/* Number of bytes to copy from buffer */
1292 		n = min_t(int, len, map_bankwidth(map)-i);
1293 
1294 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, i, n);
1295 
1296 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1297 				       bus_ofs, tmp_buf);
1298 		if (ret)
1299 			return ret;
1300 
1301 		ofs += n;
1302 		buf += n;
1303 		(*retlen) += n;
1304 		len -= n;
1305 
1306 		if (ofs >> cfi->chipshift) {
1307 			chipnum ++;
1308 			ofs = 0;
1309 			if (chipnum == cfi->numchips)
1310 				return 0;
1311 		}
1312 	}
1313 
1314 	/* We are now aligned, write as much as possible */
1315 	while(len >= map_bankwidth(map)) {
1316 		map_word datum;
1317 
1318 		datum = map_word_load(map, buf);
1319 
1320 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1321 				       ofs, datum);
1322 		if (ret)
1323 			return ret;
1324 
1325 		ofs += map_bankwidth(map);
1326 		buf += map_bankwidth(map);
1327 		(*retlen) += map_bankwidth(map);
1328 		len -= map_bankwidth(map);
1329 
1330 		if (ofs >> cfi->chipshift) {
1331 			chipnum ++;
1332 			ofs = 0;
1333 			if (chipnum == cfi->numchips)
1334 				return 0;
1335 			chipstart = cfi->chips[chipnum].start;
1336 		}
1337 	}
1338 
1339 	/* Write the trailing bytes if any */
1340 	if (len & (map_bankwidth(map)-1)) {
1341 		map_word tmp_buf;
1342 
1343  retry1:
1344 		mutex_lock(&cfi->chips[chipnum].mutex);
1345 
1346 		if (cfi->chips[chipnum].state != FL_READY) {
1347 			set_current_state(TASK_UNINTERRUPTIBLE);
1348 			add_wait_queue(&cfi->chips[chipnum].wq, &wait);
1349 
1350 			mutex_unlock(&cfi->chips[chipnum].mutex);
1351 
1352 			schedule();
1353 			remove_wait_queue(&cfi->chips[chipnum].wq, &wait);
1354 			goto retry1;
1355 		}
1356 
1357 		tmp_buf = map_read(map, ofs + chipstart);
1358 
1359 		mutex_unlock(&cfi->chips[chipnum].mutex);
1360 
1361 		tmp_buf = map_word_load_partial(map, tmp_buf, buf, 0, len);
1362 
1363 		ret = do_write_oneword(map, &cfi->chips[chipnum],
1364 				ofs, tmp_buf);
1365 		if (ret)
1366 			return ret;
1367 
1368 		(*retlen) += len;
1369 	}
1370 
1371 	return 0;
1372 }
1373 
1374 
1375 /*
1376  * FIXME: interleaved mode not tested, and probably not supported!
1377  */
1378 static int __xipram do_write_buffer(struct map_info *map, struct flchip *chip,
1379 				    unsigned long adr, const u_char *buf,
1380 				    int len)
1381 {
1382 	struct cfi_private *cfi = map->fldrv_priv;
1383 	unsigned long timeo = jiffies + HZ;
1384 	/* see comments in do_write_oneword() regarding uWriteTimeo. */
1385 	unsigned long uWriteTimeout = ( HZ / 1000 ) + 1;
1386 	int ret = -EIO;
1387 	unsigned long cmd_adr;
1388 	int z, words;
1389 	map_word datum;
1390 
1391 	adr += chip->start;
1392 	cmd_adr = adr;
1393 
1394 	mutex_lock(&chip->mutex);
1395 	ret = get_chip(map, chip, adr, FL_WRITING);
1396 	if (ret) {
1397 		mutex_unlock(&chip->mutex);
1398 		return ret;
1399 	}
1400 
1401 	datum = map_word_load(map, buf);
1402 
1403 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): WRITE 0x%.8lx(0x%.8lx)\n",
1404 	       __func__, adr, datum.x[0] );
1405 
1406 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1407 	ENABLE_VPP(map);
1408 	xip_disable(map, chip, cmd_adr);
1409 
1410 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1411 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1412 
1413 	/* Write Buffer Load */
1414 	map_write(map, CMD(0x25), cmd_adr);
1415 
1416 	chip->state = FL_WRITING_TO_BUFFER;
1417 
1418 	/* Write length of data to come */
1419 	words = len / map_bankwidth(map);
1420 	map_write(map, CMD(words - 1), cmd_adr);
1421 	/* Write data */
1422 	z = 0;
1423 	while(z < words * map_bankwidth(map)) {
1424 		datum = map_word_load(map, buf);
1425 		map_write(map, datum, adr + z);
1426 
1427 		z += map_bankwidth(map);
1428 		buf += map_bankwidth(map);
1429 	}
1430 	z -= map_bankwidth(map);
1431 
1432 	adr += z;
1433 
1434 	/* Write Buffer Program Confirm: GO GO GO */
1435 	map_write(map, CMD(0x29), cmd_adr);
1436 	chip->state = FL_WRITING;
1437 
1438 	INVALIDATE_CACHE_UDELAY(map, chip,
1439 				adr, map_bankwidth(map),
1440 				chip->word_write_time);
1441 
1442 	timeo = jiffies + uWriteTimeout;
1443 
1444 	for (;;) {
1445 		if (chip->state != FL_WRITING) {
1446 			/* Someone's suspended the write. Sleep */
1447 			DECLARE_WAITQUEUE(wait, current);
1448 
1449 			set_current_state(TASK_UNINTERRUPTIBLE);
1450 			add_wait_queue(&chip->wq, &wait);
1451 			mutex_unlock(&chip->mutex);
1452 			schedule();
1453 			remove_wait_queue(&chip->wq, &wait);
1454 			timeo = jiffies + (HZ / 2); /* FIXME */
1455 			mutex_lock(&chip->mutex);
1456 			continue;
1457 		}
1458 
1459 		if (time_after(jiffies, timeo) && !chip_ready(map, adr))
1460 			break;
1461 
1462 		if (chip_ready(map, adr)) {
1463 			xip_enable(map, chip, adr);
1464 			goto op_done;
1465 		}
1466 
1467 		/* Latency issues. Drop the lock, wait a while and retry */
1468 		UDELAY(map, chip, adr, 1);
1469 	}
1470 
1471 	/* reset on all failures. */
1472 	map_write( map, CMD(0xF0), chip->start );
1473 	xip_enable(map, chip, adr);
1474 	/* FIXME - should have reset delay before continuing */
1475 
1476 	printk(KERN_WARNING "MTD %s(): software timeout\n",
1477 	       __func__ );
1478 
1479 	ret = -EIO;
1480  op_done:
1481 	chip->state = FL_READY;
1482 	put_chip(map, chip, adr);
1483 	mutex_unlock(&chip->mutex);
1484 
1485 	return ret;
1486 }
1487 
1488 
1489 static int cfi_amdstd_write_buffers(struct mtd_info *mtd, loff_t to, size_t len,
1490 				    size_t *retlen, const u_char *buf)
1491 {
1492 	struct map_info *map = mtd->priv;
1493 	struct cfi_private *cfi = map->fldrv_priv;
1494 	int wbufsize = cfi_interleave(cfi) << cfi->cfiq->MaxBufWriteSize;
1495 	int ret = 0;
1496 	int chipnum;
1497 	unsigned long ofs;
1498 
1499 	*retlen = 0;
1500 	if (!len)
1501 		return 0;
1502 
1503 	chipnum = to >> cfi->chipshift;
1504 	ofs = to  - (chipnum << cfi->chipshift);
1505 
1506 	/* If it's not bus-aligned, do the first word write */
1507 	if (ofs & (map_bankwidth(map)-1)) {
1508 		size_t local_len = (-ofs)&(map_bankwidth(map)-1);
1509 		if (local_len > len)
1510 			local_len = len;
1511 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1512 					     local_len, retlen, buf);
1513 		if (ret)
1514 			return ret;
1515 		ofs += local_len;
1516 		buf += local_len;
1517 		len -= local_len;
1518 
1519 		if (ofs >> cfi->chipshift) {
1520 			chipnum ++;
1521 			ofs = 0;
1522 			if (chipnum == cfi->numchips)
1523 				return 0;
1524 		}
1525 	}
1526 
1527 	/* Write buffer is worth it only if more than one word to write... */
1528 	while (len >= map_bankwidth(map) * 2) {
1529 		/* We must not cross write block boundaries */
1530 		int size = wbufsize - (ofs & (wbufsize-1));
1531 
1532 		if (size > len)
1533 			size = len;
1534 		if (size % map_bankwidth(map))
1535 			size -= size % map_bankwidth(map);
1536 
1537 		ret = do_write_buffer(map, &cfi->chips[chipnum],
1538 				      ofs, buf, size);
1539 		if (ret)
1540 			return ret;
1541 
1542 		ofs += size;
1543 		buf += size;
1544 		(*retlen) += size;
1545 		len -= size;
1546 
1547 		if (ofs >> cfi->chipshift) {
1548 			chipnum ++;
1549 			ofs = 0;
1550 			if (chipnum == cfi->numchips)
1551 				return 0;
1552 		}
1553 	}
1554 
1555 	if (len) {
1556 		size_t retlen_dregs = 0;
1557 
1558 		ret = cfi_amdstd_write_words(mtd, ofs + (chipnum<<cfi->chipshift),
1559 					     len, &retlen_dregs, buf);
1560 
1561 		*retlen += retlen_dregs;
1562 		return ret;
1563 	}
1564 
1565 	return 0;
1566 }
1567 
1568 
1569 /*
1570  * Handle devices with one erase region, that only implement
1571  * the chip erase command.
1572  */
1573 static int __xipram do_erase_chip(struct map_info *map, struct flchip *chip)
1574 {
1575 	struct cfi_private *cfi = map->fldrv_priv;
1576 	unsigned long timeo = jiffies + HZ;
1577 	unsigned long int adr;
1578 	DECLARE_WAITQUEUE(wait, current);
1579 	int ret = 0;
1580 
1581 	adr = cfi->addr_unlock1;
1582 
1583 	mutex_lock(&chip->mutex);
1584 	ret = get_chip(map, chip, adr, FL_WRITING);
1585 	if (ret) {
1586 		mutex_unlock(&chip->mutex);
1587 		return ret;
1588 	}
1589 
1590 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1591 	       __func__, chip->start );
1592 
1593 	XIP_INVAL_CACHED_RANGE(map, adr, map->size);
1594 	ENABLE_VPP(map);
1595 	xip_disable(map, chip, adr);
1596 
1597 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1598 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1599 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1600 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1601 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1602 	cfi_send_gen_cmd(0x10, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1603 
1604 	chip->state = FL_ERASING;
1605 	chip->erase_suspended = 0;
1606 	chip->in_progress_block_addr = adr;
1607 
1608 	INVALIDATE_CACHE_UDELAY(map, chip,
1609 				adr, map->size,
1610 				chip->erase_time*500);
1611 
1612 	timeo = jiffies + (HZ*20);
1613 
1614 	for (;;) {
1615 		if (chip->state != FL_ERASING) {
1616 			/* Someone's suspended the erase. Sleep */
1617 			set_current_state(TASK_UNINTERRUPTIBLE);
1618 			add_wait_queue(&chip->wq, &wait);
1619 			mutex_unlock(&chip->mutex);
1620 			schedule();
1621 			remove_wait_queue(&chip->wq, &wait);
1622 			mutex_lock(&chip->mutex);
1623 			continue;
1624 		}
1625 		if (chip->erase_suspended) {
1626 			/* This erase was suspended and resumed.
1627 			   Adjust the timeout */
1628 			timeo = jiffies + (HZ*20); /* FIXME */
1629 			chip->erase_suspended = 0;
1630 		}
1631 
1632 		if (chip_ready(map, adr))
1633 			break;
1634 
1635 		if (time_after(jiffies, timeo)) {
1636 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1637 				__func__ );
1638 			break;
1639 		}
1640 
1641 		/* Latency issues. Drop the lock, wait a while and retry */
1642 		UDELAY(map, chip, adr, 1000000/HZ);
1643 	}
1644 	/* Did we succeed? */
1645 	if (!chip_good(map, adr, map_word_ff(map))) {
1646 		/* reset on all failures. */
1647 		map_write( map, CMD(0xF0), chip->start );
1648 		/* FIXME - should have reset delay before continuing */
1649 
1650 		ret = -EIO;
1651 	}
1652 
1653 	chip->state = FL_READY;
1654 	xip_enable(map, chip, adr);
1655 	put_chip(map, chip, adr);
1656 	mutex_unlock(&chip->mutex);
1657 
1658 	return ret;
1659 }
1660 
1661 
1662 static int __xipram do_erase_oneblock(struct map_info *map, struct flchip *chip, unsigned long adr, int len, void *thunk)
1663 {
1664 	struct cfi_private *cfi = map->fldrv_priv;
1665 	unsigned long timeo = jiffies + HZ;
1666 	DECLARE_WAITQUEUE(wait, current);
1667 	int ret = 0;
1668 
1669 	adr += chip->start;
1670 
1671 	mutex_lock(&chip->mutex);
1672 	ret = get_chip(map, chip, adr, FL_ERASING);
1673 	if (ret) {
1674 		mutex_unlock(&chip->mutex);
1675 		return ret;
1676 	}
1677 
1678 	DEBUG( MTD_DEBUG_LEVEL3, "MTD %s(): ERASE 0x%.8lx\n",
1679 	       __func__, adr );
1680 
1681 	XIP_INVAL_CACHED_RANGE(map, adr, len);
1682 	ENABLE_VPP(map);
1683 	xip_disable(map, chip, adr);
1684 
1685 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1686 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1687 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1688 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi, cfi->device_type, NULL);
1689 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi, cfi->device_type, NULL);
1690 	map_write(map, cfi->sector_erase_cmd, adr);
1691 
1692 	chip->state = FL_ERASING;
1693 	chip->erase_suspended = 0;
1694 	chip->in_progress_block_addr = adr;
1695 
1696 	INVALIDATE_CACHE_UDELAY(map, chip,
1697 				adr, len,
1698 				chip->erase_time*500);
1699 
1700 	timeo = jiffies + (HZ*20);
1701 
1702 	for (;;) {
1703 		if (chip->state != FL_ERASING) {
1704 			/* Someone's suspended the erase. Sleep */
1705 			set_current_state(TASK_UNINTERRUPTIBLE);
1706 			add_wait_queue(&chip->wq, &wait);
1707 			mutex_unlock(&chip->mutex);
1708 			schedule();
1709 			remove_wait_queue(&chip->wq, &wait);
1710 			mutex_lock(&chip->mutex);
1711 			continue;
1712 		}
1713 		if (chip->erase_suspended) {
1714 			/* This erase was suspended and resumed.
1715 			   Adjust the timeout */
1716 			timeo = jiffies + (HZ*20); /* FIXME */
1717 			chip->erase_suspended = 0;
1718 		}
1719 
1720 		if (chip_ready(map, adr)) {
1721 			xip_enable(map, chip, adr);
1722 			break;
1723 		}
1724 
1725 		if (time_after(jiffies, timeo)) {
1726 			xip_enable(map, chip, adr);
1727 			printk(KERN_WARNING "MTD %s(): software timeout\n",
1728 				__func__ );
1729 			break;
1730 		}
1731 
1732 		/* Latency issues. Drop the lock, wait a while and retry */
1733 		UDELAY(map, chip, adr, 1000000/HZ);
1734 	}
1735 	/* Did we succeed? */
1736 	if (!chip_good(map, adr, map_word_ff(map))) {
1737 		/* reset on all failures. */
1738 		map_write( map, CMD(0xF0), chip->start );
1739 		/* FIXME - should have reset delay before continuing */
1740 
1741 		ret = -EIO;
1742 	}
1743 
1744 	chip->state = FL_READY;
1745 	put_chip(map, chip, adr);
1746 	mutex_unlock(&chip->mutex);
1747 	return ret;
1748 }
1749 
1750 
1751 static int cfi_amdstd_erase_varsize(struct mtd_info *mtd, struct erase_info *instr)
1752 {
1753 	unsigned long ofs, len;
1754 	int ret;
1755 
1756 	ofs = instr->addr;
1757 	len = instr->len;
1758 
1759 	ret = cfi_varsize_frob(mtd, do_erase_oneblock, ofs, len, NULL);
1760 	if (ret)
1761 		return ret;
1762 
1763 	instr->state = MTD_ERASE_DONE;
1764 	mtd_erase_callback(instr);
1765 
1766 	return 0;
1767 }
1768 
1769 
1770 static int cfi_amdstd_erase_chip(struct mtd_info *mtd, struct erase_info *instr)
1771 {
1772 	struct map_info *map = mtd->priv;
1773 	struct cfi_private *cfi = map->fldrv_priv;
1774 	int ret = 0;
1775 
1776 	if (instr->addr != 0)
1777 		return -EINVAL;
1778 
1779 	if (instr->len != mtd->size)
1780 		return -EINVAL;
1781 
1782 	ret = do_erase_chip(map, &cfi->chips[0]);
1783 	if (ret)
1784 		return ret;
1785 
1786 	instr->state = MTD_ERASE_DONE;
1787 	mtd_erase_callback(instr);
1788 
1789 	return 0;
1790 }
1791 
1792 static int do_atmel_lock(struct map_info *map, struct flchip *chip,
1793 			 unsigned long adr, int len, void *thunk)
1794 {
1795 	struct cfi_private *cfi = map->fldrv_priv;
1796 	int ret;
1797 
1798 	mutex_lock(&chip->mutex);
1799 	ret = get_chip(map, chip, adr + chip->start, FL_LOCKING);
1800 	if (ret)
1801 		goto out_unlock;
1802 	chip->state = FL_LOCKING;
1803 
1804 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1805 	      __func__, adr, len);
1806 
1807 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1808 			 cfi->device_type, NULL);
1809 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1810 			 cfi->device_type, NULL);
1811 	cfi_send_gen_cmd(0x80, cfi->addr_unlock1, chip->start, map, cfi,
1812 			 cfi->device_type, NULL);
1813 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1814 			 cfi->device_type, NULL);
1815 	cfi_send_gen_cmd(0x55, cfi->addr_unlock2, chip->start, map, cfi,
1816 			 cfi->device_type, NULL);
1817 	map_write(map, CMD(0x40), chip->start + adr);
1818 
1819 	chip->state = FL_READY;
1820 	put_chip(map, chip, adr + chip->start);
1821 	ret = 0;
1822 
1823 out_unlock:
1824 	mutex_unlock(&chip->mutex);
1825 	return ret;
1826 }
1827 
1828 static int do_atmel_unlock(struct map_info *map, struct flchip *chip,
1829 			   unsigned long adr, int len, void *thunk)
1830 {
1831 	struct cfi_private *cfi = map->fldrv_priv;
1832 	int ret;
1833 
1834 	mutex_lock(&chip->mutex);
1835 	ret = get_chip(map, chip, adr + chip->start, FL_UNLOCKING);
1836 	if (ret)
1837 		goto out_unlock;
1838 	chip->state = FL_UNLOCKING;
1839 
1840 	DEBUG(MTD_DEBUG_LEVEL3, "MTD %s(): LOCK 0x%08lx len %d\n",
1841 	      __func__, adr, len);
1842 
1843 	cfi_send_gen_cmd(0xAA, cfi->addr_unlock1, chip->start, map, cfi,
1844 			 cfi->device_type, NULL);
1845 	map_write(map, CMD(0x70), adr);
1846 
1847 	chip->state = FL_READY;
1848 	put_chip(map, chip, adr + chip->start);
1849 	ret = 0;
1850 
1851 out_unlock:
1852 	mutex_unlock(&chip->mutex);
1853 	return ret;
1854 }
1855 
1856 static int cfi_atmel_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1857 {
1858 	return cfi_varsize_frob(mtd, do_atmel_lock, ofs, len, NULL);
1859 }
1860 
1861 static int cfi_atmel_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
1862 {
1863 	return cfi_varsize_frob(mtd, do_atmel_unlock, ofs, len, NULL);
1864 }
1865 
1866 
1867 static void cfi_amdstd_sync (struct mtd_info *mtd)
1868 {
1869 	struct map_info *map = mtd->priv;
1870 	struct cfi_private *cfi = map->fldrv_priv;
1871 	int i;
1872 	struct flchip *chip;
1873 	int ret = 0;
1874 	DECLARE_WAITQUEUE(wait, current);
1875 
1876 	for (i=0; !ret && i<cfi->numchips; i++) {
1877 		chip = &cfi->chips[i];
1878 
1879 	retry:
1880 		mutex_lock(&chip->mutex);
1881 
1882 		switch(chip->state) {
1883 		case FL_READY:
1884 		case FL_STATUS:
1885 		case FL_CFI_QUERY:
1886 		case FL_JEDEC_QUERY:
1887 			chip->oldstate = chip->state;
1888 			chip->state = FL_SYNCING;
1889 			/* No need to wake_up() on this state change -
1890 			 * as the whole point is that nobody can do anything
1891 			 * with the chip now anyway.
1892 			 */
1893 		case FL_SYNCING:
1894 			mutex_unlock(&chip->mutex);
1895 			break;
1896 
1897 		default:
1898 			/* Not an idle state */
1899 			set_current_state(TASK_UNINTERRUPTIBLE);
1900 			add_wait_queue(&chip->wq, &wait);
1901 
1902 			mutex_unlock(&chip->mutex);
1903 
1904 			schedule();
1905 
1906 			remove_wait_queue(&chip->wq, &wait);
1907 
1908 			goto retry;
1909 		}
1910 	}
1911 
1912 	/* Unlock the chips again */
1913 
1914 	for (i--; i >=0; i--) {
1915 		chip = &cfi->chips[i];
1916 
1917 		mutex_lock(&chip->mutex);
1918 
1919 		if (chip->state == FL_SYNCING) {
1920 			chip->state = chip->oldstate;
1921 			wake_up(&chip->wq);
1922 		}
1923 		mutex_unlock(&chip->mutex);
1924 	}
1925 }
1926 
1927 
1928 static int cfi_amdstd_suspend(struct mtd_info *mtd)
1929 {
1930 	struct map_info *map = mtd->priv;
1931 	struct cfi_private *cfi = map->fldrv_priv;
1932 	int i;
1933 	struct flchip *chip;
1934 	int ret = 0;
1935 
1936 	for (i=0; !ret && i<cfi->numchips; i++) {
1937 		chip = &cfi->chips[i];
1938 
1939 		mutex_lock(&chip->mutex);
1940 
1941 		switch(chip->state) {
1942 		case FL_READY:
1943 		case FL_STATUS:
1944 		case FL_CFI_QUERY:
1945 		case FL_JEDEC_QUERY:
1946 			chip->oldstate = chip->state;
1947 			chip->state = FL_PM_SUSPENDED;
1948 			/* No need to wake_up() on this state change -
1949 			 * as the whole point is that nobody can do anything
1950 			 * with the chip now anyway.
1951 			 */
1952 		case FL_PM_SUSPENDED:
1953 			break;
1954 
1955 		default:
1956 			ret = -EAGAIN;
1957 			break;
1958 		}
1959 		mutex_unlock(&chip->mutex);
1960 	}
1961 
1962 	/* Unlock the chips again */
1963 
1964 	if (ret) {
1965 		for (i--; i >=0; i--) {
1966 			chip = &cfi->chips[i];
1967 
1968 			mutex_lock(&chip->mutex);
1969 
1970 			if (chip->state == FL_PM_SUSPENDED) {
1971 				chip->state = chip->oldstate;
1972 				wake_up(&chip->wq);
1973 			}
1974 			mutex_unlock(&chip->mutex);
1975 		}
1976 	}
1977 
1978 	return ret;
1979 }
1980 
1981 
1982 static void cfi_amdstd_resume(struct mtd_info *mtd)
1983 {
1984 	struct map_info *map = mtd->priv;
1985 	struct cfi_private *cfi = map->fldrv_priv;
1986 	int i;
1987 	struct flchip *chip;
1988 
1989 	for (i=0; i<cfi->numchips; i++) {
1990 
1991 		chip = &cfi->chips[i];
1992 
1993 		mutex_lock(&chip->mutex);
1994 
1995 		if (chip->state == FL_PM_SUSPENDED) {
1996 			chip->state = FL_READY;
1997 			map_write(map, CMD(0xF0), chip->start);
1998 			wake_up(&chip->wq);
1999 		}
2000 		else
2001 			printk(KERN_ERR "Argh. Chip not in PM_SUSPENDED state upon resume()\n");
2002 
2003 		mutex_unlock(&chip->mutex);
2004 	}
2005 }
2006 
2007 
2008 /*
2009  * Ensure that the flash device is put back into read array mode before
2010  * unloading the driver or rebooting.  On some systems, rebooting while
2011  * the flash is in query/program/erase mode will prevent the CPU from
2012  * fetching the bootloader code, requiring a hard reset or power cycle.
2013  */
2014 static int cfi_amdstd_reset(struct mtd_info *mtd)
2015 {
2016 	struct map_info *map = mtd->priv;
2017 	struct cfi_private *cfi = map->fldrv_priv;
2018 	int i, ret;
2019 	struct flchip *chip;
2020 
2021 	for (i = 0; i < cfi->numchips; i++) {
2022 
2023 		chip = &cfi->chips[i];
2024 
2025 		mutex_lock(&chip->mutex);
2026 
2027 		ret = get_chip(map, chip, chip->start, FL_SHUTDOWN);
2028 		if (!ret) {
2029 			map_write(map, CMD(0xF0), chip->start);
2030 			chip->state = FL_SHUTDOWN;
2031 			put_chip(map, chip, chip->start);
2032 		}
2033 
2034 		mutex_unlock(&chip->mutex);
2035 	}
2036 
2037 	return 0;
2038 }
2039 
2040 
2041 static int cfi_amdstd_reboot(struct notifier_block *nb, unsigned long val,
2042 			       void *v)
2043 {
2044 	struct mtd_info *mtd;
2045 
2046 	mtd = container_of(nb, struct mtd_info, reboot_notifier);
2047 	cfi_amdstd_reset(mtd);
2048 	return NOTIFY_DONE;
2049 }
2050 
2051 
2052 static void cfi_amdstd_destroy(struct mtd_info *mtd)
2053 {
2054 	struct map_info *map = mtd->priv;
2055 	struct cfi_private *cfi = map->fldrv_priv;
2056 
2057 	cfi_amdstd_reset(mtd);
2058 	unregister_reboot_notifier(&mtd->reboot_notifier);
2059 	kfree(cfi->cmdset_priv);
2060 	kfree(cfi->cfiq);
2061 	kfree(cfi);
2062 	kfree(mtd->eraseregions);
2063 }
2064 
2065 MODULE_LICENSE("GPL");
2066 MODULE_AUTHOR("Crossnet Co. <info@crossnet.co.jp> et al.");
2067 MODULE_DESCRIPTION("MTD chip driver for AMD/Fujitsu flash chips");
2068 MODULE_ALIAS("cfi_cmdset_0006");
2069 MODULE_ALIAS("cfi_cmdset_0701");
2070