xref: /linux/drivers/misc/sgi-gru/grukservices.c (revision a4cdb556cae05cd3e7b602b3a44c01420c4e2258)
1 /*
2  * SN Platform GRU Driver
3  *
4  *              KERNEL SERVICES THAT USE THE GRU
5  *
6  *  Copyright (c) 2008 Silicon Graphics, Inc.  All Rights Reserved.
7  *
8  *  This program is free software; you can redistribute it and/or modify
9  *  it under the terms of the GNU General Public License as published by
10  *  the Free Software Foundation; either version 2 of the License, or
11  *  (at your option) any later version.
12  *
13  *  This program is distributed in the hope that it will be useful,
14  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
15  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
16  *  GNU General Public License for more details.
17  *
18  *  You should have received a copy of the GNU General Public License
19  *  along with this program; if not, write to the Free Software
20  *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
21  */
22 
23 #include <linux/kernel.h>
24 #include <linux/errno.h>
25 #include <linux/slab.h>
26 #include <linux/mm.h>
27 #include <linux/spinlock.h>
28 #include <linux/device.h>
29 #include <linux/miscdevice.h>
30 #include <linux/proc_fs.h>
31 #include <linux/interrupt.h>
32 #include <linux/uaccess.h>
33 #include <linux/delay.h>
34 #include <linux/export.h>
35 #include <asm/io_apic.h>
36 #include "gru.h"
37 #include "grulib.h"
38 #include "grutables.h"
39 #include "grukservices.h"
40 #include "gru_instructions.h"
41 #include <asm/uv/uv_hub.h>
42 
43 /*
44  * Kernel GRU Usage
45  *
46  * The following is an interim algorithm for management of kernel GRU
47  * resources. This will likely be replaced when we better understand the
48  * kernel/user requirements.
49  *
50  * Blade percpu resources reserved for kernel use. These resources are
51  * reserved whenever the the kernel context for the blade is loaded. Note
52  * that the kernel context is not guaranteed to be always available. It is
53  * loaded on demand & can be stolen by a user if the user demand exceeds the
54  * kernel demand. The kernel can always reload the kernel context but
55  * a SLEEP may be required!!!.
56  *
57  * Async Overview:
58  *
59  * 	Each blade has one "kernel context" that owns GRU kernel resources
60  * 	located on the blade. Kernel drivers use GRU resources in this context
61  * 	for sending messages, zeroing memory, etc.
62  *
63  * 	The kernel context is dynamically loaded on demand. If it is not in
64  * 	use by the kernel, the kernel context can be unloaded & given to a user.
65  * 	The kernel context will be reloaded when needed. This may require that
66  * 	a context be stolen from a user.
67  * 		NOTE: frequent unloading/reloading of the kernel context is
68  * 		expensive. We are depending on batch schedulers, cpusets, sane
69  * 		drivers or some other mechanism to prevent the need for frequent
70  *	 	stealing/reloading.
71  *
72  * 	The kernel context consists of two parts:
73  * 		- 1 CB & a few DSRs that are reserved for each cpu on the blade.
74  * 		  Each cpu has it's own private resources & does not share them
75  * 		  with other cpus. These resources are used serially, ie,
76  * 		  locked, used & unlocked  on each call to a function in
77  * 		  grukservices.
78  * 		  	(Now that we have dynamic loading of kernel contexts, I
79  * 		  	 may rethink this & allow sharing between cpus....)
80  *
81  *		- Additional resources can be reserved long term & used directly
82  *		  by UV drivers located in the kernel. Drivers using these GRU
83  *		  resources can use asynchronous GRU instructions that send
84  *		  interrupts on completion.
85  *		  	- these resources must be explicitly locked/unlocked
86  *		  	- locked resources prevent (obviously) the kernel
87  *		  	  context from being unloaded.
88  *			- drivers using these resource directly issue their own
89  *			  GRU instruction and must wait/check completion.
90  *
91  * 		  When these resources are reserved, the caller can optionally
92  * 		  associate a wait_queue with the resources and use asynchronous
93  * 		  GRU instructions. When an async GRU instruction completes, the
94  * 		  driver will do a wakeup on the event.
95  *
96  */
97 
98 
99 #define ASYNC_HAN_TO_BID(h)	((h) - 1)
100 #define ASYNC_BID_TO_HAN(b)	((b) + 1)
101 #define ASYNC_HAN_TO_BS(h)	gru_base[ASYNC_HAN_TO_BID(h)]
102 
103 #define GRU_NUM_KERNEL_CBR	1
104 #define GRU_NUM_KERNEL_DSR_BYTES 256
105 #define GRU_NUM_KERNEL_DSR_CL	(GRU_NUM_KERNEL_DSR_BYTES /		\
106 					GRU_CACHE_LINE_BYTES)
107 
108 /* GRU instruction attributes for all instructions */
109 #define IMA			IMA_CB_DELAY
110 
111 /* GRU cacheline size is always 64 bytes - even on arches with 128 byte lines */
112 #define __gru_cacheline_aligned__                               \
113 	__attribute__((__aligned__(GRU_CACHE_LINE_BYTES)))
114 
115 #define MAGIC	0x1234567887654321UL
116 
117 /* Default retry count for GRU errors on kernel instructions */
118 #define EXCEPTION_RETRY_LIMIT	3
119 
120 /* Status of message queue sections */
121 #define MQS_EMPTY		0
122 #define MQS_FULL		1
123 #define MQS_NOOP		2
124 
125 /*----------------- RESOURCE MANAGEMENT -------------------------------------*/
126 /* optimized for x86_64 */
127 struct message_queue {
128 	union gru_mesqhead	head __gru_cacheline_aligned__;	/* CL 0 */
129 	int			qlines;				/* DW 1 */
130 	long 			hstatus[2];
131 	void 			*next __gru_cacheline_aligned__;/* CL 1 */
132 	void 			*limit;
133 	void 			*start;
134 	void 			*start2;
135 	char			data ____cacheline_aligned;	/* CL 2 */
136 };
137 
138 /* First word in every message - used by mesq interface */
139 struct message_header {
140 	char	present;
141 	char	present2;
142 	char 	lines;
143 	char	fill;
144 };
145 
146 #define HSTATUS(mq, h)	((mq) + offsetof(struct message_queue, hstatus[h]))
147 
148 /*
149  * Reload the blade's kernel context into a GRU chiplet. Called holding
150  * the bs_kgts_sema for READ. Will steal user contexts if necessary.
151  */
152 static void gru_load_kernel_context(struct gru_blade_state *bs, int blade_id)
153 {
154 	struct gru_state *gru;
155 	struct gru_thread_state *kgts;
156 	void *vaddr;
157 	int ctxnum, ncpus;
158 
159 	up_read(&bs->bs_kgts_sema);
160 	down_write(&bs->bs_kgts_sema);
161 
162 	if (!bs->bs_kgts) {
163 		do {
164 			bs->bs_kgts = gru_alloc_gts(NULL, 0, 0, 0, 0, 0);
165 			if (!IS_ERR(bs->bs_kgts))
166 				break;
167 			msleep(1);
168 		} while (true);
169 		bs->bs_kgts->ts_user_blade_id = blade_id;
170 	}
171 	kgts = bs->bs_kgts;
172 
173 	if (!kgts->ts_gru) {
174 		STAT(load_kernel_context);
175 		ncpus = uv_blade_nr_possible_cpus(blade_id);
176 		kgts->ts_cbr_au_count = GRU_CB_COUNT_TO_AU(
177 			GRU_NUM_KERNEL_CBR * ncpus + bs->bs_async_cbrs);
178 		kgts->ts_dsr_au_count = GRU_DS_BYTES_TO_AU(
179 			GRU_NUM_KERNEL_DSR_BYTES * ncpus +
180 				bs->bs_async_dsr_bytes);
181 		while (!gru_assign_gru_context(kgts)) {
182 			msleep(1);
183 			gru_steal_context(kgts);
184 		}
185 		gru_load_context(kgts);
186 		gru = bs->bs_kgts->ts_gru;
187 		vaddr = gru->gs_gru_base_vaddr;
188 		ctxnum = kgts->ts_ctxnum;
189 		bs->kernel_cb = get_gseg_base_address_cb(vaddr, ctxnum, 0);
190 		bs->kernel_dsr = get_gseg_base_address_ds(vaddr, ctxnum, 0);
191 	}
192 	downgrade_write(&bs->bs_kgts_sema);
193 }
194 
195 /*
196  * Free all kernel contexts that are not currently in use.
197  *   Returns 0 if all freed, else number of inuse context.
198  */
199 static int gru_free_kernel_contexts(void)
200 {
201 	struct gru_blade_state *bs;
202 	struct gru_thread_state *kgts;
203 	int bid, ret = 0;
204 
205 	for (bid = 0; bid < GRU_MAX_BLADES; bid++) {
206 		bs = gru_base[bid];
207 		if (!bs)
208 			continue;
209 
210 		/* Ignore busy contexts. Don't want to block here.  */
211 		if (down_write_trylock(&bs->bs_kgts_sema)) {
212 			kgts = bs->bs_kgts;
213 			if (kgts && kgts->ts_gru)
214 				gru_unload_context(kgts, 0);
215 			bs->bs_kgts = NULL;
216 			up_write(&bs->bs_kgts_sema);
217 			kfree(kgts);
218 		} else {
219 			ret++;
220 		}
221 	}
222 	return ret;
223 }
224 
225 /*
226  * Lock & load the kernel context for the specified blade.
227  */
228 static struct gru_blade_state *gru_lock_kernel_context(int blade_id)
229 {
230 	struct gru_blade_state *bs;
231 	int bid;
232 
233 	STAT(lock_kernel_context);
234 again:
235 	bid = blade_id < 0 ? uv_numa_blade_id() : blade_id;
236 	bs = gru_base[bid];
237 
238 	/* Handle the case where migration occurred while waiting for the sema */
239 	down_read(&bs->bs_kgts_sema);
240 	if (blade_id < 0 && bid != uv_numa_blade_id()) {
241 		up_read(&bs->bs_kgts_sema);
242 		goto again;
243 	}
244 	if (!bs->bs_kgts || !bs->bs_kgts->ts_gru)
245 		gru_load_kernel_context(bs, bid);
246 	return bs;
247 
248 }
249 
250 /*
251  * Unlock the kernel context for the specified blade. Context is not
252  * unloaded but may be stolen before next use.
253  */
254 static void gru_unlock_kernel_context(int blade_id)
255 {
256 	struct gru_blade_state *bs;
257 
258 	bs = gru_base[blade_id];
259 	up_read(&bs->bs_kgts_sema);
260 	STAT(unlock_kernel_context);
261 }
262 
263 /*
264  * Reserve & get pointers to the DSR/CBRs reserved for the current cpu.
265  * 	- returns with preemption disabled
266  */
267 static int gru_get_cpu_resources(int dsr_bytes, void **cb, void **dsr)
268 {
269 	struct gru_blade_state *bs;
270 	int lcpu;
271 
272 	BUG_ON(dsr_bytes > GRU_NUM_KERNEL_DSR_BYTES);
273 	preempt_disable();
274 	bs = gru_lock_kernel_context(-1);
275 	lcpu = uv_blade_processor_id();
276 	*cb = bs->kernel_cb + lcpu * GRU_HANDLE_STRIDE;
277 	*dsr = bs->kernel_dsr + lcpu * GRU_NUM_KERNEL_DSR_BYTES;
278 	return 0;
279 }
280 
281 /*
282  * Free the current cpus reserved DSR/CBR resources.
283  */
284 static void gru_free_cpu_resources(void *cb, void *dsr)
285 {
286 	gru_unlock_kernel_context(uv_numa_blade_id());
287 	preempt_enable();
288 }
289 
290 /*
291  * Reserve GRU resources to be used asynchronously.
292  *   Note: currently supports only 1 reservation per blade.
293  *
294  * 	input:
295  * 		blade_id  - blade on which resources should be reserved
296  * 		cbrs	  - number of CBRs
297  * 		dsr_bytes - number of DSR bytes needed
298  *	output:
299  *		handle to identify resource
300  *		(0 = async resources already reserved)
301  */
302 unsigned long gru_reserve_async_resources(int blade_id, int cbrs, int dsr_bytes,
303 			struct completion *cmp)
304 {
305 	struct gru_blade_state *bs;
306 	struct gru_thread_state *kgts;
307 	int ret = 0;
308 
309 	bs = gru_base[blade_id];
310 
311 	down_write(&bs->bs_kgts_sema);
312 
313 	/* Verify no resources already reserved */
314 	if (bs->bs_async_dsr_bytes + bs->bs_async_cbrs)
315 		goto done;
316 	bs->bs_async_dsr_bytes = dsr_bytes;
317 	bs->bs_async_cbrs = cbrs;
318 	bs->bs_async_wq = cmp;
319 	kgts = bs->bs_kgts;
320 
321 	/* Resources changed. Unload context if already loaded */
322 	if (kgts && kgts->ts_gru)
323 		gru_unload_context(kgts, 0);
324 	ret = ASYNC_BID_TO_HAN(blade_id);
325 
326 done:
327 	up_write(&bs->bs_kgts_sema);
328 	return ret;
329 }
330 
331 /*
332  * Release async resources previously reserved.
333  *
334  *	input:
335  *		han - handle to identify resources
336  */
337 void gru_release_async_resources(unsigned long han)
338 {
339 	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
340 
341 	down_write(&bs->bs_kgts_sema);
342 	bs->bs_async_dsr_bytes = 0;
343 	bs->bs_async_cbrs = 0;
344 	bs->bs_async_wq = NULL;
345 	up_write(&bs->bs_kgts_sema);
346 }
347 
348 /*
349  * Wait for async GRU instructions to complete.
350  *
351  *	input:
352  *		han - handle to identify resources
353  */
354 void gru_wait_async_cbr(unsigned long han)
355 {
356 	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
357 
358 	wait_for_completion(bs->bs_async_wq);
359 	mb();
360 }
361 
362 /*
363  * Lock previous reserved async GRU resources
364  *
365  *	input:
366  *		han - handle to identify resources
367  *	output:
368  *		cb  - pointer to first CBR
369  *		dsr - pointer to first DSR
370  */
371 void gru_lock_async_resource(unsigned long han,  void **cb, void **dsr)
372 {
373 	struct gru_blade_state *bs = ASYNC_HAN_TO_BS(han);
374 	int blade_id = ASYNC_HAN_TO_BID(han);
375 	int ncpus;
376 
377 	gru_lock_kernel_context(blade_id);
378 	ncpus = uv_blade_nr_possible_cpus(blade_id);
379 	if (cb)
380 		*cb = bs->kernel_cb + ncpus * GRU_HANDLE_STRIDE;
381 	if (dsr)
382 		*dsr = bs->kernel_dsr + ncpus * GRU_NUM_KERNEL_DSR_BYTES;
383 }
384 
385 /*
386  * Unlock previous reserved async GRU resources
387  *
388  *	input:
389  *		han - handle to identify resources
390  */
391 void gru_unlock_async_resource(unsigned long han)
392 {
393 	int blade_id = ASYNC_HAN_TO_BID(han);
394 
395 	gru_unlock_kernel_context(blade_id);
396 }
397 
398 /*----------------------------------------------------------------------*/
399 int gru_get_cb_exception_detail(void *cb,
400 		struct control_block_extended_exc_detail *excdet)
401 {
402 	struct gru_control_block_extended *cbe;
403 	struct gru_thread_state *kgts = NULL;
404 	unsigned long off;
405 	int cbrnum, bid;
406 
407 	/*
408 	 * Locate kgts for cb. This algorithm is SLOW but
409 	 * this function is rarely called (ie., almost never).
410 	 * Performance does not matter.
411 	 */
412 	for_each_possible_blade(bid) {
413 		if (!gru_base[bid])
414 			break;
415 		kgts = gru_base[bid]->bs_kgts;
416 		if (!kgts || !kgts->ts_gru)
417 			continue;
418 		off = cb - kgts->ts_gru->gs_gru_base_vaddr;
419 		if (off < GRU_SIZE)
420 			break;
421 		kgts = NULL;
422 	}
423 	BUG_ON(!kgts);
424 	cbrnum = thread_cbr_number(kgts, get_cb_number(cb));
425 	cbe = get_cbe(GRUBASE(cb), cbrnum);
426 	gru_flush_cache(cbe);	/* CBE not coherent */
427 	sync_core();
428 	excdet->opc = cbe->opccpy;
429 	excdet->exopc = cbe->exopccpy;
430 	excdet->ecause = cbe->ecause;
431 	excdet->exceptdet0 = cbe->idef1upd;
432 	excdet->exceptdet1 = cbe->idef3upd;
433 	gru_flush_cache(cbe);
434 	return 0;
435 }
436 
437 static char *gru_get_cb_exception_detail_str(int ret, void *cb,
438 					     char *buf, int size)
439 {
440 	struct gru_control_block_status *gen = (void *)cb;
441 	struct control_block_extended_exc_detail excdet;
442 
443 	if (ret > 0 && gen->istatus == CBS_EXCEPTION) {
444 		gru_get_cb_exception_detail(cb, &excdet);
445 		snprintf(buf, size,
446 			"GRU:%d exception: cb %p, opc %d, exopc %d, ecause 0x%x,"
447 			"excdet0 0x%lx, excdet1 0x%x", smp_processor_id(),
448 			gen, excdet.opc, excdet.exopc, excdet.ecause,
449 			excdet.exceptdet0, excdet.exceptdet1);
450 	} else {
451 		snprintf(buf, size, "No exception");
452 	}
453 	return buf;
454 }
455 
456 static int gru_wait_idle_or_exception(struct gru_control_block_status *gen)
457 {
458 	while (gen->istatus >= CBS_ACTIVE) {
459 		cpu_relax();
460 		barrier();
461 	}
462 	return gen->istatus;
463 }
464 
465 static int gru_retry_exception(void *cb)
466 {
467 	struct gru_control_block_status *gen = (void *)cb;
468 	struct control_block_extended_exc_detail excdet;
469 	int retry = EXCEPTION_RETRY_LIMIT;
470 
471 	while (1)  {
472 		if (gru_wait_idle_or_exception(gen) == CBS_IDLE)
473 			return CBS_IDLE;
474 		if (gru_get_cb_message_queue_substatus(cb))
475 			return CBS_EXCEPTION;
476 		gru_get_cb_exception_detail(cb, &excdet);
477 		if ((excdet.ecause & ~EXCEPTION_RETRY_BITS) ||
478 				(excdet.cbrexecstatus & CBR_EXS_ABORT_OCC))
479 			break;
480 		if (retry-- == 0)
481 			break;
482 		gen->icmd = 1;
483 		gru_flush_cache(gen);
484 	}
485 	return CBS_EXCEPTION;
486 }
487 
488 int gru_check_status_proc(void *cb)
489 {
490 	struct gru_control_block_status *gen = (void *)cb;
491 	int ret;
492 
493 	ret = gen->istatus;
494 	if (ret == CBS_EXCEPTION)
495 		ret = gru_retry_exception(cb);
496 	rmb();
497 	return ret;
498 
499 }
500 
501 int gru_wait_proc(void *cb)
502 {
503 	struct gru_control_block_status *gen = (void *)cb;
504 	int ret;
505 
506 	ret = gru_wait_idle_or_exception(gen);
507 	if (ret == CBS_EXCEPTION)
508 		ret = gru_retry_exception(cb);
509 	rmb();
510 	return ret;
511 }
512 
513 static void gru_abort(int ret, void *cb, char *str)
514 {
515 	char buf[GRU_EXC_STR_SIZE];
516 
517 	panic("GRU FATAL ERROR: %s - %s\n", str,
518 	      gru_get_cb_exception_detail_str(ret, cb, buf, sizeof(buf)));
519 }
520 
521 void gru_wait_abort_proc(void *cb)
522 {
523 	int ret;
524 
525 	ret = gru_wait_proc(cb);
526 	if (ret)
527 		gru_abort(ret, cb, "gru_wait_abort");
528 }
529 
530 
531 /*------------------------------ MESSAGE QUEUES -----------------------------*/
532 
533 /* Internal status . These are NOT returned to the user. */
534 #define MQIE_AGAIN		-1	/* try again */
535 
536 
537 /*
538  * Save/restore the "present" flag that is in the second line of 2-line
539  * messages
540  */
541 static inline int get_present2(void *p)
542 {
543 	struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
544 	return mhdr->present;
545 }
546 
547 static inline void restore_present2(void *p, int val)
548 {
549 	struct message_header *mhdr = p + GRU_CACHE_LINE_BYTES;
550 	mhdr->present = val;
551 }
552 
553 /*
554  * Create a message queue.
555  * 	qlines - message queue size in cache lines. Includes 2-line header.
556  */
557 int gru_create_message_queue(struct gru_message_queue_desc *mqd,
558 		void *p, unsigned int bytes, int nasid, int vector, int apicid)
559 {
560 	struct message_queue *mq = p;
561 	unsigned int qlines;
562 
563 	qlines = bytes / GRU_CACHE_LINE_BYTES - 2;
564 	memset(mq, 0, bytes);
565 	mq->start = &mq->data;
566 	mq->start2 = &mq->data + (qlines / 2 - 1) * GRU_CACHE_LINE_BYTES;
567 	mq->next = &mq->data;
568 	mq->limit = &mq->data + (qlines - 2) * GRU_CACHE_LINE_BYTES;
569 	mq->qlines = qlines;
570 	mq->hstatus[0] = 0;
571 	mq->hstatus[1] = 1;
572 	mq->head = gru_mesq_head(2, qlines / 2 + 1);
573 	mqd->mq = mq;
574 	mqd->mq_gpa = uv_gpa(mq);
575 	mqd->qlines = qlines;
576 	mqd->interrupt_pnode = nasid >> 1;
577 	mqd->interrupt_vector = vector;
578 	mqd->interrupt_apicid = apicid;
579 	return 0;
580 }
581 EXPORT_SYMBOL_GPL(gru_create_message_queue);
582 
583 /*
584  * Send a NOOP message to a message queue
585  * 	Returns:
586  * 		 0 - if queue is full after the send. This is the normal case
587  * 		     but various races can change this.
588  *		-1 - if mesq sent successfully but queue not full
589  *		>0 - unexpected error. MQE_xxx returned
590  */
591 static int send_noop_message(void *cb, struct gru_message_queue_desc *mqd,
592 				void *mesg)
593 {
594 	const struct message_header noop_header = {
595 					.present = MQS_NOOP, .lines = 1};
596 	unsigned long m;
597 	int substatus, ret;
598 	struct message_header save_mhdr, *mhdr = mesg;
599 
600 	STAT(mesq_noop);
601 	save_mhdr = *mhdr;
602 	*mhdr = noop_header;
603 	gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), 1, IMA);
604 	ret = gru_wait(cb);
605 
606 	if (ret) {
607 		substatus = gru_get_cb_message_queue_substatus(cb);
608 		switch (substatus) {
609 		case CBSS_NO_ERROR:
610 			STAT(mesq_noop_unexpected_error);
611 			ret = MQE_UNEXPECTED_CB_ERR;
612 			break;
613 		case CBSS_LB_OVERFLOWED:
614 			STAT(mesq_noop_lb_overflow);
615 			ret = MQE_CONGESTION;
616 			break;
617 		case CBSS_QLIMIT_REACHED:
618 			STAT(mesq_noop_qlimit_reached);
619 			ret = 0;
620 			break;
621 		case CBSS_AMO_NACKED:
622 			STAT(mesq_noop_amo_nacked);
623 			ret = MQE_CONGESTION;
624 			break;
625 		case CBSS_PUT_NACKED:
626 			STAT(mesq_noop_put_nacked);
627 			m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
628 			gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, 1, 1,
629 						IMA);
630 			if (gru_wait(cb) == CBS_IDLE)
631 				ret = MQIE_AGAIN;
632 			else
633 				ret = MQE_UNEXPECTED_CB_ERR;
634 			break;
635 		case CBSS_PAGE_OVERFLOW:
636 			STAT(mesq_noop_page_overflow);
637 			/* fallthru */
638 		default:
639 			BUG();
640 		}
641 	}
642 	*mhdr = save_mhdr;
643 	return ret;
644 }
645 
646 /*
647  * Handle a gru_mesq full.
648  */
649 static int send_message_queue_full(void *cb, struct gru_message_queue_desc *mqd,
650 				void *mesg, int lines)
651 {
652 	union gru_mesqhead mqh;
653 	unsigned int limit, head;
654 	unsigned long avalue;
655 	int half, qlines;
656 
657 	/* Determine if switching to first/second half of q */
658 	avalue = gru_get_amo_value(cb);
659 	head = gru_get_amo_value_head(cb);
660 	limit = gru_get_amo_value_limit(cb);
661 
662 	qlines = mqd->qlines;
663 	half = (limit != qlines);
664 
665 	if (half)
666 		mqh = gru_mesq_head(qlines / 2 + 1, qlines);
667 	else
668 		mqh = gru_mesq_head(2, qlines / 2 + 1);
669 
670 	/* Try to get lock for switching head pointer */
671 	gru_gamir(cb, EOP_IR_CLR, HSTATUS(mqd->mq_gpa, half), XTYPE_DW, IMA);
672 	if (gru_wait(cb) != CBS_IDLE)
673 		goto cberr;
674 	if (!gru_get_amo_value(cb)) {
675 		STAT(mesq_qf_locked);
676 		return MQE_QUEUE_FULL;
677 	}
678 
679 	/* Got the lock. Send optional NOP if queue not full, */
680 	if (head != limit) {
681 		if (send_noop_message(cb, mqd, mesg)) {
682 			gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half),
683 					XTYPE_DW, IMA);
684 			if (gru_wait(cb) != CBS_IDLE)
685 				goto cberr;
686 			STAT(mesq_qf_noop_not_full);
687 			return MQIE_AGAIN;
688 		}
689 		avalue++;
690 	}
691 
692 	/* Then flip queuehead to other half of queue. */
693 	gru_gamer(cb, EOP_ERR_CSWAP, mqd->mq_gpa, XTYPE_DW, mqh.val, avalue,
694 							IMA);
695 	if (gru_wait(cb) != CBS_IDLE)
696 		goto cberr;
697 
698 	/* If not successfully in swapping queue head, clear the hstatus lock */
699 	if (gru_get_amo_value(cb) != avalue) {
700 		STAT(mesq_qf_switch_head_failed);
701 		gru_gamir(cb, EOP_IR_INC, HSTATUS(mqd->mq_gpa, half), XTYPE_DW,
702 							IMA);
703 		if (gru_wait(cb) != CBS_IDLE)
704 			goto cberr;
705 	}
706 	return MQIE_AGAIN;
707 cberr:
708 	STAT(mesq_qf_unexpected_error);
709 	return MQE_UNEXPECTED_CB_ERR;
710 }
711 
712 /*
713  * Handle a PUT failure. Note: if message was a 2-line message, one of the
714  * lines might have successfully have been written. Before sending the
715  * message, "present" must be cleared in BOTH lines to prevent the receiver
716  * from prematurely seeing the full message.
717  */
718 static int send_message_put_nacked(void *cb, struct gru_message_queue_desc *mqd,
719 			void *mesg, int lines)
720 {
721 	unsigned long m, *val = mesg, gpa, save;
722 	int ret;
723 
724 	m = mqd->mq_gpa + (gru_get_amo_value_head(cb) << 6);
725 	if (lines == 2) {
726 		gru_vset(cb, m, 0, XTYPE_CL, lines, 1, IMA);
727 		if (gru_wait(cb) != CBS_IDLE)
728 			return MQE_UNEXPECTED_CB_ERR;
729 	}
730 	gru_vstore(cb, m, gru_get_tri(mesg), XTYPE_CL, lines, 1, IMA);
731 	if (gru_wait(cb) != CBS_IDLE)
732 		return MQE_UNEXPECTED_CB_ERR;
733 
734 	if (!mqd->interrupt_vector)
735 		return MQE_OK;
736 
737 	/*
738 	 * Send a cross-partition interrupt to the SSI that contains the target
739 	 * message queue. Normally, the interrupt is automatically delivered by
740 	 * hardware but some error conditions require explicit delivery.
741 	 * Use the GRU to deliver the interrupt. Otherwise partition failures
742 	 * could cause unrecovered errors.
743 	 */
744 	gpa = uv_global_gru_mmr_address(mqd->interrupt_pnode, UVH_IPI_INT);
745 	save = *val;
746 	*val = uv_hub_ipi_value(mqd->interrupt_apicid, mqd->interrupt_vector,
747 				dest_Fixed);
748 	gru_vstore_phys(cb, gpa, gru_get_tri(mesg), IAA_REGISTER, IMA);
749 	ret = gru_wait(cb);
750 	*val = save;
751 	if (ret != CBS_IDLE)
752 		return MQE_UNEXPECTED_CB_ERR;
753 	return MQE_OK;
754 }
755 
756 /*
757  * Handle a gru_mesq failure. Some of these failures are software recoverable
758  * or retryable.
759  */
760 static int send_message_failure(void *cb, struct gru_message_queue_desc *mqd,
761 				void *mesg, int lines)
762 {
763 	int substatus, ret = 0;
764 
765 	substatus = gru_get_cb_message_queue_substatus(cb);
766 	switch (substatus) {
767 	case CBSS_NO_ERROR:
768 		STAT(mesq_send_unexpected_error);
769 		ret = MQE_UNEXPECTED_CB_ERR;
770 		break;
771 	case CBSS_LB_OVERFLOWED:
772 		STAT(mesq_send_lb_overflow);
773 		ret = MQE_CONGESTION;
774 		break;
775 	case CBSS_QLIMIT_REACHED:
776 		STAT(mesq_send_qlimit_reached);
777 		ret = send_message_queue_full(cb, mqd, mesg, lines);
778 		break;
779 	case CBSS_AMO_NACKED:
780 		STAT(mesq_send_amo_nacked);
781 		ret = MQE_CONGESTION;
782 		break;
783 	case CBSS_PUT_NACKED:
784 		STAT(mesq_send_put_nacked);
785 		ret = send_message_put_nacked(cb, mqd, mesg, lines);
786 		break;
787 	case CBSS_PAGE_OVERFLOW:
788 		STAT(mesq_page_overflow);
789 		/* fallthru */
790 	default:
791 		BUG();
792 	}
793 	return ret;
794 }
795 
796 /*
797  * Send a message to a message queue
798  * 	mqd	message queue descriptor
799  * 	mesg	message. ust be vaddr within a GSEG
800  * 	bytes	message size (<= 2 CL)
801  */
802 int gru_send_message_gpa(struct gru_message_queue_desc *mqd, void *mesg,
803 				unsigned int bytes)
804 {
805 	struct message_header *mhdr;
806 	void *cb;
807 	void *dsr;
808 	int istatus, clines, ret;
809 
810 	STAT(mesq_send);
811 	BUG_ON(bytes < sizeof(int) || bytes > 2 * GRU_CACHE_LINE_BYTES);
812 
813 	clines = DIV_ROUND_UP(bytes, GRU_CACHE_LINE_BYTES);
814 	if (gru_get_cpu_resources(bytes, &cb, &dsr))
815 		return MQE_BUG_NO_RESOURCES;
816 	memcpy(dsr, mesg, bytes);
817 	mhdr = dsr;
818 	mhdr->present = MQS_FULL;
819 	mhdr->lines = clines;
820 	if (clines == 2) {
821 		mhdr->present2 = get_present2(mhdr);
822 		restore_present2(mhdr, MQS_FULL);
823 	}
824 
825 	do {
826 		ret = MQE_OK;
827 		gru_mesq(cb, mqd->mq_gpa, gru_get_tri(mhdr), clines, IMA);
828 		istatus = gru_wait(cb);
829 		if (istatus != CBS_IDLE)
830 			ret = send_message_failure(cb, mqd, dsr, clines);
831 	} while (ret == MQIE_AGAIN);
832 	gru_free_cpu_resources(cb, dsr);
833 
834 	if (ret)
835 		STAT(mesq_send_failed);
836 	return ret;
837 }
838 EXPORT_SYMBOL_GPL(gru_send_message_gpa);
839 
840 /*
841  * Advance the receive pointer for the queue to the next message.
842  */
843 void gru_free_message(struct gru_message_queue_desc *mqd, void *mesg)
844 {
845 	struct message_queue *mq = mqd->mq;
846 	struct message_header *mhdr = mq->next;
847 	void *next, *pnext;
848 	int half = -1;
849 	int lines = mhdr->lines;
850 
851 	if (lines == 2)
852 		restore_present2(mhdr, MQS_EMPTY);
853 	mhdr->present = MQS_EMPTY;
854 
855 	pnext = mq->next;
856 	next = pnext + GRU_CACHE_LINE_BYTES * lines;
857 	if (next == mq->limit) {
858 		next = mq->start;
859 		half = 1;
860 	} else if (pnext < mq->start2 && next >= mq->start2) {
861 		half = 0;
862 	}
863 
864 	if (half >= 0)
865 		mq->hstatus[half] = 1;
866 	mq->next = next;
867 }
868 EXPORT_SYMBOL_GPL(gru_free_message);
869 
870 /*
871  * Get next message from message queue. Return NULL if no message
872  * present. User must call next_message() to move to next message.
873  * 	rmq	message queue
874  */
875 void *gru_get_next_message(struct gru_message_queue_desc *mqd)
876 {
877 	struct message_queue *mq = mqd->mq;
878 	struct message_header *mhdr = mq->next;
879 	int present = mhdr->present;
880 
881 	/* skip NOOP messages */
882 	while (present == MQS_NOOP) {
883 		gru_free_message(mqd, mhdr);
884 		mhdr = mq->next;
885 		present = mhdr->present;
886 	}
887 
888 	/* Wait for both halves of 2 line messages */
889 	if (present == MQS_FULL && mhdr->lines == 2 &&
890 				get_present2(mhdr) == MQS_EMPTY)
891 		present = MQS_EMPTY;
892 
893 	if (!present) {
894 		STAT(mesq_receive_none);
895 		return NULL;
896 	}
897 
898 	if (mhdr->lines == 2)
899 		restore_present2(mhdr, mhdr->present2);
900 
901 	STAT(mesq_receive);
902 	return mhdr;
903 }
904 EXPORT_SYMBOL_GPL(gru_get_next_message);
905 
906 /* ---------------------- GRU DATA COPY FUNCTIONS ---------------------------*/
907 
908 /*
909  * Load a DW from a global GPA. The GPA can be a memory or MMR address.
910  */
911 int gru_read_gpa(unsigned long *value, unsigned long gpa)
912 {
913 	void *cb;
914 	void *dsr;
915 	int ret, iaa;
916 
917 	STAT(read_gpa);
918 	if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
919 		return MQE_BUG_NO_RESOURCES;
920 	iaa = gpa >> 62;
921 	gru_vload_phys(cb, gpa, gru_get_tri(dsr), iaa, IMA);
922 	ret = gru_wait(cb);
923 	if (ret == CBS_IDLE)
924 		*value = *(unsigned long *)dsr;
925 	gru_free_cpu_resources(cb, dsr);
926 	return ret;
927 }
928 EXPORT_SYMBOL_GPL(gru_read_gpa);
929 
930 
931 /*
932  * Copy a block of data using the GRU resources
933  */
934 int gru_copy_gpa(unsigned long dest_gpa, unsigned long src_gpa,
935 				unsigned int bytes)
936 {
937 	void *cb;
938 	void *dsr;
939 	int ret;
940 
941 	STAT(copy_gpa);
942 	if (gru_get_cpu_resources(GRU_NUM_KERNEL_DSR_BYTES, &cb, &dsr))
943 		return MQE_BUG_NO_RESOURCES;
944 	gru_bcopy(cb, src_gpa, dest_gpa, gru_get_tri(dsr),
945 		  XTYPE_B, bytes, GRU_NUM_KERNEL_DSR_CL, IMA);
946 	ret = gru_wait(cb);
947 	gru_free_cpu_resources(cb, dsr);
948 	return ret;
949 }
950 EXPORT_SYMBOL_GPL(gru_copy_gpa);
951 
952 /* ------------------- KERNEL QUICKTESTS RUN AT STARTUP ----------------*/
953 /* 	Temp - will delete after we gain confidence in the GRU		*/
954 
955 static int quicktest0(unsigned long arg)
956 {
957 	unsigned long word0;
958 	unsigned long word1;
959 	void *cb;
960 	void *dsr;
961 	unsigned long *p;
962 	int ret = -EIO;
963 
964 	if (gru_get_cpu_resources(GRU_CACHE_LINE_BYTES, &cb, &dsr))
965 		return MQE_BUG_NO_RESOURCES;
966 	p = dsr;
967 	word0 = MAGIC;
968 	word1 = 0;
969 
970 	gru_vload(cb, uv_gpa(&word0), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
971 	if (gru_wait(cb) != CBS_IDLE) {
972 		printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 1\n", smp_processor_id());
973 		goto done;
974 	}
975 
976 	if (*p != MAGIC) {
977 		printk(KERN_DEBUG "GRU:%d quicktest0 bad magic 0x%lx\n", smp_processor_id(), *p);
978 		goto done;
979 	}
980 	gru_vstore(cb, uv_gpa(&word1), gru_get_tri(dsr), XTYPE_DW, 1, 1, IMA);
981 	if (gru_wait(cb) != CBS_IDLE) {
982 		printk(KERN_DEBUG "GRU:%d quicktest0: CBR failure 2\n", smp_processor_id());
983 		goto done;
984 	}
985 
986 	if (word0 != word1 || word1 != MAGIC) {
987 		printk(KERN_DEBUG
988 		       "GRU:%d quicktest0 err: found 0x%lx, expected 0x%lx\n",
989 		     smp_processor_id(), word1, MAGIC);
990 		goto done;
991 	}
992 	ret = 0;
993 
994 done:
995 	gru_free_cpu_resources(cb, dsr);
996 	return ret;
997 }
998 
999 #define ALIGNUP(p, q)	((void *)(((unsigned long)(p) + (q) - 1) & ~(q - 1)))
1000 
1001 static int quicktest1(unsigned long arg)
1002 {
1003 	struct gru_message_queue_desc mqd;
1004 	void *p, *mq;
1005 	int i, ret = -EIO;
1006 	char mes[GRU_CACHE_LINE_BYTES], *m;
1007 
1008 	/* Need  1K cacheline aligned that does not cross page boundary */
1009 	p = kmalloc(4096, 0);
1010 	if (p == NULL)
1011 		return -ENOMEM;
1012 	mq = ALIGNUP(p, 1024);
1013 	memset(mes, 0xee, sizeof(mes));
1014 
1015 	gru_create_message_queue(&mqd, mq, 8 * GRU_CACHE_LINE_BYTES, 0, 0, 0);
1016 	for (i = 0; i < 6; i++) {
1017 		mes[8] = i;
1018 		do {
1019 			ret = gru_send_message_gpa(&mqd, mes, sizeof(mes));
1020 		} while (ret == MQE_CONGESTION);
1021 		if (ret)
1022 			break;
1023 	}
1024 	if (ret != MQE_QUEUE_FULL || i != 4) {
1025 		printk(KERN_DEBUG "GRU:%d quicktest1: unexpect status %d, i %d\n",
1026 		       smp_processor_id(), ret, i);
1027 		goto done;
1028 	}
1029 
1030 	for (i = 0; i < 6; i++) {
1031 		m = gru_get_next_message(&mqd);
1032 		if (!m || m[8] != i)
1033 			break;
1034 		gru_free_message(&mqd, m);
1035 	}
1036 	if (i != 4) {
1037 		printk(KERN_DEBUG "GRU:%d quicktest2: bad message, i %d, m %p, m8 %d\n",
1038 			smp_processor_id(), i, m, m ? m[8] : -1);
1039 		goto done;
1040 	}
1041 	ret = 0;
1042 
1043 done:
1044 	kfree(p);
1045 	return ret;
1046 }
1047 
1048 static int quicktest2(unsigned long arg)
1049 {
1050 	static DECLARE_COMPLETION(cmp);
1051 	unsigned long han;
1052 	int blade_id = 0;
1053 	int numcb = 4;
1054 	int ret = 0;
1055 	unsigned long *buf;
1056 	void *cb0, *cb;
1057 	struct gru_control_block_status *gen;
1058 	int i, k, istatus, bytes;
1059 
1060 	bytes = numcb * 4 * 8;
1061 	buf = kmalloc(bytes, GFP_KERNEL);
1062 	if (!buf)
1063 		return -ENOMEM;
1064 
1065 	ret = -EBUSY;
1066 	han = gru_reserve_async_resources(blade_id, numcb, 0, &cmp);
1067 	if (!han)
1068 		goto done;
1069 
1070 	gru_lock_async_resource(han, &cb0, NULL);
1071 	memset(buf, 0xee, bytes);
1072 	for (i = 0; i < numcb; i++)
1073 		gru_vset(cb0 + i * GRU_HANDLE_STRIDE, uv_gpa(&buf[i * 4]), 0,
1074 				XTYPE_DW, 4, 1, IMA_INTERRUPT);
1075 
1076 	ret = 0;
1077 	k = numcb;
1078 	do {
1079 		gru_wait_async_cbr(han);
1080 		for (i = 0; i < numcb; i++) {
1081 			cb = cb0 + i * GRU_HANDLE_STRIDE;
1082 			istatus = gru_check_status(cb);
1083 			if (istatus != CBS_ACTIVE && istatus != CBS_CALL_OS)
1084 				break;
1085 		}
1086 		if (i == numcb)
1087 			continue;
1088 		if (istatus != CBS_IDLE) {
1089 			printk(KERN_DEBUG "GRU:%d quicktest2: cb %d, exception\n", smp_processor_id(), i);
1090 			ret = -EFAULT;
1091 		} else if (buf[4 * i] || buf[4 * i + 1] || buf[4 * i + 2] ||
1092 				buf[4 * i + 3]) {
1093 			printk(KERN_DEBUG "GRU:%d quicktest2:cb %d,  buf 0x%lx, 0x%lx, 0x%lx, 0x%lx\n",
1094 			       smp_processor_id(), i, buf[4 * i], buf[4 * i + 1], buf[4 * i + 2], buf[4 * i + 3]);
1095 			ret = -EIO;
1096 		}
1097 		k--;
1098 		gen = cb;
1099 		gen->istatus = CBS_CALL_OS; /* don't handle this CBR again */
1100 	} while (k);
1101 	BUG_ON(cmp.done);
1102 
1103 	gru_unlock_async_resource(han);
1104 	gru_release_async_resources(han);
1105 done:
1106 	kfree(buf);
1107 	return ret;
1108 }
1109 
1110 #define BUFSIZE 200
1111 static int quicktest3(unsigned long arg)
1112 {
1113 	char buf1[BUFSIZE], buf2[BUFSIZE];
1114 	int ret = 0;
1115 
1116 	memset(buf2, 0, sizeof(buf2));
1117 	memset(buf1, get_cycles() & 255, sizeof(buf1));
1118 	gru_copy_gpa(uv_gpa(buf2), uv_gpa(buf1), BUFSIZE);
1119 	if (memcmp(buf1, buf2, BUFSIZE)) {
1120 		printk(KERN_DEBUG "GRU:%d quicktest3 error\n", smp_processor_id());
1121 		ret = -EIO;
1122 	}
1123 	return ret;
1124 }
1125 
1126 /*
1127  * Debugging only. User hook for various kernel tests
1128  * of driver & gru.
1129  */
1130 int gru_ktest(unsigned long arg)
1131 {
1132 	int ret = -EINVAL;
1133 
1134 	switch (arg & 0xff) {
1135 	case 0:
1136 		ret = quicktest0(arg);
1137 		break;
1138 	case 1:
1139 		ret = quicktest1(arg);
1140 		break;
1141 	case 2:
1142 		ret = quicktest2(arg);
1143 		break;
1144 	case 3:
1145 		ret = quicktest3(arg);
1146 		break;
1147 	case 99:
1148 		ret = gru_free_kernel_contexts();
1149 		break;
1150 	}
1151 	return ret;
1152 
1153 }
1154 
1155 int gru_kservices_init(void)
1156 {
1157 	return 0;
1158 }
1159 
1160 void gru_kservices_exit(void)
1161 {
1162 	if (gru_free_kernel_contexts())
1163 		BUG();
1164 }
1165 
1166