xref: /linux/drivers/media/usb/gspca/ov534.c (revision fcc8487d477a3452a1d0ccbdd4c5e0e1e3cb8bed)
1 /*
2  * ov534-ov7xxx gspca driver
3  *
4  * Copyright (C) 2008 Antonio Ospite <ospite@studenti.unina.it>
5  * Copyright (C) 2008 Jim Paris <jim@jtan.com>
6  * Copyright (C) 2009 Jean-Francois Moine http://moinejf.free.fr
7  *
8  * Based on a prototype written by Mark Ferrell <majortrips@gmail.com>
9  * USB protocol reverse engineered by Jim Paris <jim@jtan.com>
10  * https://jim.sh/svn/jim/devl/playstation/ps3/eye/test/
11  *
12  * PS3 Eye camera enhanced by Richard Kaswy http://kaswy.free.fr
13  * PS3 Eye camera - brightness, contrast, awb, agc, aec controls
14  *                  added by Max Thrun <bear24rw@gmail.com>
15  * PS3 Eye camera - FPS range extended by Joseph Howse
16  *                  <josephhowse@nummist.com> http://nummist.com
17  *
18  * This program is free software; you can redistribute it and/or modify
19  * it under the terms of the GNU General Public License as published by
20  * the Free Software Foundation; either version 2 of the License, or
21  * any later version.
22  *
23  * This program is distributed in the hope that it will be useful,
24  * but WITHOUT ANY WARRANTY; without even the implied warranty of
25  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26  * GNU General Public License for more details.
27  */
28 
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30 
31 #define MODULE_NAME "ov534"
32 
33 #include "gspca.h"
34 
35 #include <linux/fixp-arith.h>
36 #include <media/v4l2-ctrls.h>
37 
38 #define OV534_REG_ADDRESS	0xf1	/* sensor address */
39 #define OV534_REG_SUBADDR	0xf2
40 #define OV534_REG_WRITE		0xf3
41 #define OV534_REG_READ		0xf4
42 #define OV534_REG_OPERATION	0xf5
43 #define OV534_REG_STATUS	0xf6
44 
45 #define OV534_OP_WRITE_3	0x37
46 #define OV534_OP_WRITE_2	0x33
47 #define OV534_OP_READ_2		0xf9
48 
49 #define CTRL_TIMEOUT 500
50 #define DEFAULT_FRAME_RATE 30
51 
52 MODULE_AUTHOR("Antonio Ospite <ospite@studenti.unina.it>");
53 MODULE_DESCRIPTION("GSPCA/OV534 USB Camera Driver");
54 MODULE_LICENSE("GPL");
55 
56 /* specific webcam descriptor */
57 struct sd {
58 	struct gspca_dev gspca_dev;	/* !! must be the first item */
59 
60 	struct v4l2_ctrl_handler ctrl_handler;
61 	struct v4l2_ctrl *hue;
62 	struct v4l2_ctrl *saturation;
63 	struct v4l2_ctrl *brightness;
64 	struct v4l2_ctrl *contrast;
65 	struct { /* gain control cluster */
66 		struct v4l2_ctrl *autogain;
67 		struct v4l2_ctrl *gain;
68 	};
69 	struct v4l2_ctrl *autowhitebalance;
70 	struct { /* exposure control cluster */
71 		struct v4l2_ctrl *autoexposure;
72 		struct v4l2_ctrl *exposure;
73 	};
74 	struct v4l2_ctrl *sharpness;
75 	struct v4l2_ctrl *hflip;
76 	struct v4l2_ctrl *vflip;
77 	struct v4l2_ctrl *plfreq;
78 
79 	__u32 last_pts;
80 	u16 last_fid;
81 	u8 frame_rate;
82 
83 	u8 sensor;
84 };
85 enum sensors {
86 	SENSOR_OV767x,
87 	SENSOR_OV772x,
88 	NSENSORS
89 };
90 
91 static int sd_start(struct gspca_dev *gspca_dev);
92 static void sd_stopN(struct gspca_dev *gspca_dev);
93 
94 
95 static const struct v4l2_pix_format ov772x_mode[] = {
96 	{320, 240, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
97 	 .bytesperline = 320 * 2,
98 	 .sizeimage = 320 * 240 * 2,
99 	 .colorspace = V4L2_COLORSPACE_SRGB,
100 	 .priv = 1},
101 	{640, 480, V4L2_PIX_FMT_YUYV, V4L2_FIELD_NONE,
102 	 .bytesperline = 640 * 2,
103 	 .sizeimage = 640 * 480 * 2,
104 	 .colorspace = V4L2_COLORSPACE_SRGB,
105 	 .priv = 0},
106 };
107 static const struct v4l2_pix_format ov767x_mode[] = {
108 	{320, 240, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
109 		.bytesperline = 320,
110 		.sizeimage = 320 * 240 * 3 / 8 + 590,
111 		.colorspace = V4L2_COLORSPACE_JPEG},
112 	{640, 480, V4L2_PIX_FMT_JPEG, V4L2_FIELD_NONE,
113 		.bytesperline = 640,
114 		.sizeimage = 640 * 480 * 3 / 8 + 590,
115 		.colorspace = V4L2_COLORSPACE_JPEG},
116 };
117 
118 static const u8 qvga_rates[] = {187, 150, 137, 125, 100, 75, 60, 50, 37, 30};
119 static const u8 vga_rates[] = {60, 50, 40, 30, 15};
120 
121 static const struct framerates ov772x_framerates[] = {
122 	{ /* 320x240 */
123 		.rates = qvga_rates,
124 		.nrates = ARRAY_SIZE(qvga_rates),
125 	},
126 	{ /* 640x480 */
127 		.rates = vga_rates,
128 		.nrates = ARRAY_SIZE(vga_rates),
129 	},
130 };
131 
132 struct reg_array {
133 	const u8 (*val)[2];
134 	int len;
135 };
136 
137 static const u8 bridge_init_767x[][2] = {
138 /* comments from the ms-win file apollo7670.set */
139 /* str1 */
140 	{0xf1, 0x42},
141 	{0x88, 0xf8},
142 	{0x89, 0xff},
143 	{0x76, 0x03},
144 	{0x92, 0x03},
145 	{0x95, 0x10},
146 	{0xe2, 0x00},
147 	{0xe7, 0x3e},
148 	{0x8d, 0x1c},
149 	{0x8e, 0x00},
150 	{0x8f, 0x00},
151 	{0x1f, 0x00},
152 	{0xc3, 0xf9},
153 	{0x89, 0xff},
154 	{0x88, 0xf8},
155 	{0x76, 0x03},
156 	{0x92, 0x01},
157 	{0x93, 0x18},
158 	{0x1c, 0x00},
159 	{0x1d, 0x48},
160 	{0x1d, 0x00},
161 	{0x1d, 0xff},
162 	{0x1d, 0x02},
163 	{0x1d, 0x58},
164 	{0x1d, 0x00},
165 	{0x1c, 0x0a},
166 	{0x1d, 0x0a},
167 	{0x1d, 0x0e},
168 	{0xc0, 0x50},	/* HSize 640 */
169 	{0xc1, 0x3c},	/* VSize 480 */
170 	{0x34, 0x05},	/* enable Audio Suspend mode */
171 	{0xc2, 0x0c},	/* Input YUV */
172 	{0xc3, 0xf9},	/* enable PRE */
173 	{0x34, 0x05},	/* enable Audio Suspend mode */
174 	{0xe7, 0x2e},	/* this solves failure of "SuspendResumeTest" */
175 	{0x31, 0xf9},	/* enable 1.8V Suspend */
176 	{0x35, 0x02},	/* turn on JPEG */
177 	{0xd9, 0x10},
178 	{0x25, 0x42},	/* GPIO[8]:Input */
179 	{0x94, 0x11},	/* If the default setting is loaded when
180 			 * system boots up, this flag is closed here */
181 };
182 static const u8 sensor_init_767x[][2] = {
183 	{0x12, 0x80},
184 	{0x11, 0x03},
185 	{0x3a, 0x04},
186 	{0x12, 0x00},
187 	{0x17, 0x13},
188 	{0x18, 0x01},
189 	{0x32, 0xb6},
190 	{0x19, 0x02},
191 	{0x1a, 0x7a},
192 	{0x03, 0x0a},
193 	{0x0c, 0x00},
194 	{0x3e, 0x00},
195 	{0x70, 0x3a},
196 	{0x71, 0x35},
197 	{0x72, 0x11},
198 	{0x73, 0xf0},
199 	{0xa2, 0x02},
200 	{0x7a, 0x2a},	/* set Gamma=1.6 below */
201 	{0x7b, 0x12},
202 	{0x7c, 0x1d},
203 	{0x7d, 0x2d},
204 	{0x7e, 0x45},
205 	{0x7f, 0x50},
206 	{0x80, 0x59},
207 	{0x81, 0x62},
208 	{0x82, 0x6b},
209 	{0x83, 0x73},
210 	{0x84, 0x7b},
211 	{0x85, 0x8a},
212 	{0x86, 0x98},
213 	{0x87, 0xb2},
214 	{0x88, 0xca},
215 	{0x89, 0xe0},
216 	{0x13, 0xe0},
217 	{0x00, 0x00},
218 	{0x10, 0x00},
219 	{0x0d, 0x40},
220 	{0x14, 0x38},	/* gain max 16x */
221 	{0xa5, 0x05},
222 	{0xab, 0x07},
223 	{0x24, 0x95},
224 	{0x25, 0x33},
225 	{0x26, 0xe3},
226 	{0x9f, 0x78},
227 	{0xa0, 0x68},
228 	{0xa1, 0x03},
229 	{0xa6, 0xd8},
230 	{0xa7, 0xd8},
231 	{0xa8, 0xf0},
232 	{0xa9, 0x90},
233 	{0xaa, 0x94},
234 	{0x13, 0xe5},
235 	{0x0e, 0x61},
236 	{0x0f, 0x4b},
237 	{0x16, 0x02},
238 	{0x21, 0x02},
239 	{0x22, 0x91},
240 	{0x29, 0x07},
241 	{0x33, 0x0b},
242 	{0x35, 0x0b},
243 	{0x37, 0x1d},
244 	{0x38, 0x71},
245 	{0x39, 0x2a},
246 	{0x3c, 0x78},
247 	{0x4d, 0x40},
248 	{0x4e, 0x20},
249 	{0x69, 0x00},
250 	{0x6b, 0x4a},
251 	{0x74, 0x10},
252 	{0x8d, 0x4f},
253 	{0x8e, 0x00},
254 	{0x8f, 0x00},
255 	{0x90, 0x00},
256 	{0x91, 0x00},
257 	{0x96, 0x00},
258 	{0x9a, 0x80},
259 	{0xb0, 0x84},
260 	{0xb1, 0x0c},
261 	{0xb2, 0x0e},
262 	{0xb3, 0x82},
263 	{0xb8, 0x0a},
264 	{0x43, 0x0a},
265 	{0x44, 0xf0},
266 	{0x45, 0x34},
267 	{0x46, 0x58},
268 	{0x47, 0x28},
269 	{0x48, 0x3a},
270 	{0x59, 0x88},
271 	{0x5a, 0x88},
272 	{0x5b, 0x44},
273 	{0x5c, 0x67},
274 	{0x5d, 0x49},
275 	{0x5e, 0x0e},
276 	{0x6c, 0x0a},
277 	{0x6d, 0x55},
278 	{0x6e, 0x11},
279 	{0x6f, 0x9f},
280 	{0x6a, 0x40},
281 	{0x01, 0x40},
282 	{0x02, 0x40},
283 	{0x13, 0xe7},
284 	{0x4f, 0x80},
285 	{0x50, 0x80},
286 	{0x51, 0x00},
287 	{0x52, 0x22},
288 	{0x53, 0x5e},
289 	{0x54, 0x80},
290 	{0x58, 0x9e},
291 	{0x41, 0x08},
292 	{0x3f, 0x00},
293 	{0x75, 0x04},
294 	{0x76, 0xe1},
295 	{0x4c, 0x00},
296 	{0x77, 0x01},
297 	{0x3d, 0xc2},
298 	{0x4b, 0x09},
299 	{0xc9, 0x60},
300 	{0x41, 0x38},	/* jfm: auto sharpness + auto de-noise  */
301 	{0x56, 0x40},
302 	{0x34, 0x11},
303 	{0x3b, 0xc2},
304 	{0xa4, 0x8a},	/* Night mode trigger point */
305 	{0x96, 0x00},
306 	{0x97, 0x30},
307 	{0x98, 0x20},
308 	{0x99, 0x20},
309 	{0x9a, 0x84},
310 	{0x9b, 0x29},
311 	{0x9c, 0x03},
312 	{0x9d, 0x4c},
313 	{0x9e, 0x3f},
314 	{0x78, 0x04},
315 	{0x79, 0x01},
316 	{0xc8, 0xf0},
317 	{0x79, 0x0f},
318 	{0xc8, 0x00},
319 	{0x79, 0x10},
320 	{0xc8, 0x7e},
321 	{0x79, 0x0a},
322 	{0xc8, 0x80},
323 	{0x79, 0x0b},
324 	{0xc8, 0x01},
325 	{0x79, 0x0c},
326 	{0xc8, 0x0f},
327 	{0x79, 0x0d},
328 	{0xc8, 0x20},
329 	{0x79, 0x09},
330 	{0xc8, 0x80},
331 	{0x79, 0x02},
332 	{0xc8, 0xc0},
333 	{0x79, 0x03},
334 	{0xc8, 0x20},
335 	{0x79, 0x26},
336 };
337 static const u8 bridge_start_vga_767x[][2] = {
338 /* str59 JPG */
339 	{0x94, 0xaa},
340 	{0xf1, 0x42},
341 	{0xe5, 0x04},
342 	{0xc0, 0x50},
343 	{0xc1, 0x3c},
344 	{0xc2, 0x0c},
345 	{0x35, 0x02},	/* turn on JPEG */
346 	{0xd9, 0x10},
347 	{0xda, 0x00},	/* for higher clock rate(30fps) */
348 	{0x34, 0x05},	/* enable Audio Suspend mode */
349 	{0xc3, 0xf9},	/* enable PRE */
350 	{0x8c, 0x00},	/* CIF VSize LSB[2:0] */
351 	{0x8d, 0x1c},	/* output YUV */
352 /*	{0x34, 0x05},	 * enable Audio Suspend mode (?) */
353 	{0x50, 0x00},	/* H/V divider=0 */
354 	{0x51, 0xa0},	/* input H=640/4 */
355 	{0x52, 0x3c},	/* input V=480/4 */
356 	{0x53, 0x00},	/* offset X=0 */
357 	{0x54, 0x00},	/* offset Y=0 */
358 	{0x55, 0x00},	/* H/V size[8]=0 */
359 	{0x57, 0x00},	/* H-size[9]=0 */
360 	{0x5c, 0x00},	/* output size[9:8]=0 */
361 	{0x5a, 0xa0},	/* output H=640/4 */
362 	{0x5b, 0x78},	/* output V=480/4 */
363 	{0x1c, 0x0a},
364 	{0x1d, 0x0a},
365 	{0x94, 0x11},
366 };
367 static const u8 sensor_start_vga_767x[][2] = {
368 	{0x11, 0x01},
369 	{0x1e, 0x04},
370 	{0x19, 0x02},
371 	{0x1a, 0x7a},
372 };
373 static const u8 bridge_start_qvga_767x[][2] = {
374 /* str86 JPG */
375 	{0x94, 0xaa},
376 	{0xf1, 0x42},
377 	{0xe5, 0x04},
378 	{0xc0, 0x80},
379 	{0xc1, 0x60},
380 	{0xc2, 0x0c},
381 	{0x35, 0x02},	/* turn on JPEG */
382 	{0xd9, 0x10},
383 	{0xc0, 0x50},	/* CIF HSize 640 */
384 	{0xc1, 0x3c},	/* CIF VSize 480 */
385 	{0x8c, 0x00},	/* CIF VSize LSB[2:0] */
386 	{0x8d, 0x1c},	/* output YUV */
387 	{0x34, 0x05},	/* enable Audio Suspend mode */
388 	{0xc2, 0x4c},	/* output YUV and Enable DCW */
389 	{0xc3, 0xf9},	/* enable PRE */
390 	{0x1c, 0x00},	/* indirect addressing */
391 	{0x1d, 0x48},	/* output YUV422 */
392 	{0x50, 0x89},	/* H/V divider=/2; plus DCW AVG */
393 	{0x51, 0xa0},	/* DCW input H=640/4 */
394 	{0x52, 0x78},	/* DCW input V=480/4 */
395 	{0x53, 0x00},	/* offset X=0 */
396 	{0x54, 0x00},	/* offset Y=0 */
397 	{0x55, 0x00},	/* H/V size[8]=0 */
398 	{0x57, 0x00},	/* H-size[9]=0 */
399 	{0x5c, 0x00},	/* DCW output size[9:8]=0 */
400 	{0x5a, 0x50},	/* DCW output H=320/4 */
401 	{0x5b, 0x3c},	/* DCW output V=240/4 */
402 	{0x1c, 0x0a},
403 	{0x1d, 0x0a},
404 	{0x94, 0x11},
405 };
406 static const u8 sensor_start_qvga_767x[][2] = {
407 	{0x11, 0x01},
408 	{0x1e, 0x04},
409 	{0x19, 0x02},
410 	{0x1a, 0x7a},
411 };
412 
413 static const u8 bridge_init_772x[][2] = {
414 	{ 0xc2, 0x0c },
415 	{ 0x88, 0xf8 },
416 	{ 0xc3, 0x69 },
417 	{ 0x89, 0xff },
418 	{ 0x76, 0x03 },
419 	{ 0x92, 0x01 },
420 	{ 0x93, 0x18 },
421 	{ 0x94, 0x10 },
422 	{ 0x95, 0x10 },
423 	{ 0xe2, 0x00 },
424 	{ 0xe7, 0x3e },
425 
426 	{ 0x96, 0x00 },
427 
428 	{ 0x97, 0x20 },
429 	{ 0x97, 0x20 },
430 	{ 0x97, 0x20 },
431 	{ 0x97, 0x0a },
432 	{ 0x97, 0x3f },
433 	{ 0x97, 0x4a },
434 	{ 0x97, 0x20 },
435 	{ 0x97, 0x15 },
436 	{ 0x97, 0x0b },
437 
438 	{ 0x8e, 0x40 },
439 	{ 0x1f, 0x81 },
440 	{ 0x34, 0x05 },
441 	{ 0xe3, 0x04 },
442 	{ 0x88, 0x00 },
443 	{ 0x89, 0x00 },
444 	{ 0x76, 0x00 },
445 	{ 0xe7, 0x2e },
446 	{ 0x31, 0xf9 },
447 	{ 0x25, 0x42 },
448 	{ 0x21, 0xf0 },
449 
450 	{ 0x1c, 0x00 },
451 	{ 0x1d, 0x40 },
452 	{ 0x1d, 0x02 }, /* payload size 0x0200 * 4 = 2048 bytes */
453 	{ 0x1d, 0x00 }, /* payload size */
454 
455 	{ 0x1d, 0x02 }, /* frame size 0x025800 * 4 = 614400 */
456 	{ 0x1d, 0x58 }, /* frame size */
457 	{ 0x1d, 0x00 }, /* frame size */
458 
459 	{ 0x1c, 0x0a },
460 	{ 0x1d, 0x08 }, /* turn on UVC header */
461 	{ 0x1d, 0x0e }, /* .. */
462 
463 	{ 0x8d, 0x1c },
464 	{ 0x8e, 0x80 },
465 	{ 0xe5, 0x04 },
466 
467 	{ 0xc0, 0x50 },
468 	{ 0xc1, 0x3c },
469 	{ 0xc2, 0x0c },
470 };
471 static const u8 sensor_init_772x[][2] = {
472 	{ 0x12, 0x80 },
473 	{ 0x11, 0x01 },
474 /*fixme: better have a delay?*/
475 	{ 0x11, 0x01 },
476 	{ 0x11, 0x01 },
477 	{ 0x11, 0x01 },
478 	{ 0x11, 0x01 },
479 	{ 0x11, 0x01 },
480 	{ 0x11, 0x01 },
481 	{ 0x11, 0x01 },
482 	{ 0x11, 0x01 },
483 	{ 0x11, 0x01 },
484 	{ 0x11, 0x01 },
485 
486 	{ 0x3d, 0x03 },
487 	{ 0x17, 0x26 },
488 	{ 0x18, 0xa0 },
489 	{ 0x19, 0x07 },
490 	{ 0x1a, 0xf0 },
491 	{ 0x32, 0x00 },
492 	{ 0x29, 0xa0 },
493 	{ 0x2c, 0xf0 },
494 	{ 0x65, 0x20 },
495 	{ 0x11, 0x01 },
496 	{ 0x42, 0x7f },
497 	{ 0x63, 0xaa },		/* AWB - was e0 */
498 	{ 0x64, 0xff },
499 	{ 0x66, 0x00 },
500 	{ 0x13, 0xf0 },		/* com8 */
501 	{ 0x0d, 0x41 },
502 	{ 0x0f, 0xc5 },
503 	{ 0x14, 0x11 },
504 
505 	{ 0x22, 0x7f },
506 	{ 0x23, 0x03 },
507 	{ 0x24, 0x40 },
508 	{ 0x25, 0x30 },
509 	{ 0x26, 0xa1 },
510 	{ 0x2a, 0x00 },
511 	{ 0x2b, 0x00 },
512 	{ 0x6b, 0xaa },
513 	{ 0x13, 0xff },		/* AWB */
514 
515 	{ 0x90, 0x05 },
516 	{ 0x91, 0x01 },
517 	{ 0x92, 0x03 },
518 	{ 0x93, 0x00 },
519 	{ 0x94, 0x60 },
520 	{ 0x95, 0x3c },
521 	{ 0x96, 0x24 },
522 	{ 0x97, 0x1e },
523 	{ 0x98, 0x62 },
524 	{ 0x99, 0x80 },
525 	{ 0x9a, 0x1e },
526 	{ 0x9b, 0x08 },
527 	{ 0x9c, 0x20 },
528 	{ 0x9e, 0x81 },
529 
530 	{ 0xa6, 0x07 },
531 	{ 0x7e, 0x0c },
532 	{ 0x7f, 0x16 },
533 	{ 0x80, 0x2a },
534 	{ 0x81, 0x4e },
535 	{ 0x82, 0x61 },
536 	{ 0x83, 0x6f },
537 	{ 0x84, 0x7b },
538 	{ 0x85, 0x86 },
539 	{ 0x86, 0x8e },
540 	{ 0x87, 0x97 },
541 	{ 0x88, 0xa4 },
542 	{ 0x89, 0xaf },
543 	{ 0x8a, 0xc5 },
544 	{ 0x8b, 0xd7 },
545 	{ 0x8c, 0xe8 },
546 	{ 0x8d, 0x20 },
547 
548 	{ 0x0c, 0x90 },
549 
550 	{ 0x2b, 0x00 },
551 	{ 0x22, 0x7f },
552 	{ 0x23, 0x03 },
553 	{ 0x11, 0x01 },
554 	{ 0x0c, 0xd0 },
555 	{ 0x64, 0xff },
556 	{ 0x0d, 0x41 },
557 
558 	{ 0x14, 0x41 },
559 	{ 0x0e, 0xcd },
560 	{ 0xac, 0xbf },
561 	{ 0x8e, 0x00 },		/* De-noise threshold */
562 	{ 0x0c, 0xd0 }
563 };
564 static const u8 bridge_start_vga_772x[][2] = {
565 	{0x1c, 0x00},
566 	{0x1d, 0x40},
567 	{0x1d, 0x02},
568 	{0x1d, 0x00},
569 	{0x1d, 0x02},
570 	{0x1d, 0x58},
571 	{0x1d, 0x00},
572 	{0xc0, 0x50},
573 	{0xc1, 0x3c},
574 };
575 static const u8 sensor_start_vga_772x[][2] = {
576 	{0x12, 0x00},
577 	{0x17, 0x26},
578 	{0x18, 0xa0},
579 	{0x19, 0x07},
580 	{0x1a, 0xf0},
581 	{0x29, 0xa0},
582 	{0x2c, 0xf0},
583 	{0x65, 0x20},
584 };
585 static const u8 bridge_start_qvga_772x[][2] = {
586 	{0x1c, 0x00},
587 	{0x1d, 0x40},
588 	{0x1d, 0x02},
589 	{0x1d, 0x00},
590 	{0x1d, 0x01},
591 	{0x1d, 0x4b},
592 	{0x1d, 0x00},
593 	{0xc0, 0x28},
594 	{0xc1, 0x1e},
595 };
596 static const u8 sensor_start_qvga_772x[][2] = {
597 	{0x12, 0x40},
598 	{0x17, 0x3f},
599 	{0x18, 0x50},
600 	{0x19, 0x03},
601 	{0x1a, 0x78},
602 	{0x29, 0x50},
603 	{0x2c, 0x78},
604 	{0x65, 0x2f},
605 };
606 
607 static void ov534_reg_write(struct gspca_dev *gspca_dev, u16 reg, u8 val)
608 {
609 	struct usb_device *udev = gspca_dev->dev;
610 	int ret;
611 
612 	if (gspca_dev->usb_err < 0)
613 		return;
614 
615 	PDEBUG(D_USBO, "SET 01 0000 %04x %02x", reg, val);
616 	gspca_dev->usb_buf[0] = val;
617 	ret = usb_control_msg(udev,
618 			      usb_sndctrlpipe(udev, 0),
619 			      0x01,
620 			      USB_DIR_OUT | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
621 			      0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
622 	if (ret < 0) {
623 		pr_err("write failed %d\n", ret);
624 		gspca_dev->usb_err = ret;
625 	}
626 }
627 
628 static u8 ov534_reg_read(struct gspca_dev *gspca_dev, u16 reg)
629 {
630 	struct usb_device *udev = gspca_dev->dev;
631 	int ret;
632 
633 	if (gspca_dev->usb_err < 0)
634 		return 0;
635 	ret = usb_control_msg(udev,
636 			      usb_rcvctrlpipe(udev, 0),
637 			      0x01,
638 			      USB_DIR_IN | USB_TYPE_VENDOR | USB_RECIP_DEVICE,
639 			      0x00, reg, gspca_dev->usb_buf, 1, CTRL_TIMEOUT);
640 	PDEBUG(D_USBI, "GET 01 0000 %04x %02x", reg, gspca_dev->usb_buf[0]);
641 	if (ret < 0) {
642 		pr_err("read failed %d\n", ret);
643 		gspca_dev->usb_err = ret;
644 	}
645 	return gspca_dev->usb_buf[0];
646 }
647 
648 /* Two bits control LED: 0x21 bit 7 and 0x23 bit 7.
649  * (direction and output)? */
650 static void ov534_set_led(struct gspca_dev *gspca_dev, int status)
651 {
652 	u8 data;
653 
654 	PDEBUG(D_CONF, "led status: %d", status);
655 
656 	data = ov534_reg_read(gspca_dev, 0x21);
657 	data |= 0x80;
658 	ov534_reg_write(gspca_dev, 0x21, data);
659 
660 	data = ov534_reg_read(gspca_dev, 0x23);
661 	if (status)
662 		data |= 0x80;
663 	else
664 		data &= ~0x80;
665 
666 	ov534_reg_write(gspca_dev, 0x23, data);
667 
668 	if (!status) {
669 		data = ov534_reg_read(gspca_dev, 0x21);
670 		data &= ~0x80;
671 		ov534_reg_write(gspca_dev, 0x21, data);
672 	}
673 }
674 
675 static int sccb_check_status(struct gspca_dev *gspca_dev)
676 {
677 	u8 data;
678 	int i;
679 
680 	for (i = 0; i < 5; i++) {
681 		msleep(10);
682 		data = ov534_reg_read(gspca_dev, OV534_REG_STATUS);
683 
684 		switch (data) {
685 		case 0x00:
686 			return 1;
687 		case 0x04:
688 			return 0;
689 		case 0x03:
690 			break;
691 		default:
692 			PERR("sccb status 0x%02x, attempt %d/5",
693 			       data, i + 1);
694 		}
695 	}
696 	return 0;
697 }
698 
699 static void sccb_reg_write(struct gspca_dev *gspca_dev, u8 reg, u8 val)
700 {
701 	PDEBUG(D_USBO, "sccb write: %02x %02x", reg, val);
702 	ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
703 	ov534_reg_write(gspca_dev, OV534_REG_WRITE, val);
704 	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_3);
705 
706 	if (!sccb_check_status(gspca_dev)) {
707 		pr_err("sccb_reg_write failed\n");
708 		gspca_dev->usb_err = -EIO;
709 	}
710 }
711 
712 static u8 sccb_reg_read(struct gspca_dev *gspca_dev, u16 reg)
713 {
714 	ov534_reg_write(gspca_dev, OV534_REG_SUBADDR, reg);
715 	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_WRITE_2);
716 	if (!sccb_check_status(gspca_dev))
717 		pr_err("sccb_reg_read failed 1\n");
718 
719 	ov534_reg_write(gspca_dev, OV534_REG_OPERATION, OV534_OP_READ_2);
720 	if (!sccb_check_status(gspca_dev))
721 		pr_err("sccb_reg_read failed 2\n");
722 
723 	return ov534_reg_read(gspca_dev, OV534_REG_READ);
724 }
725 
726 /* output a bridge sequence (reg - val) */
727 static void reg_w_array(struct gspca_dev *gspca_dev,
728 			const u8 (*data)[2], int len)
729 {
730 	while (--len >= 0) {
731 		ov534_reg_write(gspca_dev, (*data)[0], (*data)[1]);
732 		data++;
733 	}
734 }
735 
736 /* output a sensor sequence (reg - val) */
737 static void sccb_w_array(struct gspca_dev *gspca_dev,
738 			const u8 (*data)[2], int len)
739 {
740 	while (--len >= 0) {
741 		if ((*data)[0] != 0xff) {
742 			sccb_reg_write(gspca_dev, (*data)[0], (*data)[1]);
743 		} else {
744 			sccb_reg_read(gspca_dev, (*data)[1]);
745 			sccb_reg_write(gspca_dev, 0xff, 0x00);
746 		}
747 		data++;
748 	}
749 }
750 
751 /* ov772x specific controls */
752 static void set_frame_rate(struct gspca_dev *gspca_dev)
753 {
754 	struct sd *sd = (struct sd *) gspca_dev;
755 	int i;
756 	struct rate_s {
757 		u8 fps;
758 		u8 r11;
759 		u8 r0d;
760 		u8 re5;
761 	};
762 	const struct rate_s *r;
763 	static const struct rate_s rate_0[] = {	/* 640x480 */
764 		{60, 0x01, 0xc1, 0x04},
765 		{50, 0x01, 0x41, 0x02},
766 		{40, 0x02, 0xc1, 0x04},
767 		{30, 0x04, 0x81, 0x02},
768 		{15, 0x03, 0x41, 0x04},
769 	};
770 	static const struct rate_s rate_1[] = {	/* 320x240 */
771 /*		{205, 0x01, 0xc1, 0x02},  * 205 FPS: video is partly corrupt */
772 		{187, 0x01, 0x81, 0x02}, /* 187 FPS or below: video is valid */
773 		{150, 0x01, 0xc1, 0x04},
774 		{137, 0x02, 0xc1, 0x02},
775 		{125, 0x02, 0x81, 0x02},
776 		{100, 0x02, 0xc1, 0x04},
777 		{75, 0x03, 0xc1, 0x04},
778 		{60, 0x04, 0xc1, 0x04},
779 		{50, 0x02, 0x41, 0x04},
780 		{37, 0x03, 0x41, 0x04},
781 		{30, 0x04, 0x41, 0x04},
782 	};
783 
784 	if (sd->sensor != SENSOR_OV772x)
785 		return;
786 	if (gspca_dev->cam.cam_mode[gspca_dev->curr_mode].priv == 0) {
787 		r = rate_0;
788 		i = ARRAY_SIZE(rate_0);
789 	} else {
790 		r = rate_1;
791 		i = ARRAY_SIZE(rate_1);
792 	}
793 	while (--i > 0) {
794 		if (sd->frame_rate >= r->fps)
795 			break;
796 		r++;
797 	}
798 
799 	sccb_reg_write(gspca_dev, 0x11, r->r11);
800 	sccb_reg_write(gspca_dev, 0x0d, r->r0d);
801 	ov534_reg_write(gspca_dev, 0xe5, r->re5);
802 
803 	PDEBUG(D_PROBE, "frame_rate: %d", r->fps);
804 }
805 
806 static void sethue(struct gspca_dev *gspca_dev, s32 val)
807 {
808 	struct sd *sd = (struct sd *) gspca_dev;
809 
810 	if (sd->sensor == SENSOR_OV767x) {
811 		/* TBD */
812 	} else {
813 		s16 huesin;
814 		s16 huecos;
815 
816 		/* According to the datasheet the registers expect HUESIN and
817 		 * HUECOS to be the result of the trigonometric functions,
818 		 * scaled by 0x80.
819 		 *
820 		 * The 0x7fff here represents the maximum absolute value
821 		 * returned byt fixp_sin and fixp_cos, so the scaling will
822 		 * consider the result like in the interval [-1.0, 1.0].
823 		 */
824 		huesin = fixp_sin16(val) * 0x80 / 0x7fff;
825 		huecos = fixp_cos16(val) * 0x80 / 0x7fff;
826 
827 		if (huesin < 0) {
828 			sccb_reg_write(gspca_dev, 0xab,
829 				sccb_reg_read(gspca_dev, 0xab) | 0x2);
830 			huesin = -huesin;
831 		} else {
832 			sccb_reg_write(gspca_dev, 0xab,
833 				sccb_reg_read(gspca_dev, 0xab) & ~0x2);
834 
835 		}
836 		sccb_reg_write(gspca_dev, 0xa9, (u8)huecos);
837 		sccb_reg_write(gspca_dev, 0xaa, (u8)huesin);
838 	}
839 }
840 
841 static void setsaturation(struct gspca_dev *gspca_dev, s32 val)
842 {
843 	struct sd *sd = (struct sd *) gspca_dev;
844 
845 	if (sd->sensor == SENSOR_OV767x) {
846 		int i;
847 		static u8 color_tb[][6] = {
848 			{0x42, 0x42, 0x00, 0x11, 0x30, 0x41},
849 			{0x52, 0x52, 0x00, 0x16, 0x3c, 0x52},
850 			{0x66, 0x66, 0x00, 0x1b, 0x4b, 0x66},
851 			{0x80, 0x80, 0x00, 0x22, 0x5e, 0x80},
852 			{0x9a, 0x9a, 0x00, 0x29, 0x71, 0x9a},
853 			{0xb8, 0xb8, 0x00, 0x31, 0x87, 0xb8},
854 			{0xdd, 0xdd, 0x00, 0x3b, 0xa2, 0xdd},
855 		};
856 
857 		for (i = 0; i < ARRAY_SIZE(color_tb[0]); i++)
858 			sccb_reg_write(gspca_dev, 0x4f + i, color_tb[val][i]);
859 	} else {
860 		sccb_reg_write(gspca_dev, 0xa7, val); /* U saturation */
861 		sccb_reg_write(gspca_dev, 0xa8, val); /* V saturation */
862 	}
863 }
864 
865 static void setbrightness(struct gspca_dev *gspca_dev, s32 val)
866 {
867 	struct sd *sd = (struct sd *) gspca_dev;
868 
869 	if (sd->sensor == SENSOR_OV767x) {
870 		if (val < 0)
871 			val = 0x80 - val;
872 		sccb_reg_write(gspca_dev, 0x55, val);	/* bright */
873 	} else {
874 		sccb_reg_write(gspca_dev, 0x9b, val);
875 	}
876 }
877 
878 static void setcontrast(struct gspca_dev *gspca_dev, s32 val)
879 {
880 	struct sd *sd = (struct sd *) gspca_dev;
881 
882 	if (sd->sensor == SENSOR_OV767x)
883 		sccb_reg_write(gspca_dev, 0x56, val);	/* contras */
884 	else
885 		sccb_reg_write(gspca_dev, 0x9c, val);
886 }
887 
888 static void setgain(struct gspca_dev *gspca_dev, s32 val)
889 {
890 	switch (val & 0x30) {
891 	case 0x00:
892 		val &= 0x0f;
893 		break;
894 	case 0x10:
895 		val &= 0x0f;
896 		val |= 0x30;
897 		break;
898 	case 0x20:
899 		val &= 0x0f;
900 		val |= 0x70;
901 		break;
902 	default:
903 /*	case 0x30: */
904 		val &= 0x0f;
905 		val |= 0xf0;
906 		break;
907 	}
908 	sccb_reg_write(gspca_dev, 0x00, val);
909 }
910 
911 static s32 getgain(struct gspca_dev *gspca_dev)
912 {
913 	return sccb_reg_read(gspca_dev, 0x00);
914 }
915 
916 static void setexposure(struct gspca_dev *gspca_dev, s32 val)
917 {
918 	struct sd *sd = (struct sd *) gspca_dev;
919 
920 	if (sd->sensor == SENSOR_OV767x) {
921 
922 		/* set only aec[9:2] */
923 		sccb_reg_write(gspca_dev, 0x10, val);	/* aech */
924 	} else {
925 
926 		/* 'val' is one byte and represents half of the exposure value
927 		 * we are going to set into registers, a two bytes value:
928 		 *
929 		 *    MSB: ((u16) val << 1) >> 8   == val >> 7
930 		 *    LSB: ((u16) val << 1) & 0xff == val << 1
931 		 */
932 		sccb_reg_write(gspca_dev, 0x08, val >> 7);
933 		sccb_reg_write(gspca_dev, 0x10, val << 1);
934 	}
935 }
936 
937 static s32 getexposure(struct gspca_dev *gspca_dev)
938 {
939 	struct sd *sd = (struct sd *) gspca_dev;
940 
941 	if (sd->sensor == SENSOR_OV767x) {
942 		/* get only aec[9:2] */
943 		return sccb_reg_read(gspca_dev, 0x10);	/* aech */
944 	} else {
945 		u8 hi = sccb_reg_read(gspca_dev, 0x08);
946 		u8 lo = sccb_reg_read(gspca_dev, 0x10);
947 		return (hi << 8 | lo) >> 1;
948 	}
949 }
950 
951 static void setagc(struct gspca_dev *gspca_dev, s32 val)
952 {
953 	if (val) {
954 		sccb_reg_write(gspca_dev, 0x13,
955 				sccb_reg_read(gspca_dev, 0x13) | 0x04);
956 		sccb_reg_write(gspca_dev, 0x64,
957 				sccb_reg_read(gspca_dev, 0x64) | 0x03);
958 	} else {
959 		sccb_reg_write(gspca_dev, 0x13,
960 				sccb_reg_read(gspca_dev, 0x13) & ~0x04);
961 		sccb_reg_write(gspca_dev, 0x64,
962 				sccb_reg_read(gspca_dev, 0x64) & ~0x03);
963 	}
964 }
965 
966 static void setawb(struct gspca_dev *gspca_dev, s32 val)
967 {
968 	struct sd *sd = (struct sd *) gspca_dev;
969 
970 	if (val) {
971 		sccb_reg_write(gspca_dev, 0x13,
972 				sccb_reg_read(gspca_dev, 0x13) | 0x02);
973 		if (sd->sensor == SENSOR_OV772x)
974 			sccb_reg_write(gspca_dev, 0x63,
975 				sccb_reg_read(gspca_dev, 0x63) | 0xc0);
976 	} else {
977 		sccb_reg_write(gspca_dev, 0x13,
978 				sccb_reg_read(gspca_dev, 0x13) & ~0x02);
979 		if (sd->sensor == SENSOR_OV772x)
980 			sccb_reg_write(gspca_dev, 0x63,
981 				sccb_reg_read(gspca_dev, 0x63) & ~0xc0);
982 	}
983 }
984 
985 static void setaec(struct gspca_dev *gspca_dev, s32 val)
986 {
987 	struct sd *sd = (struct sd *) gspca_dev;
988 	u8 data;
989 
990 	data = sd->sensor == SENSOR_OV767x ?
991 			0x05 :		/* agc + aec */
992 			0x01;		/* agc */
993 	switch (val) {
994 	case V4L2_EXPOSURE_AUTO:
995 		sccb_reg_write(gspca_dev, 0x13,
996 				sccb_reg_read(gspca_dev, 0x13) | data);
997 		break;
998 	case V4L2_EXPOSURE_MANUAL:
999 		sccb_reg_write(gspca_dev, 0x13,
1000 				sccb_reg_read(gspca_dev, 0x13) & ~data);
1001 		break;
1002 	}
1003 }
1004 
1005 static void setsharpness(struct gspca_dev *gspca_dev, s32 val)
1006 {
1007 	sccb_reg_write(gspca_dev, 0x91, val);	/* Auto de-noise threshold */
1008 	sccb_reg_write(gspca_dev, 0x8e, val);	/* De-noise threshold */
1009 }
1010 
1011 static void sethvflip(struct gspca_dev *gspca_dev, s32 hflip, s32 vflip)
1012 {
1013 	struct sd *sd = (struct sd *) gspca_dev;
1014 	u8 val;
1015 
1016 	if (sd->sensor == SENSOR_OV767x) {
1017 		val = sccb_reg_read(gspca_dev, 0x1e);	/* mvfp */
1018 		val &= ~0x30;
1019 		if (hflip)
1020 			val |= 0x20;
1021 		if (vflip)
1022 			val |= 0x10;
1023 		sccb_reg_write(gspca_dev, 0x1e, val);
1024 	} else {
1025 		val = sccb_reg_read(gspca_dev, 0x0c);
1026 		val &= ~0xc0;
1027 		if (hflip == 0)
1028 			val |= 0x40;
1029 		if (vflip == 0)
1030 			val |= 0x80;
1031 		sccb_reg_write(gspca_dev, 0x0c, val);
1032 	}
1033 }
1034 
1035 static void setlightfreq(struct gspca_dev *gspca_dev, s32 val)
1036 {
1037 	struct sd *sd = (struct sd *) gspca_dev;
1038 
1039 	val = val ? 0x9e : 0x00;
1040 	if (sd->sensor == SENSOR_OV767x) {
1041 		sccb_reg_write(gspca_dev, 0x2a, 0x00);
1042 		if (val)
1043 			val = 0x9d;	/* insert dummy to 25fps for 50Hz */
1044 	}
1045 	sccb_reg_write(gspca_dev, 0x2b, val);
1046 }
1047 
1048 
1049 /* this function is called at probe time */
1050 static int sd_config(struct gspca_dev *gspca_dev,
1051 		     const struct usb_device_id *id)
1052 {
1053 	struct sd *sd = (struct sd *) gspca_dev;
1054 	struct cam *cam;
1055 
1056 	cam = &gspca_dev->cam;
1057 
1058 	cam->cam_mode = ov772x_mode;
1059 	cam->nmodes = ARRAY_SIZE(ov772x_mode);
1060 
1061 	sd->frame_rate = DEFAULT_FRAME_RATE;
1062 
1063 	return 0;
1064 }
1065 
1066 static int ov534_g_volatile_ctrl(struct v4l2_ctrl *ctrl)
1067 {
1068 	struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1069 	struct gspca_dev *gspca_dev = &sd->gspca_dev;
1070 
1071 	switch (ctrl->id) {
1072 	case V4L2_CID_AUTOGAIN:
1073 		gspca_dev->usb_err = 0;
1074 		if (ctrl->val && sd->gain && gspca_dev->streaming)
1075 			sd->gain->val = getgain(gspca_dev);
1076 		return gspca_dev->usb_err;
1077 
1078 	case V4L2_CID_EXPOSURE_AUTO:
1079 		gspca_dev->usb_err = 0;
1080 		if (ctrl->val == V4L2_EXPOSURE_AUTO && sd->exposure &&
1081 		    gspca_dev->streaming)
1082 			sd->exposure->val = getexposure(gspca_dev);
1083 		return gspca_dev->usb_err;
1084 	}
1085 	return -EINVAL;
1086 }
1087 
1088 static int ov534_s_ctrl(struct v4l2_ctrl *ctrl)
1089 {
1090 	struct sd *sd = container_of(ctrl->handler, struct sd, ctrl_handler);
1091 	struct gspca_dev *gspca_dev = &sd->gspca_dev;
1092 
1093 	gspca_dev->usb_err = 0;
1094 	if (!gspca_dev->streaming)
1095 		return 0;
1096 
1097 	switch (ctrl->id) {
1098 	case V4L2_CID_HUE:
1099 		sethue(gspca_dev, ctrl->val);
1100 		break;
1101 	case V4L2_CID_SATURATION:
1102 		setsaturation(gspca_dev, ctrl->val);
1103 		break;
1104 	case V4L2_CID_BRIGHTNESS:
1105 		setbrightness(gspca_dev, ctrl->val);
1106 		break;
1107 	case V4L2_CID_CONTRAST:
1108 		setcontrast(gspca_dev, ctrl->val);
1109 		break;
1110 	case V4L2_CID_AUTOGAIN:
1111 	/* case V4L2_CID_GAIN: */
1112 		setagc(gspca_dev, ctrl->val);
1113 		if (!gspca_dev->usb_err && !ctrl->val && sd->gain)
1114 			setgain(gspca_dev, sd->gain->val);
1115 		break;
1116 	case V4L2_CID_AUTO_WHITE_BALANCE:
1117 		setawb(gspca_dev, ctrl->val);
1118 		break;
1119 	case V4L2_CID_EXPOSURE_AUTO:
1120 	/* case V4L2_CID_EXPOSURE: */
1121 		setaec(gspca_dev, ctrl->val);
1122 		if (!gspca_dev->usb_err && ctrl->val == V4L2_EXPOSURE_MANUAL &&
1123 		    sd->exposure)
1124 			setexposure(gspca_dev, sd->exposure->val);
1125 		break;
1126 	case V4L2_CID_SHARPNESS:
1127 		setsharpness(gspca_dev, ctrl->val);
1128 		break;
1129 	case V4L2_CID_HFLIP:
1130 		sethvflip(gspca_dev, ctrl->val, sd->vflip->val);
1131 		break;
1132 	case V4L2_CID_VFLIP:
1133 		sethvflip(gspca_dev, sd->hflip->val, ctrl->val);
1134 		break;
1135 	case V4L2_CID_POWER_LINE_FREQUENCY:
1136 		setlightfreq(gspca_dev, ctrl->val);
1137 		break;
1138 	}
1139 	return gspca_dev->usb_err;
1140 }
1141 
1142 static const struct v4l2_ctrl_ops ov534_ctrl_ops = {
1143 	.g_volatile_ctrl = ov534_g_volatile_ctrl,
1144 	.s_ctrl = ov534_s_ctrl,
1145 };
1146 
1147 static int sd_init_controls(struct gspca_dev *gspca_dev)
1148 {
1149 	struct sd *sd = (struct sd *) gspca_dev;
1150 	struct v4l2_ctrl_handler *hdl = &sd->ctrl_handler;
1151 	/* parameters with different values between the supported sensors */
1152 	int saturation_min;
1153 	int saturation_max;
1154 	int saturation_def;
1155 	int brightness_min;
1156 	int brightness_max;
1157 	int brightness_def;
1158 	int contrast_max;
1159 	int contrast_def;
1160 	int exposure_min;
1161 	int exposure_max;
1162 	int exposure_def;
1163 	int hflip_def;
1164 
1165 	if (sd->sensor == SENSOR_OV767x) {
1166 		saturation_min = 0,
1167 		saturation_max = 6,
1168 		saturation_def = 3,
1169 		brightness_min = -127;
1170 		brightness_max = 127;
1171 		brightness_def = 0;
1172 		contrast_max = 0x80;
1173 		contrast_def = 0x40;
1174 		exposure_min = 0x08;
1175 		exposure_max = 0x60;
1176 		exposure_def = 0x13;
1177 		hflip_def = 1;
1178 	} else {
1179 		saturation_min = 0,
1180 		saturation_max = 255,
1181 		saturation_def = 64,
1182 		brightness_min = 0;
1183 		brightness_max = 255;
1184 		brightness_def = 0;
1185 		contrast_max = 255;
1186 		contrast_def = 32;
1187 		exposure_min = 0;
1188 		exposure_max = 255;
1189 		exposure_def = 120;
1190 		hflip_def = 0;
1191 	}
1192 
1193 	gspca_dev->vdev.ctrl_handler = hdl;
1194 
1195 	v4l2_ctrl_handler_init(hdl, 13);
1196 
1197 	if (sd->sensor == SENSOR_OV772x)
1198 		sd->hue = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1199 				V4L2_CID_HUE, -90, 90, 1, 0);
1200 
1201 	sd->saturation = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1202 			V4L2_CID_SATURATION, saturation_min, saturation_max, 1,
1203 			saturation_def);
1204 	sd->brightness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1205 			V4L2_CID_BRIGHTNESS, brightness_min, brightness_max, 1,
1206 			brightness_def);
1207 	sd->contrast = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1208 			V4L2_CID_CONTRAST, 0, contrast_max, 1, contrast_def);
1209 
1210 	if (sd->sensor == SENSOR_OV772x) {
1211 		sd->autogain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1212 				V4L2_CID_AUTOGAIN, 0, 1, 1, 1);
1213 		sd->gain = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1214 				V4L2_CID_GAIN, 0, 63, 1, 20);
1215 	}
1216 
1217 	sd->autoexposure = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1218 			V4L2_CID_EXPOSURE_AUTO,
1219 			V4L2_EXPOSURE_MANUAL, 0,
1220 			V4L2_EXPOSURE_AUTO);
1221 	sd->exposure = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1222 			V4L2_CID_EXPOSURE, exposure_min, exposure_max, 1,
1223 			exposure_def);
1224 
1225 	sd->autowhitebalance = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1226 			V4L2_CID_AUTO_WHITE_BALANCE, 0, 1, 1, 1);
1227 
1228 	if (sd->sensor == SENSOR_OV772x)
1229 		sd->sharpness = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1230 				V4L2_CID_SHARPNESS, 0, 63, 1, 0);
1231 
1232 	sd->hflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1233 			V4L2_CID_HFLIP, 0, 1, 1, hflip_def);
1234 	sd->vflip = v4l2_ctrl_new_std(hdl, &ov534_ctrl_ops,
1235 			V4L2_CID_VFLIP, 0, 1, 1, 0);
1236 	sd->plfreq = v4l2_ctrl_new_std_menu(hdl, &ov534_ctrl_ops,
1237 			V4L2_CID_POWER_LINE_FREQUENCY,
1238 			V4L2_CID_POWER_LINE_FREQUENCY_50HZ, 0,
1239 			V4L2_CID_POWER_LINE_FREQUENCY_DISABLED);
1240 
1241 	if (hdl->error) {
1242 		pr_err("Could not initialize controls\n");
1243 		return hdl->error;
1244 	}
1245 
1246 	if (sd->sensor == SENSOR_OV772x)
1247 		v4l2_ctrl_auto_cluster(2, &sd->autogain, 0, true);
1248 
1249 	v4l2_ctrl_auto_cluster(2, &sd->autoexposure, V4L2_EXPOSURE_MANUAL,
1250 			       true);
1251 
1252 	return 0;
1253 }
1254 
1255 /* this function is called at probe and resume time */
1256 static int sd_init(struct gspca_dev *gspca_dev)
1257 {
1258 	struct sd *sd = (struct sd *) gspca_dev;
1259 	u16 sensor_id;
1260 	static const struct reg_array bridge_init[NSENSORS] = {
1261 	[SENSOR_OV767x] = {bridge_init_767x, ARRAY_SIZE(bridge_init_767x)},
1262 	[SENSOR_OV772x] = {bridge_init_772x, ARRAY_SIZE(bridge_init_772x)},
1263 	};
1264 	static const struct reg_array sensor_init[NSENSORS] = {
1265 	[SENSOR_OV767x] = {sensor_init_767x, ARRAY_SIZE(sensor_init_767x)},
1266 	[SENSOR_OV772x] = {sensor_init_772x, ARRAY_SIZE(sensor_init_772x)},
1267 	};
1268 
1269 	/* reset bridge */
1270 	ov534_reg_write(gspca_dev, 0xe7, 0x3a);
1271 	ov534_reg_write(gspca_dev, 0xe0, 0x08);
1272 	msleep(100);
1273 
1274 	/* initialize the sensor address */
1275 	ov534_reg_write(gspca_dev, OV534_REG_ADDRESS, 0x42);
1276 
1277 	/* reset sensor */
1278 	sccb_reg_write(gspca_dev, 0x12, 0x80);
1279 	msleep(10);
1280 
1281 	/* probe the sensor */
1282 	sccb_reg_read(gspca_dev, 0x0a);
1283 	sensor_id = sccb_reg_read(gspca_dev, 0x0a) << 8;
1284 	sccb_reg_read(gspca_dev, 0x0b);
1285 	sensor_id |= sccb_reg_read(gspca_dev, 0x0b);
1286 	PDEBUG(D_PROBE, "Sensor ID: %04x", sensor_id);
1287 
1288 	if ((sensor_id & 0xfff0) == 0x7670) {
1289 		sd->sensor = SENSOR_OV767x;
1290 		gspca_dev->cam.cam_mode = ov767x_mode;
1291 		gspca_dev->cam.nmodes = ARRAY_SIZE(ov767x_mode);
1292 	} else {
1293 		sd->sensor = SENSOR_OV772x;
1294 		gspca_dev->cam.bulk = 1;
1295 		gspca_dev->cam.bulk_size = 16384;
1296 		gspca_dev->cam.bulk_nurbs = 2;
1297 		gspca_dev->cam.mode_framerates = ov772x_framerates;
1298 	}
1299 
1300 	/* initialize */
1301 	reg_w_array(gspca_dev, bridge_init[sd->sensor].val,
1302 			bridge_init[sd->sensor].len);
1303 	ov534_set_led(gspca_dev, 1);
1304 	sccb_w_array(gspca_dev, sensor_init[sd->sensor].val,
1305 			sensor_init[sd->sensor].len);
1306 
1307 	sd_stopN(gspca_dev);
1308 /*	set_frame_rate(gspca_dev);	*/
1309 
1310 	return gspca_dev->usb_err;
1311 }
1312 
1313 static int sd_start(struct gspca_dev *gspca_dev)
1314 {
1315 	struct sd *sd = (struct sd *) gspca_dev;
1316 	int mode;
1317 	static const struct reg_array bridge_start[NSENSORS][2] = {
1318 	[SENSOR_OV767x] = {{bridge_start_qvga_767x,
1319 					ARRAY_SIZE(bridge_start_qvga_767x)},
1320 			{bridge_start_vga_767x,
1321 					ARRAY_SIZE(bridge_start_vga_767x)}},
1322 	[SENSOR_OV772x] = {{bridge_start_qvga_772x,
1323 					ARRAY_SIZE(bridge_start_qvga_772x)},
1324 			{bridge_start_vga_772x,
1325 					ARRAY_SIZE(bridge_start_vga_772x)}},
1326 	};
1327 	static const struct reg_array sensor_start[NSENSORS][2] = {
1328 	[SENSOR_OV767x] = {{sensor_start_qvga_767x,
1329 					ARRAY_SIZE(sensor_start_qvga_767x)},
1330 			{sensor_start_vga_767x,
1331 					ARRAY_SIZE(sensor_start_vga_767x)}},
1332 	[SENSOR_OV772x] = {{sensor_start_qvga_772x,
1333 					ARRAY_SIZE(sensor_start_qvga_772x)},
1334 			{sensor_start_vga_772x,
1335 					ARRAY_SIZE(sensor_start_vga_772x)}},
1336 	};
1337 
1338 	/* (from ms-win trace) */
1339 	if (sd->sensor == SENSOR_OV767x)
1340 		sccb_reg_write(gspca_dev, 0x1e, 0x04);
1341 					/* black sun enable ? */
1342 
1343 	mode = gspca_dev->curr_mode;	/* 0: 320x240, 1: 640x480 */
1344 	reg_w_array(gspca_dev, bridge_start[sd->sensor][mode].val,
1345 				bridge_start[sd->sensor][mode].len);
1346 	sccb_w_array(gspca_dev, sensor_start[sd->sensor][mode].val,
1347 				sensor_start[sd->sensor][mode].len);
1348 
1349 	set_frame_rate(gspca_dev);
1350 
1351 	if (sd->hue)
1352 		sethue(gspca_dev, v4l2_ctrl_g_ctrl(sd->hue));
1353 	setsaturation(gspca_dev, v4l2_ctrl_g_ctrl(sd->saturation));
1354 	if (sd->autogain)
1355 		setagc(gspca_dev, v4l2_ctrl_g_ctrl(sd->autogain));
1356 	setawb(gspca_dev, v4l2_ctrl_g_ctrl(sd->autowhitebalance));
1357 	setaec(gspca_dev, v4l2_ctrl_g_ctrl(sd->autoexposure));
1358 	if (sd->gain)
1359 		setgain(gspca_dev, v4l2_ctrl_g_ctrl(sd->gain));
1360 	setexposure(gspca_dev, v4l2_ctrl_g_ctrl(sd->exposure));
1361 	setbrightness(gspca_dev, v4l2_ctrl_g_ctrl(sd->brightness));
1362 	setcontrast(gspca_dev, v4l2_ctrl_g_ctrl(sd->contrast));
1363 	if (sd->sharpness)
1364 		setsharpness(gspca_dev, v4l2_ctrl_g_ctrl(sd->sharpness));
1365 	sethvflip(gspca_dev, v4l2_ctrl_g_ctrl(sd->hflip),
1366 		  v4l2_ctrl_g_ctrl(sd->vflip));
1367 	setlightfreq(gspca_dev, v4l2_ctrl_g_ctrl(sd->plfreq));
1368 
1369 	ov534_set_led(gspca_dev, 1);
1370 	ov534_reg_write(gspca_dev, 0xe0, 0x00);
1371 	return gspca_dev->usb_err;
1372 }
1373 
1374 static void sd_stopN(struct gspca_dev *gspca_dev)
1375 {
1376 	ov534_reg_write(gspca_dev, 0xe0, 0x09);
1377 	ov534_set_led(gspca_dev, 0);
1378 }
1379 
1380 /* Values for bmHeaderInfo (Video and Still Image Payload Headers, 2.4.3.3) */
1381 #define UVC_STREAM_EOH	(1 << 7)
1382 #define UVC_STREAM_ERR	(1 << 6)
1383 #define UVC_STREAM_STI	(1 << 5)
1384 #define UVC_STREAM_RES	(1 << 4)
1385 #define UVC_STREAM_SCR	(1 << 3)
1386 #define UVC_STREAM_PTS	(1 << 2)
1387 #define UVC_STREAM_EOF	(1 << 1)
1388 #define UVC_STREAM_FID	(1 << 0)
1389 
1390 static void sd_pkt_scan(struct gspca_dev *gspca_dev,
1391 			u8 *data, int len)
1392 {
1393 	struct sd *sd = (struct sd *) gspca_dev;
1394 	__u32 this_pts;
1395 	u16 this_fid;
1396 	int remaining_len = len;
1397 	int payload_len;
1398 
1399 	payload_len = gspca_dev->cam.bulk ? 2048 : 2040;
1400 	do {
1401 		len = min(remaining_len, payload_len);
1402 
1403 		/* Payloads are prefixed with a UVC-style header.  We
1404 		   consider a frame to start when the FID toggles, or the PTS
1405 		   changes.  A frame ends when EOF is set, and we've received
1406 		   the correct number of bytes. */
1407 
1408 		/* Verify UVC header.  Header length is always 12 */
1409 		if (data[0] != 12 || len < 12) {
1410 			PDEBUG(D_PACK, "bad header");
1411 			goto discard;
1412 		}
1413 
1414 		/* Check errors */
1415 		if (data[1] & UVC_STREAM_ERR) {
1416 			PDEBUG(D_PACK, "payload error");
1417 			goto discard;
1418 		}
1419 
1420 		/* Extract PTS and FID */
1421 		if (!(data[1] & UVC_STREAM_PTS)) {
1422 			PDEBUG(D_PACK, "PTS not present");
1423 			goto discard;
1424 		}
1425 		this_pts = (data[5] << 24) | (data[4] << 16)
1426 						| (data[3] << 8) | data[2];
1427 		this_fid = (data[1] & UVC_STREAM_FID) ? 1 : 0;
1428 
1429 		/* If PTS or FID has changed, start a new frame. */
1430 		if (this_pts != sd->last_pts || this_fid != sd->last_fid) {
1431 			if (gspca_dev->last_packet_type == INTER_PACKET)
1432 				gspca_frame_add(gspca_dev, LAST_PACKET,
1433 						NULL, 0);
1434 			sd->last_pts = this_pts;
1435 			sd->last_fid = this_fid;
1436 			gspca_frame_add(gspca_dev, FIRST_PACKET,
1437 					data + 12, len - 12);
1438 		/* If this packet is marked as EOF, end the frame */
1439 		} else if (data[1] & UVC_STREAM_EOF) {
1440 			sd->last_pts = 0;
1441 			if (gspca_dev->pixfmt.pixelformat == V4L2_PIX_FMT_YUYV
1442 			 && gspca_dev->image_len + len - 12 !=
1443 				   gspca_dev->pixfmt.width *
1444 					gspca_dev->pixfmt.height * 2) {
1445 				PDEBUG(D_PACK, "wrong sized frame");
1446 				goto discard;
1447 			}
1448 			gspca_frame_add(gspca_dev, LAST_PACKET,
1449 					data + 12, len - 12);
1450 		} else {
1451 
1452 			/* Add the data from this payload */
1453 			gspca_frame_add(gspca_dev, INTER_PACKET,
1454 					data + 12, len - 12);
1455 		}
1456 
1457 		/* Done this payload */
1458 		goto scan_next;
1459 
1460 discard:
1461 		/* Discard data until a new frame starts. */
1462 		gspca_dev->last_packet_type = DISCARD_PACKET;
1463 
1464 scan_next:
1465 		remaining_len -= len;
1466 		data += len;
1467 	} while (remaining_len > 0);
1468 }
1469 
1470 /* get stream parameters (framerate) */
1471 static void sd_get_streamparm(struct gspca_dev *gspca_dev,
1472 			     struct v4l2_streamparm *parm)
1473 {
1474 	struct v4l2_captureparm *cp = &parm->parm.capture;
1475 	struct v4l2_fract *tpf = &cp->timeperframe;
1476 	struct sd *sd = (struct sd *) gspca_dev;
1477 
1478 	cp->capability |= V4L2_CAP_TIMEPERFRAME;
1479 	tpf->numerator = 1;
1480 	tpf->denominator = sd->frame_rate;
1481 }
1482 
1483 /* set stream parameters (framerate) */
1484 static void sd_set_streamparm(struct gspca_dev *gspca_dev,
1485 			     struct v4l2_streamparm *parm)
1486 {
1487 	struct v4l2_captureparm *cp = &parm->parm.capture;
1488 	struct v4l2_fract *tpf = &cp->timeperframe;
1489 	struct sd *sd = (struct sd *) gspca_dev;
1490 
1491 	if (tpf->numerator == 0 || tpf->denominator == 0)
1492 		sd->frame_rate = DEFAULT_FRAME_RATE;
1493 	else
1494 		sd->frame_rate = tpf->denominator / tpf->numerator;
1495 
1496 	if (gspca_dev->streaming)
1497 		set_frame_rate(gspca_dev);
1498 
1499 	/* Return the actual framerate */
1500 	tpf->numerator = 1;
1501 	tpf->denominator = sd->frame_rate;
1502 }
1503 
1504 /* sub-driver description */
1505 static const struct sd_desc sd_desc = {
1506 	.name     = MODULE_NAME,
1507 	.config   = sd_config,
1508 	.init     = sd_init,
1509 	.init_controls = sd_init_controls,
1510 	.start    = sd_start,
1511 	.stopN    = sd_stopN,
1512 	.pkt_scan = sd_pkt_scan,
1513 	.get_streamparm = sd_get_streamparm,
1514 	.set_streamparm = sd_set_streamparm,
1515 };
1516 
1517 /* -- module initialisation -- */
1518 static const struct usb_device_id device_table[] = {
1519 	{USB_DEVICE(0x1415, 0x2000)},
1520 	{USB_DEVICE(0x06f8, 0x3002)},
1521 	{}
1522 };
1523 
1524 MODULE_DEVICE_TABLE(usb, device_table);
1525 
1526 /* -- device connect -- */
1527 static int sd_probe(struct usb_interface *intf, const struct usb_device_id *id)
1528 {
1529 	return gspca_dev_probe(intf, id, &sd_desc, sizeof(struct sd),
1530 				THIS_MODULE);
1531 }
1532 
1533 static struct usb_driver sd_driver = {
1534 	.name       = MODULE_NAME,
1535 	.id_table   = device_table,
1536 	.probe      = sd_probe,
1537 	.disconnect = gspca_disconnect,
1538 #ifdef CONFIG_PM
1539 	.suspend    = gspca_suspend,
1540 	.resume     = gspca_resume,
1541 	.reset_resume = gspca_resume,
1542 #endif
1543 };
1544 
1545 module_usb_driver(sd_driver);
1546