xref: /linux/drivers/media/rc/nuvoton-cir.c (revision 6ed7ffddcf61f668114edb676417e5fb33773b59)
1 /*
2  * Driver for Nuvoton Technology Corporation w83667hg/w83677hg-i CIR
3  *
4  * Copyright (C) 2010 Jarod Wilson <jarod@redhat.com>
5  * Copyright (C) 2009 Nuvoton PS Team
6  *
7  * Special thanks to Nuvoton for providing hardware, spec sheets and
8  * sample code upon which portions of this driver are based. Indirect
9  * thanks also to Maxim Levitsky, whose ene_ir driver this driver is
10  * modeled after.
11  *
12  * This program is free software; you can redistribute it and/or
13  * modify it under the terms of the GNU General Public License as
14  * published by the Free Software Foundation; either version 2 of the
15  * License, or (at your option) any later version.
16  *
17  * This program is distributed in the hope that it will be useful, but
18  * WITHOUT ANY WARRANTY; without even the implied warranty of
19  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20  * General Public License for more details.
21  *
22  * You should have received a copy of the GNU General Public License
23  * along with this program; if not, write to the Free Software
24  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
25  * USA
26  */
27 
28 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29 
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/pnp.h>
33 #include <linux/io.h>
34 #include <linux/interrupt.h>
35 #include <linux/sched.h>
36 #include <linux/slab.h>
37 #include <media/rc-core.h>
38 #include <linux/pci_ids.h>
39 
40 #include "nuvoton-cir.h"
41 
42 /* write val to config reg */
43 static inline void nvt_cr_write(struct nvt_dev *nvt, u8 val, u8 reg)
44 {
45 	outb(reg, nvt->cr_efir);
46 	outb(val, nvt->cr_efdr);
47 }
48 
49 /* read val from config reg */
50 static inline u8 nvt_cr_read(struct nvt_dev *nvt, u8 reg)
51 {
52 	outb(reg, nvt->cr_efir);
53 	return inb(nvt->cr_efdr);
54 }
55 
56 /* update config register bit without changing other bits */
57 static inline void nvt_set_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
58 {
59 	u8 tmp = nvt_cr_read(nvt, reg) | val;
60 	nvt_cr_write(nvt, tmp, reg);
61 }
62 
63 /* clear config register bit without changing other bits */
64 static inline void nvt_clear_reg_bit(struct nvt_dev *nvt, u8 val, u8 reg)
65 {
66 	u8 tmp = nvt_cr_read(nvt, reg) & ~val;
67 	nvt_cr_write(nvt, tmp, reg);
68 }
69 
70 /* enter extended function mode */
71 static inline void nvt_efm_enable(struct nvt_dev *nvt)
72 {
73 	/* Enabling Extended Function Mode explicitly requires writing 2x */
74 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
75 	outb(EFER_EFM_ENABLE, nvt->cr_efir);
76 }
77 
78 /* exit extended function mode */
79 static inline void nvt_efm_disable(struct nvt_dev *nvt)
80 {
81 	outb(EFER_EFM_DISABLE, nvt->cr_efir);
82 }
83 
84 /*
85  * When you want to address a specific logical device, write its logical
86  * device number to CR_LOGICAL_DEV_SEL, then enable/disable by writing
87  * 0x1/0x0 respectively to CR_LOGICAL_DEV_EN.
88  */
89 static inline void nvt_select_logical_dev(struct nvt_dev *nvt, u8 ldev)
90 {
91 	outb(CR_LOGICAL_DEV_SEL, nvt->cr_efir);
92 	outb(ldev, nvt->cr_efdr);
93 }
94 
95 /* write val to cir config register */
96 static inline void nvt_cir_reg_write(struct nvt_dev *nvt, u8 val, u8 offset)
97 {
98 	outb(val, nvt->cir_addr + offset);
99 }
100 
101 /* read val from cir config register */
102 static u8 nvt_cir_reg_read(struct nvt_dev *nvt, u8 offset)
103 {
104 	u8 val;
105 
106 	val = inb(nvt->cir_addr + offset);
107 
108 	return val;
109 }
110 
111 /* write val to cir wake register */
112 static inline void nvt_cir_wake_reg_write(struct nvt_dev *nvt,
113 					  u8 val, u8 offset)
114 {
115 	outb(val, nvt->cir_wake_addr + offset);
116 }
117 
118 /* read val from cir wake config register */
119 static u8 nvt_cir_wake_reg_read(struct nvt_dev *nvt, u8 offset)
120 {
121 	u8 val;
122 
123 	val = inb(nvt->cir_wake_addr + offset);
124 
125 	return val;
126 }
127 
128 /* dump current cir register contents */
129 static void cir_dump_regs(struct nvt_dev *nvt)
130 {
131 	nvt_efm_enable(nvt);
132 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
133 
134 	pr_info("%s: Dump CIR logical device registers:\n", NVT_DRIVER_NAME);
135 	pr_info(" * CR CIR ACTIVE :   0x%x\n",
136 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
137 	pr_info(" * CR CIR BASE ADDR: 0x%x\n",
138 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
139 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
140 	pr_info(" * CR CIR IRQ NUM:   0x%x\n",
141 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
142 
143 	nvt_efm_disable(nvt);
144 
145 	pr_info("%s: Dump CIR registers:\n", NVT_DRIVER_NAME);
146 	pr_info(" * IRCON:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRCON));
147 	pr_info(" * IRSTS:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRSTS));
148 	pr_info(" * IREN:      0x%x\n", nvt_cir_reg_read(nvt, CIR_IREN));
149 	pr_info(" * RXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_RXFCONT));
150 	pr_info(" * CP:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CP));
151 	pr_info(" * CC:        0x%x\n", nvt_cir_reg_read(nvt, CIR_CC));
152 	pr_info(" * SLCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCH));
153 	pr_info(" * SLCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_SLCL));
154 	pr_info(" * FIFOCON:   0x%x\n", nvt_cir_reg_read(nvt, CIR_FIFOCON));
155 	pr_info(" * IRFIFOSTS: 0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFIFOSTS));
156 	pr_info(" * SRXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_SRXFIFO));
157 	pr_info(" * TXFCONT:   0x%x\n", nvt_cir_reg_read(nvt, CIR_TXFCONT));
158 	pr_info(" * STXFIFO:   0x%x\n", nvt_cir_reg_read(nvt, CIR_STXFIFO));
159 	pr_info(" * FCCH:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCH));
160 	pr_info(" * FCCL:      0x%x\n", nvt_cir_reg_read(nvt, CIR_FCCL));
161 	pr_info(" * IRFSM:     0x%x\n", nvt_cir_reg_read(nvt, CIR_IRFSM));
162 }
163 
164 /* dump current cir wake register contents */
165 static void cir_wake_dump_regs(struct nvt_dev *nvt)
166 {
167 	u8 i, fifo_len;
168 
169 	nvt_efm_enable(nvt);
170 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
171 
172 	pr_info("%s: Dump CIR WAKE logical device registers:\n",
173 		NVT_DRIVER_NAME);
174 	pr_info(" * CR CIR WAKE ACTIVE :   0x%x\n",
175 		nvt_cr_read(nvt, CR_LOGICAL_DEV_EN));
176 	pr_info(" * CR CIR WAKE BASE ADDR: 0x%x\n",
177 		(nvt_cr_read(nvt, CR_CIR_BASE_ADDR_HI) << 8) |
178 		nvt_cr_read(nvt, CR_CIR_BASE_ADDR_LO));
179 	pr_info(" * CR CIR WAKE IRQ NUM:   0x%x\n",
180 		nvt_cr_read(nvt, CR_CIR_IRQ_RSRC));
181 
182 	nvt_efm_disable(nvt);
183 
184 	pr_info("%s: Dump CIR WAKE registers\n", NVT_DRIVER_NAME);
185 	pr_info(" * IRCON:          0x%x\n",
186 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRCON));
187 	pr_info(" * IRSTS:          0x%x\n",
188 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS));
189 	pr_info(" * IREN:           0x%x\n",
190 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN));
191 	pr_info(" * FIFO CMP DEEP:  0x%x\n",
192 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_DEEP));
193 	pr_info(" * FIFO CMP TOL:   0x%x\n",
194 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_CMP_TOL));
195 	pr_info(" * FIFO COUNT:     0x%x\n",
196 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT));
197 	pr_info(" * SLCH:           0x%x\n",
198 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCH));
199 	pr_info(" * SLCL:           0x%x\n",
200 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SLCL));
201 	pr_info(" * FIFOCON:        0x%x\n",
202 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON));
203 	pr_info(" * SRXFSTS:        0x%x\n",
204 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SRXFSTS));
205 	pr_info(" * SAMPLE RX FIFO: 0x%x\n",
206 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_SAMPLE_RX_FIFO));
207 	pr_info(" * WR FIFO DATA:   0x%x\n",
208 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_WR_FIFO_DATA));
209 	pr_info(" * RD FIFO ONLY:   0x%x\n",
210 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
211 	pr_info(" * RD FIFO ONLY IDX: 0x%x\n",
212 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX));
213 	pr_info(" * FIFO IGNORE:    0x%x\n",
214 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_IGNORE));
215 	pr_info(" * IRFSM:          0x%x\n",
216 		nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRFSM));
217 
218 	fifo_len = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFO_COUNT);
219 	pr_info("%s: Dump CIR WAKE FIFO (len %d)\n", NVT_DRIVER_NAME, fifo_len);
220 	pr_info("* Contents =");
221 	for (i = 0; i < fifo_len; i++)
222 		pr_cont(" %02x",
223 			nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY));
224 	pr_cont("\n");
225 }
226 
227 /* detect hardware features */
228 static int nvt_hw_detect(struct nvt_dev *nvt)
229 {
230 	unsigned long flags;
231 	u8 chip_major, chip_minor;
232 	int ret = 0;
233 	char chip_id[12];
234 	bool chip_unknown = false;
235 
236 	nvt_efm_enable(nvt);
237 
238 	/* Check if we're wired for the alternate EFER setup */
239 	chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
240 	if (chip_major == 0xff) {
241 		nvt->cr_efir = CR_EFIR2;
242 		nvt->cr_efdr = CR_EFDR2;
243 		nvt_efm_enable(nvt);
244 		chip_major = nvt_cr_read(nvt, CR_CHIP_ID_HI);
245 	}
246 
247 	chip_minor = nvt_cr_read(nvt, CR_CHIP_ID_LO);
248 
249 	/* these are the known working chip revisions... */
250 	switch (chip_major) {
251 	case CHIP_ID_HIGH_667:
252 		strcpy(chip_id, "w83667hg\0");
253 		if (chip_minor != CHIP_ID_LOW_667)
254 			chip_unknown = true;
255 		break;
256 	case CHIP_ID_HIGH_677B:
257 		strcpy(chip_id, "w83677hg\0");
258 		if (chip_minor != CHIP_ID_LOW_677B2 &&
259 		    chip_minor != CHIP_ID_LOW_677B3)
260 			chip_unknown = true;
261 		break;
262 	case CHIP_ID_HIGH_677C:
263 		strcpy(chip_id, "w83677hg-c\0");
264 		if (chip_minor != CHIP_ID_LOW_677C)
265 			chip_unknown = true;
266 		break;
267 	default:
268 		strcpy(chip_id, "w836x7hg\0");
269 		chip_unknown = true;
270 		break;
271 	}
272 
273 	/* warn, but still let the driver load, if we don't know this chip */
274 	if (chip_unknown)
275 		nvt_pr(KERN_WARNING, "%s: unknown chip, id: 0x%02x 0x%02x, "
276 		       "it may not work...", chip_id, chip_major, chip_minor);
277 	else
278 		nvt_dbg("%s: chip id: 0x%02x 0x%02x",
279 			chip_id, chip_major, chip_minor);
280 
281 	nvt_efm_disable(nvt);
282 
283 	spin_lock_irqsave(&nvt->nvt_lock, flags);
284 	nvt->chip_major = chip_major;
285 	nvt->chip_minor = chip_minor;
286 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
287 
288 	return ret;
289 }
290 
291 static void nvt_cir_ldev_init(struct nvt_dev *nvt)
292 {
293 	u8 val, psreg, psmask, psval;
294 
295 	if (nvt->chip_major == CHIP_ID_HIGH_667) {
296 		psreg = CR_MULTIFUNC_PIN_SEL;
297 		psmask = MULTIFUNC_PIN_SEL_MASK;
298 		psval = MULTIFUNC_ENABLE_CIR | MULTIFUNC_ENABLE_CIRWB;
299 	} else {
300 		psreg = CR_OUTPUT_PIN_SEL;
301 		psmask = OUTPUT_PIN_SEL_MASK;
302 		psval = OUTPUT_ENABLE_CIR | OUTPUT_ENABLE_CIRWB;
303 	}
304 
305 	/* output pin selection: enable CIR, with WB sensor enabled */
306 	val = nvt_cr_read(nvt, psreg);
307 	val &= psmask;
308 	val |= psval;
309 	nvt_cr_write(nvt, val, psreg);
310 
311 	/* Select CIR logical device and enable */
312 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
313 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
314 
315 	nvt_cr_write(nvt, nvt->cir_addr >> 8, CR_CIR_BASE_ADDR_HI);
316 	nvt_cr_write(nvt, nvt->cir_addr & 0xff, CR_CIR_BASE_ADDR_LO);
317 
318 	nvt_cr_write(nvt, nvt->cir_irq, CR_CIR_IRQ_RSRC);
319 
320 	nvt_dbg("CIR initialized, base io port address: 0x%lx, irq: %d",
321 		nvt->cir_addr, nvt->cir_irq);
322 }
323 
324 static void nvt_cir_wake_ldev_init(struct nvt_dev *nvt)
325 {
326 	/* Select ACPI logical device, enable it and CIR Wake */
327 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
328 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
329 
330 	/* Enable CIR Wake via PSOUT# (Pin60) */
331 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
332 
333 	/* enable cir interrupt of mouse/keyboard IRQ event */
334 	nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
335 
336 	/* enable pme interrupt of cir wakeup event */
337 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
338 
339 	/* Select CIR Wake logical device and enable */
340 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
341 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
342 
343 	nvt_cr_write(nvt, nvt->cir_wake_addr >> 8, CR_CIR_BASE_ADDR_HI);
344 	nvt_cr_write(nvt, nvt->cir_wake_addr & 0xff, CR_CIR_BASE_ADDR_LO);
345 
346 	nvt_cr_write(nvt, nvt->cir_wake_irq, CR_CIR_IRQ_RSRC);
347 
348 	nvt_dbg("CIR Wake initialized, base io port address: 0x%lx, irq: %d",
349 		nvt->cir_wake_addr, nvt->cir_wake_irq);
350 }
351 
352 /* clear out the hardware's cir rx fifo */
353 static void nvt_clear_cir_fifo(struct nvt_dev *nvt)
354 {
355 	u8 val;
356 
357 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
358 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
359 }
360 
361 /* clear out the hardware's cir wake rx fifo */
362 static void nvt_clear_cir_wake_fifo(struct nvt_dev *nvt)
363 {
364 	u8 val;
365 
366 	val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_FIFOCON);
367 	nvt_cir_wake_reg_write(nvt, val | CIR_WAKE_FIFOCON_RXFIFOCLR,
368 			       CIR_WAKE_FIFOCON);
369 }
370 
371 /* clear out the hardware's cir tx fifo */
372 static void nvt_clear_tx_fifo(struct nvt_dev *nvt)
373 {
374 	u8 val;
375 
376 	val = nvt_cir_reg_read(nvt, CIR_FIFOCON);
377 	nvt_cir_reg_write(nvt, val | CIR_FIFOCON_TXFIFOCLR, CIR_FIFOCON);
378 }
379 
380 /* enable RX Trigger Level Reach and Packet End interrupts */
381 static void nvt_set_cir_iren(struct nvt_dev *nvt)
382 {
383 	u8 iren;
384 
385 	iren = CIR_IREN_RTR | CIR_IREN_PE;
386 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
387 }
388 
389 static void nvt_cir_regs_init(struct nvt_dev *nvt)
390 {
391 	/* set sample limit count (PE interrupt raised when reached) */
392 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_SLCH);
393 	nvt_cir_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_SLCL);
394 
395 	/* set fifo irq trigger levels */
396 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV |
397 			  CIR_FIFOCON_RX_TRIGGER_LEV, CIR_FIFOCON);
398 
399 	/*
400 	 * Enable TX and RX, specify carrier on = low, off = high, and set
401 	 * sample period (currently 50us)
402 	 */
403 	nvt_cir_reg_write(nvt,
404 			  CIR_IRCON_TXEN | CIR_IRCON_RXEN |
405 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
406 			  CIR_IRCON);
407 
408 	/* clear hardware rx and tx fifos */
409 	nvt_clear_cir_fifo(nvt);
410 	nvt_clear_tx_fifo(nvt);
411 
412 	/* clear any and all stray interrupts */
413 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
414 
415 	/* and finally, enable interrupts */
416 	nvt_set_cir_iren(nvt);
417 }
418 
419 static void nvt_cir_wake_regs_init(struct nvt_dev *nvt)
420 {
421 	/* set number of bytes needed for wake from s3 (default 65) */
422 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFO_CMP_BYTES,
423 			       CIR_WAKE_FIFO_CMP_DEEP);
424 
425 	/* set tolerance/variance allowed per byte during wake compare */
426 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_CMP_TOLERANCE,
427 			       CIR_WAKE_FIFO_CMP_TOL);
428 
429 	/* set sample limit count (PE interrupt raised when reached) */
430 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT >> 8, CIR_WAKE_SLCH);
431 	nvt_cir_wake_reg_write(nvt, CIR_RX_LIMIT_COUNT & 0xff, CIR_WAKE_SLCL);
432 
433 	/* set cir wake fifo rx trigger level (currently 67) */
434 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_FIFOCON_RX_TRIGGER_LEV,
435 			       CIR_WAKE_FIFOCON);
436 
437 	/*
438 	 * Enable TX and RX, specific carrier on = low, off = high, and set
439 	 * sample period (currently 50us)
440 	 */
441 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
442 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
443 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
444 			       CIR_WAKE_IRCON);
445 
446 	/* clear cir wake rx fifo */
447 	nvt_clear_cir_wake_fifo(nvt);
448 
449 	/* clear any and all stray interrupts */
450 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
451 }
452 
453 static void nvt_enable_wake(struct nvt_dev *nvt)
454 {
455 	nvt_efm_enable(nvt);
456 
457 	nvt_select_logical_dev(nvt, LOGICAL_DEV_ACPI);
458 	nvt_set_reg_bit(nvt, CIR_WAKE_ENABLE_BIT, CR_ACPI_CIR_WAKE);
459 	nvt_set_reg_bit(nvt, CIR_INTR_MOUSE_IRQ_BIT, CR_ACPI_IRQ_EVENTS);
460 	nvt_set_reg_bit(nvt, PME_INTR_CIR_PASS_BIT, CR_ACPI_IRQ_EVENTS2);
461 
462 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR_WAKE);
463 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
464 
465 	nvt_efm_disable(nvt);
466 
467 	nvt_cir_wake_reg_write(nvt, CIR_WAKE_IRCON_MODE0 | CIR_WAKE_IRCON_RXEN |
468 			       CIR_WAKE_IRCON_R | CIR_WAKE_IRCON_RXINV |
469 			       CIR_WAKE_IRCON_SAMPLE_PERIOD_SEL,
470 			       CIR_WAKE_IRCON);
471 	nvt_cir_wake_reg_write(nvt, 0xff, CIR_WAKE_IRSTS);
472 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
473 }
474 
475 #if 0 /* Currently unused */
476 /* rx carrier detect only works in learning mode, must be called w/nvt_lock */
477 static u32 nvt_rx_carrier_detect(struct nvt_dev *nvt)
478 {
479 	u32 count, carrier, duration = 0;
480 	int i;
481 
482 	count = nvt_cir_reg_read(nvt, CIR_FCCL) |
483 		nvt_cir_reg_read(nvt, CIR_FCCH) << 8;
484 
485 	for (i = 0; i < nvt->pkts; i++) {
486 		if (nvt->buf[i] & BUF_PULSE_BIT)
487 			duration += nvt->buf[i] & BUF_LEN_MASK;
488 	}
489 
490 	duration *= SAMPLE_PERIOD;
491 
492 	if (!count || !duration) {
493 		nvt_pr(KERN_NOTICE, "Unable to determine carrier! (c:%u, d:%u)",
494 		       count, duration);
495 		return 0;
496 	}
497 
498 	carrier = MS_TO_NS(count) / duration;
499 
500 	if ((carrier > MAX_CARRIER) || (carrier < MIN_CARRIER))
501 		nvt_dbg("WTF? Carrier frequency out of range!");
502 
503 	nvt_dbg("Carrier frequency: %u (count %u, duration %u)",
504 		carrier, count, duration);
505 
506 	return carrier;
507 }
508 #endif
509 /*
510  * set carrier frequency
511  *
512  * set carrier on 2 registers: CP & CC
513  * always set CP as 0x81
514  * set CC by SPEC, CC = 3MHz/carrier - 1
515  */
516 static int nvt_set_tx_carrier(struct rc_dev *dev, u32 carrier)
517 {
518 	struct nvt_dev *nvt = dev->priv;
519 	u16 val;
520 
521 	if (carrier == 0)
522 		return -EINVAL;
523 
524 	nvt_cir_reg_write(nvt, 1, CIR_CP);
525 	val = 3000000 / (carrier) - 1;
526 	nvt_cir_reg_write(nvt, val & 0xff, CIR_CC);
527 
528 	nvt_dbg("cp: 0x%x cc: 0x%x\n",
529 		nvt_cir_reg_read(nvt, CIR_CP), nvt_cir_reg_read(nvt, CIR_CC));
530 
531 	return 0;
532 }
533 
534 /*
535  * nvt_tx_ir
536  *
537  * 1) clean TX fifo first (handled by AP)
538  * 2) copy data from user space
539  * 3) disable RX interrupts, enable TX interrupts: TTR & TFU
540  * 4) send 9 packets to TX FIFO to open TTR
541  * in interrupt_handler:
542  * 5) send all data out
543  * go back to write():
544  * 6) disable TX interrupts, re-enable RX interupts
545  *
546  * The key problem of this function is user space data may larger than
547  * driver's data buf length. So nvt_tx_ir() will only copy TX_BUF_LEN data to
548  * buf, and keep current copied data buf num in cur_buf_num. But driver's buf
549  * number may larger than TXFCONT (0xff). So in interrupt_handler, it has to
550  * set TXFCONT as 0xff, until buf_count less than 0xff.
551  */
552 static int nvt_tx_ir(struct rc_dev *dev, unsigned *txbuf, unsigned n)
553 {
554 	struct nvt_dev *nvt = dev->priv;
555 	unsigned long flags;
556 	unsigned int i;
557 	u8 iren;
558 	int ret;
559 
560 	spin_lock_irqsave(&nvt->tx.lock, flags);
561 
562 	ret = min((unsigned)(TX_BUF_LEN / sizeof(unsigned)), n);
563 	nvt->tx.buf_count = (ret * sizeof(unsigned));
564 
565 	memcpy(nvt->tx.buf, txbuf, nvt->tx.buf_count);
566 
567 	nvt->tx.cur_buf_num = 0;
568 
569 	/* save currently enabled interrupts */
570 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
571 
572 	/* now disable all interrupts, save TFU & TTR */
573 	nvt_cir_reg_write(nvt, CIR_IREN_TFU | CIR_IREN_TTR, CIR_IREN);
574 
575 	nvt->tx.tx_state = ST_TX_REPLY;
576 
577 	nvt_cir_reg_write(nvt, CIR_FIFOCON_TX_TRIGGER_LEV_8 |
578 			  CIR_FIFOCON_RXFIFOCLR, CIR_FIFOCON);
579 
580 	/* trigger TTR interrupt by writing out ones, (yes, it's ugly) */
581 	for (i = 0; i < 9; i++)
582 		nvt_cir_reg_write(nvt, 0x01, CIR_STXFIFO);
583 
584 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
585 
586 	wait_event(nvt->tx.queue, nvt->tx.tx_state == ST_TX_REQUEST);
587 
588 	spin_lock_irqsave(&nvt->tx.lock, flags);
589 	nvt->tx.tx_state = ST_TX_NONE;
590 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
591 
592 	/* restore enabled interrupts to prior state */
593 	nvt_cir_reg_write(nvt, iren, CIR_IREN);
594 
595 	return ret;
596 }
597 
598 /* dump contents of the last rx buffer we got from the hw rx fifo */
599 static void nvt_dump_rx_buf(struct nvt_dev *nvt)
600 {
601 	int i;
602 
603 	printk(KERN_DEBUG "%s (len %d): ", __func__, nvt->pkts);
604 	for (i = 0; (i < nvt->pkts) && (i < RX_BUF_LEN); i++)
605 		printk(KERN_CONT "0x%02x ", nvt->buf[i]);
606 	printk(KERN_CONT "\n");
607 }
608 
609 /*
610  * Process raw data in rx driver buffer, store it in raw IR event kfifo,
611  * trigger decode when appropriate.
612  *
613  * We get IR data samples one byte at a time. If the msb is set, its a pulse,
614  * otherwise its a space. The lower 7 bits are the count of SAMPLE_PERIOD
615  * (default 50us) intervals for that pulse/space. A discrete signal is
616  * followed by a series of 0x7f packets, then either 0x7<something> or 0x80
617  * to signal more IR coming (repeats) or end of IR, respectively. We store
618  * sample data in the raw event kfifo until we see 0x7<something> (except f)
619  * or 0x80, at which time, we trigger a decode operation.
620  */
621 static void nvt_process_rx_ir_data(struct nvt_dev *nvt)
622 {
623 	DEFINE_IR_RAW_EVENT(rawir);
624 	u8 sample;
625 	int i;
626 
627 	nvt_dbg_verbose("%s firing", __func__);
628 
629 	if (debug)
630 		nvt_dump_rx_buf(nvt);
631 
632 	nvt_dbg_verbose("Processing buffer of len %d", nvt->pkts);
633 
634 	init_ir_raw_event(&rawir);
635 
636 	for (i = 0; i < nvt->pkts; i++) {
637 		sample = nvt->buf[i];
638 
639 		rawir.pulse = ((sample & BUF_PULSE_BIT) != 0);
640 		rawir.duration = US_TO_NS((sample & BUF_LEN_MASK)
641 					  * SAMPLE_PERIOD);
642 
643 		nvt_dbg("Storing %s with duration %d",
644 			rawir.pulse ? "pulse" : "space", rawir.duration);
645 
646 		ir_raw_event_store_with_filter(nvt->rdev, &rawir);
647 
648 		/*
649 		 * BUF_PULSE_BIT indicates end of IR data, BUF_REPEAT_BYTE
650 		 * indicates end of IR signal, but new data incoming. In both
651 		 * cases, it means we're ready to call ir_raw_event_handle
652 		 */
653 		if ((sample == BUF_PULSE_BIT) && (i + 1 < nvt->pkts)) {
654 			nvt_dbg("Calling ir_raw_event_handle (signal end)\n");
655 			ir_raw_event_handle(nvt->rdev);
656 		}
657 	}
658 
659 	nvt->pkts = 0;
660 
661 	nvt_dbg("Calling ir_raw_event_handle (buffer empty)\n");
662 	ir_raw_event_handle(nvt->rdev);
663 
664 	nvt_dbg_verbose("%s done", __func__);
665 }
666 
667 static void nvt_handle_rx_fifo_overrun(struct nvt_dev *nvt)
668 {
669 	nvt_pr(KERN_WARNING, "RX FIFO overrun detected, flushing data!");
670 
671 	nvt->pkts = 0;
672 	nvt_clear_cir_fifo(nvt);
673 	ir_raw_event_reset(nvt->rdev);
674 }
675 
676 /* copy data from hardware rx fifo into driver buffer */
677 static void nvt_get_rx_ir_data(struct nvt_dev *nvt)
678 {
679 	unsigned long flags;
680 	u8 fifocount, val;
681 	unsigned int b_idx;
682 	bool overrun = false;
683 	int i;
684 
685 	/* Get count of how many bytes to read from RX FIFO */
686 	fifocount = nvt_cir_reg_read(nvt, CIR_RXFCONT);
687 	/* if we get 0xff, probably means the logical dev is disabled */
688 	if (fifocount == 0xff)
689 		return;
690 	/* watch out for a fifo overrun condition */
691 	else if (fifocount > RX_BUF_LEN) {
692 		overrun = true;
693 		fifocount = RX_BUF_LEN;
694 	}
695 
696 	nvt_dbg("attempting to fetch %u bytes from hw rx fifo", fifocount);
697 
698 	spin_lock_irqsave(&nvt->nvt_lock, flags);
699 
700 	b_idx = nvt->pkts;
701 
702 	/* This should never happen, but lets check anyway... */
703 	if (b_idx + fifocount > RX_BUF_LEN) {
704 		nvt_process_rx_ir_data(nvt);
705 		b_idx = 0;
706 	}
707 
708 	/* Read fifocount bytes from CIR Sample RX FIFO register */
709 	for (i = 0; i < fifocount; i++) {
710 		val = nvt_cir_reg_read(nvt, CIR_SRXFIFO);
711 		nvt->buf[b_idx + i] = val;
712 	}
713 
714 	nvt->pkts += fifocount;
715 	nvt_dbg("%s: pkts now %d", __func__, nvt->pkts);
716 
717 	nvt_process_rx_ir_data(nvt);
718 
719 	if (overrun)
720 		nvt_handle_rx_fifo_overrun(nvt);
721 
722 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
723 }
724 
725 static void nvt_cir_log_irqs(u8 status, u8 iren)
726 {
727 	nvt_pr(KERN_INFO, "IRQ 0x%02x (IREN 0x%02x) :%s%s%s%s%s%s%s%s%s",
728 		status, iren,
729 		status & CIR_IRSTS_RDR	? " RDR"	: "",
730 		status & CIR_IRSTS_RTR	? " RTR"	: "",
731 		status & CIR_IRSTS_PE	? " PE"		: "",
732 		status & CIR_IRSTS_RFO	? " RFO"	: "",
733 		status & CIR_IRSTS_TE	? " TE"		: "",
734 		status & CIR_IRSTS_TTR	? " TTR"	: "",
735 		status & CIR_IRSTS_TFU	? " TFU"	: "",
736 		status & CIR_IRSTS_GH	? " GH"		: "",
737 		status & ~(CIR_IRSTS_RDR | CIR_IRSTS_RTR | CIR_IRSTS_PE |
738 			   CIR_IRSTS_RFO | CIR_IRSTS_TE | CIR_IRSTS_TTR |
739 			   CIR_IRSTS_TFU | CIR_IRSTS_GH) ? " ?" : "");
740 }
741 
742 static bool nvt_cir_tx_inactive(struct nvt_dev *nvt)
743 {
744 	unsigned long flags;
745 	bool tx_inactive;
746 	u8 tx_state;
747 
748 	spin_lock_irqsave(&nvt->tx.lock, flags);
749 	tx_state = nvt->tx.tx_state;
750 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
751 
752 	tx_inactive = (tx_state == ST_TX_NONE);
753 
754 	return tx_inactive;
755 }
756 
757 /* interrupt service routine for incoming and outgoing CIR data */
758 static irqreturn_t nvt_cir_isr(int irq, void *data)
759 {
760 	struct nvt_dev *nvt = data;
761 	u8 status, iren, cur_state;
762 	unsigned long flags;
763 
764 	nvt_dbg_verbose("%s firing", __func__);
765 
766 	nvt_efm_enable(nvt);
767 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
768 	nvt_efm_disable(nvt);
769 
770 	/*
771 	 * Get IR Status register contents. Write 1 to ack/clear
772 	 *
773 	 * bit: reg name      - description
774 	 *   7: CIR_IRSTS_RDR - RX Data Ready
775 	 *   6: CIR_IRSTS_RTR - RX FIFO Trigger Level Reach
776 	 *   5: CIR_IRSTS_PE  - Packet End
777 	 *   4: CIR_IRSTS_RFO - RX FIFO Overrun (RDR will also be set)
778 	 *   3: CIR_IRSTS_TE  - TX FIFO Empty
779 	 *   2: CIR_IRSTS_TTR - TX FIFO Trigger Level Reach
780 	 *   1: CIR_IRSTS_TFU - TX FIFO Underrun
781 	 *   0: CIR_IRSTS_GH  - Min Length Detected
782 	 */
783 	status = nvt_cir_reg_read(nvt, CIR_IRSTS);
784 	if (!status) {
785 		nvt_dbg_verbose("%s exiting, IRSTS 0x0", __func__);
786 		nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
787 		return IRQ_RETVAL(IRQ_NONE);
788 	}
789 
790 	/* ack/clear all irq flags we've got */
791 	nvt_cir_reg_write(nvt, status, CIR_IRSTS);
792 	nvt_cir_reg_write(nvt, 0, CIR_IRSTS);
793 
794 	/* Interrupt may be shared with CIR Wake, bail if CIR not enabled */
795 	iren = nvt_cir_reg_read(nvt, CIR_IREN);
796 	if (!iren) {
797 		nvt_dbg_verbose("%s exiting, CIR not enabled", __func__);
798 		return IRQ_RETVAL(IRQ_NONE);
799 	}
800 
801 	if (debug)
802 		nvt_cir_log_irqs(status, iren);
803 
804 	if (status & CIR_IRSTS_RTR) {
805 		/* FIXME: add code for study/learn mode */
806 		/* We only do rx if not tx'ing */
807 		if (nvt_cir_tx_inactive(nvt))
808 			nvt_get_rx_ir_data(nvt);
809 	}
810 
811 	if (status & CIR_IRSTS_PE) {
812 		if (nvt_cir_tx_inactive(nvt))
813 			nvt_get_rx_ir_data(nvt);
814 
815 		spin_lock_irqsave(&nvt->nvt_lock, flags);
816 
817 		cur_state = nvt->study_state;
818 
819 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
820 
821 		if (cur_state == ST_STUDY_NONE)
822 			nvt_clear_cir_fifo(nvt);
823 	}
824 
825 	if (status & CIR_IRSTS_TE)
826 		nvt_clear_tx_fifo(nvt);
827 
828 	if (status & CIR_IRSTS_TTR) {
829 		unsigned int pos, count;
830 		u8 tmp;
831 
832 		spin_lock_irqsave(&nvt->tx.lock, flags);
833 
834 		pos = nvt->tx.cur_buf_num;
835 		count = nvt->tx.buf_count;
836 
837 		/* Write data into the hardware tx fifo while pos < count */
838 		if (pos < count) {
839 			nvt_cir_reg_write(nvt, nvt->tx.buf[pos], CIR_STXFIFO);
840 			nvt->tx.cur_buf_num++;
841 		/* Disable TX FIFO Trigger Level Reach (TTR) interrupt */
842 		} else {
843 			tmp = nvt_cir_reg_read(nvt, CIR_IREN);
844 			nvt_cir_reg_write(nvt, tmp & ~CIR_IREN_TTR, CIR_IREN);
845 		}
846 
847 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
848 
849 	}
850 
851 	if (status & CIR_IRSTS_TFU) {
852 		spin_lock_irqsave(&nvt->tx.lock, flags);
853 		if (nvt->tx.tx_state == ST_TX_REPLY) {
854 			nvt->tx.tx_state = ST_TX_REQUEST;
855 			wake_up(&nvt->tx.queue);
856 		}
857 		spin_unlock_irqrestore(&nvt->tx.lock, flags);
858 	}
859 
860 	nvt_dbg_verbose("%s done", __func__);
861 	return IRQ_RETVAL(IRQ_HANDLED);
862 }
863 
864 /* Interrupt service routine for CIR Wake */
865 static irqreturn_t nvt_cir_wake_isr(int irq, void *data)
866 {
867 	u8 status, iren, val;
868 	struct nvt_dev *nvt = data;
869 	unsigned long flags;
870 
871 	nvt_dbg_wake("%s firing", __func__);
872 
873 	status = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IRSTS);
874 	if (!status)
875 		return IRQ_RETVAL(IRQ_NONE);
876 
877 	if (status & CIR_WAKE_IRSTS_IR_PENDING)
878 		nvt_clear_cir_wake_fifo(nvt);
879 
880 	nvt_cir_wake_reg_write(nvt, status, CIR_WAKE_IRSTS);
881 	nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IRSTS);
882 
883 	/* Interrupt may be shared with CIR, bail if Wake not enabled */
884 	iren = nvt_cir_wake_reg_read(nvt, CIR_WAKE_IREN);
885 	if (!iren) {
886 		nvt_dbg_wake("%s exiting, wake not enabled", __func__);
887 		return IRQ_RETVAL(IRQ_HANDLED);
888 	}
889 
890 	if ((status & CIR_WAKE_IRSTS_PE) &&
891 	    (nvt->wake_state == ST_WAKE_START)) {
892 		while (nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY_IDX)) {
893 			val = nvt_cir_wake_reg_read(nvt, CIR_WAKE_RD_FIFO_ONLY);
894 			nvt_dbg("setting wake up key: 0x%x", val);
895 		}
896 
897 		nvt_cir_wake_reg_write(nvt, 0, CIR_WAKE_IREN);
898 		spin_lock_irqsave(&nvt->nvt_lock, flags);
899 		nvt->wake_state = ST_WAKE_FINISH;
900 		spin_unlock_irqrestore(&nvt->nvt_lock, flags);
901 	}
902 
903 	nvt_dbg_wake("%s done", __func__);
904 	return IRQ_RETVAL(IRQ_HANDLED);
905 }
906 
907 static void nvt_enable_cir(struct nvt_dev *nvt)
908 {
909 	/* set function enable flags */
910 	nvt_cir_reg_write(nvt, CIR_IRCON_TXEN | CIR_IRCON_RXEN |
911 			  CIR_IRCON_RXINV | CIR_IRCON_SAMPLE_PERIOD_SEL,
912 			  CIR_IRCON);
913 
914 	nvt_efm_enable(nvt);
915 
916 	/* enable the CIR logical device */
917 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
918 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
919 
920 	nvt_efm_disable(nvt);
921 
922 	/* clear all pending interrupts */
923 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
924 
925 	/* enable interrupts */
926 	nvt_set_cir_iren(nvt);
927 }
928 
929 static void nvt_disable_cir(struct nvt_dev *nvt)
930 {
931 	/* disable CIR interrupts */
932 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
933 
934 	/* clear any and all pending interrupts */
935 	nvt_cir_reg_write(nvt, 0xff, CIR_IRSTS);
936 
937 	/* clear all function enable flags */
938 	nvt_cir_reg_write(nvt, 0, CIR_IRCON);
939 
940 	/* clear hardware rx and tx fifos */
941 	nvt_clear_cir_fifo(nvt);
942 	nvt_clear_tx_fifo(nvt);
943 
944 	nvt_efm_enable(nvt);
945 
946 	/* disable the CIR logical device */
947 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
948 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
949 
950 	nvt_efm_disable(nvt);
951 }
952 
953 static int nvt_open(struct rc_dev *dev)
954 {
955 	struct nvt_dev *nvt = dev->priv;
956 	unsigned long flags;
957 
958 	spin_lock_irqsave(&nvt->nvt_lock, flags);
959 	nvt_enable_cir(nvt);
960 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
961 
962 	return 0;
963 }
964 
965 static void nvt_close(struct rc_dev *dev)
966 {
967 	struct nvt_dev *nvt = dev->priv;
968 	unsigned long flags;
969 
970 	spin_lock_irqsave(&nvt->nvt_lock, flags);
971 	nvt_disable_cir(nvt);
972 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
973 }
974 
975 /* Allocate memory, probe hardware, and initialize everything */
976 static int nvt_probe(struct pnp_dev *pdev, const struct pnp_device_id *dev_id)
977 {
978 	struct nvt_dev *nvt;
979 	struct rc_dev *rdev;
980 	int ret = -ENOMEM;
981 
982 	nvt = kzalloc(sizeof(struct nvt_dev), GFP_KERNEL);
983 	if (!nvt)
984 		return ret;
985 
986 	/* input device for IR remote (and tx) */
987 	rdev = rc_allocate_device();
988 	if (!rdev)
989 		goto exit_free_dev_rdev;
990 
991 	ret = -ENODEV;
992 	/* validate pnp resources */
993 	if (!pnp_port_valid(pdev, 0) ||
994 	    pnp_port_len(pdev, 0) < CIR_IOREG_LENGTH) {
995 		dev_err(&pdev->dev, "IR PNP Port not valid!\n");
996 		goto exit_free_dev_rdev;
997 	}
998 
999 	if (!pnp_irq_valid(pdev, 0)) {
1000 		dev_err(&pdev->dev, "PNP IRQ not valid!\n");
1001 		goto exit_free_dev_rdev;
1002 	}
1003 
1004 	if (!pnp_port_valid(pdev, 1) ||
1005 	    pnp_port_len(pdev, 1) < CIR_IOREG_LENGTH) {
1006 		dev_err(&pdev->dev, "Wake PNP Port not valid!\n");
1007 		goto exit_free_dev_rdev;
1008 	}
1009 
1010 	nvt->cir_addr = pnp_port_start(pdev, 0);
1011 	nvt->cir_irq  = pnp_irq(pdev, 0);
1012 
1013 	nvt->cir_wake_addr = pnp_port_start(pdev, 1);
1014 	/* irq is always shared between cir and cir wake */
1015 	nvt->cir_wake_irq  = nvt->cir_irq;
1016 
1017 	nvt->cr_efir = CR_EFIR;
1018 	nvt->cr_efdr = CR_EFDR;
1019 
1020 	spin_lock_init(&nvt->nvt_lock);
1021 	spin_lock_init(&nvt->tx.lock);
1022 
1023 	pnp_set_drvdata(pdev, nvt);
1024 	nvt->pdev = pdev;
1025 
1026 	init_waitqueue_head(&nvt->tx.queue);
1027 
1028 	ret = nvt_hw_detect(nvt);
1029 	if (ret)
1030 		goto exit_free_dev_rdev;
1031 
1032 	/* Initialize CIR & CIR Wake Logical Devices */
1033 	nvt_efm_enable(nvt);
1034 	nvt_cir_ldev_init(nvt);
1035 	nvt_cir_wake_ldev_init(nvt);
1036 	nvt_efm_disable(nvt);
1037 
1038 	/* Initialize CIR & CIR Wake Config Registers */
1039 	nvt_cir_regs_init(nvt);
1040 	nvt_cir_wake_regs_init(nvt);
1041 
1042 	/* Set up the rc device */
1043 	rdev->priv = nvt;
1044 	rdev->driver_type = RC_DRIVER_IR_RAW;
1045 	rdev->allowed_protos = RC_BIT_ALL;
1046 	rdev->open = nvt_open;
1047 	rdev->close = nvt_close;
1048 	rdev->tx_ir = nvt_tx_ir;
1049 	rdev->s_tx_carrier = nvt_set_tx_carrier;
1050 	rdev->input_name = "Nuvoton w836x7hg Infrared Remote Transceiver";
1051 	rdev->input_phys = "nuvoton/cir0";
1052 	rdev->input_id.bustype = BUS_HOST;
1053 	rdev->input_id.vendor = PCI_VENDOR_ID_WINBOND2;
1054 	rdev->input_id.product = nvt->chip_major;
1055 	rdev->input_id.version = nvt->chip_minor;
1056 	rdev->dev.parent = &pdev->dev;
1057 	rdev->driver_name = NVT_DRIVER_NAME;
1058 	rdev->map_name = RC_MAP_RC6_MCE;
1059 	rdev->timeout = MS_TO_NS(100);
1060 	/* rx resolution is hardwired to 50us atm, 1, 25, 100 also possible */
1061 	rdev->rx_resolution = US_TO_NS(CIR_SAMPLE_PERIOD);
1062 #if 0
1063 	rdev->min_timeout = XYZ;
1064 	rdev->max_timeout = XYZ;
1065 	/* tx bits */
1066 	rdev->tx_resolution = XYZ;
1067 #endif
1068 	nvt->rdev = rdev;
1069 
1070 	ret = rc_register_device(rdev);
1071 	if (ret)
1072 		goto exit_free_dev_rdev;
1073 
1074 	ret = -EBUSY;
1075 	/* now claim resources */
1076 	if (!request_region(nvt->cir_addr,
1077 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1078 		goto exit_unregister_device;
1079 
1080 	if (request_irq(nvt->cir_irq, nvt_cir_isr, IRQF_SHARED,
1081 			NVT_DRIVER_NAME, (void *)nvt))
1082 		goto exit_release_cir_addr;
1083 
1084 	if (!request_region(nvt->cir_wake_addr,
1085 			    CIR_IOREG_LENGTH, NVT_DRIVER_NAME))
1086 		goto exit_free_irq;
1087 
1088 	if (request_irq(nvt->cir_wake_irq, nvt_cir_wake_isr, IRQF_SHARED,
1089 			NVT_DRIVER_NAME, (void *)nvt))
1090 		goto exit_release_cir_wake_addr;
1091 
1092 	device_init_wakeup(&pdev->dev, true);
1093 
1094 	nvt_pr(KERN_NOTICE, "driver has been successfully loaded\n");
1095 	if (debug) {
1096 		cir_dump_regs(nvt);
1097 		cir_wake_dump_regs(nvt);
1098 	}
1099 
1100 	return 0;
1101 
1102 exit_release_cir_wake_addr:
1103 	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1104 exit_free_irq:
1105 	free_irq(nvt->cir_irq, nvt);
1106 exit_release_cir_addr:
1107 	release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1108 exit_unregister_device:
1109 	rc_unregister_device(rdev);
1110 exit_free_dev_rdev:
1111 	rc_free_device(rdev);
1112 	kfree(nvt);
1113 
1114 	return ret;
1115 }
1116 
1117 static void nvt_remove(struct pnp_dev *pdev)
1118 {
1119 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1120 	unsigned long flags;
1121 
1122 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1123 	/* disable CIR */
1124 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1125 	nvt_disable_cir(nvt);
1126 	/* enable CIR Wake (for IR power-on) */
1127 	nvt_enable_wake(nvt);
1128 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1129 
1130 	/* free resources */
1131 	free_irq(nvt->cir_irq, nvt);
1132 	free_irq(nvt->cir_wake_irq, nvt);
1133 	release_region(nvt->cir_addr, CIR_IOREG_LENGTH);
1134 	release_region(nvt->cir_wake_addr, CIR_IOREG_LENGTH);
1135 
1136 	rc_unregister_device(nvt->rdev);
1137 
1138 	kfree(nvt);
1139 }
1140 
1141 static int nvt_suspend(struct pnp_dev *pdev, pm_message_t state)
1142 {
1143 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1144 	unsigned long flags;
1145 
1146 	nvt_dbg("%s called", __func__);
1147 
1148 	/* zero out misc state tracking */
1149 	spin_lock_irqsave(&nvt->nvt_lock, flags);
1150 	nvt->study_state = ST_STUDY_NONE;
1151 	nvt->wake_state = ST_WAKE_NONE;
1152 	spin_unlock_irqrestore(&nvt->nvt_lock, flags);
1153 
1154 	spin_lock_irqsave(&nvt->tx.lock, flags);
1155 	nvt->tx.tx_state = ST_TX_NONE;
1156 	spin_unlock_irqrestore(&nvt->tx.lock, flags);
1157 
1158 	/* disable all CIR interrupts */
1159 	nvt_cir_reg_write(nvt, 0, CIR_IREN);
1160 
1161 	nvt_efm_enable(nvt);
1162 
1163 	/* disable cir logical dev */
1164 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1165 	nvt_cr_write(nvt, LOGICAL_DEV_DISABLE, CR_LOGICAL_DEV_EN);
1166 
1167 	nvt_efm_disable(nvt);
1168 
1169 	/* make sure wake is enabled */
1170 	nvt_enable_wake(nvt);
1171 
1172 	return 0;
1173 }
1174 
1175 static int nvt_resume(struct pnp_dev *pdev)
1176 {
1177 	int ret = 0;
1178 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1179 
1180 	nvt_dbg("%s called", __func__);
1181 
1182 	/* open interrupt */
1183 	nvt_set_cir_iren(nvt);
1184 
1185 	/* Enable CIR logical device */
1186 	nvt_efm_enable(nvt);
1187 	nvt_select_logical_dev(nvt, LOGICAL_DEV_CIR);
1188 	nvt_cr_write(nvt, LOGICAL_DEV_ENABLE, CR_LOGICAL_DEV_EN);
1189 
1190 	nvt_efm_disable(nvt);
1191 
1192 	nvt_cir_regs_init(nvt);
1193 	nvt_cir_wake_regs_init(nvt);
1194 
1195 	return ret;
1196 }
1197 
1198 static void nvt_shutdown(struct pnp_dev *pdev)
1199 {
1200 	struct nvt_dev *nvt = pnp_get_drvdata(pdev);
1201 	nvt_enable_wake(nvt);
1202 }
1203 
1204 static const struct pnp_device_id nvt_ids[] = {
1205 	{ "WEC0530", 0 },   /* CIR */
1206 	{ "NTN0530", 0 },   /* CIR for new chip's pnp id*/
1207 	{ "", 0 },
1208 };
1209 
1210 static struct pnp_driver nvt_driver = {
1211 	.name		= NVT_DRIVER_NAME,
1212 	.id_table	= nvt_ids,
1213 	.flags		= PNP_DRIVER_RES_DO_NOT_CHANGE,
1214 	.probe		= nvt_probe,
1215 	.remove		= nvt_remove,
1216 	.suspend	= nvt_suspend,
1217 	.resume		= nvt_resume,
1218 	.shutdown	= nvt_shutdown,
1219 };
1220 
1221 static int nvt_init(void)
1222 {
1223 	return pnp_register_driver(&nvt_driver);
1224 }
1225 
1226 static void nvt_exit(void)
1227 {
1228 	pnp_unregister_driver(&nvt_driver);
1229 }
1230 
1231 module_param(debug, int, S_IRUGO | S_IWUSR);
1232 MODULE_PARM_DESC(debug, "Enable debugging output");
1233 
1234 MODULE_DEVICE_TABLE(pnp, nvt_ids);
1235 MODULE_DESCRIPTION("Nuvoton W83667HG-A & W83677HG-I CIR driver");
1236 
1237 MODULE_AUTHOR("Jarod Wilson <jarod@redhat.com>");
1238 MODULE_LICENSE("GPL");
1239 
1240 module_init(nvt_init);
1241 module_exit(nvt_exit);
1242