xref: /linux/drivers/md/raid5.c (revision 3bdab16c55f57a24245c97d707241dd9b48d1a91)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * raid5.c : Multiple Devices driver for Linux
4  *	   Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
5  *	   Copyright (C) 1999, 2000 Ingo Molnar
6  *	   Copyright (C) 2002, 2003 H. Peter Anvin
7  *
8  * RAID-4/5/6 management functions.
9  * Thanks to Penguin Computing for making the RAID-6 development possible
10  * by donating a test server!
11  */
12 
13 /*
14  * BITMAP UNPLUGGING:
15  *
16  * The sequencing for updating the bitmap reliably is a little
17  * subtle (and I got it wrong the first time) so it deserves some
18  * explanation.
19  *
20  * We group bitmap updates into batches.  Each batch has a number.
21  * We may write out several batches at once, but that isn't very important.
22  * conf->seq_write is the number of the last batch successfully written.
23  * conf->seq_flush is the number of the last batch that was closed to
24  *    new additions.
25  * When we discover that we will need to write to any block in a stripe
26  * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
27  * the number of the batch it will be in. This is seq_flush+1.
28  * When we are ready to do a write, if that batch hasn't been written yet,
29  *   we plug the array and queue the stripe for later.
30  * When an unplug happens, we increment bm_flush, thus closing the current
31  *   batch.
32  * When we notice that bm_flush > bm_write, we write out all pending updates
33  * to the bitmap, and advance bm_write to where bm_flush was.
34  * This may occasionally write a bit out twice, but is sure never to
35  * miss any bits.
36  */
37 
38 #include <linux/blkdev.h>
39 #include <linux/kthread.h>
40 #include <linux/raid/pq.h>
41 #include <linux/async_tx.h>
42 #include <linux/module.h>
43 #include <linux/async.h>
44 #include <linux/seq_file.h>
45 #include <linux/cpu.h>
46 #include <linux/slab.h>
47 #include <linux/ratelimit.h>
48 #include <linux/nodemask.h>
49 
50 #include <trace/events/block.h>
51 #include <linux/list_sort.h>
52 
53 #include "md.h"
54 #include "raid5.h"
55 #include "raid0.h"
56 #include "md-bitmap.h"
57 #include "raid5-log.h"
58 
59 #define UNSUPPORTED_MDDEV_FLAGS	(1L << MD_FAILFAST_SUPPORTED)
60 
61 #define cpu_to_group(cpu) cpu_to_node(cpu)
62 #define ANY_GROUP NUMA_NO_NODE
63 
64 static bool devices_handle_discard_safely = false;
65 module_param(devices_handle_discard_safely, bool, 0644);
66 MODULE_PARM_DESC(devices_handle_discard_safely,
67 		 "Set to Y if all devices in each array reliably return zeroes on reads from discarded regions");
68 static struct workqueue_struct *raid5_wq;
69 
70 static inline struct hlist_head *stripe_hash(struct r5conf *conf, sector_t sect)
71 {
72 	int hash = (sect >> STRIPE_SHIFT) & HASH_MASK;
73 	return &conf->stripe_hashtbl[hash];
74 }
75 
76 static inline int stripe_hash_locks_hash(sector_t sect)
77 {
78 	return (sect >> STRIPE_SHIFT) & STRIPE_HASH_LOCKS_MASK;
79 }
80 
81 static inline void lock_device_hash_lock(struct r5conf *conf, int hash)
82 {
83 	spin_lock_irq(conf->hash_locks + hash);
84 	spin_lock(&conf->device_lock);
85 }
86 
87 static inline void unlock_device_hash_lock(struct r5conf *conf, int hash)
88 {
89 	spin_unlock(&conf->device_lock);
90 	spin_unlock_irq(conf->hash_locks + hash);
91 }
92 
93 static inline void lock_all_device_hash_locks_irq(struct r5conf *conf)
94 {
95 	int i;
96 	spin_lock_irq(conf->hash_locks);
97 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
98 		spin_lock_nest_lock(conf->hash_locks + i, conf->hash_locks);
99 	spin_lock(&conf->device_lock);
100 }
101 
102 static inline void unlock_all_device_hash_locks_irq(struct r5conf *conf)
103 {
104 	int i;
105 	spin_unlock(&conf->device_lock);
106 	for (i = NR_STRIPE_HASH_LOCKS - 1; i; i--)
107 		spin_unlock(conf->hash_locks + i);
108 	spin_unlock_irq(conf->hash_locks);
109 }
110 
111 /* Find first data disk in a raid6 stripe */
112 static inline int raid6_d0(struct stripe_head *sh)
113 {
114 	if (sh->ddf_layout)
115 		/* ddf always start from first device */
116 		return 0;
117 	/* md starts just after Q block */
118 	if (sh->qd_idx == sh->disks - 1)
119 		return 0;
120 	else
121 		return sh->qd_idx + 1;
122 }
123 static inline int raid6_next_disk(int disk, int raid_disks)
124 {
125 	disk++;
126 	return (disk < raid_disks) ? disk : 0;
127 }
128 
129 /* When walking through the disks in a raid5, starting at raid6_d0,
130  * We need to map each disk to a 'slot', where the data disks are slot
131  * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
132  * is raid_disks-1.  This help does that mapping.
133  */
134 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
135 			     int *count, int syndrome_disks)
136 {
137 	int slot = *count;
138 
139 	if (sh->ddf_layout)
140 		(*count)++;
141 	if (idx == sh->pd_idx)
142 		return syndrome_disks;
143 	if (idx == sh->qd_idx)
144 		return syndrome_disks + 1;
145 	if (!sh->ddf_layout)
146 		(*count)++;
147 	return slot;
148 }
149 
150 static void print_raid5_conf (struct r5conf *conf);
151 
152 static int stripe_operations_active(struct stripe_head *sh)
153 {
154 	return sh->check_state || sh->reconstruct_state ||
155 	       test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
156 	       test_bit(STRIPE_COMPUTE_RUN, &sh->state);
157 }
158 
159 static bool stripe_is_lowprio(struct stripe_head *sh)
160 {
161 	return (test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) ||
162 		test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) &&
163 	       !test_bit(STRIPE_R5C_CACHING, &sh->state);
164 }
165 
166 static void raid5_wakeup_stripe_thread(struct stripe_head *sh)
167 {
168 	struct r5conf *conf = sh->raid_conf;
169 	struct r5worker_group *group;
170 	int thread_cnt;
171 	int i, cpu = sh->cpu;
172 
173 	if (!cpu_online(cpu)) {
174 		cpu = cpumask_any(cpu_online_mask);
175 		sh->cpu = cpu;
176 	}
177 
178 	if (list_empty(&sh->lru)) {
179 		struct r5worker_group *group;
180 		group = conf->worker_groups + cpu_to_group(cpu);
181 		if (stripe_is_lowprio(sh))
182 			list_add_tail(&sh->lru, &group->loprio_list);
183 		else
184 			list_add_tail(&sh->lru, &group->handle_list);
185 		group->stripes_cnt++;
186 		sh->group = group;
187 	}
188 
189 	if (conf->worker_cnt_per_group == 0) {
190 		md_wakeup_thread(conf->mddev->thread);
191 		return;
192 	}
193 
194 	group = conf->worker_groups + cpu_to_group(sh->cpu);
195 
196 	group->workers[0].working = true;
197 	/* at least one worker should run to avoid race */
198 	queue_work_on(sh->cpu, raid5_wq, &group->workers[0].work);
199 
200 	thread_cnt = group->stripes_cnt / MAX_STRIPE_BATCH - 1;
201 	/* wakeup more workers */
202 	for (i = 1; i < conf->worker_cnt_per_group && thread_cnt > 0; i++) {
203 		if (group->workers[i].working == false) {
204 			group->workers[i].working = true;
205 			queue_work_on(sh->cpu, raid5_wq,
206 				      &group->workers[i].work);
207 			thread_cnt--;
208 		}
209 	}
210 }
211 
212 static void do_release_stripe(struct r5conf *conf, struct stripe_head *sh,
213 			      struct list_head *temp_inactive_list)
214 {
215 	int i;
216 	int injournal = 0;	/* number of date pages with R5_InJournal */
217 
218 	BUG_ON(!list_empty(&sh->lru));
219 	BUG_ON(atomic_read(&conf->active_stripes)==0);
220 
221 	if (r5c_is_writeback(conf->log))
222 		for (i = sh->disks; i--; )
223 			if (test_bit(R5_InJournal, &sh->dev[i].flags))
224 				injournal++;
225 	/*
226 	 * In the following cases, the stripe cannot be released to cached
227 	 * lists. Therefore, we make the stripe write out and set
228 	 * STRIPE_HANDLE:
229 	 *   1. when quiesce in r5c write back;
230 	 *   2. when resync is requested fot the stripe.
231 	 */
232 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) ||
233 	    (conf->quiesce && r5c_is_writeback(conf->log) &&
234 	     !test_bit(STRIPE_HANDLE, &sh->state) && injournal != 0)) {
235 		if (test_bit(STRIPE_R5C_CACHING, &sh->state))
236 			r5c_make_stripe_write_out(sh);
237 		set_bit(STRIPE_HANDLE, &sh->state);
238 	}
239 
240 	if (test_bit(STRIPE_HANDLE, &sh->state)) {
241 		if (test_bit(STRIPE_DELAYED, &sh->state) &&
242 		    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
243 			list_add_tail(&sh->lru, &conf->delayed_list);
244 		else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
245 			   sh->bm_seq - conf->seq_write > 0)
246 			list_add_tail(&sh->lru, &conf->bitmap_list);
247 		else {
248 			clear_bit(STRIPE_DELAYED, &sh->state);
249 			clear_bit(STRIPE_BIT_DELAY, &sh->state);
250 			if (conf->worker_cnt_per_group == 0) {
251 				if (stripe_is_lowprio(sh))
252 					list_add_tail(&sh->lru,
253 							&conf->loprio_list);
254 				else
255 					list_add_tail(&sh->lru,
256 							&conf->handle_list);
257 			} else {
258 				raid5_wakeup_stripe_thread(sh);
259 				return;
260 			}
261 		}
262 		md_wakeup_thread(conf->mddev->thread);
263 	} else {
264 		BUG_ON(stripe_operations_active(sh));
265 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
266 			if (atomic_dec_return(&conf->preread_active_stripes)
267 			    < IO_THRESHOLD)
268 				md_wakeup_thread(conf->mddev->thread);
269 		atomic_dec(&conf->active_stripes);
270 		if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
271 			if (!r5c_is_writeback(conf->log))
272 				list_add_tail(&sh->lru, temp_inactive_list);
273 			else {
274 				WARN_ON(test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags));
275 				if (injournal == 0)
276 					list_add_tail(&sh->lru, temp_inactive_list);
277 				else if (injournal == conf->raid_disks - conf->max_degraded) {
278 					/* full stripe */
279 					if (!test_and_set_bit(STRIPE_R5C_FULL_STRIPE, &sh->state))
280 						atomic_inc(&conf->r5c_cached_full_stripes);
281 					if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
282 						atomic_dec(&conf->r5c_cached_partial_stripes);
283 					list_add_tail(&sh->lru, &conf->r5c_full_stripe_list);
284 					r5c_check_cached_full_stripe(conf);
285 				} else
286 					/*
287 					 * STRIPE_R5C_PARTIAL_STRIPE is set in
288 					 * r5c_try_caching_write(). No need to
289 					 * set it again.
290 					 */
291 					list_add_tail(&sh->lru, &conf->r5c_partial_stripe_list);
292 			}
293 		}
294 	}
295 }
296 
297 static void __release_stripe(struct r5conf *conf, struct stripe_head *sh,
298 			     struct list_head *temp_inactive_list)
299 {
300 	if (atomic_dec_and_test(&sh->count))
301 		do_release_stripe(conf, sh, temp_inactive_list);
302 }
303 
304 /*
305  * @hash could be NR_STRIPE_HASH_LOCKS, then we have a list of inactive_list
306  *
307  * Be careful: Only one task can add/delete stripes from temp_inactive_list at
308  * given time. Adding stripes only takes device lock, while deleting stripes
309  * only takes hash lock.
310  */
311 static void release_inactive_stripe_list(struct r5conf *conf,
312 					 struct list_head *temp_inactive_list,
313 					 int hash)
314 {
315 	int size;
316 	bool do_wakeup = false;
317 	unsigned long flags;
318 
319 	if (hash == NR_STRIPE_HASH_LOCKS) {
320 		size = NR_STRIPE_HASH_LOCKS;
321 		hash = NR_STRIPE_HASH_LOCKS - 1;
322 	} else
323 		size = 1;
324 	while (size) {
325 		struct list_head *list = &temp_inactive_list[size - 1];
326 
327 		/*
328 		 * We don't hold any lock here yet, raid5_get_active_stripe() might
329 		 * remove stripes from the list
330 		 */
331 		if (!list_empty_careful(list)) {
332 			spin_lock_irqsave(conf->hash_locks + hash, flags);
333 			if (list_empty(conf->inactive_list + hash) &&
334 			    !list_empty(list))
335 				atomic_dec(&conf->empty_inactive_list_nr);
336 			list_splice_tail_init(list, conf->inactive_list + hash);
337 			do_wakeup = true;
338 			spin_unlock_irqrestore(conf->hash_locks + hash, flags);
339 		}
340 		size--;
341 		hash--;
342 	}
343 
344 	if (do_wakeup) {
345 		wake_up(&conf->wait_for_stripe);
346 		if (atomic_read(&conf->active_stripes) == 0)
347 			wake_up(&conf->wait_for_quiescent);
348 		if (conf->retry_read_aligned)
349 			md_wakeup_thread(conf->mddev->thread);
350 	}
351 }
352 
353 /* should hold conf->device_lock already */
354 static int release_stripe_list(struct r5conf *conf,
355 			       struct list_head *temp_inactive_list)
356 {
357 	struct stripe_head *sh, *t;
358 	int count = 0;
359 	struct llist_node *head;
360 
361 	head = llist_del_all(&conf->released_stripes);
362 	head = llist_reverse_order(head);
363 	llist_for_each_entry_safe(sh, t, head, release_list) {
364 		int hash;
365 
366 		/* sh could be readded after STRIPE_ON_RELEASE_LIST is cleard */
367 		smp_mb();
368 		clear_bit(STRIPE_ON_RELEASE_LIST, &sh->state);
369 		/*
370 		 * Don't worry the bit is set here, because if the bit is set
371 		 * again, the count is always > 1. This is true for
372 		 * STRIPE_ON_UNPLUG_LIST bit too.
373 		 */
374 		hash = sh->hash_lock_index;
375 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
376 		count++;
377 	}
378 
379 	return count;
380 }
381 
382 void raid5_release_stripe(struct stripe_head *sh)
383 {
384 	struct r5conf *conf = sh->raid_conf;
385 	unsigned long flags;
386 	struct list_head list;
387 	int hash;
388 	bool wakeup;
389 
390 	/* Avoid release_list until the last reference.
391 	 */
392 	if (atomic_add_unless(&sh->count, -1, 1))
393 		return;
394 
395 	if (unlikely(!conf->mddev->thread) ||
396 		test_and_set_bit(STRIPE_ON_RELEASE_LIST, &sh->state))
397 		goto slow_path;
398 	wakeup = llist_add(&sh->release_list, &conf->released_stripes);
399 	if (wakeup)
400 		md_wakeup_thread(conf->mddev->thread);
401 	return;
402 slow_path:
403 	/* we are ok here if STRIPE_ON_RELEASE_LIST is set or not */
404 	if (atomic_dec_and_lock_irqsave(&sh->count, &conf->device_lock, flags)) {
405 		INIT_LIST_HEAD(&list);
406 		hash = sh->hash_lock_index;
407 		do_release_stripe(conf, sh, &list);
408 		spin_unlock_irqrestore(&conf->device_lock, flags);
409 		release_inactive_stripe_list(conf, &list, hash);
410 	}
411 }
412 
413 static inline void remove_hash(struct stripe_head *sh)
414 {
415 	pr_debug("remove_hash(), stripe %llu\n",
416 		(unsigned long long)sh->sector);
417 
418 	hlist_del_init(&sh->hash);
419 }
420 
421 static inline void insert_hash(struct r5conf *conf, struct stripe_head *sh)
422 {
423 	struct hlist_head *hp = stripe_hash(conf, sh->sector);
424 
425 	pr_debug("insert_hash(), stripe %llu\n",
426 		(unsigned long long)sh->sector);
427 
428 	hlist_add_head(&sh->hash, hp);
429 }
430 
431 /* find an idle stripe, make sure it is unhashed, and return it. */
432 static struct stripe_head *get_free_stripe(struct r5conf *conf, int hash)
433 {
434 	struct stripe_head *sh = NULL;
435 	struct list_head *first;
436 
437 	if (list_empty(conf->inactive_list + hash))
438 		goto out;
439 	first = (conf->inactive_list + hash)->next;
440 	sh = list_entry(first, struct stripe_head, lru);
441 	list_del_init(first);
442 	remove_hash(sh);
443 	atomic_inc(&conf->active_stripes);
444 	BUG_ON(hash != sh->hash_lock_index);
445 	if (list_empty(conf->inactive_list + hash))
446 		atomic_inc(&conf->empty_inactive_list_nr);
447 out:
448 	return sh;
449 }
450 
451 static void shrink_buffers(struct stripe_head *sh)
452 {
453 	struct page *p;
454 	int i;
455 	int num = sh->raid_conf->pool_size;
456 
457 	for (i = 0; i < num ; i++) {
458 		WARN_ON(sh->dev[i].page != sh->dev[i].orig_page);
459 		p = sh->dev[i].page;
460 		if (!p)
461 			continue;
462 		sh->dev[i].page = NULL;
463 		put_page(p);
464 	}
465 }
466 
467 static int grow_buffers(struct stripe_head *sh, gfp_t gfp)
468 {
469 	int i;
470 	int num = sh->raid_conf->pool_size;
471 
472 	for (i = 0; i < num; i++) {
473 		struct page *page;
474 
475 		if (!(page = alloc_page(gfp))) {
476 			return 1;
477 		}
478 		sh->dev[i].page = page;
479 		sh->dev[i].orig_page = page;
480 	}
481 
482 	return 0;
483 }
484 
485 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
486 			    struct stripe_head *sh);
487 
488 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
489 {
490 	struct r5conf *conf = sh->raid_conf;
491 	int i, seq;
492 
493 	BUG_ON(atomic_read(&sh->count) != 0);
494 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
495 	BUG_ON(stripe_operations_active(sh));
496 	BUG_ON(sh->batch_head);
497 
498 	pr_debug("init_stripe called, stripe %llu\n",
499 		(unsigned long long)sector);
500 retry:
501 	seq = read_seqcount_begin(&conf->gen_lock);
502 	sh->generation = conf->generation - previous;
503 	sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
504 	sh->sector = sector;
505 	stripe_set_idx(sector, conf, previous, sh);
506 	sh->state = 0;
507 
508 	for (i = sh->disks; i--; ) {
509 		struct r5dev *dev = &sh->dev[i];
510 
511 		if (dev->toread || dev->read || dev->towrite || dev->written ||
512 		    test_bit(R5_LOCKED, &dev->flags)) {
513 			pr_err("sector=%llx i=%d %p %p %p %p %d\n",
514 			       (unsigned long long)sh->sector, i, dev->toread,
515 			       dev->read, dev->towrite, dev->written,
516 			       test_bit(R5_LOCKED, &dev->flags));
517 			WARN_ON(1);
518 		}
519 		dev->flags = 0;
520 		dev->sector = raid5_compute_blocknr(sh, i, previous);
521 	}
522 	if (read_seqcount_retry(&conf->gen_lock, seq))
523 		goto retry;
524 	sh->overwrite_disks = 0;
525 	insert_hash(conf, sh);
526 	sh->cpu = smp_processor_id();
527 	set_bit(STRIPE_BATCH_READY, &sh->state);
528 }
529 
530 static struct stripe_head *__find_stripe(struct r5conf *conf, sector_t sector,
531 					 short generation)
532 {
533 	struct stripe_head *sh;
534 
535 	pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
536 	hlist_for_each_entry(sh, stripe_hash(conf, sector), hash)
537 		if (sh->sector == sector && sh->generation == generation)
538 			return sh;
539 	pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
540 	return NULL;
541 }
542 
543 /*
544  * Need to check if array has failed when deciding whether to:
545  *  - start an array
546  *  - remove non-faulty devices
547  *  - add a spare
548  *  - allow a reshape
549  * This determination is simple when no reshape is happening.
550  * However if there is a reshape, we need to carefully check
551  * both the before and after sections.
552  * This is because some failed devices may only affect one
553  * of the two sections, and some non-in_sync devices may
554  * be insync in the section most affected by failed devices.
555  */
556 int raid5_calc_degraded(struct r5conf *conf)
557 {
558 	int degraded, degraded2;
559 	int i;
560 
561 	rcu_read_lock();
562 	degraded = 0;
563 	for (i = 0; i < conf->previous_raid_disks; i++) {
564 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
565 		if (rdev && test_bit(Faulty, &rdev->flags))
566 			rdev = rcu_dereference(conf->disks[i].replacement);
567 		if (!rdev || test_bit(Faulty, &rdev->flags))
568 			degraded++;
569 		else if (test_bit(In_sync, &rdev->flags))
570 			;
571 		else
572 			/* not in-sync or faulty.
573 			 * If the reshape increases the number of devices,
574 			 * this is being recovered by the reshape, so
575 			 * this 'previous' section is not in_sync.
576 			 * If the number of devices is being reduced however,
577 			 * the device can only be part of the array if
578 			 * we are reverting a reshape, so this section will
579 			 * be in-sync.
580 			 */
581 			if (conf->raid_disks >= conf->previous_raid_disks)
582 				degraded++;
583 	}
584 	rcu_read_unlock();
585 	if (conf->raid_disks == conf->previous_raid_disks)
586 		return degraded;
587 	rcu_read_lock();
588 	degraded2 = 0;
589 	for (i = 0; i < conf->raid_disks; i++) {
590 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
591 		if (rdev && test_bit(Faulty, &rdev->flags))
592 			rdev = rcu_dereference(conf->disks[i].replacement);
593 		if (!rdev || test_bit(Faulty, &rdev->flags))
594 			degraded2++;
595 		else if (test_bit(In_sync, &rdev->flags))
596 			;
597 		else
598 			/* not in-sync or faulty.
599 			 * If reshape increases the number of devices, this
600 			 * section has already been recovered, else it
601 			 * almost certainly hasn't.
602 			 */
603 			if (conf->raid_disks <= conf->previous_raid_disks)
604 				degraded2++;
605 	}
606 	rcu_read_unlock();
607 	if (degraded2 > degraded)
608 		return degraded2;
609 	return degraded;
610 }
611 
612 static int has_failed(struct r5conf *conf)
613 {
614 	int degraded;
615 
616 	if (conf->mddev->reshape_position == MaxSector)
617 		return conf->mddev->degraded > conf->max_degraded;
618 
619 	degraded = raid5_calc_degraded(conf);
620 	if (degraded > conf->max_degraded)
621 		return 1;
622 	return 0;
623 }
624 
625 struct stripe_head *
626 raid5_get_active_stripe(struct r5conf *conf, sector_t sector,
627 			int previous, int noblock, int noquiesce)
628 {
629 	struct stripe_head *sh;
630 	int hash = stripe_hash_locks_hash(sector);
631 	int inc_empty_inactive_list_flag;
632 
633 	pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
634 
635 	spin_lock_irq(conf->hash_locks + hash);
636 
637 	do {
638 		wait_event_lock_irq(conf->wait_for_quiescent,
639 				    conf->quiesce == 0 || noquiesce,
640 				    *(conf->hash_locks + hash));
641 		sh = __find_stripe(conf, sector, conf->generation - previous);
642 		if (!sh) {
643 			if (!test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state)) {
644 				sh = get_free_stripe(conf, hash);
645 				if (!sh && !test_bit(R5_DID_ALLOC,
646 						     &conf->cache_state))
647 					set_bit(R5_ALLOC_MORE,
648 						&conf->cache_state);
649 			}
650 			if (noblock && sh == NULL)
651 				break;
652 
653 			r5c_check_stripe_cache_usage(conf);
654 			if (!sh) {
655 				set_bit(R5_INACTIVE_BLOCKED,
656 					&conf->cache_state);
657 				r5l_wake_reclaim(conf->log, 0);
658 				wait_event_lock_irq(
659 					conf->wait_for_stripe,
660 					!list_empty(conf->inactive_list + hash) &&
661 					(atomic_read(&conf->active_stripes)
662 					 < (conf->max_nr_stripes * 3 / 4)
663 					 || !test_bit(R5_INACTIVE_BLOCKED,
664 						      &conf->cache_state)),
665 					*(conf->hash_locks + hash));
666 				clear_bit(R5_INACTIVE_BLOCKED,
667 					  &conf->cache_state);
668 			} else {
669 				init_stripe(sh, sector, previous);
670 				atomic_inc(&sh->count);
671 			}
672 		} else if (!atomic_inc_not_zero(&sh->count)) {
673 			spin_lock(&conf->device_lock);
674 			if (!atomic_read(&sh->count)) {
675 				if (!test_bit(STRIPE_HANDLE, &sh->state))
676 					atomic_inc(&conf->active_stripes);
677 				BUG_ON(list_empty(&sh->lru) &&
678 				       !test_bit(STRIPE_EXPANDING, &sh->state));
679 				inc_empty_inactive_list_flag = 0;
680 				if (!list_empty(conf->inactive_list + hash))
681 					inc_empty_inactive_list_flag = 1;
682 				list_del_init(&sh->lru);
683 				if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
684 					atomic_inc(&conf->empty_inactive_list_nr);
685 				if (sh->group) {
686 					sh->group->stripes_cnt--;
687 					sh->group = NULL;
688 				}
689 			}
690 			atomic_inc(&sh->count);
691 			spin_unlock(&conf->device_lock);
692 		}
693 	} while (sh == NULL);
694 
695 	spin_unlock_irq(conf->hash_locks + hash);
696 	return sh;
697 }
698 
699 static bool is_full_stripe_write(struct stripe_head *sh)
700 {
701 	BUG_ON(sh->overwrite_disks > (sh->disks - sh->raid_conf->max_degraded));
702 	return sh->overwrite_disks == (sh->disks - sh->raid_conf->max_degraded);
703 }
704 
705 static void lock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
706 		__acquires(&sh1->stripe_lock)
707 		__acquires(&sh2->stripe_lock)
708 {
709 	if (sh1 > sh2) {
710 		spin_lock_irq(&sh2->stripe_lock);
711 		spin_lock_nested(&sh1->stripe_lock, 1);
712 	} else {
713 		spin_lock_irq(&sh1->stripe_lock);
714 		spin_lock_nested(&sh2->stripe_lock, 1);
715 	}
716 }
717 
718 static void unlock_two_stripes(struct stripe_head *sh1, struct stripe_head *sh2)
719 		__releases(&sh1->stripe_lock)
720 		__releases(&sh2->stripe_lock)
721 {
722 	spin_unlock(&sh1->stripe_lock);
723 	spin_unlock_irq(&sh2->stripe_lock);
724 }
725 
726 /* Only freshly new full stripe normal write stripe can be added to a batch list */
727 static bool stripe_can_batch(struct stripe_head *sh)
728 {
729 	struct r5conf *conf = sh->raid_conf;
730 
731 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
732 		return false;
733 	return test_bit(STRIPE_BATCH_READY, &sh->state) &&
734 		!test_bit(STRIPE_BITMAP_PENDING, &sh->state) &&
735 		is_full_stripe_write(sh);
736 }
737 
738 /* we only do back search */
739 static void stripe_add_to_batch_list(struct r5conf *conf, struct stripe_head *sh)
740 {
741 	struct stripe_head *head;
742 	sector_t head_sector, tmp_sec;
743 	int hash;
744 	int dd_idx;
745 	int inc_empty_inactive_list_flag;
746 
747 	/* Don't cross chunks, so stripe pd_idx/qd_idx is the same */
748 	tmp_sec = sh->sector;
749 	if (!sector_div(tmp_sec, conf->chunk_sectors))
750 		return;
751 	head_sector = sh->sector - STRIPE_SECTORS;
752 
753 	hash = stripe_hash_locks_hash(head_sector);
754 	spin_lock_irq(conf->hash_locks + hash);
755 	head = __find_stripe(conf, head_sector, conf->generation);
756 	if (head && !atomic_inc_not_zero(&head->count)) {
757 		spin_lock(&conf->device_lock);
758 		if (!atomic_read(&head->count)) {
759 			if (!test_bit(STRIPE_HANDLE, &head->state))
760 				atomic_inc(&conf->active_stripes);
761 			BUG_ON(list_empty(&head->lru) &&
762 			       !test_bit(STRIPE_EXPANDING, &head->state));
763 			inc_empty_inactive_list_flag = 0;
764 			if (!list_empty(conf->inactive_list + hash))
765 				inc_empty_inactive_list_flag = 1;
766 			list_del_init(&head->lru);
767 			if (list_empty(conf->inactive_list + hash) && inc_empty_inactive_list_flag)
768 				atomic_inc(&conf->empty_inactive_list_nr);
769 			if (head->group) {
770 				head->group->stripes_cnt--;
771 				head->group = NULL;
772 			}
773 		}
774 		atomic_inc(&head->count);
775 		spin_unlock(&conf->device_lock);
776 	}
777 	spin_unlock_irq(conf->hash_locks + hash);
778 
779 	if (!head)
780 		return;
781 	if (!stripe_can_batch(head))
782 		goto out;
783 
784 	lock_two_stripes(head, sh);
785 	/* clear_batch_ready clear the flag */
786 	if (!stripe_can_batch(head) || !stripe_can_batch(sh))
787 		goto unlock_out;
788 
789 	if (sh->batch_head)
790 		goto unlock_out;
791 
792 	dd_idx = 0;
793 	while (dd_idx == sh->pd_idx || dd_idx == sh->qd_idx)
794 		dd_idx++;
795 	if (head->dev[dd_idx].towrite->bi_opf != sh->dev[dd_idx].towrite->bi_opf ||
796 	    bio_op(head->dev[dd_idx].towrite) != bio_op(sh->dev[dd_idx].towrite))
797 		goto unlock_out;
798 
799 	if (head->batch_head) {
800 		spin_lock(&head->batch_head->batch_lock);
801 		/* This batch list is already running */
802 		if (!stripe_can_batch(head)) {
803 			spin_unlock(&head->batch_head->batch_lock);
804 			goto unlock_out;
805 		}
806 		/*
807 		 * We must assign batch_head of this stripe within the
808 		 * batch_lock, otherwise clear_batch_ready of batch head
809 		 * stripe could clear BATCH_READY bit of this stripe and
810 		 * this stripe->batch_head doesn't get assigned, which
811 		 * could confuse clear_batch_ready for this stripe
812 		 */
813 		sh->batch_head = head->batch_head;
814 
815 		/*
816 		 * at this point, head's BATCH_READY could be cleared, but we
817 		 * can still add the stripe to batch list
818 		 */
819 		list_add(&sh->batch_list, &head->batch_list);
820 		spin_unlock(&head->batch_head->batch_lock);
821 	} else {
822 		head->batch_head = head;
823 		sh->batch_head = head->batch_head;
824 		spin_lock(&head->batch_lock);
825 		list_add_tail(&sh->batch_list, &head->batch_list);
826 		spin_unlock(&head->batch_lock);
827 	}
828 
829 	if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
830 		if (atomic_dec_return(&conf->preread_active_stripes)
831 		    < IO_THRESHOLD)
832 			md_wakeup_thread(conf->mddev->thread);
833 
834 	if (test_and_clear_bit(STRIPE_BIT_DELAY, &sh->state)) {
835 		int seq = sh->bm_seq;
836 		if (test_bit(STRIPE_BIT_DELAY, &sh->batch_head->state) &&
837 		    sh->batch_head->bm_seq > seq)
838 			seq = sh->batch_head->bm_seq;
839 		set_bit(STRIPE_BIT_DELAY, &sh->batch_head->state);
840 		sh->batch_head->bm_seq = seq;
841 	}
842 
843 	atomic_inc(&sh->count);
844 unlock_out:
845 	unlock_two_stripes(head, sh);
846 out:
847 	raid5_release_stripe(head);
848 }
849 
850 /* Determine if 'data_offset' or 'new_data_offset' should be used
851  * in this stripe_head.
852  */
853 static int use_new_offset(struct r5conf *conf, struct stripe_head *sh)
854 {
855 	sector_t progress = conf->reshape_progress;
856 	/* Need a memory barrier to make sure we see the value
857 	 * of conf->generation, or ->data_offset that was set before
858 	 * reshape_progress was updated.
859 	 */
860 	smp_rmb();
861 	if (progress == MaxSector)
862 		return 0;
863 	if (sh->generation == conf->generation - 1)
864 		return 0;
865 	/* We are in a reshape, and this is a new-generation stripe,
866 	 * so use new_data_offset.
867 	 */
868 	return 1;
869 }
870 
871 static void dispatch_bio_list(struct bio_list *tmp)
872 {
873 	struct bio *bio;
874 
875 	while ((bio = bio_list_pop(tmp)))
876 		generic_make_request(bio);
877 }
878 
879 static int cmp_stripe(void *priv, struct list_head *a, struct list_head *b)
880 {
881 	const struct r5pending_data *da = list_entry(a,
882 				struct r5pending_data, sibling);
883 	const struct r5pending_data *db = list_entry(b,
884 				struct r5pending_data, sibling);
885 	if (da->sector > db->sector)
886 		return 1;
887 	if (da->sector < db->sector)
888 		return -1;
889 	return 0;
890 }
891 
892 static void dispatch_defer_bios(struct r5conf *conf, int target,
893 				struct bio_list *list)
894 {
895 	struct r5pending_data *data;
896 	struct list_head *first, *next = NULL;
897 	int cnt = 0;
898 
899 	if (conf->pending_data_cnt == 0)
900 		return;
901 
902 	list_sort(NULL, &conf->pending_list, cmp_stripe);
903 
904 	first = conf->pending_list.next;
905 
906 	/* temporarily move the head */
907 	if (conf->next_pending_data)
908 		list_move_tail(&conf->pending_list,
909 				&conf->next_pending_data->sibling);
910 
911 	while (!list_empty(&conf->pending_list)) {
912 		data = list_first_entry(&conf->pending_list,
913 			struct r5pending_data, sibling);
914 		if (&data->sibling == first)
915 			first = data->sibling.next;
916 		next = data->sibling.next;
917 
918 		bio_list_merge(list, &data->bios);
919 		list_move(&data->sibling, &conf->free_list);
920 		cnt++;
921 		if (cnt >= target)
922 			break;
923 	}
924 	conf->pending_data_cnt -= cnt;
925 	BUG_ON(conf->pending_data_cnt < 0 || cnt < target);
926 
927 	if (next != &conf->pending_list)
928 		conf->next_pending_data = list_entry(next,
929 				struct r5pending_data, sibling);
930 	else
931 		conf->next_pending_data = NULL;
932 	/* list isn't empty */
933 	if (first != &conf->pending_list)
934 		list_move_tail(&conf->pending_list, first);
935 }
936 
937 static void flush_deferred_bios(struct r5conf *conf)
938 {
939 	struct bio_list tmp = BIO_EMPTY_LIST;
940 
941 	if (conf->pending_data_cnt == 0)
942 		return;
943 
944 	spin_lock(&conf->pending_bios_lock);
945 	dispatch_defer_bios(conf, conf->pending_data_cnt, &tmp);
946 	BUG_ON(conf->pending_data_cnt != 0);
947 	spin_unlock(&conf->pending_bios_lock);
948 
949 	dispatch_bio_list(&tmp);
950 }
951 
952 static void defer_issue_bios(struct r5conf *conf, sector_t sector,
953 				struct bio_list *bios)
954 {
955 	struct bio_list tmp = BIO_EMPTY_LIST;
956 	struct r5pending_data *ent;
957 
958 	spin_lock(&conf->pending_bios_lock);
959 	ent = list_first_entry(&conf->free_list, struct r5pending_data,
960 							sibling);
961 	list_move_tail(&ent->sibling, &conf->pending_list);
962 	ent->sector = sector;
963 	bio_list_init(&ent->bios);
964 	bio_list_merge(&ent->bios, bios);
965 	conf->pending_data_cnt++;
966 	if (conf->pending_data_cnt >= PENDING_IO_MAX)
967 		dispatch_defer_bios(conf, PENDING_IO_ONE_FLUSH, &tmp);
968 
969 	spin_unlock(&conf->pending_bios_lock);
970 
971 	dispatch_bio_list(&tmp);
972 }
973 
974 static void
975 raid5_end_read_request(struct bio *bi);
976 static void
977 raid5_end_write_request(struct bio *bi);
978 
979 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
980 {
981 	struct r5conf *conf = sh->raid_conf;
982 	int i, disks = sh->disks;
983 	struct stripe_head *head_sh = sh;
984 	struct bio_list pending_bios = BIO_EMPTY_LIST;
985 	bool should_defer;
986 
987 	might_sleep();
988 
989 	if (log_stripe(sh, s) == 0)
990 		return;
991 
992 	should_defer = conf->batch_bio_dispatch && conf->group_cnt;
993 
994 	for (i = disks; i--; ) {
995 		int op, op_flags = 0;
996 		int replace_only = 0;
997 		struct bio *bi, *rbi;
998 		struct md_rdev *rdev, *rrdev = NULL;
999 
1000 		sh = head_sh;
1001 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
1002 			op = REQ_OP_WRITE;
1003 			if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
1004 				op_flags = REQ_FUA;
1005 			if (test_bit(R5_Discard, &sh->dev[i].flags))
1006 				op = REQ_OP_DISCARD;
1007 		} else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
1008 			op = REQ_OP_READ;
1009 		else if (test_and_clear_bit(R5_WantReplace,
1010 					    &sh->dev[i].flags)) {
1011 			op = REQ_OP_WRITE;
1012 			replace_only = 1;
1013 		} else
1014 			continue;
1015 		if (test_and_clear_bit(R5_SyncIO, &sh->dev[i].flags))
1016 			op_flags |= REQ_SYNC;
1017 
1018 again:
1019 		bi = &sh->dev[i].req;
1020 		rbi = &sh->dev[i].rreq; /* For writing to replacement */
1021 
1022 		rcu_read_lock();
1023 		rrdev = rcu_dereference(conf->disks[i].replacement);
1024 		smp_mb(); /* Ensure that if rrdev is NULL, rdev won't be */
1025 		rdev = rcu_dereference(conf->disks[i].rdev);
1026 		if (!rdev) {
1027 			rdev = rrdev;
1028 			rrdev = NULL;
1029 		}
1030 		if (op_is_write(op)) {
1031 			if (replace_only)
1032 				rdev = NULL;
1033 			if (rdev == rrdev)
1034 				/* We raced and saw duplicates */
1035 				rrdev = NULL;
1036 		} else {
1037 			if (test_bit(R5_ReadRepl, &head_sh->dev[i].flags) && rrdev)
1038 				rdev = rrdev;
1039 			rrdev = NULL;
1040 		}
1041 
1042 		if (rdev && test_bit(Faulty, &rdev->flags))
1043 			rdev = NULL;
1044 		if (rdev)
1045 			atomic_inc(&rdev->nr_pending);
1046 		if (rrdev && test_bit(Faulty, &rrdev->flags))
1047 			rrdev = NULL;
1048 		if (rrdev)
1049 			atomic_inc(&rrdev->nr_pending);
1050 		rcu_read_unlock();
1051 
1052 		/* We have already checked bad blocks for reads.  Now
1053 		 * need to check for writes.  We never accept write errors
1054 		 * on the replacement, so we don't to check rrdev.
1055 		 */
1056 		while (op_is_write(op) && rdev &&
1057 		       test_bit(WriteErrorSeen, &rdev->flags)) {
1058 			sector_t first_bad;
1059 			int bad_sectors;
1060 			int bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
1061 					      &first_bad, &bad_sectors);
1062 			if (!bad)
1063 				break;
1064 
1065 			if (bad < 0) {
1066 				set_bit(BlockedBadBlocks, &rdev->flags);
1067 				if (!conf->mddev->external &&
1068 				    conf->mddev->sb_flags) {
1069 					/* It is very unlikely, but we might
1070 					 * still need to write out the
1071 					 * bad block log - better give it
1072 					 * a chance*/
1073 					md_check_recovery(conf->mddev);
1074 				}
1075 				/*
1076 				 * Because md_wait_for_blocked_rdev
1077 				 * will dec nr_pending, we must
1078 				 * increment it first.
1079 				 */
1080 				atomic_inc(&rdev->nr_pending);
1081 				md_wait_for_blocked_rdev(rdev, conf->mddev);
1082 			} else {
1083 				/* Acknowledged bad block - skip the write */
1084 				rdev_dec_pending(rdev, conf->mddev);
1085 				rdev = NULL;
1086 			}
1087 		}
1088 
1089 		if (rdev) {
1090 			if (s->syncing || s->expanding || s->expanded
1091 			    || s->replacing)
1092 				md_sync_acct(rdev->bdev, STRIPE_SECTORS);
1093 
1094 			set_bit(STRIPE_IO_STARTED, &sh->state);
1095 
1096 			bio_set_dev(bi, rdev->bdev);
1097 			bio_set_op_attrs(bi, op, op_flags);
1098 			bi->bi_end_io = op_is_write(op)
1099 				? raid5_end_write_request
1100 				: raid5_end_read_request;
1101 			bi->bi_private = sh;
1102 
1103 			pr_debug("%s: for %llu schedule op %d on disc %d\n",
1104 				__func__, (unsigned long long)sh->sector,
1105 				bi->bi_opf, i);
1106 			atomic_inc(&sh->count);
1107 			if (sh != head_sh)
1108 				atomic_inc(&head_sh->count);
1109 			if (use_new_offset(conf, sh))
1110 				bi->bi_iter.bi_sector = (sh->sector
1111 						 + rdev->new_data_offset);
1112 			else
1113 				bi->bi_iter.bi_sector = (sh->sector
1114 						 + rdev->data_offset);
1115 			if (test_bit(R5_ReadNoMerge, &head_sh->dev[i].flags))
1116 				bi->bi_opf |= REQ_NOMERGE;
1117 
1118 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1119 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1120 
1121 			if (!op_is_write(op) &&
1122 			    test_bit(R5_InJournal, &sh->dev[i].flags))
1123 				/*
1124 				 * issuing read for a page in journal, this
1125 				 * must be preparing for prexor in rmw; read
1126 				 * the data into orig_page
1127 				 */
1128 				sh->dev[i].vec.bv_page = sh->dev[i].orig_page;
1129 			else
1130 				sh->dev[i].vec.bv_page = sh->dev[i].page;
1131 			bi->bi_vcnt = 1;
1132 			bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1133 			bi->bi_io_vec[0].bv_offset = 0;
1134 			bi->bi_iter.bi_size = STRIPE_SIZE;
1135 			bi->bi_write_hint = sh->dev[i].write_hint;
1136 			if (!rrdev)
1137 				sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1138 			/*
1139 			 * If this is discard request, set bi_vcnt 0. We don't
1140 			 * want to confuse SCSI because SCSI will replace payload
1141 			 */
1142 			if (op == REQ_OP_DISCARD)
1143 				bi->bi_vcnt = 0;
1144 			if (rrdev)
1145 				set_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags);
1146 
1147 			if (conf->mddev->gendisk)
1148 				trace_block_bio_remap(bi->bi_disk->queue,
1149 						      bi, disk_devt(conf->mddev->gendisk),
1150 						      sh->dev[i].sector);
1151 			if (should_defer && op_is_write(op))
1152 				bio_list_add(&pending_bios, bi);
1153 			else
1154 				generic_make_request(bi);
1155 		}
1156 		if (rrdev) {
1157 			if (s->syncing || s->expanding || s->expanded
1158 			    || s->replacing)
1159 				md_sync_acct(rrdev->bdev, STRIPE_SECTORS);
1160 
1161 			set_bit(STRIPE_IO_STARTED, &sh->state);
1162 
1163 			bio_set_dev(rbi, rrdev->bdev);
1164 			bio_set_op_attrs(rbi, op, op_flags);
1165 			BUG_ON(!op_is_write(op));
1166 			rbi->bi_end_io = raid5_end_write_request;
1167 			rbi->bi_private = sh;
1168 
1169 			pr_debug("%s: for %llu schedule op %d on "
1170 				 "replacement disc %d\n",
1171 				__func__, (unsigned long long)sh->sector,
1172 				rbi->bi_opf, i);
1173 			atomic_inc(&sh->count);
1174 			if (sh != head_sh)
1175 				atomic_inc(&head_sh->count);
1176 			if (use_new_offset(conf, sh))
1177 				rbi->bi_iter.bi_sector = (sh->sector
1178 						  + rrdev->new_data_offset);
1179 			else
1180 				rbi->bi_iter.bi_sector = (sh->sector
1181 						  + rrdev->data_offset);
1182 			if (test_bit(R5_SkipCopy, &sh->dev[i].flags))
1183 				WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
1184 			sh->dev[i].rvec.bv_page = sh->dev[i].page;
1185 			rbi->bi_vcnt = 1;
1186 			rbi->bi_io_vec[0].bv_len = STRIPE_SIZE;
1187 			rbi->bi_io_vec[0].bv_offset = 0;
1188 			rbi->bi_iter.bi_size = STRIPE_SIZE;
1189 			rbi->bi_write_hint = sh->dev[i].write_hint;
1190 			sh->dev[i].write_hint = RWF_WRITE_LIFE_NOT_SET;
1191 			/*
1192 			 * If this is discard request, set bi_vcnt 0. We don't
1193 			 * want to confuse SCSI because SCSI will replace payload
1194 			 */
1195 			if (op == REQ_OP_DISCARD)
1196 				rbi->bi_vcnt = 0;
1197 			if (conf->mddev->gendisk)
1198 				trace_block_bio_remap(rbi->bi_disk->queue,
1199 						      rbi, disk_devt(conf->mddev->gendisk),
1200 						      sh->dev[i].sector);
1201 			if (should_defer && op_is_write(op))
1202 				bio_list_add(&pending_bios, rbi);
1203 			else
1204 				generic_make_request(rbi);
1205 		}
1206 		if (!rdev && !rrdev) {
1207 			if (op_is_write(op))
1208 				set_bit(STRIPE_DEGRADED, &sh->state);
1209 			pr_debug("skip op %d on disc %d for sector %llu\n",
1210 				bi->bi_opf, i, (unsigned long long)sh->sector);
1211 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
1212 			set_bit(STRIPE_HANDLE, &sh->state);
1213 		}
1214 
1215 		if (!head_sh->batch_head)
1216 			continue;
1217 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1218 				      batch_list);
1219 		if (sh != head_sh)
1220 			goto again;
1221 	}
1222 
1223 	if (should_defer && !bio_list_empty(&pending_bios))
1224 		defer_issue_bios(conf, head_sh->sector, &pending_bios);
1225 }
1226 
1227 static struct dma_async_tx_descriptor *
1228 async_copy_data(int frombio, struct bio *bio, struct page **page,
1229 	sector_t sector, struct dma_async_tx_descriptor *tx,
1230 	struct stripe_head *sh, int no_skipcopy)
1231 {
1232 	struct bio_vec bvl;
1233 	struct bvec_iter iter;
1234 	struct page *bio_page;
1235 	int page_offset;
1236 	struct async_submit_ctl submit;
1237 	enum async_tx_flags flags = 0;
1238 
1239 	if (bio->bi_iter.bi_sector >= sector)
1240 		page_offset = (signed)(bio->bi_iter.bi_sector - sector) * 512;
1241 	else
1242 		page_offset = (signed)(sector - bio->bi_iter.bi_sector) * -512;
1243 
1244 	if (frombio)
1245 		flags |= ASYNC_TX_FENCE;
1246 	init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
1247 
1248 	bio_for_each_segment(bvl, bio, iter) {
1249 		int len = bvl.bv_len;
1250 		int clen;
1251 		int b_offset = 0;
1252 
1253 		if (page_offset < 0) {
1254 			b_offset = -page_offset;
1255 			page_offset += b_offset;
1256 			len -= b_offset;
1257 		}
1258 
1259 		if (len > 0 && page_offset + len > STRIPE_SIZE)
1260 			clen = STRIPE_SIZE - page_offset;
1261 		else
1262 			clen = len;
1263 
1264 		if (clen > 0) {
1265 			b_offset += bvl.bv_offset;
1266 			bio_page = bvl.bv_page;
1267 			if (frombio) {
1268 				if (sh->raid_conf->skip_copy &&
1269 				    b_offset == 0 && page_offset == 0 &&
1270 				    clen == STRIPE_SIZE &&
1271 				    !no_skipcopy)
1272 					*page = bio_page;
1273 				else
1274 					tx = async_memcpy(*page, bio_page, page_offset,
1275 						  b_offset, clen, &submit);
1276 			} else
1277 				tx = async_memcpy(bio_page, *page, b_offset,
1278 						  page_offset, clen, &submit);
1279 		}
1280 		/* chain the operations */
1281 		submit.depend_tx = tx;
1282 
1283 		if (clen < len) /* hit end of page */
1284 			break;
1285 		page_offset +=  len;
1286 	}
1287 
1288 	return tx;
1289 }
1290 
1291 static void ops_complete_biofill(void *stripe_head_ref)
1292 {
1293 	struct stripe_head *sh = stripe_head_ref;
1294 	int i;
1295 
1296 	pr_debug("%s: stripe %llu\n", __func__,
1297 		(unsigned long long)sh->sector);
1298 
1299 	/* clear completed biofills */
1300 	for (i = sh->disks; i--; ) {
1301 		struct r5dev *dev = &sh->dev[i];
1302 
1303 		/* acknowledge completion of a biofill operation */
1304 		/* and check if we need to reply to a read request,
1305 		 * new R5_Wantfill requests are held off until
1306 		 * !STRIPE_BIOFILL_RUN
1307 		 */
1308 		if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
1309 			struct bio *rbi, *rbi2;
1310 
1311 			BUG_ON(!dev->read);
1312 			rbi = dev->read;
1313 			dev->read = NULL;
1314 			while (rbi && rbi->bi_iter.bi_sector <
1315 				dev->sector + STRIPE_SECTORS) {
1316 				rbi2 = r5_next_bio(rbi, dev->sector);
1317 				bio_endio(rbi);
1318 				rbi = rbi2;
1319 			}
1320 		}
1321 	}
1322 	clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
1323 
1324 	set_bit(STRIPE_HANDLE, &sh->state);
1325 	raid5_release_stripe(sh);
1326 }
1327 
1328 static void ops_run_biofill(struct stripe_head *sh)
1329 {
1330 	struct dma_async_tx_descriptor *tx = NULL;
1331 	struct async_submit_ctl submit;
1332 	int i;
1333 
1334 	BUG_ON(sh->batch_head);
1335 	pr_debug("%s: stripe %llu\n", __func__,
1336 		(unsigned long long)sh->sector);
1337 
1338 	for (i = sh->disks; i--; ) {
1339 		struct r5dev *dev = &sh->dev[i];
1340 		if (test_bit(R5_Wantfill, &dev->flags)) {
1341 			struct bio *rbi;
1342 			spin_lock_irq(&sh->stripe_lock);
1343 			dev->read = rbi = dev->toread;
1344 			dev->toread = NULL;
1345 			spin_unlock_irq(&sh->stripe_lock);
1346 			while (rbi && rbi->bi_iter.bi_sector <
1347 				dev->sector + STRIPE_SECTORS) {
1348 				tx = async_copy_data(0, rbi, &dev->page,
1349 						     dev->sector, tx, sh, 0);
1350 				rbi = r5_next_bio(rbi, dev->sector);
1351 			}
1352 		}
1353 	}
1354 
1355 	atomic_inc(&sh->count);
1356 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
1357 	async_trigger_callback(&submit);
1358 }
1359 
1360 static void mark_target_uptodate(struct stripe_head *sh, int target)
1361 {
1362 	struct r5dev *tgt;
1363 
1364 	if (target < 0)
1365 		return;
1366 
1367 	tgt = &sh->dev[target];
1368 	set_bit(R5_UPTODATE, &tgt->flags);
1369 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1370 	clear_bit(R5_Wantcompute, &tgt->flags);
1371 }
1372 
1373 static void ops_complete_compute(void *stripe_head_ref)
1374 {
1375 	struct stripe_head *sh = stripe_head_ref;
1376 
1377 	pr_debug("%s: stripe %llu\n", __func__,
1378 		(unsigned long long)sh->sector);
1379 
1380 	/* mark the computed target(s) as uptodate */
1381 	mark_target_uptodate(sh, sh->ops.target);
1382 	mark_target_uptodate(sh, sh->ops.target2);
1383 
1384 	clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
1385 	if (sh->check_state == check_state_compute_run)
1386 		sh->check_state = check_state_compute_result;
1387 	set_bit(STRIPE_HANDLE, &sh->state);
1388 	raid5_release_stripe(sh);
1389 }
1390 
1391 /* return a pointer to the address conversion region of the scribble buffer */
1392 static struct page **to_addr_page(struct raid5_percpu *percpu, int i)
1393 {
1394 	return percpu->scribble + i * percpu->scribble_obj_size;
1395 }
1396 
1397 /* return a pointer to the address conversion region of the scribble buffer */
1398 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
1399 				 struct raid5_percpu *percpu, int i)
1400 {
1401 	return (void *) (to_addr_page(percpu, i) + sh->disks + 2);
1402 }
1403 
1404 static struct dma_async_tx_descriptor *
1405 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
1406 {
1407 	int disks = sh->disks;
1408 	struct page **xor_srcs = to_addr_page(percpu, 0);
1409 	int target = sh->ops.target;
1410 	struct r5dev *tgt = &sh->dev[target];
1411 	struct page *xor_dest = tgt->page;
1412 	int count = 0;
1413 	struct dma_async_tx_descriptor *tx;
1414 	struct async_submit_ctl submit;
1415 	int i;
1416 
1417 	BUG_ON(sh->batch_head);
1418 
1419 	pr_debug("%s: stripe %llu block: %d\n",
1420 		__func__, (unsigned long long)sh->sector, target);
1421 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1422 
1423 	for (i = disks; i--; )
1424 		if (i != target)
1425 			xor_srcs[count++] = sh->dev[i].page;
1426 
1427 	atomic_inc(&sh->count);
1428 
1429 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
1430 			  ops_complete_compute, sh, to_addr_conv(sh, percpu, 0));
1431 	if (unlikely(count == 1))
1432 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1433 	else
1434 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1435 
1436 	return tx;
1437 }
1438 
1439 /* set_syndrome_sources - populate source buffers for gen_syndrome
1440  * @srcs - (struct page *) array of size sh->disks
1441  * @sh - stripe_head to parse
1442  *
1443  * Populates srcs in proper layout order for the stripe and returns the
1444  * 'count' of sources to be used in a call to async_gen_syndrome.  The P
1445  * destination buffer is recorded in srcs[count] and the Q destination
1446  * is recorded in srcs[count+1]].
1447  */
1448 static int set_syndrome_sources(struct page **srcs,
1449 				struct stripe_head *sh,
1450 				int srctype)
1451 {
1452 	int disks = sh->disks;
1453 	int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
1454 	int d0_idx = raid6_d0(sh);
1455 	int count;
1456 	int i;
1457 
1458 	for (i = 0; i < disks; i++)
1459 		srcs[i] = NULL;
1460 
1461 	count = 0;
1462 	i = d0_idx;
1463 	do {
1464 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1465 		struct r5dev *dev = &sh->dev[i];
1466 
1467 		if (i == sh->qd_idx || i == sh->pd_idx ||
1468 		    (srctype == SYNDROME_SRC_ALL) ||
1469 		    (srctype == SYNDROME_SRC_WANT_DRAIN &&
1470 		     (test_bit(R5_Wantdrain, &dev->flags) ||
1471 		      test_bit(R5_InJournal, &dev->flags))) ||
1472 		    (srctype == SYNDROME_SRC_WRITTEN &&
1473 		     (dev->written ||
1474 		      test_bit(R5_InJournal, &dev->flags)))) {
1475 			if (test_bit(R5_InJournal, &dev->flags))
1476 				srcs[slot] = sh->dev[i].orig_page;
1477 			else
1478 				srcs[slot] = sh->dev[i].page;
1479 		}
1480 		i = raid6_next_disk(i, disks);
1481 	} while (i != d0_idx);
1482 
1483 	return syndrome_disks;
1484 }
1485 
1486 static struct dma_async_tx_descriptor *
1487 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
1488 {
1489 	int disks = sh->disks;
1490 	struct page **blocks = to_addr_page(percpu, 0);
1491 	int target;
1492 	int qd_idx = sh->qd_idx;
1493 	struct dma_async_tx_descriptor *tx;
1494 	struct async_submit_ctl submit;
1495 	struct r5dev *tgt;
1496 	struct page *dest;
1497 	int i;
1498 	int count;
1499 
1500 	BUG_ON(sh->batch_head);
1501 	if (sh->ops.target < 0)
1502 		target = sh->ops.target2;
1503 	else if (sh->ops.target2 < 0)
1504 		target = sh->ops.target;
1505 	else
1506 		/* we should only have one valid target */
1507 		BUG();
1508 	BUG_ON(target < 0);
1509 	pr_debug("%s: stripe %llu block: %d\n",
1510 		__func__, (unsigned long long)sh->sector, target);
1511 
1512 	tgt = &sh->dev[target];
1513 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1514 	dest = tgt->page;
1515 
1516 	atomic_inc(&sh->count);
1517 
1518 	if (target == qd_idx) {
1519 		count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1520 		blocks[count] = NULL; /* regenerating p is not necessary */
1521 		BUG_ON(blocks[count+1] != dest); /* q should already be set */
1522 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1523 				  ops_complete_compute, sh,
1524 				  to_addr_conv(sh, percpu, 0));
1525 		tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1526 	} else {
1527 		/* Compute any data- or p-drive using XOR */
1528 		count = 0;
1529 		for (i = disks; i-- ; ) {
1530 			if (i == target || i == qd_idx)
1531 				continue;
1532 			blocks[count++] = sh->dev[i].page;
1533 		}
1534 
1535 		init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1536 				  NULL, ops_complete_compute, sh,
1537 				  to_addr_conv(sh, percpu, 0));
1538 		tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
1539 	}
1540 
1541 	return tx;
1542 }
1543 
1544 static struct dma_async_tx_descriptor *
1545 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
1546 {
1547 	int i, count, disks = sh->disks;
1548 	int syndrome_disks = sh->ddf_layout ? disks : disks-2;
1549 	int d0_idx = raid6_d0(sh);
1550 	int faila = -1, failb = -1;
1551 	int target = sh->ops.target;
1552 	int target2 = sh->ops.target2;
1553 	struct r5dev *tgt = &sh->dev[target];
1554 	struct r5dev *tgt2 = &sh->dev[target2];
1555 	struct dma_async_tx_descriptor *tx;
1556 	struct page **blocks = to_addr_page(percpu, 0);
1557 	struct async_submit_ctl submit;
1558 
1559 	BUG_ON(sh->batch_head);
1560 	pr_debug("%s: stripe %llu block1: %d block2: %d\n",
1561 		 __func__, (unsigned long long)sh->sector, target, target2);
1562 	BUG_ON(target < 0 || target2 < 0);
1563 	BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
1564 	BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
1565 
1566 	/* we need to open-code set_syndrome_sources to handle the
1567 	 * slot number conversion for 'faila' and 'failb'
1568 	 */
1569 	for (i = 0; i < disks ; i++)
1570 		blocks[i] = NULL;
1571 	count = 0;
1572 	i = d0_idx;
1573 	do {
1574 		int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
1575 
1576 		blocks[slot] = sh->dev[i].page;
1577 
1578 		if (i == target)
1579 			faila = slot;
1580 		if (i == target2)
1581 			failb = slot;
1582 		i = raid6_next_disk(i, disks);
1583 	} while (i != d0_idx);
1584 
1585 	BUG_ON(faila == failb);
1586 	if (failb < faila)
1587 		swap(faila, failb);
1588 	pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
1589 		 __func__, (unsigned long long)sh->sector, faila, failb);
1590 
1591 	atomic_inc(&sh->count);
1592 
1593 	if (failb == syndrome_disks+1) {
1594 		/* Q disk is one of the missing disks */
1595 		if (faila == syndrome_disks) {
1596 			/* Missing P+Q, just recompute */
1597 			init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1598 					  ops_complete_compute, sh,
1599 					  to_addr_conv(sh, percpu, 0));
1600 			return async_gen_syndrome(blocks, 0, syndrome_disks+2,
1601 						  STRIPE_SIZE, &submit);
1602 		} else {
1603 			struct page *dest;
1604 			int data_target;
1605 			int qd_idx = sh->qd_idx;
1606 
1607 			/* Missing D+Q: recompute D from P, then recompute Q */
1608 			if (target == qd_idx)
1609 				data_target = target2;
1610 			else
1611 				data_target = target;
1612 
1613 			count = 0;
1614 			for (i = disks; i-- ; ) {
1615 				if (i == data_target || i == qd_idx)
1616 					continue;
1617 				blocks[count++] = sh->dev[i].page;
1618 			}
1619 			dest = sh->dev[data_target].page;
1620 			init_async_submit(&submit,
1621 					  ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
1622 					  NULL, NULL, NULL,
1623 					  to_addr_conv(sh, percpu, 0));
1624 			tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
1625 				       &submit);
1626 
1627 			count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_ALL);
1628 			init_async_submit(&submit, ASYNC_TX_FENCE, tx,
1629 					  ops_complete_compute, sh,
1630 					  to_addr_conv(sh, percpu, 0));
1631 			return async_gen_syndrome(blocks, 0, count+2,
1632 						  STRIPE_SIZE, &submit);
1633 		}
1634 	} else {
1635 		init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
1636 				  ops_complete_compute, sh,
1637 				  to_addr_conv(sh, percpu, 0));
1638 		if (failb == syndrome_disks) {
1639 			/* We're missing D+P. */
1640 			return async_raid6_datap_recov(syndrome_disks+2,
1641 						       STRIPE_SIZE, faila,
1642 						       blocks, &submit);
1643 		} else {
1644 			/* We're missing D+D. */
1645 			return async_raid6_2data_recov(syndrome_disks+2,
1646 						       STRIPE_SIZE, faila, failb,
1647 						       blocks, &submit);
1648 		}
1649 	}
1650 }
1651 
1652 static void ops_complete_prexor(void *stripe_head_ref)
1653 {
1654 	struct stripe_head *sh = stripe_head_ref;
1655 
1656 	pr_debug("%s: stripe %llu\n", __func__,
1657 		(unsigned long long)sh->sector);
1658 
1659 	if (r5c_is_writeback(sh->raid_conf->log))
1660 		/*
1661 		 * raid5-cache write back uses orig_page during prexor.
1662 		 * After prexor, it is time to free orig_page
1663 		 */
1664 		r5c_release_extra_page(sh);
1665 }
1666 
1667 static struct dma_async_tx_descriptor *
1668 ops_run_prexor5(struct stripe_head *sh, struct raid5_percpu *percpu,
1669 		struct dma_async_tx_descriptor *tx)
1670 {
1671 	int disks = sh->disks;
1672 	struct page **xor_srcs = to_addr_page(percpu, 0);
1673 	int count = 0, pd_idx = sh->pd_idx, i;
1674 	struct async_submit_ctl submit;
1675 
1676 	/* existing parity data subtracted */
1677 	struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1678 
1679 	BUG_ON(sh->batch_head);
1680 	pr_debug("%s: stripe %llu\n", __func__,
1681 		(unsigned long long)sh->sector);
1682 
1683 	for (i = disks; i--; ) {
1684 		struct r5dev *dev = &sh->dev[i];
1685 		/* Only process blocks that are known to be uptodate */
1686 		if (test_bit(R5_InJournal, &dev->flags))
1687 			xor_srcs[count++] = dev->orig_page;
1688 		else if (test_bit(R5_Wantdrain, &dev->flags))
1689 			xor_srcs[count++] = dev->page;
1690 	}
1691 
1692 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1693 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1694 	tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1695 
1696 	return tx;
1697 }
1698 
1699 static struct dma_async_tx_descriptor *
1700 ops_run_prexor6(struct stripe_head *sh, struct raid5_percpu *percpu,
1701 		struct dma_async_tx_descriptor *tx)
1702 {
1703 	struct page **blocks = to_addr_page(percpu, 0);
1704 	int count;
1705 	struct async_submit_ctl submit;
1706 
1707 	pr_debug("%s: stripe %llu\n", __func__,
1708 		(unsigned long long)sh->sector);
1709 
1710 	count = set_syndrome_sources(blocks, sh, SYNDROME_SRC_WANT_DRAIN);
1711 
1712 	init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_PQ_XOR_DST, tx,
1713 			  ops_complete_prexor, sh, to_addr_conv(sh, percpu, 0));
1714 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1715 
1716 	return tx;
1717 }
1718 
1719 static struct dma_async_tx_descriptor *
1720 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1721 {
1722 	struct r5conf *conf = sh->raid_conf;
1723 	int disks = sh->disks;
1724 	int i;
1725 	struct stripe_head *head_sh = sh;
1726 
1727 	pr_debug("%s: stripe %llu\n", __func__,
1728 		(unsigned long long)sh->sector);
1729 
1730 	for (i = disks; i--; ) {
1731 		struct r5dev *dev;
1732 		struct bio *chosen;
1733 
1734 		sh = head_sh;
1735 		if (test_and_clear_bit(R5_Wantdrain, &head_sh->dev[i].flags)) {
1736 			struct bio *wbi;
1737 
1738 again:
1739 			dev = &sh->dev[i];
1740 			/*
1741 			 * clear R5_InJournal, so when rewriting a page in
1742 			 * journal, it is not skipped by r5l_log_stripe()
1743 			 */
1744 			clear_bit(R5_InJournal, &dev->flags);
1745 			spin_lock_irq(&sh->stripe_lock);
1746 			chosen = dev->towrite;
1747 			dev->towrite = NULL;
1748 			sh->overwrite_disks = 0;
1749 			BUG_ON(dev->written);
1750 			wbi = dev->written = chosen;
1751 			spin_unlock_irq(&sh->stripe_lock);
1752 			WARN_ON(dev->page != dev->orig_page);
1753 
1754 			while (wbi && wbi->bi_iter.bi_sector <
1755 				dev->sector + STRIPE_SECTORS) {
1756 				if (wbi->bi_opf & REQ_FUA)
1757 					set_bit(R5_WantFUA, &dev->flags);
1758 				if (wbi->bi_opf & REQ_SYNC)
1759 					set_bit(R5_SyncIO, &dev->flags);
1760 				if (bio_op(wbi) == REQ_OP_DISCARD)
1761 					set_bit(R5_Discard, &dev->flags);
1762 				else {
1763 					tx = async_copy_data(1, wbi, &dev->page,
1764 							     dev->sector, tx, sh,
1765 							     r5c_is_writeback(conf->log));
1766 					if (dev->page != dev->orig_page &&
1767 					    !r5c_is_writeback(conf->log)) {
1768 						set_bit(R5_SkipCopy, &dev->flags);
1769 						clear_bit(R5_UPTODATE, &dev->flags);
1770 						clear_bit(R5_OVERWRITE, &dev->flags);
1771 					}
1772 				}
1773 				wbi = r5_next_bio(wbi, dev->sector);
1774 			}
1775 
1776 			if (head_sh->batch_head) {
1777 				sh = list_first_entry(&sh->batch_list,
1778 						      struct stripe_head,
1779 						      batch_list);
1780 				if (sh == head_sh)
1781 					continue;
1782 				goto again;
1783 			}
1784 		}
1785 	}
1786 
1787 	return tx;
1788 }
1789 
1790 static void ops_complete_reconstruct(void *stripe_head_ref)
1791 {
1792 	struct stripe_head *sh = stripe_head_ref;
1793 	int disks = sh->disks;
1794 	int pd_idx = sh->pd_idx;
1795 	int qd_idx = sh->qd_idx;
1796 	int i;
1797 	bool fua = false, sync = false, discard = false;
1798 
1799 	pr_debug("%s: stripe %llu\n", __func__,
1800 		(unsigned long long)sh->sector);
1801 
1802 	for (i = disks; i--; ) {
1803 		fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1804 		sync |= test_bit(R5_SyncIO, &sh->dev[i].flags);
1805 		discard |= test_bit(R5_Discard, &sh->dev[i].flags);
1806 	}
1807 
1808 	for (i = disks; i--; ) {
1809 		struct r5dev *dev = &sh->dev[i];
1810 
1811 		if (dev->written || i == pd_idx || i == qd_idx) {
1812 			if (!discard && !test_bit(R5_SkipCopy, &dev->flags)) {
1813 				set_bit(R5_UPTODATE, &dev->flags);
1814 				if (test_bit(STRIPE_EXPAND_READY, &sh->state))
1815 					set_bit(R5_Expanded, &dev->flags);
1816 			}
1817 			if (fua)
1818 				set_bit(R5_WantFUA, &dev->flags);
1819 			if (sync)
1820 				set_bit(R5_SyncIO, &dev->flags);
1821 		}
1822 	}
1823 
1824 	if (sh->reconstruct_state == reconstruct_state_drain_run)
1825 		sh->reconstruct_state = reconstruct_state_drain_result;
1826 	else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1827 		sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1828 	else {
1829 		BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1830 		sh->reconstruct_state = reconstruct_state_result;
1831 	}
1832 
1833 	set_bit(STRIPE_HANDLE, &sh->state);
1834 	raid5_release_stripe(sh);
1835 }
1836 
1837 static void
1838 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1839 		     struct dma_async_tx_descriptor *tx)
1840 {
1841 	int disks = sh->disks;
1842 	struct page **xor_srcs;
1843 	struct async_submit_ctl submit;
1844 	int count, pd_idx = sh->pd_idx, i;
1845 	struct page *xor_dest;
1846 	int prexor = 0;
1847 	unsigned long flags;
1848 	int j = 0;
1849 	struct stripe_head *head_sh = sh;
1850 	int last_stripe;
1851 
1852 	pr_debug("%s: stripe %llu\n", __func__,
1853 		(unsigned long long)sh->sector);
1854 
1855 	for (i = 0; i < sh->disks; i++) {
1856 		if (pd_idx == i)
1857 			continue;
1858 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1859 			break;
1860 	}
1861 	if (i >= sh->disks) {
1862 		atomic_inc(&sh->count);
1863 		set_bit(R5_Discard, &sh->dev[pd_idx].flags);
1864 		ops_complete_reconstruct(sh);
1865 		return;
1866 	}
1867 again:
1868 	count = 0;
1869 	xor_srcs = to_addr_page(percpu, j);
1870 	/* check if prexor is active which means only process blocks
1871 	 * that are part of a read-modify-write (written)
1872 	 */
1873 	if (head_sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1874 		prexor = 1;
1875 		xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1876 		for (i = disks; i--; ) {
1877 			struct r5dev *dev = &sh->dev[i];
1878 			if (head_sh->dev[i].written ||
1879 			    test_bit(R5_InJournal, &head_sh->dev[i].flags))
1880 				xor_srcs[count++] = dev->page;
1881 		}
1882 	} else {
1883 		xor_dest = sh->dev[pd_idx].page;
1884 		for (i = disks; i--; ) {
1885 			struct r5dev *dev = &sh->dev[i];
1886 			if (i != pd_idx)
1887 				xor_srcs[count++] = dev->page;
1888 		}
1889 	}
1890 
1891 	/* 1/ if we prexor'd then the dest is reused as a source
1892 	 * 2/ if we did not prexor then we are redoing the parity
1893 	 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1894 	 * for the synchronous xor case
1895 	 */
1896 	last_stripe = !head_sh->batch_head ||
1897 		list_first_entry(&sh->batch_list,
1898 				 struct stripe_head, batch_list) == head_sh;
1899 	if (last_stripe) {
1900 		flags = ASYNC_TX_ACK |
1901 			(prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1902 
1903 		atomic_inc(&head_sh->count);
1904 		init_async_submit(&submit, flags, tx, ops_complete_reconstruct, head_sh,
1905 				  to_addr_conv(sh, percpu, j));
1906 	} else {
1907 		flags = prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST;
1908 		init_async_submit(&submit, flags, tx, NULL, NULL,
1909 				  to_addr_conv(sh, percpu, j));
1910 	}
1911 
1912 	if (unlikely(count == 1))
1913 		tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1914 	else
1915 		tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1916 	if (!last_stripe) {
1917 		j++;
1918 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1919 				      batch_list);
1920 		goto again;
1921 	}
1922 }
1923 
1924 static void
1925 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1926 		     struct dma_async_tx_descriptor *tx)
1927 {
1928 	struct async_submit_ctl submit;
1929 	struct page **blocks;
1930 	int count, i, j = 0;
1931 	struct stripe_head *head_sh = sh;
1932 	int last_stripe;
1933 	int synflags;
1934 	unsigned long txflags;
1935 
1936 	pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1937 
1938 	for (i = 0; i < sh->disks; i++) {
1939 		if (sh->pd_idx == i || sh->qd_idx == i)
1940 			continue;
1941 		if (!test_bit(R5_Discard, &sh->dev[i].flags))
1942 			break;
1943 	}
1944 	if (i >= sh->disks) {
1945 		atomic_inc(&sh->count);
1946 		set_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
1947 		set_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
1948 		ops_complete_reconstruct(sh);
1949 		return;
1950 	}
1951 
1952 again:
1953 	blocks = to_addr_page(percpu, j);
1954 
1955 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1956 		synflags = SYNDROME_SRC_WRITTEN;
1957 		txflags = ASYNC_TX_ACK | ASYNC_TX_PQ_XOR_DST;
1958 	} else {
1959 		synflags = SYNDROME_SRC_ALL;
1960 		txflags = ASYNC_TX_ACK;
1961 	}
1962 
1963 	count = set_syndrome_sources(blocks, sh, synflags);
1964 	last_stripe = !head_sh->batch_head ||
1965 		list_first_entry(&sh->batch_list,
1966 				 struct stripe_head, batch_list) == head_sh;
1967 
1968 	if (last_stripe) {
1969 		atomic_inc(&head_sh->count);
1970 		init_async_submit(&submit, txflags, tx, ops_complete_reconstruct,
1971 				  head_sh, to_addr_conv(sh, percpu, j));
1972 	} else
1973 		init_async_submit(&submit, 0, tx, NULL, NULL,
1974 				  to_addr_conv(sh, percpu, j));
1975 	tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE,  &submit);
1976 	if (!last_stripe) {
1977 		j++;
1978 		sh = list_first_entry(&sh->batch_list, struct stripe_head,
1979 				      batch_list);
1980 		goto again;
1981 	}
1982 }
1983 
1984 static void ops_complete_check(void *stripe_head_ref)
1985 {
1986 	struct stripe_head *sh = stripe_head_ref;
1987 
1988 	pr_debug("%s: stripe %llu\n", __func__,
1989 		(unsigned long long)sh->sector);
1990 
1991 	sh->check_state = check_state_check_result;
1992 	set_bit(STRIPE_HANDLE, &sh->state);
1993 	raid5_release_stripe(sh);
1994 }
1995 
1996 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1997 {
1998 	int disks = sh->disks;
1999 	int pd_idx = sh->pd_idx;
2000 	int qd_idx = sh->qd_idx;
2001 	struct page *xor_dest;
2002 	struct page **xor_srcs = to_addr_page(percpu, 0);
2003 	struct dma_async_tx_descriptor *tx;
2004 	struct async_submit_ctl submit;
2005 	int count;
2006 	int i;
2007 
2008 	pr_debug("%s: stripe %llu\n", __func__,
2009 		(unsigned long long)sh->sector);
2010 
2011 	BUG_ON(sh->batch_head);
2012 	count = 0;
2013 	xor_dest = sh->dev[pd_idx].page;
2014 	xor_srcs[count++] = xor_dest;
2015 	for (i = disks; i--; ) {
2016 		if (i == pd_idx || i == qd_idx)
2017 			continue;
2018 		xor_srcs[count++] = sh->dev[i].page;
2019 	}
2020 
2021 	init_async_submit(&submit, 0, NULL, NULL, NULL,
2022 			  to_addr_conv(sh, percpu, 0));
2023 	tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
2024 			   &sh->ops.zero_sum_result, &submit);
2025 
2026 	atomic_inc(&sh->count);
2027 	init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
2028 	tx = async_trigger_callback(&submit);
2029 }
2030 
2031 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
2032 {
2033 	struct page **srcs = to_addr_page(percpu, 0);
2034 	struct async_submit_ctl submit;
2035 	int count;
2036 
2037 	pr_debug("%s: stripe %llu checkp: %d\n", __func__,
2038 		(unsigned long long)sh->sector, checkp);
2039 
2040 	BUG_ON(sh->batch_head);
2041 	count = set_syndrome_sources(srcs, sh, SYNDROME_SRC_ALL);
2042 	if (!checkp)
2043 		srcs[count] = NULL;
2044 
2045 	atomic_inc(&sh->count);
2046 	init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
2047 			  sh, to_addr_conv(sh, percpu, 0));
2048 	async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
2049 			   &sh->ops.zero_sum_result, percpu->spare_page, &submit);
2050 }
2051 
2052 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
2053 {
2054 	int overlap_clear = 0, i, disks = sh->disks;
2055 	struct dma_async_tx_descriptor *tx = NULL;
2056 	struct r5conf *conf = sh->raid_conf;
2057 	int level = conf->level;
2058 	struct raid5_percpu *percpu;
2059 	unsigned long cpu;
2060 
2061 	cpu = get_cpu();
2062 	percpu = per_cpu_ptr(conf->percpu, cpu);
2063 	if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
2064 		ops_run_biofill(sh);
2065 		overlap_clear++;
2066 	}
2067 
2068 	if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
2069 		if (level < 6)
2070 			tx = ops_run_compute5(sh, percpu);
2071 		else {
2072 			if (sh->ops.target2 < 0 || sh->ops.target < 0)
2073 				tx = ops_run_compute6_1(sh, percpu);
2074 			else
2075 				tx = ops_run_compute6_2(sh, percpu);
2076 		}
2077 		/* terminate the chain if reconstruct is not set to be run */
2078 		if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
2079 			async_tx_ack(tx);
2080 	}
2081 
2082 	if (test_bit(STRIPE_OP_PREXOR, &ops_request)) {
2083 		if (level < 6)
2084 			tx = ops_run_prexor5(sh, percpu, tx);
2085 		else
2086 			tx = ops_run_prexor6(sh, percpu, tx);
2087 	}
2088 
2089 	if (test_bit(STRIPE_OP_PARTIAL_PARITY, &ops_request))
2090 		tx = ops_run_partial_parity(sh, percpu, tx);
2091 
2092 	if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
2093 		tx = ops_run_biodrain(sh, tx);
2094 		overlap_clear++;
2095 	}
2096 
2097 	if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
2098 		if (level < 6)
2099 			ops_run_reconstruct5(sh, percpu, tx);
2100 		else
2101 			ops_run_reconstruct6(sh, percpu, tx);
2102 	}
2103 
2104 	if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
2105 		if (sh->check_state == check_state_run)
2106 			ops_run_check_p(sh, percpu);
2107 		else if (sh->check_state == check_state_run_q)
2108 			ops_run_check_pq(sh, percpu, 0);
2109 		else if (sh->check_state == check_state_run_pq)
2110 			ops_run_check_pq(sh, percpu, 1);
2111 		else
2112 			BUG();
2113 	}
2114 
2115 	if (overlap_clear && !sh->batch_head)
2116 		for (i = disks; i--; ) {
2117 			struct r5dev *dev = &sh->dev[i];
2118 			if (test_and_clear_bit(R5_Overlap, &dev->flags))
2119 				wake_up(&sh->raid_conf->wait_for_overlap);
2120 		}
2121 	put_cpu();
2122 }
2123 
2124 static void free_stripe(struct kmem_cache *sc, struct stripe_head *sh)
2125 {
2126 	if (sh->ppl_page)
2127 		__free_page(sh->ppl_page);
2128 	kmem_cache_free(sc, sh);
2129 }
2130 
2131 static struct stripe_head *alloc_stripe(struct kmem_cache *sc, gfp_t gfp,
2132 	int disks, struct r5conf *conf)
2133 {
2134 	struct stripe_head *sh;
2135 	int i;
2136 
2137 	sh = kmem_cache_zalloc(sc, gfp);
2138 	if (sh) {
2139 		spin_lock_init(&sh->stripe_lock);
2140 		spin_lock_init(&sh->batch_lock);
2141 		INIT_LIST_HEAD(&sh->batch_list);
2142 		INIT_LIST_HEAD(&sh->lru);
2143 		INIT_LIST_HEAD(&sh->r5c);
2144 		INIT_LIST_HEAD(&sh->log_list);
2145 		atomic_set(&sh->count, 1);
2146 		sh->raid_conf = conf;
2147 		sh->log_start = MaxSector;
2148 		for (i = 0; i < disks; i++) {
2149 			struct r5dev *dev = &sh->dev[i];
2150 
2151 			bio_init(&dev->req, &dev->vec, 1);
2152 			bio_init(&dev->rreq, &dev->rvec, 1);
2153 		}
2154 
2155 		if (raid5_has_ppl(conf)) {
2156 			sh->ppl_page = alloc_page(gfp);
2157 			if (!sh->ppl_page) {
2158 				free_stripe(sc, sh);
2159 				sh = NULL;
2160 			}
2161 		}
2162 	}
2163 	return sh;
2164 }
2165 static int grow_one_stripe(struct r5conf *conf, gfp_t gfp)
2166 {
2167 	struct stripe_head *sh;
2168 
2169 	sh = alloc_stripe(conf->slab_cache, gfp, conf->pool_size, conf);
2170 	if (!sh)
2171 		return 0;
2172 
2173 	if (grow_buffers(sh, gfp)) {
2174 		shrink_buffers(sh);
2175 		free_stripe(conf->slab_cache, sh);
2176 		return 0;
2177 	}
2178 	sh->hash_lock_index =
2179 		conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS;
2180 	/* we just created an active stripe so... */
2181 	atomic_inc(&conf->active_stripes);
2182 
2183 	raid5_release_stripe(sh);
2184 	conf->max_nr_stripes++;
2185 	return 1;
2186 }
2187 
2188 static int grow_stripes(struct r5conf *conf, int num)
2189 {
2190 	struct kmem_cache *sc;
2191 	size_t namelen = sizeof(conf->cache_name[0]);
2192 	int devs = max(conf->raid_disks, conf->previous_raid_disks);
2193 
2194 	if (conf->mddev->gendisk)
2195 		snprintf(conf->cache_name[0], namelen,
2196 			"raid%d-%s", conf->level, mdname(conf->mddev));
2197 	else
2198 		snprintf(conf->cache_name[0], namelen,
2199 			"raid%d-%p", conf->level, conf->mddev);
2200 	snprintf(conf->cache_name[1], namelen, "%.27s-alt", conf->cache_name[0]);
2201 
2202 	conf->active_name = 0;
2203 	sc = kmem_cache_create(conf->cache_name[conf->active_name],
2204 			       sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
2205 			       0, 0, NULL);
2206 	if (!sc)
2207 		return 1;
2208 	conf->slab_cache = sc;
2209 	conf->pool_size = devs;
2210 	while (num--)
2211 		if (!grow_one_stripe(conf, GFP_KERNEL))
2212 			return 1;
2213 
2214 	return 0;
2215 }
2216 
2217 /**
2218  * scribble_len - return the required size of the scribble region
2219  * @num - total number of disks in the array
2220  *
2221  * The size must be enough to contain:
2222  * 1/ a struct page pointer for each device in the array +2
2223  * 2/ room to convert each entry in (1) to its corresponding dma
2224  *    (dma_map_page()) or page (page_address()) address.
2225  *
2226  * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
2227  * calculate over all devices (not just the data blocks), using zeros in place
2228  * of the P and Q blocks.
2229  */
2230 static int scribble_alloc(struct raid5_percpu *percpu,
2231 			  int num, int cnt, gfp_t flags)
2232 {
2233 	size_t obj_size =
2234 		sizeof(struct page *) * (num+2) +
2235 		sizeof(addr_conv_t) * (num+2);
2236 	void *scribble;
2237 
2238 	scribble = kvmalloc_array(cnt, obj_size, flags);
2239 	if (!scribble)
2240 		return -ENOMEM;
2241 
2242 	kvfree(percpu->scribble);
2243 
2244 	percpu->scribble = scribble;
2245 	percpu->scribble_obj_size = obj_size;
2246 	return 0;
2247 }
2248 
2249 static int resize_chunks(struct r5conf *conf, int new_disks, int new_sectors)
2250 {
2251 	unsigned long cpu;
2252 	int err = 0;
2253 
2254 	/*
2255 	 * Never shrink. And mddev_suspend() could deadlock if this is called
2256 	 * from raid5d. In that case, scribble_disks and scribble_sectors
2257 	 * should equal to new_disks and new_sectors
2258 	 */
2259 	if (conf->scribble_disks >= new_disks &&
2260 	    conf->scribble_sectors >= new_sectors)
2261 		return 0;
2262 	mddev_suspend(conf->mddev);
2263 	get_online_cpus();
2264 
2265 	for_each_present_cpu(cpu) {
2266 		struct raid5_percpu *percpu;
2267 
2268 		percpu = per_cpu_ptr(conf->percpu, cpu);
2269 		err = scribble_alloc(percpu, new_disks,
2270 				     new_sectors / STRIPE_SECTORS,
2271 				     GFP_NOIO);
2272 		if (err)
2273 			break;
2274 	}
2275 
2276 	put_online_cpus();
2277 	mddev_resume(conf->mddev);
2278 	if (!err) {
2279 		conf->scribble_disks = new_disks;
2280 		conf->scribble_sectors = new_sectors;
2281 	}
2282 	return err;
2283 }
2284 
2285 static int resize_stripes(struct r5conf *conf, int newsize)
2286 {
2287 	/* Make all the stripes able to hold 'newsize' devices.
2288 	 * New slots in each stripe get 'page' set to a new page.
2289 	 *
2290 	 * This happens in stages:
2291 	 * 1/ create a new kmem_cache and allocate the required number of
2292 	 *    stripe_heads.
2293 	 * 2/ gather all the old stripe_heads and transfer the pages across
2294 	 *    to the new stripe_heads.  This will have the side effect of
2295 	 *    freezing the array as once all stripe_heads have been collected,
2296 	 *    no IO will be possible.  Old stripe heads are freed once their
2297 	 *    pages have been transferred over, and the old kmem_cache is
2298 	 *    freed when all stripes are done.
2299 	 * 3/ reallocate conf->disks to be suitable bigger.  If this fails,
2300 	 *    we simple return a failure status - no need to clean anything up.
2301 	 * 4/ allocate new pages for the new slots in the new stripe_heads.
2302 	 *    If this fails, we don't bother trying the shrink the
2303 	 *    stripe_heads down again, we just leave them as they are.
2304 	 *    As each stripe_head is processed the new one is released into
2305 	 *    active service.
2306 	 *
2307 	 * Once step2 is started, we cannot afford to wait for a write,
2308 	 * so we use GFP_NOIO allocations.
2309 	 */
2310 	struct stripe_head *osh, *nsh;
2311 	LIST_HEAD(newstripes);
2312 	struct disk_info *ndisks;
2313 	int err = 0;
2314 	struct kmem_cache *sc;
2315 	int i;
2316 	int hash, cnt;
2317 
2318 	md_allow_write(conf->mddev);
2319 
2320 	/* Step 1 */
2321 	sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
2322 			       sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
2323 			       0, 0, NULL);
2324 	if (!sc)
2325 		return -ENOMEM;
2326 
2327 	/* Need to ensure auto-resizing doesn't interfere */
2328 	mutex_lock(&conf->cache_size_mutex);
2329 
2330 	for (i = conf->max_nr_stripes; i; i--) {
2331 		nsh = alloc_stripe(sc, GFP_KERNEL, newsize, conf);
2332 		if (!nsh)
2333 			break;
2334 
2335 		list_add(&nsh->lru, &newstripes);
2336 	}
2337 	if (i) {
2338 		/* didn't get enough, give up */
2339 		while (!list_empty(&newstripes)) {
2340 			nsh = list_entry(newstripes.next, struct stripe_head, lru);
2341 			list_del(&nsh->lru);
2342 			free_stripe(sc, nsh);
2343 		}
2344 		kmem_cache_destroy(sc);
2345 		mutex_unlock(&conf->cache_size_mutex);
2346 		return -ENOMEM;
2347 	}
2348 	/* Step 2 - Must use GFP_NOIO now.
2349 	 * OK, we have enough stripes, start collecting inactive
2350 	 * stripes and copying them over
2351 	 */
2352 	hash = 0;
2353 	cnt = 0;
2354 	list_for_each_entry(nsh, &newstripes, lru) {
2355 		lock_device_hash_lock(conf, hash);
2356 		wait_event_cmd(conf->wait_for_stripe,
2357 				    !list_empty(conf->inactive_list + hash),
2358 				    unlock_device_hash_lock(conf, hash),
2359 				    lock_device_hash_lock(conf, hash));
2360 		osh = get_free_stripe(conf, hash);
2361 		unlock_device_hash_lock(conf, hash);
2362 
2363 		for(i=0; i<conf->pool_size; i++) {
2364 			nsh->dev[i].page = osh->dev[i].page;
2365 			nsh->dev[i].orig_page = osh->dev[i].page;
2366 		}
2367 		nsh->hash_lock_index = hash;
2368 		free_stripe(conf->slab_cache, osh);
2369 		cnt++;
2370 		if (cnt >= conf->max_nr_stripes / NR_STRIPE_HASH_LOCKS +
2371 		    !!((conf->max_nr_stripes % NR_STRIPE_HASH_LOCKS) > hash)) {
2372 			hash++;
2373 			cnt = 0;
2374 		}
2375 	}
2376 	kmem_cache_destroy(conf->slab_cache);
2377 
2378 	/* Step 3.
2379 	 * At this point, we are holding all the stripes so the array
2380 	 * is completely stalled, so now is a good time to resize
2381 	 * conf->disks and the scribble region
2382 	 */
2383 	ndisks = kcalloc(newsize, sizeof(struct disk_info), GFP_NOIO);
2384 	if (ndisks) {
2385 		for (i = 0; i < conf->pool_size; i++)
2386 			ndisks[i] = conf->disks[i];
2387 
2388 		for (i = conf->pool_size; i < newsize; i++) {
2389 			ndisks[i].extra_page = alloc_page(GFP_NOIO);
2390 			if (!ndisks[i].extra_page)
2391 				err = -ENOMEM;
2392 		}
2393 
2394 		if (err) {
2395 			for (i = conf->pool_size; i < newsize; i++)
2396 				if (ndisks[i].extra_page)
2397 					put_page(ndisks[i].extra_page);
2398 			kfree(ndisks);
2399 		} else {
2400 			kfree(conf->disks);
2401 			conf->disks = ndisks;
2402 		}
2403 	} else
2404 		err = -ENOMEM;
2405 
2406 	mutex_unlock(&conf->cache_size_mutex);
2407 
2408 	conf->slab_cache = sc;
2409 	conf->active_name = 1-conf->active_name;
2410 
2411 	/* Step 4, return new stripes to service */
2412 	while(!list_empty(&newstripes)) {
2413 		nsh = list_entry(newstripes.next, struct stripe_head, lru);
2414 		list_del_init(&nsh->lru);
2415 
2416 		for (i=conf->raid_disks; i < newsize; i++)
2417 			if (nsh->dev[i].page == NULL) {
2418 				struct page *p = alloc_page(GFP_NOIO);
2419 				nsh->dev[i].page = p;
2420 				nsh->dev[i].orig_page = p;
2421 				if (!p)
2422 					err = -ENOMEM;
2423 			}
2424 		raid5_release_stripe(nsh);
2425 	}
2426 	/* critical section pass, GFP_NOIO no longer needed */
2427 
2428 	if (!err)
2429 		conf->pool_size = newsize;
2430 	return err;
2431 }
2432 
2433 static int drop_one_stripe(struct r5conf *conf)
2434 {
2435 	struct stripe_head *sh;
2436 	int hash = (conf->max_nr_stripes - 1) & STRIPE_HASH_LOCKS_MASK;
2437 
2438 	spin_lock_irq(conf->hash_locks + hash);
2439 	sh = get_free_stripe(conf, hash);
2440 	spin_unlock_irq(conf->hash_locks + hash);
2441 	if (!sh)
2442 		return 0;
2443 	BUG_ON(atomic_read(&sh->count));
2444 	shrink_buffers(sh);
2445 	free_stripe(conf->slab_cache, sh);
2446 	atomic_dec(&conf->active_stripes);
2447 	conf->max_nr_stripes--;
2448 	return 1;
2449 }
2450 
2451 static void shrink_stripes(struct r5conf *conf)
2452 {
2453 	while (conf->max_nr_stripes &&
2454 	       drop_one_stripe(conf))
2455 		;
2456 
2457 	kmem_cache_destroy(conf->slab_cache);
2458 	conf->slab_cache = NULL;
2459 }
2460 
2461 static void raid5_end_read_request(struct bio * bi)
2462 {
2463 	struct stripe_head *sh = bi->bi_private;
2464 	struct r5conf *conf = sh->raid_conf;
2465 	int disks = sh->disks, i;
2466 	char b[BDEVNAME_SIZE];
2467 	struct md_rdev *rdev = NULL;
2468 	sector_t s;
2469 
2470 	for (i=0 ; i<disks; i++)
2471 		if (bi == &sh->dev[i].req)
2472 			break;
2473 
2474 	pr_debug("end_read_request %llu/%d, count: %d, error %d.\n",
2475 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2476 		bi->bi_status);
2477 	if (i == disks) {
2478 		bio_reset(bi);
2479 		BUG();
2480 		return;
2481 	}
2482 	if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2483 		/* If replacement finished while this request was outstanding,
2484 		 * 'replacement' might be NULL already.
2485 		 * In that case it moved down to 'rdev'.
2486 		 * rdev is not removed until all requests are finished.
2487 		 */
2488 		rdev = conf->disks[i].replacement;
2489 	if (!rdev)
2490 		rdev = conf->disks[i].rdev;
2491 
2492 	if (use_new_offset(conf, sh))
2493 		s = sh->sector + rdev->new_data_offset;
2494 	else
2495 		s = sh->sector + rdev->data_offset;
2496 	if (!bi->bi_status) {
2497 		set_bit(R5_UPTODATE, &sh->dev[i].flags);
2498 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2499 			/* Note that this cannot happen on a
2500 			 * replacement device.  We just fail those on
2501 			 * any error
2502 			 */
2503 			pr_info_ratelimited(
2504 				"md/raid:%s: read error corrected (%lu sectors at %llu on %s)\n",
2505 				mdname(conf->mddev), STRIPE_SECTORS,
2506 				(unsigned long long)s,
2507 				bdevname(rdev->bdev, b));
2508 			atomic_add(STRIPE_SECTORS, &rdev->corrected_errors);
2509 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2510 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2511 		} else if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2512 			clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2513 
2514 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
2515 			/*
2516 			 * end read for a page in journal, this
2517 			 * must be preparing for prexor in rmw
2518 			 */
2519 			set_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2520 
2521 		if (atomic_read(&rdev->read_errors))
2522 			atomic_set(&rdev->read_errors, 0);
2523 	} else {
2524 		const char *bdn = bdevname(rdev->bdev, b);
2525 		int retry = 0;
2526 		int set_bad = 0;
2527 
2528 		clear_bit(R5_UPTODATE, &sh->dev[i].flags);
2529 		atomic_inc(&rdev->read_errors);
2530 		if (test_bit(R5_ReadRepl, &sh->dev[i].flags))
2531 			pr_warn_ratelimited(
2532 				"md/raid:%s: read error on replacement device (sector %llu on %s).\n",
2533 				mdname(conf->mddev),
2534 				(unsigned long long)s,
2535 				bdn);
2536 		else if (conf->mddev->degraded >= conf->max_degraded) {
2537 			set_bad = 1;
2538 			pr_warn_ratelimited(
2539 				"md/raid:%s: read error not correctable (sector %llu on %s).\n",
2540 				mdname(conf->mddev),
2541 				(unsigned long long)s,
2542 				bdn);
2543 		} else if (test_bit(R5_ReWrite, &sh->dev[i].flags)) {
2544 			/* Oh, no!!! */
2545 			set_bad = 1;
2546 			pr_warn_ratelimited(
2547 				"md/raid:%s: read error NOT corrected!! (sector %llu on %s).\n",
2548 				mdname(conf->mddev),
2549 				(unsigned long long)s,
2550 				bdn);
2551 		} else if (atomic_read(&rdev->read_errors)
2552 			 > conf->max_nr_stripes)
2553 			pr_warn("md/raid:%s: Too many read errors, failing device %s.\n",
2554 			       mdname(conf->mddev), bdn);
2555 		else
2556 			retry = 1;
2557 		if (set_bad && test_bit(In_sync, &rdev->flags)
2558 		    && !test_bit(R5_ReadNoMerge, &sh->dev[i].flags))
2559 			retry = 1;
2560 		if (retry)
2561 			if (test_bit(R5_ReadNoMerge, &sh->dev[i].flags)) {
2562 				set_bit(R5_ReadError, &sh->dev[i].flags);
2563 				clear_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2564 			} else
2565 				set_bit(R5_ReadNoMerge, &sh->dev[i].flags);
2566 		else {
2567 			clear_bit(R5_ReadError, &sh->dev[i].flags);
2568 			clear_bit(R5_ReWrite, &sh->dev[i].flags);
2569 			if (!(set_bad
2570 			      && test_bit(In_sync, &rdev->flags)
2571 			      && rdev_set_badblocks(
2572 				      rdev, sh->sector, STRIPE_SECTORS, 0)))
2573 				md_error(conf->mddev, rdev);
2574 		}
2575 	}
2576 	rdev_dec_pending(rdev, conf->mddev);
2577 	bio_reset(bi);
2578 	clear_bit(R5_LOCKED, &sh->dev[i].flags);
2579 	set_bit(STRIPE_HANDLE, &sh->state);
2580 	raid5_release_stripe(sh);
2581 }
2582 
2583 static void raid5_end_write_request(struct bio *bi)
2584 {
2585 	struct stripe_head *sh = bi->bi_private;
2586 	struct r5conf *conf = sh->raid_conf;
2587 	int disks = sh->disks, i;
2588 	struct md_rdev *uninitialized_var(rdev);
2589 	sector_t first_bad;
2590 	int bad_sectors;
2591 	int replacement = 0;
2592 
2593 	for (i = 0 ; i < disks; i++) {
2594 		if (bi == &sh->dev[i].req) {
2595 			rdev = conf->disks[i].rdev;
2596 			break;
2597 		}
2598 		if (bi == &sh->dev[i].rreq) {
2599 			rdev = conf->disks[i].replacement;
2600 			if (rdev)
2601 				replacement = 1;
2602 			else
2603 				/* rdev was removed and 'replacement'
2604 				 * replaced it.  rdev is not removed
2605 				 * until all requests are finished.
2606 				 */
2607 				rdev = conf->disks[i].rdev;
2608 			break;
2609 		}
2610 	}
2611 	pr_debug("end_write_request %llu/%d, count %d, error: %d.\n",
2612 		(unsigned long long)sh->sector, i, atomic_read(&sh->count),
2613 		bi->bi_status);
2614 	if (i == disks) {
2615 		bio_reset(bi);
2616 		BUG();
2617 		return;
2618 	}
2619 
2620 	if (replacement) {
2621 		if (bi->bi_status)
2622 			md_error(conf->mddev, rdev);
2623 		else if (is_badblock(rdev, sh->sector,
2624 				     STRIPE_SECTORS,
2625 				     &first_bad, &bad_sectors))
2626 			set_bit(R5_MadeGoodRepl, &sh->dev[i].flags);
2627 	} else {
2628 		if (bi->bi_status) {
2629 			set_bit(STRIPE_DEGRADED, &sh->state);
2630 			set_bit(WriteErrorSeen, &rdev->flags);
2631 			set_bit(R5_WriteError, &sh->dev[i].flags);
2632 			if (!test_and_set_bit(WantReplacement, &rdev->flags))
2633 				set_bit(MD_RECOVERY_NEEDED,
2634 					&rdev->mddev->recovery);
2635 		} else if (is_badblock(rdev, sh->sector,
2636 				       STRIPE_SECTORS,
2637 				       &first_bad, &bad_sectors)) {
2638 			set_bit(R5_MadeGood, &sh->dev[i].flags);
2639 			if (test_bit(R5_ReadError, &sh->dev[i].flags))
2640 				/* That was a successful write so make
2641 				 * sure it looks like we already did
2642 				 * a re-write.
2643 				 */
2644 				set_bit(R5_ReWrite, &sh->dev[i].flags);
2645 		}
2646 	}
2647 	rdev_dec_pending(rdev, conf->mddev);
2648 
2649 	if (sh->batch_head && bi->bi_status && !replacement)
2650 		set_bit(STRIPE_BATCH_ERR, &sh->batch_head->state);
2651 
2652 	bio_reset(bi);
2653 	if (!test_and_clear_bit(R5_DOUBLE_LOCKED, &sh->dev[i].flags))
2654 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
2655 	set_bit(STRIPE_HANDLE, &sh->state);
2656 	raid5_release_stripe(sh);
2657 
2658 	if (sh->batch_head && sh != sh->batch_head)
2659 		raid5_release_stripe(sh->batch_head);
2660 }
2661 
2662 static void raid5_error(struct mddev *mddev, struct md_rdev *rdev)
2663 {
2664 	char b[BDEVNAME_SIZE];
2665 	struct r5conf *conf = mddev->private;
2666 	unsigned long flags;
2667 	pr_debug("raid456: error called\n");
2668 
2669 	spin_lock_irqsave(&conf->device_lock, flags);
2670 
2671 	if (test_bit(In_sync, &rdev->flags) &&
2672 	    mddev->degraded == conf->max_degraded) {
2673 		/*
2674 		 * Don't allow to achieve failed state
2675 		 * Don't try to recover this device
2676 		 */
2677 		conf->recovery_disabled = mddev->recovery_disabled;
2678 		spin_unlock_irqrestore(&conf->device_lock, flags);
2679 		return;
2680 	}
2681 
2682 	set_bit(Faulty, &rdev->flags);
2683 	clear_bit(In_sync, &rdev->flags);
2684 	mddev->degraded = raid5_calc_degraded(conf);
2685 	spin_unlock_irqrestore(&conf->device_lock, flags);
2686 	set_bit(MD_RECOVERY_INTR, &mddev->recovery);
2687 
2688 	set_bit(Blocked, &rdev->flags);
2689 	set_mask_bits(&mddev->sb_flags, 0,
2690 		      BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
2691 	pr_crit("md/raid:%s: Disk failure on %s, disabling device.\n"
2692 		"md/raid:%s: Operation continuing on %d devices.\n",
2693 		mdname(mddev),
2694 		bdevname(rdev->bdev, b),
2695 		mdname(mddev),
2696 		conf->raid_disks - mddev->degraded);
2697 	r5c_update_on_rdev_error(mddev, rdev);
2698 }
2699 
2700 /*
2701  * Input: a 'big' sector number,
2702  * Output: index of the data and parity disk, and the sector # in them.
2703  */
2704 sector_t raid5_compute_sector(struct r5conf *conf, sector_t r_sector,
2705 			      int previous, int *dd_idx,
2706 			      struct stripe_head *sh)
2707 {
2708 	sector_t stripe, stripe2;
2709 	sector_t chunk_number;
2710 	unsigned int chunk_offset;
2711 	int pd_idx, qd_idx;
2712 	int ddf_layout = 0;
2713 	sector_t new_sector;
2714 	int algorithm = previous ? conf->prev_algo
2715 				 : conf->algorithm;
2716 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2717 					 : conf->chunk_sectors;
2718 	int raid_disks = previous ? conf->previous_raid_disks
2719 				  : conf->raid_disks;
2720 	int data_disks = raid_disks - conf->max_degraded;
2721 
2722 	/* First compute the information on this sector */
2723 
2724 	/*
2725 	 * Compute the chunk number and the sector offset inside the chunk
2726 	 */
2727 	chunk_offset = sector_div(r_sector, sectors_per_chunk);
2728 	chunk_number = r_sector;
2729 
2730 	/*
2731 	 * Compute the stripe number
2732 	 */
2733 	stripe = chunk_number;
2734 	*dd_idx = sector_div(stripe, data_disks);
2735 	stripe2 = stripe;
2736 	/*
2737 	 * Select the parity disk based on the user selected algorithm.
2738 	 */
2739 	pd_idx = qd_idx = -1;
2740 	switch(conf->level) {
2741 	case 4:
2742 		pd_idx = data_disks;
2743 		break;
2744 	case 5:
2745 		switch (algorithm) {
2746 		case ALGORITHM_LEFT_ASYMMETRIC:
2747 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2748 			if (*dd_idx >= pd_idx)
2749 				(*dd_idx)++;
2750 			break;
2751 		case ALGORITHM_RIGHT_ASYMMETRIC:
2752 			pd_idx = sector_div(stripe2, raid_disks);
2753 			if (*dd_idx >= pd_idx)
2754 				(*dd_idx)++;
2755 			break;
2756 		case ALGORITHM_LEFT_SYMMETRIC:
2757 			pd_idx = data_disks - sector_div(stripe2, raid_disks);
2758 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2759 			break;
2760 		case ALGORITHM_RIGHT_SYMMETRIC:
2761 			pd_idx = sector_div(stripe2, raid_disks);
2762 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2763 			break;
2764 		case ALGORITHM_PARITY_0:
2765 			pd_idx = 0;
2766 			(*dd_idx)++;
2767 			break;
2768 		case ALGORITHM_PARITY_N:
2769 			pd_idx = data_disks;
2770 			break;
2771 		default:
2772 			BUG();
2773 		}
2774 		break;
2775 	case 6:
2776 
2777 		switch (algorithm) {
2778 		case ALGORITHM_LEFT_ASYMMETRIC:
2779 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2780 			qd_idx = pd_idx + 1;
2781 			if (pd_idx == raid_disks-1) {
2782 				(*dd_idx)++;	/* Q D D D P */
2783 				qd_idx = 0;
2784 			} else if (*dd_idx >= pd_idx)
2785 				(*dd_idx) += 2; /* D D P Q D */
2786 			break;
2787 		case ALGORITHM_RIGHT_ASYMMETRIC:
2788 			pd_idx = sector_div(stripe2, raid_disks);
2789 			qd_idx = pd_idx + 1;
2790 			if (pd_idx == raid_disks-1) {
2791 				(*dd_idx)++;	/* Q D D D P */
2792 				qd_idx = 0;
2793 			} else if (*dd_idx >= pd_idx)
2794 				(*dd_idx) += 2; /* D D P Q D */
2795 			break;
2796 		case ALGORITHM_LEFT_SYMMETRIC:
2797 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2798 			qd_idx = (pd_idx + 1) % raid_disks;
2799 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2800 			break;
2801 		case ALGORITHM_RIGHT_SYMMETRIC:
2802 			pd_idx = sector_div(stripe2, raid_disks);
2803 			qd_idx = (pd_idx + 1) % raid_disks;
2804 			*dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
2805 			break;
2806 
2807 		case ALGORITHM_PARITY_0:
2808 			pd_idx = 0;
2809 			qd_idx = 1;
2810 			(*dd_idx) += 2;
2811 			break;
2812 		case ALGORITHM_PARITY_N:
2813 			pd_idx = data_disks;
2814 			qd_idx = data_disks + 1;
2815 			break;
2816 
2817 		case ALGORITHM_ROTATING_ZERO_RESTART:
2818 			/* Exactly the same as RIGHT_ASYMMETRIC, but or
2819 			 * of blocks for computing Q is different.
2820 			 */
2821 			pd_idx = sector_div(stripe2, raid_disks);
2822 			qd_idx = pd_idx + 1;
2823 			if (pd_idx == raid_disks-1) {
2824 				(*dd_idx)++;	/* Q D D D P */
2825 				qd_idx = 0;
2826 			} else if (*dd_idx >= pd_idx)
2827 				(*dd_idx) += 2; /* D D P Q D */
2828 			ddf_layout = 1;
2829 			break;
2830 
2831 		case ALGORITHM_ROTATING_N_RESTART:
2832 			/* Same a left_asymmetric, by first stripe is
2833 			 * D D D P Q  rather than
2834 			 * Q D D D P
2835 			 */
2836 			stripe2 += 1;
2837 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2838 			qd_idx = pd_idx + 1;
2839 			if (pd_idx == raid_disks-1) {
2840 				(*dd_idx)++;	/* Q D D D P */
2841 				qd_idx = 0;
2842 			} else if (*dd_idx >= pd_idx)
2843 				(*dd_idx) += 2; /* D D P Q D */
2844 			ddf_layout = 1;
2845 			break;
2846 
2847 		case ALGORITHM_ROTATING_N_CONTINUE:
2848 			/* Same as left_symmetric but Q is before P */
2849 			pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
2850 			qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
2851 			*dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
2852 			ddf_layout = 1;
2853 			break;
2854 
2855 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2856 			/* RAID5 left_asymmetric, with Q on last device */
2857 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2858 			if (*dd_idx >= pd_idx)
2859 				(*dd_idx)++;
2860 			qd_idx = raid_disks - 1;
2861 			break;
2862 
2863 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2864 			pd_idx = sector_div(stripe2, raid_disks-1);
2865 			if (*dd_idx >= pd_idx)
2866 				(*dd_idx)++;
2867 			qd_idx = raid_disks - 1;
2868 			break;
2869 
2870 		case ALGORITHM_LEFT_SYMMETRIC_6:
2871 			pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
2872 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2873 			qd_idx = raid_disks - 1;
2874 			break;
2875 
2876 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2877 			pd_idx = sector_div(stripe2, raid_disks-1);
2878 			*dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
2879 			qd_idx = raid_disks - 1;
2880 			break;
2881 
2882 		case ALGORITHM_PARITY_0_6:
2883 			pd_idx = 0;
2884 			(*dd_idx)++;
2885 			qd_idx = raid_disks - 1;
2886 			break;
2887 
2888 		default:
2889 			BUG();
2890 		}
2891 		break;
2892 	}
2893 
2894 	if (sh) {
2895 		sh->pd_idx = pd_idx;
2896 		sh->qd_idx = qd_idx;
2897 		sh->ddf_layout = ddf_layout;
2898 	}
2899 	/*
2900 	 * Finally, compute the new sector number
2901 	 */
2902 	new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
2903 	return new_sector;
2904 }
2905 
2906 sector_t raid5_compute_blocknr(struct stripe_head *sh, int i, int previous)
2907 {
2908 	struct r5conf *conf = sh->raid_conf;
2909 	int raid_disks = sh->disks;
2910 	int data_disks = raid_disks - conf->max_degraded;
2911 	sector_t new_sector = sh->sector, check;
2912 	int sectors_per_chunk = previous ? conf->prev_chunk_sectors
2913 					 : conf->chunk_sectors;
2914 	int algorithm = previous ? conf->prev_algo
2915 				 : conf->algorithm;
2916 	sector_t stripe;
2917 	int chunk_offset;
2918 	sector_t chunk_number;
2919 	int dummy1, dd_idx = i;
2920 	sector_t r_sector;
2921 	struct stripe_head sh2;
2922 
2923 	chunk_offset = sector_div(new_sector, sectors_per_chunk);
2924 	stripe = new_sector;
2925 
2926 	if (i == sh->pd_idx)
2927 		return 0;
2928 	switch(conf->level) {
2929 	case 4: break;
2930 	case 5:
2931 		switch (algorithm) {
2932 		case ALGORITHM_LEFT_ASYMMETRIC:
2933 		case ALGORITHM_RIGHT_ASYMMETRIC:
2934 			if (i > sh->pd_idx)
2935 				i--;
2936 			break;
2937 		case ALGORITHM_LEFT_SYMMETRIC:
2938 		case ALGORITHM_RIGHT_SYMMETRIC:
2939 			if (i < sh->pd_idx)
2940 				i += raid_disks;
2941 			i -= (sh->pd_idx + 1);
2942 			break;
2943 		case ALGORITHM_PARITY_0:
2944 			i -= 1;
2945 			break;
2946 		case ALGORITHM_PARITY_N:
2947 			break;
2948 		default:
2949 			BUG();
2950 		}
2951 		break;
2952 	case 6:
2953 		if (i == sh->qd_idx)
2954 			return 0; /* It is the Q disk */
2955 		switch (algorithm) {
2956 		case ALGORITHM_LEFT_ASYMMETRIC:
2957 		case ALGORITHM_RIGHT_ASYMMETRIC:
2958 		case ALGORITHM_ROTATING_ZERO_RESTART:
2959 		case ALGORITHM_ROTATING_N_RESTART:
2960 			if (sh->pd_idx == raid_disks-1)
2961 				i--;	/* Q D D D P */
2962 			else if (i > sh->pd_idx)
2963 				i -= 2; /* D D P Q D */
2964 			break;
2965 		case ALGORITHM_LEFT_SYMMETRIC:
2966 		case ALGORITHM_RIGHT_SYMMETRIC:
2967 			if (sh->pd_idx == raid_disks-1)
2968 				i--; /* Q D D D P */
2969 			else {
2970 				/* D D P Q D */
2971 				if (i < sh->pd_idx)
2972 					i += raid_disks;
2973 				i -= (sh->pd_idx + 2);
2974 			}
2975 			break;
2976 		case ALGORITHM_PARITY_0:
2977 			i -= 2;
2978 			break;
2979 		case ALGORITHM_PARITY_N:
2980 			break;
2981 		case ALGORITHM_ROTATING_N_CONTINUE:
2982 			/* Like left_symmetric, but P is before Q */
2983 			if (sh->pd_idx == 0)
2984 				i--;	/* P D D D Q */
2985 			else {
2986 				/* D D Q P D */
2987 				if (i < sh->pd_idx)
2988 					i += raid_disks;
2989 				i -= (sh->pd_idx + 1);
2990 			}
2991 			break;
2992 		case ALGORITHM_LEFT_ASYMMETRIC_6:
2993 		case ALGORITHM_RIGHT_ASYMMETRIC_6:
2994 			if (i > sh->pd_idx)
2995 				i--;
2996 			break;
2997 		case ALGORITHM_LEFT_SYMMETRIC_6:
2998 		case ALGORITHM_RIGHT_SYMMETRIC_6:
2999 			if (i < sh->pd_idx)
3000 				i += data_disks + 1;
3001 			i -= (sh->pd_idx + 1);
3002 			break;
3003 		case ALGORITHM_PARITY_0_6:
3004 			i -= 1;
3005 			break;
3006 		default:
3007 			BUG();
3008 		}
3009 		break;
3010 	}
3011 
3012 	chunk_number = stripe * data_disks + i;
3013 	r_sector = chunk_number * sectors_per_chunk + chunk_offset;
3014 
3015 	check = raid5_compute_sector(conf, r_sector,
3016 				     previous, &dummy1, &sh2);
3017 	if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
3018 		|| sh2.qd_idx != sh->qd_idx) {
3019 		pr_warn("md/raid:%s: compute_blocknr: map not correct\n",
3020 			mdname(conf->mddev));
3021 		return 0;
3022 	}
3023 	return r_sector;
3024 }
3025 
3026 /*
3027  * There are cases where we want handle_stripe_dirtying() and
3028  * schedule_reconstruction() to delay towrite to some dev of a stripe.
3029  *
3030  * This function checks whether we want to delay the towrite. Specifically,
3031  * we delay the towrite when:
3032  *
3033  *   1. degraded stripe has a non-overwrite to the missing dev, AND this
3034  *      stripe has data in journal (for other devices).
3035  *
3036  *      In this case, when reading data for the non-overwrite dev, it is
3037  *      necessary to handle complex rmw of write back cache (prexor with
3038  *      orig_page, and xor with page). To keep read path simple, we would
3039  *      like to flush data in journal to RAID disks first, so complex rmw
3040  *      is handled in the write patch (handle_stripe_dirtying).
3041  *
3042  *   2. when journal space is critical (R5C_LOG_CRITICAL=1)
3043  *
3044  *      It is important to be able to flush all stripes in raid5-cache.
3045  *      Therefore, we need reserve some space on the journal device for
3046  *      these flushes. If flush operation includes pending writes to the
3047  *      stripe, we need to reserve (conf->raid_disk + 1) pages per stripe
3048  *      for the flush out. If we exclude these pending writes from flush
3049  *      operation, we only need (conf->max_degraded + 1) pages per stripe.
3050  *      Therefore, excluding pending writes in these cases enables more
3051  *      efficient use of the journal device.
3052  *
3053  *      Note: To make sure the stripe makes progress, we only delay
3054  *      towrite for stripes with data already in journal (injournal > 0).
3055  *      When LOG_CRITICAL, stripes with injournal == 0 will be sent to
3056  *      no_space_stripes list.
3057  *
3058  *   3. during journal failure
3059  *      In journal failure, we try to flush all cached data to raid disks
3060  *      based on data in stripe cache. The array is read-only to upper
3061  *      layers, so we would skip all pending writes.
3062  *
3063  */
3064 static inline bool delay_towrite(struct r5conf *conf,
3065 				 struct r5dev *dev,
3066 				 struct stripe_head_state *s)
3067 {
3068 	/* case 1 above */
3069 	if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3070 	    !test_bit(R5_Insync, &dev->flags) && s->injournal)
3071 		return true;
3072 	/* case 2 above */
3073 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
3074 	    s->injournal > 0)
3075 		return true;
3076 	/* case 3 above */
3077 	if (s->log_failed && s->injournal)
3078 		return true;
3079 	return false;
3080 }
3081 
3082 static void
3083 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
3084 			 int rcw, int expand)
3085 {
3086 	int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx, disks = sh->disks;
3087 	struct r5conf *conf = sh->raid_conf;
3088 	int level = conf->level;
3089 
3090 	if (rcw) {
3091 		/*
3092 		 * In some cases, handle_stripe_dirtying initially decided to
3093 		 * run rmw and allocates extra page for prexor. However, rcw is
3094 		 * cheaper later on. We need to free the extra page now,
3095 		 * because we won't be able to do that in ops_complete_prexor().
3096 		 */
3097 		r5c_release_extra_page(sh);
3098 
3099 		for (i = disks; i--; ) {
3100 			struct r5dev *dev = &sh->dev[i];
3101 
3102 			if (dev->towrite && !delay_towrite(conf, dev, s)) {
3103 				set_bit(R5_LOCKED, &dev->flags);
3104 				set_bit(R5_Wantdrain, &dev->flags);
3105 				if (!expand)
3106 					clear_bit(R5_UPTODATE, &dev->flags);
3107 				s->locked++;
3108 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3109 				set_bit(R5_LOCKED, &dev->flags);
3110 				s->locked++;
3111 			}
3112 		}
3113 		/* if we are not expanding this is a proper write request, and
3114 		 * there will be bios with new data to be drained into the
3115 		 * stripe cache
3116 		 */
3117 		if (!expand) {
3118 			if (!s->locked)
3119 				/* False alarm, nothing to do */
3120 				return;
3121 			sh->reconstruct_state = reconstruct_state_drain_run;
3122 			set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3123 		} else
3124 			sh->reconstruct_state = reconstruct_state_run;
3125 
3126 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3127 
3128 		if (s->locked + conf->max_degraded == disks)
3129 			if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
3130 				atomic_inc(&conf->pending_full_writes);
3131 	} else {
3132 		BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
3133 			test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
3134 		BUG_ON(level == 6 &&
3135 			(!(test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags) ||
3136 			   test_bit(R5_Wantcompute, &sh->dev[qd_idx].flags))));
3137 
3138 		for (i = disks; i--; ) {
3139 			struct r5dev *dev = &sh->dev[i];
3140 			if (i == pd_idx || i == qd_idx)
3141 				continue;
3142 
3143 			if (dev->towrite &&
3144 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3145 			     test_bit(R5_Wantcompute, &dev->flags))) {
3146 				set_bit(R5_Wantdrain, &dev->flags);
3147 				set_bit(R5_LOCKED, &dev->flags);
3148 				clear_bit(R5_UPTODATE, &dev->flags);
3149 				s->locked++;
3150 			} else if (test_bit(R5_InJournal, &dev->flags)) {
3151 				set_bit(R5_LOCKED, &dev->flags);
3152 				s->locked++;
3153 			}
3154 		}
3155 		if (!s->locked)
3156 			/* False alarm - nothing to do */
3157 			return;
3158 		sh->reconstruct_state = reconstruct_state_prexor_drain_run;
3159 		set_bit(STRIPE_OP_PREXOR, &s->ops_request);
3160 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
3161 		set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
3162 	}
3163 
3164 	/* keep the parity disk(s) locked while asynchronous operations
3165 	 * are in flight
3166 	 */
3167 	set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
3168 	clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
3169 	s->locked++;
3170 
3171 	if (level == 6) {
3172 		int qd_idx = sh->qd_idx;
3173 		struct r5dev *dev = &sh->dev[qd_idx];
3174 
3175 		set_bit(R5_LOCKED, &dev->flags);
3176 		clear_bit(R5_UPTODATE, &dev->flags);
3177 		s->locked++;
3178 	}
3179 
3180 	if (raid5_has_ppl(sh->raid_conf) && sh->ppl_page &&
3181 	    test_bit(STRIPE_OP_BIODRAIN, &s->ops_request) &&
3182 	    !test_bit(STRIPE_FULL_WRITE, &sh->state) &&
3183 	    test_bit(R5_Insync, &sh->dev[pd_idx].flags))
3184 		set_bit(STRIPE_OP_PARTIAL_PARITY, &s->ops_request);
3185 
3186 	pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
3187 		__func__, (unsigned long long)sh->sector,
3188 		s->locked, s->ops_request);
3189 }
3190 
3191 /*
3192  * Each stripe/dev can have one or more bion attached.
3193  * toread/towrite point to the first in a chain.
3194  * The bi_next chain must be in order.
3195  */
3196 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx,
3197 			  int forwrite, int previous)
3198 {
3199 	struct bio **bip;
3200 	struct r5conf *conf = sh->raid_conf;
3201 	int firstwrite=0;
3202 
3203 	pr_debug("adding bi b#%llu to stripe s#%llu\n",
3204 		(unsigned long long)bi->bi_iter.bi_sector,
3205 		(unsigned long long)sh->sector);
3206 
3207 	spin_lock_irq(&sh->stripe_lock);
3208 	sh->dev[dd_idx].write_hint = bi->bi_write_hint;
3209 	/* Don't allow new IO added to stripes in batch list */
3210 	if (sh->batch_head)
3211 		goto overlap;
3212 	if (forwrite) {
3213 		bip = &sh->dev[dd_idx].towrite;
3214 		if (*bip == NULL)
3215 			firstwrite = 1;
3216 	} else
3217 		bip = &sh->dev[dd_idx].toread;
3218 	while (*bip && (*bip)->bi_iter.bi_sector < bi->bi_iter.bi_sector) {
3219 		if (bio_end_sector(*bip) > bi->bi_iter.bi_sector)
3220 			goto overlap;
3221 		bip = & (*bip)->bi_next;
3222 	}
3223 	if (*bip && (*bip)->bi_iter.bi_sector < bio_end_sector(bi))
3224 		goto overlap;
3225 
3226 	if (forwrite && raid5_has_ppl(conf)) {
3227 		/*
3228 		 * With PPL only writes to consecutive data chunks within a
3229 		 * stripe are allowed because for a single stripe_head we can
3230 		 * only have one PPL entry at a time, which describes one data
3231 		 * range. Not really an overlap, but wait_for_overlap can be
3232 		 * used to handle this.
3233 		 */
3234 		sector_t sector;
3235 		sector_t first = 0;
3236 		sector_t last = 0;
3237 		int count = 0;
3238 		int i;
3239 
3240 		for (i = 0; i < sh->disks; i++) {
3241 			if (i != sh->pd_idx &&
3242 			    (i == dd_idx || sh->dev[i].towrite)) {
3243 				sector = sh->dev[i].sector;
3244 				if (count == 0 || sector < first)
3245 					first = sector;
3246 				if (sector > last)
3247 					last = sector;
3248 				count++;
3249 			}
3250 		}
3251 
3252 		if (first + conf->chunk_sectors * (count - 1) != last)
3253 			goto overlap;
3254 	}
3255 
3256 	if (!forwrite || previous)
3257 		clear_bit(STRIPE_BATCH_READY, &sh->state);
3258 
3259 	BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
3260 	if (*bip)
3261 		bi->bi_next = *bip;
3262 	*bip = bi;
3263 	bio_inc_remaining(bi);
3264 	md_write_inc(conf->mddev, bi);
3265 
3266 	if (forwrite) {
3267 		/* check if page is covered */
3268 		sector_t sector = sh->dev[dd_idx].sector;
3269 		for (bi=sh->dev[dd_idx].towrite;
3270 		     sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
3271 			     bi && bi->bi_iter.bi_sector <= sector;
3272 		     bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
3273 			if (bio_end_sector(bi) >= sector)
3274 				sector = bio_end_sector(bi);
3275 		}
3276 		if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
3277 			if (!test_and_set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags))
3278 				sh->overwrite_disks++;
3279 	}
3280 
3281 	pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
3282 		(unsigned long long)(*bip)->bi_iter.bi_sector,
3283 		(unsigned long long)sh->sector, dd_idx);
3284 
3285 	if (conf->mddev->bitmap && firstwrite) {
3286 		/* Cannot hold spinlock over bitmap_startwrite,
3287 		 * but must ensure this isn't added to a batch until
3288 		 * we have added to the bitmap and set bm_seq.
3289 		 * So set STRIPE_BITMAP_PENDING to prevent
3290 		 * batching.
3291 		 * If multiple add_stripe_bio() calls race here they
3292 		 * much all set STRIPE_BITMAP_PENDING.  So only the first one
3293 		 * to complete "bitmap_startwrite" gets to set
3294 		 * STRIPE_BIT_DELAY.  This is important as once a stripe
3295 		 * is added to a batch, STRIPE_BIT_DELAY cannot be changed
3296 		 * any more.
3297 		 */
3298 		set_bit(STRIPE_BITMAP_PENDING, &sh->state);
3299 		spin_unlock_irq(&sh->stripe_lock);
3300 		md_bitmap_startwrite(conf->mddev->bitmap, sh->sector,
3301 				     STRIPE_SECTORS, 0);
3302 		spin_lock_irq(&sh->stripe_lock);
3303 		clear_bit(STRIPE_BITMAP_PENDING, &sh->state);
3304 		if (!sh->batch_head) {
3305 			sh->bm_seq = conf->seq_flush+1;
3306 			set_bit(STRIPE_BIT_DELAY, &sh->state);
3307 		}
3308 	}
3309 	spin_unlock_irq(&sh->stripe_lock);
3310 
3311 	if (stripe_can_batch(sh))
3312 		stripe_add_to_batch_list(conf, sh);
3313 	return 1;
3314 
3315  overlap:
3316 	set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
3317 	spin_unlock_irq(&sh->stripe_lock);
3318 	return 0;
3319 }
3320 
3321 static void end_reshape(struct r5conf *conf);
3322 
3323 static void stripe_set_idx(sector_t stripe, struct r5conf *conf, int previous,
3324 			    struct stripe_head *sh)
3325 {
3326 	int sectors_per_chunk =
3327 		previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
3328 	int dd_idx;
3329 	int chunk_offset = sector_div(stripe, sectors_per_chunk);
3330 	int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
3331 
3332 	raid5_compute_sector(conf,
3333 			     stripe * (disks - conf->max_degraded)
3334 			     *sectors_per_chunk + chunk_offset,
3335 			     previous,
3336 			     &dd_idx, sh);
3337 }
3338 
3339 static void
3340 handle_failed_stripe(struct r5conf *conf, struct stripe_head *sh,
3341 		     struct stripe_head_state *s, int disks)
3342 {
3343 	int i;
3344 	BUG_ON(sh->batch_head);
3345 	for (i = disks; i--; ) {
3346 		struct bio *bi;
3347 		int bitmap_end = 0;
3348 
3349 		if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
3350 			struct md_rdev *rdev;
3351 			rcu_read_lock();
3352 			rdev = rcu_dereference(conf->disks[i].rdev);
3353 			if (rdev && test_bit(In_sync, &rdev->flags) &&
3354 			    !test_bit(Faulty, &rdev->flags))
3355 				atomic_inc(&rdev->nr_pending);
3356 			else
3357 				rdev = NULL;
3358 			rcu_read_unlock();
3359 			if (rdev) {
3360 				if (!rdev_set_badblocks(
3361 					    rdev,
3362 					    sh->sector,
3363 					    STRIPE_SECTORS, 0))
3364 					md_error(conf->mddev, rdev);
3365 				rdev_dec_pending(rdev, conf->mddev);
3366 			}
3367 		}
3368 		spin_lock_irq(&sh->stripe_lock);
3369 		/* fail all writes first */
3370 		bi = sh->dev[i].towrite;
3371 		sh->dev[i].towrite = NULL;
3372 		sh->overwrite_disks = 0;
3373 		spin_unlock_irq(&sh->stripe_lock);
3374 		if (bi)
3375 			bitmap_end = 1;
3376 
3377 		log_stripe_write_finished(sh);
3378 
3379 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3380 			wake_up(&conf->wait_for_overlap);
3381 
3382 		while (bi && bi->bi_iter.bi_sector <
3383 			sh->dev[i].sector + STRIPE_SECTORS) {
3384 			struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
3385 
3386 			md_write_end(conf->mddev);
3387 			bio_io_error(bi);
3388 			bi = nextbi;
3389 		}
3390 		if (bitmap_end)
3391 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3392 					   STRIPE_SECTORS, 0, 0);
3393 		bitmap_end = 0;
3394 		/* and fail all 'written' */
3395 		bi = sh->dev[i].written;
3396 		sh->dev[i].written = NULL;
3397 		if (test_and_clear_bit(R5_SkipCopy, &sh->dev[i].flags)) {
3398 			WARN_ON(test_bit(R5_UPTODATE, &sh->dev[i].flags));
3399 			sh->dev[i].page = sh->dev[i].orig_page;
3400 		}
3401 
3402 		if (bi) bitmap_end = 1;
3403 		while (bi && bi->bi_iter.bi_sector <
3404 		       sh->dev[i].sector + STRIPE_SECTORS) {
3405 			struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
3406 
3407 			md_write_end(conf->mddev);
3408 			bio_io_error(bi);
3409 			bi = bi2;
3410 		}
3411 
3412 		/* fail any reads if this device is non-operational and
3413 		 * the data has not reached the cache yet.
3414 		 */
3415 		if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
3416 		    s->failed > conf->max_degraded &&
3417 		    (!test_bit(R5_Insync, &sh->dev[i].flags) ||
3418 		      test_bit(R5_ReadError, &sh->dev[i].flags))) {
3419 			spin_lock_irq(&sh->stripe_lock);
3420 			bi = sh->dev[i].toread;
3421 			sh->dev[i].toread = NULL;
3422 			spin_unlock_irq(&sh->stripe_lock);
3423 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
3424 				wake_up(&conf->wait_for_overlap);
3425 			if (bi)
3426 				s->to_read--;
3427 			while (bi && bi->bi_iter.bi_sector <
3428 			       sh->dev[i].sector + STRIPE_SECTORS) {
3429 				struct bio *nextbi =
3430 					r5_next_bio(bi, sh->dev[i].sector);
3431 
3432 				bio_io_error(bi);
3433 				bi = nextbi;
3434 			}
3435 		}
3436 		if (bitmap_end)
3437 			md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3438 					   STRIPE_SECTORS, 0, 0);
3439 		/* If we were in the middle of a write the parity block might
3440 		 * still be locked - so just clear all R5_LOCKED flags
3441 		 */
3442 		clear_bit(R5_LOCKED, &sh->dev[i].flags);
3443 	}
3444 	s->to_write = 0;
3445 	s->written = 0;
3446 
3447 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3448 		if (atomic_dec_and_test(&conf->pending_full_writes))
3449 			md_wakeup_thread(conf->mddev->thread);
3450 }
3451 
3452 static void
3453 handle_failed_sync(struct r5conf *conf, struct stripe_head *sh,
3454 		   struct stripe_head_state *s)
3455 {
3456 	int abort = 0;
3457 	int i;
3458 
3459 	BUG_ON(sh->batch_head);
3460 	clear_bit(STRIPE_SYNCING, &sh->state);
3461 	if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
3462 		wake_up(&conf->wait_for_overlap);
3463 	s->syncing = 0;
3464 	s->replacing = 0;
3465 	/* There is nothing more to do for sync/check/repair.
3466 	 * Don't even need to abort as that is handled elsewhere
3467 	 * if needed, and not always wanted e.g. if there is a known
3468 	 * bad block here.
3469 	 * For recover/replace we need to record a bad block on all
3470 	 * non-sync devices, or abort the recovery
3471 	 */
3472 	if (test_bit(MD_RECOVERY_RECOVER, &conf->mddev->recovery)) {
3473 		/* During recovery devices cannot be removed, so
3474 		 * locking and refcounting of rdevs is not needed
3475 		 */
3476 		rcu_read_lock();
3477 		for (i = 0; i < conf->raid_disks; i++) {
3478 			struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
3479 			if (rdev
3480 			    && !test_bit(Faulty, &rdev->flags)
3481 			    && !test_bit(In_sync, &rdev->flags)
3482 			    && !rdev_set_badblocks(rdev, sh->sector,
3483 						   STRIPE_SECTORS, 0))
3484 				abort = 1;
3485 			rdev = rcu_dereference(conf->disks[i].replacement);
3486 			if (rdev
3487 			    && !test_bit(Faulty, &rdev->flags)
3488 			    && !test_bit(In_sync, &rdev->flags)
3489 			    && !rdev_set_badblocks(rdev, sh->sector,
3490 						   STRIPE_SECTORS, 0))
3491 				abort = 1;
3492 		}
3493 		rcu_read_unlock();
3494 		if (abort)
3495 			conf->recovery_disabled =
3496 				conf->mddev->recovery_disabled;
3497 	}
3498 	md_done_sync(conf->mddev, STRIPE_SECTORS, !abort);
3499 }
3500 
3501 static int want_replace(struct stripe_head *sh, int disk_idx)
3502 {
3503 	struct md_rdev *rdev;
3504 	int rv = 0;
3505 
3506 	rcu_read_lock();
3507 	rdev = rcu_dereference(sh->raid_conf->disks[disk_idx].replacement);
3508 	if (rdev
3509 	    && !test_bit(Faulty, &rdev->flags)
3510 	    && !test_bit(In_sync, &rdev->flags)
3511 	    && (rdev->recovery_offset <= sh->sector
3512 		|| rdev->mddev->recovery_cp <= sh->sector))
3513 		rv = 1;
3514 	rcu_read_unlock();
3515 	return rv;
3516 }
3517 
3518 static int need_this_block(struct stripe_head *sh, struct stripe_head_state *s,
3519 			   int disk_idx, int disks)
3520 {
3521 	struct r5dev *dev = &sh->dev[disk_idx];
3522 	struct r5dev *fdev[2] = { &sh->dev[s->failed_num[0]],
3523 				  &sh->dev[s->failed_num[1]] };
3524 	int i;
3525 
3526 
3527 	if (test_bit(R5_LOCKED, &dev->flags) ||
3528 	    test_bit(R5_UPTODATE, &dev->flags))
3529 		/* No point reading this as we already have it or have
3530 		 * decided to get it.
3531 		 */
3532 		return 0;
3533 
3534 	if (dev->toread ||
3535 	    (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)))
3536 		/* We need this block to directly satisfy a request */
3537 		return 1;
3538 
3539 	if (s->syncing || s->expanding ||
3540 	    (s->replacing && want_replace(sh, disk_idx)))
3541 		/* When syncing, or expanding we read everything.
3542 		 * When replacing, we need the replaced block.
3543 		 */
3544 		return 1;
3545 
3546 	if ((s->failed >= 1 && fdev[0]->toread) ||
3547 	    (s->failed >= 2 && fdev[1]->toread))
3548 		/* If we want to read from a failed device, then
3549 		 * we need to actually read every other device.
3550 		 */
3551 		return 1;
3552 
3553 	/* Sometimes neither read-modify-write nor reconstruct-write
3554 	 * cycles can work.  In those cases we read every block we
3555 	 * can.  Then the parity-update is certain to have enough to
3556 	 * work with.
3557 	 * This can only be a problem when we need to write something,
3558 	 * and some device has failed.  If either of those tests
3559 	 * fail we need look no further.
3560 	 */
3561 	if (!s->failed || !s->to_write)
3562 		return 0;
3563 
3564 	if (test_bit(R5_Insync, &dev->flags) &&
3565 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3566 		/* Pre-reads at not permitted until after short delay
3567 		 * to gather multiple requests.  However if this
3568 		 * device is no Insync, the block could only be computed
3569 		 * and there is no need to delay that.
3570 		 */
3571 		return 0;
3572 
3573 	for (i = 0; i < s->failed && i < 2; i++) {
3574 		if (fdev[i]->towrite &&
3575 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3576 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3577 			/* If we have a partial write to a failed
3578 			 * device, then we will need to reconstruct
3579 			 * the content of that device, so all other
3580 			 * devices must be read.
3581 			 */
3582 			return 1;
3583 	}
3584 
3585 	/* If we are forced to do a reconstruct-write, either because
3586 	 * the current RAID6 implementation only supports that, or
3587 	 * because parity cannot be trusted and we are currently
3588 	 * recovering it, there is extra need to be careful.
3589 	 * If one of the devices that we would need to read, because
3590 	 * it is not being overwritten (and maybe not written at all)
3591 	 * is missing/faulty, then we need to read everything we can.
3592 	 */
3593 	if (sh->raid_conf->level != 6 &&
3594 	    sh->sector < sh->raid_conf->mddev->recovery_cp)
3595 		/* reconstruct-write isn't being forced */
3596 		return 0;
3597 	for (i = 0; i < s->failed && i < 2; i++) {
3598 		if (s->failed_num[i] != sh->pd_idx &&
3599 		    s->failed_num[i] != sh->qd_idx &&
3600 		    !test_bit(R5_UPTODATE, &fdev[i]->flags) &&
3601 		    !test_bit(R5_OVERWRITE, &fdev[i]->flags))
3602 			return 1;
3603 	}
3604 
3605 	return 0;
3606 }
3607 
3608 /* fetch_block - checks the given member device to see if its data needs
3609  * to be read or computed to satisfy a request.
3610  *
3611  * Returns 1 when no more member devices need to be checked, otherwise returns
3612  * 0 to tell the loop in handle_stripe_fill to continue
3613  */
3614 static int fetch_block(struct stripe_head *sh, struct stripe_head_state *s,
3615 		       int disk_idx, int disks)
3616 {
3617 	struct r5dev *dev = &sh->dev[disk_idx];
3618 
3619 	/* is the data in this block needed, and can we get it? */
3620 	if (need_this_block(sh, s, disk_idx, disks)) {
3621 		/* we would like to get this block, possibly by computing it,
3622 		 * otherwise read it if the backing disk is insync
3623 		 */
3624 		BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
3625 		BUG_ON(test_bit(R5_Wantread, &dev->flags));
3626 		BUG_ON(sh->batch_head);
3627 
3628 		/*
3629 		 * In the raid6 case if the only non-uptodate disk is P
3630 		 * then we already trusted P to compute the other failed
3631 		 * drives. It is safe to compute rather than re-read P.
3632 		 * In other cases we only compute blocks from failed
3633 		 * devices, otherwise check/repair might fail to detect
3634 		 * a real inconsistency.
3635 		 */
3636 
3637 		if ((s->uptodate == disks - 1) &&
3638 		    ((sh->qd_idx >= 0 && sh->pd_idx == disk_idx) ||
3639 		    (s->failed && (disk_idx == s->failed_num[0] ||
3640 				   disk_idx == s->failed_num[1])))) {
3641 			/* have disk failed, and we're requested to fetch it;
3642 			 * do compute it
3643 			 */
3644 			pr_debug("Computing stripe %llu block %d\n",
3645 			       (unsigned long long)sh->sector, disk_idx);
3646 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3647 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3648 			set_bit(R5_Wantcompute, &dev->flags);
3649 			sh->ops.target = disk_idx;
3650 			sh->ops.target2 = -1; /* no 2nd target */
3651 			s->req_compute = 1;
3652 			/* Careful: from this point on 'uptodate' is in the eye
3653 			 * of raid_run_ops which services 'compute' operations
3654 			 * before writes. R5_Wantcompute flags a block that will
3655 			 * be R5_UPTODATE by the time it is needed for a
3656 			 * subsequent operation.
3657 			 */
3658 			s->uptodate++;
3659 			return 1;
3660 		} else if (s->uptodate == disks-2 && s->failed >= 2) {
3661 			/* Computing 2-failure is *very* expensive; only
3662 			 * do it if failed >= 2
3663 			 */
3664 			int other;
3665 			for (other = disks; other--; ) {
3666 				if (other == disk_idx)
3667 					continue;
3668 				if (!test_bit(R5_UPTODATE,
3669 				      &sh->dev[other].flags))
3670 					break;
3671 			}
3672 			BUG_ON(other < 0);
3673 			pr_debug("Computing stripe %llu blocks %d,%d\n",
3674 			       (unsigned long long)sh->sector,
3675 			       disk_idx, other);
3676 			set_bit(STRIPE_COMPUTE_RUN, &sh->state);
3677 			set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
3678 			set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
3679 			set_bit(R5_Wantcompute, &sh->dev[other].flags);
3680 			sh->ops.target = disk_idx;
3681 			sh->ops.target2 = other;
3682 			s->uptodate += 2;
3683 			s->req_compute = 1;
3684 			return 1;
3685 		} else if (test_bit(R5_Insync, &dev->flags)) {
3686 			set_bit(R5_LOCKED, &dev->flags);
3687 			set_bit(R5_Wantread, &dev->flags);
3688 			s->locked++;
3689 			pr_debug("Reading block %d (sync=%d)\n",
3690 				disk_idx, s->syncing);
3691 		}
3692 	}
3693 
3694 	return 0;
3695 }
3696 
3697 /**
3698  * handle_stripe_fill - read or compute data to satisfy pending requests.
3699  */
3700 static void handle_stripe_fill(struct stripe_head *sh,
3701 			       struct stripe_head_state *s,
3702 			       int disks)
3703 {
3704 	int i;
3705 
3706 	/* look for blocks to read/compute, skip this if a compute
3707 	 * is already in flight, or if the stripe contents are in the
3708 	 * midst of changing due to a write
3709 	 */
3710 	if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
3711 	    !sh->reconstruct_state) {
3712 
3713 		/*
3714 		 * For degraded stripe with data in journal, do not handle
3715 		 * read requests yet, instead, flush the stripe to raid
3716 		 * disks first, this avoids handling complex rmw of write
3717 		 * back cache (prexor with orig_page, and then xor with
3718 		 * page) in the read path
3719 		 */
3720 		if (s->injournal && s->failed) {
3721 			if (test_bit(STRIPE_R5C_CACHING, &sh->state))
3722 				r5c_make_stripe_write_out(sh);
3723 			goto out;
3724 		}
3725 
3726 		for (i = disks; i--; )
3727 			if (fetch_block(sh, s, i, disks))
3728 				break;
3729 	}
3730 out:
3731 	set_bit(STRIPE_HANDLE, &sh->state);
3732 }
3733 
3734 static void break_stripe_batch_list(struct stripe_head *head_sh,
3735 				    unsigned long handle_flags);
3736 /* handle_stripe_clean_event
3737  * any written block on an uptodate or failed drive can be returned.
3738  * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
3739  * never LOCKED, so we don't need to test 'failed' directly.
3740  */
3741 static void handle_stripe_clean_event(struct r5conf *conf,
3742 	struct stripe_head *sh, int disks)
3743 {
3744 	int i;
3745 	struct r5dev *dev;
3746 	int discard_pending = 0;
3747 	struct stripe_head *head_sh = sh;
3748 	bool do_endio = false;
3749 
3750 	for (i = disks; i--; )
3751 		if (sh->dev[i].written) {
3752 			dev = &sh->dev[i];
3753 			if (!test_bit(R5_LOCKED, &dev->flags) &&
3754 			    (test_bit(R5_UPTODATE, &dev->flags) ||
3755 			     test_bit(R5_Discard, &dev->flags) ||
3756 			     test_bit(R5_SkipCopy, &dev->flags))) {
3757 				/* We can return any write requests */
3758 				struct bio *wbi, *wbi2;
3759 				pr_debug("Return write for disc %d\n", i);
3760 				if (test_and_clear_bit(R5_Discard, &dev->flags))
3761 					clear_bit(R5_UPTODATE, &dev->flags);
3762 				if (test_and_clear_bit(R5_SkipCopy, &dev->flags)) {
3763 					WARN_ON(test_bit(R5_UPTODATE, &dev->flags));
3764 				}
3765 				do_endio = true;
3766 
3767 returnbi:
3768 				dev->page = dev->orig_page;
3769 				wbi = dev->written;
3770 				dev->written = NULL;
3771 				while (wbi && wbi->bi_iter.bi_sector <
3772 					dev->sector + STRIPE_SECTORS) {
3773 					wbi2 = r5_next_bio(wbi, dev->sector);
3774 					md_write_end(conf->mddev);
3775 					bio_endio(wbi);
3776 					wbi = wbi2;
3777 				}
3778 				md_bitmap_endwrite(conf->mddev->bitmap, sh->sector,
3779 						   STRIPE_SECTORS,
3780 						   !test_bit(STRIPE_DEGRADED, &sh->state),
3781 						   0);
3782 				if (head_sh->batch_head) {
3783 					sh = list_first_entry(&sh->batch_list,
3784 							      struct stripe_head,
3785 							      batch_list);
3786 					if (sh != head_sh) {
3787 						dev = &sh->dev[i];
3788 						goto returnbi;
3789 					}
3790 				}
3791 				sh = head_sh;
3792 				dev = &sh->dev[i];
3793 			} else if (test_bit(R5_Discard, &dev->flags))
3794 				discard_pending = 1;
3795 		}
3796 
3797 	log_stripe_write_finished(sh);
3798 
3799 	if (!discard_pending &&
3800 	    test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags)) {
3801 		int hash;
3802 		clear_bit(R5_Discard, &sh->dev[sh->pd_idx].flags);
3803 		clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
3804 		if (sh->qd_idx >= 0) {
3805 			clear_bit(R5_Discard, &sh->dev[sh->qd_idx].flags);
3806 			clear_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags);
3807 		}
3808 		/* now that discard is done we can proceed with any sync */
3809 		clear_bit(STRIPE_DISCARD, &sh->state);
3810 		/*
3811 		 * SCSI discard will change some bio fields and the stripe has
3812 		 * no updated data, so remove it from hash list and the stripe
3813 		 * will be reinitialized
3814 		 */
3815 unhash:
3816 		hash = sh->hash_lock_index;
3817 		spin_lock_irq(conf->hash_locks + hash);
3818 		remove_hash(sh);
3819 		spin_unlock_irq(conf->hash_locks + hash);
3820 		if (head_sh->batch_head) {
3821 			sh = list_first_entry(&sh->batch_list,
3822 					      struct stripe_head, batch_list);
3823 			if (sh != head_sh)
3824 					goto unhash;
3825 		}
3826 		sh = head_sh;
3827 
3828 		if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state))
3829 			set_bit(STRIPE_HANDLE, &sh->state);
3830 
3831 	}
3832 
3833 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
3834 		if (atomic_dec_and_test(&conf->pending_full_writes))
3835 			md_wakeup_thread(conf->mddev->thread);
3836 
3837 	if (head_sh->batch_head && do_endio)
3838 		break_stripe_batch_list(head_sh, STRIPE_EXPAND_SYNC_FLAGS);
3839 }
3840 
3841 /*
3842  * For RMW in write back cache, we need extra page in prexor to store the
3843  * old data. This page is stored in dev->orig_page.
3844  *
3845  * This function checks whether we have data for prexor. The exact logic
3846  * is:
3847  *       R5_UPTODATE && (!R5_InJournal || R5_OrigPageUPTDODATE)
3848  */
3849 static inline bool uptodate_for_rmw(struct r5dev *dev)
3850 {
3851 	return (test_bit(R5_UPTODATE, &dev->flags)) &&
3852 		(!test_bit(R5_InJournal, &dev->flags) ||
3853 		 test_bit(R5_OrigPageUPTDODATE, &dev->flags));
3854 }
3855 
3856 static int handle_stripe_dirtying(struct r5conf *conf,
3857 				  struct stripe_head *sh,
3858 				  struct stripe_head_state *s,
3859 				  int disks)
3860 {
3861 	int rmw = 0, rcw = 0, i;
3862 	sector_t recovery_cp = conf->mddev->recovery_cp;
3863 
3864 	/* Check whether resync is now happening or should start.
3865 	 * If yes, then the array is dirty (after unclean shutdown or
3866 	 * initial creation), so parity in some stripes might be inconsistent.
3867 	 * In this case, we need to always do reconstruct-write, to ensure
3868 	 * that in case of drive failure or read-error correction, we
3869 	 * generate correct data from the parity.
3870 	 */
3871 	if (conf->rmw_level == PARITY_DISABLE_RMW ||
3872 	    (recovery_cp < MaxSector && sh->sector >= recovery_cp &&
3873 	     s->failed == 0)) {
3874 		/* Calculate the real rcw later - for now make it
3875 		 * look like rcw is cheaper
3876 		 */
3877 		rcw = 1; rmw = 2;
3878 		pr_debug("force RCW rmw_level=%u, recovery_cp=%llu sh->sector=%llu\n",
3879 			 conf->rmw_level, (unsigned long long)recovery_cp,
3880 			 (unsigned long long)sh->sector);
3881 	} else for (i = disks; i--; ) {
3882 		/* would I have to read this buffer for read_modify_write */
3883 		struct r5dev *dev = &sh->dev[i];
3884 		if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3885 		     i == sh->pd_idx || i == sh->qd_idx ||
3886 		     test_bit(R5_InJournal, &dev->flags)) &&
3887 		    !test_bit(R5_LOCKED, &dev->flags) &&
3888 		    !(uptodate_for_rmw(dev) ||
3889 		      test_bit(R5_Wantcompute, &dev->flags))) {
3890 			if (test_bit(R5_Insync, &dev->flags))
3891 				rmw++;
3892 			else
3893 				rmw += 2*disks;  /* cannot read it */
3894 		}
3895 		/* Would I have to read this buffer for reconstruct_write */
3896 		if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3897 		    i != sh->pd_idx && i != sh->qd_idx &&
3898 		    !test_bit(R5_LOCKED, &dev->flags) &&
3899 		    !(test_bit(R5_UPTODATE, &dev->flags) ||
3900 		      test_bit(R5_Wantcompute, &dev->flags))) {
3901 			if (test_bit(R5_Insync, &dev->flags))
3902 				rcw++;
3903 			else
3904 				rcw += 2*disks;
3905 		}
3906 	}
3907 
3908 	pr_debug("for sector %llu state 0x%lx, rmw=%d rcw=%d\n",
3909 		 (unsigned long long)sh->sector, sh->state, rmw, rcw);
3910 	set_bit(STRIPE_HANDLE, &sh->state);
3911 	if ((rmw < rcw || (rmw == rcw && conf->rmw_level == PARITY_PREFER_RMW)) && rmw > 0) {
3912 		/* prefer read-modify-write, but need to get some data */
3913 		if (conf->mddev->queue)
3914 			blk_add_trace_msg(conf->mddev->queue,
3915 					  "raid5 rmw %llu %d",
3916 					  (unsigned long long)sh->sector, rmw);
3917 		for (i = disks; i--; ) {
3918 			struct r5dev *dev = &sh->dev[i];
3919 			if (test_bit(R5_InJournal, &dev->flags) &&
3920 			    dev->page == dev->orig_page &&
3921 			    !test_bit(R5_LOCKED, &sh->dev[sh->pd_idx].flags)) {
3922 				/* alloc page for prexor */
3923 				struct page *p = alloc_page(GFP_NOIO);
3924 
3925 				if (p) {
3926 					dev->orig_page = p;
3927 					continue;
3928 				}
3929 
3930 				/*
3931 				 * alloc_page() failed, try use
3932 				 * disk_info->extra_page
3933 				 */
3934 				if (!test_and_set_bit(R5C_EXTRA_PAGE_IN_USE,
3935 						      &conf->cache_state)) {
3936 					r5c_use_extra_page(sh);
3937 					break;
3938 				}
3939 
3940 				/* extra_page in use, add to delayed_list */
3941 				set_bit(STRIPE_DELAYED, &sh->state);
3942 				s->waiting_extra_page = 1;
3943 				return -EAGAIN;
3944 			}
3945 		}
3946 
3947 		for (i = disks; i--; ) {
3948 			struct r5dev *dev = &sh->dev[i];
3949 			if (((dev->towrite && !delay_towrite(conf, dev, s)) ||
3950 			     i == sh->pd_idx || i == sh->qd_idx ||
3951 			     test_bit(R5_InJournal, &dev->flags)) &&
3952 			    !test_bit(R5_LOCKED, &dev->flags) &&
3953 			    !(uptodate_for_rmw(dev) ||
3954 			      test_bit(R5_Wantcompute, &dev->flags)) &&
3955 			    test_bit(R5_Insync, &dev->flags)) {
3956 				if (test_bit(STRIPE_PREREAD_ACTIVE,
3957 					     &sh->state)) {
3958 					pr_debug("Read_old block %d for r-m-w\n",
3959 						 i);
3960 					set_bit(R5_LOCKED, &dev->flags);
3961 					set_bit(R5_Wantread, &dev->flags);
3962 					s->locked++;
3963 				} else {
3964 					set_bit(STRIPE_DELAYED, &sh->state);
3965 					set_bit(STRIPE_HANDLE, &sh->state);
3966 				}
3967 			}
3968 		}
3969 	}
3970 	if ((rcw < rmw || (rcw == rmw && conf->rmw_level != PARITY_PREFER_RMW)) && rcw > 0) {
3971 		/* want reconstruct write, but need to get some data */
3972 		int qread =0;
3973 		rcw = 0;
3974 		for (i = disks; i--; ) {
3975 			struct r5dev *dev = &sh->dev[i];
3976 			if (!test_bit(R5_OVERWRITE, &dev->flags) &&
3977 			    i != sh->pd_idx && i != sh->qd_idx &&
3978 			    !test_bit(R5_LOCKED, &dev->flags) &&
3979 			    !(test_bit(R5_UPTODATE, &dev->flags) ||
3980 			      test_bit(R5_Wantcompute, &dev->flags))) {
3981 				rcw++;
3982 				if (test_bit(R5_Insync, &dev->flags) &&
3983 				    test_bit(STRIPE_PREREAD_ACTIVE,
3984 					     &sh->state)) {
3985 					pr_debug("Read_old block "
3986 						"%d for Reconstruct\n", i);
3987 					set_bit(R5_LOCKED, &dev->flags);
3988 					set_bit(R5_Wantread, &dev->flags);
3989 					s->locked++;
3990 					qread++;
3991 				} else {
3992 					set_bit(STRIPE_DELAYED, &sh->state);
3993 					set_bit(STRIPE_HANDLE, &sh->state);
3994 				}
3995 			}
3996 		}
3997 		if (rcw && conf->mddev->queue)
3998 			blk_add_trace_msg(conf->mddev->queue, "raid5 rcw %llu %d %d %d",
3999 					  (unsigned long long)sh->sector,
4000 					  rcw, qread, test_bit(STRIPE_DELAYED, &sh->state));
4001 	}
4002 
4003 	if (rcw > disks && rmw > disks &&
4004 	    !test_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4005 		set_bit(STRIPE_DELAYED, &sh->state);
4006 
4007 	/* now if nothing is locked, and if we have enough data,
4008 	 * we can start a write request
4009 	 */
4010 	/* since handle_stripe can be called at any time we need to handle the
4011 	 * case where a compute block operation has been submitted and then a
4012 	 * subsequent call wants to start a write request.  raid_run_ops only
4013 	 * handles the case where compute block and reconstruct are requested
4014 	 * simultaneously.  If this is not the case then new writes need to be
4015 	 * held off until the compute completes.
4016 	 */
4017 	if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
4018 	    (s->locked == 0 && (rcw == 0 || rmw == 0) &&
4019 	     !test_bit(STRIPE_BIT_DELAY, &sh->state)))
4020 		schedule_reconstruction(sh, s, rcw == 0, 0);
4021 	return 0;
4022 }
4023 
4024 static void handle_parity_checks5(struct r5conf *conf, struct stripe_head *sh,
4025 				struct stripe_head_state *s, int disks)
4026 {
4027 	struct r5dev *dev = NULL;
4028 
4029 	BUG_ON(sh->batch_head);
4030 	set_bit(STRIPE_HANDLE, &sh->state);
4031 
4032 	switch (sh->check_state) {
4033 	case check_state_idle:
4034 		/* start a new check operation if there are no failures */
4035 		if (s->failed == 0) {
4036 			BUG_ON(s->uptodate != disks);
4037 			sh->check_state = check_state_run;
4038 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4039 			clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
4040 			s->uptodate--;
4041 			break;
4042 		}
4043 		dev = &sh->dev[s->failed_num[0]];
4044 		/* fall through */
4045 	case check_state_compute_result:
4046 		sh->check_state = check_state_idle;
4047 		if (!dev)
4048 			dev = &sh->dev[sh->pd_idx];
4049 
4050 		/* check that a write has not made the stripe insync */
4051 		if (test_bit(STRIPE_INSYNC, &sh->state))
4052 			break;
4053 
4054 		/* either failed parity check, or recovery is happening */
4055 		BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
4056 		BUG_ON(s->uptodate != disks);
4057 
4058 		set_bit(R5_LOCKED, &dev->flags);
4059 		s->locked++;
4060 		set_bit(R5_Wantwrite, &dev->flags);
4061 
4062 		clear_bit(STRIPE_DEGRADED, &sh->state);
4063 		set_bit(STRIPE_INSYNC, &sh->state);
4064 		break;
4065 	case check_state_run:
4066 		break; /* we will be called again upon completion */
4067 	case check_state_check_result:
4068 		sh->check_state = check_state_idle;
4069 
4070 		/* if a failure occurred during the check operation, leave
4071 		 * STRIPE_INSYNC not set and let the stripe be handled again
4072 		 */
4073 		if (s->failed)
4074 			break;
4075 
4076 		/* handle a successful check operation, if parity is correct
4077 		 * we are done.  Otherwise update the mismatch count and repair
4078 		 * parity if !MD_RECOVERY_CHECK
4079 		 */
4080 		if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
4081 			/* parity is correct (on disc,
4082 			 * not in buffer any more)
4083 			 */
4084 			set_bit(STRIPE_INSYNC, &sh->state);
4085 		else {
4086 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4087 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4088 				/* don't try to repair!! */
4089 				set_bit(STRIPE_INSYNC, &sh->state);
4090 				pr_warn_ratelimited("%s: mismatch sector in range "
4091 						    "%llu-%llu\n", mdname(conf->mddev),
4092 						    (unsigned long long) sh->sector,
4093 						    (unsigned long long) sh->sector +
4094 						    STRIPE_SECTORS);
4095 			} else {
4096 				sh->check_state = check_state_compute_run;
4097 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4098 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4099 				set_bit(R5_Wantcompute,
4100 					&sh->dev[sh->pd_idx].flags);
4101 				sh->ops.target = sh->pd_idx;
4102 				sh->ops.target2 = -1;
4103 				s->uptodate++;
4104 			}
4105 		}
4106 		break;
4107 	case check_state_compute_run:
4108 		break;
4109 	default:
4110 		pr_err("%s: unknown check_state: %d sector: %llu\n",
4111 		       __func__, sh->check_state,
4112 		       (unsigned long long) sh->sector);
4113 		BUG();
4114 	}
4115 }
4116 
4117 static void handle_parity_checks6(struct r5conf *conf, struct stripe_head *sh,
4118 				  struct stripe_head_state *s,
4119 				  int disks)
4120 {
4121 	int pd_idx = sh->pd_idx;
4122 	int qd_idx = sh->qd_idx;
4123 	struct r5dev *dev;
4124 
4125 	BUG_ON(sh->batch_head);
4126 	set_bit(STRIPE_HANDLE, &sh->state);
4127 
4128 	BUG_ON(s->failed > 2);
4129 
4130 	/* Want to check and possibly repair P and Q.
4131 	 * However there could be one 'failed' device, in which
4132 	 * case we can only check one of them, possibly using the
4133 	 * other to generate missing data
4134 	 */
4135 
4136 	switch (sh->check_state) {
4137 	case check_state_idle:
4138 		/* start a new check operation if there are < 2 failures */
4139 		if (s->failed == s->q_failed) {
4140 			/* The only possible failed device holds Q, so it
4141 			 * makes sense to check P (If anything else were failed,
4142 			 * we would have used P to recreate it).
4143 			 */
4144 			sh->check_state = check_state_run;
4145 		}
4146 		if (!s->q_failed && s->failed < 2) {
4147 			/* Q is not failed, and we didn't use it to generate
4148 			 * anything, so it makes sense to check it
4149 			 */
4150 			if (sh->check_state == check_state_run)
4151 				sh->check_state = check_state_run_pq;
4152 			else
4153 				sh->check_state = check_state_run_q;
4154 		}
4155 
4156 		/* discard potentially stale zero_sum_result */
4157 		sh->ops.zero_sum_result = 0;
4158 
4159 		if (sh->check_state == check_state_run) {
4160 			/* async_xor_zero_sum destroys the contents of P */
4161 			clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
4162 			s->uptodate--;
4163 		}
4164 		if (sh->check_state >= check_state_run &&
4165 		    sh->check_state <= check_state_run_pq) {
4166 			/* async_syndrome_zero_sum preserves P and Q, so
4167 			 * no need to mark them !uptodate here
4168 			 */
4169 			set_bit(STRIPE_OP_CHECK, &s->ops_request);
4170 			break;
4171 		}
4172 
4173 		/* we have 2-disk failure */
4174 		BUG_ON(s->failed != 2);
4175 		/* fall through */
4176 	case check_state_compute_result:
4177 		sh->check_state = check_state_idle;
4178 
4179 		/* check that a write has not made the stripe insync */
4180 		if (test_bit(STRIPE_INSYNC, &sh->state))
4181 			break;
4182 
4183 		/* now write out any block on a failed drive,
4184 		 * or P or Q if they were recomputed
4185 		 */
4186 		dev = NULL;
4187 		if (s->failed == 2) {
4188 			dev = &sh->dev[s->failed_num[1]];
4189 			s->locked++;
4190 			set_bit(R5_LOCKED, &dev->flags);
4191 			set_bit(R5_Wantwrite, &dev->flags);
4192 		}
4193 		if (s->failed >= 1) {
4194 			dev = &sh->dev[s->failed_num[0]];
4195 			s->locked++;
4196 			set_bit(R5_LOCKED, &dev->flags);
4197 			set_bit(R5_Wantwrite, &dev->flags);
4198 		}
4199 		if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4200 			dev = &sh->dev[pd_idx];
4201 			s->locked++;
4202 			set_bit(R5_LOCKED, &dev->flags);
4203 			set_bit(R5_Wantwrite, &dev->flags);
4204 		}
4205 		if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4206 			dev = &sh->dev[qd_idx];
4207 			s->locked++;
4208 			set_bit(R5_LOCKED, &dev->flags);
4209 			set_bit(R5_Wantwrite, &dev->flags);
4210 		}
4211 		if (WARN_ONCE(dev && !test_bit(R5_UPTODATE, &dev->flags),
4212 			      "%s: disk%td not up to date\n",
4213 			      mdname(conf->mddev),
4214 			      dev - (struct r5dev *) &sh->dev)) {
4215 			clear_bit(R5_LOCKED, &dev->flags);
4216 			clear_bit(R5_Wantwrite, &dev->flags);
4217 			s->locked--;
4218 		}
4219 		clear_bit(STRIPE_DEGRADED, &sh->state);
4220 
4221 		set_bit(STRIPE_INSYNC, &sh->state);
4222 		break;
4223 	case check_state_run:
4224 	case check_state_run_q:
4225 	case check_state_run_pq:
4226 		break; /* we will be called again upon completion */
4227 	case check_state_check_result:
4228 		sh->check_state = check_state_idle;
4229 
4230 		/* handle a successful check operation, if parity is correct
4231 		 * we are done.  Otherwise update the mismatch count and repair
4232 		 * parity if !MD_RECOVERY_CHECK
4233 		 */
4234 		if (sh->ops.zero_sum_result == 0) {
4235 			/* both parities are correct */
4236 			if (!s->failed)
4237 				set_bit(STRIPE_INSYNC, &sh->state);
4238 			else {
4239 				/* in contrast to the raid5 case we can validate
4240 				 * parity, but still have a failure to write
4241 				 * back
4242 				 */
4243 				sh->check_state = check_state_compute_result;
4244 				/* Returning at this point means that we may go
4245 				 * off and bring p and/or q uptodate again so
4246 				 * we make sure to check zero_sum_result again
4247 				 * to verify if p or q need writeback
4248 				 */
4249 			}
4250 		} else {
4251 			atomic64_add(STRIPE_SECTORS, &conf->mddev->resync_mismatches);
4252 			if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery)) {
4253 				/* don't try to repair!! */
4254 				set_bit(STRIPE_INSYNC, &sh->state);
4255 				pr_warn_ratelimited("%s: mismatch sector in range "
4256 						    "%llu-%llu\n", mdname(conf->mddev),
4257 						    (unsigned long long) sh->sector,
4258 						    (unsigned long long) sh->sector +
4259 						    STRIPE_SECTORS);
4260 			} else {
4261 				int *target = &sh->ops.target;
4262 
4263 				sh->ops.target = -1;
4264 				sh->ops.target2 = -1;
4265 				sh->check_state = check_state_compute_run;
4266 				set_bit(STRIPE_COMPUTE_RUN, &sh->state);
4267 				set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
4268 				if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
4269 					set_bit(R5_Wantcompute,
4270 						&sh->dev[pd_idx].flags);
4271 					*target = pd_idx;
4272 					target = &sh->ops.target2;
4273 					s->uptodate++;
4274 				}
4275 				if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
4276 					set_bit(R5_Wantcompute,
4277 						&sh->dev[qd_idx].flags);
4278 					*target = qd_idx;
4279 					s->uptodate++;
4280 				}
4281 			}
4282 		}
4283 		break;
4284 	case check_state_compute_run:
4285 		break;
4286 	default:
4287 		pr_warn("%s: unknown check_state: %d sector: %llu\n",
4288 			__func__, sh->check_state,
4289 			(unsigned long long) sh->sector);
4290 		BUG();
4291 	}
4292 }
4293 
4294 static void handle_stripe_expansion(struct r5conf *conf, struct stripe_head *sh)
4295 {
4296 	int i;
4297 
4298 	/* We have read all the blocks in this stripe and now we need to
4299 	 * copy some of them into a target stripe for expand.
4300 	 */
4301 	struct dma_async_tx_descriptor *tx = NULL;
4302 	BUG_ON(sh->batch_head);
4303 	clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4304 	for (i = 0; i < sh->disks; i++)
4305 		if (i != sh->pd_idx && i != sh->qd_idx) {
4306 			int dd_idx, j;
4307 			struct stripe_head *sh2;
4308 			struct async_submit_ctl submit;
4309 
4310 			sector_t bn = raid5_compute_blocknr(sh, i, 1);
4311 			sector_t s = raid5_compute_sector(conf, bn, 0,
4312 							  &dd_idx, NULL);
4313 			sh2 = raid5_get_active_stripe(conf, s, 0, 1, 1);
4314 			if (sh2 == NULL)
4315 				/* so far only the early blocks of this stripe
4316 				 * have been requested.  When later blocks
4317 				 * get requested, we will try again
4318 				 */
4319 				continue;
4320 			if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
4321 			   test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
4322 				/* must have already done this block */
4323 				raid5_release_stripe(sh2);
4324 				continue;
4325 			}
4326 
4327 			/* place all the copies on one channel */
4328 			init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
4329 			tx = async_memcpy(sh2->dev[dd_idx].page,
4330 					  sh->dev[i].page, 0, 0, STRIPE_SIZE,
4331 					  &submit);
4332 
4333 			set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
4334 			set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
4335 			for (j = 0; j < conf->raid_disks; j++)
4336 				if (j != sh2->pd_idx &&
4337 				    j != sh2->qd_idx &&
4338 				    !test_bit(R5_Expanded, &sh2->dev[j].flags))
4339 					break;
4340 			if (j == conf->raid_disks) {
4341 				set_bit(STRIPE_EXPAND_READY, &sh2->state);
4342 				set_bit(STRIPE_HANDLE, &sh2->state);
4343 			}
4344 			raid5_release_stripe(sh2);
4345 
4346 		}
4347 	/* done submitting copies, wait for them to complete */
4348 	async_tx_quiesce(&tx);
4349 }
4350 
4351 /*
4352  * handle_stripe - do things to a stripe.
4353  *
4354  * We lock the stripe by setting STRIPE_ACTIVE and then examine the
4355  * state of various bits to see what needs to be done.
4356  * Possible results:
4357  *    return some read requests which now have data
4358  *    return some write requests which are safely on storage
4359  *    schedule a read on some buffers
4360  *    schedule a write of some buffers
4361  *    return confirmation of parity correctness
4362  *
4363  */
4364 
4365 static void analyse_stripe(struct stripe_head *sh, struct stripe_head_state *s)
4366 {
4367 	struct r5conf *conf = sh->raid_conf;
4368 	int disks = sh->disks;
4369 	struct r5dev *dev;
4370 	int i;
4371 	int do_recovery = 0;
4372 
4373 	memset(s, 0, sizeof(*s));
4374 
4375 	s->expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state) && !sh->batch_head;
4376 	s->expanded = test_bit(STRIPE_EXPAND_READY, &sh->state) && !sh->batch_head;
4377 	s->failed_num[0] = -1;
4378 	s->failed_num[1] = -1;
4379 	s->log_failed = r5l_log_disk_error(conf);
4380 
4381 	/* Now to look around and see what can be done */
4382 	rcu_read_lock();
4383 	for (i=disks; i--; ) {
4384 		struct md_rdev *rdev;
4385 		sector_t first_bad;
4386 		int bad_sectors;
4387 		int is_bad = 0;
4388 
4389 		dev = &sh->dev[i];
4390 
4391 		pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
4392 			 i, dev->flags,
4393 			 dev->toread, dev->towrite, dev->written);
4394 		/* maybe we can reply to a read
4395 		 *
4396 		 * new wantfill requests are only permitted while
4397 		 * ops_complete_biofill is guaranteed to be inactive
4398 		 */
4399 		if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
4400 		    !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
4401 			set_bit(R5_Wantfill, &dev->flags);
4402 
4403 		/* now count some things */
4404 		if (test_bit(R5_LOCKED, &dev->flags))
4405 			s->locked++;
4406 		if (test_bit(R5_UPTODATE, &dev->flags))
4407 			s->uptodate++;
4408 		if (test_bit(R5_Wantcompute, &dev->flags)) {
4409 			s->compute++;
4410 			BUG_ON(s->compute > 2);
4411 		}
4412 
4413 		if (test_bit(R5_Wantfill, &dev->flags))
4414 			s->to_fill++;
4415 		else if (dev->toread)
4416 			s->to_read++;
4417 		if (dev->towrite) {
4418 			s->to_write++;
4419 			if (!test_bit(R5_OVERWRITE, &dev->flags))
4420 				s->non_overwrite++;
4421 		}
4422 		if (dev->written)
4423 			s->written++;
4424 		/* Prefer to use the replacement for reads, but only
4425 		 * if it is recovered enough and has no bad blocks.
4426 		 */
4427 		rdev = rcu_dereference(conf->disks[i].replacement);
4428 		if (rdev && !test_bit(Faulty, &rdev->flags) &&
4429 		    rdev->recovery_offset >= sh->sector + STRIPE_SECTORS &&
4430 		    !is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4431 				 &first_bad, &bad_sectors))
4432 			set_bit(R5_ReadRepl, &dev->flags);
4433 		else {
4434 			if (rdev && !test_bit(Faulty, &rdev->flags))
4435 				set_bit(R5_NeedReplace, &dev->flags);
4436 			else
4437 				clear_bit(R5_NeedReplace, &dev->flags);
4438 			rdev = rcu_dereference(conf->disks[i].rdev);
4439 			clear_bit(R5_ReadRepl, &dev->flags);
4440 		}
4441 		if (rdev && test_bit(Faulty, &rdev->flags))
4442 			rdev = NULL;
4443 		if (rdev) {
4444 			is_bad = is_badblock(rdev, sh->sector, STRIPE_SECTORS,
4445 					     &first_bad, &bad_sectors);
4446 			if (s->blocked_rdev == NULL
4447 			    && (test_bit(Blocked, &rdev->flags)
4448 				|| is_bad < 0)) {
4449 				if (is_bad < 0)
4450 					set_bit(BlockedBadBlocks,
4451 						&rdev->flags);
4452 				s->blocked_rdev = rdev;
4453 				atomic_inc(&rdev->nr_pending);
4454 			}
4455 		}
4456 		clear_bit(R5_Insync, &dev->flags);
4457 		if (!rdev)
4458 			/* Not in-sync */;
4459 		else if (is_bad) {
4460 			/* also not in-sync */
4461 			if (!test_bit(WriteErrorSeen, &rdev->flags) &&
4462 			    test_bit(R5_UPTODATE, &dev->flags)) {
4463 				/* treat as in-sync, but with a read error
4464 				 * which we can now try to correct
4465 				 */
4466 				set_bit(R5_Insync, &dev->flags);
4467 				set_bit(R5_ReadError, &dev->flags);
4468 			}
4469 		} else if (test_bit(In_sync, &rdev->flags))
4470 			set_bit(R5_Insync, &dev->flags);
4471 		else if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
4472 			/* in sync if before recovery_offset */
4473 			set_bit(R5_Insync, &dev->flags);
4474 		else if (test_bit(R5_UPTODATE, &dev->flags) &&
4475 			 test_bit(R5_Expanded, &dev->flags))
4476 			/* If we've reshaped into here, we assume it is Insync.
4477 			 * We will shortly update recovery_offset to make
4478 			 * it official.
4479 			 */
4480 			set_bit(R5_Insync, &dev->flags);
4481 
4482 		if (test_bit(R5_WriteError, &dev->flags)) {
4483 			/* This flag does not apply to '.replacement'
4484 			 * only to .rdev, so make sure to check that*/
4485 			struct md_rdev *rdev2 = rcu_dereference(
4486 				conf->disks[i].rdev);
4487 			if (rdev2 == rdev)
4488 				clear_bit(R5_Insync, &dev->flags);
4489 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4490 				s->handle_bad_blocks = 1;
4491 				atomic_inc(&rdev2->nr_pending);
4492 			} else
4493 				clear_bit(R5_WriteError, &dev->flags);
4494 		}
4495 		if (test_bit(R5_MadeGood, &dev->flags)) {
4496 			/* This flag does not apply to '.replacement'
4497 			 * only to .rdev, so make sure to check that*/
4498 			struct md_rdev *rdev2 = rcu_dereference(
4499 				conf->disks[i].rdev);
4500 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4501 				s->handle_bad_blocks = 1;
4502 				atomic_inc(&rdev2->nr_pending);
4503 			} else
4504 				clear_bit(R5_MadeGood, &dev->flags);
4505 		}
4506 		if (test_bit(R5_MadeGoodRepl, &dev->flags)) {
4507 			struct md_rdev *rdev2 = rcu_dereference(
4508 				conf->disks[i].replacement);
4509 			if (rdev2 && !test_bit(Faulty, &rdev2->flags)) {
4510 				s->handle_bad_blocks = 1;
4511 				atomic_inc(&rdev2->nr_pending);
4512 			} else
4513 				clear_bit(R5_MadeGoodRepl, &dev->flags);
4514 		}
4515 		if (!test_bit(R5_Insync, &dev->flags)) {
4516 			/* The ReadError flag will just be confusing now */
4517 			clear_bit(R5_ReadError, &dev->flags);
4518 			clear_bit(R5_ReWrite, &dev->flags);
4519 		}
4520 		if (test_bit(R5_ReadError, &dev->flags))
4521 			clear_bit(R5_Insync, &dev->flags);
4522 		if (!test_bit(R5_Insync, &dev->flags)) {
4523 			if (s->failed < 2)
4524 				s->failed_num[s->failed] = i;
4525 			s->failed++;
4526 			if (rdev && !test_bit(Faulty, &rdev->flags))
4527 				do_recovery = 1;
4528 			else if (!rdev) {
4529 				rdev = rcu_dereference(
4530 				    conf->disks[i].replacement);
4531 				if (rdev && !test_bit(Faulty, &rdev->flags))
4532 					do_recovery = 1;
4533 			}
4534 		}
4535 
4536 		if (test_bit(R5_InJournal, &dev->flags))
4537 			s->injournal++;
4538 		if (test_bit(R5_InJournal, &dev->flags) && dev->written)
4539 			s->just_cached++;
4540 	}
4541 	if (test_bit(STRIPE_SYNCING, &sh->state)) {
4542 		/* If there is a failed device being replaced,
4543 		 *     we must be recovering.
4544 		 * else if we are after recovery_cp, we must be syncing
4545 		 * else if MD_RECOVERY_REQUESTED is set, we also are syncing.
4546 		 * else we can only be replacing
4547 		 * sync and recovery both need to read all devices, and so
4548 		 * use the same flag.
4549 		 */
4550 		if (do_recovery ||
4551 		    sh->sector >= conf->mddev->recovery_cp ||
4552 		    test_bit(MD_RECOVERY_REQUESTED, &(conf->mddev->recovery)))
4553 			s->syncing = 1;
4554 		else
4555 			s->replacing = 1;
4556 	}
4557 	rcu_read_unlock();
4558 }
4559 
4560 static int clear_batch_ready(struct stripe_head *sh)
4561 {
4562 	/* Return '1' if this is a member of batch, or
4563 	 * '0' if it is a lone stripe or a head which can now be
4564 	 * handled.
4565 	 */
4566 	struct stripe_head *tmp;
4567 	if (!test_and_clear_bit(STRIPE_BATCH_READY, &sh->state))
4568 		return (sh->batch_head && sh->batch_head != sh);
4569 	spin_lock(&sh->stripe_lock);
4570 	if (!sh->batch_head) {
4571 		spin_unlock(&sh->stripe_lock);
4572 		return 0;
4573 	}
4574 
4575 	/*
4576 	 * this stripe could be added to a batch list before we check
4577 	 * BATCH_READY, skips it
4578 	 */
4579 	if (sh->batch_head != sh) {
4580 		spin_unlock(&sh->stripe_lock);
4581 		return 1;
4582 	}
4583 	spin_lock(&sh->batch_lock);
4584 	list_for_each_entry(tmp, &sh->batch_list, batch_list)
4585 		clear_bit(STRIPE_BATCH_READY, &tmp->state);
4586 	spin_unlock(&sh->batch_lock);
4587 	spin_unlock(&sh->stripe_lock);
4588 
4589 	/*
4590 	 * BATCH_READY is cleared, no new stripes can be added.
4591 	 * batch_list can be accessed without lock
4592 	 */
4593 	return 0;
4594 }
4595 
4596 static void break_stripe_batch_list(struct stripe_head *head_sh,
4597 				    unsigned long handle_flags)
4598 {
4599 	struct stripe_head *sh, *next;
4600 	int i;
4601 	int do_wakeup = 0;
4602 
4603 	list_for_each_entry_safe(sh, next, &head_sh->batch_list, batch_list) {
4604 
4605 		list_del_init(&sh->batch_list);
4606 
4607 		WARN_ONCE(sh->state & ((1 << STRIPE_ACTIVE) |
4608 					  (1 << STRIPE_SYNCING) |
4609 					  (1 << STRIPE_REPLACED) |
4610 					  (1 << STRIPE_DELAYED) |
4611 					  (1 << STRIPE_BIT_DELAY) |
4612 					  (1 << STRIPE_FULL_WRITE) |
4613 					  (1 << STRIPE_BIOFILL_RUN) |
4614 					  (1 << STRIPE_COMPUTE_RUN)  |
4615 					  (1 << STRIPE_OPS_REQ_PENDING) |
4616 					  (1 << STRIPE_DISCARD) |
4617 					  (1 << STRIPE_BATCH_READY) |
4618 					  (1 << STRIPE_BATCH_ERR) |
4619 					  (1 << STRIPE_BITMAP_PENDING)),
4620 			"stripe state: %lx\n", sh->state);
4621 		WARN_ONCE(head_sh->state & ((1 << STRIPE_DISCARD) |
4622 					      (1 << STRIPE_REPLACED)),
4623 			"head stripe state: %lx\n", head_sh->state);
4624 
4625 		set_mask_bits(&sh->state, ~(STRIPE_EXPAND_SYNC_FLAGS |
4626 					    (1 << STRIPE_PREREAD_ACTIVE) |
4627 					    (1 << STRIPE_DEGRADED) |
4628 					    (1 << STRIPE_ON_UNPLUG_LIST)),
4629 			      head_sh->state & (1 << STRIPE_INSYNC));
4630 
4631 		sh->check_state = head_sh->check_state;
4632 		sh->reconstruct_state = head_sh->reconstruct_state;
4633 		spin_lock_irq(&sh->stripe_lock);
4634 		sh->batch_head = NULL;
4635 		spin_unlock_irq(&sh->stripe_lock);
4636 		for (i = 0; i < sh->disks; i++) {
4637 			if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
4638 				do_wakeup = 1;
4639 			sh->dev[i].flags = head_sh->dev[i].flags &
4640 				(~((1 << R5_WriteError) | (1 << R5_Overlap)));
4641 		}
4642 		if (handle_flags == 0 ||
4643 		    sh->state & handle_flags)
4644 			set_bit(STRIPE_HANDLE, &sh->state);
4645 		raid5_release_stripe(sh);
4646 	}
4647 	spin_lock_irq(&head_sh->stripe_lock);
4648 	head_sh->batch_head = NULL;
4649 	spin_unlock_irq(&head_sh->stripe_lock);
4650 	for (i = 0; i < head_sh->disks; i++)
4651 		if (test_and_clear_bit(R5_Overlap, &head_sh->dev[i].flags))
4652 			do_wakeup = 1;
4653 	if (head_sh->state & handle_flags)
4654 		set_bit(STRIPE_HANDLE, &head_sh->state);
4655 
4656 	if (do_wakeup)
4657 		wake_up(&head_sh->raid_conf->wait_for_overlap);
4658 }
4659 
4660 static void handle_stripe(struct stripe_head *sh)
4661 {
4662 	struct stripe_head_state s;
4663 	struct r5conf *conf = sh->raid_conf;
4664 	int i;
4665 	int prexor;
4666 	int disks = sh->disks;
4667 	struct r5dev *pdev, *qdev;
4668 
4669 	clear_bit(STRIPE_HANDLE, &sh->state);
4670 	if (test_and_set_bit_lock(STRIPE_ACTIVE, &sh->state)) {
4671 		/* already being handled, ensure it gets handled
4672 		 * again when current action finishes */
4673 		set_bit(STRIPE_HANDLE, &sh->state);
4674 		return;
4675 	}
4676 
4677 	if (clear_batch_ready(sh) ) {
4678 		clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
4679 		return;
4680 	}
4681 
4682 	if (test_and_clear_bit(STRIPE_BATCH_ERR, &sh->state))
4683 		break_stripe_batch_list(sh, 0);
4684 
4685 	if (test_bit(STRIPE_SYNC_REQUESTED, &sh->state) && !sh->batch_head) {
4686 		spin_lock(&sh->stripe_lock);
4687 		/*
4688 		 * Cannot process 'sync' concurrently with 'discard'.
4689 		 * Flush data in r5cache before 'sync'.
4690 		 */
4691 		if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
4692 		    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state) &&
4693 		    !test_bit(STRIPE_DISCARD, &sh->state) &&
4694 		    test_and_clear_bit(STRIPE_SYNC_REQUESTED, &sh->state)) {
4695 			set_bit(STRIPE_SYNCING, &sh->state);
4696 			clear_bit(STRIPE_INSYNC, &sh->state);
4697 			clear_bit(STRIPE_REPLACED, &sh->state);
4698 		}
4699 		spin_unlock(&sh->stripe_lock);
4700 	}
4701 	clear_bit(STRIPE_DELAYED, &sh->state);
4702 
4703 	pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
4704 		"pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
4705 	       (unsigned long long)sh->sector, sh->state,
4706 	       atomic_read(&sh->count), sh->pd_idx, sh->qd_idx,
4707 	       sh->check_state, sh->reconstruct_state);
4708 
4709 	analyse_stripe(sh, &s);
4710 
4711 	if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
4712 		goto finish;
4713 
4714 	if (s.handle_bad_blocks ||
4715 	    test_bit(MD_SB_CHANGE_PENDING, &conf->mddev->sb_flags)) {
4716 		set_bit(STRIPE_HANDLE, &sh->state);
4717 		goto finish;
4718 	}
4719 
4720 	if (unlikely(s.blocked_rdev)) {
4721 		if (s.syncing || s.expanding || s.expanded ||
4722 		    s.replacing || s.to_write || s.written) {
4723 			set_bit(STRIPE_HANDLE, &sh->state);
4724 			goto finish;
4725 		}
4726 		/* There is nothing for the blocked_rdev to block */
4727 		rdev_dec_pending(s.blocked_rdev, conf->mddev);
4728 		s.blocked_rdev = NULL;
4729 	}
4730 
4731 	if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
4732 		set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
4733 		set_bit(STRIPE_BIOFILL_RUN, &sh->state);
4734 	}
4735 
4736 	pr_debug("locked=%d uptodate=%d to_read=%d"
4737 	       " to_write=%d failed=%d failed_num=%d,%d\n",
4738 	       s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
4739 	       s.failed_num[0], s.failed_num[1]);
4740 	/*
4741 	 * check if the array has lost more than max_degraded devices and,
4742 	 * if so, some requests might need to be failed.
4743 	 *
4744 	 * When journal device failed (log_failed), we will only process
4745 	 * the stripe if there is data need write to raid disks
4746 	 */
4747 	if (s.failed > conf->max_degraded ||
4748 	    (s.log_failed && s.injournal == 0)) {
4749 		sh->check_state = 0;
4750 		sh->reconstruct_state = 0;
4751 		break_stripe_batch_list(sh, 0);
4752 		if (s.to_read+s.to_write+s.written)
4753 			handle_failed_stripe(conf, sh, &s, disks);
4754 		if (s.syncing + s.replacing)
4755 			handle_failed_sync(conf, sh, &s);
4756 	}
4757 
4758 	/* Now we check to see if any write operations have recently
4759 	 * completed
4760 	 */
4761 	prexor = 0;
4762 	if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
4763 		prexor = 1;
4764 	if (sh->reconstruct_state == reconstruct_state_drain_result ||
4765 	    sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
4766 		sh->reconstruct_state = reconstruct_state_idle;
4767 
4768 		/* All the 'written' buffers and the parity block are ready to
4769 		 * be written back to disk
4770 		 */
4771 		BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags) &&
4772 		       !test_bit(R5_Discard, &sh->dev[sh->pd_idx].flags));
4773 		BUG_ON(sh->qd_idx >= 0 &&
4774 		       !test_bit(R5_UPTODATE, &sh->dev[sh->qd_idx].flags) &&
4775 		       !test_bit(R5_Discard, &sh->dev[sh->qd_idx].flags));
4776 		for (i = disks; i--; ) {
4777 			struct r5dev *dev = &sh->dev[i];
4778 			if (test_bit(R5_LOCKED, &dev->flags) &&
4779 				(i == sh->pd_idx || i == sh->qd_idx ||
4780 				 dev->written || test_bit(R5_InJournal,
4781 							  &dev->flags))) {
4782 				pr_debug("Writing block %d\n", i);
4783 				set_bit(R5_Wantwrite, &dev->flags);
4784 				if (prexor)
4785 					continue;
4786 				if (s.failed > 1)
4787 					continue;
4788 				if (!test_bit(R5_Insync, &dev->flags) ||
4789 				    ((i == sh->pd_idx || i == sh->qd_idx)  &&
4790 				     s.failed == 0))
4791 					set_bit(STRIPE_INSYNC, &sh->state);
4792 			}
4793 		}
4794 		if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4795 			s.dec_preread_active = 1;
4796 	}
4797 
4798 	/*
4799 	 * might be able to return some write requests if the parity blocks
4800 	 * are safe, or on a failed drive
4801 	 */
4802 	pdev = &sh->dev[sh->pd_idx];
4803 	s.p_failed = (s.failed >= 1 && s.failed_num[0] == sh->pd_idx)
4804 		|| (s.failed >= 2 && s.failed_num[1] == sh->pd_idx);
4805 	qdev = &sh->dev[sh->qd_idx];
4806 	s.q_failed = (s.failed >= 1 && s.failed_num[0] == sh->qd_idx)
4807 		|| (s.failed >= 2 && s.failed_num[1] == sh->qd_idx)
4808 		|| conf->level < 6;
4809 
4810 	if (s.written &&
4811 	    (s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
4812 			     && !test_bit(R5_LOCKED, &pdev->flags)
4813 			     && (test_bit(R5_UPTODATE, &pdev->flags) ||
4814 				 test_bit(R5_Discard, &pdev->flags))))) &&
4815 	    (s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
4816 			     && !test_bit(R5_LOCKED, &qdev->flags)
4817 			     && (test_bit(R5_UPTODATE, &qdev->flags) ||
4818 				 test_bit(R5_Discard, &qdev->flags))))))
4819 		handle_stripe_clean_event(conf, sh, disks);
4820 
4821 	if (s.just_cached)
4822 		r5c_handle_cached_data_endio(conf, sh, disks);
4823 	log_stripe_write_finished(sh);
4824 
4825 	/* Now we might consider reading some blocks, either to check/generate
4826 	 * parity, or to satisfy requests
4827 	 * or to load a block that is being partially written.
4828 	 */
4829 	if (s.to_read || s.non_overwrite
4830 	    || (conf->level == 6 && s.to_write && s.failed)
4831 	    || (s.syncing && (s.uptodate + s.compute < disks))
4832 	    || s.replacing
4833 	    || s.expanding)
4834 		handle_stripe_fill(sh, &s, disks);
4835 
4836 	/*
4837 	 * When the stripe finishes full journal write cycle (write to journal
4838 	 * and raid disk), this is the clean up procedure so it is ready for
4839 	 * next operation.
4840 	 */
4841 	r5c_finish_stripe_write_out(conf, sh, &s);
4842 
4843 	/*
4844 	 * Now to consider new write requests, cache write back and what else,
4845 	 * if anything should be read.  We do not handle new writes when:
4846 	 * 1/ A 'write' operation (copy+xor) is already in flight.
4847 	 * 2/ A 'check' operation is in flight, as it may clobber the parity
4848 	 *    block.
4849 	 * 3/ A r5c cache log write is in flight.
4850 	 */
4851 
4852 	if (!sh->reconstruct_state && !sh->check_state && !sh->log_io) {
4853 		if (!r5c_is_writeback(conf->log)) {
4854 			if (s.to_write)
4855 				handle_stripe_dirtying(conf, sh, &s, disks);
4856 		} else { /* write back cache */
4857 			int ret = 0;
4858 
4859 			/* First, try handle writes in caching phase */
4860 			if (s.to_write)
4861 				ret = r5c_try_caching_write(conf, sh, &s,
4862 							    disks);
4863 			/*
4864 			 * If caching phase failed: ret == -EAGAIN
4865 			 *    OR
4866 			 * stripe under reclaim: !caching && injournal
4867 			 *
4868 			 * fall back to handle_stripe_dirtying()
4869 			 */
4870 			if (ret == -EAGAIN ||
4871 			    /* stripe under reclaim: !caching && injournal */
4872 			    (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
4873 			     s.injournal > 0)) {
4874 				ret = handle_stripe_dirtying(conf, sh, &s,
4875 							     disks);
4876 				if (ret == -EAGAIN)
4877 					goto finish;
4878 			}
4879 		}
4880 	}
4881 
4882 	/* maybe we need to check and possibly fix the parity for this stripe
4883 	 * Any reads will already have been scheduled, so we just see if enough
4884 	 * data is available.  The parity check is held off while parity
4885 	 * dependent operations are in flight.
4886 	 */
4887 	if (sh->check_state ||
4888 	    (s.syncing && s.locked == 0 &&
4889 	     !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4890 	     !test_bit(STRIPE_INSYNC, &sh->state))) {
4891 		if (conf->level == 6)
4892 			handle_parity_checks6(conf, sh, &s, disks);
4893 		else
4894 			handle_parity_checks5(conf, sh, &s, disks);
4895 	}
4896 
4897 	if ((s.replacing || s.syncing) && s.locked == 0
4898 	    && !test_bit(STRIPE_COMPUTE_RUN, &sh->state)
4899 	    && !test_bit(STRIPE_REPLACED, &sh->state)) {
4900 		/* Write out to replacement devices where possible */
4901 		for (i = 0; i < conf->raid_disks; i++)
4902 			if (test_bit(R5_NeedReplace, &sh->dev[i].flags)) {
4903 				WARN_ON(!test_bit(R5_UPTODATE, &sh->dev[i].flags));
4904 				set_bit(R5_WantReplace, &sh->dev[i].flags);
4905 				set_bit(R5_LOCKED, &sh->dev[i].flags);
4906 				s.locked++;
4907 			}
4908 		if (s.replacing)
4909 			set_bit(STRIPE_INSYNC, &sh->state);
4910 		set_bit(STRIPE_REPLACED, &sh->state);
4911 	}
4912 	if ((s.syncing || s.replacing) && s.locked == 0 &&
4913 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
4914 	    test_bit(STRIPE_INSYNC, &sh->state)) {
4915 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4916 		clear_bit(STRIPE_SYNCING, &sh->state);
4917 		if (test_and_clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags))
4918 			wake_up(&conf->wait_for_overlap);
4919 	}
4920 
4921 	/* If the failed drives are just a ReadError, then we might need
4922 	 * to progress the repair/check process
4923 	 */
4924 	if (s.failed <= conf->max_degraded && !conf->mddev->ro)
4925 		for (i = 0; i < s.failed; i++) {
4926 			struct r5dev *dev = &sh->dev[s.failed_num[i]];
4927 			if (test_bit(R5_ReadError, &dev->flags)
4928 			    && !test_bit(R5_LOCKED, &dev->flags)
4929 			    && test_bit(R5_UPTODATE, &dev->flags)
4930 				) {
4931 				if (!test_bit(R5_ReWrite, &dev->flags)) {
4932 					set_bit(R5_Wantwrite, &dev->flags);
4933 					set_bit(R5_ReWrite, &dev->flags);
4934 					set_bit(R5_LOCKED, &dev->flags);
4935 					s.locked++;
4936 				} else {
4937 					/* let's read it back */
4938 					set_bit(R5_Wantread, &dev->flags);
4939 					set_bit(R5_LOCKED, &dev->flags);
4940 					s.locked++;
4941 				}
4942 			}
4943 		}
4944 
4945 	/* Finish reconstruct operations initiated by the expansion process */
4946 	if (sh->reconstruct_state == reconstruct_state_result) {
4947 		struct stripe_head *sh_src
4948 			= raid5_get_active_stripe(conf, sh->sector, 1, 1, 1);
4949 		if (sh_src && test_bit(STRIPE_EXPAND_SOURCE, &sh_src->state)) {
4950 			/* sh cannot be written until sh_src has been read.
4951 			 * so arrange for sh to be delayed a little
4952 			 */
4953 			set_bit(STRIPE_DELAYED, &sh->state);
4954 			set_bit(STRIPE_HANDLE, &sh->state);
4955 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
4956 					      &sh_src->state))
4957 				atomic_inc(&conf->preread_active_stripes);
4958 			raid5_release_stripe(sh_src);
4959 			goto finish;
4960 		}
4961 		if (sh_src)
4962 			raid5_release_stripe(sh_src);
4963 
4964 		sh->reconstruct_state = reconstruct_state_idle;
4965 		clear_bit(STRIPE_EXPANDING, &sh->state);
4966 		for (i = conf->raid_disks; i--; ) {
4967 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
4968 			set_bit(R5_LOCKED, &sh->dev[i].flags);
4969 			s.locked++;
4970 		}
4971 	}
4972 
4973 	if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
4974 	    !sh->reconstruct_state) {
4975 		/* Need to write out all blocks after computing parity */
4976 		sh->disks = conf->raid_disks;
4977 		stripe_set_idx(sh->sector, conf, 0, sh);
4978 		schedule_reconstruction(sh, &s, 1, 1);
4979 	} else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
4980 		clear_bit(STRIPE_EXPAND_READY, &sh->state);
4981 		atomic_dec(&conf->reshape_stripes);
4982 		wake_up(&conf->wait_for_overlap);
4983 		md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
4984 	}
4985 
4986 	if (s.expanding && s.locked == 0 &&
4987 	    !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
4988 		handle_stripe_expansion(conf, sh);
4989 
4990 finish:
4991 	/* wait for this device to become unblocked */
4992 	if (unlikely(s.blocked_rdev)) {
4993 		if (conf->mddev->external)
4994 			md_wait_for_blocked_rdev(s.blocked_rdev,
4995 						 conf->mddev);
4996 		else
4997 			/* Internal metadata will immediately
4998 			 * be written by raid5d, so we don't
4999 			 * need to wait here.
5000 			 */
5001 			rdev_dec_pending(s.blocked_rdev,
5002 					 conf->mddev);
5003 	}
5004 
5005 	if (s.handle_bad_blocks)
5006 		for (i = disks; i--; ) {
5007 			struct md_rdev *rdev;
5008 			struct r5dev *dev = &sh->dev[i];
5009 			if (test_and_clear_bit(R5_WriteError, &dev->flags)) {
5010 				/* We own a safe reference to the rdev */
5011 				rdev = conf->disks[i].rdev;
5012 				if (!rdev_set_badblocks(rdev, sh->sector,
5013 							STRIPE_SECTORS, 0))
5014 					md_error(conf->mddev, rdev);
5015 				rdev_dec_pending(rdev, conf->mddev);
5016 			}
5017 			if (test_and_clear_bit(R5_MadeGood, &dev->flags)) {
5018 				rdev = conf->disks[i].rdev;
5019 				rdev_clear_badblocks(rdev, sh->sector,
5020 						     STRIPE_SECTORS, 0);
5021 				rdev_dec_pending(rdev, conf->mddev);
5022 			}
5023 			if (test_and_clear_bit(R5_MadeGoodRepl, &dev->flags)) {
5024 				rdev = conf->disks[i].replacement;
5025 				if (!rdev)
5026 					/* rdev have been moved down */
5027 					rdev = conf->disks[i].rdev;
5028 				rdev_clear_badblocks(rdev, sh->sector,
5029 						     STRIPE_SECTORS, 0);
5030 				rdev_dec_pending(rdev, conf->mddev);
5031 			}
5032 		}
5033 
5034 	if (s.ops_request)
5035 		raid_run_ops(sh, s.ops_request);
5036 
5037 	ops_run_io(sh, &s);
5038 
5039 	if (s.dec_preread_active) {
5040 		/* We delay this until after ops_run_io so that if make_request
5041 		 * is waiting on a flush, it won't continue until the writes
5042 		 * have actually been submitted.
5043 		 */
5044 		atomic_dec(&conf->preread_active_stripes);
5045 		if (atomic_read(&conf->preread_active_stripes) <
5046 		    IO_THRESHOLD)
5047 			md_wakeup_thread(conf->mddev->thread);
5048 	}
5049 
5050 	clear_bit_unlock(STRIPE_ACTIVE, &sh->state);
5051 }
5052 
5053 static void raid5_activate_delayed(struct r5conf *conf)
5054 {
5055 	if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
5056 		while (!list_empty(&conf->delayed_list)) {
5057 			struct list_head *l = conf->delayed_list.next;
5058 			struct stripe_head *sh;
5059 			sh = list_entry(l, struct stripe_head, lru);
5060 			list_del_init(l);
5061 			clear_bit(STRIPE_DELAYED, &sh->state);
5062 			if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5063 				atomic_inc(&conf->preread_active_stripes);
5064 			list_add_tail(&sh->lru, &conf->hold_list);
5065 			raid5_wakeup_stripe_thread(sh);
5066 		}
5067 	}
5068 }
5069 
5070 static void activate_bit_delay(struct r5conf *conf,
5071 	struct list_head *temp_inactive_list)
5072 {
5073 	/* device_lock is held */
5074 	struct list_head head;
5075 	list_add(&head, &conf->bitmap_list);
5076 	list_del_init(&conf->bitmap_list);
5077 	while (!list_empty(&head)) {
5078 		struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
5079 		int hash;
5080 		list_del_init(&sh->lru);
5081 		atomic_inc(&sh->count);
5082 		hash = sh->hash_lock_index;
5083 		__release_stripe(conf, sh, &temp_inactive_list[hash]);
5084 	}
5085 }
5086 
5087 static int raid5_congested(struct mddev *mddev, int bits)
5088 {
5089 	struct r5conf *conf = mddev->private;
5090 
5091 	/* No difference between reads and writes.  Just check
5092 	 * how busy the stripe_cache is
5093 	 */
5094 
5095 	if (test_bit(R5_INACTIVE_BLOCKED, &conf->cache_state))
5096 		return 1;
5097 
5098 	/* Also checks whether there is pressure on r5cache log space */
5099 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state))
5100 		return 1;
5101 	if (conf->quiesce)
5102 		return 1;
5103 	if (atomic_read(&conf->empty_inactive_list_nr))
5104 		return 1;
5105 
5106 	return 0;
5107 }
5108 
5109 static int in_chunk_boundary(struct mddev *mddev, struct bio *bio)
5110 {
5111 	struct r5conf *conf = mddev->private;
5112 	sector_t sector = bio->bi_iter.bi_sector;
5113 	unsigned int chunk_sectors;
5114 	unsigned int bio_sectors = bio_sectors(bio);
5115 
5116 	WARN_ON_ONCE(bio->bi_partno);
5117 
5118 	chunk_sectors = min(conf->chunk_sectors, conf->prev_chunk_sectors);
5119 	return  chunk_sectors >=
5120 		((sector & (chunk_sectors - 1)) + bio_sectors);
5121 }
5122 
5123 /*
5124  *  add bio to the retry LIFO  ( in O(1) ... we are in interrupt )
5125  *  later sampled by raid5d.
5126  */
5127 static void add_bio_to_retry(struct bio *bi,struct r5conf *conf)
5128 {
5129 	unsigned long flags;
5130 
5131 	spin_lock_irqsave(&conf->device_lock, flags);
5132 
5133 	bi->bi_next = conf->retry_read_aligned_list;
5134 	conf->retry_read_aligned_list = bi;
5135 
5136 	spin_unlock_irqrestore(&conf->device_lock, flags);
5137 	md_wakeup_thread(conf->mddev->thread);
5138 }
5139 
5140 static struct bio *remove_bio_from_retry(struct r5conf *conf,
5141 					 unsigned int *offset)
5142 {
5143 	struct bio *bi;
5144 
5145 	bi = conf->retry_read_aligned;
5146 	if (bi) {
5147 		*offset = conf->retry_read_offset;
5148 		conf->retry_read_aligned = NULL;
5149 		return bi;
5150 	}
5151 	bi = conf->retry_read_aligned_list;
5152 	if(bi) {
5153 		conf->retry_read_aligned_list = bi->bi_next;
5154 		bi->bi_next = NULL;
5155 		*offset = 0;
5156 	}
5157 
5158 	return bi;
5159 }
5160 
5161 /*
5162  *  The "raid5_align_endio" should check if the read succeeded and if it
5163  *  did, call bio_endio on the original bio (having bio_put the new bio
5164  *  first).
5165  *  If the read failed..
5166  */
5167 static void raid5_align_endio(struct bio *bi)
5168 {
5169 	struct bio* raid_bi  = bi->bi_private;
5170 	struct mddev *mddev;
5171 	struct r5conf *conf;
5172 	struct md_rdev *rdev;
5173 	blk_status_t error = bi->bi_status;
5174 
5175 	bio_put(bi);
5176 
5177 	rdev = (void*)raid_bi->bi_next;
5178 	raid_bi->bi_next = NULL;
5179 	mddev = rdev->mddev;
5180 	conf = mddev->private;
5181 
5182 	rdev_dec_pending(rdev, conf->mddev);
5183 
5184 	if (!error) {
5185 		bio_endio(raid_bi);
5186 		if (atomic_dec_and_test(&conf->active_aligned_reads))
5187 			wake_up(&conf->wait_for_quiescent);
5188 		return;
5189 	}
5190 
5191 	pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
5192 
5193 	add_bio_to_retry(raid_bi, conf);
5194 }
5195 
5196 static int raid5_read_one_chunk(struct mddev *mddev, struct bio *raid_bio)
5197 {
5198 	struct r5conf *conf = mddev->private;
5199 	int dd_idx;
5200 	struct bio* align_bi;
5201 	struct md_rdev *rdev;
5202 	sector_t end_sector;
5203 
5204 	if (!in_chunk_boundary(mddev, raid_bio)) {
5205 		pr_debug("%s: non aligned\n", __func__);
5206 		return 0;
5207 	}
5208 	/*
5209 	 * use bio_clone_fast to make a copy of the bio
5210 	 */
5211 	align_bi = bio_clone_fast(raid_bio, GFP_NOIO, &mddev->bio_set);
5212 	if (!align_bi)
5213 		return 0;
5214 	/*
5215 	 *   set bi_end_io to a new function, and set bi_private to the
5216 	 *     original bio.
5217 	 */
5218 	align_bi->bi_end_io  = raid5_align_endio;
5219 	align_bi->bi_private = raid_bio;
5220 	/*
5221 	 *	compute position
5222 	 */
5223 	align_bi->bi_iter.bi_sector =
5224 		raid5_compute_sector(conf, raid_bio->bi_iter.bi_sector,
5225 				     0, &dd_idx, NULL);
5226 
5227 	end_sector = bio_end_sector(align_bi);
5228 	rcu_read_lock();
5229 	rdev = rcu_dereference(conf->disks[dd_idx].replacement);
5230 	if (!rdev || test_bit(Faulty, &rdev->flags) ||
5231 	    rdev->recovery_offset < end_sector) {
5232 		rdev = rcu_dereference(conf->disks[dd_idx].rdev);
5233 		if (rdev &&
5234 		    (test_bit(Faulty, &rdev->flags) ||
5235 		    !(test_bit(In_sync, &rdev->flags) ||
5236 		      rdev->recovery_offset >= end_sector)))
5237 			rdev = NULL;
5238 	}
5239 
5240 	if (r5c_big_stripe_cached(conf, align_bi->bi_iter.bi_sector)) {
5241 		rcu_read_unlock();
5242 		bio_put(align_bi);
5243 		return 0;
5244 	}
5245 
5246 	if (rdev) {
5247 		sector_t first_bad;
5248 		int bad_sectors;
5249 
5250 		atomic_inc(&rdev->nr_pending);
5251 		rcu_read_unlock();
5252 		raid_bio->bi_next = (void*)rdev;
5253 		bio_set_dev(align_bi, rdev->bdev);
5254 		bio_clear_flag(align_bi, BIO_SEG_VALID);
5255 
5256 		if (is_badblock(rdev, align_bi->bi_iter.bi_sector,
5257 				bio_sectors(align_bi),
5258 				&first_bad, &bad_sectors)) {
5259 			bio_put(align_bi);
5260 			rdev_dec_pending(rdev, mddev);
5261 			return 0;
5262 		}
5263 
5264 		/* No reshape active, so we can trust rdev->data_offset */
5265 		align_bi->bi_iter.bi_sector += rdev->data_offset;
5266 
5267 		spin_lock_irq(&conf->device_lock);
5268 		wait_event_lock_irq(conf->wait_for_quiescent,
5269 				    conf->quiesce == 0,
5270 				    conf->device_lock);
5271 		atomic_inc(&conf->active_aligned_reads);
5272 		spin_unlock_irq(&conf->device_lock);
5273 
5274 		if (mddev->gendisk)
5275 			trace_block_bio_remap(align_bi->bi_disk->queue,
5276 					      align_bi, disk_devt(mddev->gendisk),
5277 					      raid_bio->bi_iter.bi_sector);
5278 		generic_make_request(align_bi);
5279 		return 1;
5280 	} else {
5281 		rcu_read_unlock();
5282 		bio_put(align_bi);
5283 		return 0;
5284 	}
5285 }
5286 
5287 static struct bio *chunk_aligned_read(struct mddev *mddev, struct bio *raid_bio)
5288 {
5289 	struct bio *split;
5290 	sector_t sector = raid_bio->bi_iter.bi_sector;
5291 	unsigned chunk_sects = mddev->chunk_sectors;
5292 	unsigned sectors = chunk_sects - (sector & (chunk_sects-1));
5293 
5294 	if (sectors < bio_sectors(raid_bio)) {
5295 		struct r5conf *conf = mddev->private;
5296 		split = bio_split(raid_bio, sectors, GFP_NOIO, &conf->bio_split);
5297 		bio_chain(split, raid_bio);
5298 		generic_make_request(raid_bio);
5299 		raid_bio = split;
5300 	}
5301 
5302 	if (!raid5_read_one_chunk(mddev, raid_bio))
5303 		return raid_bio;
5304 
5305 	return NULL;
5306 }
5307 
5308 /* __get_priority_stripe - get the next stripe to process
5309  *
5310  * Full stripe writes are allowed to pass preread active stripes up until
5311  * the bypass_threshold is exceeded.  In general the bypass_count
5312  * increments when the handle_list is handled before the hold_list; however, it
5313  * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
5314  * stripe with in flight i/o.  The bypass_count will be reset when the
5315  * head of the hold_list has changed, i.e. the head was promoted to the
5316  * handle_list.
5317  */
5318 static struct stripe_head *__get_priority_stripe(struct r5conf *conf, int group)
5319 {
5320 	struct stripe_head *sh, *tmp;
5321 	struct list_head *handle_list = NULL;
5322 	struct r5worker_group *wg;
5323 	bool second_try = !r5c_is_writeback(conf->log) &&
5324 		!r5l_log_disk_error(conf);
5325 	bool try_loprio = test_bit(R5C_LOG_TIGHT, &conf->cache_state) ||
5326 		r5l_log_disk_error(conf);
5327 
5328 again:
5329 	wg = NULL;
5330 	sh = NULL;
5331 	if (conf->worker_cnt_per_group == 0) {
5332 		handle_list = try_loprio ? &conf->loprio_list :
5333 					&conf->handle_list;
5334 	} else if (group != ANY_GROUP) {
5335 		handle_list = try_loprio ? &conf->worker_groups[group].loprio_list :
5336 				&conf->worker_groups[group].handle_list;
5337 		wg = &conf->worker_groups[group];
5338 	} else {
5339 		int i;
5340 		for (i = 0; i < conf->group_cnt; i++) {
5341 			handle_list = try_loprio ? &conf->worker_groups[i].loprio_list :
5342 				&conf->worker_groups[i].handle_list;
5343 			wg = &conf->worker_groups[i];
5344 			if (!list_empty(handle_list))
5345 				break;
5346 		}
5347 	}
5348 
5349 	pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
5350 		  __func__,
5351 		  list_empty(handle_list) ? "empty" : "busy",
5352 		  list_empty(&conf->hold_list) ? "empty" : "busy",
5353 		  atomic_read(&conf->pending_full_writes), conf->bypass_count);
5354 
5355 	if (!list_empty(handle_list)) {
5356 		sh = list_entry(handle_list->next, typeof(*sh), lru);
5357 
5358 		if (list_empty(&conf->hold_list))
5359 			conf->bypass_count = 0;
5360 		else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
5361 			if (conf->hold_list.next == conf->last_hold)
5362 				conf->bypass_count++;
5363 			else {
5364 				conf->last_hold = conf->hold_list.next;
5365 				conf->bypass_count -= conf->bypass_threshold;
5366 				if (conf->bypass_count < 0)
5367 					conf->bypass_count = 0;
5368 			}
5369 		}
5370 	} else if (!list_empty(&conf->hold_list) &&
5371 		   ((conf->bypass_threshold &&
5372 		     conf->bypass_count > conf->bypass_threshold) ||
5373 		    atomic_read(&conf->pending_full_writes) == 0)) {
5374 
5375 		list_for_each_entry(tmp, &conf->hold_list,  lru) {
5376 			if (conf->worker_cnt_per_group == 0 ||
5377 			    group == ANY_GROUP ||
5378 			    !cpu_online(tmp->cpu) ||
5379 			    cpu_to_group(tmp->cpu) == group) {
5380 				sh = tmp;
5381 				break;
5382 			}
5383 		}
5384 
5385 		if (sh) {
5386 			conf->bypass_count -= conf->bypass_threshold;
5387 			if (conf->bypass_count < 0)
5388 				conf->bypass_count = 0;
5389 		}
5390 		wg = NULL;
5391 	}
5392 
5393 	if (!sh) {
5394 		if (second_try)
5395 			return NULL;
5396 		second_try = true;
5397 		try_loprio = !try_loprio;
5398 		goto again;
5399 	}
5400 
5401 	if (wg) {
5402 		wg->stripes_cnt--;
5403 		sh->group = NULL;
5404 	}
5405 	list_del_init(&sh->lru);
5406 	BUG_ON(atomic_inc_return(&sh->count) != 1);
5407 	return sh;
5408 }
5409 
5410 struct raid5_plug_cb {
5411 	struct blk_plug_cb	cb;
5412 	struct list_head	list;
5413 	struct list_head	temp_inactive_list[NR_STRIPE_HASH_LOCKS];
5414 };
5415 
5416 static void raid5_unplug(struct blk_plug_cb *blk_cb, bool from_schedule)
5417 {
5418 	struct raid5_plug_cb *cb = container_of(
5419 		blk_cb, struct raid5_plug_cb, cb);
5420 	struct stripe_head *sh;
5421 	struct mddev *mddev = cb->cb.data;
5422 	struct r5conf *conf = mddev->private;
5423 	int cnt = 0;
5424 	int hash;
5425 
5426 	if (cb->list.next && !list_empty(&cb->list)) {
5427 		spin_lock_irq(&conf->device_lock);
5428 		while (!list_empty(&cb->list)) {
5429 			sh = list_first_entry(&cb->list, struct stripe_head, lru);
5430 			list_del_init(&sh->lru);
5431 			/*
5432 			 * avoid race release_stripe_plug() sees
5433 			 * STRIPE_ON_UNPLUG_LIST clear but the stripe
5434 			 * is still in our list
5435 			 */
5436 			smp_mb__before_atomic();
5437 			clear_bit(STRIPE_ON_UNPLUG_LIST, &sh->state);
5438 			/*
5439 			 * STRIPE_ON_RELEASE_LIST could be set here. In that
5440 			 * case, the count is always > 1 here
5441 			 */
5442 			hash = sh->hash_lock_index;
5443 			__release_stripe(conf, sh, &cb->temp_inactive_list[hash]);
5444 			cnt++;
5445 		}
5446 		spin_unlock_irq(&conf->device_lock);
5447 	}
5448 	release_inactive_stripe_list(conf, cb->temp_inactive_list,
5449 				     NR_STRIPE_HASH_LOCKS);
5450 	if (mddev->queue)
5451 		trace_block_unplug(mddev->queue, cnt, !from_schedule);
5452 	kfree(cb);
5453 }
5454 
5455 static void release_stripe_plug(struct mddev *mddev,
5456 				struct stripe_head *sh)
5457 {
5458 	struct blk_plug_cb *blk_cb = blk_check_plugged(
5459 		raid5_unplug, mddev,
5460 		sizeof(struct raid5_plug_cb));
5461 	struct raid5_plug_cb *cb;
5462 
5463 	if (!blk_cb) {
5464 		raid5_release_stripe(sh);
5465 		return;
5466 	}
5467 
5468 	cb = container_of(blk_cb, struct raid5_plug_cb, cb);
5469 
5470 	if (cb->list.next == NULL) {
5471 		int i;
5472 		INIT_LIST_HEAD(&cb->list);
5473 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
5474 			INIT_LIST_HEAD(cb->temp_inactive_list + i);
5475 	}
5476 
5477 	if (!test_and_set_bit(STRIPE_ON_UNPLUG_LIST, &sh->state))
5478 		list_add_tail(&sh->lru, &cb->list);
5479 	else
5480 		raid5_release_stripe(sh);
5481 }
5482 
5483 static void make_discard_request(struct mddev *mddev, struct bio *bi)
5484 {
5485 	struct r5conf *conf = mddev->private;
5486 	sector_t logical_sector, last_sector;
5487 	struct stripe_head *sh;
5488 	int stripe_sectors;
5489 
5490 	if (mddev->reshape_position != MaxSector)
5491 		/* Skip discard while reshape is happening */
5492 		return;
5493 
5494 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5495 	last_sector = bi->bi_iter.bi_sector + (bi->bi_iter.bi_size>>9);
5496 
5497 	bi->bi_next = NULL;
5498 
5499 	stripe_sectors = conf->chunk_sectors *
5500 		(conf->raid_disks - conf->max_degraded);
5501 	logical_sector = DIV_ROUND_UP_SECTOR_T(logical_sector,
5502 					       stripe_sectors);
5503 	sector_div(last_sector, stripe_sectors);
5504 
5505 	logical_sector *= conf->chunk_sectors;
5506 	last_sector *= conf->chunk_sectors;
5507 
5508 	for (; logical_sector < last_sector;
5509 	     logical_sector += STRIPE_SECTORS) {
5510 		DEFINE_WAIT(w);
5511 		int d;
5512 	again:
5513 		sh = raid5_get_active_stripe(conf, logical_sector, 0, 0, 0);
5514 		prepare_to_wait(&conf->wait_for_overlap, &w,
5515 				TASK_UNINTERRUPTIBLE);
5516 		set_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5517 		if (test_bit(STRIPE_SYNCING, &sh->state)) {
5518 			raid5_release_stripe(sh);
5519 			schedule();
5520 			goto again;
5521 		}
5522 		clear_bit(R5_Overlap, &sh->dev[sh->pd_idx].flags);
5523 		spin_lock_irq(&sh->stripe_lock);
5524 		for (d = 0; d < conf->raid_disks; d++) {
5525 			if (d == sh->pd_idx || d == sh->qd_idx)
5526 				continue;
5527 			if (sh->dev[d].towrite || sh->dev[d].toread) {
5528 				set_bit(R5_Overlap, &sh->dev[d].flags);
5529 				spin_unlock_irq(&sh->stripe_lock);
5530 				raid5_release_stripe(sh);
5531 				schedule();
5532 				goto again;
5533 			}
5534 		}
5535 		set_bit(STRIPE_DISCARD, &sh->state);
5536 		finish_wait(&conf->wait_for_overlap, &w);
5537 		sh->overwrite_disks = 0;
5538 		for (d = 0; d < conf->raid_disks; d++) {
5539 			if (d == sh->pd_idx || d == sh->qd_idx)
5540 				continue;
5541 			sh->dev[d].towrite = bi;
5542 			set_bit(R5_OVERWRITE, &sh->dev[d].flags);
5543 			bio_inc_remaining(bi);
5544 			md_write_inc(mddev, bi);
5545 			sh->overwrite_disks++;
5546 		}
5547 		spin_unlock_irq(&sh->stripe_lock);
5548 		if (conf->mddev->bitmap) {
5549 			for (d = 0;
5550 			     d < conf->raid_disks - conf->max_degraded;
5551 			     d++)
5552 				md_bitmap_startwrite(mddev->bitmap,
5553 						     sh->sector,
5554 						     STRIPE_SECTORS,
5555 						     0);
5556 			sh->bm_seq = conf->seq_flush + 1;
5557 			set_bit(STRIPE_BIT_DELAY, &sh->state);
5558 		}
5559 
5560 		set_bit(STRIPE_HANDLE, &sh->state);
5561 		clear_bit(STRIPE_DELAYED, &sh->state);
5562 		if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5563 			atomic_inc(&conf->preread_active_stripes);
5564 		release_stripe_plug(mddev, sh);
5565 	}
5566 
5567 	bio_endio(bi);
5568 }
5569 
5570 static bool raid5_make_request(struct mddev *mddev, struct bio * bi)
5571 {
5572 	struct r5conf *conf = mddev->private;
5573 	int dd_idx;
5574 	sector_t new_sector;
5575 	sector_t logical_sector, last_sector;
5576 	struct stripe_head *sh;
5577 	const int rw = bio_data_dir(bi);
5578 	DEFINE_WAIT(w);
5579 	bool do_prepare;
5580 	bool do_flush = false;
5581 
5582 	if (unlikely(bi->bi_opf & REQ_PREFLUSH)) {
5583 		int ret = log_handle_flush_request(conf, bi);
5584 
5585 		if (ret == 0)
5586 			return true;
5587 		if (ret == -ENODEV) {
5588 			md_flush_request(mddev, bi);
5589 			return true;
5590 		}
5591 		/* ret == -EAGAIN, fallback */
5592 		/*
5593 		 * if r5l_handle_flush_request() didn't clear REQ_PREFLUSH,
5594 		 * we need to flush journal device
5595 		 */
5596 		do_flush = bi->bi_opf & REQ_PREFLUSH;
5597 	}
5598 
5599 	if (!md_write_start(mddev, bi))
5600 		return false;
5601 	/*
5602 	 * If array is degraded, better not do chunk aligned read because
5603 	 * later we might have to read it again in order to reconstruct
5604 	 * data on failed drives.
5605 	 */
5606 	if (rw == READ && mddev->degraded == 0 &&
5607 	    mddev->reshape_position == MaxSector) {
5608 		bi = chunk_aligned_read(mddev, bi);
5609 		if (!bi)
5610 			return true;
5611 	}
5612 
5613 	if (unlikely(bio_op(bi) == REQ_OP_DISCARD)) {
5614 		make_discard_request(mddev, bi);
5615 		md_write_end(mddev);
5616 		return true;
5617 	}
5618 
5619 	logical_sector = bi->bi_iter.bi_sector & ~((sector_t)STRIPE_SECTORS-1);
5620 	last_sector = bio_end_sector(bi);
5621 	bi->bi_next = NULL;
5622 
5623 	prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
5624 	for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
5625 		int previous;
5626 		int seq;
5627 
5628 		do_prepare = false;
5629 	retry:
5630 		seq = read_seqcount_begin(&conf->gen_lock);
5631 		previous = 0;
5632 		if (do_prepare)
5633 			prepare_to_wait(&conf->wait_for_overlap, &w,
5634 				TASK_UNINTERRUPTIBLE);
5635 		if (unlikely(conf->reshape_progress != MaxSector)) {
5636 			/* spinlock is needed as reshape_progress may be
5637 			 * 64bit on a 32bit platform, and so it might be
5638 			 * possible to see a half-updated value
5639 			 * Of course reshape_progress could change after
5640 			 * the lock is dropped, so once we get a reference
5641 			 * to the stripe that we think it is, we will have
5642 			 * to check again.
5643 			 */
5644 			spin_lock_irq(&conf->device_lock);
5645 			if (mddev->reshape_backwards
5646 			    ? logical_sector < conf->reshape_progress
5647 			    : logical_sector >= conf->reshape_progress) {
5648 				previous = 1;
5649 			} else {
5650 				if (mddev->reshape_backwards
5651 				    ? logical_sector < conf->reshape_safe
5652 				    : logical_sector >= conf->reshape_safe) {
5653 					spin_unlock_irq(&conf->device_lock);
5654 					schedule();
5655 					do_prepare = true;
5656 					goto retry;
5657 				}
5658 			}
5659 			spin_unlock_irq(&conf->device_lock);
5660 		}
5661 
5662 		new_sector = raid5_compute_sector(conf, logical_sector,
5663 						  previous,
5664 						  &dd_idx, NULL);
5665 		pr_debug("raid456: raid5_make_request, sector %llu logical %llu\n",
5666 			(unsigned long long)new_sector,
5667 			(unsigned long long)logical_sector);
5668 
5669 		sh = raid5_get_active_stripe(conf, new_sector, previous,
5670 				       (bi->bi_opf & REQ_RAHEAD), 0);
5671 		if (sh) {
5672 			if (unlikely(previous)) {
5673 				/* expansion might have moved on while waiting for a
5674 				 * stripe, so we must do the range check again.
5675 				 * Expansion could still move past after this
5676 				 * test, but as we are holding a reference to
5677 				 * 'sh', we know that if that happens,
5678 				 *  STRIPE_EXPANDING will get set and the expansion
5679 				 * won't proceed until we finish with the stripe.
5680 				 */
5681 				int must_retry = 0;
5682 				spin_lock_irq(&conf->device_lock);
5683 				if (mddev->reshape_backwards
5684 				    ? logical_sector >= conf->reshape_progress
5685 				    : logical_sector < conf->reshape_progress)
5686 					/* mismatch, need to try again */
5687 					must_retry = 1;
5688 				spin_unlock_irq(&conf->device_lock);
5689 				if (must_retry) {
5690 					raid5_release_stripe(sh);
5691 					schedule();
5692 					do_prepare = true;
5693 					goto retry;
5694 				}
5695 			}
5696 			if (read_seqcount_retry(&conf->gen_lock, seq)) {
5697 				/* Might have got the wrong stripe_head
5698 				 * by accident
5699 				 */
5700 				raid5_release_stripe(sh);
5701 				goto retry;
5702 			}
5703 
5704 			if (test_bit(STRIPE_EXPANDING, &sh->state) ||
5705 			    !add_stripe_bio(sh, bi, dd_idx, rw, previous)) {
5706 				/* Stripe is busy expanding or
5707 				 * add failed due to overlap.  Flush everything
5708 				 * and wait a while
5709 				 */
5710 				md_wakeup_thread(mddev->thread);
5711 				raid5_release_stripe(sh);
5712 				schedule();
5713 				do_prepare = true;
5714 				goto retry;
5715 			}
5716 			if (do_flush) {
5717 				set_bit(STRIPE_R5C_PREFLUSH, &sh->state);
5718 				/* we only need flush for one stripe */
5719 				do_flush = false;
5720 			}
5721 
5722 			set_bit(STRIPE_HANDLE, &sh->state);
5723 			clear_bit(STRIPE_DELAYED, &sh->state);
5724 			if ((!sh->batch_head || sh == sh->batch_head) &&
5725 			    (bi->bi_opf & REQ_SYNC) &&
5726 			    !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
5727 				atomic_inc(&conf->preread_active_stripes);
5728 			release_stripe_plug(mddev, sh);
5729 		} else {
5730 			/* cannot get stripe for read-ahead, just give-up */
5731 			bi->bi_status = BLK_STS_IOERR;
5732 			break;
5733 		}
5734 	}
5735 	finish_wait(&conf->wait_for_overlap, &w);
5736 
5737 	if (rw == WRITE)
5738 		md_write_end(mddev);
5739 	bio_endio(bi);
5740 	return true;
5741 }
5742 
5743 static sector_t raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks);
5744 
5745 static sector_t reshape_request(struct mddev *mddev, sector_t sector_nr, int *skipped)
5746 {
5747 	/* reshaping is quite different to recovery/resync so it is
5748 	 * handled quite separately ... here.
5749 	 *
5750 	 * On each call to sync_request, we gather one chunk worth of
5751 	 * destination stripes and flag them as expanding.
5752 	 * Then we find all the source stripes and request reads.
5753 	 * As the reads complete, handle_stripe will copy the data
5754 	 * into the destination stripe and release that stripe.
5755 	 */
5756 	struct r5conf *conf = mddev->private;
5757 	struct stripe_head *sh;
5758 	struct md_rdev *rdev;
5759 	sector_t first_sector, last_sector;
5760 	int raid_disks = conf->previous_raid_disks;
5761 	int data_disks = raid_disks - conf->max_degraded;
5762 	int new_data_disks = conf->raid_disks - conf->max_degraded;
5763 	int i;
5764 	int dd_idx;
5765 	sector_t writepos, readpos, safepos;
5766 	sector_t stripe_addr;
5767 	int reshape_sectors;
5768 	struct list_head stripes;
5769 	sector_t retn;
5770 
5771 	if (sector_nr == 0) {
5772 		/* If restarting in the middle, skip the initial sectors */
5773 		if (mddev->reshape_backwards &&
5774 		    conf->reshape_progress < raid5_size(mddev, 0, 0)) {
5775 			sector_nr = raid5_size(mddev, 0, 0)
5776 				- conf->reshape_progress;
5777 		} else if (mddev->reshape_backwards &&
5778 			   conf->reshape_progress == MaxSector) {
5779 			/* shouldn't happen, but just in case, finish up.*/
5780 			sector_nr = MaxSector;
5781 		} else if (!mddev->reshape_backwards &&
5782 			   conf->reshape_progress > 0)
5783 			sector_nr = conf->reshape_progress;
5784 		sector_div(sector_nr, new_data_disks);
5785 		if (sector_nr) {
5786 			mddev->curr_resync_completed = sector_nr;
5787 			sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5788 			*skipped = 1;
5789 			retn = sector_nr;
5790 			goto finish;
5791 		}
5792 	}
5793 
5794 	/* We need to process a full chunk at a time.
5795 	 * If old and new chunk sizes differ, we need to process the
5796 	 * largest of these
5797 	 */
5798 
5799 	reshape_sectors = max(conf->chunk_sectors, conf->prev_chunk_sectors);
5800 
5801 	/* We update the metadata at least every 10 seconds, or when
5802 	 * the data about to be copied would over-write the source of
5803 	 * the data at the front of the range.  i.e. one new_stripe
5804 	 * along from reshape_progress new_maps to after where
5805 	 * reshape_safe old_maps to
5806 	 */
5807 	writepos = conf->reshape_progress;
5808 	sector_div(writepos, new_data_disks);
5809 	readpos = conf->reshape_progress;
5810 	sector_div(readpos, data_disks);
5811 	safepos = conf->reshape_safe;
5812 	sector_div(safepos, data_disks);
5813 	if (mddev->reshape_backwards) {
5814 		BUG_ON(writepos < reshape_sectors);
5815 		writepos -= reshape_sectors;
5816 		readpos += reshape_sectors;
5817 		safepos += reshape_sectors;
5818 	} else {
5819 		writepos += reshape_sectors;
5820 		/* readpos and safepos are worst-case calculations.
5821 		 * A negative number is overly pessimistic, and causes
5822 		 * obvious problems for unsigned storage.  So clip to 0.
5823 		 */
5824 		readpos -= min_t(sector_t, reshape_sectors, readpos);
5825 		safepos -= min_t(sector_t, reshape_sectors, safepos);
5826 	}
5827 
5828 	/* Having calculated the 'writepos' possibly use it
5829 	 * to set 'stripe_addr' which is where we will write to.
5830 	 */
5831 	if (mddev->reshape_backwards) {
5832 		BUG_ON(conf->reshape_progress == 0);
5833 		stripe_addr = writepos;
5834 		BUG_ON((mddev->dev_sectors &
5835 			~((sector_t)reshape_sectors - 1))
5836 		       - reshape_sectors - stripe_addr
5837 		       != sector_nr);
5838 	} else {
5839 		BUG_ON(writepos != sector_nr + reshape_sectors);
5840 		stripe_addr = sector_nr;
5841 	}
5842 
5843 	/* 'writepos' is the most advanced device address we might write.
5844 	 * 'readpos' is the least advanced device address we might read.
5845 	 * 'safepos' is the least address recorded in the metadata as having
5846 	 *     been reshaped.
5847 	 * If there is a min_offset_diff, these are adjusted either by
5848 	 * increasing the safepos/readpos if diff is negative, or
5849 	 * increasing writepos if diff is positive.
5850 	 * If 'readpos' is then behind 'writepos', there is no way that we can
5851 	 * ensure safety in the face of a crash - that must be done by userspace
5852 	 * making a backup of the data.  So in that case there is no particular
5853 	 * rush to update metadata.
5854 	 * Otherwise if 'safepos' is behind 'writepos', then we really need to
5855 	 * update the metadata to advance 'safepos' to match 'readpos' so that
5856 	 * we can be safe in the event of a crash.
5857 	 * So we insist on updating metadata if safepos is behind writepos and
5858 	 * readpos is beyond writepos.
5859 	 * In any case, update the metadata every 10 seconds.
5860 	 * Maybe that number should be configurable, but I'm not sure it is
5861 	 * worth it.... maybe it could be a multiple of safemode_delay???
5862 	 */
5863 	if (conf->min_offset_diff < 0) {
5864 		safepos += -conf->min_offset_diff;
5865 		readpos += -conf->min_offset_diff;
5866 	} else
5867 		writepos += conf->min_offset_diff;
5868 
5869 	if ((mddev->reshape_backwards
5870 	     ? (safepos > writepos && readpos < writepos)
5871 	     : (safepos < writepos && readpos > writepos)) ||
5872 	    time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
5873 		/* Cannot proceed until we've updated the superblock... */
5874 		wait_event(conf->wait_for_overlap,
5875 			   atomic_read(&conf->reshape_stripes)==0
5876 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5877 		if (atomic_read(&conf->reshape_stripes) != 0)
5878 			return 0;
5879 		mddev->reshape_position = conf->reshape_progress;
5880 		mddev->curr_resync_completed = sector_nr;
5881 		if (!mddev->reshape_backwards)
5882 			/* Can update recovery_offset */
5883 			rdev_for_each(rdev, mddev)
5884 				if (rdev->raid_disk >= 0 &&
5885 				    !test_bit(Journal, &rdev->flags) &&
5886 				    !test_bit(In_sync, &rdev->flags) &&
5887 				    rdev->recovery_offset < sector_nr)
5888 					rdev->recovery_offset = sector_nr;
5889 
5890 		conf->reshape_checkpoint = jiffies;
5891 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5892 		md_wakeup_thread(mddev->thread);
5893 		wait_event(mddev->sb_wait, mddev->sb_flags == 0 ||
5894 			   test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5895 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
5896 			return 0;
5897 		spin_lock_irq(&conf->device_lock);
5898 		conf->reshape_safe = mddev->reshape_position;
5899 		spin_unlock_irq(&conf->device_lock);
5900 		wake_up(&conf->wait_for_overlap);
5901 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
5902 	}
5903 
5904 	INIT_LIST_HEAD(&stripes);
5905 	for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
5906 		int j;
5907 		int skipped_disk = 0;
5908 		sh = raid5_get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
5909 		set_bit(STRIPE_EXPANDING, &sh->state);
5910 		atomic_inc(&conf->reshape_stripes);
5911 		/* If any of this stripe is beyond the end of the old
5912 		 * array, then we need to zero those blocks
5913 		 */
5914 		for (j=sh->disks; j--;) {
5915 			sector_t s;
5916 			if (j == sh->pd_idx)
5917 				continue;
5918 			if (conf->level == 6 &&
5919 			    j == sh->qd_idx)
5920 				continue;
5921 			s = raid5_compute_blocknr(sh, j, 0);
5922 			if (s < raid5_size(mddev, 0, 0)) {
5923 				skipped_disk = 1;
5924 				continue;
5925 			}
5926 			memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
5927 			set_bit(R5_Expanded, &sh->dev[j].flags);
5928 			set_bit(R5_UPTODATE, &sh->dev[j].flags);
5929 		}
5930 		if (!skipped_disk) {
5931 			set_bit(STRIPE_EXPAND_READY, &sh->state);
5932 			set_bit(STRIPE_HANDLE, &sh->state);
5933 		}
5934 		list_add(&sh->lru, &stripes);
5935 	}
5936 	spin_lock_irq(&conf->device_lock);
5937 	if (mddev->reshape_backwards)
5938 		conf->reshape_progress -= reshape_sectors * new_data_disks;
5939 	else
5940 		conf->reshape_progress += reshape_sectors * new_data_disks;
5941 	spin_unlock_irq(&conf->device_lock);
5942 	/* Ok, those stripe are ready. We can start scheduling
5943 	 * reads on the source stripes.
5944 	 * The source stripes are determined by mapping the first and last
5945 	 * block on the destination stripes.
5946 	 */
5947 	first_sector =
5948 		raid5_compute_sector(conf, stripe_addr*(new_data_disks),
5949 				     1, &dd_idx, NULL);
5950 	last_sector =
5951 		raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
5952 					    * new_data_disks - 1),
5953 				     1, &dd_idx, NULL);
5954 	if (last_sector >= mddev->dev_sectors)
5955 		last_sector = mddev->dev_sectors - 1;
5956 	while (first_sector <= last_sector) {
5957 		sh = raid5_get_active_stripe(conf, first_sector, 1, 0, 1);
5958 		set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
5959 		set_bit(STRIPE_HANDLE, &sh->state);
5960 		raid5_release_stripe(sh);
5961 		first_sector += STRIPE_SECTORS;
5962 	}
5963 	/* Now that the sources are clearly marked, we can release
5964 	 * the destination stripes
5965 	 */
5966 	while (!list_empty(&stripes)) {
5967 		sh = list_entry(stripes.next, struct stripe_head, lru);
5968 		list_del_init(&sh->lru);
5969 		raid5_release_stripe(sh);
5970 	}
5971 	/* If this takes us to the resync_max point where we have to pause,
5972 	 * then we need to write out the superblock.
5973 	 */
5974 	sector_nr += reshape_sectors;
5975 	retn = reshape_sectors;
5976 finish:
5977 	if (mddev->curr_resync_completed > mddev->resync_max ||
5978 	    (sector_nr - mddev->curr_resync_completed) * 2
5979 	    >= mddev->resync_max - mddev->curr_resync_completed) {
5980 		/* Cannot proceed until we've updated the superblock... */
5981 		wait_event(conf->wait_for_overlap,
5982 			   atomic_read(&conf->reshape_stripes) == 0
5983 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
5984 		if (atomic_read(&conf->reshape_stripes) != 0)
5985 			goto ret;
5986 		mddev->reshape_position = conf->reshape_progress;
5987 		mddev->curr_resync_completed = sector_nr;
5988 		if (!mddev->reshape_backwards)
5989 			/* Can update recovery_offset */
5990 			rdev_for_each(rdev, mddev)
5991 				if (rdev->raid_disk >= 0 &&
5992 				    !test_bit(Journal, &rdev->flags) &&
5993 				    !test_bit(In_sync, &rdev->flags) &&
5994 				    rdev->recovery_offset < sector_nr)
5995 					rdev->recovery_offset = sector_nr;
5996 		conf->reshape_checkpoint = jiffies;
5997 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
5998 		md_wakeup_thread(mddev->thread);
5999 		wait_event(mddev->sb_wait,
6000 			   !test_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags)
6001 			   || test_bit(MD_RECOVERY_INTR, &mddev->recovery));
6002 		if (test_bit(MD_RECOVERY_INTR, &mddev->recovery))
6003 			goto ret;
6004 		spin_lock_irq(&conf->device_lock);
6005 		conf->reshape_safe = mddev->reshape_position;
6006 		spin_unlock_irq(&conf->device_lock);
6007 		wake_up(&conf->wait_for_overlap);
6008 		sysfs_notify(&mddev->kobj, NULL, "sync_completed");
6009 	}
6010 ret:
6011 	return retn;
6012 }
6013 
6014 static inline sector_t raid5_sync_request(struct mddev *mddev, sector_t sector_nr,
6015 					  int *skipped)
6016 {
6017 	struct r5conf *conf = mddev->private;
6018 	struct stripe_head *sh;
6019 	sector_t max_sector = mddev->dev_sectors;
6020 	sector_t sync_blocks;
6021 	int still_degraded = 0;
6022 	int i;
6023 
6024 	if (sector_nr >= max_sector) {
6025 		/* just being told to finish up .. nothing much to do */
6026 
6027 		if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
6028 			end_reshape(conf);
6029 			return 0;
6030 		}
6031 
6032 		if (mddev->curr_resync < max_sector) /* aborted */
6033 			md_bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
6034 					   &sync_blocks, 1);
6035 		else /* completed sync */
6036 			conf->fullsync = 0;
6037 		md_bitmap_close_sync(mddev->bitmap);
6038 
6039 		return 0;
6040 	}
6041 
6042 	/* Allow raid5_quiesce to complete */
6043 	wait_event(conf->wait_for_overlap, conf->quiesce != 2);
6044 
6045 	if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
6046 		return reshape_request(mddev, sector_nr, skipped);
6047 
6048 	/* No need to check resync_max as we never do more than one
6049 	 * stripe, and as resync_max will always be on a chunk boundary,
6050 	 * if the check in md_do_sync didn't fire, there is no chance
6051 	 * of overstepping resync_max here
6052 	 */
6053 
6054 	/* if there is too many failed drives and we are trying
6055 	 * to resync, then assert that we are finished, because there is
6056 	 * nothing we can do.
6057 	 */
6058 	if (mddev->degraded >= conf->max_degraded &&
6059 	    test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
6060 		sector_t rv = mddev->dev_sectors - sector_nr;
6061 		*skipped = 1;
6062 		return rv;
6063 	}
6064 	if (!test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
6065 	    !conf->fullsync &&
6066 	    !md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
6067 	    sync_blocks >= STRIPE_SECTORS) {
6068 		/* we can skip this block, and probably more */
6069 		sync_blocks /= STRIPE_SECTORS;
6070 		*skipped = 1;
6071 		return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
6072 	}
6073 
6074 	md_bitmap_cond_end_sync(mddev->bitmap, sector_nr, false);
6075 
6076 	sh = raid5_get_active_stripe(conf, sector_nr, 0, 1, 0);
6077 	if (sh == NULL) {
6078 		sh = raid5_get_active_stripe(conf, sector_nr, 0, 0, 0);
6079 		/* make sure we don't swamp the stripe cache if someone else
6080 		 * is trying to get access
6081 		 */
6082 		schedule_timeout_uninterruptible(1);
6083 	}
6084 	/* Need to check if array will still be degraded after recovery/resync
6085 	 * Note in case of > 1 drive failures it's possible we're rebuilding
6086 	 * one drive while leaving another faulty drive in array.
6087 	 */
6088 	rcu_read_lock();
6089 	for (i = 0; i < conf->raid_disks; i++) {
6090 		struct md_rdev *rdev = READ_ONCE(conf->disks[i].rdev);
6091 
6092 		if (rdev == NULL || test_bit(Faulty, &rdev->flags))
6093 			still_degraded = 1;
6094 	}
6095 	rcu_read_unlock();
6096 
6097 	md_bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
6098 
6099 	set_bit(STRIPE_SYNC_REQUESTED, &sh->state);
6100 	set_bit(STRIPE_HANDLE, &sh->state);
6101 
6102 	raid5_release_stripe(sh);
6103 
6104 	return STRIPE_SECTORS;
6105 }
6106 
6107 static int  retry_aligned_read(struct r5conf *conf, struct bio *raid_bio,
6108 			       unsigned int offset)
6109 {
6110 	/* We may not be able to submit a whole bio at once as there
6111 	 * may not be enough stripe_heads available.
6112 	 * We cannot pre-allocate enough stripe_heads as we may need
6113 	 * more than exist in the cache (if we allow ever large chunks).
6114 	 * So we do one stripe head at a time and record in
6115 	 * ->bi_hw_segments how many have been done.
6116 	 *
6117 	 * We *know* that this entire raid_bio is in one chunk, so
6118 	 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
6119 	 */
6120 	struct stripe_head *sh;
6121 	int dd_idx;
6122 	sector_t sector, logical_sector, last_sector;
6123 	int scnt = 0;
6124 	int handled = 0;
6125 
6126 	logical_sector = raid_bio->bi_iter.bi_sector &
6127 		~((sector_t)STRIPE_SECTORS-1);
6128 	sector = raid5_compute_sector(conf, logical_sector,
6129 				      0, &dd_idx, NULL);
6130 	last_sector = bio_end_sector(raid_bio);
6131 
6132 	for (; logical_sector < last_sector;
6133 	     logical_sector += STRIPE_SECTORS,
6134 		     sector += STRIPE_SECTORS,
6135 		     scnt++) {
6136 
6137 		if (scnt < offset)
6138 			/* already done this stripe */
6139 			continue;
6140 
6141 		sh = raid5_get_active_stripe(conf, sector, 0, 1, 1);
6142 
6143 		if (!sh) {
6144 			/* failed to get a stripe - must wait */
6145 			conf->retry_read_aligned = raid_bio;
6146 			conf->retry_read_offset = scnt;
6147 			return handled;
6148 		}
6149 
6150 		if (!add_stripe_bio(sh, raid_bio, dd_idx, 0, 0)) {
6151 			raid5_release_stripe(sh);
6152 			conf->retry_read_aligned = raid_bio;
6153 			conf->retry_read_offset = scnt;
6154 			return handled;
6155 		}
6156 
6157 		set_bit(R5_ReadNoMerge, &sh->dev[dd_idx].flags);
6158 		handle_stripe(sh);
6159 		raid5_release_stripe(sh);
6160 		handled++;
6161 	}
6162 
6163 	bio_endio(raid_bio);
6164 
6165 	if (atomic_dec_and_test(&conf->active_aligned_reads))
6166 		wake_up(&conf->wait_for_quiescent);
6167 	return handled;
6168 }
6169 
6170 static int handle_active_stripes(struct r5conf *conf, int group,
6171 				 struct r5worker *worker,
6172 				 struct list_head *temp_inactive_list)
6173 		__releases(&conf->device_lock)
6174 		__acquires(&conf->device_lock)
6175 {
6176 	struct stripe_head *batch[MAX_STRIPE_BATCH], *sh;
6177 	int i, batch_size = 0, hash;
6178 	bool release_inactive = false;
6179 
6180 	while (batch_size < MAX_STRIPE_BATCH &&
6181 			(sh = __get_priority_stripe(conf, group)) != NULL)
6182 		batch[batch_size++] = sh;
6183 
6184 	if (batch_size == 0) {
6185 		for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6186 			if (!list_empty(temp_inactive_list + i))
6187 				break;
6188 		if (i == NR_STRIPE_HASH_LOCKS) {
6189 			spin_unlock_irq(&conf->device_lock);
6190 			log_flush_stripe_to_raid(conf);
6191 			spin_lock_irq(&conf->device_lock);
6192 			return batch_size;
6193 		}
6194 		release_inactive = true;
6195 	}
6196 	spin_unlock_irq(&conf->device_lock);
6197 
6198 	release_inactive_stripe_list(conf, temp_inactive_list,
6199 				     NR_STRIPE_HASH_LOCKS);
6200 
6201 	r5l_flush_stripe_to_raid(conf->log);
6202 	if (release_inactive) {
6203 		spin_lock_irq(&conf->device_lock);
6204 		return 0;
6205 	}
6206 
6207 	for (i = 0; i < batch_size; i++)
6208 		handle_stripe(batch[i]);
6209 	log_write_stripe_run(conf);
6210 
6211 	cond_resched();
6212 
6213 	spin_lock_irq(&conf->device_lock);
6214 	for (i = 0; i < batch_size; i++) {
6215 		hash = batch[i]->hash_lock_index;
6216 		__release_stripe(conf, batch[i], &temp_inactive_list[hash]);
6217 	}
6218 	return batch_size;
6219 }
6220 
6221 static void raid5_do_work(struct work_struct *work)
6222 {
6223 	struct r5worker *worker = container_of(work, struct r5worker, work);
6224 	struct r5worker_group *group = worker->group;
6225 	struct r5conf *conf = group->conf;
6226 	struct mddev *mddev = conf->mddev;
6227 	int group_id = group - conf->worker_groups;
6228 	int handled;
6229 	struct blk_plug plug;
6230 
6231 	pr_debug("+++ raid5worker active\n");
6232 
6233 	blk_start_plug(&plug);
6234 	handled = 0;
6235 	spin_lock_irq(&conf->device_lock);
6236 	while (1) {
6237 		int batch_size, released;
6238 
6239 		released = release_stripe_list(conf, worker->temp_inactive_list);
6240 
6241 		batch_size = handle_active_stripes(conf, group_id, worker,
6242 						   worker->temp_inactive_list);
6243 		worker->working = false;
6244 		if (!batch_size && !released)
6245 			break;
6246 		handled += batch_size;
6247 		wait_event_lock_irq(mddev->sb_wait,
6248 			!test_bit(MD_SB_CHANGE_PENDING, &mddev->sb_flags),
6249 			conf->device_lock);
6250 	}
6251 	pr_debug("%d stripes handled\n", handled);
6252 
6253 	spin_unlock_irq(&conf->device_lock);
6254 
6255 	flush_deferred_bios(conf);
6256 
6257 	r5l_flush_stripe_to_raid(conf->log);
6258 
6259 	async_tx_issue_pending_all();
6260 	blk_finish_plug(&plug);
6261 
6262 	pr_debug("--- raid5worker inactive\n");
6263 }
6264 
6265 /*
6266  * This is our raid5 kernel thread.
6267  *
6268  * We scan the hash table for stripes which can be handled now.
6269  * During the scan, completed stripes are saved for us by the interrupt
6270  * handler, so that they will not have to wait for our next wakeup.
6271  */
6272 static void raid5d(struct md_thread *thread)
6273 {
6274 	struct mddev *mddev = thread->mddev;
6275 	struct r5conf *conf = mddev->private;
6276 	int handled;
6277 	struct blk_plug plug;
6278 
6279 	pr_debug("+++ raid5d active\n");
6280 
6281 	md_check_recovery(mddev);
6282 
6283 	blk_start_plug(&plug);
6284 	handled = 0;
6285 	spin_lock_irq(&conf->device_lock);
6286 	while (1) {
6287 		struct bio *bio;
6288 		int batch_size, released;
6289 		unsigned int offset;
6290 
6291 		released = release_stripe_list(conf, conf->temp_inactive_list);
6292 		if (released)
6293 			clear_bit(R5_DID_ALLOC, &conf->cache_state);
6294 
6295 		if (
6296 		    !list_empty(&conf->bitmap_list)) {
6297 			/* Now is a good time to flush some bitmap updates */
6298 			conf->seq_flush++;
6299 			spin_unlock_irq(&conf->device_lock);
6300 			md_bitmap_unplug(mddev->bitmap);
6301 			spin_lock_irq(&conf->device_lock);
6302 			conf->seq_write = conf->seq_flush;
6303 			activate_bit_delay(conf, conf->temp_inactive_list);
6304 		}
6305 		raid5_activate_delayed(conf);
6306 
6307 		while ((bio = remove_bio_from_retry(conf, &offset))) {
6308 			int ok;
6309 			spin_unlock_irq(&conf->device_lock);
6310 			ok = retry_aligned_read(conf, bio, offset);
6311 			spin_lock_irq(&conf->device_lock);
6312 			if (!ok)
6313 				break;
6314 			handled++;
6315 		}
6316 
6317 		batch_size = handle_active_stripes(conf, ANY_GROUP, NULL,
6318 						   conf->temp_inactive_list);
6319 		if (!batch_size && !released)
6320 			break;
6321 		handled += batch_size;
6322 
6323 		if (mddev->sb_flags & ~(1 << MD_SB_CHANGE_PENDING)) {
6324 			spin_unlock_irq(&conf->device_lock);
6325 			md_check_recovery(mddev);
6326 			spin_lock_irq(&conf->device_lock);
6327 		}
6328 	}
6329 	pr_debug("%d stripes handled\n", handled);
6330 
6331 	spin_unlock_irq(&conf->device_lock);
6332 	if (test_and_clear_bit(R5_ALLOC_MORE, &conf->cache_state) &&
6333 	    mutex_trylock(&conf->cache_size_mutex)) {
6334 		grow_one_stripe(conf, __GFP_NOWARN);
6335 		/* Set flag even if allocation failed.  This helps
6336 		 * slow down allocation requests when mem is short
6337 		 */
6338 		set_bit(R5_DID_ALLOC, &conf->cache_state);
6339 		mutex_unlock(&conf->cache_size_mutex);
6340 	}
6341 
6342 	flush_deferred_bios(conf);
6343 
6344 	r5l_flush_stripe_to_raid(conf->log);
6345 
6346 	async_tx_issue_pending_all();
6347 	blk_finish_plug(&plug);
6348 
6349 	pr_debug("--- raid5d inactive\n");
6350 }
6351 
6352 static ssize_t
6353 raid5_show_stripe_cache_size(struct mddev *mddev, char *page)
6354 {
6355 	struct r5conf *conf;
6356 	int ret = 0;
6357 	spin_lock(&mddev->lock);
6358 	conf = mddev->private;
6359 	if (conf)
6360 		ret = sprintf(page, "%d\n", conf->min_nr_stripes);
6361 	spin_unlock(&mddev->lock);
6362 	return ret;
6363 }
6364 
6365 int
6366 raid5_set_cache_size(struct mddev *mddev, int size)
6367 {
6368 	int result = 0;
6369 	struct r5conf *conf = mddev->private;
6370 
6371 	if (size <= 16 || size > 32768)
6372 		return -EINVAL;
6373 
6374 	conf->min_nr_stripes = size;
6375 	mutex_lock(&conf->cache_size_mutex);
6376 	while (size < conf->max_nr_stripes &&
6377 	       drop_one_stripe(conf))
6378 		;
6379 	mutex_unlock(&conf->cache_size_mutex);
6380 
6381 	md_allow_write(mddev);
6382 
6383 	mutex_lock(&conf->cache_size_mutex);
6384 	while (size > conf->max_nr_stripes)
6385 		if (!grow_one_stripe(conf, GFP_KERNEL)) {
6386 			conf->min_nr_stripes = conf->max_nr_stripes;
6387 			result = -ENOMEM;
6388 			break;
6389 		}
6390 	mutex_unlock(&conf->cache_size_mutex);
6391 
6392 	return result;
6393 }
6394 EXPORT_SYMBOL(raid5_set_cache_size);
6395 
6396 static ssize_t
6397 raid5_store_stripe_cache_size(struct mddev *mddev, const char *page, size_t len)
6398 {
6399 	struct r5conf *conf;
6400 	unsigned long new;
6401 	int err;
6402 
6403 	if (len >= PAGE_SIZE)
6404 		return -EINVAL;
6405 	if (kstrtoul(page, 10, &new))
6406 		return -EINVAL;
6407 	err = mddev_lock(mddev);
6408 	if (err)
6409 		return err;
6410 	conf = mddev->private;
6411 	if (!conf)
6412 		err = -ENODEV;
6413 	else
6414 		err = raid5_set_cache_size(mddev, new);
6415 	mddev_unlock(mddev);
6416 
6417 	return err ?: len;
6418 }
6419 
6420 static struct md_sysfs_entry
6421 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
6422 				raid5_show_stripe_cache_size,
6423 				raid5_store_stripe_cache_size);
6424 
6425 static ssize_t
6426 raid5_show_rmw_level(struct mddev  *mddev, char *page)
6427 {
6428 	struct r5conf *conf = mddev->private;
6429 	if (conf)
6430 		return sprintf(page, "%d\n", conf->rmw_level);
6431 	else
6432 		return 0;
6433 }
6434 
6435 static ssize_t
6436 raid5_store_rmw_level(struct mddev  *mddev, const char *page, size_t len)
6437 {
6438 	struct r5conf *conf = mddev->private;
6439 	unsigned long new;
6440 
6441 	if (!conf)
6442 		return -ENODEV;
6443 
6444 	if (len >= PAGE_SIZE)
6445 		return -EINVAL;
6446 
6447 	if (kstrtoul(page, 10, &new))
6448 		return -EINVAL;
6449 
6450 	if (new != PARITY_DISABLE_RMW && !raid6_call.xor_syndrome)
6451 		return -EINVAL;
6452 
6453 	if (new != PARITY_DISABLE_RMW &&
6454 	    new != PARITY_ENABLE_RMW &&
6455 	    new != PARITY_PREFER_RMW)
6456 		return -EINVAL;
6457 
6458 	conf->rmw_level = new;
6459 	return len;
6460 }
6461 
6462 static struct md_sysfs_entry
6463 raid5_rmw_level = __ATTR(rmw_level, S_IRUGO | S_IWUSR,
6464 			 raid5_show_rmw_level,
6465 			 raid5_store_rmw_level);
6466 
6467 
6468 static ssize_t
6469 raid5_show_preread_threshold(struct mddev *mddev, char *page)
6470 {
6471 	struct r5conf *conf;
6472 	int ret = 0;
6473 	spin_lock(&mddev->lock);
6474 	conf = mddev->private;
6475 	if (conf)
6476 		ret = sprintf(page, "%d\n", conf->bypass_threshold);
6477 	spin_unlock(&mddev->lock);
6478 	return ret;
6479 }
6480 
6481 static ssize_t
6482 raid5_store_preread_threshold(struct mddev *mddev, const char *page, size_t len)
6483 {
6484 	struct r5conf *conf;
6485 	unsigned long new;
6486 	int err;
6487 
6488 	if (len >= PAGE_SIZE)
6489 		return -EINVAL;
6490 	if (kstrtoul(page, 10, &new))
6491 		return -EINVAL;
6492 
6493 	err = mddev_lock(mddev);
6494 	if (err)
6495 		return err;
6496 	conf = mddev->private;
6497 	if (!conf)
6498 		err = -ENODEV;
6499 	else if (new > conf->min_nr_stripes)
6500 		err = -EINVAL;
6501 	else
6502 		conf->bypass_threshold = new;
6503 	mddev_unlock(mddev);
6504 	return err ?: len;
6505 }
6506 
6507 static struct md_sysfs_entry
6508 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
6509 					S_IRUGO | S_IWUSR,
6510 					raid5_show_preread_threshold,
6511 					raid5_store_preread_threshold);
6512 
6513 static ssize_t
6514 raid5_show_skip_copy(struct mddev *mddev, char *page)
6515 {
6516 	struct r5conf *conf;
6517 	int ret = 0;
6518 	spin_lock(&mddev->lock);
6519 	conf = mddev->private;
6520 	if (conf)
6521 		ret = sprintf(page, "%d\n", conf->skip_copy);
6522 	spin_unlock(&mddev->lock);
6523 	return ret;
6524 }
6525 
6526 static ssize_t
6527 raid5_store_skip_copy(struct mddev *mddev, const char *page, size_t len)
6528 {
6529 	struct r5conf *conf;
6530 	unsigned long new;
6531 	int err;
6532 
6533 	if (len >= PAGE_SIZE)
6534 		return -EINVAL;
6535 	if (kstrtoul(page, 10, &new))
6536 		return -EINVAL;
6537 	new = !!new;
6538 
6539 	err = mddev_lock(mddev);
6540 	if (err)
6541 		return err;
6542 	conf = mddev->private;
6543 	if (!conf)
6544 		err = -ENODEV;
6545 	else if (new != conf->skip_copy) {
6546 		mddev_suspend(mddev);
6547 		conf->skip_copy = new;
6548 		if (new)
6549 			mddev->queue->backing_dev_info->capabilities |=
6550 				BDI_CAP_STABLE_WRITES;
6551 		else
6552 			mddev->queue->backing_dev_info->capabilities &=
6553 				~BDI_CAP_STABLE_WRITES;
6554 		mddev_resume(mddev);
6555 	}
6556 	mddev_unlock(mddev);
6557 	return err ?: len;
6558 }
6559 
6560 static struct md_sysfs_entry
6561 raid5_skip_copy = __ATTR(skip_copy, S_IRUGO | S_IWUSR,
6562 					raid5_show_skip_copy,
6563 					raid5_store_skip_copy);
6564 
6565 static ssize_t
6566 stripe_cache_active_show(struct mddev *mddev, char *page)
6567 {
6568 	struct r5conf *conf = mddev->private;
6569 	if (conf)
6570 		return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
6571 	else
6572 		return 0;
6573 }
6574 
6575 static struct md_sysfs_entry
6576 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
6577 
6578 static ssize_t
6579 raid5_show_group_thread_cnt(struct mddev *mddev, char *page)
6580 {
6581 	struct r5conf *conf;
6582 	int ret = 0;
6583 	spin_lock(&mddev->lock);
6584 	conf = mddev->private;
6585 	if (conf)
6586 		ret = sprintf(page, "%d\n", conf->worker_cnt_per_group);
6587 	spin_unlock(&mddev->lock);
6588 	return ret;
6589 }
6590 
6591 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6592 			       int *group_cnt,
6593 			       int *worker_cnt_per_group,
6594 			       struct r5worker_group **worker_groups);
6595 static ssize_t
6596 raid5_store_group_thread_cnt(struct mddev *mddev, const char *page, size_t len)
6597 {
6598 	struct r5conf *conf;
6599 	unsigned int new;
6600 	int err;
6601 	struct r5worker_group *new_groups, *old_groups;
6602 	int group_cnt, worker_cnt_per_group;
6603 
6604 	if (len >= PAGE_SIZE)
6605 		return -EINVAL;
6606 	if (kstrtouint(page, 10, &new))
6607 		return -EINVAL;
6608 	/* 8192 should be big enough */
6609 	if (new > 8192)
6610 		return -EINVAL;
6611 
6612 	err = mddev_lock(mddev);
6613 	if (err)
6614 		return err;
6615 	conf = mddev->private;
6616 	if (!conf)
6617 		err = -ENODEV;
6618 	else if (new != conf->worker_cnt_per_group) {
6619 		mddev_suspend(mddev);
6620 
6621 		old_groups = conf->worker_groups;
6622 		if (old_groups)
6623 			flush_workqueue(raid5_wq);
6624 
6625 		err = alloc_thread_groups(conf, new,
6626 					  &group_cnt, &worker_cnt_per_group,
6627 					  &new_groups);
6628 		if (!err) {
6629 			spin_lock_irq(&conf->device_lock);
6630 			conf->group_cnt = group_cnt;
6631 			conf->worker_cnt_per_group = worker_cnt_per_group;
6632 			conf->worker_groups = new_groups;
6633 			spin_unlock_irq(&conf->device_lock);
6634 
6635 			if (old_groups)
6636 				kfree(old_groups[0].workers);
6637 			kfree(old_groups);
6638 		}
6639 		mddev_resume(mddev);
6640 	}
6641 	mddev_unlock(mddev);
6642 
6643 	return err ?: len;
6644 }
6645 
6646 static struct md_sysfs_entry
6647 raid5_group_thread_cnt = __ATTR(group_thread_cnt, S_IRUGO | S_IWUSR,
6648 				raid5_show_group_thread_cnt,
6649 				raid5_store_group_thread_cnt);
6650 
6651 static struct attribute *raid5_attrs[] =  {
6652 	&raid5_stripecache_size.attr,
6653 	&raid5_stripecache_active.attr,
6654 	&raid5_preread_bypass_threshold.attr,
6655 	&raid5_group_thread_cnt.attr,
6656 	&raid5_skip_copy.attr,
6657 	&raid5_rmw_level.attr,
6658 	&r5c_journal_mode.attr,
6659 	&ppl_write_hint.attr,
6660 	NULL,
6661 };
6662 static struct attribute_group raid5_attrs_group = {
6663 	.name = NULL,
6664 	.attrs = raid5_attrs,
6665 };
6666 
6667 static int alloc_thread_groups(struct r5conf *conf, int cnt,
6668 			       int *group_cnt,
6669 			       int *worker_cnt_per_group,
6670 			       struct r5worker_group **worker_groups)
6671 {
6672 	int i, j, k;
6673 	ssize_t size;
6674 	struct r5worker *workers;
6675 
6676 	*worker_cnt_per_group = cnt;
6677 	if (cnt == 0) {
6678 		*group_cnt = 0;
6679 		*worker_groups = NULL;
6680 		return 0;
6681 	}
6682 	*group_cnt = num_possible_nodes();
6683 	size = sizeof(struct r5worker) * cnt;
6684 	workers = kcalloc(size, *group_cnt, GFP_NOIO);
6685 	*worker_groups = kcalloc(*group_cnt, sizeof(struct r5worker_group),
6686 				 GFP_NOIO);
6687 	if (!*worker_groups || !workers) {
6688 		kfree(workers);
6689 		kfree(*worker_groups);
6690 		return -ENOMEM;
6691 	}
6692 
6693 	for (i = 0; i < *group_cnt; i++) {
6694 		struct r5worker_group *group;
6695 
6696 		group = &(*worker_groups)[i];
6697 		INIT_LIST_HEAD(&group->handle_list);
6698 		INIT_LIST_HEAD(&group->loprio_list);
6699 		group->conf = conf;
6700 		group->workers = workers + i * cnt;
6701 
6702 		for (j = 0; j < cnt; j++) {
6703 			struct r5worker *worker = group->workers + j;
6704 			worker->group = group;
6705 			INIT_WORK(&worker->work, raid5_do_work);
6706 
6707 			for (k = 0; k < NR_STRIPE_HASH_LOCKS; k++)
6708 				INIT_LIST_HEAD(worker->temp_inactive_list + k);
6709 		}
6710 	}
6711 
6712 	return 0;
6713 }
6714 
6715 static void free_thread_groups(struct r5conf *conf)
6716 {
6717 	if (conf->worker_groups)
6718 		kfree(conf->worker_groups[0].workers);
6719 	kfree(conf->worker_groups);
6720 	conf->worker_groups = NULL;
6721 }
6722 
6723 static sector_t
6724 raid5_size(struct mddev *mddev, sector_t sectors, int raid_disks)
6725 {
6726 	struct r5conf *conf = mddev->private;
6727 
6728 	if (!sectors)
6729 		sectors = mddev->dev_sectors;
6730 	if (!raid_disks)
6731 		/* size is defined by the smallest of previous and new size */
6732 		raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
6733 
6734 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
6735 	sectors &= ~((sector_t)conf->prev_chunk_sectors - 1);
6736 	return sectors * (raid_disks - conf->max_degraded);
6737 }
6738 
6739 static void free_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6740 {
6741 	safe_put_page(percpu->spare_page);
6742 	percpu->spare_page = NULL;
6743 	kvfree(percpu->scribble);
6744 	percpu->scribble = NULL;
6745 }
6746 
6747 static int alloc_scratch_buffer(struct r5conf *conf, struct raid5_percpu *percpu)
6748 {
6749 	if (conf->level == 6 && !percpu->spare_page) {
6750 		percpu->spare_page = alloc_page(GFP_KERNEL);
6751 		if (!percpu->spare_page)
6752 			return -ENOMEM;
6753 	}
6754 
6755 	if (scribble_alloc(percpu,
6756 			   max(conf->raid_disks,
6757 			       conf->previous_raid_disks),
6758 			   max(conf->chunk_sectors,
6759 			       conf->prev_chunk_sectors)
6760 			   / STRIPE_SECTORS,
6761 			   GFP_KERNEL)) {
6762 		free_scratch_buffer(conf, percpu);
6763 		return -ENOMEM;
6764 	}
6765 
6766 	return 0;
6767 }
6768 
6769 static int raid456_cpu_dead(unsigned int cpu, struct hlist_node *node)
6770 {
6771 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6772 
6773 	free_scratch_buffer(conf, per_cpu_ptr(conf->percpu, cpu));
6774 	return 0;
6775 }
6776 
6777 static void raid5_free_percpu(struct r5conf *conf)
6778 {
6779 	if (!conf->percpu)
6780 		return;
6781 
6782 	cpuhp_state_remove_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6783 	free_percpu(conf->percpu);
6784 }
6785 
6786 static void free_conf(struct r5conf *conf)
6787 {
6788 	int i;
6789 
6790 	log_exit(conf);
6791 
6792 	unregister_shrinker(&conf->shrinker);
6793 	free_thread_groups(conf);
6794 	shrink_stripes(conf);
6795 	raid5_free_percpu(conf);
6796 	for (i = 0; i < conf->pool_size; i++)
6797 		if (conf->disks[i].extra_page)
6798 			put_page(conf->disks[i].extra_page);
6799 	kfree(conf->disks);
6800 	bioset_exit(&conf->bio_split);
6801 	kfree(conf->stripe_hashtbl);
6802 	kfree(conf->pending_data);
6803 	kfree(conf);
6804 }
6805 
6806 static int raid456_cpu_up_prepare(unsigned int cpu, struct hlist_node *node)
6807 {
6808 	struct r5conf *conf = hlist_entry_safe(node, struct r5conf, node);
6809 	struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
6810 
6811 	if (alloc_scratch_buffer(conf, percpu)) {
6812 		pr_warn("%s: failed memory allocation for cpu%u\n",
6813 			__func__, cpu);
6814 		return -ENOMEM;
6815 	}
6816 	return 0;
6817 }
6818 
6819 static int raid5_alloc_percpu(struct r5conf *conf)
6820 {
6821 	int err = 0;
6822 
6823 	conf->percpu = alloc_percpu(struct raid5_percpu);
6824 	if (!conf->percpu)
6825 		return -ENOMEM;
6826 
6827 	err = cpuhp_state_add_instance(CPUHP_MD_RAID5_PREPARE, &conf->node);
6828 	if (!err) {
6829 		conf->scribble_disks = max(conf->raid_disks,
6830 			conf->previous_raid_disks);
6831 		conf->scribble_sectors = max(conf->chunk_sectors,
6832 			conf->prev_chunk_sectors);
6833 	}
6834 	return err;
6835 }
6836 
6837 static unsigned long raid5_cache_scan(struct shrinker *shrink,
6838 				      struct shrink_control *sc)
6839 {
6840 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6841 	unsigned long ret = SHRINK_STOP;
6842 
6843 	if (mutex_trylock(&conf->cache_size_mutex)) {
6844 		ret= 0;
6845 		while (ret < sc->nr_to_scan &&
6846 		       conf->max_nr_stripes > conf->min_nr_stripes) {
6847 			if (drop_one_stripe(conf) == 0) {
6848 				ret = SHRINK_STOP;
6849 				break;
6850 			}
6851 			ret++;
6852 		}
6853 		mutex_unlock(&conf->cache_size_mutex);
6854 	}
6855 	return ret;
6856 }
6857 
6858 static unsigned long raid5_cache_count(struct shrinker *shrink,
6859 				       struct shrink_control *sc)
6860 {
6861 	struct r5conf *conf = container_of(shrink, struct r5conf, shrinker);
6862 
6863 	if (conf->max_nr_stripes < conf->min_nr_stripes)
6864 		/* unlikely, but not impossible */
6865 		return 0;
6866 	return conf->max_nr_stripes - conf->min_nr_stripes;
6867 }
6868 
6869 static struct r5conf *setup_conf(struct mddev *mddev)
6870 {
6871 	struct r5conf *conf;
6872 	int raid_disk, memory, max_disks;
6873 	struct md_rdev *rdev;
6874 	struct disk_info *disk;
6875 	char pers_name[6];
6876 	int i;
6877 	int group_cnt, worker_cnt_per_group;
6878 	struct r5worker_group *new_group;
6879 	int ret;
6880 
6881 	if (mddev->new_level != 5
6882 	    && mddev->new_level != 4
6883 	    && mddev->new_level != 6) {
6884 		pr_warn("md/raid:%s: raid level not set to 4/5/6 (%d)\n",
6885 			mdname(mddev), mddev->new_level);
6886 		return ERR_PTR(-EIO);
6887 	}
6888 	if ((mddev->new_level == 5
6889 	     && !algorithm_valid_raid5(mddev->new_layout)) ||
6890 	    (mddev->new_level == 6
6891 	     && !algorithm_valid_raid6(mddev->new_layout))) {
6892 		pr_warn("md/raid:%s: layout %d not supported\n",
6893 			mdname(mddev), mddev->new_layout);
6894 		return ERR_PTR(-EIO);
6895 	}
6896 	if (mddev->new_level == 6 && mddev->raid_disks < 4) {
6897 		pr_warn("md/raid:%s: not enough configured devices (%d, minimum 4)\n",
6898 			mdname(mddev), mddev->raid_disks);
6899 		return ERR_PTR(-EINVAL);
6900 	}
6901 
6902 	if (!mddev->new_chunk_sectors ||
6903 	    (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
6904 	    !is_power_of_2(mddev->new_chunk_sectors)) {
6905 		pr_warn("md/raid:%s: invalid chunk size %d\n",
6906 			mdname(mddev), mddev->new_chunk_sectors << 9);
6907 		return ERR_PTR(-EINVAL);
6908 	}
6909 
6910 	conf = kzalloc(sizeof(struct r5conf), GFP_KERNEL);
6911 	if (conf == NULL)
6912 		goto abort;
6913 	INIT_LIST_HEAD(&conf->free_list);
6914 	INIT_LIST_HEAD(&conf->pending_list);
6915 	conf->pending_data = kcalloc(PENDING_IO_MAX,
6916 				     sizeof(struct r5pending_data),
6917 				     GFP_KERNEL);
6918 	if (!conf->pending_data)
6919 		goto abort;
6920 	for (i = 0; i < PENDING_IO_MAX; i++)
6921 		list_add(&conf->pending_data[i].sibling, &conf->free_list);
6922 	/* Don't enable multi-threading by default*/
6923 	if (!alloc_thread_groups(conf, 0, &group_cnt, &worker_cnt_per_group,
6924 				 &new_group)) {
6925 		conf->group_cnt = group_cnt;
6926 		conf->worker_cnt_per_group = worker_cnt_per_group;
6927 		conf->worker_groups = new_group;
6928 	} else
6929 		goto abort;
6930 	spin_lock_init(&conf->device_lock);
6931 	seqcount_init(&conf->gen_lock);
6932 	mutex_init(&conf->cache_size_mutex);
6933 	init_waitqueue_head(&conf->wait_for_quiescent);
6934 	init_waitqueue_head(&conf->wait_for_stripe);
6935 	init_waitqueue_head(&conf->wait_for_overlap);
6936 	INIT_LIST_HEAD(&conf->handle_list);
6937 	INIT_LIST_HEAD(&conf->loprio_list);
6938 	INIT_LIST_HEAD(&conf->hold_list);
6939 	INIT_LIST_HEAD(&conf->delayed_list);
6940 	INIT_LIST_HEAD(&conf->bitmap_list);
6941 	init_llist_head(&conf->released_stripes);
6942 	atomic_set(&conf->active_stripes, 0);
6943 	atomic_set(&conf->preread_active_stripes, 0);
6944 	atomic_set(&conf->active_aligned_reads, 0);
6945 	spin_lock_init(&conf->pending_bios_lock);
6946 	conf->batch_bio_dispatch = true;
6947 	rdev_for_each(rdev, mddev) {
6948 		if (test_bit(Journal, &rdev->flags))
6949 			continue;
6950 		if (blk_queue_nonrot(bdev_get_queue(rdev->bdev))) {
6951 			conf->batch_bio_dispatch = false;
6952 			break;
6953 		}
6954 	}
6955 
6956 	conf->bypass_threshold = BYPASS_THRESHOLD;
6957 	conf->recovery_disabled = mddev->recovery_disabled - 1;
6958 
6959 	conf->raid_disks = mddev->raid_disks;
6960 	if (mddev->reshape_position == MaxSector)
6961 		conf->previous_raid_disks = mddev->raid_disks;
6962 	else
6963 		conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
6964 	max_disks = max(conf->raid_disks, conf->previous_raid_disks);
6965 
6966 	conf->disks = kcalloc(max_disks, sizeof(struct disk_info),
6967 			      GFP_KERNEL);
6968 
6969 	if (!conf->disks)
6970 		goto abort;
6971 
6972 	for (i = 0; i < max_disks; i++) {
6973 		conf->disks[i].extra_page = alloc_page(GFP_KERNEL);
6974 		if (!conf->disks[i].extra_page)
6975 			goto abort;
6976 	}
6977 
6978 	ret = bioset_init(&conf->bio_split, BIO_POOL_SIZE, 0, 0);
6979 	if (ret)
6980 		goto abort;
6981 	conf->mddev = mddev;
6982 
6983 	if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
6984 		goto abort;
6985 
6986 	/* We init hash_locks[0] separately to that it can be used
6987 	 * as the reference lock in the spin_lock_nest_lock() call
6988 	 * in lock_all_device_hash_locks_irq in order to convince
6989 	 * lockdep that we know what we are doing.
6990 	 */
6991 	spin_lock_init(conf->hash_locks);
6992 	for (i = 1; i < NR_STRIPE_HASH_LOCKS; i++)
6993 		spin_lock_init(conf->hash_locks + i);
6994 
6995 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6996 		INIT_LIST_HEAD(conf->inactive_list + i);
6997 
6998 	for (i = 0; i < NR_STRIPE_HASH_LOCKS; i++)
6999 		INIT_LIST_HEAD(conf->temp_inactive_list + i);
7000 
7001 	atomic_set(&conf->r5c_cached_full_stripes, 0);
7002 	INIT_LIST_HEAD(&conf->r5c_full_stripe_list);
7003 	atomic_set(&conf->r5c_cached_partial_stripes, 0);
7004 	INIT_LIST_HEAD(&conf->r5c_partial_stripe_list);
7005 	atomic_set(&conf->r5c_flushing_full_stripes, 0);
7006 	atomic_set(&conf->r5c_flushing_partial_stripes, 0);
7007 
7008 	conf->level = mddev->new_level;
7009 	conf->chunk_sectors = mddev->new_chunk_sectors;
7010 	if (raid5_alloc_percpu(conf) != 0)
7011 		goto abort;
7012 
7013 	pr_debug("raid456: run(%s) called.\n", mdname(mddev));
7014 
7015 	rdev_for_each(rdev, mddev) {
7016 		raid_disk = rdev->raid_disk;
7017 		if (raid_disk >= max_disks
7018 		    || raid_disk < 0 || test_bit(Journal, &rdev->flags))
7019 			continue;
7020 		disk = conf->disks + raid_disk;
7021 
7022 		if (test_bit(Replacement, &rdev->flags)) {
7023 			if (disk->replacement)
7024 				goto abort;
7025 			disk->replacement = rdev;
7026 		} else {
7027 			if (disk->rdev)
7028 				goto abort;
7029 			disk->rdev = rdev;
7030 		}
7031 
7032 		if (test_bit(In_sync, &rdev->flags)) {
7033 			char b[BDEVNAME_SIZE];
7034 			pr_info("md/raid:%s: device %s operational as raid disk %d\n",
7035 				mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
7036 		} else if (rdev->saved_raid_disk != raid_disk)
7037 			/* Cannot rely on bitmap to complete recovery */
7038 			conf->fullsync = 1;
7039 	}
7040 
7041 	conf->level = mddev->new_level;
7042 	if (conf->level == 6) {
7043 		conf->max_degraded = 2;
7044 		if (raid6_call.xor_syndrome)
7045 			conf->rmw_level = PARITY_ENABLE_RMW;
7046 		else
7047 			conf->rmw_level = PARITY_DISABLE_RMW;
7048 	} else {
7049 		conf->max_degraded = 1;
7050 		conf->rmw_level = PARITY_ENABLE_RMW;
7051 	}
7052 	conf->algorithm = mddev->new_layout;
7053 	conf->reshape_progress = mddev->reshape_position;
7054 	if (conf->reshape_progress != MaxSector) {
7055 		conf->prev_chunk_sectors = mddev->chunk_sectors;
7056 		conf->prev_algo = mddev->layout;
7057 	} else {
7058 		conf->prev_chunk_sectors = conf->chunk_sectors;
7059 		conf->prev_algo = conf->algorithm;
7060 	}
7061 
7062 	conf->min_nr_stripes = NR_STRIPES;
7063 	if (mddev->reshape_position != MaxSector) {
7064 		int stripes = max_t(int,
7065 			((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4,
7066 			((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4);
7067 		conf->min_nr_stripes = max(NR_STRIPES, stripes);
7068 		if (conf->min_nr_stripes != NR_STRIPES)
7069 			pr_info("md/raid:%s: force stripe size %d for reshape\n",
7070 				mdname(mddev), conf->min_nr_stripes);
7071 	}
7072 	memory = conf->min_nr_stripes * (sizeof(struct stripe_head) +
7073 		 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
7074 	atomic_set(&conf->empty_inactive_list_nr, NR_STRIPE_HASH_LOCKS);
7075 	if (grow_stripes(conf, conf->min_nr_stripes)) {
7076 		pr_warn("md/raid:%s: couldn't allocate %dkB for buffers\n",
7077 			mdname(mddev), memory);
7078 		goto abort;
7079 	} else
7080 		pr_debug("md/raid:%s: allocated %dkB\n", mdname(mddev), memory);
7081 	/*
7082 	 * Losing a stripe head costs more than the time to refill it,
7083 	 * it reduces the queue depth and so can hurt throughput.
7084 	 * So set it rather large, scaled by number of devices.
7085 	 */
7086 	conf->shrinker.seeks = DEFAULT_SEEKS * conf->raid_disks * 4;
7087 	conf->shrinker.scan_objects = raid5_cache_scan;
7088 	conf->shrinker.count_objects = raid5_cache_count;
7089 	conf->shrinker.batch = 128;
7090 	conf->shrinker.flags = 0;
7091 	if (register_shrinker(&conf->shrinker)) {
7092 		pr_warn("md/raid:%s: couldn't register shrinker.\n",
7093 			mdname(mddev));
7094 		goto abort;
7095 	}
7096 
7097 	sprintf(pers_name, "raid%d", mddev->new_level);
7098 	conf->thread = md_register_thread(raid5d, mddev, pers_name);
7099 	if (!conf->thread) {
7100 		pr_warn("md/raid:%s: couldn't allocate thread.\n",
7101 			mdname(mddev));
7102 		goto abort;
7103 	}
7104 
7105 	return conf;
7106 
7107  abort:
7108 	if (conf) {
7109 		free_conf(conf);
7110 		return ERR_PTR(-EIO);
7111 	} else
7112 		return ERR_PTR(-ENOMEM);
7113 }
7114 
7115 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
7116 {
7117 	switch (algo) {
7118 	case ALGORITHM_PARITY_0:
7119 		if (raid_disk < max_degraded)
7120 			return 1;
7121 		break;
7122 	case ALGORITHM_PARITY_N:
7123 		if (raid_disk >= raid_disks - max_degraded)
7124 			return 1;
7125 		break;
7126 	case ALGORITHM_PARITY_0_6:
7127 		if (raid_disk == 0 ||
7128 		    raid_disk == raid_disks - 1)
7129 			return 1;
7130 		break;
7131 	case ALGORITHM_LEFT_ASYMMETRIC_6:
7132 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
7133 	case ALGORITHM_LEFT_SYMMETRIC_6:
7134 	case ALGORITHM_RIGHT_SYMMETRIC_6:
7135 		if (raid_disk == raid_disks - 1)
7136 			return 1;
7137 	}
7138 	return 0;
7139 }
7140 
7141 static int raid5_run(struct mddev *mddev)
7142 {
7143 	struct r5conf *conf;
7144 	int working_disks = 0;
7145 	int dirty_parity_disks = 0;
7146 	struct md_rdev *rdev;
7147 	struct md_rdev *journal_dev = NULL;
7148 	sector_t reshape_offset = 0;
7149 	int i;
7150 	long long min_offset_diff = 0;
7151 	int first = 1;
7152 
7153 	if (mddev_init_writes_pending(mddev) < 0)
7154 		return -ENOMEM;
7155 
7156 	if (mddev->recovery_cp != MaxSector)
7157 		pr_notice("md/raid:%s: not clean -- starting background reconstruction\n",
7158 			  mdname(mddev));
7159 
7160 	rdev_for_each(rdev, mddev) {
7161 		long long diff;
7162 
7163 		if (test_bit(Journal, &rdev->flags)) {
7164 			journal_dev = rdev;
7165 			continue;
7166 		}
7167 		if (rdev->raid_disk < 0)
7168 			continue;
7169 		diff = (rdev->new_data_offset - rdev->data_offset);
7170 		if (first) {
7171 			min_offset_diff = diff;
7172 			first = 0;
7173 		} else if (mddev->reshape_backwards &&
7174 			 diff < min_offset_diff)
7175 			min_offset_diff = diff;
7176 		else if (!mddev->reshape_backwards &&
7177 			 diff > min_offset_diff)
7178 			min_offset_diff = diff;
7179 	}
7180 
7181 	if ((test_bit(MD_HAS_JOURNAL, &mddev->flags) || journal_dev) &&
7182 	    (mddev->bitmap_info.offset || mddev->bitmap_info.file)) {
7183 		pr_notice("md/raid:%s: array cannot have both journal and bitmap\n",
7184 			  mdname(mddev));
7185 		return -EINVAL;
7186 	}
7187 
7188 	if (mddev->reshape_position != MaxSector) {
7189 		/* Check that we can continue the reshape.
7190 		 * Difficulties arise if the stripe we would write to
7191 		 * next is at or after the stripe we would read from next.
7192 		 * For a reshape that changes the number of devices, this
7193 		 * is only possible for a very short time, and mdadm makes
7194 		 * sure that time appears to have past before assembling
7195 		 * the array.  So we fail if that time hasn't passed.
7196 		 * For a reshape that keeps the number of devices the same
7197 		 * mdadm must be monitoring the reshape can keeping the
7198 		 * critical areas read-only and backed up.  It will start
7199 		 * the array in read-only mode, so we check for that.
7200 		 */
7201 		sector_t here_new, here_old;
7202 		int old_disks;
7203 		int max_degraded = (mddev->level == 6 ? 2 : 1);
7204 		int chunk_sectors;
7205 		int new_data_disks;
7206 
7207 		if (journal_dev) {
7208 			pr_warn("md/raid:%s: don't support reshape with journal - aborting.\n",
7209 				mdname(mddev));
7210 			return -EINVAL;
7211 		}
7212 
7213 		if (mddev->new_level != mddev->level) {
7214 			pr_warn("md/raid:%s: unsupported reshape required - aborting.\n",
7215 				mdname(mddev));
7216 			return -EINVAL;
7217 		}
7218 		old_disks = mddev->raid_disks - mddev->delta_disks;
7219 		/* reshape_position must be on a new-stripe boundary, and one
7220 		 * further up in new geometry must map after here in old
7221 		 * geometry.
7222 		 * If the chunk sizes are different, then as we perform reshape
7223 		 * in units of the largest of the two, reshape_position needs
7224 		 * be a multiple of the largest chunk size times new data disks.
7225 		 */
7226 		here_new = mddev->reshape_position;
7227 		chunk_sectors = max(mddev->chunk_sectors, mddev->new_chunk_sectors);
7228 		new_data_disks = mddev->raid_disks - max_degraded;
7229 		if (sector_div(here_new, chunk_sectors * new_data_disks)) {
7230 			pr_warn("md/raid:%s: reshape_position not on a stripe boundary\n",
7231 				mdname(mddev));
7232 			return -EINVAL;
7233 		}
7234 		reshape_offset = here_new * chunk_sectors;
7235 		/* here_new is the stripe we will write to */
7236 		here_old = mddev->reshape_position;
7237 		sector_div(here_old, chunk_sectors * (old_disks-max_degraded));
7238 		/* here_old is the first stripe that we might need to read
7239 		 * from */
7240 		if (mddev->delta_disks == 0) {
7241 			/* We cannot be sure it is safe to start an in-place
7242 			 * reshape.  It is only safe if user-space is monitoring
7243 			 * and taking constant backups.
7244 			 * mdadm always starts a situation like this in
7245 			 * readonly mode so it can take control before
7246 			 * allowing any writes.  So just check for that.
7247 			 */
7248 			if (abs(min_offset_diff) >= mddev->chunk_sectors &&
7249 			    abs(min_offset_diff) >= mddev->new_chunk_sectors)
7250 				/* not really in-place - so OK */;
7251 			else if (mddev->ro == 0) {
7252 				pr_warn("md/raid:%s: in-place reshape must be started in read-only mode - aborting\n",
7253 					mdname(mddev));
7254 				return -EINVAL;
7255 			}
7256 		} else if (mddev->reshape_backwards
7257 		    ? (here_new * chunk_sectors + min_offset_diff <=
7258 		       here_old * chunk_sectors)
7259 		    : (here_new * chunk_sectors >=
7260 		       here_old * chunk_sectors + (-min_offset_diff))) {
7261 			/* Reading from the same stripe as writing to - bad */
7262 			pr_warn("md/raid:%s: reshape_position too early for auto-recovery - aborting.\n",
7263 				mdname(mddev));
7264 			return -EINVAL;
7265 		}
7266 		pr_debug("md/raid:%s: reshape will continue\n", mdname(mddev));
7267 		/* OK, we should be able to continue; */
7268 	} else {
7269 		BUG_ON(mddev->level != mddev->new_level);
7270 		BUG_ON(mddev->layout != mddev->new_layout);
7271 		BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
7272 		BUG_ON(mddev->delta_disks != 0);
7273 	}
7274 
7275 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags) &&
7276 	    test_bit(MD_HAS_PPL, &mddev->flags)) {
7277 		pr_warn("md/raid:%s: using journal device and PPL not allowed - disabling PPL\n",
7278 			mdname(mddev));
7279 		clear_bit(MD_HAS_PPL, &mddev->flags);
7280 		clear_bit(MD_HAS_MULTIPLE_PPLS, &mddev->flags);
7281 	}
7282 
7283 	if (mddev->private == NULL)
7284 		conf = setup_conf(mddev);
7285 	else
7286 		conf = mddev->private;
7287 
7288 	if (IS_ERR(conf))
7289 		return PTR_ERR(conf);
7290 
7291 	if (test_bit(MD_HAS_JOURNAL, &mddev->flags)) {
7292 		if (!journal_dev) {
7293 			pr_warn("md/raid:%s: journal disk is missing, force array readonly\n",
7294 				mdname(mddev));
7295 			mddev->ro = 1;
7296 			set_disk_ro(mddev->gendisk, 1);
7297 		} else if (mddev->recovery_cp == MaxSector)
7298 			set_bit(MD_JOURNAL_CLEAN, &mddev->flags);
7299 	}
7300 
7301 	conf->min_offset_diff = min_offset_diff;
7302 	mddev->thread = conf->thread;
7303 	conf->thread = NULL;
7304 	mddev->private = conf;
7305 
7306 	for (i = 0; i < conf->raid_disks && conf->previous_raid_disks;
7307 	     i++) {
7308 		rdev = conf->disks[i].rdev;
7309 		if (!rdev && conf->disks[i].replacement) {
7310 			/* The replacement is all we have yet */
7311 			rdev = conf->disks[i].replacement;
7312 			conf->disks[i].replacement = NULL;
7313 			clear_bit(Replacement, &rdev->flags);
7314 			conf->disks[i].rdev = rdev;
7315 		}
7316 		if (!rdev)
7317 			continue;
7318 		if (conf->disks[i].replacement &&
7319 		    conf->reshape_progress != MaxSector) {
7320 			/* replacements and reshape simply do not mix. */
7321 			pr_warn("md: cannot handle concurrent replacement and reshape.\n");
7322 			goto abort;
7323 		}
7324 		if (test_bit(In_sync, &rdev->flags)) {
7325 			working_disks++;
7326 			continue;
7327 		}
7328 		/* This disc is not fully in-sync.  However if it
7329 		 * just stored parity (beyond the recovery_offset),
7330 		 * when we don't need to be concerned about the
7331 		 * array being dirty.
7332 		 * When reshape goes 'backwards', we never have
7333 		 * partially completed devices, so we only need
7334 		 * to worry about reshape going forwards.
7335 		 */
7336 		/* Hack because v0.91 doesn't store recovery_offset properly. */
7337 		if (mddev->major_version == 0 &&
7338 		    mddev->minor_version > 90)
7339 			rdev->recovery_offset = reshape_offset;
7340 
7341 		if (rdev->recovery_offset < reshape_offset) {
7342 			/* We need to check old and new layout */
7343 			if (!only_parity(rdev->raid_disk,
7344 					 conf->algorithm,
7345 					 conf->raid_disks,
7346 					 conf->max_degraded))
7347 				continue;
7348 		}
7349 		if (!only_parity(rdev->raid_disk,
7350 				 conf->prev_algo,
7351 				 conf->previous_raid_disks,
7352 				 conf->max_degraded))
7353 			continue;
7354 		dirty_parity_disks++;
7355 	}
7356 
7357 	/*
7358 	 * 0 for a fully functional array, 1 or 2 for a degraded array.
7359 	 */
7360 	mddev->degraded = raid5_calc_degraded(conf);
7361 
7362 	if (has_failed(conf)) {
7363 		pr_crit("md/raid:%s: not enough operational devices (%d/%d failed)\n",
7364 			mdname(mddev), mddev->degraded, conf->raid_disks);
7365 		goto abort;
7366 	}
7367 
7368 	/* device size must be a multiple of chunk size */
7369 	mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
7370 	mddev->resync_max_sectors = mddev->dev_sectors;
7371 
7372 	if (mddev->degraded > dirty_parity_disks &&
7373 	    mddev->recovery_cp != MaxSector) {
7374 		if (test_bit(MD_HAS_PPL, &mddev->flags))
7375 			pr_crit("md/raid:%s: starting dirty degraded array with PPL.\n",
7376 				mdname(mddev));
7377 		else if (mddev->ok_start_degraded)
7378 			pr_crit("md/raid:%s: starting dirty degraded array - data corruption possible.\n",
7379 				mdname(mddev));
7380 		else {
7381 			pr_crit("md/raid:%s: cannot start dirty degraded array.\n",
7382 				mdname(mddev));
7383 			goto abort;
7384 		}
7385 	}
7386 
7387 	pr_info("md/raid:%s: raid level %d active with %d out of %d devices, algorithm %d\n",
7388 		mdname(mddev), conf->level,
7389 		mddev->raid_disks-mddev->degraded, mddev->raid_disks,
7390 		mddev->new_layout);
7391 
7392 	print_raid5_conf(conf);
7393 
7394 	if (conf->reshape_progress != MaxSector) {
7395 		conf->reshape_safe = conf->reshape_progress;
7396 		atomic_set(&conf->reshape_stripes, 0);
7397 		clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7398 		clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7399 		set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7400 		set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7401 		mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7402 							"reshape");
7403 		if (!mddev->sync_thread)
7404 			goto abort;
7405 	}
7406 
7407 	/* Ok, everything is just fine now */
7408 	if (mddev->to_remove == &raid5_attrs_group)
7409 		mddev->to_remove = NULL;
7410 	else if (mddev->kobj.sd &&
7411 	    sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
7412 		pr_warn("raid5: failed to create sysfs attributes for %s\n",
7413 			mdname(mddev));
7414 	md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
7415 
7416 	if (mddev->queue) {
7417 		int chunk_size;
7418 		/* read-ahead size must cover two whole stripes, which
7419 		 * is 2 * (datadisks) * chunksize where 'n' is the
7420 		 * number of raid devices
7421 		 */
7422 		int data_disks = conf->previous_raid_disks - conf->max_degraded;
7423 		int stripe = data_disks *
7424 			((mddev->chunk_sectors << 9) / PAGE_SIZE);
7425 		if (mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
7426 			mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
7427 
7428 		chunk_size = mddev->chunk_sectors << 9;
7429 		blk_queue_io_min(mddev->queue, chunk_size);
7430 		blk_queue_io_opt(mddev->queue, chunk_size *
7431 				 (conf->raid_disks - conf->max_degraded));
7432 		mddev->queue->limits.raid_partial_stripes_expensive = 1;
7433 		/*
7434 		 * We can only discard a whole stripe. It doesn't make sense to
7435 		 * discard data disk but write parity disk
7436 		 */
7437 		stripe = stripe * PAGE_SIZE;
7438 		/* Round up to power of 2, as discard handling
7439 		 * currently assumes that */
7440 		while ((stripe-1) & stripe)
7441 			stripe = (stripe | (stripe-1)) + 1;
7442 		mddev->queue->limits.discard_alignment = stripe;
7443 		mddev->queue->limits.discard_granularity = stripe;
7444 
7445 		blk_queue_max_write_same_sectors(mddev->queue, 0);
7446 		blk_queue_max_write_zeroes_sectors(mddev->queue, 0);
7447 
7448 		rdev_for_each(rdev, mddev) {
7449 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7450 					  rdev->data_offset << 9);
7451 			disk_stack_limits(mddev->gendisk, rdev->bdev,
7452 					  rdev->new_data_offset << 9);
7453 		}
7454 
7455 		/*
7456 		 * zeroing is required, otherwise data
7457 		 * could be lost. Consider a scenario: discard a stripe
7458 		 * (the stripe could be inconsistent if
7459 		 * discard_zeroes_data is 0); write one disk of the
7460 		 * stripe (the stripe could be inconsistent again
7461 		 * depending on which disks are used to calculate
7462 		 * parity); the disk is broken; The stripe data of this
7463 		 * disk is lost.
7464 		 *
7465 		 * We only allow DISCARD if the sysadmin has confirmed that
7466 		 * only safe devices are in use by setting a module parameter.
7467 		 * A better idea might be to turn DISCARD into WRITE_ZEROES
7468 		 * requests, as that is required to be safe.
7469 		 */
7470 		if (devices_handle_discard_safely &&
7471 		    mddev->queue->limits.max_discard_sectors >= (stripe >> 9) &&
7472 		    mddev->queue->limits.discard_granularity >= stripe)
7473 			blk_queue_flag_set(QUEUE_FLAG_DISCARD,
7474 						mddev->queue);
7475 		else
7476 			blk_queue_flag_clear(QUEUE_FLAG_DISCARD,
7477 						mddev->queue);
7478 
7479 		blk_queue_max_hw_sectors(mddev->queue, UINT_MAX);
7480 	}
7481 
7482 	if (log_init(conf, journal_dev, raid5_has_ppl(conf)))
7483 		goto abort;
7484 
7485 	return 0;
7486 abort:
7487 	md_unregister_thread(&mddev->thread);
7488 	print_raid5_conf(conf);
7489 	free_conf(conf);
7490 	mddev->private = NULL;
7491 	pr_warn("md/raid:%s: failed to run raid set.\n", mdname(mddev));
7492 	return -EIO;
7493 }
7494 
7495 static void raid5_free(struct mddev *mddev, void *priv)
7496 {
7497 	struct r5conf *conf = priv;
7498 
7499 	free_conf(conf);
7500 	mddev->to_remove = &raid5_attrs_group;
7501 }
7502 
7503 static void raid5_status(struct seq_file *seq, struct mddev *mddev)
7504 {
7505 	struct r5conf *conf = mddev->private;
7506 	int i;
7507 
7508 	seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
7509 		conf->chunk_sectors / 2, mddev->layout);
7510 	seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
7511 	rcu_read_lock();
7512 	for (i = 0; i < conf->raid_disks; i++) {
7513 		struct md_rdev *rdev = rcu_dereference(conf->disks[i].rdev);
7514 		seq_printf (seq, "%s", rdev && test_bit(In_sync, &rdev->flags) ? "U" : "_");
7515 	}
7516 	rcu_read_unlock();
7517 	seq_printf (seq, "]");
7518 }
7519 
7520 static void print_raid5_conf (struct r5conf *conf)
7521 {
7522 	int i;
7523 	struct disk_info *tmp;
7524 
7525 	pr_debug("RAID conf printout:\n");
7526 	if (!conf) {
7527 		pr_debug("(conf==NULL)\n");
7528 		return;
7529 	}
7530 	pr_debug(" --- level:%d rd:%d wd:%d\n", conf->level,
7531 	       conf->raid_disks,
7532 	       conf->raid_disks - conf->mddev->degraded);
7533 
7534 	for (i = 0; i < conf->raid_disks; i++) {
7535 		char b[BDEVNAME_SIZE];
7536 		tmp = conf->disks + i;
7537 		if (tmp->rdev)
7538 			pr_debug(" disk %d, o:%d, dev:%s\n",
7539 			       i, !test_bit(Faulty, &tmp->rdev->flags),
7540 			       bdevname(tmp->rdev->bdev, b));
7541 	}
7542 }
7543 
7544 static int raid5_spare_active(struct mddev *mddev)
7545 {
7546 	int i;
7547 	struct r5conf *conf = mddev->private;
7548 	struct disk_info *tmp;
7549 	int count = 0;
7550 	unsigned long flags;
7551 
7552 	for (i = 0; i < conf->raid_disks; i++) {
7553 		tmp = conf->disks + i;
7554 		if (tmp->replacement
7555 		    && tmp->replacement->recovery_offset == MaxSector
7556 		    && !test_bit(Faulty, &tmp->replacement->flags)
7557 		    && !test_and_set_bit(In_sync, &tmp->replacement->flags)) {
7558 			/* Replacement has just become active. */
7559 			if (!tmp->rdev
7560 			    || !test_and_clear_bit(In_sync, &tmp->rdev->flags))
7561 				count++;
7562 			if (tmp->rdev) {
7563 				/* Replaced device not technically faulty,
7564 				 * but we need to be sure it gets removed
7565 				 * and never re-added.
7566 				 */
7567 				set_bit(Faulty, &tmp->rdev->flags);
7568 				sysfs_notify_dirent_safe(
7569 					tmp->rdev->sysfs_state);
7570 			}
7571 			sysfs_notify_dirent_safe(tmp->replacement->sysfs_state);
7572 		} else if (tmp->rdev
7573 		    && tmp->rdev->recovery_offset == MaxSector
7574 		    && !test_bit(Faulty, &tmp->rdev->flags)
7575 		    && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
7576 			count++;
7577 			sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
7578 		}
7579 	}
7580 	spin_lock_irqsave(&conf->device_lock, flags);
7581 	mddev->degraded = raid5_calc_degraded(conf);
7582 	spin_unlock_irqrestore(&conf->device_lock, flags);
7583 	print_raid5_conf(conf);
7584 	return count;
7585 }
7586 
7587 static int raid5_remove_disk(struct mddev *mddev, struct md_rdev *rdev)
7588 {
7589 	struct r5conf *conf = mddev->private;
7590 	int err = 0;
7591 	int number = rdev->raid_disk;
7592 	struct md_rdev **rdevp;
7593 	struct disk_info *p = conf->disks + number;
7594 
7595 	print_raid5_conf(conf);
7596 	if (test_bit(Journal, &rdev->flags) && conf->log) {
7597 		/*
7598 		 * we can't wait pending write here, as this is called in
7599 		 * raid5d, wait will deadlock.
7600 		 * neilb: there is no locking about new writes here,
7601 		 * so this cannot be safe.
7602 		 */
7603 		if (atomic_read(&conf->active_stripes) ||
7604 		    atomic_read(&conf->r5c_cached_full_stripes) ||
7605 		    atomic_read(&conf->r5c_cached_partial_stripes)) {
7606 			return -EBUSY;
7607 		}
7608 		log_exit(conf);
7609 		return 0;
7610 	}
7611 	if (rdev == p->rdev)
7612 		rdevp = &p->rdev;
7613 	else if (rdev == p->replacement)
7614 		rdevp = &p->replacement;
7615 	else
7616 		return 0;
7617 
7618 	if (number >= conf->raid_disks &&
7619 	    conf->reshape_progress == MaxSector)
7620 		clear_bit(In_sync, &rdev->flags);
7621 
7622 	if (test_bit(In_sync, &rdev->flags) ||
7623 	    atomic_read(&rdev->nr_pending)) {
7624 		err = -EBUSY;
7625 		goto abort;
7626 	}
7627 	/* Only remove non-faulty devices if recovery
7628 	 * isn't possible.
7629 	 */
7630 	if (!test_bit(Faulty, &rdev->flags) &&
7631 	    mddev->recovery_disabled != conf->recovery_disabled &&
7632 	    !has_failed(conf) &&
7633 	    (!p->replacement || p->replacement == rdev) &&
7634 	    number < conf->raid_disks) {
7635 		err = -EBUSY;
7636 		goto abort;
7637 	}
7638 	*rdevp = NULL;
7639 	if (!test_bit(RemoveSynchronized, &rdev->flags)) {
7640 		synchronize_rcu();
7641 		if (atomic_read(&rdev->nr_pending)) {
7642 			/* lost the race, try later */
7643 			err = -EBUSY;
7644 			*rdevp = rdev;
7645 		}
7646 	}
7647 	if (!err) {
7648 		err = log_modify(conf, rdev, false);
7649 		if (err)
7650 			goto abort;
7651 	}
7652 	if (p->replacement) {
7653 		/* We must have just cleared 'rdev' */
7654 		p->rdev = p->replacement;
7655 		clear_bit(Replacement, &p->replacement->flags);
7656 		smp_mb(); /* Make sure other CPUs may see both as identical
7657 			   * but will never see neither - if they are careful
7658 			   */
7659 		p->replacement = NULL;
7660 
7661 		if (!err)
7662 			err = log_modify(conf, p->rdev, true);
7663 	}
7664 
7665 	clear_bit(WantReplacement, &rdev->flags);
7666 abort:
7667 
7668 	print_raid5_conf(conf);
7669 	return err;
7670 }
7671 
7672 static int raid5_add_disk(struct mddev *mddev, struct md_rdev *rdev)
7673 {
7674 	struct r5conf *conf = mddev->private;
7675 	int err = -EEXIST;
7676 	int disk;
7677 	struct disk_info *p;
7678 	int first = 0;
7679 	int last = conf->raid_disks - 1;
7680 
7681 	if (test_bit(Journal, &rdev->flags)) {
7682 		if (conf->log)
7683 			return -EBUSY;
7684 
7685 		rdev->raid_disk = 0;
7686 		/*
7687 		 * The array is in readonly mode if journal is missing, so no
7688 		 * write requests running. We should be safe
7689 		 */
7690 		log_init(conf, rdev, false);
7691 		return 0;
7692 	}
7693 	if (mddev->recovery_disabled == conf->recovery_disabled)
7694 		return -EBUSY;
7695 
7696 	if (rdev->saved_raid_disk < 0 && has_failed(conf))
7697 		/* no point adding a device */
7698 		return -EINVAL;
7699 
7700 	if (rdev->raid_disk >= 0)
7701 		first = last = rdev->raid_disk;
7702 
7703 	/*
7704 	 * find the disk ... but prefer rdev->saved_raid_disk
7705 	 * if possible.
7706 	 */
7707 	if (rdev->saved_raid_disk >= 0 &&
7708 	    rdev->saved_raid_disk >= first &&
7709 	    conf->disks[rdev->saved_raid_disk].rdev == NULL)
7710 		first = rdev->saved_raid_disk;
7711 
7712 	for (disk = first; disk <= last; disk++) {
7713 		p = conf->disks + disk;
7714 		if (p->rdev == NULL) {
7715 			clear_bit(In_sync, &rdev->flags);
7716 			rdev->raid_disk = disk;
7717 			if (rdev->saved_raid_disk != disk)
7718 				conf->fullsync = 1;
7719 			rcu_assign_pointer(p->rdev, rdev);
7720 
7721 			err = log_modify(conf, rdev, true);
7722 
7723 			goto out;
7724 		}
7725 	}
7726 	for (disk = first; disk <= last; disk++) {
7727 		p = conf->disks + disk;
7728 		if (test_bit(WantReplacement, &p->rdev->flags) &&
7729 		    p->replacement == NULL) {
7730 			clear_bit(In_sync, &rdev->flags);
7731 			set_bit(Replacement, &rdev->flags);
7732 			rdev->raid_disk = disk;
7733 			err = 0;
7734 			conf->fullsync = 1;
7735 			rcu_assign_pointer(p->replacement, rdev);
7736 			break;
7737 		}
7738 	}
7739 out:
7740 	print_raid5_conf(conf);
7741 	return err;
7742 }
7743 
7744 static int raid5_resize(struct mddev *mddev, sector_t sectors)
7745 {
7746 	/* no resync is happening, and there is enough space
7747 	 * on all devices, so we can resize.
7748 	 * We need to make sure resync covers any new space.
7749 	 * If the array is shrinking we should possibly wait until
7750 	 * any io in the removed space completes, but it hardly seems
7751 	 * worth it.
7752 	 */
7753 	sector_t newsize;
7754 	struct r5conf *conf = mddev->private;
7755 
7756 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
7757 		return -EINVAL;
7758 	sectors &= ~((sector_t)conf->chunk_sectors - 1);
7759 	newsize = raid5_size(mddev, sectors, mddev->raid_disks);
7760 	if (mddev->external_size &&
7761 	    mddev->array_sectors > newsize)
7762 		return -EINVAL;
7763 	if (mddev->bitmap) {
7764 		int ret = md_bitmap_resize(mddev->bitmap, sectors, 0, 0);
7765 		if (ret)
7766 			return ret;
7767 	}
7768 	md_set_array_sectors(mddev, newsize);
7769 	if (sectors > mddev->dev_sectors &&
7770 	    mddev->recovery_cp > mddev->dev_sectors) {
7771 		mddev->recovery_cp = mddev->dev_sectors;
7772 		set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
7773 	}
7774 	mddev->dev_sectors = sectors;
7775 	mddev->resync_max_sectors = sectors;
7776 	return 0;
7777 }
7778 
7779 static int check_stripe_cache(struct mddev *mddev)
7780 {
7781 	/* Can only proceed if there are plenty of stripe_heads.
7782 	 * We need a minimum of one full stripe,, and for sensible progress
7783 	 * it is best to have about 4 times that.
7784 	 * If we require 4 times, then the default 256 4K stripe_heads will
7785 	 * allow for chunk sizes up to 256K, which is probably OK.
7786 	 * If the chunk size is greater, user-space should request more
7787 	 * stripe_heads first.
7788 	 */
7789 	struct r5conf *conf = mddev->private;
7790 	if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
7791 	    > conf->min_nr_stripes ||
7792 	    ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
7793 	    > conf->min_nr_stripes) {
7794 		pr_warn("md/raid:%s: reshape: not enough stripes.  Needed %lu\n",
7795 			mdname(mddev),
7796 			((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
7797 			 / STRIPE_SIZE)*4);
7798 		return 0;
7799 	}
7800 	return 1;
7801 }
7802 
7803 static int check_reshape(struct mddev *mddev)
7804 {
7805 	struct r5conf *conf = mddev->private;
7806 
7807 	if (raid5_has_log(conf) || raid5_has_ppl(conf))
7808 		return -EINVAL;
7809 	if (mddev->delta_disks == 0 &&
7810 	    mddev->new_layout == mddev->layout &&
7811 	    mddev->new_chunk_sectors == mddev->chunk_sectors)
7812 		return 0; /* nothing to do */
7813 	if (has_failed(conf))
7814 		return -EINVAL;
7815 	if (mddev->delta_disks < 0 && mddev->reshape_position == MaxSector) {
7816 		/* We might be able to shrink, but the devices must
7817 		 * be made bigger first.
7818 		 * For raid6, 4 is the minimum size.
7819 		 * Otherwise 2 is the minimum
7820 		 */
7821 		int min = 2;
7822 		if (mddev->level == 6)
7823 			min = 4;
7824 		if (mddev->raid_disks + mddev->delta_disks < min)
7825 			return -EINVAL;
7826 	}
7827 
7828 	if (!check_stripe_cache(mddev))
7829 		return -ENOSPC;
7830 
7831 	if (mddev->new_chunk_sectors > mddev->chunk_sectors ||
7832 	    mddev->delta_disks > 0)
7833 		if (resize_chunks(conf,
7834 				  conf->previous_raid_disks
7835 				  + max(0, mddev->delta_disks),
7836 				  max(mddev->new_chunk_sectors,
7837 				      mddev->chunk_sectors)
7838 			    ) < 0)
7839 			return -ENOMEM;
7840 
7841 	if (conf->previous_raid_disks + mddev->delta_disks <= conf->pool_size)
7842 		return 0; /* never bother to shrink */
7843 	return resize_stripes(conf, (conf->previous_raid_disks
7844 				     + mddev->delta_disks));
7845 }
7846 
7847 static int raid5_start_reshape(struct mddev *mddev)
7848 {
7849 	struct r5conf *conf = mddev->private;
7850 	struct md_rdev *rdev;
7851 	int spares = 0;
7852 	unsigned long flags;
7853 
7854 	if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
7855 		return -EBUSY;
7856 
7857 	if (!check_stripe_cache(mddev))
7858 		return -ENOSPC;
7859 
7860 	if (has_failed(conf))
7861 		return -EINVAL;
7862 
7863 	rdev_for_each(rdev, mddev) {
7864 		if (!test_bit(In_sync, &rdev->flags)
7865 		    && !test_bit(Faulty, &rdev->flags))
7866 			spares++;
7867 	}
7868 
7869 	if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
7870 		/* Not enough devices even to make a degraded array
7871 		 * of that size
7872 		 */
7873 		return -EINVAL;
7874 
7875 	/* Refuse to reduce size of the array.  Any reductions in
7876 	 * array size must be through explicit setting of array_size
7877 	 * attribute.
7878 	 */
7879 	if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
7880 	    < mddev->array_sectors) {
7881 		pr_warn("md/raid:%s: array size must be reduced before number of disks\n",
7882 			mdname(mddev));
7883 		return -EINVAL;
7884 	}
7885 
7886 	atomic_set(&conf->reshape_stripes, 0);
7887 	spin_lock_irq(&conf->device_lock);
7888 	write_seqcount_begin(&conf->gen_lock);
7889 	conf->previous_raid_disks = conf->raid_disks;
7890 	conf->raid_disks += mddev->delta_disks;
7891 	conf->prev_chunk_sectors = conf->chunk_sectors;
7892 	conf->chunk_sectors = mddev->new_chunk_sectors;
7893 	conf->prev_algo = conf->algorithm;
7894 	conf->algorithm = mddev->new_layout;
7895 	conf->generation++;
7896 	/* Code that selects data_offset needs to see the generation update
7897 	 * if reshape_progress has been set - so a memory barrier needed.
7898 	 */
7899 	smp_mb();
7900 	if (mddev->reshape_backwards)
7901 		conf->reshape_progress = raid5_size(mddev, 0, 0);
7902 	else
7903 		conf->reshape_progress = 0;
7904 	conf->reshape_safe = conf->reshape_progress;
7905 	write_seqcount_end(&conf->gen_lock);
7906 	spin_unlock_irq(&conf->device_lock);
7907 
7908 	/* Now make sure any requests that proceeded on the assumption
7909 	 * the reshape wasn't running - like Discard or Read - have
7910 	 * completed.
7911 	 */
7912 	mddev_suspend(mddev);
7913 	mddev_resume(mddev);
7914 
7915 	/* Add some new drives, as many as will fit.
7916 	 * We know there are enough to make the newly sized array work.
7917 	 * Don't add devices if we are reducing the number of
7918 	 * devices in the array.  This is because it is not possible
7919 	 * to correctly record the "partially reconstructed" state of
7920 	 * such devices during the reshape and confusion could result.
7921 	 */
7922 	if (mddev->delta_disks >= 0) {
7923 		rdev_for_each(rdev, mddev)
7924 			if (rdev->raid_disk < 0 &&
7925 			    !test_bit(Faulty, &rdev->flags)) {
7926 				if (raid5_add_disk(mddev, rdev) == 0) {
7927 					if (rdev->raid_disk
7928 					    >= conf->previous_raid_disks)
7929 						set_bit(In_sync, &rdev->flags);
7930 					else
7931 						rdev->recovery_offset = 0;
7932 
7933 					if (sysfs_link_rdev(mddev, rdev))
7934 						/* Failure here is OK */;
7935 				}
7936 			} else if (rdev->raid_disk >= conf->previous_raid_disks
7937 				   && !test_bit(Faulty, &rdev->flags)) {
7938 				/* This is a spare that was manually added */
7939 				set_bit(In_sync, &rdev->flags);
7940 			}
7941 
7942 		/* When a reshape changes the number of devices,
7943 		 * ->degraded is measured against the larger of the
7944 		 * pre and post number of devices.
7945 		 */
7946 		spin_lock_irqsave(&conf->device_lock, flags);
7947 		mddev->degraded = raid5_calc_degraded(conf);
7948 		spin_unlock_irqrestore(&conf->device_lock, flags);
7949 	}
7950 	mddev->raid_disks = conf->raid_disks;
7951 	mddev->reshape_position = conf->reshape_progress;
7952 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
7953 
7954 	clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
7955 	clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
7956 	clear_bit(MD_RECOVERY_DONE, &mddev->recovery);
7957 	set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
7958 	set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
7959 	mddev->sync_thread = md_register_thread(md_do_sync, mddev,
7960 						"reshape");
7961 	if (!mddev->sync_thread) {
7962 		mddev->recovery = 0;
7963 		spin_lock_irq(&conf->device_lock);
7964 		write_seqcount_begin(&conf->gen_lock);
7965 		mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
7966 		mddev->new_chunk_sectors =
7967 			conf->chunk_sectors = conf->prev_chunk_sectors;
7968 		mddev->new_layout = conf->algorithm = conf->prev_algo;
7969 		rdev_for_each(rdev, mddev)
7970 			rdev->new_data_offset = rdev->data_offset;
7971 		smp_wmb();
7972 		conf->generation --;
7973 		conf->reshape_progress = MaxSector;
7974 		mddev->reshape_position = MaxSector;
7975 		write_seqcount_end(&conf->gen_lock);
7976 		spin_unlock_irq(&conf->device_lock);
7977 		return -EAGAIN;
7978 	}
7979 	conf->reshape_checkpoint = jiffies;
7980 	md_wakeup_thread(mddev->sync_thread);
7981 	md_new_event(mddev);
7982 	return 0;
7983 }
7984 
7985 /* This is called from the reshape thread and should make any
7986  * changes needed in 'conf'
7987  */
7988 static void end_reshape(struct r5conf *conf)
7989 {
7990 
7991 	if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
7992 		struct md_rdev *rdev;
7993 
7994 		spin_lock_irq(&conf->device_lock);
7995 		conf->previous_raid_disks = conf->raid_disks;
7996 		md_finish_reshape(conf->mddev);
7997 		smp_wmb();
7998 		conf->reshape_progress = MaxSector;
7999 		conf->mddev->reshape_position = MaxSector;
8000 		rdev_for_each(rdev, conf->mddev)
8001 			if (rdev->raid_disk >= 0 &&
8002 			    !test_bit(Journal, &rdev->flags) &&
8003 			    !test_bit(In_sync, &rdev->flags))
8004 				rdev->recovery_offset = MaxSector;
8005 		spin_unlock_irq(&conf->device_lock);
8006 		wake_up(&conf->wait_for_overlap);
8007 
8008 		/* read-ahead size must cover two whole stripes, which is
8009 		 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
8010 		 */
8011 		if (conf->mddev->queue) {
8012 			int data_disks = conf->raid_disks - conf->max_degraded;
8013 			int stripe = data_disks * ((conf->chunk_sectors << 9)
8014 						   / PAGE_SIZE);
8015 			if (conf->mddev->queue->backing_dev_info->ra_pages < 2 * stripe)
8016 				conf->mddev->queue->backing_dev_info->ra_pages = 2 * stripe;
8017 		}
8018 	}
8019 }
8020 
8021 /* This is called from the raid5d thread with mddev_lock held.
8022  * It makes config changes to the device.
8023  */
8024 static void raid5_finish_reshape(struct mddev *mddev)
8025 {
8026 	struct r5conf *conf = mddev->private;
8027 
8028 	if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
8029 
8030 		if (mddev->delta_disks <= 0) {
8031 			int d;
8032 			spin_lock_irq(&conf->device_lock);
8033 			mddev->degraded = raid5_calc_degraded(conf);
8034 			spin_unlock_irq(&conf->device_lock);
8035 			for (d = conf->raid_disks ;
8036 			     d < conf->raid_disks - mddev->delta_disks;
8037 			     d++) {
8038 				struct md_rdev *rdev = conf->disks[d].rdev;
8039 				if (rdev)
8040 					clear_bit(In_sync, &rdev->flags);
8041 				rdev = conf->disks[d].replacement;
8042 				if (rdev)
8043 					clear_bit(In_sync, &rdev->flags);
8044 			}
8045 		}
8046 		mddev->layout = conf->algorithm;
8047 		mddev->chunk_sectors = conf->chunk_sectors;
8048 		mddev->reshape_position = MaxSector;
8049 		mddev->delta_disks = 0;
8050 		mddev->reshape_backwards = 0;
8051 	}
8052 }
8053 
8054 static void raid5_quiesce(struct mddev *mddev, int quiesce)
8055 {
8056 	struct r5conf *conf = mddev->private;
8057 
8058 	if (quiesce) {
8059 		/* stop all writes */
8060 		lock_all_device_hash_locks_irq(conf);
8061 		/* '2' tells resync/reshape to pause so that all
8062 		 * active stripes can drain
8063 		 */
8064 		r5c_flush_cache(conf, INT_MAX);
8065 		conf->quiesce = 2;
8066 		wait_event_cmd(conf->wait_for_quiescent,
8067 				    atomic_read(&conf->active_stripes) == 0 &&
8068 				    atomic_read(&conf->active_aligned_reads) == 0,
8069 				    unlock_all_device_hash_locks_irq(conf),
8070 				    lock_all_device_hash_locks_irq(conf));
8071 		conf->quiesce = 1;
8072 		unlock_all_device_hash_locks_irq(conf);
8073 		/* allow reshape to continue */
8074 		wake_up(&conf->wait_for_overlap);
8075 	} else {
8076 		/* re-enable writes */
8077 		lock_all_device_hash_locks_irq(conf);
8078 		conf->quiesce = 0;
8079 		wake_up(&conf->wait_for_quiescent);
8080 		wake_up(&conf->wait_for_overlap);
8081 		unlock_all_device_hash_locks_irq(conf);
8082 	}
8083 	log_quiesce(conf, quiesce);
8084 }
8085 
8086 static void *raid45_takeover_raid0(struct mddev *mddev, int level)
8087 {
8088 	struct r0conf *raid0_conf = mddev->private;
8089 	sector_t sectors;
8090 
8091 	/* for raid0 takeover only one zone is supported */
8092 	if (raid0_conf->nr_strip_zones > 1) {
8093 		pr_warn("md/raid:%s: cannot takeover raid0 with more than one zone.\n",
8094 			mdname(mddev));
8095 		return ERR_PTR(-EINVAL);
8096 	}
8097 
8098 	sectors = raid0_conf->strip_zone[0].zone_end;
8099 	sector_div(sectors, raid0_conf->strip_zone[0].nb_dev);
8100 	mddev->dev_sectors = sectors;
8101 	mddev->new_level = level;
8102 	mddev->new_layout = ALGORITHM_PARITY_N;
8103 	mddev->new_chunk_sectors = mddev->chunk_sectors;
8104 	mddev->raid_disks += 1;
8105 	mddev->delta_disks = 1;
8106 	/* make sure it will be not marked as dirty */
8107 	mddev->recovery_cp = MaxSector;
8108 
8109 	return setup_conf(mddev);
8110 }
8111 
8112 static void *raid5_takeover_raid1(struct mddev *mddev)
8113 {
8114 	int chunksect;
8115 	void *ret;
8116 
8117 	if (mddev->raid_disks != 2 ||
8118 	    mddev->degraded > 1)
8119 		return ERR_PTR(-EINVAL);
8120 
8121 	/* Should check if there are write-behind devices? */
8122 
8123 	chunksect = 64*2; /* 64K by default */
8124 
8125 	/* The array must be an exact multiple of chunksize */
8126 	while (chunksect && (mddev->array_sectors & (chunksect-1)))
8127 		chunksect >>= 1;
8128 
8129 	if ((chunksect<<9) < STRIPE_SIZE)
8130 		/* array size does not allow a suitable chunk size */
8131 		return ERR_PTR(-EINVAL);
8132 
8133 	mddev->new_level = 5;
8134 	mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
8135 	mddev->new_chunk_sectors = chunksect;
8136 
8137 	ret = setup_conf(mddev);
8138 	if (!IS_ERR(ret))
8139 		mddev_clear_unsupported_flags(mddev,
8140 			UNSUPPORTED_MDDEV_FLAGS);
8141 	return ret;
8142 }
8143 
8144 static void *raid5_takeover_raid6(struct mddev *mddev)
8145 {
8146 	int new_layout;
8147 
8148 	switch (mddev->layout) {
8149 	case ALGORITHM_LEFT_ASYMMETRIC_6:
8150 		new_layout = ALGORITHM_LEFT_ASYMMETRIC;
8151 		break;
8152 	case ALGORITHM_RIGHT_ASYMMETRIC_6:
8153 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
8154 		break;
8155 	case ALGORITHM_LEFT_SYMMETRIC_6:
8156 		new_layout = ALGORITHM_LEFT_SYMMETRIC;
8157 		break;
8158 	case ALGORITHM_RIGHT_SYMMETRIC_6:
8159 		new_layout = ALGORITHM_RIGHT_SYMMETRIC;
8160 		break;
8161 	case ALGORITHM_PARITY_0_6:
8162 		new_layout = ALGORITHM_PARITY_0;
8163 		break;
8164 	case ALGORITHM_PARITY_N:
8165 		new_layout = ALGORITHM_PARITY_N;
8166 		break;
8167 	default:
8168 		return ERR_PTR(-EINVAL);
8169 	}
8170 	mddev->new_level = 5;
8171 	mddev->new_layout = new_layout;
8172 	mddev->delta_disks = -1;
8173 	mddev->raid_disks -= 1;
8174 	return setup_conf(mddev);
8175 }
8176 
8177 static int raid5_check_reshape(struct mddev *mddev)
8178 {
8179 	/* For a 2-drive array, the layout and chunk size can be changed
8180 	 * immediately as not restriping is needed.
8181 	 * For larger arrays we record the new value - after validation
8182 	 * to be used by a reshape pass.
8183 	 */
8184 	struct r5conf *conf = mddev->private;
8185 	int new_chunk = mddev->new_chunk_sectors;
8186 
8187 	if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
8188 		return -EINVAL;
8189 	if (new_chunk > 0) {
8190 		if (!is_power_of_2(new_chunk))
8191 			return -EINVAL;
8192 		if (new_chunk < (PAGE_SIZE>>9))
8193 			return -EINVAL;
8194 		if (mddev->array_sectors & (new_chunk-1))
8195 			/* not factor of array size */
8196 			return -EINVAL;
8197 	}
8198 
8199 	/* They look valid */
8200 
8201 	if (mddev->raid_disks == 2) {
8202 		/* can make the change immediately */
8203 		if (mddev->new_layout >= 0) {
8204 			conf->algorithm = mddev->new_layout;
8205 			mddev->layout = mddev->new_layout;
8206 		}
8207 		if (new_chunk > 0) {
8208 			conf->chunk_sectors = new_chunk ;
8209 			mddev->chunk_sectors = new_chunk;
8210 		}
8211 		set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
8212 		md_wakeup_thread(mddev->thread);
8213 	}
8214 	return check_reshape(mddev);
8215 }
8216 
8217 static int raid6_check_reshape(struct mddev *mddev)
8218 {
8219 	int new_chunk = mddev->new_chunk_sectors;
8220 
8221 	if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
8222 		return -EINVAL;
8223 	if (new_chunk > 0) {
8224 		if (!is_power_of_2(new_chunk))
8225 			return -EINVAL;
8226 		if (new_chunk < (PAGE_SIZE >> 9))
8227 			return -EINVAL;
8228 		if (mddev->array_sectors & (new_chunk-1))
8229 			/* not factor of array size */
8230 			return -EINVAL;
8231 	}
8232 
8233 	/* They look valid */
8234 	return check_reshape(mddev);
8235 }
8236 
8237 static void *raid5_takeover(struct mddev *mddev)
8238 {
8239 	/* raid5 can take over:
8240 	 *  raid0 - if there is only one strip zone - make it a raid4 layout
8241 	 *  raid1 - if there are two drives.  We need to know the chunk size
8242 	 *  raid4 - trivial - just use a raid4 layout.
8243 	 *  raid6 - Providing it is a *_6 layout
8244 	 */
8245 	if (mddev->level == 0)
8246 		return raid45_takeover_raid0(mddev, 5);
8247 	if (mddev->level == 1)
8248 		return raid5_takeover_raid1(mddev);
8249 	if (mddev->level == 4) {
8250 		mddev->new_layout = ALGORITHM_PARITY_N;
8251 		mddev->new_level = 5;
8252 		return setup_conf(mddev);
8253 	}
8254 	if (mddev->level == 6)
8255 		return raid5_takeover_raid6(mddev);
8256 
8257 	return ERR_PTR(-EINVAL);
8258 }
8259 
8260 static void *raid4_takeover(struct mddev *mddev)
8261 {
8262 	/* raid4 can take over:
8263 	 *  raid0 - if there is only one strip zone
8264 	 *  raid5 - if layout is right
8265 	 */
8266 	if (mddev->level == 0)
8267 		return raid45_takeover_raid0(mddev, 4);
8268 	if (mddev->level == 5 &&
8269 	    mddev->layout == ALGORITHM_PARITY_N) {
8270 		mddev->new_layout = 0;
8271 		mddev->new_level = 4;
8272 		return setup_conf(mddev);
8273 	}
8274 	return ERR_PTR(-EINVAL);
8275 }
8276 
8277 static struct md_personality raid5_personality;
8278 
8279 static void *raid6_takeover(struct mddev *mddev)
8280 {
8281 	/* Currently can only take over a raid5.  We map the
8282 	 * personality to an equivalent raid6 personality
8283 	 * with the Q block at the end.
8284 	 */
8285 	int new_layout;
8286 
8287 	if (mddev->pers != &raid5_personality)
8288 		return ERR_PTR(-EINVAL);
8289 	if (mddev->degraded > 1)
8290 		return ERR_PTR(-EINVAL);
8291 	if (mddev->raid_disks > 253)
8292 		return ERR_PTR(-EINVAL);
8293 	if (mddev->raid_disks < 3)
8294 		return ERR_PTR(-EINVAL);
8295 
8296 	switch (mddev->layout) {
8297 	case ALGORITHM_LEFT_ASYMMETRIC:
8298 		new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
8299 		break;
8300 	case ALGORITHM_RIGHT_ASYMMETRIC:
8301 		new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
8302 		break;
8303 	case ALGORITHM_LEFT_SYMMETRIC:
8304 		new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
8305 		break;
8306 	case ALGORITHM_RIGHT_SYMMETRIC:
8307 		new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
8308 		break;
8309 	case ALGORITHM_PARITY_0:
8310 		new_layout = ALGORITHM_PARITY_0_6;
8311 		break;
8312 	case ALGORITHM_PARITY_N:
8313 		new_layout = ALGORITHM_PARITY_N;
8314 		break;
8315 	default:
8316 		return ERR_PTR(-EINVAL);
8317 	}
8318 	mddev->new_level = 6;
8319 	mddev->new_layout = new_layout;
8320 	mddev->delta_disks = 1;
8321 	mddev->raid_disks += 1;
8322 	return setup_conf(mddev);
8323 }
8324 
8325 static int raid5_change_consistency_policy(struct mddev *mddev, const char *buf)
8326 {
8327 	struct r5conf *conf;
8328 	int err;
8329 
8330 	err = mddev_lock(mddev);
8331 	if (err)
8332 		return err;
8333 	conf = mddev->private;
8334 	if (!conf) {
8335 		mddev_unlock(mddev);
8336 		return -ENODEV;
8337 	}
8338 
8339 	if (strncmp(buf, "ppl", 3) == 0) {
8340 		/* ppl only works with RAID 5 */
8341 		if (!raid5_has_ppl(conf) && conf->level == 5) {
8342 			err = log_init(conf, NULL, true);
8343 			if (!err) {
8344 				err = resize_stripes(conf, conf->pool_size);
8345 				if (err)
8346 					log_exit(conf);
8347 			}
8348 		} else
8349 			err = -EINVAL;
8350 	} else if (strncmp(buf, "resync", 6) == 0) {
8351 		if (raid5_has_ppl(conf)) {
8352 			mddev_suspend(mddev);
8353 			log_exit(conf);
8354 			mddev_resume(mddev);
8355 			err = resize_stripes(conf, conf->pool_size);
8356 		} else if (test_bit(MD_HAS_JOURNAL, &conf->mddev->flags) &&
8357 			   r5l_log_disk_error(conf)) {
8358 			bool journal_dev_exists = false;
8359 			struct md_rdev *rdev;
8360 
8361 			rdev_for_each(rdev, mddev)
8362 				if (test_bit(Journal, &rdev->flags)) {
8363 					journal_dev_exists = true;
8364 					break;
8365 				}
8366 
8367 			if (!journal_dev_exists) {
8368 				mddev_suspend(mddev);
8369 				clear_bit(MD_HAS_JOURNAL, &mddev->flags);
8370 				mddev_resume(mddev);
8371 			} else  /* need remove journal device first */
8372 				err = -EBUSY;
8373 		} else
8374 			err = -EINVAL;
8375 	} else {
8376 		err = -EINVAL;
8377 	}
8378 
8379 	if (!err)
8380 		md_update_sb(mddev, 1);
8381 
8382 	mddev_unlock(mddev);
8383 
8384 	return err;
8385 }
8386 
8387 static int raid5_start(struct mddev *mddev)
8388 {
8389 	struct r5conf *conf = mddev->private;
8390 
8391 	return r5l_start(conf->log);
8392 }
8393 
8394 static struct md_personality raid6_personality =
8395 {
8396 	.name		= "raid6",
8397 	.level		= 6,
8398 	.owner		= THIS_MODULE,
8399 	.make_request	= raid5_make_request,
8400 	.run		= raid5_run,
8401 	.start		= raid5_start,
8402 	.free		= raid5_free,
8403 	.status		= raid5_status,
8404 	.error_handler	= raid5_error,
8405 	.hot_add_disk	= raid5_add_disk,
8406 	.hot_remove_disk= raid5_remove_disk,
8407 	.spare_active	= raid5_spare_active,
8408 	.sync_request	= raid5_sync_request,
8409 	.resize		= raid5_resize,
8410 	.size		= raid5_size,
8411 	.check_reshape	= raid6_check_reshape,
8412 	.start_reshape  = raid5_start_reshape,
8413 	.finish_reshape = raid5_finish_reshape,
8414 	.quiesce	= raid5_quiesce,
8415 	.takeover	= raid6_takeover,
8416 	.congested	= raid5_congested,
8417 	.change_consistency_policy = raid5_change_consistency_policy,
8418 };
8419 static struct md_personality raid5_personality =
8420 {
8421 	.name		= "raid5",
8422 	.level		= 5,
8423 	.owner		= THIS_MODULE,
8424 	.make_request	= raid5_make_request,
8425 	.run		= raid5_run,
8426 	.start		= raid5_start,
8427 	.free		= raid5_free,
8428 	.status		= raid5_status,
8429 	.error_handler	= raid5_error,
8430 	.hot_add_disk	= raid5_add_disk,
8431 	.hot_remove_disk= raid5_remove_disk,
8432 	.spare_active	= raid5_spare_active,
8433 	.sync_request	= raid5_sync_request,
8434 	.resize		= raid5_resize,
8435 	.size		= raid5_size,
8436 	.check_reshape	= raid5_check_reshape,
8437 	.start_reshape  = raid5_start_reshape,
8438 	.finish_reshape = raid5_finish_reshape,
8439 	.quiesce	= raid5_quiesce,
8440 	.takeover	= raid5_takeover,
8441 	.congested	= raid5_congested,
8442 	.change_consistency_policy = raid5_change_consistency_policy,
8443 };
8444 
8445 static struct md_personality raid4_personality =
8446 {
8447 	.name		= "raid4",
8448 	.level		= 4,
8449 	.owner		= THIS_MODULE,
8450 	.make_request	= raid5_make_request,
8451 	.run		= raid5_run,
8452 	.start		= raid5_start,
8453 	.free		= raid5_free,
8454 	.status		= raid5_status,
8455 	.error_handler	= raid5_error,
8456 	.hot_add_disk	= raid5_add_disk,
8457 	.hot_remove_disk= raid5_remove_disk,
8458 	.spare_active	= raid5_spare_active,
8459 	.sync_request	= raid5_sync_request,
8460 	.resize		= raid5_resize,
8461 	.size		= raid5_size,
8462 	.check_reshape	= raid5_check_reshape,
8463 	.start_reshape  = raid5_start_reshape,
8464 	.finish_reshape = raid5_finish_reshape,
8465 	.quiesce	= raid5_quiesce,
8466 	.takeover	= raid4_takeover,
8467 	.congested	= raid5_congested,
8468 	.change_consistency_policy = raid5_change_consistency_policy,
8469 };
8470 
8471 static int __init raid5_init(void)
8472 {
8473 	int ret;
8474 
8475 	raid5_wq = alloc_workqueue("raid5wq",
8476 		WQ_UNBOUND|WQ_MEM_RECLAIM|WQ_CPU_INTENSIVE|WQ_SYSFS, 0);
8477 	if (!raid5_wq)
8478 		return -ENOMEM;
8479 
8480 	ret = cpuhp_setup_state_multi(CPUHP_MD_RAID5_PREPARE,
8481 				      "md/raid5:prepare",
8482 				      raid456_cpu_up_prepare,
8483 				      raid456_cpu_dead);
8484 	if (ret) {
8485 		destroy_workqueue(raid5_wq);
8486 		return ret;
8487 	}
8488 	register_md_personality(&raid6_personality);
8489 	register_md_personality(&raid5_personality);
8490 	register_md_personality(&raid4_personality);
8491 	return 0;
8492 }
8493 
8494 static void raid5_exit(void)
8495 {
8496 	unregister_md_personality(&raid6_personality);
8497 	unregister_md_personality(&raid5_personality);
8498 	unregister_md_personality(&raid4_personality);
8499 	cpuhp_remove_multi_state(CPUHP_MD_RAID5_PREPARE);
8500 	destroy_workqueue(raid5_wq);
8501 }
8502 
8503 module_init(raid5_init);
8504 module_exit(raid5_exit);
8505 MODULE_LICENSE("GPL");
8506 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
8507 MODULE_ALIAS("md-personality-4"); /* RAID5 */
8508 MODULE_ALIAS("md-raid5");
8509 MODULE_ALIAS("md-raid4");
8510 MODULE_ALIAS("md-level-5");
8511 MODULE_ALIAS("md-level-4");
8512 MODULE_ALIAS("md-personality-8"); /* RAID6 */
8513 MODULE_ALIAS("md-raid6");
8514 MODULE_ALIAS("md-level-6");
8515 
8516 /* This used to be two separate modules, they were: */
8517 MODULE_ALIAS("raid5");
8518 MODULE_ALIAS("raid6");
8519