xref: /linux/drivers/md/raid5-cache.c (revision fcc8487d477a3452a1d0ccbdd4c5e0e1e3cb8bed)
1 /*
2  * Copyright (C) 2015 Shaohua Li <shli@fb.com>
3  * Copyright (C) 2016 Song Liu <songliubraving@fb.com>
4  *
5  * This program is free software; you can redistribute it and/or modify it
6  * under the terms and conditions of the GNU General Public License,
7  * version 2, as published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope it will be useful, but WITHOUT
10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
12  * more details.
13  *
14  */
15 #include <linux/kernel.h>
16 #include <linux/wait.h>
17 #include <linux/blkdev.h>
18 #include <linux/slab.h>
19 #include <linux/raid/md_p.h>
20 #include <linux/crc32c.h>
21 #include <linux/random.h>
22 #include <linux/kthread.h>
23 #include <linux/types.h>
24 #include "md.h"
25 #include "raid5.h"
26 #include "bitmap.h"
27 
28 /*
29  * metadata/data stored in disk with 4k size unit (a block) regardless
30  * underneath hardware sector size. only works with PAGE_SIZE == 4096
31  */
32 #define BLOCK_SECTORS (8)
33 #define BLOCK_SECTOR_SHIFT (3)
34 
35 /*
36  * log->max_free_space is min(1/4 disk size, 10G reclaimable space).
37  *
38  * In write through mode, the reclaim runs every log->max_free_space.
39  * This can prevent the recovery scans for too long
40  */
41 #define RECLAIM_MAX_FREE_SPACE (10 * 1024 * 1024 * 2) /* sector */
42 #define RECLAIM_MAX_FREE_SPACE_SHIFT (2)
43 
44 /* wake up reclaim thread periodically */
45 #define R5C_RECLAIM_WAKEUP_INTERVAL (30 * HZ)
46 /* start flush with these full stripes */
47 #define R5C_FULL_STRIPE_FLUSH_BATCH(conf) (conf->max_nr_stripes / 4)
48 /* reclaim stripes in groups */
49 #define R5C_RECLAIM_STRIPE_GROUP (NR_STRIPE_HASH_LOCKS * 2)
50 
51 /*
52  * We only need 2 bios per I/O unit to make progress, but ensure we
53  * have a few more available to not get too tight.
54  */
55 #define R5L_POOL_SIZE	4
56 
57 static char *r5c_journal_mode_str[] = {"write-through",
58 				       "write-back"};
59 /*
60  * raid5 cache state machine
61  *
62  * With the RAID cache, each stripe works in two phases:
63  *	- caching phase
64  *	- writing-out phase
65  *
66  * These two phases are controlled by bit STRIPE_R5C_CACHING:
67  *   if STRIPE_R5C_CACHING == 0, the stripe is in writing-out phase
68  *   if STRIPE_R5C_CACHING == 1, the stripe is in caching phase
69  *
70  * When there is no journal, or the journal is in write-through mode,
71  * the stripe is always in writing-out phase.
72  *
73  * For write-back journal, the stripe is sent to caching phase on write
74  * (r5c_try_caching_write). r5c_make_stripe_write_out() kicks off
75  * the write-out phase by clearing STRIPE_R5C_CACHING.
76  *
77  * Stripes in caching phase do not write the raid disks. Instead, all
78  * writes are committed from the log device. Therefore, a stripe in
79  * caching phase handles writes as:
80  *	- write to log device
81  *	- return IO
82  *
83  * Stripes in writing-out phase handle writes as:
84  *	- calculate parity
85  *	- write pending data and parity to journal
86  *	- write data and parity to raid disks
87  *	- return IO for pending writes
88  */
89 
90 struct r5l_log {
91 	struct md_rdev *rdev;
92 
93 	u32 uuid_checksum;
94 
95 	sector_t device_size;		/* log device size, round to
96 					 * BLOCK_SECTORS */
97 	sector_t max_free_space;	/* reclaim run if free space is at
98 					 * this size */
99 
100 	sector_t last_checkpoint;	/* log tail. where recovery scan
101 					 * starts from */
102 	u64 last_cp_seq;		/* log tail sequence */
103 
104 	sector_t log_start;		/* log head. where new data appends */
105 	u64 seq;			/* log head sequence */
106 
107 	sector_t next_checkpoint;
108 
109 	struct mutex io_mutex;
110 	struct r5l_io_unit *current_io;	/* current io_unit accepting new data */
111 
112 	spinlock_t io_list_lock;
113 	struct list_head running_ios;	/* io_units which are still running,
114 					 * and have not yet been completely
115 					 * written to the log */
116 	struct list_head io_end_ios;	/* io_units which have been completely
117 					 * written to the log but not yet written
118 					 * to the RAID */
119 	struct list_head flushing_ios;	/* io_units which are waiting for log
120 					 * cache flush */
121 	struct list_head finished_ios;	/* io_units which settle down in log disk */
122 	struct bio flush_bio;
123 
124 	struct list_head no_mem_stripes;   /* pending stripes, -ENOMEM */
125 
126 	struct kmem_cache *io_kc;
127 	mempool_t *io_pool;
128 	struct bio_set *bs;
129 	mempool_t *meta_pool;
130 
131 	struct md_thread *reclaim_thread;
132 	unsigned long reclaim_target;	/* number of space that need to be
133 					 * reclaimed.  if it's 0, reclaim spaces
134 					 * used by io_units which are in
135 					 * IO_UNIT_STRIPE_END state (eg, reclaim
136 					 * dones't wait for specific io_unit
137 					 * switching to IO_UNIT_STRIPE_END
138 					 * state) */
139 	wait_queue_head_t iounit_wait;
140 
141 	struct list_head no_space_stripes; /* pending stripes, log has no space */
142 	spinlock_t no_space_stripes_lock;
143 
144 	bool need_cache_flush;
145 
146 	/* for r5c_cache */
147 	enum r5c_journal_mode r5c_journal_mode;
148 
149 	/* all stripes in r5cache, in the order of seq at sh->log_start */
150 	struct list_head stripe_in_journal_list;
151 
152 	spinlock_t stripe_in_journal_lock;
153 	atomic_t stripe_in_journal_count;
154 
155 	/* to submit async io_units, to fulfill ordering of flush */
156 	struct work_struct deferred_io_work;
157 	/* to disable write back during in degraded mode */
158 	struct work_struct disable_writeback_work;
159 
160 	/* to for chunk_aligned_read in writeback mode, details below */
161 	spinlock_t tree_lock;
162 	struct radix_tree_root big_stripe_tree;
163 };
164 
165 /*
166  * Enable chunk_aligned_read() with write back cache.
167  *
168  * Each chunk may contain more than one stripe (for example, a 256kB
169  * chunk contains 64 4kB-page, so this chunk contain 64 stripes). For
170  * chunk_aligned_read, these stripes are grouped into one "big_stripe".
171  * For each big_stripe, we count how many stripes of this big_stripe
172  * are in the write back cache. These data are tracked in a radix tree
173  * (big_stripe_tree). We use radix_tree item pointer as the counter.
174  * r5c_tree_index() is used to calculate keys for the radix tree.
175  *
176  * chunk_aligned_read() calls r5c_big_stripe_cached() to look up
177  * big_stripe of each chunk in the tree. If this big_stripe is in the
178  * tree, chunk_aligned_read() aborts. This look up is protected by
179  * rcu_read_lock().
180  *
181  * It is necessary to remember whether a stripe is counted in
182  * big_stripe_tree. Instead of adding new flag, we reuses existing flags:
183  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE. If either of these
184  * two flags are set, the stripe is counted in big_stripe_tree. This
185  * requires moving set_bit(STRIPE_R5C_PARTIAL_STRIPE) to
186  * r5c_try_caching_write(); and moving clear_bit of
187  * STRIPE_R5C_PARTIAL_STRIPE and STRIPE_R5C_FULL_STRIPE to
188  * r5c_finish_stripe_write_out().
189  */
190 
191 /*
192  * radix tree requests lowest 2 bits of data pointer to be 2b'00.
193  * So it is necessary to left shift the counter by 2 bits before using it
194  * as data pointer of the tree.
195  */
196 #define R5C_RADIX_COUNT_SHIFT 2
197 
198 /*
199  * calculate key for big_stripe_tree
200  *
201  * sect: align_bi->bi_iter.bi_sector or sh->sector
202  */
203 static inline sector_t r5c_tree_index(struct r5conf *conf,
204 				      sector_t sect)
205 {
206 	sector_t offset;
207 
208 	offset = sector_div(sect, conf->chunk_sectors);
209 	return sect;
210 }
211 
212 /*
213  * an IO range starts from a meta data block and end at the next meta data
214  * block. The io unit's the meta data block tracks data/parity followed it. io
215  * unit is written to log disk with normal write, as we always flush log disk
216  * first and then start move data to raid disks, there is no requirement to
217  * write io unit with FLUSH/FUA
218  */
219 struct r5l_io_unit {
220 	struct r5l_log *log;
221 
222 	struct page *meta_page;	/* store meta block */
223 	int meta_offset;	/* current offset in meta_page */
224 
225 	struct bio *current_bio;/* current_bio accepting new data */
226 
227 	atomic_t pending_stripe;/* how many stripes not flushed to raid */
228 	u64 seq;		/* seq number of the metablock */
229 	sector_t log_start;	/* where the io_unit starts */
230 	sector_t log_end;	/* where the io_unit ends */
231 	struct list_head log_sibling; /* log->running_ios */
232 	struct list_head stripe_list; /* stripes added to the io_unit */
233 
234 	int state;
235 	bool need_split_bio;
236 	struct bio *split_bio;
237 
238 	unsigned int has_flush:1;      /* include flush request */
239 	unsigned int has_fua:1;        /* include fua request */
240 	unsigned int has_null_flush:1; /* include empty flush request */
241 	/*
242 	 * io isn't sent yet, flush/fua request can only be submitted till it's
243 	 * the first IO in running_ios list
244 	 */
245 	unsigned int io_deferred:1;
246 
247 	struct bio_list flush_barriers;   /* size == 0 flush bios */
248 };
249 
250 /* r5l_io_unit state */
251 enum r5l_io_unit_state {
252 	IO_UNIT_RUNNING = 0,	/* accepting new IO */
253 	IO_UNIT_IO_START = 1,	/* io_unit bio start writing to log,
254 				 * don't accepting new bio */
255 	IO_UNIT_IO_END = 2,	/* io_unit bio finish writing to log */
256 	IO_UNIT_STRIPE_END = 3,	/* stripes data finished writing to raid */
257 };
258 
259 bool r5c_is_writeback(struct r5l_log *log)
260 {
261 	return (log != NULL &&
262 		log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK);
263 }
264 
265 static sector_t r5l_ring_add(struct r5l_log *log, sector_t start, sector_t inc)
266 {
267 	start += inc;
268 	if (start >= log->device_size)
269 		start = start - log->device_size;
270 	return start;
271 }
272 
273 static sector_t r5l_ring_distance(struct r5l_log *log, sector_t start,
274 				  sector_t end)
275 {
276 	if (end >= start)
277 		return end - start;
278 	else
279 		return end + log->device_size - start;
280 }
281 
282 static bool r5l_has_free_space(struct r5l_log *log, sector_t size)
283 {
284 	sector_t used_size;
285 
286 	used_size = r5l_ring_distance(log, log->last_checkpoint,
287 					log->log_start);
288 
289 	return log->device_size > used_size + size;
290 }
291 
292 static void __r5l_set_io_unit_state(struct r5l_io_unit *io,
293 				    enum r5l_io_unit_state state)
294 {
295 	if (WARN_ON(io->state >= state))
296 		return;
297 	io->state = state;
298 }
299 
300 static void
301 r5c_return_dev_pending_writes(struct r5conf *conf, struct r5dev *dev)
302 {
303 	struct bio *wbi, *wbi2;
304 
305 	wbi = dev->written;
306 	dev->written = NULL;
307 	while (wbi && wbi->bi_iter.bi_sector <
308 	       dev->sector + STRIPE_SECTORS) {
309 		wbi2 = r5_next_bio(wbi, dev->sector);
310 		md_write_end(conf->mddev);
311 		bio_endio(wbi);
312 		wbi = wbi2;
313 	}
314 }
315 
316 void r5c_handle_cached_data_endio(struct r5conf *conf,
317 				  struct stripe_head *sh, int disks)
318 {
319 	int i;
320 
321 	for (i = sh->disks; i--; ) {
322 		if (sh->dev[i].written) {
323 			set_bit(R5_UPTODATE, &sh->dev[i].flags);
324 			r5c_return_dev_pending_writes(conf, &sh->dev[i]);
325 			bitmap_endwrite(conf->mddev->bitmap, sh->sector,
326 					STRIPE_SECTORS,
327 					!test_bit(STRIPE_DEGRADED, &sh->state),
328 					0);
329 		}
330 	}
331 }
332 
333 void r5l_wake_reclaim(struct r5l_log *log, sector_t space);
334 
335 /* Check whether we should flush some stripes to free up stripe cache */
336 void r5c_check_stripe_cache_usage(struct r5conf *conf)
337 {
338 	int total_cached;
339 
340 	if (!r5c_is_writeback(conf->log))
341 		return;
342 
343 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
344 		atomic_read(&conf->r5c_cached_full_stripes);
345 
346 	/*
347 	 * The following condition is true for either of the following:
348 	 *   - stripe cache pressure high:
349 	 *          total_cached > 3/4 min_nr_stripes ||
350 	 *          empty_inactive_list_nr > 0
351 	 *   - stripe cache pressure moderate:
352 	 *          total_cached > 1/2 min_nr_stripes
353 	 */
354 	if (total_cached > conf->min_nr_stripes * 1 / 2 ||
355 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
356 		r5l_wake_reclaim(conf->log, 0);
357 }
358 
359 /*
360  * flush cache when there are R5C_FULL_STRIPE_FLUSH_BATCH or more full
361  * stripes in the cache
362  */
363 void r5c_check_cached_full_stripe(struct r5conf *conf)
364 {
365 	if (!r5c_is_writeback(conf->log))
366 		return;
367 
368 	/*
369 	 * wake up reclaim for R5C_FULL_STRIPE_FLUSH_BATCH cached stripes
370 	 * or a full stripe (chunk size / 4k stripes).
371 	 */
372 	if (atomic_read(&conf->r5c_cached_full_stripes) >=
373 	    min(R5C_FULL_STRIPE_FLUSH_BATCH(conf),
374 		conf->chunk_sectors >> STRIPE_SHIFT))
375 		r5l_wake_reclaim(conf->log, 0);
376 }
377 
378 /*
379  * Total log space (in sectors) needed to flush all data in cache
380  *
381  * To avoid deadlock due to log space, it is necessary to reserve log
382  * space to flush critical stripes (stripes that occupying log space near
383  * last_checkpoint). This function helps check how much log space is
384  * required to flush all cached stripes.
385  *
386  * To reduce log space requirements, two mechanisms are used to give cache
387  * flush higher priorities:
388  *    1. In handle_stripe_dirtying() and schedule_reconstruction(),
389  *       stripes ALREADY in journal can be flushed w/o pending writes;
390  *    2. In r5l_write_stripe() and r5c_cache_data(), stripes NOT in journal
391  *       can be delayed (r5l_add_no_space_stripe).
392  *
393  * In cache flush, the stripe goes through 1 and then 2. For a stripe that
394  * already passed 1, flushing it requires at most (conf->max_degraded + 1)
395  * pages of journal space. For stripes that has not passed 1, flushing it
396  * requires (conf->raid_disks + 1) pages of journal space. There are at
397  * most (conf->group_cnt + 1) stripe that passed 1. So total journal space
398  * required to flush all cached stripes (in pages) is:
399  *
400  *     (stripe_in_journal_count - group_cnt - 1) * (max_degraded + 1) +
401  *     (group_cnt + 1) * (raid_disks + 1)
402  * or
403  *     (stripe_in_journal_count) * (max_degraded + 1) +
404  *     (group_cnt + 1) * (raid_disks - max_degraded)
405  */
406 static sector_t r5c_log_required_to_flush_cache(struct r5conf *conf)
407 {
408 	struct r5l_log *log = conf->log;
409 
410 	if (!r5c_is_writeback(log))
411 		return 0;
412 
413 	return BLOCK_SECTORS *
414 		((conf->max_degraded + 1) * atomic_read(&log->stripe_in_journal_count) +
415 		 (conf->raid_disks - conf->max_degraded) * (conf->group_cnt + 1));
416 }
417 
418 /*
419  * evaluate log space usage and update R5C_LOG_TIGHT and R5C_LOG_CRITICAL
420  *
421  * R5C_LOG_TIGHT is set when free space on the log device is less than 3x of
422  * reclaim_required_space. R5C_LOG_CRITICAL is set when free space on the log
423  * device is less than 2x of reclaim_required_space.
424  */
425 static inline void r5c_update_log_state(struct r5l_log *log)
426 {
427 	struct r5conf *conf = log->rdev->mddev->private;
428 	sector_t free_space;
429 	sector_t reclaim_space;
430 	bool wake_reclaim = false;
431 
432 	if (!r5c_is_writeback(log))
433 		return;
434 
435 	free_space = r5l_ring_distance(log, log->log_start,
436 				       log->last_checkpoint);
437 	reclaim_space = r5c_log_required_to_flush_cache(conf);
438 	if (free_space < 2 * reclaim_space)
439 		set_bit(R5C_LOG_CRITICAL, &conf->cache_state);
440 	else {
441 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
442 			wake_reclaim = true;
443 		clear_bit(R5C_LOG_CRITICAL, &conf->cache_state);
444 	}
445 	if (free_space < 3 * reclaim_space)
446 		set_bit(R5C_LOG_TIGHT, &conf->cache_state);
447 	else
448 		clear_bit(R5C_LOG_TIGHT, &conf->cache_state);
449 
450 	if (wake_reclaim)
451 		r5l_wake_reclaim(log, 0);
452 }
453 
454 /*
455  * Put the stripe into writing-out phase by clearing STRIPE_R5C_CACHING.
456  * This function should only be called in write-back mode.
457  */
458 void r5c_make_stripe_write_out(struct stripe_head *sh)
459 {
460 	struct r5conf *conf = sh->raid_conf;
461 	struct r5l_log *log = conf->log;
462 
463 	BUG_ON(!r5c_is_writeback(log));
464 
465 	WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
466 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
467 
468 	if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
469 		atomic_inc(&conf->preread_active_stripes);
470 }
471 
472 static void r5c_handle_data_cached(struct stripe_head *sh)
473 {
474 	int i;
475 
476 	for (i = sh->disks; i--; )
477 		if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
478 			set_bit(R5_InJournal, &sh->dev[i].flags);
479 			clear_bit(R5_LOCKED, &sh->dev[i].flags);
480 		}
481 	clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
482 }
483 
484 /*
485  * this journal write must contain full parity,
486  * it may also contain some data pages
487  */
488 static void r5c_handle_parity_cached(struct stripe_head *sh)
489 {
490 	int i;
491 
492 	for (i = sh->disks; i--; )
493 		if (test_bit(R5_InJournal, &sh->dev[i].flags))
494 			set_bit(R5_Wantwrite, &sh->dev[i].flags);
495 }
496 
497 /*
498  * Setting proper flags after writing (or flushing) data and/or parity to the
499  * log device. This is called from r5l_log_endio() or r5l_log_flush_endio().
500  */
501 static void r5c_finish_cache_stripe(struct stripe_head *sh)
502 {
503 	struct r5l_log *log = sh->raid_conf->log;
504 
505 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
506 		BUG_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
507 		/*
508 		 * Set R5_InJournal for parity dev[pd_idx]. This means
509 		 * all data AND parity in the journal. For RAID 6, it is
510 		 * NOT necessary to set the flag for dev[qd_idx], as the
511 		 * two parities are written out together.
512 		 */
513 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
514 	} else if (test_bit(STRIPE_R5C_CACHING, &sh->state)) {
515 		r5c_handle_data_cached(sh);
516 	} else {
517 		r5c_handle_parity_cached(sh);
518 		set_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
519 	}
520 }
521 
522 static void r5l_io_run_stripes(struct r5l_io_unit *io)
523 {
524 	struct stripe_head *sh, *next;
525 
526 	list_for_each_entry_safe(sh, next, &io->stripe_list, log_list) {
527 		list_del_init(&sh->log_list);
528 
529 		r5c_finish_cache_stripe(sh);
530 
531 		set_bit(STRIPE_HANDLE, &sh->state);
532 		raid5_release_stripe(sh);
533 	}
534 }
535 
536 static void r5l_log_run_stripes(struct r5l_log *log)
537 {
538 	struct r5l_io_unit *io, *next;
539 
540 	assert_spin_locked(&log->io_list_lock);
541 
542 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
543 		/* don't change list order */
544 		if (io->state < IO_UNIT_IO_END)
545 			break;
546 
547 		list_move_tail(&io->log_sibling, &log->finished_ios);
548 		r5l_io_run_stripes(io);
549 	}
550 }
551 
552 static void r5l_move_to_end_ios(struct r5l_log *log)
553 {
554 	struct r5l_io_unit *io, *next;
555 
556 	assert_spin_locked(&log->io_list_lock);
557 
558 	list_for_each_entry_safe(io, next, &log->running_ios, log_sibling) {
559 		/* don't change list order */
560 		if (io->state < IO_UNIT_IO_END)
561 			break;
562 		list_move_tail(&io->log_sibling, &log->io_end_ios);
563 	}
564 }
565 
566 static void __r5l_stripe_write_finished(struct r5l_io_unit *io);
567 static void r5l_log_endio(struct bio *bio)
568 {
569 	struct r5l_io_unit *io = bio->bi_private;
570 	struct r5l_io_unit *io_deferred;
571 	struct r5l_log *log = io->log;
572 	unsigned long flags;
573 
574 	if (bio->bi_error)
575 		md_error(log->rdev->mddev, log->rdev);
576 
577 	bio_put(bio);
578 	mempool_free(io->meta_page, log->meta_pool);
579 
580 	spin_lock_irqsave(&log->io_list_lock, flags);
581 	__r5l_set_io_unit_state(io, IO_UNIT_IO_END);
582 	if (log->need_cache_flush && !list_empty(&io->stripe_list))
583 		r5l_move_to_end_ios(log);
584 	else
585 		r5l_log_run_stripes(log);
586 	if (!list_empty(&log->running_ios)) {
587 		/*
588 		 * FLUSH/FUA io_unit is deferred because of ordering, now we
589 		 * can dispatch it
590 		 */
591 		io_deferred = list_first_entry(&log->running_ios,
592 					       struct r5l_io_unit, log_sibling);
593 		if (io_deferred->io_deferred)
594 			schedule_work(&log->deferred_io_work);
595 	}
596 
597 	spin_unlock_irqrestore(&log->io_list_lock, flags);
598 
599 	if (log->need_cache_flush)
600 		md_wakeup_thread(log->rdev->mddev->thread);
601 
602 	if (io->has_null_flush) {
603 		struct bio *bi;
604 
605 		WARN_ON(bio_list_empty(&io->flush_barriers));
606 		while ((bi = bio_list_pop(&io->flush_barriers)) != NULL) {
607 			bio_endio(bi);
608 			atomic_dec(&io->pending_stripe);
609 		}
610 	}
611 
612 	/* finish flush only io_unit and PAYLOAD_FLUSH only io_unit */
613 	if (atomic_read(&io->pending_stripe) == 0)
614 		__r5l_stripe_write_finished(io);
615 }
616 
617 static void r5l_do_submit_io(struct r5l_log *log, struct r5l_io_unit *io)
618 {
619 	unsigned long flags;
620 
621 	spin_lock_irqsave(&log->io_list_lock, flags);
622 	__r5l_set_io_unit_state(io, IO_UNIT_IO_START);
623 	spin_unlock_irqrestore(&log->io_list_lock, flags);
624 
625 	if (io->has_flush)
626 		io->current_bio->bi_opf |= REQ_PREFLUSH;
627 	if (io->has_fua)
628 		io->current_bio->bi_opf |= REQ_FUA;
629 	submit_bio(io->current_bio);
630 
631 	if (!io->split_bio)
632 		return;
633 
634 	if (io->has_flush)
635 		io->split_bio->bi_opf |= REQ_PREFLUSH;
636 	if (io->has_fua)
637 		io->split_bio->bi_opf |= REQ_FUA;
638 	submit_bio(io->split_bio);
639 }
640 
641 /* deferred io_unit will be dispatched here */
642 static void r5l_submit_io_async(struct work_struct *work)
643 {
644 	struct r5l_log *log = container_of(work, struct r5l_log,
645 					   deferred_io_work);
646 	struct r5l_io_unit *io = NULL;
647 	unsigned long flags;
648 
649 	spin_lock_irqsave(&log->io_list_lock, flags);
650 	if (!list_empty(&log->running_ios)) {
651 		io = list_first_entry(&log->running_ios, struct r5l_io_unit,
652 				      log_sibling);
653 		if (!io->io_deferred)
654 			io = NULL;
655 		else
656 			io->io_deferred = 0;
657 	}
658 	spin_unlock_irqrestore(&log->io_list_lock, flags);
659 	if (io)
660 		r5l_do_submit_io(log, io);
661 }
662 
663 static void r5c_disable_writeback_async(struct work_struct *work)
664 {
665 	struct r5l_log *log = container_of(work, struct r5l_log,
666 					   disable_writeback_work);
667 	struct mddev *mddev = log->rdev->mddev;
668 
669 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
670 		return;
671 	pr_info("md/raid:%s: Disabling writeback cache for degraded array.\n",
672 		mdname(mddev));
673 	mddev_suspend(mddev);
674 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
675 	mddev_resume(mddev);
676 }
677 
678 static void r5l_submit_current_io(struct r5l_log *log)
679 {
680 	struct r5l_io_unit *io = log->current_io;
681 	struct bio *bio;
682 	struct r5l_meta_block *block;
683 	unsigned long flags;
684 	u32 crc;
685 	bool do_submit = true;
686 
687 	if (!io)
688 		return;
689 
690 	block = page_address(io->meta_page);
691 	block->meta_size = cpu_to_le32(io->meta_offset);
692 	crc = crc32c_le(log->uuid_checksum, block, PAGE_SIZE);
693 	block->checksum = cpu_to_le32(crc);
694 	bio = io->current_bio;
695 
696 	log->current_io = NULL;
697 	spin_lock_irqsave(&log->io_list_lock, flags);
698 	if (io->has_flush || io->has_fua) {
699 		if (io != list_first_entry(&log->running_ios,
700 					   struct r5l_io_unit, log_sibling)) {
701 			io->io_deferred = 1;
702 			do_submit = false;
703 		}
704 	}
705 	spin_unlock_irqrestore(&log->io_list_lock, flags);
706 	if (do_submit)
707 		r5l_do_submit_io(log, io);
708 }
709 
710 static struct bio *r5l_bio_alloc(struct r5l_log *log)
711 {
712 	struct bio *bio = bio_alloc_bioset(GFP_NOIO, BIO_MAX_PAGES, log->bs);
713 
714 	bio_set_op_attrs(bio, REQ_OP_WRITE, 0);
715 	bio->bi_bdev = log->rdev->bdev;
716 	bio->bi_iter.bi_sector = log->rdev->data_offset + log->log_start;
717 
718 	return bio;
719 }
720 
721 static void r5_reserve_log_entry(struct r5l_log *log, struct r5l_io_unit *io)
722 {
723 	log->log_start = r5l_ring_add(log, log->log_start, BLOCK_SECTORS);
724 
725 	r5c_update_log_state(log);
726 	/*
727 	 * If we filled up the log device start from the beginning again,
728 	 * which will require a new bio.
729 	 *
730 	 * Note: for this to work properly the log size needs to me a multiple
731 	 * of BLOCK_SECTORS.
732 	 */
733 	if (log->log_start == 0)
734 		io->need_split_bio = true;
735 
736 	io->log_end = log->log_start;
737 }
738 
739 static struct r5l_io_unit *r5l_new_meta(struct r5l_log *log)
740 {
741 	struct r5l_io_unit *io;
742 	struct r5l_meta_block *block;
743 
744 	io = mempool_alloc(log->io_pool, GFP_ATOMIC);
745 	if (!io)
746 		return NULL;
747 	memset(io, 0, sizeof(*io));
748 
749 	io->log = log;
750 	INIT_LIST_HEAD(&io->log_sibling);
751 	INIT_LIST_HEAD(&io->stripe_list);
752 	bio_list_init(&io->flush_barriers);
753 	io->state = IO_UNIT_RUNNING;
754 
755 	io->meta_page = mempool_alloc(log->meta_pool, GFP_NOIO);
756 	block = page_address(io->meta_page);
757 	clear_page(block);
758 	block->magic = cpu_to_le32(R5LOG_MAGIC);
759 	block->version = R5LOG_VERSION;
760 	block->seq = cpu_to_le64(log->seq);
761 	block->position = cpu_to_le64(log->log_start);
762 
763 	io->log_start = log->log_start;
764 	io->meta_offset = sizeof(struct r5l_meta_block);
765 	io->seq = log->seq++;
766 
767 	io->current_bio = r5l_bio_alloc(log);
768 	io->current_bio->bi_end_io = r5l_log_endio;
769 	io->current_bio->bi_private = io;
770 	bio_add_page(io->current_bio, io->meta_page, PAGE_SIZE, 0);
771 
772 	r5_reserve_log_entry(log, io);
773 
774 	spin_lock_irq(&log->io_list_lock);
775 	list_add_tail(&io->log_sibling, &log->running_ios);
776 	spin_unlock_irq(&log->io_list_lock);
777 
778 	return io;
779 }
780 
781 static int r5l_get_meta(struct r5l_log *log, unsigned int payload_size)
782 {
783 	if (log->current_io &&
784 	    log->current_io->meta_offset + payload_size > PAGE_SIZE)
785 		r5l_submit_current_io(log);
786 
787 	if (!log->current_io) {
788 		log->current_io = r5l_new_meta(log);
789 		if (!log->current_io)
790 			return -ENOMEM;
791 	}
792 
793 	return 0;
794 }
795 
796 static void r5l_append_payload_meta(struct r5l_log *log, u16 type,
797 				    sector_t location,
798 				    u32 checksum1, u32 checksum2,
799 				    bool checksum2_valid)
800 {
801 	struct r5l_io_unit *io = log->current_io;
802 	struct r5l_payload_data_parity *payload;
803 
804 	payload = page_address(io->meta_page) + io->meta_offset;
805 	payload->header.type = cpu_to_le16(type);
806 	payload->header.flags = cpu_to_le16(0);
807 	payload->size = cpu_to_le32((1 + !!checksum2_valid) <<
808 				    (PAGE_SHIFT - 9));
809 	payload->location = cpu_to_le64(location);
810 	payload->checksum[0] = cpu_to_le32(checksum1);
811 	if (checksum2_valid)
812 		payload->checksum[1] = cpu_to_le32(checksum2);
813 
814 	io->meta_offset += sizeof(struct r5l_payload_data_parity) +
815 		sizeof(__le32) * (1 + !!checksum2_valid);
816 }
817 
818 static void r5l_append_payload_page(struct r5l_log *log, struct page *page)
819 {
820 	struct r5l_io_unit *io = log->current_io;
821 
822 	if (io->need_split_bio) {
823 		BUG_ON(io->split_bio);
824 		io->split_bio = io->current_bio;
825 		io->current_bio = r5l_bio_alloc(log);
826 		bio_chain(io->current_bio, io->split_bio);
827 		io->need_split_bio = false;
828 	}
829 
830 	if (!bio_add_page(io->current_bio, page, PAGE_SIZE, 0))
831 		BUG();
832 
833 	r5_reserve_log_entry(log, io);
834 }
835 
836 static void r5l_append_flush_payload(struct r5l_log *log, sector_t sect)
837 {
838 	struct mddev *mddev = log->rdev->mddev;
839 	struct r5conf *conf = mddev->private;
840 	struct r5l_io_unit *io;
841 	struct r5l_payload_flush *payload;
842 	int meta_size;
843 
844 	/*
845 	 * payload_flush requires extra writes to the journal.
846 	 * To avoid handling the extra IO in quiesce, just skip
847 	 * flush_payload
848 	 */
849 	if (conf->quiesce)
850 		return;
851 
852 	mutex_lock(&log->io_mutex);
853 	meta_size = sizeof(struct r5l_payload_flush) + sizeof(__le64);
854 
855 	if (r5l_get_meta(log, meta_size)) {
856 		mutex_unlock(&log->io_mutex);
857 		return;
858 	}
859 
860 	/* current implementation is one stripe per flush payload */
861 	io = log->current_io;
862 	payload = page_address(io->meta_page) + io->meta_offset;
863 	payload->header.type = cpu_to_le16(R5LOG_PAYLOAD_FLUSH);
864 	payload->header.flags = cpu_to_le16(0);
865 	payload->size = cpu_to_le32(sizeof(__le64));
866 	payload->flush_stripes[0] = cpu_to_le64(sect);
867 	io->meta_offset += meta_size;
868 	mutex_unlock(&log->io_mutex);
869 }
870 
871 static int r5l_log_stripe(struct r5l_log *log, struct stripe_head *sh,
872 			   int data_pages, int parity_pages)
873 {
874 	int i;
875 	int meta_size;
876 	int ret;
877 	struct r5l_io_unit *io;
878 
879 	meta_size =
880 		((sizeof(struct r5l_payload_data_parity) + sizeof(__le32))
881 		 * data_pages) +
882 		sizeof(struct r5l_payload_data_parity) +
883 		sizeof(__le32) * parity_pages;
884 
885 	ret = r5l_get_meta(log, meta_size);
886 	if (ret)
887 		return ret;
888 
889 	io = log->current_io;
890 
891 	if (test_and_clear_bit(STRIPE_R5C_PREFLUSH, &sh->state))
892 		io->has_flush = 1;
893 
894 	for (i = 0; i < sh->disks; i++) {
895 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
896 		    test_bit(R5_InJournal, &sh->dev[i].flags))
897 			continue;
898 		if (i == sh->pd_idx || i == sh->qd_idx)
899 			continue;
900 		if (test_bit(R5_WantFUA, &sh->dev[i].flags) &&
901 		    log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK) {
902 			io->has_fua = 1;
903 			/*
904 			 * we need to flush journal to make sure recovery can
905 			 * reach the data with fua flag
906 			 */
907 			io->has_flush = 1;
908 		}
909 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_DATA,
910 					raid5_compute_blocknr(sh, i, 0),
911 					sh->dev[i].log_checksum, 0, false);
912 		r5l_append_payload_page(log, sh->dev[i].page);
913 	}
914 
915 	if (parity_pages == 2) {
916 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
917 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
918 					sh->dev[sh->qd_idx].log_checksum, true);
919 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
920 		r5l_append_payload_page(log, sh->dev[sh->qd_idx].page);
921 	} else if (parity_pages == 1) {
922 		r5l_append_payload_meta(log, R5LOG_PAYLOAD_PARITY,
923 					sh->sector, sh->dev[sh->pd_idx].log_checksum,
924 					0, false);
925 		r5l_append_payload_page(log, sh->dev[sh->pd_idx].page);
926 	} else  /* Just writing data, not parity, in caching phase */
927 		BUG_ON(parity_pages != 0);
928 
929 	list_add_tail(&sh->log_list, &io->stripe_list);
930 	atomic_inc(&io->pending_stripe);
931 	sh->log_io = io;
932 
933 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
934 		return 0;
935 
936 	if (sh->log_start == MaxSector) {
937 		BUG_ON(!list_empty(&sh->r5c));
938 		sh->log_start = io->log_start;
939 		spin_lock_irq(&log->stripe_in_journal_lock);
940 		list_add_tail(&sh->r5c,
941 			      &log->stripe_in_journal_list);
942 		spin_unlock_irq(&log->stripe_in_journal_lock);
943 		atomic_inc(&log->stripe_in_journal_count);
944 	}
945 	return 0;
946 }
947 
948 /* add stripe to no_space_stripes, and then wake up reclaim */
949 static inline void r5l_add_no_space_stripe(struct r5l_log *log,
950 					   struct stripe_head *sh)
951 {
952 	spin_lock(&log->no_space_stripes_lock);
953 	list_add_tail(&sh->log_list, &log->no_space_stripes);
954 	spin_unlock(&log->no_space_stripes_lock);
955 }
956 
957 /*
958  * running in raid5d, where reclaim could wait for raid5d too (when it flushes
959  * data from log to raid disks), so we shouldn't wait for reclaim here
960  */
961 int r5l_write_stripe(struct r5l_log *log, struct stripe_head *sh)
962 {
963 	struct r5conf *conf = sh->raid_conf;
964 	int write_disks = 0;
965 	int data_pages, parity_pages;
966 	int reserve;
967 	int i;
968 	int ret = 0;
969 	bool wake_reclaim = false;
970 
971 	if (!log)
972 		return -EAGAIN;
973 	/* Don't support stripe batch */
974 	if (sh->log_io || !test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags) ||
975 	    test_bit(STRIPE_SYNCING, &sh->state)) {
976 		/* the stripe is written to log, we start writing it to raid */
977 		clear_bit(STRIPE_LOG_TRAPPED, &sh->state);
978 		return -EAGAIN;
979 	}
980 
981 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
982 
983 	for (i = 0; i < sh->disks; i++) {
984 		void *addr;
985 
986 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags) ||
987 		    test_bit(R5_InJournal, &sh->dev[i].flags))
988 			continue;
989 
990 		write_disks++;
991 		/* checksum is already calculated in last run */
992 		if (test_bit(STRIPE_LOG_TRAPPED, &sh->state))
993 			continue;
994 		addr = kmap_atomic(sh->dev[i].page);
995 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
996 						    addr, PAGE_SIZE);
997 		kunmap_atomic(addr);
998 	}
999 	parity_pages = 1 + !!(sh->qd_idx >= 0);
1000 	data_pages = write_disks - parity_pages;
1001 
1002 	set_bit(STRIPE_LOG_TRAPPED, &sh->state);
1003 	/*
1004 	 * The stripe must enter state machine again to finish the write, so
1005 	 * don't delay.
1006 	 */
1007 	clear_bit(STRIPE_DELAYED, &sh->state);
1008 	atomic_inc(&sh->count);
1009 
1010 	mutex_lock(&log->io_mutex);
1011 	/* meta + data */
1012 	reserve = (1 + write_disks) << (PAGE_SHIFT - 9);
1013 
1014 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1015 		if (!r5l_has_free_space(log, reserve)) {
1016 			r5l_add_no_space_stripe(log, sh);
1017 			wake_reclaim = true;
1018 		} else {
1019 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1020 			if (ret) {
1021 				spin_lock_irq(&log->io_list_lock);
1022 				list_add_tail(&sh->log_list,
1023 					      &log->no_mem_stripes);
1024 				spin_unlock_irq(&log->io_list_lock);
1025 			}
1026 		}
1027 	} else {  /* R5C_JOURNAL_MODE_WRITE_BACK */
1028 		/*
1029 		 * log space critical, do not process stripes that are
1030 		 * not in cache yet (sh->log_start == MaxSector).
1031 		 */
1032 		if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
1033 		    sh->log_start == MaxSector) {
1034 			r5l_add_no_space_stripe(log, sh);
1035 			wake_reclaim = true;
1036 			reserve = 0;
1037 		} else if (!r5l_has_free_space(log, reserve)) {
1038 			if (sh->log_start == log->last_checkpoint)
1039 				BUG();
1040 			else
1041 				r5l_add_no_space_stripe(log, sh);
1042 		} else {
1043 			ret = r5l_log_stripe(log, sh, data_pages, parity_pages);
1044 			if (ret) {
1045 				spin_lock_irq(&log->io_list_lock);
1046 				list_add_tail(&sh->log_list,
1047 					      &log->no_mem_stripes);
1048 				spin_unlock_irq(&log->io_list_lock);
1049 			}
1050 		}
1051 	}
1052 
1053 	mutex_unlock(&log->io_mutex);
1054 	if (wake_reclaim)
1055 		r5l_wake_reclaim(log, reserve);
1056 	return 0;
1057 }
1058 
1059 void r5l_write_stripe_run(struct r5l_log *log)
1060 {
1061 	if (!log)
1062 		return;
1063 	mutex_lock(&log->io_mutex);
1064 	r5l_submit_current_io(log);
1065 	mutex_unlock(&log->io_mutex);
1066 }
1067 
1068 int r5l_handle_flush_request(struct r5l_log *log, struct bio *bio)
1069 {
1070 	if (!log)
1071 		return -ENODEV;
1072 
1073 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH) {
1074 		/*
1075 		 * in write through (journal only)
1076 		 * we flush log disk cache first, then write stripe data to
1077 		 * raid disks. So if bio is finished, the log disk cache is
1078 		 * flushed already. The recovery guarantees we can recovery
1079 		 * the bio from log disk, so we don't need to flush again
1080 		 */
1081 		if (bio->bi_iter.bi_size == 0) {
1082 			bio_endio(bio);
1083 			return 0;
1084 		}
1085 		bio->bi_opf &= ~REQ_PREFLUSH;
1086 	} else {
1087 		/* write back (with cache) */
1088 		if (bio->bi_iter.bi_size == 0) {
1089 			mutex_lock(&log->io_mutex);
1090 			r5l_get_meta(log, 0);
1091 			bio_list_add(&log->current_io->flush_barriers, bio);
1092 			log->current_io->has_flush = 1;
1093 			log->current_io->has_null_flush = 1;
1094 			atomic_inc(&log->current_io->pending_stripe);
1095 			r5l_submit_current_io(log);
1096 			mutex_unlock(&log->io_mutex);
1097 			return 0;
1098 		}
1099 	}
1100 	return -EAGAIN;
1101 }
1102 
1103 /* This will run after log space is reclaimed */
1104 static void r5l_run_no_space_stripes(struct r5l_log *log)
1105 {
1106 	struct stripe_head *sh;
1107 
1108 	spin_lock(&log->no_space_stripes_lock);
1109 	while (!list_empty(&log->no_space_stripes)) {
1110 		sh = list_first_entry(&log->no_space_stripes,
1111 				      struct stripe_head, log_list);
1112 		list_del_init(&sh->log_list);
1113 		set_bit(STRIPE_HANDLE, &sh->state);
1114 		raid5_release_stripe(sh);
1115 	}
1116 	spin_unlock(&log->no_space_stripes_lock);
1117 }
1118 
1119 /*
1120  * calculate new last_checkpoint
1121  * for write through mode, returns log->next_checkpoint
1122  * for write back, returns log_start of first sh in stripe_in_journal_list
1123  */
1124 static sector_t r5c_calculate_new_cp(struct r5conf *conf)
1125 {
1126 	struct stripe_head *sh;
1127 	struct r5l_log *log = conf->log;
1128 	sector_t new_cp;
1129 	unsigned long flags;
1130 
1131 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
1132 		return log->next_checkpoint;
1133 
1134 	spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1135 	if (list_empty(&conf->log->stripe_in_journal_list)) {
1136 		/* all stripes flushed */
1137 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1138 		return log->next_checkpoint;
1139 	}
1140 	sh = list_first_entry(&conf->log->stripe_in_journal_list,
1141 			      struct stripe_head, r5c);
1142 	new_cp = sh->log_start;
1143 	spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1144 	return new_cp;
1145 }
1146 
1147 static sector_t r5l_reclaimable_space(struct r5l_log *log)
1148 {
1149 	struct r5conf *conf = log->rdev->mddev->private;
1150 
1151 	return r5l_ring_distance(log, log->last_checkpoint,
1152 				 r5c_calculate_new_cp(conf));
1153 }
1154 
1155 static void r5l_run_no_mem_stripe(struct r5l_log *log)
1156 {
1157 	struct stripe_head *sh;
1158 
1159 	assert_spin_locked(&log->io_list_lock);
1160 
1161 	if (!list_empty(&log->no_mem_stripes)) {
1162 		sh = list_first_entry(&log->no_mem_stripes,
1163 				      struct stripe_head, log_list);
1164 		list_del_init(&sh->log_list);
1165 		set_bit(STRIPE_HANDLE, &sh->state);
1166 		raid5_release_stripe(sh);
1167 	}
1168 }
1169 
1170 static bool r5l_complete_finished_ios(struct r5l_log *log)
1171 {
1172 	struct r5l_io_unit *io, *next;
1173 	bool found = false;
1174 
1175 	assert_spin_locked(&log->io_list_lock);
1176 
1177 	list_for_each_entry_safe(io, next, &log->finished_ios, log_sibling) {
1178 		/* don't change list order */
1179 		if (io->state < IO_UNIT_STRIPE_END)
1180 			break;
1181 
1182 		log->next_checkpoint = io->log_start;
1183 
1184 		list_del(&io->log_sibling);
1185 		mempool_free(io, log->io_pool);
1186 		r5l_run_no_mem_stripe(log);
1187 
1188 		found = true;
1189 	}
1190 
1191 	return found;
1192 }
1193 
1194 static void __r5l_stripe_write_finished(struct r5l_io_unit *io)
1195 {
1196 	struct r5l_log *log = io->log;
1197 	struct r5conf *conf = log->rdev->mddev->private;
1198 	unsigned long flags;
1199 
1200 	spin_lock_irqsave(&log->io_list_lock, flags);
1201 	__r5l_set_io_unit_state(io, IO_UNIT_STRIPE_END);
1202 
1203 	if (!r5l_complete_finished_ios(log)) {
1204 		spin_unlock_irqrestore(&log->io_list_lock, flags);
1205 		return;
1206 	}
1207 
1208 	if (r5l_reclaimable_space(log) > log->max_free_space ||
1209 	    test_bit(R5C_LOG_TIGHT, &conf->cache_state))
1210 		r5l_wake_reclaim(log, 0);
1211 
1212 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1213 	wake_up(&log->iounit_wait);
1214 }
1215 
1216 void r5l_stripe_write_finished(struct stripe_head *sh)
1217 {
1218 	struct r5l_io_unit *io;
1219 
1220 	io = sh->log_io;
1221 	sh->log_io = NULL;
1222 
1223 	if (io && atomic_dec_and_test(&io->pending_stripe))
1224 		__r5l_stripe_write_finished(io);
1225 }
1226 
1227 static void r5l_log_flush_endio(struct bio *bio)
1228 {
1229 	struct r5l_log *log = container_of(bio, struct r5l_log,
1230 		flush_bio);
1231 	unsigned long flags;
1232 	struct r5l_io_unit *io;
1233 
1234 	if (bio->bi_error)
1235 		md_error(log->rdev->mddev, log->rdev);
1236 
1237 	spin_lock_irqsave(&log->io_list_lock, flags);
1238 	list_for_each_entry(io, &log->flushing_ios, log_sibling)
1239 		r5l_io_run_stripes(io);
1240 	list_splice_tail_init(&log->flushing_ios, &log->finished_ios);
1241 	spin_unlock_irqrestore(&log->io_list_lock, flags);
1242 }
1243 
1244 /*
1245  * Starting dispatch IO to raid.
1246  * io_unit(meta) consists of a log. There is one situation we want to avoid. A
1247  * broken meta in the middle of a log causes recovery can't find meta at the
1248  * head of log. If operations require meta at the head persistent in log, we
1249  * must make sure meta before it persistent in log too. A case is:
1250  *
1251  * stripe data/parity is in log, we start write stripe to raid disks. stripe
1252  * data/parity must be persistent in log before we do the write to raid disks.
1253  *
1254  * The solution is we restrictly maintain io_unit list order. In this case, we
1255  * only write stripes of an io_unit to raid disks till the io_unit is the first
1256  * one whose data/parity is in log.
1257  */
1258 void r5l_flush_stripe_to_raid(struct r5l_log *log)
1259 {
1260 	bool do_flush;
1261 
1262 	if (!log || !log->need_cache_flush)
1263 		return;
1264 
1265 	spin_lock_irq(&log->io_list_lock);
1266 	/* flush bio is running */
1267 	if (!list_empty(&log->flushing_ios)) {
1268 		spin_unlock_irq(&log->io_list_lock);
1269 		return;
1270 	}
1271 	list_splice_tail_init(&log->io_end_ios, &log->flushing_ios);
1272 	do_flush = !list_empty(&log->flushing_ios);
1273 	spin_unlock_irq(&log->io_list_lock);
1274 
1275 	if (!do_flush)
1276 		return;
1277 	bio_reset(&log->flush_bio);
1278 	log->flush_bio.bi_bdev = log->rdev->bdev;
1279 	log->flush_bio.bi_end_io = r5l_log_flush_endio;
1280 	log->flush_bio.bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
1281 	submit_bio(&log->flush_bio);
1282 }
1283 
1284 static void r5l_write_super(struct r5l_log *log, sector_t cp);
1285 static void r5l_write_super_and_discard_space(struct r5l_log *log,
1286 	sector_t end)
1287 {
1288 	struct block_device *bdev = log->rdev->bdev;
1289 	struct mddev *mddev;
1290 
1291 	r5l_write_super(log, end);
1292 
1293 	if (!blk_queue_discard(bdev_get_queue(bdev)))
1294 		return;
1295 
1296 	mddev = log->rdev->mddev;
1297 	/*
1298 	 * Discard could zero data, so before discard we must make sure
1299 	 * superblock is updated to new log tail. Updating superblock (either
1300 	 * directly call md_update_sb() or depend on md thread) must hold
1301 	 * reconfig mutex. On the other hand, raid5_quiesce is called with
1302 	 * reconfig_mutex hold. The first step of raid5_quiesce() is waitting
1303 	 * for all IO finish, hence waitting for reclaim thread, while reclaim
1304 	 * thread is calling this function and waitting for reconfig mutex. So
1305 	 * there is a deadlock. We workaround this issue with a trylock.
1306 	 * FIXME: we could miss discard if we can't take reconfig mutex
1307 	 */
1308 	set_mask_bits(&mddev->sb_flags, 0,
1309 		BIT(MD_SB_CHANGE_DEVS) | BIT(MD_SB_CHANGE_PENDING));
1310 	if (!mddev_trylock(mddev))
1311 		return;
1312 	md_update_sb(mddev, 1);
1313 	mddev_unlock(mddev);
1314 
1315 	/* discard IO error really doesn't matter, ignore it */
1316 	if (log->last_checkpoint < end) {
1317 		blkdev_issue_discard(bdev,
1318 				log->last_checkpoint + log->rdev->data_offset,
1319 				end - log->last_checkpoint, GFP_NOIO, 0);
1320 	} else {
1321 		blkdev_issue_discard(bdev,
1322 				log->last_checkpoint + log->rdev->data_offset,
1323 				log->device_size - log->last_checkpoint,
1324 				GFP_NOIO, 0);
1325 		blkdev_issue_discard(bdev, log->rdev->data_offset, end,
1326 				GFP_NOIO, 0);
1327 	}
1328 }
1329 
1330 /*
1331  * r5c_flush_stripe moves stripe from cached list to handle_list. When called,
1332  * the stripe must be on r5c_cached_full_stripes or r5c_cached_partial_stripes.
1333  *
1334  * must hold conf->device_lock
1335  */
1336 static void r5c_flush_stripe(struct r5conf *conf, struct stripe_head *sh)
1337 {
1338 	BUG_ON(list_empty(&sh->lru));
1339 	BUG_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
1340 	BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
1341 
1342 	/*
1343 	 * The stripe is not ON_RELEASE_LIST, so it is safe to call
1344 	 * raid5_release_stripe() while holding conf->device_lock
1345 	 */
1346 	BUG_ON(test_bit(STRIPE_ON_RELEASE_LIST, &sh->state));
1347 	assert_spin_locked(&conf->device_lock);
1348 
1349 	list_del_init(&sh->lru);
1350 	atomic_inc(&sh->count);
1351 
1352 	set_bit(STRIPE_HANDLE, &sh->state);
1353 	atomic_inc(&conf->active_stripes);
1354 	r5c_make_stripe_write_out(sh);
1355 
1356 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state))
1357 		atomic_inc(&conf->r5c_flushing_partial_stripes);
1358 	else
1359 		atomic_inc(&conf->r5c_flushing_full_stripes);
1360 	raid5_release_stripe(sh);
1361 }
1362 
1363 /*
1364  * if num == 0, flush all full stripes
1365  * if num > 0, flush all full stripes. If less than num full stripes are
1366  *             flushed, flush some partial stripes until totally num stripes are
1367  *             flushed or there is no more cached stripes.
1368  */
1369 void r5c_flush_cache(struct r5conf *conf, int num)
1370 {
1371 	int count;
1372 	struct stripe_head *sh, *next;
1373 
1374 	assert_spin_locked(&conf->device_lock);
1375 	if (!conf->log)
1376 		return;
1377 
1378 	count = 0;
1379 	list_for_each_entry_safe(sh, next, &conf->r5c_full_stripe_list, lru) {
1380 		r5c_flush_stripe(conf, sh);
1381 		count++;
1382 	}
1383 
1384 	if (count >= num)
1385 		return;
1386 	list_for_each_entry_safe(sh, next,
1387 				 &conf->r5c_partial_stripe_list, lru) {
1388 		r5c_flush_stripe(conf, sh);
1389 		if (++count >= num)
1390 			break;
1391 	}
1392 }
1393 
1394 static void r5c_do_reclaim(struct r5conf *conf)
1395 {
1396 	struct r5l_log *log = conf->log;
1397 	struct stripe_head *sh;
1398 	int count = 0;
1399 	unsigned long flags;
1400 	int total_cached;
1401 	int stripes_to_flush;
1402 	int flushing_partial, flushing_full;
1403 
1404 	if (!r5c_is_writeback(log))
1405 		return;
1406 
1407 	flushing_partial = atomic_read(&conf->r5c_flushing_partial_stripes);
1408 	flushing_full = atomic_read(&conf->r5c_flushing_full_stripes);
1409 	total_cached = atomic_read(&conf->r5c_cached_partial_stripes) +
1410 		atomic_read(&conf->r5c_cached_full_stripes) -
1411 		flushing_full - flushing_partial;
1412 
1413 	if (total_cached > conf->min_nr_stripes * 3 / 4 ||
1414 	    atomic_read(&conf->empty_inactive_list_nr) > 0)
1415 		/*
1416 		 * if stripe cache pressure high, flush all full stripes and
1417 		 * some partial stripes
1418 		 */
1419 		stripes_to_flush = R5C_RECLAIM_STRIPE_GROUP;
1420 	else if (total_cached > conf->min_nr_stripes * 1 / 2 ||
1421 		 atomic_read(&conf->r5c_cached_full_stripes) - flushing_full >
1422 		 R5C_FULL_STRIPE_FLUSH_BATCH(conf))
1423 		/*
1424 		 * if stripe cache pressure moderate, or if there is many full
1425 		 * stripes,flush all full stripes
1426 		 */
1427 		stripes_to_flush = 0;
1428 	else
1429 		/* no need to flush */
1430 		stripes_to_flush = -1;
1431 
1432 	if (stripes_to_flush >= 0) {
1433 		spin_lock_irqsave(&conf->device_lock, flags);
1434 		r5c_flush_cache(conf, stripes_to_flush);
1435 		spin_unlock_irqrestore(&conf->device_lock, flags);
1436 	}
1437 
1438 	/* if log space is tight, flush stripes on stripe_in_journal_list */
1439 	if (test_bit(R5C_LOG_TIGHT, &conf->cache_state)) {
1440 		spin_lock_irqsave(&log->stripe_in_journal_lock, flags);
1441 		spin_lock(&conf->device_lock);
1442 		list_for_each_entry(sh, &log->stripe_in_journal_list, r5c) {
1443 			/*
1444 			 * stripes on stripe_in_journal_list could be in any
1445 			 * state of the stripe_cache state machine. In this
1446 			 * case, we only want to flush stripe on
1447 			 * r5c_cached_full/partial_stripes. The following
1448 			 * condition makes sure the stripe is on one of the
1449 			 * two lists.
1450 			 */
1451 			if (!list_empty(&sh->lru) &&
1452 			    !test_bit(STRIPE_HANDLE, &sh->state) &&
1453 			    atomic_read(&sh->count) == 0) {
1454 				r5c_flush_stripe(conf, sh);
1455 				if (count++ >= R5C_RECLAIM_STRIPE_GROUP)
1456 					break;
1457 			}
1458 		}
1459 		spin_unlock(&conf->device_lock);
1460 		spin_unlock_irqrestore(&log->stripe_in_journal_lock, flags);
1461 	}
1462 
1463 	if (!test_bit(R5C_LOG_CRITICAL, &conf->cache_state))
1464 		r5l_run_no_space_stripes(log);
1465 
1466 	md_wakeup_thread(conf->mddev->thread);
1467 }
1468 
1469 static void r5l_do_reclaim(struct r5l_log *log)
1470 {
1471 	struct r5conf *conf = log->rdev->mddev->private;
1472 	sector_t reclaim_target = xchg(&log->reclaim_target, 0);
1473 	sector_t reclaimable;
1474 	sector_t next_checkpoint;
1475 	bool write_super;
1476 
1477 	spin_lock_irq(&log->io_list_lock);
1478 	write_super = r5l_reclaimable_space(log) > log->max_free_space ||
1479 		reclaim_target != 0 || !list_empty(&log->no_space_stripes);
1480 	/*
1481 	 * move proper io_unit to reclaim list. We should not change the order.
1482 	 * reclaimable/unreclaimable io_unit can be mixed in the list, we
1483 	 * shouldn't reuse space of an unreclaimable io_unit
1484 	 */
1485 	while (1) {
1486 		reclaimable = r5l_reclaimable_space(log);
1487 		if (reclaimable >= reclaim_target ||
1488 		    (list_empty(&log->running_ios) &&
1489 		     list_empty(&log->io_end_ios) &&
1490 		     list_empty(&log->flushing_ios) &&
1491 		     list_empty(&log->finished_ios)))
1492 			break;
1493 
1494 		md_wakeup_thread(log->rdev->mddev->thread);
1495 		wait_event_lock_irq(log->iounit_wait,
1496 				    r5l_reclaimable_space(log) > reclaimable,
1497 				    log->io_list_lock);
1498 	}
1499 
1500 	next_checkpoint = r5c_calculate_new_cp(conf);
1501 	spin_unlock_irq(&log->io_list_lock);
1502 
1503 	if (reclaimable == 0 || !write_super)
1504 		return;
1505 
1506 	/*
1507 	 * write_super will flush cache of each raid disk. We must write super
1508 	 * here, because the log area might be reused soon and we don't want to
1509 	 * confuse recovery
1510 	 */
1511 	r5l_write_super_and_discard_space(log, next_checkpoint);
1512 
1513 	mutex_lock(&log->io_mutex);
1514 	log->last_checkpoint = next_checkpoint;
1515 	r5c_update_log_state(log);
1516 	mutex_unlock(&log->io_mutex);
1517 
1518 	r5l_run_no_space_stripes(log);
1519 }
1520 
1521 static void r5l_reclaim_thread(struct md_thread *thread)
1522 {
1523 	struct mddev *mddev = thread->mddev;
1524 	struct r5conf *conf = mddev->private;
1525 	struct r5l_log *log = conf->log;
1526 
1527 	if (!log)
1528 		return;
1529 	r5c_do_reclaim(conf);
1530 	r5l_do_reclaim(log);
1531 }
1532 
1533 void r5l_wake_reclaim(struct r5l_log *log, sector_t space)
1534 {
1535 	unsigned long target;
1536 	unsigned long new = (unsigned long)space; /* overflow in theory */
1537 
1538 	if (!log)
1539 		return;
1540 	do {
1541 		target = log->reclaim_target;
1542 		if (new < target)
1543 			return;
1544 	} while (cmpxchg(&log->reclaim_target, target, new) != target);
1545 	md_wakeup_thread(log->reclaim_thread);
1546 }
1547 
1548 void r5l_quiesce(struct r5l_log *log, int state)
1549 {
1550 	struct mddev *mddev;
1551 	if (!log || state == 2)
1552 		return;
1553 	if (state == 0)
1554 		kthread_unpark(log->reclaim_thread->tsk);
1555 	else if (state == 1) {
1556 		/* make sure r5l_write_super_and_discard_space exits */
1557 		mddev = log->rdev->mddev;
1558 		wake_up(&mddev->sb_wait);
1559 		kthread_park(log->reclaim_thread->tsk);
1560 		r5l_wake_reclaim(log, MaxSector);
1561 		r5l_do_reclaim(log);
1562 	}
1563 }
1564 
1565 bool r5l_log_disk_error(struct r5conf *conf)
1566 {
1567 	struct r5l_log *log;
1568 	bool ret;
1569 	/* don't allow write if journal disk is missing */
1570 	rcu_read_lock();
1571 	log = rcu_dereference(conf->log);
1572 
1573 	if (!log)
1574 		ret = test_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
1575 	else
1576 		ret = test_bit(Faulty, &log->rdev->flags);
1577 	rcu_read_unlock();
1578 	return ret;
1579 }
1580 
1581 #define R5L_RECOVERY_PAGE_POOL_SIZE 256
1582 
1583 struct r5l_recovery_ctx {
1584 	struct page *meta_page;		/* current meta */
1585 	sector_t meta_total_blocks;	/* total size of current meta and data */
1586 	sector_t pos;			/* recovery position */
1587 	u64 seq;			/* recovery position seq */
1588 	int data_parity_stripes;	/* number of data_parity stripes */
1589 	int data_only_stripes;		/* number of data_only stripes */
1590 	struct list_head cached_list;
1591 
1592 	/*
1593 	 * read ahead page pool (ra_pool)
1594 	 * in recovery, log is read sequentially. It is not efficient to
1595 	 * read every page with sync_page_io(). The read ahead page pool
1596 	 * reads multiple pages with one IO, so further log read can
1597 	 * just copy data from the pool.
1598 	 */
1599 	struct page *ra_pool[R5L_RECOVERY_PAGE_POOL_SIZE];
1600 	sector_t pool_offset;	/* offset of first page in the pool */
1601 	int total_pages;	/* total allocated pages */
1602 	int valid_pages;	/* pages with valid data */
1603 	struct bio *ra_bio;	/* bio to do the read ahead */
1604 };
1605 
1606 static int r5l_recovery_allocate_ra_pool(struct r5l_log *log,
1607 					    struct r5l_recovery_ctx *ctx)
1608 {
1609 	struct page *page;
1610 
1611 	ctx->ra_bio = bio_alloc_bioset(GFP_KERNEL, BIO_MAX_PAGES, log->bs);
1612 	if (!ctx->ra_bio)
1613 		return -ENOMEM;
1614 
1615 	ctx->valid_pages = 0;
1616 	ctx->total_pages = 0;
1617 	while (ctx->total_pages < R5L_RECOVERY_PAGE_POOL_SIZE) {
1618 		page = alloc_page(GFP_KERNEL);
1619 
1620 		if (!page)
1621 			break;
1622 		ctx->ra_pool[ctx->total_pages] = page;
1623 		ctx->total_pages += 1;
1624 	}
1625 
1626 	if (ctx->total_pages == 0) {
1627 		bio_put(ctx->ra_bio);
1628 		return -ENOMEM;
1629 	}
1630 
1631 	ctx->pool_offset = 0;
1632 	return 0;
1633 }
1634 
1635 static void r5l_recovery_free_ra_pool(struct r5l_log *log,
1636 					struct r5l_recovery_ctx *ctx)
1637 {
1638 	int i;
1639 
1640 	for (i = 0; i < ctx->total_pages; ++i)
1641 		put_page(ctx->ra_pool[i]);
1642 	bio_put(ctx->ra_bio);
1643 }
1644 
1645 /*
1646  * fetch ctx->valid_pages pages from offset
1647  * In normal cases, ctx->valid_pages == ctx->total_pages after the call.
1648  * However, if the offset is close to the end of the journal device,
1649  * ctx->valid_pages could be smaller than ctx->total_pages
1650  */
1651 static int r5l_recovery_fetch_ra_pool(struct r5l_log *log,
1652 				      struct r5l_recovery_ctx *ctx,
1653 				      sector_t offset)
1654 {
1655 	bio_reset(ctx->ra_bio);
1656 	ctx->ra_bio->bi_bdev = log->rdev->bdev;
1657 	bio_set_op_attrs(ctx->ra_bio, REQ_OP_READ, 0);
1658 	ctx->ra_bio->bi_iter.bi_sector = log->rdev->data_offset + offset;
1659 
1660 	ctx->valid_pages = 0;
1661 	ctx->pool_offset = offset;
1662 
1663 	while (ctx->valid_pages < ctx->total_pages) {
1664 		bio_add_page(ctx->ra_bio,
1665 			     ctx->ra_pool[ctx->valid_pages], PAGE_SIZE, 0);
1666 		ctx->valid_pages += 1;
1667 
1668 		offset = r5l_ring_add(log, offset, BLOCK_SECTORS);
1669 
1670 		if (offset == 0)  /* reached end of the device */
1671 			break;
1672 	}
1673 
1674 	return submit_bio_wait(ctx->ra_bio);
1675 }
1676 
1677 /*
1678  * try read a page from the read ahead page pool, if the page is not in the
1679  * pool, call r5l_recovery_fetch_ra_pool
1680  */
1681 static int r5l_recovery_read_page(struct r5l_log *log,
1682 				  struct r5l_recovery_ctx *ctx,
1683 				  struct page *page,
1684 				  sector_t offset)
1685 {
1686 	int ret;
1687 
1688 	if (offset < ctx->pool_offset ||
1689 	    offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS) {
1690 		ret = r5l_recovery_fetch_ra_pool(log, ctx, offset);
1691 		if (ret)
1692 			return ret;
1693 	}
1694 
1695 	BUG_ON(offset < ctx->pool_offset ||
1696 	       offset >= ctx->pool_offset + ctx->valid_pages * BLOCK_SECTORS);
1697 
1698 	memcpy(page_address(page),
1699 	       page_address(ctx->ra_pool[(offset - ctx->pool_offset) >>
1700 					 BLOCK_SECTOR_SHIFT]),
1701 	       PAGE_SIZE);
1702 	return 0;
1703 }
1704 
1705 static int r5l_recovery_read_meta_block(struct r5l_log *log,
1706 					struct r5l_recovery_ctx *ctx)
1707 {
1708 	struct page *page = ctx->meta_page;
1709 	struct r5l_meta_block *mb;
1710 	u32 crc, stored_crc;
1711 	int ret;
1712 
1713 	ret = r5l_recovery_read_page(log, ctx, page, ctx->pos);
1714 	if (ret != 0)
1715 		return ret;
1716 
1717 	mb = page_address(page);
1718 	stored_crc = le32_to_cpu(mb->checksum);
1719 	mb->checksum = 0;
1720 
1721 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
1722 	    le64_to_cpu(mb->seq) != ctx->seq ||
1723 	    mb->version != R5LOG_VERSION ||
1724 	    le64_to_cpu(mb->position) != ctx->pos)
1725 		return -EINVAL;
1726 
1727 	crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
1728 	if (stored_crc != crc)
1729 		return -EINVAL;
1730 
1731 	if (le32_to_cpu(mb->meta_size) > PAGE_SIZE)
1732 		return -EINVAL;
1733 
1734 	ctx->meta_total_blocks = BLOCK_SECTORS;
1735 
1736 	return 0;
1737 }
1738 
1739 static void
1740 r5l_recovery_create_empty_meta_block(struct r5l_log *log,
1741 				     struct page *page,
1742 				     sector_t pos, u64 seq)
1743 {
1744 	struct r5l_meta_block *mb;
1745 
1746 	mb = page_address(page);
1747 	clear_page(mb);
1748 	mb->magic = cpu_to_le32(R5LOG_MAGIC);
1749 	mb->version = R5LOG_VERSION;
1750 	mb->meta_size = cpu_to_le32(sizeof(struct r5l_meta_block));
1751 	mb->seq = cpu_to_le64(seq);
1752 	mb->position = cpu_to_le64(pos);
1753 }
1754 
1755 static int r5l_log_write_empty_meta_block(struct r5l_log *log, sector_t pos,
1756 					  u64 seq)
1757 {
1758 	struct page *page;
1759 	struct r5l_meta_block *mb;
1760 
1761 	page = alloc_page(GFP_KERNEL);
1762 	if (!page)
1763 		return -ENOMEM;
1764 	r5l_recovery_create_empty_meta_block(log, page, pos, seq);
1765 	mb = page_address(page);
1766 	mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
1767 					     mb, PAGE_SIZE));
1768 	if (!sync_page_io(log->rdev, pos, PAGE_SIZE, page, REQ_OP_WRITE,
1769 			  REQ_FUA, false)) {
1770 		__free_page(page);
1771 		return -EIO;
1772 	}
1773 	__free_page(page);
1774 	return 0;
1775 }
1776 
1777 /*
1778  * r5l_recovery_load_data and r5l_recovery_load_parity uses flag R5_Wantwrite
1779  * to mark valid (potentially not flushed) data in the journal.
1780  *
1781  * We already verified checksum in r5l_recovery_verify_data_checksum_for_mb,
1782  * so there should not be any mismatch here.
1783  */
1784 static void r5l_recovery_load_data(struct r5l_log *log,
1785 				   struct stripe_head *sh,
1786 				   struct r5l_recovery_ctx *ctx,
1787 				   struct r5l_payload_data_parity *payload,
1788 				   sector_t log_offset)
1789 {
1790 	struct mddev *mddev = log->rdev->mddev;
1791 	struct r5conf *conf = mddev->private;
1792 	int dd_idx;
1793 
1794 	raid5_compute_sector(conf,
1795 			     le64_to_cpu(payload->location), 0,
1796 			     &dd_idx, sh);
1797 	r5l_recovery_read_page(log, ctx, sh->dev[dd_idx].page, log_offset);
1798 	sh->dev[dd_idx].log_checksum =
1799 		le32_to_cpu(payload->checksum[0]);
1800 	ctx->meta_total_blocks += BLOCK_SECTORS;
1801 
1802 	set_bit(R5_Wantwrite, &sh->dev[dd_idx].flags);
1803 	set_bit(STRIPE_R5C_CACHING, &sh->state);
1804 }
1805 
1806 static void r5l_recovery_load_parity(struct r5l_log *log,
1807 				     struct stripe_head *sh,
1808 				     struct r5l_recovery_ctx *ctx,
1809 				     struct r5l_payload_data_parity *payload,
1810 				     sector_t log_offset)
1811 {
1812 	struct mddev *mddev = log->rdev->mddev;
1813 	struct r5conf *conf = mddev->private;
1814 
1815 	ctx->meta_total_blocks += BLOCK_SECTORS * conf->max_degraded;
1816 	r5l_recovery_read_page(log, ctx, sh->dev[sh->pd_idx].page, log_offset);
1817 	sh->dev[sh->pd_idx].log_checksum =
1818 		le32_to_cpu(payload->checksum[0]);
1819 	set_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags);
1820 
1821 	if (sh->qd_idx >= 0) {
1822 		r5l_recovery_read_page(
1823 			log, ctx, sh->dev[sh->qd_idx].page,
1824 			r5l_ring_add(log, log_offset, BLOCK_SECTORS));
1825 		sh->dev[sh->qd_idx].log_checksum =
1826 			le32_to_cpu(payload->checksum[1]);
1827 		set_bit(R5_Wantwrite, &sh->dev[sh->qd_idx].flags);
1828 	}
1829 	clear_bit(STRIPE_R5C_CACHING, &sh->state);
1830 }
1831 
1832 static void r5l_recovery_reset_stripe(struct stripe_head *sh)
1833 {
1834 	int i;
1835 
1836 	sh->state = 0;
1837 	sh->log_start = MaxSector;
1838 	for (i = sh->disks; i--; )
1839 		sh->dev[i].flags = 0;
1840 }
1841 
1842 static void
1843 r5l_recovery_replay_one_stripe(struct r5conf *conf,
1844 			       struct stripe_head *sh,
1845 			       struct r5l_recovery_ctx *ctx)
1846 {
1847 	struct md_rdev *rdev, *rrdev;
1848 	int disk_index;
1849 	int data_count = 0;
1850 
1851 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1852 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1853 			continue;
1854 		if (disk_index == sh->qd_idx || disk_index == sh->pd_idx)
1855 			continue;
1856 		data_count++;
1857 	}
1858 
1859 	/*
1860 	 * stripes that only have parity must have been flushed
1861 	 * before the crash that we are now recovering from, so
1862 	 * there is nothing more to recovery.
1863 	 */
1864 	if (data_count == 0)
1865 		goto out;
1866 
1867 	for (disk_index = 0; disk_index < sh->disks; disk_index++) {
1868 		if (!test_bit(R5_Wantwrite, &sh->dev[disk_index].flags))
1869 			continue;
1870 
1871 		/* in case device is broken */
1872 		rcu_read_lock();
1873 		rdev = rcu_dereference(conf->disks[disk_index].rdev);
1874 		if (rdev) {
1875 			atomic_inc(&rdev->nr_pending);
1876 			rcu_read_unlock();
1877 			sync_page_io(rdev, sh->sector, PAGE_SIZE,
1878 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1879 				     false);
1880 			rdev_dec_pending(rdev, rdev->mddev);
1881 			rcu_read_lock();
1882 		}
1883 		rrdev = rcu_dereference(conf->disks[disk_index].replacement);
1884 		if (rrdev) {
1885 			atomic_inc(&rrdev->nr_pending);
1886 			rcu_read_unlock();
1887 			sync_page_io(rrdev, sh->sector, PAGE_SIZE,
1888 				     sh->dev[disk_index].page, REQ_OP_WRITE, 0,
1889 				     false);
1890 			rdev_dec_pending(rrdev, rrdev->mddev);
1891 			rcu_read_lock();
1892 		}
1893 		rcu_read_unlock();
1894 	}
1895 	ctx->data_parity_stripes++;
1896 out:
1897 	r5l_recovery_reset_stripe(sh);
1898 }
1899 
1900 static struct stripe_head *
1901 r5c_recovery_alloc_stripe(struct r5conf *conf,
1902 			  sector_t stripe_sect)
1903 {
1904 	struct stripe_head *sh;
1905 
1906 	sh = raid5_get_active_stripe(conf, stripe_sect, 0, 1, 0);
1907 	if (!sh)
1908 		return NULL;  /* no more stripe available */
1909 
1910 	r5l_recovery_reset_stripe(sh);
1911 
1912 	return sh;
1913 }
1914 
1915 static struct stripe_head *
1916 r5c_recovery_lookup_stripe(struct list_head *list, sector_t sect)
1917 {
1918 	struct stripe_head *sh;
1919 
1920 	list_for_each_entry(sh, list, lru)
1921 		if (sh->sector == sect)
1922 			return sh;
1923 	return NULL;
1924 }
1925 
1926 static void
1927 r5c_recovery_drop_stripes(struct list_head *cached_stripe_list,
1928 			  struct r5l_recovery_ctx *ctx)
1929 {
1930 	struct stripe_head *sh, *next;
1931 
1932 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru) {
1933 		r5l_recovery_reset_stripe(sh);
1934 		list_del_init(&sh->lru);
1935 		raid5_release_stripe(sh);
1936 	}
1937 }
1938 
1939 static void
1940 r5c_recovery_replay_stripes(struct list_head *cached_stripe_list,
1941 			    struct r5l_recovery_ctx *ctx)
1942 {
1943 	struct stripe_head *sh, *next;
1944 
1945 	list_for_each_entry_safe(sh, next, cached_stripe_list, lru)
1946 		if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
1947 			r5l_recovery_replay_one_stripe(sh->raid_conf, sh, ctx);
1948 			list_del_init(&sh->lru);
1949 			raid5_release_stripe(sh);
1950 		}
1951 }
1952 
1953 /* if matches return 0; otherwise return -EINVAL */
1954 static int
1955 r5l_recovery_verify_data_checksum(struct r5l_log *log,
1956 				  struct r5l_recovery_ctx *ctx,
1957 				  struct page *page,
1958 				  sector_t log_offset, __le32 log_checksum)
1959 {
1960 	void *addr;
1961 	u32 checksum;
1962 
1963 	r5l_recovery_read_page(log, ctx, page, log_offset);
1964 	addr = kmap_atomic(page);
1965 	checksum = crc32c_le(log->uuid_checksum, addr, PAGE_SIZE);
1966 	kunmap_atomic(addr);
1967 	return (le32_to_cpu(log_checksum) == checksum) ? 0 : -EINVAL;
1968 }
1969 
1970 /*
1971  * before loading data to stripe cache, we need verify checksum for all data,
1972  * if there is mismatch for any data page, we drop all data in the mata block
1973  */
1974 static int
1975 r5l_recovery_verify_data_checksum_for_mb(struct r5l_log *log,
1976 					 struct r5l_recovery_ctx *ctx)
1977 {
1978 	struct mddev *mddev = log->rdev->mddev;
1979 	struct r5conf *conf = mddev->private;
1980 	struct r5l_meta_block *mb = page_address(ctx->meta_page);
1981 	sector_t mb_offset = sizeof(struct r5l_meta_block);
1982 	sector_t log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
1983 	struct page *page;
1984 	struct r5l_payload_data_parity *payload;
1985 	struct r5l_payload_flush *payload_flush;
1986 
1987 	page = alloc_page(GFP_KERNEL);
1988 	if (!page)
1989 		return -ENOMEM;
1990 
1991 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
1992 		payload = (void *)mb + mb_offset;
1993 		payload_flush = (void *)mb + mb_offset;
1994 
1995 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
1996 			if (r5l_recovery_verify_data_checksum(
1997 				    log, ctx, page, log_offset,
1998 				    payload->checksum[0]) < 0)
1999 				goto mismatch;
2000 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY) {
2001 			if (r5l_recovery_verify_data_checksum(
2002 				    log, ctx, page, log_offset,
2003 				    payload->checksum[0]) < 0)
2004 				goto mismatch;
2005 			if (conf->max_degraded == 2 && /* q for RAID 6 */
2006 			    r5l_recovery_verify_data_checksum(
2007 				    log, ctx, page,
2008 				    r5l_ring_add(log, log_offset,
2009 						 BLOCK_SECTORS),
2010 				    payload->checksum[1]) < 0)
2011 				goto mismatch;
2012 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2013 			/* nothing to do for R5LOG_PAYLOAD_FLUSH here */
2014 		} else /* not R5LOG_PAYLOAD_DATA/PARITY/FLUSH */
2015 			goto mismatch;
2016 
2017 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2018 			mb_offset += sizeof(struct r5l_payload_flush) +
2019 				le32_to_cpu(payload_flush->size);
2020 		} else {
2021 			/* DATA or PARITY payload */
2022 			log_offset = r5l_ring_add(log, log_offset,
2023 						  le32_to_cpu(payload->size));
2024 			mb_offset += sizeof(struct r5l_payload_data_parity) +
2025 				sizeof(__le32) *
2026 				(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2027 		}
2028 
2029 	}
2030 
2031 	put_page(page);
2032 	return 0;
2033 
2034 mismatch:
2035 	put_page(page);
2036 	return -EINVAL;
2037 }
2038 
2039 /*
2040  * Analyze all data/parity pages in one meta block
2041  * Returns:
2042  * 0 for success
2043  * -EINVAL for unknown playload type
2044  * -EAGAIN for checksum mismatch of data page
2045  * -ENOMEM for run out of memory (alloc_page failed or run out of stripes)
2046  */
2047 static int
2048 r5c_recovery_analyze_meta_block(struct r5l_log *log,
2049 				struct r5l_recovery_ctx *ctx,
2050 				struct list_head *cached_stripe_list)
2051 {
2052 	struct mddev *mddev = log->rdev->mddev;
2053 	struct r5conf *conf = mddev->private;
2054 	struct r5l_meta_block *mb;
2055 	struct r5l_payload_data_parity *payload;
2056 	struct r5l_payload_flush *payload_flush;
2057 	int mb_offset;
2058 	sector_t log_offset;
2059 	sector_t stripe_sect;
2060 	struct stripe_head *sh;
2061 	int ret;
2062 
2063 	/*
2064 	 * for mismatch in data blocks, we will drop all data in this mb, but
2065 	 * we will still read next mb for other data with FLUSH flag, as
2066 	 * io_unit could finish out of order.
2067 	 */
2068 	ret = r5l_recovery_verify_data_checksum_for_mb(log, ctx);
2069 	if (ret == -EINVAL)
2070 		return -EAGAIN;
2071 	else if (ret)
2072 		return ret;   /* -ENOMEM duo to alloc_page() failed */
2073 
2074 	mb = page_address(ctx->meta_page);
2075 	mb_offset = sizeof(struct r5l_meta_block);
2076 	log_offset = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2077 
2078 	while (mb_offset < le32_to_cpu(mb->meta_size)) {
2079 		int dd;
2080 
2081 		payload = (void *)mb + mb_offset;
2082 		payload_flush = (void *)mb + mb_offset;
2083 
2084 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_FLUSH) {
2085 			int i, count;
2086 
2087 			count = le32_to_cpu(payload_flush->size) / sizeof(__le64);
2088 			for (i = 0; i < count; ++i) {
2089 				stripe_sect = le64_to_cpu(payload_flush->flush_stripes[i]);
2090 				sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2091 								stripe_sect);
2092 				if (sh) {
2093 					WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2094 					r5l_recovery_reset_stripe(sh);
2095 					list_del_init(&sh->lru);
2096 					raid5_release_stripe(sh);
2097 				}
2098 			}
2099 
2100 			mb_offset += sizeof(struct r5l_payload_flush) +
2101 				le32_to_cpu(payload_flush->size);
2102 			continue;
2103 		}
2104 
2105 		/* DATA or PARITY payload */
2106 		stripe_sect = (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) ?
2107 			raid5_compute_sector(
2108 				conf, le64_to_cpu(payload->location), 0, &dd,
2109 				NULL)
2110 			: le64_to_cpu(payload->location);
2111 
2112 		sh = r5c_recovery_lookup_stripe(cached_stripe_list,
2113 						stripe_sect);
2114 
2115 		if (!sh) {
2116 			sh = r5c_recovery_alloc_stripe(conf, stripe_sect);
2117 			/*
2118 			 * cannot get stripe from raid5_get_active_stripe
2119 			 * try replay some stripes
2120 			 */
2121 			if (!sh) {
2122 				r5c_recovery_replay_stripes(
2123 					cached_stripe_list, ctx);
2124 				sh = r5c_recovery_alloc_stripe(
2125 					conf, stripe_sect);
2126 			}
2127 			if (!sh) {
2128 				pr_debug("md/raid:%s: Increasing stripe cache size to %d to recovery data on journal.\n",
2129 					mdname(mddev),
2130 					conf->min_nr_stripes * 2);
2131 				raid5_set_cache_size(mddev,
2132 						     conf->min_nr_stripes * 2);
2133 				sh = r5c_recovery_alloc_stripe(conf,
2134 							       stripe_sect);
2135 			}
2136 			if (!sh) {
2137 				pr_err("md/raid:%s: Cannot get enough stripes due to memory pressure. Recovery failed.\n",
2138 				       mdname(mddev));
2139 				return -ENOMEM;
2140 			}
2141 			list_add_tail(&sh->lru, cached_stripe_list);
2142 		}
2143 
2144 		if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_DATA) {
2145 			if (!test_bit(STRIPE_R5C_CACHING, &sh->state) &&
2146 			    test_bit(R5_Wantwrite, &sh->dev[sh->pd_idx].flags)) {
2147 				r5l_recovery_replay_one_stripe(conf, sh, ctx);
2148 				list_move_tail(&sh->lru, cached_stripe_list);
2149 			}
2150 			r5l_recovery_load_data(log, sh, ctx, payload,
2151 					       log_offset);
2152 		} else if (le16_to_cpu(payload->header.type) == R5LOG_PAYLOAD_PARITY)
2153 			r5l_recovery_load_parity(log, sh, ctx, payload,
2154 						 log_offset);
2155 		else
2156 			return -EINVAL;
2157 
2158 		log_offset = r5l_ring_add(log, log_offset,
2159 					  le32_to_cpu(payload->size));
2160 
2161 		mb_offset += sizeof(struct r5l_payload_data_parity) +
2162 			sizeof(__le32) *
2163 			(le32_to_cpu(payload->size) >> (PAGE_SHIFT - 9));
2164 	}
2165 
2166 	return 0;
2167 }
2168 
2169 /*
2170  * Load the stripe into cache. The stripe will be written out later by
2171  * the stripe cache state machine.
2172  */
2173 static void r5c_recovery_load_one_stripe(struct r5l_log *log,
2174 					 struct stripe_head *sh)
2175 {
2176 	struct r5dev *dev;
2177 	int i;
2178 
2179 	for (i = sh->disks; i--; ) {
2180 		dev = sh->dev + i;
2181 		if (test_and_clear_bit(R5_Wantwrite, &dev->flags)) {
2182 			set_bit(R5_InJournal, &dev->flags);
2183 			set_bit(R5_UPTODATE, &dev->flags);
2184 		}
2185 	}
2186 }
2187 
2188 /*
2189  * Scan through the log for all to-be-flushed data
2190  *
2191  * For stripes with data and parity, namely Data-Parity stripe
2192  * (STRIPE_R5C_CACHING == 0), we simply replay all the writes.
2193  *
2194  * For stripes with only data, namely Data-Only stripe
2195  * (STRIPE_R5C_CACHING == 1), we load them to stripe cache state machine.
2196  *
2197  * For a stripe, if we see data after parity, we should discard all previous
2198  * data and parity for this stripe, as these data are already flushed to
2199  * the array.
2200  *
2201  * At the end of the scan, we return the new journal_tail, which points to
2202  * first data-only stripe on the journal device, or next invalid meta block.
2203  */
2204 static int r5c_recovery_flush_log(struct r5l_log *log,
2205 				  struct r5l_recovery_ctx *ctx)
2206 {
2207 	struct stripe_head *sh;
2208 	int ret = 0;
2209 
2210 	/* scan through the log */
2211 	while (1) {
2212 		if (r5l_recovery_read_meta_block(log, ctx))
2213 			break;
2214 
2215 		ret = r5c_recovery_analyze_meta_block(log, ctx,
2216 						      &ctx->cached_list);
2217 		/*
2218 		 * -EAGAIN means mismatch in data block, in this case, we still
2219 		 * try scan the next metablock
2220 		 */
2221 		if (ret && ret != -EAGAIN)
2222 			break;   /* ret == -EINVAL or -ENOMEM */
2223 		ctx->seq++;
2224 		ctx->pos = r5l_ring_add(log, ctx->pos, ctx->meta_total_blocks);
2225 	}
2226 
2227 	if (ret == -ENOMEM) {
2228 		r5c_recovery_drop_stripes(&ctx->cached_list, ctx);
2229 		return ret;
2230 	}
2231 
2232 	/* replay data-parity stripes */
2233 	r5c_recovery_replay_stripes(&ctx->cached_list, ctx);
2234 
2235 	/* load data-only stripes to stripe cache */
2236 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2237 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2238 		r5c_recovery_load_one_stripe(log, sh);
2239 		ctx->data_only_stripes++;
2240 	}
2241 
2242 	return 0;
2243 }
2244 
2245 /*
2246  * we did a recovery. Now ctx.pos points to an invalid meta block. New
2247  * log will start here. but we can't let superblock point to last valid
2248  * meta block. The log might looks like:
2249  * | meta 1| meta 2| meta 3|
2250  * meta 1 is valid, meta 2 is invalid. meta 3 could be valid. If
2251  * superblock points to meta 1, we write a new valid meta 2n.  if crash
2252  * happens again, new recovery will start from meta 1. Since meta 2n is
2253  * valid now, recovery will think meta 3 is valid, which is wrong.
2254  * The solution is we create a new meta in meta2 with its seq == meta
2255  * 1's seq + 10000 and let superblock points to meta2. The same recovery
2256  * will not think meta 3 is a valid meta, because its seq doesn't match
2257  */
2258 
2259 /*
2260  * Before recovery, the log looks like the following
2261  *
2262  *   ---------------------------------------------
2263  *   |           valid log        | invalid log  |
2264  *   ---------------------------------------------
2265  *   ^
2266  *   |- log->last_checkpoint
2267  *   |- log->last_cp_seq
2268  *
2269  * Now we scan through the log until we see invalid entry
2270  *
2271  *   ---------------------------------------------
2272  *   |           valid log        | invalid log  |
2273  *   ---------------------------------------------
2274  *   ^                            ^
2275  *   |- log->last_checkpoint      |- ctx->pos
2276  *   |- log->last_cp_seq          |- ctx->seq
2277  *
2278  * From this point, we need to increase seq number by 10 to avoid
2279  * confusing next recovery.
2280  *
2281  *   ---------------------------------------------
2282  *   |           valid log        | invalid log  |
2283  *   ---------------------------------------------
2284  *   ^                              ^
2285  *   |- log->last_checkpoint        |- ctx->pos+1
2286  *   |- log->last_cp_seq            |- ctx->seq+10001
2287  *
2288  * However, it is not safe to start the state machine yet, because data only
2289  * parities are not yet secured in RAID. To save these data only parities, we
2290  * rewrite them from seq+11.
2291  *
2292  *   -----------------------------------------------------------------
2293  *   |           valid log        | data only stripes | invalid log  |
2294  *   -----------------------------------------------------------------
2295  *   ^                                                ^
2296  *   |- log->last_checkpoint                          |- ctx->pos+n
2297  *   |- log->last_cp_seq                              |- ctx->seq+10000+n
2298  *
2299  * If failure happens again during this process, the recovery can safe start
2300  * again from log->last_checkpoint.
2301  *
2302  * Once data only stripes are rewritten to journal, we move log_tail
2303  *
2304  *   -----------------------------------------------------------------
2305  *   |     old log        |    data only stripes    | invalid log  |
2306  *   -----------------------------------------------------------------
2307  *                        ^                         ^
2308  *                        |- log->last_checkpoint   |- ctx->pos+n
2309  *                        |- log->last_cp_seq       |- ctx->seq+10000+n
2310  *
2311  * Then we can safely start the state machine. If failure happens from this
2312  * point on, the recovery will start from new log->last_checkpoint.
2313  */
2314 static int
2315 r5c_recovery_rewrite_data_only_stripes(struct r5l_log *log,
2316 				       struct r5l_recovery_ctx *ctx)
2317 {
2318 	struct stripe_head *sh;
2319 	struct mddev *mddev = log->rdev->mddev;
2320 	struct page *page;
2321 	sector_t next_checkpoint = MaxSector;
2322 
2323 	page = alloc_page(GFP_KERNEL);
2324 	if (!page) {
2325 		pr_err("md/raid:%s: cannot allocate memory to rewrite data only stripes\n",
2326 		       mdname(mddev));
2327 		return -ENOMEM;
2328 	}
2329 
2330 	WARN_ON(list_empty(&ctx->cached_list));
2331 
2332 	list_for_each_entry(sh, &ctx->cached_list, lru) {
2333 		struct r5l_meta_block *mb;
2334 		int i;
2335 		int offset;
2336 		sector_t write_pos;
2337 
2338 		WARN_ON(!test_bit(STRIPE_R5C_CACHING, &sh->state));
2339 		r5l_recovery_create_empty_meta_block(log, page,
2340 						     ctx->pos, ctx->seq);
2341 		mb = page_address(page);
2342 		offset = le32_to_cpu(mb->meta_size);
2343 		write_pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2344 
2345 		for (i = sh->disks; i--; ) {
2346 			struct r5dev *dev = &sh->dev[i];
2347 			struct r5l_payload_data_parity *payload;
2348 			void *addr;
2349 
2350 			if (test_bit(R5_InJournal, &dev->flags)) {
2351 				payload = (void *)mb + offset;
2352 				payload->header.type = cpu_to_le16(
2353 					R5LOG_PAYLOAD_DATA);
2354 				payload->size = cpu_to_le32(BLOCK_SECTORS);
2355 				payload->location = cpu_to_le64(
2356 					raid5_compute_blocknr(sh, i, 0));
2357 				addr = kmap_atomic(dev->page);
2358 				payload->checksum[0] = cpu_to_le32(
2359 					crc32c_le(log->uuid_checksum, addr,
2360 						  PAGE_SIZE));
2361 				kunmap_atomic(addr);
2362 				sync_page_io(log->rdev, write_pos, PAGE_SIZE,
2363 					     dev->page, REQ_OP_WRITE, 0, false);
2364 				write_pos = r5l_ring_add(log, write_pos,
2365 							 BLOCK_SECTORS);
2366 				offset += sizeof(__le32) +
2367 					sizeof(struct r5l_payload_data_parity);
2368 
2369 			}
2370 		}
2371 		mb->meta_size = cpu_to_le32(offset);
2372 		mb->checksum = cpu_to_le32(crc32c_le(log->uuid_checksum,
2373 						     mb, PAGE_SIZE));
2374 		sync_page_io(log->rdev, ctx->pos, PAGE_SIZE, page,
2375 			     REQ_OP_WRITE, REQ_FUA, false);
2376 		sh->log_start = ctx->pos;
2377 		list_add_tail(&sh->r5c, &log->stripe_in_journal_list);
2378 		atomic_inc(&log->stripe_in_journal_count);
2379 		ctx->pos = write_pos;
2380 		ctx->seq += 1;
2381 		next_checkpoint = sh->log_start;
2382 	}
2383 	log->next_checkpoint = next_checkpoint;
2384 	__free_page(page);
2385 	return 0;
2386 }
2387 
2388 static void r5c_recovery_flush_data_only_stripes(struct r5l_log *log,
2389 						 struct r5l_recovery_ctx *ctx)
2390 {
2391 	struct mddev *mddev = log->rdev->mddev;
2392 	struct r5conf *conf = mddev->private;
2393 	struct stripe_head *sh, *next;
2394 
2395 	if (ctx->data_only_stripes == 0)
2396 		return;
2397 
2398 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_BACK;
2399 
2400 	list_for_each_entry_safe(sh, next, &ctx->cached_list, lru) {
2401 		r5c_make_stripe_write_out(sh);
2402 		set_bit(STRIPE_HANDLE, &sh->state);
2403 		list_del_init(&sh->lru);
2404 		raid5_release_stripe(sh);
2405 	}
2406 
2407 	md_wakeup_thread(conf->mddev->thread);
2408 	/* reuse conf->wait_for_quiescent in recovery */
2409 	wait_event(conf->wait_for_quiescent,
2410 		   atomic_read(&conf->active_stripes) == 0);
2411 
2412 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
2413 }
2414 
2415 static int r5l_recovery_log(struct r5l_log *log)
2416 {
2417 	struct mddev *mddev = log->rdev->mddev;
2418 	struct r5l_recovery_ctx *ctx;
2419 	int ret;
2420 	sector_t pos;
2421 
2422 	ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2423 	if (!ctx)
2424 		return -ENOMEM;
2425 
2426 	ctx->pos = log->last_checkpoint;
2427 	ctx->seq = log->last_cp_seq;
2428 	INIT_LIST_HEAD(&ctx->cached_list);
2429 	ctx->meta_page = alloc_page(GFP_KERNEL);
2430 
2431 	if (!ctx->meta_page) {
2432 		ret =  -ENOMEM;
2433 		goto meta_page;
2434 	}
2435 
2436 	if (r5l_recovery_allocate_ra_pool(log, ctx) != 0) {
2437 		ret = -ENOMEM;
2438 		goto ra_pool;
2439 	}
2440 
2441 	ret = r5c_recovery_flush_log(log, ctx);
2442 
2443 	if (ret)
2444 		goto error;
2445 
2446 	pos = ctx->pos;
2447 	ctx->seq += 10000;
2448 
2449 	if ((ctx->data_only_stripes == 0) && (ctx->data_parity_stripes == 0))
2450 		pr_debug("md/raid:%s: starting from clean shutdown\n",
2451 			 mdname(mddev));
2452 	else
2453 		pr_debug("md/raid:%s: recovering %d data-only stripes and %d data-parity stripes\n",
2454 			 mdname(mddev), ctx->data_only_stripes,
2455 			 ctx->data_parity_stripes);
2456 
2457 	if (ctx->data_only_stripes == 0) {
2458 		log->next_checkpoint = ctx->pos;
2459 		r5l_log_write_empty_meta_block(log, ctx->pos, ctx->seq++);
2460 		ctx->pos = r5l_ring_add(log, ctx->pos, BLOCK_SECTORS);
2461 	} else if (r5c_recovery_rewrite_data_only_stripes(log, ctx)) {
2462 		pr_err("md/raid:%s: failed to rewrite stripes to journal\n",
2463 		       mdname(mddev));
2464 		ret =  -EIO;
2465 		goto error;
2466 	}
2467 
2468 	log->log_start = ctx->pos;
2469 	log->seq = ctx->seq;
2470 	log->last_checkpoint = pos;
2471 	r5l_write_super(log, pos);
2472 
2473 	r5c_recovery_flush_data_only_stripes(log, ctx);
2474 	ret = 0;
2475 error:
2476 	r5l_recovery_free_ra_pool(log, ctx);
2477 ra_pool:
2478 	__free_page(ctx->meta_page);
2479 meta_page:
2480 	kfree(ctx);
2481 	return ret;
2482 }
2483 
2484 static void r5l_write_super(struct r5l_log *log, sector_t cp)
2485 {
2486 	struct mddev *mddev = log->rdev->mddev;
2487 
2488 	log->rdev->journal_tail = cp;
2489 	set_bit(MD_SB_CHANGE_DEVS, &mddev->sb_flags);
2490 }
2491 
2492 static ssize_t r5c_journal_mode_show(struct mddev *mddev, char *page)
2493 {
2494 	struct r5conf *conf = mddev->private;
2495 	int ret;
2496 
2497 	if (!conf->log)
2498 		return 0;
2499 
2500 	switch (conf->log->r5c_journal_mode) {
2501 	case R5C_JOURNAL_MODE_WRITE_THROUGH:
2502 		ret = snprintf(
2503 			page, PAGE_SIZE, "[%s] %s\n",
2504 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2505 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2506 		break;
2507 	case R5C_JOURNAL_MODE_WRITE_BACK:
2508 		ret = snprintf(
2509 			page, PAGE_SIZE, "%s [%s]\n",
2510 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_THROUGH],
2511 			r5c_journal_mode_str[R5C_JOURNAL_MODE_WRITE_BACK]);
2512 		break;
2513 	default:
2514 		ret = 0;
2515 	}
2516 	return ret;
2517 }
2518 
2519 /*
2520  * Set journal cache mode on @mddev (external API initially needed by dm-raid).
2521  *
2522  * @mode as defined in 'enum r5c_journal_mode'.
2523  *
2524  */
2525 int r5c_journal_mode_set(struct mddev *mddev, int mode)
2526 {
2527 	struct r5conf *conf = mddev->private;
2528 	struct r5l_log *log = conf->log;
2529 
2530 	if (!log)
2531 		return -ENODEV;
2532 
2533 	if (mode < R5C_JOURNAL_MODE_WRITE_THROUGH ||
2534 	    mode > R5C_JOURNAL_MODE_WRITE_BACK)
2535 		return -EINVAL;
2536 
2537 	if (raid5_calc_degraded(conf) > 0 &&
2538 	    mode == R5C_JOURNAL_MODE_WRITE_BACK)
2539 		return -EINVAL;
2540 
2541 	mddev_suspend(mddev);
2542 	conf->log->r5c_journal_mode = mode;
2543 	mddev_resume(mddev);
2544 
2545 	pr_debug("md/raid:%s: setting r5c cache mode to %d: %s\n",
2546 		 mdname(mddev), mode, r5c_journal_mode_str[mode]);
2547 	return 0;
2548 }
2549 EXPORT_SYMBOL(r5c_journal_mode_set);
2550 
2551 static ssize_t r5c_journal_mode_store(struct mddev *mddev,
2552 				      const char *page, size_t length)
2553 {
2554 	int mode = ARRAY_SIZE(r5c_journal_mode_str);
2555 	size_t len = length;
2556 
2557 	if (len < 2)
2558 		return -EINVAL;
2559 
2560 	if (page[len - 1] == '\n')
2561 		len--;
2562 
2563 	while (mode--)
2564 		if (strlen(r5c_journal_mode_str[mode]) == len &&
2565 		    !strncmp(page, r5c_journal_mode_str[mode], len))
2566 			break;
2567 
2568 	return r5c_journal_mode_set(mddev, mode) ?: length;
2569 }
2570 
2571 struct md_sysfs_entry
2572 r5c_journal_mode = __ATTR(journal_mode, 0644,
2573 			  r5c_journal_mode_show, r5c_journal_mode_store);
2574 
2575 /*
2576  * Try handle write operation in caching phase. This function should only
2577  * be called in write-back mode.
2578  *
2579  * If all outstanding writes can be handled in caching phase, returns 0
2580  * If writes requires write-out phase, call r5c_make_stripe_write_out()
2581  * and returns -EAGAIN
2582  */
2583 int r5c_try_caching_write(struct r5conf *conf,
2584 			  struct stripe_head *sh,
2585 			  struct stripe_head_state *s,
2586 			  int disks)
2587 {
2588 	struct r5l_log *log = conf->log;
2589 	int i;
2590 	struct r5dev *dev;
2591 	int to_cache = 0;
2592 	void **pslot;
2593 	sector_t tree_index;
2594 	int ret;
2595 	uintptr_t refcount;
2596 
2597 	BUG_ON(!r5c_is_writeback(log));
2598 
2599 	if (!test_bit(STRIPE_R5C_CACHING, &sh->state)) {
2600 		/*
2601 		 * There are two different scenarios here:
2602 		 *  1. The stripe has some data cached, and it is sent to
2603 		 *     write-out phase for reclaim
2604 		 *  2. The stripe is clean, and this is the first write
2605 		 *
2606 		 * For 1, return -EAGAIN, so we continue with
2607 		 * handle_stripe_dirtying().
2608 		 *
2609 		 * For 2, set STRIPE_R5C_CACHING and continue with caching
2610 		 * write.
2611 		 */
2612 
2613 		/* case 1: anything injournal or anything in written */
2614 		if (s->injournal > 0 || s->written > 0)
2615 			return -EAGAIN;
2616 		/* case 2 */
2617 		set_bit(STRIPE_R5C_CACHING, &sh->state);
2618 	}
2619 
2620 	/*
2621 	 * When run in degraded mode, array is set to write-through mode.
2622 	 * This check helps drain pending write safely in the transition to
2623 	 * write-through mode.
2624 	 */
2625 	if (s->failed) {
2626 		r5c_make_stripe_write_out(sh);
2627 		return -EAGAIN;
2628 	}
2629 
2630 	for (i = disks; i--; ) {
2631 		dev = &sh->dev[i];
2632 		/* if non-overwrite, use writing-out phase */
2633 		if (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags) &&
2634 		    !test_bit(R5_InJournal, &dev->flags)) {
2635 			r5c_make_stripe_write_out(sh);
2636 			return -EAGAIN;
2637 		}
2638 	}
2639 
2640 	/* if the stripe is not counted in big_stripe_tree, add it now */
2641 	if (!test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) &&
2642 	    !test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2643 		tree_index = r5c_tree_index(conf, sh->sector);
2644 		spin_lock(&log->tree_lock);
2645 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2646 					       tree_index);
2647 		if (pslot) {
2648 			refcount = (uintptr_t)radix_tree_deref_slot_protected(
2649 				pslot, &log->tree_lock) >>
2650 				R5C_RADIX_COUNT_SHIFT;
2651 			radix_tree_replace_slot(
2652 				&log->big_stripe_tree, pslot,
2653 				(void *)((refcount + 1) << R5C_RADIX_COUNT_SHIFT));
2654 		} else {
2655 			/*
2656 			 * this radix_tree_insert can fail safely, so no
2657 			 * need to call radix_tree_preload()
2658 			 */
2659 			ret = radix_tree_insert(
2660 				&log->big_stripe_tree, tree_index,
2661 				(void *)(1 << R5C_RADIX_COUNT_SHIFT));
2662 			if (ret) {
2663 				spin_unlock(&log->tree_lock);
2664 				r5c_make_stripe_write_out(sh);
2665 				return -EAGAIN;
2666 			}
2667 		}
2668 		spin_unlock(&log->tree_lock);
2669 
2670 		/*
2671 		 * set STRIPE_R5C_PARTIAL_STRIPE, this shows the stripe is
2672 		 * counted in the radix tree
2673 		 */
2674 		set_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state);
2675 		atomic_inc(&conf->r5c_cached_partial_stripes);
2676 	}
2677 
2678 	for (i = disks; i--; ) {
2679 		dev = &sh->dev[i];
2680 		if (dev->towrite) {
2681 			set_bit(R5_Wantwrite, &dev->flags);
2682 			set_bit(R5_Wantdrain, &dev->flags);
2683 			set_bit(R5_LOCKED, &dev->flags);
2684 			to_cache++;
2685 		}
2686 	}
2687 
2688 	if (to_cache) {
2689 		set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2690 		/*
2691 		 * set STRIPE_LOG_TRAPPED, which triggers r5c_cache_data()
2692 		 * in ops_run_io(). STRIPE_LOG_TRAPPED will be cleared in
2693 		 * r5c_handle_data_cached()
2694 		 */
2695 		set_bit(STRIPE_LOG_TRAPPED, &sh->state);
2696 	}
2697 
2698 	return 0;
2699 }
2700 
2701 /*
2702  * free extra pages (orig_page) we allocated for prexor
2703  */
2704 void r5c_release_extra_page(struct stripe_head *sh)
2705 {
2706 	struct r5conf *conf = sh->raid_conf;
2707 	int i;
2708 	bool using_disk_info_extra_page;
2709 
2710 	using_disk_info_extra_page =
2711 		sh->dev[0].orig_page == conf->disks[0].extra_page;
2712 
2713 	for (i = sh->disks; i--; )
2714 		if (sh->dev[i].page != sh->dev[i].orig_page) {
2715 			struct page *p = sh->dev[i].orig_page;
2716 
2717 			sh->dev[i].orig_page = sh->dev[i].page;
2718 			clear_bit(R5_OrigPageUPTDODATE, &sh->dev[i].flags);
2719 
2720 			if (!using_disk_info_extra_page)
2721 				put_page(p);
2722 		}
2723 
2724 	if (using_disk_info_extra_page) {
2725 		clear_bit(R5C_EXTRA_PAGE_IN_USE, &conf->cache_state);
2726 		md_wakeup_thread(conf->mddev->thread);
2727 	}
2728 }
2729 
2730 void r5c_use_extra_page(struct stripe_head *sh)
2731 {
2732 	struct r5conf *conf = sh->raid_conf;
2733 	int i;
2734 	struct r5dev *dev;
2735 
2736 	for (i = sh->disks; i--; ) {
2737 		dev = &sh->dev[i];
2738 		if (dev->orig_page != dev->page)
2739 			put_page(dev->orig_page);
2740 		dev->orig_page = conf->disks[i].extra_page;
2741 	}
2742 }
2743 
2744 /*
2745  * clean up the stripe (clear R5_InJournal for dev[pd_idx] etc.) after the
2746  * stripe is committed to RAID disks.
2747  */
2748 void r5c_finish_stripe_write_out(struct r5conf *conf,
2749 				 struct stripe_head *sh,
2750 				 struct stripe_head_state *s)
2751 {
2752 	struct r5l_log *log = conf->log;
2753 	int i;
2754 	int do_wakeup = 0;
2755 	sector_t tree_index;
2756 	void **pslot;
2757 	uintptr_t refcount;
2758 
2759 	if (!log || !test_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags))
2760 		return;
2761 
2762 	WARN_ON(test_bit(STRIPE_R5C_CACHING, &sh->state));
2763 	clear_bit(R5_InJournal, &sh->dev[sh->pd_idx].flags);
2764 
2765 	if (log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_THROUGH)
2766 		return;
2767 
2768 	for (i = sh->disks; i--; ) {
2769 		clear_bit(R5_InJournal, &sh->dev[i].flags);
2770 		if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2771 			do_wakeup = 1;
2772 	}
2773 
2774 	/*
2775 	 * analyse_stripe() runs before r5c_finish_stripe_write_out(),
2776 	 * We updated R5_InJournal, so we also update s->injournal.
2777 	 */
2778 	s->injournal = 0;
2779 
2780 	if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2781 		if (atomic_dec_and_test(&conf->pending_full_writes))
2782 			md_wakeup_thread(conf->mddev->thread);
2783 
2784 	if (do_wakeup)
2785 		wake_up(&conf->wait_for_overlap);
2786 
2787 	spin_lock_irq(&log->stripe_in_journal_lock);
2788 	list_del_init(&sh->r5c);
2789 	spin_unlock_irq(&log->stripe_in_journal_lock);
2790 	sh->log_start = MaxSector;
2791 
2792 	atomic_dec(&log->stripe_in_journal_count);
2793 	r5c_update_log_state(log);
2794 
2795 	/* stop counting this stripe in big_stripe_tree */
2796 	if (test_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state) ||
2797 	    test_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2798 		tree_index = r5c_tree_index(conf, sh->sector);
2799 		spin_lock(&log->tree_lock);
2800 		pslot = radix_tree_lookup_slot(&log->big_stripe_tree,
2801 					       tree_index);
2802 		BUG_ON(pslot == NULL);
2803 		refcount = (uintptr_t)radix_tree_deref_slot_protected(
2804 			pslot, &log->tree_lock) >>
2805 			R5C_RADIX_COUNT_SHIFT;
2806 		if (refcount == 1)
2807 			radix_tree_delete(&log->big_stripe_tree, tree_index);
2808 		else
2809 			radix_tree_replace_slot(
2810 				&log->big_stripe_tree, pslot,
2811 				(void *)((refcount - 1) << R5C_RADIX_COUNT_SHIFT));
2812 		spin_unlock(&log->tree_lock);
2813 	}
2814 
2815 	if (test_and_clear_bit(STRIPE_R5C_PARTIAL_STRIPE, &sh->state)) {
2816 		BUG_ON(atomic_read(&conf->r5c_cached_partial_stripes) == 0);
2817 		atomic_dec(&conf->r5c_flushing_partial_stripes);
2818 		atomic_dec(&conf->r5c_cached_partial_stripes);
2819 	}
2820 
2821 	if (test_and_clear_bit(STRIPE_R5C_FULL_STRIPE, &sh->state)) {
2822 		BUG_ON(atomic_read(&conf->r5c_cached_full_stripes) == 0);
2823 		atomic_dec(&conf->r5c_flushing_full_stripes);
2824 		atomic_dec(&conf->r5c_cached_full_stripes);
2825 	}
2826 
2827 	r5l_append_flush_payload(log, sh->sector);
2828 }
2829 
2830 int r5c_cache_data(struct r5l_log *log, struct stripe_head *sh)
2831 {
2832 	struct r5conf *conf = sh->raid_conf;
2833 	int pages = 0;
2834 	int reserve;
2835 	int i;
2836 	int ret = 0;
2837 
2838 	BUG_ON(!log);
2839 
2840 	for (i = 0; i < sh->disks; i++) {
2841 		void *addr;
2842 
2843 		if (!test_bit(R5_Wantwrite, &sh->dev[i].flags))
2844 			continue;
2845 		addr = kmap_atomic(sh->dev[i].page);
2846 		sh->dev[i].log_checksum = crc32c_le(log->uuid_checksum,
2847 						    addr, PAGE_SIZE);
2848 		kunmap_atomic(addr);
2849 		pages++;
2850 	}
2851 	WARN_ON(pages == 0);
2852 
2853 	/*
2854 	 * The stripe must enter state machine again to call endio, so
2855 	 * don't delay.
2856 	 */
2857 	clear_bit(STRIPE_DELAYED, &sh->state);
2858 	atomic_inc(&sh->count);
2859 
2860 	mutex_lock(&log->io_mutex);
2861 	/* meta + data */
2862 	reserve = (1 + pages) << (PAGE_SHIFT - 9);
2863 
2864 	if (test_bit(R5C_LOG_CRITICAL, &conf->cache_state) &&
2865 	    sh->log_start == MaxSector)
2866 		r5l_add_no_space_stripe(log, sh);
2867 	else if (!r5l_has_free_space(log, reserve)) {
2868 		if (sh->log_start == log->last_checkpoint)
2869 			BUG();
2870 		else
2871 			r5l_add_no_space_stripe(log, sh);
2872 	} else {
2873 		ret = r5l_log_stripe(log, sh, pages, 0);
2874 		if (ret) {
2875 			spin_lock_irq(&log->io_list_lock);
2876 			list_add_tail(&sh->log_list, &log->no_mem_stripes);
2877 			spin_unlock_irq(&log->io_list_lock);
2878 		}
2879 	}
2880 
2881 	mutex_unlock(&log->io_mutex);
2882 	return 0;
2883 }
2884 
2885 /* check whether this big stripe is in write back cache. */
2886 bool r5c_big_stripe_cached(struct r5conf *conf, sector_t sect)
2887 {
2888 	struct r5l_log *log = conf->log;
2889 	sector_t tree_index;
2890 	void *slot;
2891 
2892 	if (!log)
2893 		return false;
2894 
2895 	WARN_ON_ONCE(!rcu_read_lock_held());
2896 	tree_index = r5c_tree_index(conf, sect);
2897 	slot = radix_tree_lookup(&log->big_stripe_tree, tree_index);
2898 	return slot != NULL;
2899 }
2900 
2901 static int r5l_load_log(struct r5l_log *log)
2902 {
2903 	struct md_rdev *rdev = log->rdev;
2904 	struct page *page;
2905 	struct r5l_meta_block *mb;
2906 	sector_t cp = log->rdev->journal_tail;
2907 	u32 stored_crc, expected_crc;
2908 	bool create_super = false;
2909 	int ret = 0;
2910 
2911 	/* Make sure it's valid */
2912 	if (cp >= rdev->sectors || round_down(cp, BLOCK_SECTORS) != cp)
2913 		cp = 0;
2914 	page = alloc_page(GFP_KERNEL);
2915 	if (!page)
2916 		return -ENOMEM;
2917 
2918 	if (!sync_page_io(rdev, cp, PAGE_SIZE, page, REQ_OP_READ, 0, false)) {
2919 		ret = -EIO;
2920 		goto ioerr;
2921 	}
2922 	mb = page_address(page);
2923 
2924 	if (le32_to_cpu(mb->magic) != R5LOG_MAGIC ||
2925 	    mb->version != R5LOG_VERSION) {
2926 		create_super = true;
2927 		goto create;
2928 	}
2929 	stored_crc = le32_to_cpu(mb->checksum);
2930 	mb->checksum = 0;
2931 	expected_crc = crc32c_le(log->uuid_checksum, mb, PAGE_SIZE);
2932 	if (stored_crc != expected_crc) {
2933 		create_super = true;
2934 		goto create;
2935 	}
2936 	if (le64_to_cpu(mb->position) != cp) {
2937 		create_super = true;
2938 		goto create;
2939 	}
2940 create:
2941 	if (create_super) {
2942 		log->last_cp_seq = prandom_u32();
2943 		cp = 0;
2944 		r5l_log_write_empty_meta_block(log, cp, log->last_cp_seq);
2945 		/*
2946 		 * Make sure super points to correct address. Log might have
2947 		 * data very soon. If super hasn't correct log tail address,
2948 		 * recovery can't find the log
2949 		 */
2950 		r5l_write_super(log, cp);
2951 	} else
2952 		log->last_cp_seq = le64_to_cpu(mb->seq);
2953 
2954 	log->device_size = round_down(rdev->sectors, BLOCK_SECTORS);
2955 	log->max_free_space = log->device_size >> RECLAIM_MAX_FREE_SPACE_SHIFT;
2956 	if (log->max_free_space > RECLAIM_MAX_FREE_SPACE)
2957 		log->max_free_space = RECLAIM_MAX_FREE_SPACE;
2958 	log->last_checkpoint = cp;
2959 
2960 	__free_page(page);
2961 
2962 	if (create_super) {
2963 		log->log_start = r5l_ring_add(log, cp, BLOCK_SECTORS);
2964 		log->seq = log->last_cp_seq + 1;
2965 		log->next_checkpoint = cp;
2966 	} else
2967 		ret = r5l_recovery_log(log);
2968 
2969 	r5c_update_log_state(log);
2970 	return ret;
2971 ioerr:
2972 	__free_page(page);
2973 	return ret;
2974 }
2975 
2976 void r5c_update_on_rdev_error(struct mddev *mddev)
2977 {
2978 	struct r5conf *conf = mddev->private;
2979 	struct r5l_log *log = conf->log;
2980 
2981 	if (!log)
2982 		return;
2983 
2984 	if (raid5_calc_degraded(conf) > 0 &&
2985 	    conf->log->r5c_journal_mode == R5C_JOURNAL_MODE_WRITE_BACK)
2986 		schedule_work(&log->disable_writeback_work);
2987 }
2988 
2989 int r5l_init_log(struct r5conf *conf, struct md_rdev *rdev)
2990 {
2991 	struct request_queue *q = bdev_get_queue(rdev->bdev);
2992 	struct r5l_log *log;
2993 	char b[BDEVNAME_SIZE];
2994 
2995 	pr_debug("md/raid:%s: using device %s as journal\n",
2996 		 mdname(conf->mddev), bdevname(rdev->bdev, b));
2997 
2998 	if (PAGE_SIZE != 4096)
2999 		return -EINVAL;
3000 
3001 	/*
3002 	 * The PAGE_SIZE must be big enough to hold 1 r5l_meta_block and
3003 	 * raid_disks r5l_payload_data_parity.
3004 	 *
3005 	 * Write journal and cache does not work for very big array
3006 	 * (raid_disks > 203)
3007 	 */
3008 	if (sizeof(struct r5l_meta_block) +
3009 	    ((sizeof(struct r5l_payload_data_parity) + sizeof(__le32)) *
3010 	     conf->raid_disks) > PAGE_SIZE) {
3011 		pr_err("md/raid:%s: write journal/cache doesn't work for array with %d disks\n",
3012 		       mdname(conf->mddev), conf->raid_disks);
3013 		return -EINVAL;
3014 	}
3015 
3016 	log = kzalloc(sizeof(*log), GFP_KERNEL);
3017 	if (!log)
3018 		return -ENOMEM;
3019 	log->rdev = rdev;
3020 
3021 	log->need_cache_flush = test_bit(QUEUE_FLAG_WC, &q->queue_flags) != 0;
3022 
3023 	log->uuid_checksum = crc32c_le(~0, rdev->mddev->uuid,
3024 				       sizeof(rdev->mddev->uuid));
3025 
3026 	mutex_init(&log->io_mutex);
3027 
3028 	spin_lock_init(&log->io_list_lock);
3029 	INIT_LIST_HEAD(&log->running_ios);
3030 	INIT_LIST_HEAD(&log->io_end_ios);
3031 	INIT_LIST_HEAD(&log->flushing_ios);
3032 	INIT_LIST_HEAD(&log->finished_ios);
3033 	bio_init(&log->flush_bio, NULL, 0);
3034 
3035 	log->io_kc = KMEM_CACHE(r5l_io_unit, 0);
3036 	if (!log->io_kc)
3037 		goto io_kc;
3038 
3039 	log->io_pool = mempool_create_slab_pool(R5L_POOL_SIZE, log->io_kc);
3040 	if (!log->io_pool)
3041 		goto io_pool;
3042 
3043 	log->bs = bioset_create(R5L_POOL_SIZE, 0);
3044 	if (!log->bs)
3045 		goto io_bs;
3046 
3047 	log->meta_pool = mempool_create_page_pool(R5L_POOL_SIZE, 0);
3048 	if (!log->meta_pool)
3049 		goto out_mempool;
3050 
3051 	spin_lock_init(&log->tree_lock);
3052 	INIT_RADIX_TREE(&log->big_stripe_tree, GFP_NOWAIT | __GFP_NOWARN);
3053 
3054 	log->reclaim_thread = md_register_thread(r5l_reclaim_thread,
3055 						 log->rdev->mddev, "reclaim");
3056 	if (!log->reclaim_thread)
3057 		goto reclaim_thread;
3058 	log->reclaim_thread->timeout = R5C_RECLAIM_WAKEUP_INTERVAL;
3059 
3060 	init_waitqueue_head(&log->iounit_wait);
3061 
3062 	INIT_LIST_HEAD(&log->no_mem_stripes);
3063 
3064 	INIT_LIST_HEAD(&log->no_space_stripes);
3065 	spin_lock_init(&log->no_space_stripes_lock);
3066 
3067 	INIT_WORK(&log->deferred_io_work, r5l_submit_io_async);
3068 	INIT_WORK(&log->disable_writeback_work, r5c_disable_writeback_async);
3069 
3070 	log->r5c_journal_mode = R5C_JOURNAL_MODE_WRITE_THROUGH;
3071 	INIT_LIST_HEAD(&log->stripe_in_journal_list);
3072 	spin_lock_init(&log->stripe_in_journal_lock);
3073 	atomic_set(&log->stripe_in_journal_count, 0);
3074 
3075 	rcu_assign_pointer(conf->log, log);
3076 
3077 	if (r5l_load_log(log))
3078 		goto error;
3079 
3080 	set_bit(MD_HAS_JOURNAL, &conf->mddev->flags);
3081 	return 0;
3082 
3083 error:
3084 	rcu_assign_pointer(conf->log, NULL);
3085 	md_unregister_thread(&log->reclaim_thread);
3086 reclaim_thread:
3087 	mempool_destroy(log->meta_pool);
3088 out_mempool:
3089 	bioset_free(log->bs);
3090 io_bs:
3091 	mempool_destroy(log->io_pool);
3092 io_pool:
3093 	kmem_cache_destroy(log->io_kc);
3094 io_kc:
3095 	kfree(log);
3096 	return -EINVAL;
3097 }
3098 
3099 void r5l_exit_log(struct r5conf *conf)
3100 {
3101 	struct r5l_log *log = conf->log;
3102 
3103 	conf->log = NULL;
3104 	synchronize_rcu();
3105 
3106 	flush_work(&log->disable_writeback_work);
3107 	md_unregister_thread(&log->reclaim_thread);
3108 	mempool_destroy(log->meta_pool);
3109 	bioset_free(log->bs);
3110 	mempool_destroy(log->io_pool);
3111 	kmem_cache_destroy(log->io_kc);
3112 	kfree(log);
3113 }
3114