xref: /linux/drivers/md/dm-thin-metadata.c (revision ac84bac4062e7fc24f5e2c61c6a414b2a00a29ad)
1 /*
2  * Copyright (C) 2011-2012 Red Hat, Inc.
3  *
4  * This file is released under the GPL.
5  */
6 
7 #include "dm-thin-metadata.h"
8 #include "persistent-data/dm-btree.h"
9 #include "persistent-data/dm-space-map.h"
10 #include "persistent-data/dm-space-map-disk.h"
11 #include "persistent-data/dm-transaction-manager.h"
12 
13 #include <linux/list.h>
14 #include <linux/device-mapper.h>
15 #include <linux/workqueue.h>
16 
17 /*--------------------------------------------------------------------------
18  * As far as the metadata goes, there is:
19  *
20  * - A superblock in block zero, taking up fewer than 512 bytes for
21  *   atomic writes.
22  *
23  * - A space map managing the metadata blocks.
24  *
25  * - A space map managing the data blocks.
26  *
27  * - A btree mapping our internal thin dev ids onto struct disk_device_details.
28  *
29  * - A hierarchical btree, with 2 levels which effectively maps (thin
30  *   dev id, virtual block) -> block_time.  Block time is a 64-bit
31  *   field holding the time in the low 24 bits, and block in the top 40
32  *   bits.
33  *
34  * BTrees consist solely of btree_nodes, that fill a block.  Some are
35  * internal nodes, as such their values are a __le64 pointing to other
36  * nodes.  Leaf nodes can store data of any reasonable size (ie. much
37  * smaller than the block size).  The nodes consist of the header,
38  * followed by an array of keys, followed by an array of values.  We have
39  * to binary search on the keys so they're all held together to help the
40  * cpu cache.
41  *
42  * Space maps have 2 btrees:
43  *
44  * - One maps a uint64_t onto a struct index_entry.  Which points to a
45  *   bitmap block, and has some details about how many free entries there
46  *   are etc.
47  *
48  * - The bitmap blocks have a header (for the checksum).  Then the rest
49  *   of the block is pairs of bits.  With the meaning being:
50  *
51  *   0 - ref count is 0
52  *   1 - ref count is 1
53  *   2 - ref count is 2
54  *   3 - ref count is higher than 2
55  *
56  * - If the count is higher than 2 then the ref count is entered in a
57  *   second btree that directly maps the block_address to a uint32_t ref
58  *   count.
59  *
60  * The space map metadata variant doesn't have a bitmaps btree.  Instead
61  * it has one single blocks worth of index_entries.  This avoids
62  * recursive issues with the bitmap btree needing to allocate space in
63  * order to insert.  With a small data block size such as 64k the
64  * metadata support data devices that are hundreds of terrabytes.
65  *
66  * The space maps allocate space linearly from front to back.  Space that
67  * is freed in a transaction is never recycled within that transaction.
68  * To try and avoid fragmenting _free_ space the allocator always goes
69  * back and fills in gaps.
70  *
71  * All metadata io is in THIN_METADATA_BLOCK_SIZE sized/aligned chunks
72  * from the block manager.
73  *--------------------------------------------------------------------------*/
74 
75 #define DM_MSG_PREFIX   "thin metadata"
76 
77 #define THIN_SUPERBLOCK_MAGIC 27022010
78 #define THIN_SUPERBLOCK_LOCATION 0
79 #define THIN_VERSION 2
80 #define SECTOR_TO_BLOCK_SHIFT 3
81 
82 /*
83  * For btree insert:
84  *  3 for btree insert +
85  *  2 for btree lookup used within space map
86  * For btree remove:
87  *  2 for shadow spine +
88  *  4 for rebalance 3 child node
89  */
90 #define THIN_MAX_CONCURRENT_LOCKS 6
91 
92 /* This should be plenty */
93 #define SPACE_MAP_ROOT_SIZE 128
94 
95 /*
96  * Little endian on-disk superblock and device details.
97  */
98 struct thin_disk_superblock {
99 	__le32 csum;	/* Checksum of superblock except for this field. */
100 	__le32 flags;
101 	__le64 blocknr;	/* This block number, dm_block_t. */
102 
103 	__u8 uuid[16];
104 	__le64 magic;
105 	__le32 version;
106 	__le32 time;
107 
108 	__le64 trans_id;
109 
110 	/*
111 	 * Root held by userspace transactions.
112 	 */
113 	__le64 held_root;
114 
115 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
116 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
117 
118 	/*
119 	 * 2-level btree mapping (dev_id, (dev block, time)) -> data block
120 	 */
121 	__le64 data_mapping_root;
122 
123 	/*
124 	 * Device detail root mapping dev_id -> device_details
125 	 */
126 	__le64 device_details_root;
127 
128 	__le32 data_block_size;		/* In 512-byte sectors. */
129 
130 	__le32 metadata_block_size;	/* In 512-byte sectors. */
131 	__le64 metadata_nr_blocks;
132 
133 	__le32 compat_flags;
134 	__le32 compat_ro_flags;
135 	__le32 incompat_flags;
136 } __packed;
137 
138 struct disk_device_details {
139 	__le64 mapped_blocks;
140 	__le64 transaction_id;		/* When created. */
141 	__le32 creation_time;
142 	__le32 snapshotted_time;
143 } __packed;
144 
145 struct dm_pool_metadata {
146 	struct hlist_node hash;
147 
148 	struct block_device *bdev;
149 	struct dm_block_manager *bm;
150 	struct dm_space_map *metadata_sm;
151 	struct dm_space_map *data_sm;
152 	struct dm_transaction_manager *tm;
153 	struct dm_transaction_manager *nb_tm;
154 
155 	/*
156 	 * Two-level btree.
157 	 * First level holds thin_dev_t.
158 	 * Second level holds mappings.
159 	 */
160 	struct dm_btree_info info;
161 
162 	/*
163 	 * Non-blocking version of the above.
164 	 */
165 	struct dm_btree_info nb_info;
166 
167 	/*
168 	 * Just the top level for deleting whole devices.
169 	 */
170 	struct dm_btree_info tl_info;
171 
172 	/*
173 	 * Just the bottom level for creating new devices.
174 	 */
175 	struct dm_btree_info bl_info;
176 
177 	/*
178 	 * Describes the device details btree.
179 	 */
180 	struct dm_btree_info details_info;
181 
182 	struct rw_semaphore root_lock;
183 	uint32_t time;
184 	dm_block_t root;
185 	dm_block_t details_root;
186 	struct list_head thin_devices;
187 	uint64_t trans_id;
188 	unsigned long flags;
189 	sector_t data_block_size;
190 
191 	/*
192 	 * Pre-commit callback.
193 	 *
194 	 * This allows the thin provisioning target to run a callback before
195 	 * the metadata are committed.
196 	 */
197 	dm_pool_pre_commit_fn pre_commit_fn;
198 	void *pre_commit_context;
199 
200 	/*
201 	 * We reserve a section of the metadata for commit overhead.
202 	 * All reported space does *not* include this.
203 	 */
204 	dm_block_t metadata_reserve;
205 
206 	/*
207 	 * Set if a transaction has to be aborted but the attempt to roll back
208 	 * to the previous (good) transaction failed.  The only pool metadata
209 	 * operation possible in this state is the closing of the device.
210 	 */
211 	bool fail_io:1;
212 
213 	/*
214 	 * Set once a thin-pool has been accessed through one of the interfaces
215 	 * that imply the pool is in-service (e.g. thin devices created/deleted,
216 	 * thin-pool message, metadata snapshots, etc).
217 	 */
218 	bool in_service:1;
219 
220 	/*
221 	 * Reading the space map roots can fail, so we read it into these
222 	 * buffers before the superblock is locked and updated.
223 	 */
224 	__u8 data_space_map_root[SPACE_MAP_ROOT_SIZE];
225 	__u8 metadata_space_map_root[SPACE_MAP_ROOT_SIZE];
226 };
227 
228 struct dm_thin_device {
229 	struct list_head list;
230 	struct dm_pool_metadata *pmd;
231 	dm_thin_id id;
232 
233 	int open_count;
234 	bool changed:1;
235 	bool aborted_with_changes:1;
236 	uint64_t mapped_blocks;
237 	uint64_t transaction_id;
238 	uint32_t creation_time;
239 	uint32_t snapshotted_time;
240 };
241 
242 /*----------------------------------------------------------------
243  * superblock validator
244  *--------------------------------------------------------------*/
245 
246 #define SUPERBLOCK_CSUM_XOR 160774
247 
248 static void sb_prepare_for_write(struct dm_block_validator *v,
249 				 struct dm_block *b,
250 				 size_t block_size)
251 {
252 	struct thin_disk_superblock *disk_super = dm_block_data(b);
253 
254 	disk_super->blocknr = cpu_to_le64(dm_block_location(b));
255 	disk_super->csum = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
256 						      block_size - sizeof(__le32),
257 						      SUPERBLOCK_CSUM_XOR));
258 }
259 
260 static int sb_check(struct dm_block_validator *v,
261 		    struct dm_block *b,
262 		    size_t block_size)
263 {
264 	struct thin_disk_superblock *disk_super = dm_block_data(b);
265 	__le32 csum_le;
266 
267 	if (dm_block_location(b) != le64_to_cpu(disk_super->blocknr)) {
268 		DMERR("sb_check failed: blocknr %llu: "
269 		      "wanted %llu", le64_to_cpu(disk_super->blocknr),
270 		      (unsigned long long)dm_block_location(b));
271 		return -ENOTBLK;
272 	}
273 
274 	if (le64_to_cpu(disk_super->magic) != THIN_SUPERBLOCK_MAGIC) {
275 		DMERR("sb_check failed: magic %llu: "
276 		      "wanted %llu", le64_to_cpu(disk_super->magic),
277 		      (unsigned long long)THIN_SUPERBLOCK_MAGIC);
278 		return -EILSEQ;
279 	}
280 
281 	csum_le = cpu_to_le32(dm_bm_checksum(&disk_super->flags,
282 					     block_size - sizeof(__le32),
283 					     SUPERBLOCK_CSUM_XOR));
284 	if (csum_le != disk_super->csum) {
285 		DMERR("sb_check failed: csum %u: wanted %u",
286 		      le32_to_cpu(csum_le), le32_to_cpu(disk_super->csum));
287 		return -EILSEQ;
288 	}
289 
290 	return 0;
291 }
292 
293 static struct dm_block_validator sb_validator = {
294 	.name = "superblock",
295 	.prepare_for_write = sb_prepare_for_write,
296 	.check = sb_check
297 };
298 
299 /*----------------------------------------------------------------
300  * Methods for the btree value types
301  *--------------------------------------------------------------*/
302 
303 static uint64_t pack_block_time(dm_block_t b, uint32_t t)
304 {
305 	return (b << 24) | t;
306 }
307 
308 static void unpack_block_time(uint64_t v, dm_block_t *b, uint32_t *t)
309 {
310 	*b = v >> 24;
311 	*t = v & ((1 << 24) - 1);
312 }
313 
314 static void data_block_inc(void *context, const void *value_le)
315 {
316 	struct dm_space_map *sm = context;
317 	__le64 v_le;
318 	uint64_t b;
319 	uint32_t t;
320 
321 	memcpy(&v_le, value_le, sizeof(v_le));
322 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
323 	dm_sm_inc_block(sm, b);
324 }
325 
326 static void data_block_dec(void *context, const void *value_le)
327 {
328 	struct dm_space_map *sm = context;
329 	__le64 v_le;
330 	uint64_t b;
331 	uint32_t t;
332 
333 	memcpy(&v_le, value_le, sizeof(v_le));
334 	unpack_block_time(le64_to_cpu(v_le), &b, &t);
335 	dm_sm_dec_block(sm, b);
336 }
337 
338 static int data_block_equal(void *context, const void *value1_le, const void *value2_le)
339 {
340 	__le64 v1_le, v2_le;
341 	uint64_t b1, b2;
342 	uint32_t t;
343 
344 	memcpy(&v1_le, value1_le, sizeof(v1_le));
345 	memcpy(&v2_le, value2_le, sizeof(v2_le));
346 	unpack_block_time(le64_to_cpu(v1_le), &b1, &t);
347 	unpack_block_time(le64_to_cpu(v2_le), &b2, &t);
348 
349 	return b1 == b2;
350 }
351 
352 static void subtree_inc(void *context, const void *value)
353 {
354 	struct dm_btree_info *info = context;
355 	__le64 root_le;
356 	uint64_t root;
357 
358 	memcpy(&root_le, value, sizeof(root_le));
359 	root = le64_to_cpu(root_le);
360 	dm_tm_inc(info->tm, root);
361 }
362 
363 static void subtree_dec(void *context, const void *value)
364 {
365 	struct dm_btree_info *info = context;
366 	__le64 root_le;
367 	uint64_t root;
368 
369 	memcpy(&root_le, value, sizeof(root_le));
370 	root = le64_to_cpu(root_le);
371 	if (dm_btree_del(info, root))
372 		DMERR("btree delete failed");
373 }
374 
375 static int subtree_equal(void *context, const void *value1_le, const void *value2_le)
376 {
377 	__le64 v1_le, v2_le;
378 	memcpy(&v1_le, value1_le, sizeof(v1_le));
379 	memcpy(&v2_le, value2_le, sizeof(v2_le));
380 
381 	return v1_le == v2_le;
382 }
383 
384 /*----------------------------------------------------------------*/
385 
386 /*
387  * Variant that is used for in-core only changes or code that
388  * shouldn't put the pool in service on its own (e.g. commit).
389  */
390 static inline void pmd_write_lock_in_core(struct dm_pool_metadata *pmd)
391 	__acquires(pmd->root_lock)
392 {
393 	down_write(&pmd->root_lock);
394 }
395 
396 static inline void pmd_write_lock(struct dm_pool_metadata *pmd)
397 {
398 	pmd_write_lock_in_core(pmd);
399 	if (unlikely(!pmd->in_service))
400 		pmd->in_service = true;
401 }
402 
403 static inline void pmd_write_unlock(struct dm_pool_metadata *pmd)
404 	__releases(pmd->root_lock)
405 {
406 	up_write(&pmd->root_lock);
407 }
408 
409 /*----------------------------------------------------------------*/
410 
411 static int superblock_lock_zero(struct dm_pool_metadata *pmd,
412 				struct dm_block **sblock)
413 {
414 	return dm_bm_write_lock_zero(pmd->bm, THIN_SUPERBLOCK_LOCATION,
415 				     &sb_validator, sblock);
416 }
417 
418 static int superblock_lock(struct dm_pool_metadata *pmd,
419 			   struct dm_block **sblock)
420 {
421 	return dm_bm_write_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
422 				&sb_validator, sblock);
423 }
424 
425 static int __superblock_all_zeroes(struct dm_block_manager *bm, int *result)
426 {
427 	int r;
428 	unsigned i;
429 	struct dm_block *b;
430 	__le64 *data_le, zero = cpu_to_le64(0);
431 	unsigned block_size = dm_bm_block_size(bm) / sizeof(__le64);
432 
433 	/*
434 	 * We can't use a validator here - it may be all zeroes.
435 	 */
436 	r = dm_bm_read_lock(bm, THIN_SUPERBLOCK_LOCATION, NULL, &b);
437 	if (r)
438 		return r;
439 
440 	data_le = dm_block_data(b);
441 	*result = 1;
442 	for (i = 0; i < block_size; i++) {
443 		if (data_le[i] != zero) {
444 			*result = 0;
445 			break;
446 		}
447 	}
448 
449 	dm_bm_unlock(b);
450 
451 	return 0;
452 }
453 
454 static void __setup_btree_details(struct dm_pool_metadata *pmd)
455 {
456 	pmd->info.tm = pmd->tm;
457 	pmd->info.levels = 2;
458 	pmd->info.value_type.context = pmd->data_sm;
459 	pmd->info.value_type.size = sizeof(__le64);
460 	pmd->info.value_type.inc = data_block_inc;
461 	pmd->info.value_type.dec = data_block_dec;
462 	pmd->info.value_type.equal = data_block_equal;
463 
464 	memcpy(&pmd->nb_info, &pmd->info, sizeof(pmd->nb_info));
465 	pmd->nb_info.tm = pmd->nb_tm;
466 
467 	pmd->tl_info.tm = pmd->tm;
468 	pmd->tl_info.levels = 1;
469 	pmd->tl_info.value_type.context = &pmd->bl_info;
470 	pmd->tl_info.value_type.size = sizeof(__le64);
471 	pmd->tl_info.value_type.inc = subtree_inc;
472 	pmd->tl_info.value_type.dec = subtree_dec;
473 	pmd->tl_info.value_type.equal = subtree_equal;
474 
475 	pmd->bl_info.tm = pmd->tm;
476 	pmd->bl_info.levels = 1;
477 	pmd->bl_info.value_type.context = pmd->data_sm;
478 	pmd->bl_info.value_type.size = sizeof(__le64);
479 	pmd->bl_info.value_type.inc = data_block_inc;
480 	pmd->bl_info.value_type.dec = data_block_dec;
481 	pmd->bl_info.value_type.equal = data_block_equal;
482 
483 	pmd->details_info.tm = pmd->tm;
484 	pmd->details_info.levels = 1;
485 	pmd->details_info.value_type.context = NULL;
486 	pmd->details_info.value_type.size = sizeof(struct disk_device_details);
487 	pmd->details_info.value_type.inc = NULL;
488 	pmd->details_info.value_type.dec = NULL;
489 	pmd->details_info.value_type.equal = NULL;
490 }
491 
492 static int save_sm_roots(struct dm_pool_metadata *pmd)
493 {
494 	int r;
495 	size_t len;
496 
497 	r = dm_sm_root_size(pmd->metadata_sm, &len);
498 	if (r < 0)
499 		return r;
500 
501 	r = dm_sm_copy_root(pmd->metadata_sm, &pmd->metadata_space_map_root, len);
502 	if (r < 0)
503 		return r;
504 
505 	r = dm_sm_root_size(pmd->data_sm, &len);
506 	if (r < 0)
507 		return r;
508 
509 	return dm_sm_copy_root(pmd->data_sm, &pmd->data_space_map_root, len);
510 }
511 
512 static void copy_sm_roots(struct dm_pool_metadata *pmd,
513 			  struct thin_disk_superblock *disk)
514 {
515 	memcpy(&disk->metadata_space_map_root,
516 	       &pmd->metadata_space_map_root,
517 	       sizeof(pmd->metadata_space_map_root));
518 
519 	memcpy(&disk->data_space_map_root,
520 	       &pmd->data_space_map_root,
521 	       sizeof(pmd->data_space_map_root));
522 }
523 
524 static int __write_initial_superblock(struct dm_pool_metadata *pmd)
525 {
526 	int r;
527 	struct dm_block *sblock;
528 	struct thin_disk_superblock *disk_super;
529 	sector_t bdev_size = i_size_read(pmd->bdev->bd_inode) >> SECTOR_SHIFT;
530 
531 	if (bdev_size > THIN_METADATA_MAX_SECTORS)
532 		bdev_size = THIN_METADATA_MAX_SECTORS;
533 
534 	r = dm_sm_commit(pmd->data_sm);
535 	if (r < 0)
536 		return r;
537 
538 	r = dm_tm_pre_commit(pmd->tm);
539 	if (r < 0)
540 		return r;
541 
542 	r = save_sm_roots(pmd);
543 	if (r < 0)
544 		return r;
545 
546 	r = superblock_lock_zero(pmd, &sblock);
547 	if (r)
548 		return r;
549 
550 	disk_super = dm_block_data(sblock);
551 	disk_super->flags = 0;
552 	memset(disk_super->uuid, 0, sizeof(disk_super->uuid));
553 	disk_super->magic = cpu_to_le64(THIN_SUPERBLOCK_MAGIC);
554 	disk_super->version = cpu_to_le32(THIN_VERSION);
555 	disk_super->time = 0;
556 	disk_super->trans_id = 0;
557 	disk_super->held_root = 0;
558 
559 	copy_sm_roots(pmd, disk_super);
560 
561 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
562 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
563 	disk_super->metadata_block_size = cpu_to_le32(THIN_METADATA_BLOCK_SIZE);
564 	disk_super->metadata_nr_blocks = cpu_to_le64(bdev_size >> SECTOR_TO_BLOCK_SHIFT);
565 	disk_super->data_block_size = cpu_to_le32(pmd->data_block_size);
566 
567 	return dm_tm_commit(pmd->tm, sblock);
568 }
569 
570 static int __format_metadata(struct dm_pool_metadata *pmd)
571 {
572 	int r;
573 
574 	r = dm_tm_create_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
575 				 &pmd->tm, &pmd->metadata_sm);
576 	if (r < 0) {
577 		DMERR("tm_create_with_sm failed");
578 		return r;
579 	}
580 
581 	pmd->data_sm = dm_sm_disk_create(pmd->tm, 0);
582 	if (IS_ERR(pmd->data_sm)) {
583 		DMERR("sm_disk_create failed");
584 		r = PTR_ERR(pmd->data_sm);
585 		goto bad_cleanup_tm;
586 	}
587 
588 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
589 	if (!pmd->nb_tm) {
590 		DMERR("could not create non-blocking clone tm");
591 		r = -ENOMEM;
592 		goto bad_cleanup_data_sm;
593 	}
594 
595 	__setup_btree_details(pmd);
596 
597 	r = dm_btree_empty(&pmd->info, &pmd->root);
598 	if (r < 0)
599 		goto bad_cleanup_nb_tm;
600 
601 	r = dm_btree_empty(&pmd->details_info, &pmd->details_root);
602 	if (r < 0) {
603 		DMERR("couldn't create devices root");
604 		goto bad_cleanup_nb_tm;
605 	}
606 
607 	r = __write_initial_superblock(pmd);
608 	if (r)
609 		goto bad_cleanup_nb_tm;
610 
611 	return 0;
612 
613 bad_cleanup_nb_tm:
614 	dm_tm_destroy(pmd->nb_tm);
615 bad_cleanup_data_sm:
616 	dm_sm_destroy(pmd->data_sm);
617 bad_cleanup_tm:
618 	dm_tm_destroy(pmd->tm);
619 	dm_sm_destroy(pmd->metadata_sm);
620 
621 	return r;
622 }
623 
624 static int __check_incompat_features(struct thin_disk_superblock *disk_super,
625 				     struct dm_pool_metadata *pmd)
626 {
627 	uint32_t features;
628 
629 	features = le32_to_cpu(disk_super->incompat_flags) & ~THIN_FEATURE_INCOMPAT_SUPP;
630 	if (features) {
631 		DMERR("could not access metadata due to unsupported optional features (%lx).",
632 		      (unsigned long)features);
633 		return -EINVAL;
634 	}
635 
636 	/*
637 	 * Check for read-only metadata to skip the following RDWR checks.
638 	 */
639 	if (get_disk_ro(pmd->bdev->bd_disk))
640 		return 0;
641 
642 	features = le32_to_cpu(disk_super->compat_ro_flags) & ~THIN_FEATURE_COMPAT_RO_SUPP;
643 	if (features) {
644 		DMERR("could not access metadata RDWR due to unsupported optional features (%lx).",
645 		      (unsigned long)features);
646 		return -EINVAL;
647 	}
648 
649 	return 0;
650 }
651 
652 static int __open_metadata(struct dm_pool_metadata *pmd)
653 {
654 	int r;
655 	struct dm_block *sblock;
656 	struct thin_disk_superblock *disk_super;
657 
658 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
659 			    &sb_validator, &sblock);
660 	if (r < 0) {
661 		DMERR("couldn't read superblock");
662 		return r;
663 	}
664 
665 	disk_super = dm_block_data(sblock);
666 
667 	/* Verify the data block size hasn't changed */
668 	if (le32_to_cpu(disk_super->data_block_size) != pmd->data_block_size) {
669 		DMERR("changing the data block size (from %u to %llu) is not supported",
670 		      le32_to_cpu(disk_super->data_block_size),
671 		      (unsigned long long)pmd->data_block_size);
672 		r = -EINVAL;
673 		goto bad_unlock_sblock;
674 	}
675 
676 	r = __check_incompat_features(disk_super, pmd);
677 	if (r < 0)
678 		goto bad_unlock_sblock;
679 
680 	r = dm_tm_open_with_sm(pmd->bm, THIN_SUPERBLOCK_LOCATION,
681 			       disk_super->metadata_space_map_root,
682 			       sizeof(disk_super->metadata_space_map_root),
683 			       &pmd->tm, &pmd->metadata_sm);
684 	if (r < 0) {
685 		DMERR("tm_open_with_sm failed");
686 		goto bad_unlock_sblock;
687 	}
688 
689 	pmd->data_sm = dm_sm_disk_open(pmd->tm, disk_super->data_space_map_root,
690 				       sizeof(disk_super->data_space_map_root));
691 	if (IS_ERR(pmd->data_sm)) {
692 		DMERR("sm_disk_open failed");
693 		r = PTR_ERR(pmd->data_sm);
694 		goto bad_cleanup_tm;
695 	}
696 
697 	pmd->nb_tm = dm_tm_create_non_blocking_clone(pmd->tm);
698 	if (!pmd->nb_tm) {
699 		DMERR("could not create non-blocking clone tm");
700 		r = -ENOMEM;
701 		goto bad_cleanup_data_sm;
702 	}
703 
704 	__setup_btree_details(pmd);
705 	dm_bm_unlock(sblock);
706 
707 	return 0;
708 
709 bad_cleanup_data_sm:
710 	dm_sm_destroy(pmd->data_sm);
711 bad_cleanup_tm:
712 	dm_tm_destroy(pmd->tm);
713 	dm_sm_destroy(pmd->metadata_sm);
714 bad_unlock_sblock:
715 	dm_bm_unlock(sblock);
716 
717 	return r;
718 }
719 
720 static int __open_or_format_metadata(struct dm_pool_metadata *pmd, bool format_device)
721 {
722 	int r, unformatted;
723 
724 	r = __superblock_all_zeroes(pmd->bm, &unformatted);
725 	if (r)
726 		return r;
727 
728 	if (unformatted)
729 		return format_device ? __format_metadata(pmd) : -EPERM;
730 
731 	return __open_metadata(pmd);
732 }
733 
734 static int __create_persistent_data_objects(struct dm_pool_metadata *pmd, bool format_device)
735 {
736 	int r;
737 
738 	pmd->bm = dm_block_manager_create(pmd->bdev, THIN_METADATA_BLOCK_SIZE << SECTOR_SHIFT,
739 					  THIN_MAX_CONCURRENT_LOCKS);
740 	if (IS_ERR(pmd->bm)) {
741 		DMERR("could not create block manager");
742 		return PTR_ERR(pmd->bm);
743 	}
744 
745 	r = __open_or_format_metadata(pmd, format_device);
746 	if (r)
747 		dm_block_manager_destroy(pmd->bm);
748 
749 	return r;
750 }
751 
752 static void __destroy_persistent_data_objects(struct dm_pool_metadata *pmd)
753 {
754 	dm_sm_destroy(pmd->data_sm);
755 	dm_sm_destroy(pmd->metadata_sm);
756 	dm_tm_destroy(pmd->nb_tm);
757 	dm_tm_destroy(pmd->tm);
758 	dm_block_manager_destroy(pmd->bm);
759 }
760 
761 static int __begin_transaction(struct dm_pool_metadata *pmd)
762 {
763 	int r;
764 	struct thin_disk_superblock *disk_super;
765 	struct dm_block *sblock;
766 
767 	/*
768 	 * We re-read the superblock every time.  Shouldn't need to do this
769 	 * really.
770 	 */
771 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
772 			    &sb_validator, &sblock);
773 	if (r)
774 		return r;
775 
776 	disk_super = dm_block_data(sblock);
777 	pmd->time = le32_to_cpu(disk_super->time);
778 	pmd->root = le64_to_cpu(disk_super->data_mapping_root);
779 	pmd->details_root = le64_to_cpu(disk_super->device_details_root);
780 	pmd->trans_id = le64_to_cpu(disk_super->trans_id);
781 	pmd->flags = le32_to_cpu(disk_super->flags);
782 	pmd->data_block_size = le32_to_cpu(disk_super->data_block_size);
783 
784 	dm_bm_unlock(sblock);
785 	return 0;
786 }
787 
788 static int __write_changed_details(struct dm_pool_metadata *pmd)
789 {
790 	int r;
791 	struct dm_thin_device *td, *tmp;
792 	struct disk_device_details details;
793 	uint64_t key;
794 
795 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
796 		if (!td->changed)
797 			continue;
798 
799 		key = td->id;
800 
801 		details.mapped_blocks = cpu_to_le64(td->mapped_blocks);
802 		details.transaction_id = cpu_to_le64(td->transaction_id);
803 		details.creation_time = cpu_to_le32(td->creation_time);
804 		details.snapshotted_time = cpu_to_le32(td->snapshotted_time);
805 		__dm_bless_for_disk(&details);
806 
807 		r = dm_btree_insert(&pmd->details_info, pmd->details_root,
808 				    &key, &details, &pmd->details_root);
809 		if (r)
810 			return r;
811 
812 		if (td->open_count)
813 			td->changed = false;
814 		else {
815 			list_del(&td->list);
816 			kfree(td);
817 		}
818 	}
819 
820 	return 0;
821 }
822 
823 static int __commit_transaction(struct dm_pool_metadata *pmd)
824 {
825 	int r;
826 	struct thin_disk_superblock *disk_super;
827 	struct dm_block *sblock;
828 
829 	/*
830 	 * We need to know if the thin_disk_superblock exceeds a 512-byte sector.
831 	 */
832 	BUILD_BUG_ON(sizeof(struct thin_disk_superblock) > 512);
833 	BUG_ON(!rwsem_is_locked(&pmd->root_lock));
834 
835 	if (unlikely(!pmd->in_service))
836 		return 0;
837 
838 	if (pmd->pre_commit_fn) {
839 		r = pmd->pre_commit_fn(pmd->pre_commit_context);
840 		if (r < 0) {
841 			DMERR("pre-commit callback failed");
842 			return r;
843 		}
844 	}
845 
846 	r = __write_changed_details(pmd);
847 	if (r < 0)
848 		return r;
849 
850 	r = dm_sm_commit(pmd->data_sm);
851 	if (r < 0)
852 		return r;
853 
854 	r = dm_tm_pre_commit(pmd->tm);
855 	if (r < 0)
856 		return r;
857 
858 	r = save_sm_roots(pmd);
859 	if (r < 0)
860 		return r;
861 
862 	r = superblock_lock(pmd, &sblock);
863 	if (r)
864 		return r;
865 
866 	disk_super = dm_block_data(sblock);
867 	disk_super->time = cpu_to_le32(pmd->time);
868 	disk_super->data_mapping_root = cpu_to_le64(pmd->root);
869 	disk_super->device_details_root = cpu_to_le64(pmd->details_root);
870 	disk_super->trans_id = cpu_to_le64(pmd->trans_id);
871 	disk_super->flags = cpu_to_le32(pmd->flags);
872 
873 	copy_sm_roots(pmd, disk_super);
874 
875 	return dm_tm_commit(pmd->tm, sblock);
876 }
877 
878 static void __set_metadata_reserve(struct dm_pool_metadata *pmd)
879 {
880 	int r;
881 	dm_block_t total;
882 	dm_block_t max_blocks = 4096; /* 16M */
883 
884 	r = dm_sm_get_nr_blocks(pmd->metadata_sm, &total);
885 	if (r) {
886 		DMERR("could not get size of metadata device");
887 		pmd->metadata_reserve = max_blocks;
888 	} else
889 		pmd->metadata_reserve = min(max_blocks, div_u64(total, 10));
890 }
891 
892 struct dm_pool_metadata *dm_pool_metadata_open(struct block_device *bdev,
893 					       sector_t data_block_size,
894 					       bool format_device)
895 {
896 	int r;
897 	struct dm_pool_metadata *pmd;
898 
899 	pmd = kmalloc(sizeof(*pmd), GFP_KERNEL);
900 	if (!pmd) {
901 		DMERR("could not allocate metadata struct");
902 		return ERR_PTR(-ENOMEM);
903 	}
904 
905 	init_rwsem(&pmd->root_lock);
906 	pmd->time = 0;
907 	INIT_LIST_HEAD(&pmd->thin_devices);
908 	pmd->fail_io = false;
909 	pmd->in_service = false;
910 	pmd->bdev = bdev;
911 	pmd->data_block_size = data_block_size;
912 	pmd->pre_commit_fn = NULL;
913 	pmd->pre_commit_context = NULL;
914 
915 	r = __create_persistent_data_objects(pmd, format_device);
916 	if (r) {
917 		kfree(pmd);
918 		return ERR_PTR(r);
919 	}
920 
921 	r = __begin_transaction(pmd);
922 	if (r < 0) {
923 		if (dm_pool_metadata_close(pmd) < 0)
924 			DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
925 		return ERR_PTR(r);
926 	}
927 
928 	__set_metadata_reserve(pmd);
929 
930 	return pmd;
931 }
932 
933 int dm_pool_metadata_close(struct dm_pool_metadata *pmd)
934 {
935 	int r;
936 	unsigned open_devices = 0;
937 	struct dm_thin_device *td, *tmp;
938 
939 	down_read(&pmd->root_lock);
940 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
941 		if (td->open_count)
942 			open_devices++;
943 		else {
944 			list_del(&td->list);
945 			kfree(td);
946 		}
947 	}
948 	up_read(&pmd->root_lock);
949 
950 	if (open_devices) {
951 		DMERR("attempt to close pmd when %u device(s) are still open",
952 		       open_devices);
953 		return -EBUSY;
954 	}
955 
956 	pmd_write_lock_in_core(pmd);
957 	if (!dm_bm_is_read_only(pmd->bm) && !pmd->fail_io) {
958 		r = __commit_transaction(pmd);
959 		if (r < 0)
960 			DMWARN("%s: __commit_transaction() failed, error = %d",
961 			       __func__, r);
962 	}
963 	pmd_write_unlock(pmd);
964 	if (!pmd->fail_io)
965 		__destroy_persistent_data_objects(pmd);
966 
967 	kfree(pmd);
968 	return 0;
969 }
970 
971 /*
972  * __open_device: Returns @td corresponding to device with id @dev,
973  * creating it if @create is set and incrementing @td->open_count.
974  * On failure, @td is undefined.
975  */
976 static int __open_device(struct dm_pool_metadata *pmd,
977 			 dm_thin_id dev, int create,
978 			 struct dm_thin_device **td)
979 {
980 	int r, changed = 0;
981 	struct dm_thin_device *td2;
982 	uint64_t key = dev;
983 	struct disk_device_details details_le;
984 
985 	/*
986 	 * If the device is already open, return it.
987 	 */
988 	list_for_each_entry(td2, &pmd->thin_devices, list)
989 		if (td2->id == dev) {
990 			/*
991 			 * May not create an already-open device.
992 			 */
993 			if (create)
994 				return -EEXIST;
995 
996 			td2->open_count++;
997 			*td = td2;
998 			return 0;
999 		}
1000 
1001 	/*
1002 	 * Check the device exists.
1003 	 */
1004 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1005 			    &key, &details_le);
1006 	if (r) {
1007 		if (r != -ENODATA || !create)
1008 			return r;
1009 
1010 		/*
1011 		 * Create new device.
1012 		 */
1013 		changed = 1;
1014 		details_le.mapped_blocks = 0;
1015 		details_le.transaction_id = cpu_to_le64(pmd->trans_id);
1016 		details_le.creation_time = cpu_to_le32(pmd->time);
1017 		details_le.snapshotted_time = cpu_to_le32(pmd->time);
1018 	}
1019 
1020 	*td = kmalloc(sizeof(**td), GFP_NOIO);
1021 	if (!*td)
1022 		return -ENOMEM;
1023 
1024 	(*td)->pmd = pmd;
1025 	(*td)->id = dev;
1026 	(*td)->open_count = 1;
1027 	(*td)->changed = changed;
1028 	(*td)->aborted_with_changes = false;
1029 	(*td)->mapped_blocks = le64_to_cpu(details_le.mapped_blocks);
1030 	(*td)->transaction_id = le64_to_cpu(details_le.transaction_id);
1031 	(*td)->creation_time = le32_to_cpu(details_le.creation_time);
1032 	(*td)->snapshotted_time = le32_to_cpu(details_le.snapshotted_time);
1033 
1034 	list_add(&(*td)->list, &pmd->thin_devices);
1035 
1036 	return 0;
1037 }
1038 
1039 static void __close_device(struct dm_thin_device *td)
1040 {
1041 	--td->open_count;
1042 }
1043 
1044 static int __create_thin(struct dm_pool_metadata *pmd,
1045 			 dm_thin_id dev)
1046 {
1047 	int r;
1048 	dm_block_t dev_root;
1049 	uint64_t key = dev;
1050 	struct disk_device_details details_le;
1051 	struct dm_thin_device *td;
1052 	__le64 value;
1053 
1054 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1055 			    &key, &details_le);
1056 	if (!r)
1057 		return -EEXIST;
1058 
1059 	/*
1060 	 * Create an empty btree for the mappings.
1061 	 */
1062 	r = dm_btree_empty(&pmd->bl_info, &dev_root);
1063 	if (r)
1064 		return r;
1065 
1066 	/*
1067 	 * Insert it into the main mapping tree.
1068 	 */
1069 	value = cpu_to_le64(dev_root);
1070 	__dm_bless_for_disk(&value);
1071 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1072 	if (r) {
1073 		dm_btree_del(&pmd->bl_info, dev_root);
1074 		return r;
1075 	}
1076 
1077 	r = __open_device(pmd, dev, 1, &td);
1078 	if (r) {
1079 		dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1080 		dm_btree_del(&pmd->bl_info, dev_root);
1081 		return r;
1082 	}
1083 	__close_device(td);
1084 
1085 	return r;
1086 }
1087 
1088 int dm_pool_create_thin(struct dm_pool_metadata *pmd, dm_thin_id dev)
1089 {
1090 	int r = -EINVAL;
1091 
1092 	pmd_write_lock(pmd);
1093 	if (!pmd->fail_io)
1094 		r = __create_thin(pmd, dev);
1095 	pmd_write_unlock(pmd);
1096 
1097 	return r;
1098 }
1099 
1100 static int __set_snapshot_details(struct dm_pool_metadata *pmd,
1101 				  struct dm_thin_device *snap,
1102 				  dm_thin_id origin, uint32_t time)
1103 {
1104 	int r;
1105 	struct dm_thin_device *td;
1106 
1107 	r = __open_device(pmd, origin, 0, &td);
1108 	if (r)
1109 		return r;
1110 
1111 	td->changed = true;
1112 	td->snapshotted_time = time;
1113 
1114 	snap->mapped_blocks = td->mapped_blocks;
1115 	snap->snapshotted_time = time;
1116 	__close_device(td);
1117 
1118 	return 0;
1119 }
1120 
1121 static int __create_snap(struct dm_pool_metadata *pmd,
1122 			 dm_thin_id dev, dm_thin_id origin)
1123 {
1124 	int r;
1125 	dm_block_t origin_root;
1126 	uint64_t key = origin, dev_key = dev;
1127 	struct dm_thin_device *td;
1128 	struct disk_device_details details_le;
1129 	__le64 value;
1130 
1131 	/* check this device is unused */
1132 	r = dm_btree_lookup(&pmd->details_info, pmd->details_root,
1133 			    &dev_key, &details_le);
1134 	if (!r)
1135 		return -EEXIST;
1136 
1137 	/* find the mapping tree for the origin */
1138 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &key, &value);
1139 	if (r)
1140 		return r;
1141 	origin_root = le64_to_cpu(value);
1142 
1143 	/* clone the origin, an inc will do */
1144 	dm_tm_inc(pmd->tm, origin_root);
1145 
1146 	/* insert into the main mapping tree */
1147 	value = cpu_to_le64(origin_root);
1148 	__dm_bless_for_disk(&value);
1149 	key = dev;
1150 	r = dm_btree_insert(&pmd->tl_info, pmd->root, &key, &value, &pmd->root);
1151 	if (r) {
1152 		dm_tm_dec(pmd->tm, origin_root);
1153 		return r;
1154 	}
1155 
1156 	pmd->time++;
1157 
1158 	r = __open_device(pmd, dev, 1, &td);
1159 	if (r)
1160 		goto bad;
1161 
1162 	r = __set_snapshot_details(pmd, td, origin, pmd->time);
1163 	__close_device(td);
1164 
1165 	if (r)
1166 		goto bad;
1167 
1168 	return 0;
1169 
1170 bad:
1171 	dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1172 	dm_btree_remove(&pmd->details_info, pmd->details_root,
1173 			&key, &pmd->details_root);
1174 	return r;
1175 }
1176 
1177 int dm_pool_create_snap(struct dm_pool_metadata *pmd,
1178 				 dm_thin_id dev,
1179 				 dm_thin_id origin)
1180 {
1181 	int r = -EINVAL;
1182 
1183 	pmd_write_lock(pmd);
1184 	if (!pmd->fail_io)
1185 		r = __create_snap(pmd, dev, origin);
1186 	pmd_write_unlock(pmd);
1187 
1188 	return r;
1189 }
1190 
1191 static int __delete_device(struct dm_pool_metadata *pmd, dm_thin_id dev)
1192 {
1193 	int r;
1194 	uint64_t key = dev;
1195 	struct dm_thin_device *td;
1196 
1197 	/* TODO: failure should mark the transaction invalid */
1198 	r = __open_device(pmd, dev, 0, &td);
1199 	if (r)
1200 		return r;
1201 
1202 	if (td->open_count > 1) {
1203 		__close_device(td);
1204 		return -EBUSY;
1205 	}
1206 
1207 	list_del(&td->list);
1208 	kfree(td);
1209 	r = dm_btree_remove(&pmd->details_info, pmd->details_root,
1210 			    &key, &pmd->details_root);
1211 	if (r)
1212 		return r;
1213 
1214 	r = dm_btree_remove(&pmd->tl_info, pmd->root, &key, &pmd->root);
1215 	if (r)
1216 		return r;
1217 
1218 	return 0;
1219 }
1220 
1221 int dm_pool_delete_thin_device(struct dm_pool_metadata *pmd,
1222 			       dm_thin_id dev)
1223 {
1224 	int r = -EINVAL;
1225 
1226 	pmd_write_lock(pmd);
1227 	if (!pmd->fail_io)
1228 		r = __delete_device(pmd, dev);
1229 	pmd_write_unlock(pmd);
1230 
1231 	return r;
1232 }
1233 
1234 int dm_pool_set_metadata_transaction_id(struct dm_pool_metadata *pmd,
1235 					uint64_t current_id,
1236 					uint64_t new_id)
1237 {
1238 	int r = -EINVAL;
1239 
1240 	pmd_write_lock(pmd);
1241 
1242 	if (pmd->fail_io)
1243 		goto out;
1244 
1245 	if (pmd->trans_id != current_id) {
1246 		DMERR("mismatched transaction id");
1247 		goto out;
1248 	}
1249 
1250 	pmd->trans_id = new_id;
1251 	r = 0;
1252 
1253 out:
1254 	pmd_write_unlock(pmd);
1255 
1256 	return r;
1257 }
1258 
1259 int dm_pool_get_metadata_transaction_id(struct dm_pool_metadata *pmd,
1260 					uint64_t *result)
1261 {
1262 	int r = -EINVAL;
1263 
1264 	down_read(&pmd->root_lock);
1265 	if (!pmd->fail_io) {
1266 		*result = pmd->trans_id;
1267 		r = 0;
1268 	}
1269 	up_read(&pmd->root_lock);
1270 
1271 	return r;
1272 }
1273 
1274 static int __reserve_metadata_snap(struct dm_pool_metadata *pmd)
1275 {
1276 	int r, inc;
1277 	struct thin_disk_superblock *disk_super;
1278 	struct dm_block *copy, *sblock;
1279 	dm_block_t held_root;
1280 
1281 	/*
1282 	 * We commit to ensure the btree roots which we increment in a
1283 	 * moment are up to date.
1284 	 */
1285 	r = __commit_transaction(pmd);
1286 	if (r < 0) {
1287 		DMWARN("%s: __commit_transaction() failed, error = %d",
1288 		       __func__, r);
1289 		return r;
1290 	}
1291 
1292 	/*
1293 	 * Copy the superblock.
1294 	 */
1295 	dm_sm_inc_block(pmd->metadata_sm, THIN_SUPERBLOCK_LOCATION);
1296 	r = dm_tm_shadow_block(pmd->tm, THIN_SUPERBLOCK_LOCATION,
1297 			       &sb_validator, &copy, &inc);
1298 	if (r)
1299 		return r;
1300 
1301 	BUG_ON(!inc);
1302 
1303 	held_root = dm_block_location(copy);
1304 	disk_super = dm_block_data(copy);
1305 
1306 	if (le64_to_cpu(disk_super->held_root)) {
1307 		DMWARN("Pool metadata snapshot already exists: release this before taking another.");
1308 
1309 		dm_tm_dec(pmd->tm, held_root);
1310 		dm_tm_unlock(pmd->tm, copy);
1311 		return -EBUSY;
1312 	}
1313 
1314 	/*
1315 	 * Wipe the spacemap since we're not publishing this.
1316 	 */
1317 	memset(&disk_super->data_space_map_root, 0,
1318 	       sizeof(disk_super->data_space_map_root));
1319 	memset(&disk_super->metadata_space_map_root, 0,
1320 	       sizeof(disk_super->metadata_space_map_root));
1321 
1322 	/*
1323 	 * Increment the data structures that need to be preserved.
1324 	 */
1325 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->data_mapping_root));
1326 	dm_tm_inc(pmd->tm, le64_to_cpu(disk_super->device_details_root));
1327 	dm_tm_unlock(pmd->tm, copy);
1328 
1329 	/*
1330 	 * Write the held root into the superblock.
1331 	 */
1332 	r = superblock_lock(pmd, &sblock);
1333 	if (r) {
1334 		dm_tm_dec(pmd->tm, held_root);
1335 		return r;
1336 	}
1337 
1338 	disk_super = dm_block_data(sblock);
1339 	disk_super->held_root = cpu_to_le64(held_root);
1340 	dm_bm_unlock(sblock);
1341 	return 0;
1342 }
1343 
1344 int dm_pool_reserve_metadata_snap(struct dm_pool_metadata *pmd)
1345 {
1346 	int r = -EINVAL;
1347 
1348 	pmd_write_lock(pmd);
1349 	if (!pmd->fail_io)
1350 		r = __reserve_metadata_snap(pmd);
1351 	pmd_write_unlock(pmd);
1352 
1353 	return r;
1354 }
1355 
1356 static int __release_metadata_snap(struct dm_pool_metadata *pmd)
1357 {
1358 	int r;
1359 	struct thin_disk_superblock *disk_super;
1360 	struct dm_block *sblock, *copy;
1361 	dm_block_t held_root;
1362 
1363 	r = superblock_lock(pmd, &sblock);
1364 	if (r)
1365 		return r;
1366 
1367 	disk_super = dm_block_data(sblock);
1368 	held_root = le64_to_cpu(disk_super->held_root);
1369 	disk_super->held_root = cpu_to_le64(0);
1370 
1371 	dm_bm_unlock(sblock);
1372 
1373 	if (!held_root) {
1374 		DMWARN("No pool metadata snapshot found: nothing to release.");
1375 		return -EINVAL;
1376 	}
1377 
1378 	r = dm_tm_read_lock(pmd->tm, held_root, &sb_validator, &copy);
1379 	if (r)
1380 		return r;
1381 
1382 	disk_super = dm_block_data(copy);
1383 	dm_btree_del(&pmd->info, le64_to_cpu(disk_super->data_mapping_root));
1384 	dm_btree_del(&pmd->details_info, le64_to_cpu(disk_super->device_details_root));
1385 	dm_sm_dec_block(pmd->metadata_sm, held_root);
1386 
1387 	dm_tm_unlock(pmd->tm, copy);
1388 
1389 	return 0;
1390 }
1391 
1392 int dm_pool_release_metadata_snap(struct dm_pool_metadata *pmd)
1393 {
1394 	int r = -EINVAL;
1395 
1396 	pmd_write_lock(pmd);
1397 	if (!pmd->fail_io)
1398 		r = __release_metadata_snap(pmd);
1399 	pmd_write_unlock(pmd);
1400 
1401 	return r;
1402 }
1403 
1404 static int __get_metadata_snap(struct dm_pool_metadata *pmd,
1405 			       dm_block_t *result)
1406 {
1407 	int r;
1408 	struct thin_disk_superblock *disk_super;
1409 	struct dm_block *sblock;
1410 
1411 	r = dm_bm_read_lock(pmd->bm, THIN_SUPERBLOCK_LOCATION,
1412 			    &sb_validator, &sblock);
1413 	if (r)
1414 		return r;
1415 
1416 	disk_super = dm_block_data(sblock);
1417 	*result = le64_to_cpu(disk_super->held_root);
1418 
1419 	dm_bm_unlock(sblock);
1420 
1421 	return 0;
1422 }
1423 
1424 int dm_pool_get_metadata_snap(struct dm_pool_metadata *pmd,
1425 			      dm_block_t *result)
1426 {
1427 	int r = -EINVAL;
1428 
1429 	down_read(&pmd->root_lock);
1430 	if (!pmd->fail_io)
1431 		r = __get_metadata_snap(pmd, result);
1432 	up_read(&pmd->root_lock);
1433 
1434 	return r;
1435 }
1436 
1437 int dm_pool_open_thin_device(struct dm_pool_metadata *pmd, dm_thin_id dev,
1438 			     struct dm_thin_device **td)
1439 {
1440 	int r = -EINVAL;
1441 
1442 	pmd_write_lock_in_core(pmd);
1443 	if (!pmd->fail_io)
1444 		r = __open_device(pmd, dev, 0, td);
1445 	pmd_write_unlock(pmd);
1446 
1447 	return r;
1448 }
1449 
1450 int dm_pool_close_thin_device(struct dm_thin_device *td)
1451 {
1452 	pmd_write_lock_in_core(td->pmd);
1453 	__close_device(td);
1454 	pmd_write_unlock(td->pmd);
1455 
1456 	return 0;
1457 }
1458 
1459 dm_thin_id dm_thin_dev_id(struct dm_thin_device *td)
1460 {
1461 	return td->id;
1462 }
1463 
1464 /*
1465  * Check whether @time (of block creation) is older than @td's last snapshot.
1466  * If so then the associated block is shared with the last snapshot device.
1467  * Any block on a device created *after* the device last got snapshotted is
1468  * necessarily not shared.
1469  */
1470 static bool __snapshotted_since(struct dm_thin_device *td, uint32_t time)
1471 {
1472 	return td->snapshotted_time > time;
1473 }
1474 
1475 static void unpack_lookup_result(struct dm_thin_device *td, __le64 value,
1476 				 struct dm_thin_lookup_result *result)
1477 {
1478 	uint64_t block_time = 0;
1479 	dm_block_t exception_block;
1480 	uint32_t exception_time;
1481 
1482 	block_time = le64_to_cpu(value);
1483 	unpack_block_time(block_time, &exception_block, &exception_time);
1484 	result->block = exception_block;
1485 	result->shared = __snapshotted_since(td, exception_time);
1486 }
1487 
1488 static int __find_block(struct dm_thin_device *td, dm_block_t block,
1489 			int can_issue_io, struct dm_thin_lookup_result *result)
1490 {
1491 	int r;
1492 	__le64 value;
1493 	struct dm_pool_metadata *pmd = td->pmd;
1494 	dm_block_t keys[2] = { td->id, block };
1495 	struct dm_btree_info *info;
1496 
1497 	if (can_issue_io) {
1498 		info = &pmd->info;
1499 	} else
1500 		info = &pmd->nb_info;
1501 
1502 	r = dm_btree_lookup(info, pmd->root, keys, &value);
1503 	if (!r)
1504 		unpack_lookup_result(td, value, result);
1505 
1506 	return r;
1507 }
1508 
1509 int dm_thin_find_block(struct dm_thin_device *td, dm_block_t block,
1510 		       int can_issue_io, struct dm_thin_lookup_result *result)
1511 {
1512 	int r;
1513 	struct dm_pool_metadata *pmd = td->pmd;
1514 
1515 	down_read(&pmd->root_lock);
1516 	if (pmd->fail_io) {
1517 		up_read(&pmd->root_lock);
1518 		return -EINVAL;
1519 	}
1520 
1521 	r = __find_block(td, block, can_issue_io, result);
1522 
1523 	up_read(&pmd->root_lock);
1524 	return r;
1525 }
1526 
1527 static int __find_next_mapped_block(struct dm_thin_device *td, dm_block_t block,
1528 					  dm_block_t *vblock,
1529 					  struct dm_thin_lookup_result *result)
1530 {
1531 	int r;
1532 	__le64 value;
1533 	struct dm_pool_metadata *pmd = td->pmd;
1534 	dm_block_t keys[2] = { td->id, block };
1535 
1536 	r = dm_btree_lookup_next(&pmd->info, pmd->root, keys, vblock, &value);
1537 	if (!r)
1538 		unpack_lookup_result(td, value, result);
1539 
1540 	return r;
1541 }
1542 
1543 static int __find_mapped_range(struct dm_thin_device *td,
1544 			       dm_block_t begin, dm_block_t end,
1545 			       dm_block_t *thin_begin, dm_block_t *thin_end,
1546 			       dm_block_t *pool_begin, bool *maybe_shared)
1547 {
1548 	int r;
1549 	dm_block_t pool_end;
1550 	struct dm_thin_lookup_result lookup;
1551 
1552 	if (end < begin)
1553 		return -ENODATA;
1554 
1555 	r = __find_next_mapped_block(td, begin, &begin, &lookup);
1556 	if (r)
1557 		return r;
1558 
1559 	if (begin >= end)
1560 		return -ENODATA;
1561 
1562 	*thin_begin = begin;
1563 	*pool_begin = lookup.block;
1564 	*maybe_shared = lookup.shared;
1565 
1566 	begin++;
1567 	pool_end = *pool_begin + 1;
1568 	while (begin != end) {
1569 		r = __find_block(td, begin, true, &lookup);
1570 		if (r) {
1571 			if (r == -ENODATA)
1572 				break;
1573 			else
1574 				return r;
1575 		}
1576 
1577 		if ((lookup.block != pool_end) ||
1578 		    (lookup.shared != *maybe_shared))
1579 			break;
1580 
1581 		pool_end++;
1582 		begin++;
1583 	}
1584 
1585 	*thin_end = begin;
1586 	return 0;
1587 }
1588 
1589 int dm_thin_find_mapped_range(struct dm_thin_device *td,
1590 			      dm_block_t begin, dm_block_t end,
1591 			      dm_block_t *thin_begin, dm_block_t *thin_end,
1592 			      dm_block_t *pool_begin, bool *maybe_shared)
1593 {
1594 	int r = -EINVAL;
1595 	struct dm_pool_metadata *pmd = td->pmd;
1596 
1597 	down_read(&pmd->root_lock);
1598 	if (!pmd->fail_io) {
1599 		r = __find_mapped_range(td, begin, end, thin_begin, thin_end,
1600 					pool_begin, maybe_shared);
1601 	}
1602 	up_read(&pmd->root_lock);
1603 
1604 	return r;
1605 }
1606 
1607 static int __insert(struct dm_thin_device *td, dm_block_t block,
1608 		    dm_block_t data_block)
1609 {
1610 	int r, inserted;
1611 	__le64 value;
1612 	struct dm_pool_metadata *pmd = td->pmd;
1613 	dm_block_t keys[2] = { td->id, block };
1614 
1615 	value = cpu_to_le64(pack_block_time(data_block, pmd->time));
1616 	__dm_bless_for_disk(&value);
1617 
1618 	r = dm_btree_insert_notify(&pmd->info, pmd->root, keys, &value,
1619 				   &pmd->root, &inserted);
1620 	if (r)
1621 		return r;
1622 
1623 	td->changed = true;
1624 	if (inserted)
1625 		td->mapped_blocks++;
1626 
1627 	return 0;
1628 }
1629 
1630 int dm_thin_insert_block(struct dm_thin_device *td, dm_block_t block,
1631 			 dm_block_t data_block)
1632 {
1633 	int r = -EINVAL;
1634 
1635 	pmd_write_lock(td->pmd);
1636 	if (!td->pmd->fail_io)
1637 		r = __insert(td, block, data_block);
1638 	pmd_write_unlock(td->pmd);
1639 
1640 	return r;
1641 }
1642 
1643 static int __remove(struct dm_thin_device *td, dm_block_t block)
1644 {
1645 	int r;
1646 	struct dm_pool_metadata *pmd = td->pmd;
1647 	dm_block_t keys[2] = { td->id, block };
1648 
1649 	r = dm_btree_remove(&pmd->info, pmd->root, keys, &pmd->root);
1650 	if (r)
1651 		return r;
1652 
1653 	td->mapped_blocks--;
1654 	td->changed = true;
1655 
1656 	return 0;
1657 }
1658 
1659 static int __remove_range(struct dm_thin_device *td, dm_block_t begin, dm_block_t end)
1660 {
1661 	int r;
1662 	unsigned count, total_count = 0;
1663 	struct dm_pool_metadata *pmd = td->pmd;
1664 	dm_block_t keys[1] = { td->id };
1665 	__le64 value;
1666 	dm_block_t mapping_root;
1667 
1668 	/*
1669 	 * Find the mapping tree
1670 	 */
1671 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, keys, &value);
1672 	if (r)
1673 		return r;
1674 
1675 	/*
1676 	 * Remove from the mapping tree, taking care to inc the
1677 	 * ref count so it doesn't get deleted.
1678 	 */
1679 	mapping_root = le64_to_cpu(value);
1680 	dm_tm_inc(pmd->tm, mapping_root);
1681 	r = dm_btree_remove(&pmd->tl_info, pmd->root, keys, &pmd->root);
1682 	if (r)
1683 		return r;
1684 
1685 	/*
1686 	 * Remove leaves stops at the first unmapped entry, so we have to
1687 	 * loop round finding mapped ranges.
1688 	 */
1689 	while (begin < end) {
1690 		r = dm_btree_lookup_next(&pmd->bl_info, mapping_root, &begin, &begin, &value);
1691 		if (r == -ENODATA)
1692 			break;
1693 
1694 		if (r)
1695 			return r;
1696 
1697 		if (begin >= end)
1698 			break;
1699 
1700 		r = dm_btree_remove_leaves(&pmd->bl_info, mapping_root, &begin, end, &mapping_root, &count);
1701 		if (r)
1702 			return r;
1703 
1704 		total_count += count;
1705 	}
1706 
1707 	td->mapped_blocks -= total_count;
1708 	td->changed = true;
1709 
1710 	/*
1711 	 * Reinsert the mapping tree.
1712 	 */
1713 	value = cpu_to_le64(mapping_root);
1714 	__dm_bless_for_disk(&value);
1715 	return dm_btree_insert(&pmd->tl_info, pmd->root, keys, &value, &pmd->root);
1716 }
1717 
1718 int dm_thin_remove_block(struct dm_thin_device *td, dm_block_t block)
1719 {
1720 	int r = -EINVAL;
1721 
1722 	pmd_write_lock(td->pmd);
1723 	if (!td->pmd->fail_io)
1724 		r = __remove(td, block);
1725 	pmd_write_unlock(td->pmd);
1726 
1727 	return r;
1728 }
1729 
1730 int dm_thin_remove_range(struct dm_thin_device *td,
1731 			 dm_block_t begin, dm_block_t end)
1732 {
1733 	int r = -EINVAL;
1734 
1735 	pmd_write_lock(td->pmd);
1736 	if (!td->pmd->fail_io)
1737 		r = __remove_range(td, begin, end);
1738 	pmd_write_unlock(td->pmd);
1739 
1740 	return r;
1741 }
1742 
1743 int dm_pool_block_is_shared(struct dm_pool_metadata *pmd, dm_block_t b, bool *result)
1744 {
1745 	int r;
1746 	uint32_t ref_count;
1747 
1748 	down_read(&pmd->root_lock);
1749 	r = dm_sm_get_count(pmd->data_sm, b, &ref_count);
1750 	if (!r)
1751 		*result = (ref_count > 1);
1752 	up_read(&pmd->root_lock);
1753 
1754 	return r;
1755 }
1756 
1757 int dm_pool_inc_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1758 {
1759 	int r = 0;
1760 
1761 	pmd_write_lock(pmd);
1762 	for (; b != e; b++) {
1763 		r = dm_sm_inc_block(pmd->data_sm, b);
1764 		if (r)
1765 			break;
1766 	}
1767 	pmd_write_unlock(pmd);
1768 
1769 	return r;
1770 }
1771 
1772 int dm_pool_dec_data_range(struct dm_pool_metadata *pmd, dm_block_t b, dm_block_t e)
1773 {
1774 	int r = 0;
1775 
1776 	pmd_write_lock(pmd);
1777 	for (; b != e; b++) {
1778 		r = dm_sm_dec_block(pmd->data_sm, b);
1779 		if (r)
1780 			break;
1781 	}
1782 	pmd_write_unlock(pmd);
1783 
1784 	return r;
1785 }
1786 
1787 bool dm_thin_changed_this_transaction(struct dm_thin_device *td)
1788 {
1789 	int r;
1790 
1791 	down_read(&td->pmd->root_lock);
1792 	r = td->changed;
1793 	up_read(&td->pmd->root_lock);
1794 
1795 	return r;
1796 }
1797 
1798 bool dm_pool_changed_this_transaction(struct dm_pool_metadata *pmd)
1799 {
1800 	bool r = false;
1801 	struct dm_thin_device *td, *tmp;
1802 
1803 	down_read(&pmd->root_lock);
1804 	list_for_each_entry_safe(td, tmp, &pmd->thin_devices, list) {
1805 		if (td->changed) {
1806 			r = td->changed;
1807 			break;
1808 		}
1809 	}
1810 	up_read(&pmd->root_lock);
1811 
1812 	return r;
1813 }
1814 
1815 bool dm_thin_aborted_changes(struct dm_thin_device *td)
1816 {
1817 	bool r;
1818 
1819 	down_read(&td->pmd->root_lock);
1820 	r = td->aborted_with_changes;
1821 	up_read(&td->pmd->root_lock);
1822 
1823 	return r;
1824 }
1825 
1826 int dm_pool_alloc_data_block(struct dm_pool_metadata *pmd, dm_block_t *result)
1827 {
1828 	int r = -EINVAL;
1829 
1830 	pmd_write_lock(pmd);
1831 	if (!pmd->fail_io)
1832 		r = dm_sm_new_block(pmd->data_sm, result);
1833 	pmd_write_unlock(pmd);
1834 
1835 	return r;
1836 }
1837 
1838 int dm_pool_commit_metadata(struct dm_pool_metadata *pmd)
1839 {
1840 	int r = -EINVAL;
1841 
1842 	/*
1843 	 * Care is taken to not have commit be what
1844 	 * triggers putting the thin-pool in-service.
1845 	 */
1846 	pmd_write_lock_in_core(pmd);
1847 	if (pmd->fail_io)
1848 		goto out;
1849 
1850 	r = __commit_transaction(pmd);
1851 	if (r < 0)
1852 		goto out;
1853 
1854 	/*
1855 	 * Open the next transaction.
1856 	 */
1857 	r = __begin_transaction(pmd);
1858 out:
1859 	pmd_write_unlock(pmd);
1860 	return r;
1861 }
1862 
1863 static void __set_abort_with_changes_flags(struct dm_pool_metadata *pmd)
1864 {
1865 	struct dm_thin_device *td;
1866 
1867 	list_for_each_entry(td, &pmd->thin_devices, list)
1868 		td->aborted_with_changes = td->changed;
1869 }
1870 
1871 int dm_pool_abort_metadata(struct dm_pool_metadata *pmd)
1872 {
1873 	int r = -EINVAL;
1874 
1875 	pmd_write_lock(pmd);
1876 	if (pmd->fail_io)
1877 		goto out;
1878 
1879 	__set_abort_with_changes_flags(pmd);
1880 	__destroy_persistent_data_objects(pmd);
1881 	r = __create_persistent_data_objects(pmd, false);
1882 	if (r)
1883 		pmd->fail_io = true;
1884 
1885 out:
1886 	pmd_write_unlock(pmd);
1887 
1888 	return r;
1889 }
1890 
1891 int dm_pool_get_free_block_count(struct dm_pool_metadata *pmd, dm_block_t *result)
1892 {
1893 	int r = -EINVAL;
1894 
1895 	down_read(&pmd->root_lock);
1896 	if (!pmd->fail_io)
1897 		r = dm_sm_get_nr_free(pmd->data_sm, result);
1898 	up_read(&pmd->root_lock);
1899 
1900 	return r;
1901 }
1902 
1903 int dm_pool_get_free_metadata_block_count(struct dm_pool_metadata *pmd,
1904 					  dm_block_t *result)
1905 {
1906 	int r = -EINVAL;
1907 
1908 	down_read(&pmd->root_lock);
1909 	if (!pmd->fail_io)
1910 		r = dm_sm_get_nr_free(pmd->metadata_sm, result);
1911 
1912 	if (!r) {
1913 		if (*result < pmd->metadata_reserve)
1914 			*result = 0;
1915 		else
1916 			*result -= pmd->metadata_reserve;
1917 	}
1918 	up_read(&pmd->root_lock);
1919 
1920 	return r;
1921 }
1922 
1923 int dm_pool_get_metadata_dev_size(struct dm_pool_metadata *pmd,
1924 				  dm_block_t *result)
1925 {
1926 	int r = -EINVAL;
1927 
1928 	down_read(&pmd->root_lock);
1929 	if (!pmd->fail_io)
1930 		r = dm_sm_get_nr_blocks(pmd->metadata_sm, result);
1931 	up_read(&pmd->root_lock);
1932 
1933 	return r;
1934 }
1935 
1936 int dm_pool_get_data_dev_size(struct dm_pool_metadata *pmd, dm_block_t *result)
1937 {
1938 	int r = -EINVAL;
1939 
1940 	down_read(&pmd->root_lock);
1941 	if (!pmd->fail_io)
1942 		r = dm_sm_get_nr_blocks(pmd->data_sm, result);
1943 	up_read(&pmd->root_lock);
1944 
1945 	return r;
1946 }
1947 
1948 int dm_thin_get_mapped_count(struct dm_thin_device *td, dm_block_t *result)
1949 {
1950 	int r = -EINVAL;
1951 	struct dm_pool_metadata *pmd = td->pmd;
1952 
1953 	down_read(&pmd->root_lock);
1954 	if (!pmd->fail_io) {
1955 		*result = td->mapped_blocks;
1956 		r = 0;
1957 	}
1958 	up_read(&pmd->root_lock);
1959 
1960 	return r;
1961 }
1962 
1963 static int __highest_block(struct dm_thin_device *td, dm_block_t *result)
1964 {
1965 	int r;
1966 	__le64 value_le;
1967 	dm_block_t thin_root;
1968 	struct dm_pool_metadata *pmd = td->pmd;
1969 
1970 	r = dm_btree_lookup(&pmd->tl_info, pmd->root, &td->id, &value_le);
1971 	if (r)
1972 		return r;
1973 
1974 	thin_root = le64_to_cpu(value_le);
1975 
1976 	return dm_btree_find_highest_key(&pmd->bl_info, thin_root, result);
1977 }
1978 
1979 int dm_thin_get_highest_mapped_block(struct dm_thin_device *td,
1980 				     dm_block_t *result)
1981 {
1982 	int r = -EINVAL;
1983 	struct dm_pool_metadata *pmd = td->pmd;
1984 
1985 	down_read(&pmd->root_lock);
1986 	if (!pmd->fail_io)
1987 		r = __highest_block(td, result);
1988 	up_read(&pmd->root_lock);
1989 
1990 	return r;
1991 }
1992 
1993 static int __resize_space_map(struct dm_space_map *sm, dm_block_t new_count)
1994 {
1995 	int r;
1996 	dm_block_t old_count;
1997 
1998 	r = dm_sm_get_nr_blocks(sm, &old_count);
1999 	if (r)
2000 		return r;
2001 
2002 	if (new_count == old_count)
2003 		return 0;
2004 
2005 	if (new_count < old_count) {
2006 		DMERR("cannot reduce size of space map");
2007 		return -EINVAL;
2008 	}
2009 
2010 	return dm_sm_extend(sm, new_count - old_count);
2011 }
2012 
2013 int dm_pool_resize_data_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2014 {
2015 	int r = -EINVAL;
2016 
2017 	pmd_write_lock(pmd);
2018 	if (!pmd->fail_io)
2019 		r = __resize_space_map(pmd->data_sm, new_count);
2020 	pmd_write_unlock(pmd);
2021 
2022 	return r;
2023 }
2024 
2025 int dm_pool_resize_metadata_dev(struct dm_pool_metadata *pmd, dm_block_t new_count)
2026 {
2027 	int r = -EINVAL;
2028 
2029 	pmd_write_lock(pmd);
2030 	if (!pmd->fail_io) {
2031 		r = __resize_space_map(pmd->metadata_sm, new_count);
2032 		if (!r)
2033 			__set_metadata_reserve(pmd);
2034 	}
2035 	pmd_write_unlock(pmd);
2036 
2037 	return r;
2038 }
2039 
2040 void dm_pool_metadata_read_only(struct dm_pool_metadata *pmd)
2041 {
2042 	pmd_write_lock_in_core(pmd);
2043 	dm_bm_set_read_only(pmd->bm);
2044 	pmd_write_unlock(pmd);
2045 }
2046 
2047 void dm_pool_metadata_read_write(struct dm_pool_metadata *pmd)
2048 {
2049 	pmd_write_lock_in_core(pmd);
2050 	dm_bm_set_read_write(pmd->bm);
2051 	pmd_write_unlock(pmd);
2052 }
2053 
2054 int dm_pool_register_metadata_threshold(struct dm_pool_metadata *pmd,
2055 					dm_block_t threshold,
2056 					dm_sm_threshold_fn fn,
2057 					void *context)
2058 {
2059 	int r;
2060 
2061 	pmd_write_lock_in_core(pmd);
2062 	r = dm_sm_register_threshold_callback(pmd->metadata_sm, threshold, fn, context);
2063 	pmd_write_unlock(pmd);
2064 
2065 	return r;
2066 }
2067 
2068 void dm_pool_register_pre_commit_callback(struct dm_pool_metadata *pmd,
2069 					  dm_pool_pre_commit_fn fn,
2070 					  void *context)
2071 {
2072 	pmd_write_lock_in_core(pmd);
2073 	pmd->pre_commit_fn = fn;
2074 	pmd->pre_commit_context = context;
2075 	pmd_write_unlock(pmd);
2076 }
2077 
2078 int dm_pool_metadata_set_needs_check(struct dm_pool_metadata *pmd)
2079 {
2080 	int r = -EINVAL;
2081 	struct dm_block *sblock;
2082 	struct thin_disk_superblock *disk_super;
2083 
2084 	pmd_write_lock(pmd);
2085 	if (pmd->fail_io)
2086 		goto out;
2087 
2088 	pmd->flags |= THIN_METADATA_NEEDS_CHECK_FLAG;
2089 
2090 	r = superblock_lock(pmd, &sblock);
2091 	if (r) {
2092 		DMERR("couldn't lock superblock");
2093 		goto out;
2094 	}
2095 
2096 	disk_super = dm_block_data(sblock);
2097 	disk_super->flags = cpu_to_le32(pmd->flags);
2098 
2099 	dm_bm_unlock(sblock);
2100 out:
2101 	pmd_write_unlock(pmd);
2102 	return r;
2103 }
2104 
2105 bool dm_pool_metadata_needs_check(struct dm_pool_metadata *pmd)
2106 {
2107 	bool needs_check;
2108 
2109 	down_read(&pmd->root_lock);
2110 	needs_check = pmd->flags & THIN_METADATA_NEEDS_CHECK_FLAG;
2111 	up_read(&pmd->root_lock);
2112 
2113 	return needs_check;
2114 }
2115 
2116 void dm_pool_issue_prefetches(struct dm_pool_metadata *pmd)
2117 {
2118 	down_read(&pmd->root_lock);
2119 	if (!pmd->fail_io)
2120 		dm_tm_issue_prefetches(pmd->tm);
2121 	up_read(&pmd->root_lock);
2122 }
2123