xref: /linux/drivers/input/input.c (revision cdb138080b78146d1cdadba9f5dadbeb97445b91)
1 /*
2  * The input core
3  *
4  * Copyright (c) 1999-2002 Vojtech Pavlik
5  */
6 
7 /*
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms of the GNU General Public License version 2 as published by
10  * the Free Software Foundation.
11  */
12 
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/input.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/random.h>
19 #include <linux/major.h>
20 #include <linux/proc_fs.h>
21 #include <linux/sched.h>
22 #include <linux/seq_file.h>
23 #include <linux/poll.h>
24 #include <linux/device.h>
25 #include <linux/mutex.h>
26 #include <linux/rcupdate.h>
27 #include <linux/smp_lock.h>
28 #include "input-compat.h"
29 
30 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
31 MODULE_DESCRIPTION("Input core");
32 MODULE_LICENSE("GPL");
33 
34 #define INPUT_DEVICES	256
35 
36 static LIST_HEAD(input_dev_list);
37 static LIST_HEAD(input_handler_list);
38 
39 /*
40  * input_mutex protects access to both input_dev_list and input_handler_list.
41  * This also causes input_[un]register_device and input_[un]register_handler
42  * be mutually exclusive which simplifies locking in drivers implementing
43  * input handlers.
44  */
45 static DEFINE_MUTEX(input_mutex);
46 
47 static struct input_handler *input_table[8];
48 
49 static inline int is_event_supported(unsigned int code,
50 				     unsigned long *bm, unsigned int max)
51 {
52 	return code <= max && test_bit(code, bm);
53 }
54 
55 static int input_defuzz_abs_event(int value, int old_val, int fuzz)
56 {
57 	if (fuzz) {
58 		if (value > old_val - fuzz / 2 && value < old_val + fuzz / 2)
59 			return old_val;
60 
61 		if (value > old_val - fuzz && value < old_val + fuzz)
62 			return (old_val * 3 + value) / 4;
63 
64 		if (value > old_val - fuzz * 2 && value < old_val + fuzz * 2)
65 			return (old_val + value) / 2;
66 	}
67 
68 	return value;
69 }
70 
71 /*
72  * Pass event first through all filters and then, if event has not been
73  * filtered out, through all open handles. This function is called with
74  * dev->event_lock held and interrupts disabled.
75  */
76 static void input_pass_event(struct input_dev *dev,
77 			     unsigned int type, unsigned int code, int value)
78 {
79 	struct input_handler *handler;
80 	struct input_handle *handle;
81 
82 	rcu_read_lock();
83 
84 	handle = rcu_dereference(dev->grab);
85 	if (handle)
86 		handle->handler->event(handle, type, code, value);
87 	else {
88 		bool filtered = false;
89 
90 		list_for_each_entry_rcu(handle, &dev->h_list, d_node) {
91 			if (!handle->open)
92 				continue;
93 
94 			handler = handle->handler;
95 			if (!handler->filter) {
96 				if (filtered)
97 					break;
98 
99 				handler->event(handle, type, code, value);
100 
101 			} else if (handler->filter(handle, type, code, value))
102 				filtered = true;
103 		}
104 	}
105 
106 	rcu_read_unlock();
107 }
108 
109 /*
110  * Generate software autorepeat event. Note that we take
111  * dev->event_lock here to avoid racing with input_event
112  * which may cause keys get "stuck".
113  */
114 static void input_repeat_key(unsigned long data)
115 {
116 	struct input_dev *dev = (void *) data;
117 	unsigned long flags;
118 
119 	spin_lock_irqsave(&dev->event_lock, flags);
120 
121 	if (test_bit(dev->repeat_key, dev->key) &&
122 	    is_event_supported(dev->repeat_key, dev->keybit, KEY_MAX)) {
123 
124 		input_pass_event(dev, EV_KEY, dev->repeat_key, 2);
125 
126 		if (dev->sync) {
127 			/*
128 			 * Only send SYN_REPORT if we are not in a middle
129 			 * of driver parsing a new hardware packet.
130 			 * Otherwise assume that the driver will send
131 			 * SYN_REPORT once it's done.
132 			 */
133 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
134 		}
135 
136 		if (dev->rep[REP_PERIOD])
137 			mod_timer(&dev->timer, jiffies +
138 					msecs_to_jiffies(dev->rep[REP_PERIOD]));
139 	}
140 
141 	spin_unlock_irqrestore(&dev->event_lock, flags);
142 }
143 
144 static void input_start_autorepeat(struct input_dev *dev, int code)
145 {
146 	if (test_bit(EV_REP, dev->evbit) &&
147 	    dev->rep[REP_PERIOD] && dev->rep[REP_DELAY] &&
148 	    dev->timer.data) {
149 		dev->repeat_key = code;
150 		mod_timer(&dev->timer,
151 			  jiffies + msecs_to_jiffies(dev->rep[REP_DELAY]));
152 	}
153 }
154 
155 static void input_stop_autorepeat(struct input_dev *dev)
156 {
157 	del_timer(&dev->timer);
158 }
159 
160 #define INPUT_IGNORE_EVENT	0
161 #define INPUT_PASS_TO_HANDLERS	1
162 #define INPUT_PASS_TO_DEVICE	2
163 #define INPUT_PASS_TO_ALL	(INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
164 
165 static int input_handle_abs_event(struct input_dev *dev,
166 				  unsigned int code, int *pval)
167 {
168 	bool is_mt_event;
169 	int *pold;
170 
171 	if (code == ABS_MT_SLOT) {
172 		/*
173 		 * "Stage" the event; we'll flush it later, when we
174 		 * get actiual touch data.
175 		 */
176 		if (*pval >= 0 && *pval < dev->mtsize)
177 			dev->slot = *pval;
178 
179 		return INPUT_IGNORE_EVENT;
180 	}
181 
182 	is_mt_event = code >= ABS_MT_FIRST && code <= ABS_MT_LAST;
183 
184 	if (!is_mt_event) {
185 		pold = &dev->absinfo[code].value;
186 	} else if (dev->mt) {
187 		struct input_mt_slot *mtslot = &dev->mt[dev->slot];
188 		pold = &mtslot->abs[code - ABS_MT_FIRST];
189 	} else {
190 		/*
191 		 * Bypass filtering for multitouch events when
192 		 * not employing slots.
193 		 */
194 		pold = NULL;
195 	}
196 
197 	if (pold) {
198 		*pval = input_defuzz_abs_event(*pval, *pold,
199 						dev->absinfo[code].fuzz);
200 		if (*pold == *pval)
201 			return INPUT_IGNORE_EVENT;
202 
203 		*pold = *pval;
204 	}
205 
206 	/* Flush pending "slot" event */
207 	if (is_mt_event && dev->slot != input_abs_get_val(dev, ABS_MT_SLOT)) {
208 		input_abs_set_val(dev, ABS_MT_SLOT, dev->slot);
209 		input_pass_event(dev, EV_ABS, ABS_MT_SLOT, dev->slot);
210 	}
211 
212 	return INPUT_PASS_TO_HANDLERS;
213 }
214 
215 static void input_handle_event(struct input_dev *dev,
216 			       unsigned int type, unsigned int code, int value)
217 {
218 	int disposition = INPUT_IGNORE_EVENT;
219 
220 	switch (type) {
221 
222 	case EV_SYN:
223 		switch (code) {
224 		case SYN_CONFIG:
225 			disposition = INPUT_PASS_TO_ALL;
226 			break;
227 
228 		case SYN_REPORT:
229 			if (!dev->sync) {
230 				dev->sync = true;
231 				disposition = INPUT_PASS_TO_HANDLERS;
232 			}
233 			break;
234 		case SYN_MT_REPORT:
235 			dev->sync = false;
236 			disposition = INPUT_PASS_TO_HANDLERS;
237 			break;
238 		}
239 		break;
240 
241 	case EV_KEY:
242 		if (is_event_supported(code, dev->keybit, KEY_MAX) &&
243 		    !!test_bit(code, dev->key) != value) {
244 
245 			if (value != 2) {
246 				__change_bit(code, dev->key);
247 				if (value)
248 					input_start_autorepeat(dev, code);
249 				else
250 					input_stop_autorepeat(dev);
251 			}
252 
253 			disposition = INPUT_PASS_TO_HANDLERS;
254 		}
255 		break;
256 
257 	case EV_SW:
258 		if (is_event_supported(code, dev->swbit, SW_MAX) &&
259 		    !!test_bit(code, dev->sw) != value) {
260 
261 			__change_bit(code, dev->sw);
262 			disposition = INPUT_PASS_TO_HANDLERS;
263 		}
264 		break;
265 
266 	case EV_ABS:
267 		if (is_event_supported(code, dev->absbit, ABS_MAX))
268 			disposition = input_handle_abs_event(dev, code, &value);
269 
270 		break;
271 
272 	case EV_REL:
273 		if (is_event_supported(code, dev->relbit, REL_MAX) && value)
274 			disposition = INPUT_PASS_TO_HANDLERS;
275 
276 		break;
277 
278 	case EV_MSC:
279 		if (is_event_supported(code, dev->mscbit, MSC_MAX))
280 			disposition = INPUT_PASS_TO_ALL;
281 
282 		break;
283 
284 	case EV_LED:
285 		if (is_event_supported(code, dev->ledbit, LED_MAX) &&
286 		    !!test_bit(code, dev->led) != value) {
287 
288 			__change_bit(code, dev->led);
289 			disposition = INPUT_PASS_TO_ALL;
290 		}
291 		break;
292 
293 	case EV_SND:
294 		if (is_event_supported(code, dev->sndbit, SND_MAX)) {
295 
296 			if (!!test_bit(code, dev->snd) != !!value)
297 				__change_bit(code, dev->snd);
298 			disposition = INPUT_PASS_TO_ALL;
299 		}
300 		break;
301 
302 	case EV_REP:
303 		if (code <= REP_MAX && value >= 0 && dev->rep[code] != value) {
304 			dev->rep[code] = value;
305 			disposition = INPUT_PASS_TO_ALL;
306 		}
307 		break;
308 
309 	case EV_FF:
310 		if (value >= 0)
311 			disposition = INPUT_PASS_TO_ALL;
312 		break;
313 
314 	case EV_PWR:
315 		disposition = INPUT_PASS_TO_ALL;
316 		break;
317 	}
318 
319 	if (disposition != INPUT_IGNORE_EVENT && type != EV_SYN)
320 		dev->sync = false;
321 
322 	if ((disposition & INPUT_PASS_TO_DEVICE) && dev->event)
323 		dev->event(dev, type, code, value);
324 
325 	if (disposition & INPUT_PASS_TO_HANDLERS)
326 		input_pass_event(dev, type, code, value);
327 }
328 
329 /**
330  * input_event() - report new input event
331  * @dev: device that generated the event
332  * @type: type of the event
333  * @code: event code
334  * @value: value of the event
335  *
336  * This function should be used by drivers implementing various input
337  * devices to report input events. See also input_inject_event().
338  *
339  * NOTE: input_event() may be safely used right after input device was
340  * allocated with input_allocate_device(), even before it is registered
341  * with input_register_device(), but the event will not reach any of the
342  * input handlers. Such early invocation of input_event() may be used
343  * to 'seed' initial state of a switch or initial position of absolute
344  * axis, etc.
345  */
346 void input_event(struct input_dev *dev,
347 		 unsigned int type, unsigned int code, int value)
348 {
349 	unsigned long flags;
350 
351 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
352 
353 		spin_lock_irqsave(&dev->event_lock, flags);
354 		add_input_randomness(type, code, value);
355 		input_handle_event(dev, type, code, value);
356 		spin_unlock_irqrestore(&dev->event_lock, flags);
357 	}
358 }
359 EXPORT_SYMBOL(input_event);
360 
361 /**
362  * input_inject_event() - send input event from input handler
363  * @handle: input handle to send event through
364  * @type: type of the event
365  * @code: event code
366  * @value: value of the event
367  *
368  * Similar to input_event() but will ignore event if device is
369  * "grabbed" and handle injecting event is not the one that owns
370  * the device.
371  */
372 void input_inject_event(struct input_handle *handle,
373 			unsigned int type, unsigned int code, int value)
374 {
375 	struct input_dev *dev = handle->dev;
376 	struct input_handle *grab;
377 	unsigned long flags;
378 
379 	if (is_event_supported(type, dev->evbit, EV_MAX)) {
380 		spin_lock_irqsave(&dev->event_lock, flags);
381 
382 		rcu_read_lock();
383 		grab = rcu_dereference(dev->grab);
384 		if (!grab || grab == handle)
385 			input_handle_event(dev, type, code, value);
386 		rcu_read_unlock();
387 
388 		spin_unlock_irqrestore(&dev->event_lock, flags);
389 	}
390 }
391 EXPORT_SYMBOL(input_inject_event);
392 
393 /**
394  * input_alloc_absinfo - allocates array of input_absinfo structs
395  * @dev: the input device emitting absolute events
396  *
397  * If the absinfo struct the caller asked for is already allocated, this
398  * functions will not do anything.
399  */
400 void input_alloc_absinfo(struct input_dev *dev)
401 {
402 	if (!dev->absinfo)
403 		dev->absinfo = kcalloc(ABS_CNT, sizeof(struct input_absinfo),
404 					GFP_KERNEL);
405 
406 	WARN(!dev->absinfo, "%s(): kcalloc() failed?\n", __func__);
407 }
408 EXPORT_SYMBOL(input_alloc_absinfo);
409 
410 void input_set_abs_params(struct input_dev *dev, unsigned int axis,
411 			  int min, int max, int fuzz, int flat)
412 {
413 	struct input_absinfo *absinfo;
414 
415 	input_alloc_absinfo(dev);
416 	if (!dev->absinfo)
417 		return;
418 
419 	absinfo = &dev->absinfo[axis];
420 	absinfo->minimum = min;
421 	absinfo->maximum = max;
422 	absinfo->fuzz = fuzz;
423 	absinfo->flat = flat;
424 
425 	dev->absbit[BIT_WORD(axis)] |= BIT_MASK(axis);
426 }
427 EXPORT_SYMBOL(input_set_abs_params);
428 
429 
430 /**
431  * input_grab_device - grabs device for exclusive use
432  * @handle: input handle that wants to own the device
433  *
434  * When a device is grabbed by an input handle all events generated by
435  * the device are delivered only to this handle. Also events injected
436  * by other input handles are ignored while device is grabbed.
437  */
438 int input_grab_device(struct input_handle *handle)
439 {
440 	struct input_dev *dev = handle->dev;
441 	int retval;
442 
443 	retval = mutex_lock_interruptible(&dev->mutex);
444 	if (retval)
445 		return retval;
446 
447 	if (dev->grab) {
448 		retval = -EBUSY;
449 		goto out;
450 	}
451 
452 	rcu_assign_pointer(dev->grab, handle);
453 	synchronize_rcu();
454 
455  out:
456 	mutex_unlock(&dev->mutex);
457 	return retval;
458 }
459 EXPORT_SYMBOL(input_grab_device);
460 
461 static void __input_release_device(struct input_handle *handle)
462 {
463 	struct input_dev *dev = handle->dev;
464 
465 	if (dev->grab == handle) {
466 		rcu_assign_pointer(dev->grab, NULL);
467 		/* Make sure input_pass_event() notices that grab is gone */
468 		synchronize_rcu();
469 
470 		list_for_each_entry(handle, &dev->h_list, d_node)
471 			if (handle->open && handle->handler->start)
472 				handle->handler->start(handle);
473 	}
474 }
475 
476 /**
477  * input_release_device - release previously grabbed device
478  * @handle: input handle that owns the device
479  *
480  * Releases previously grabbed device so that other input handles can
481  * start receiving input events. Upon release all handlers attached
482  * to the device have their start() method called so they have a change
483  * to synchronize device state with the rest of the system.
484  */
485 void input_release_device(struct input_handle *handle)
486 {
487 	struct input_dev *dev = handle->dev;
488 
489 	mutex_lock(&dev->mutex);
490 	__input_release_device(handle);
491 	mutex_unlock(&dev->mutex);
492 }
493 EXPORT_SYMBOL(input_release_device);
494 
495 /**
496  * input_open_device - open input device
497  * @handle: handle through which device is being accessed
498  *
499  * This function should be called by input handlers when they
500  * want to start receive events from given input device.
501  */
502 int input_open_device(struct input_handle *handle)
503 {
504 	struct input_dev *dev = handle->dev;
505 	int retval;
506 
507 	retval = mutex_lock_interruptible(&dev->mutex);
508 	if (retval)
509 		return retval;
510 
511 	if (dev->going_away) {
512 		retval = -ENODEV;
513 		goto out;
514 	}
515 
516 	handle->open++;
517 
518 	if (!dev->users++ && dev->open)
519 		retval = dev->open(dev);
520 
521 	if (retval) {
522 		dev->users--;
523 		if (!--handle->open) {
524 			/*
525 			 * Make sure we are not delivering any more events
526 			 * through this handle
527 			 */
528 			synchronize_rcu();
529 		}
530 	}
531 
532  out:
533 	mutex_unlock(&dev->mutex);
534 	return retval;
535 }
536 EXPORT_SYMBOL(input_open_device);
537 
538 int input_flush_device(struct input_handle *handle, struct file *file)
539 {
540 	struct input_dev *dev = handle->dev;
541 	int retval;
542 
543 	retval = mutex_lock_interruptible(&dev->mutex);
544 	if (retval)
545 		return retval;
546 
547 	if (dev->flush)
548 		retval = dev->flush(dev, file);
549 
550 	mutex_unlock(&dev->mutex);
551 	return retval;
552 }
553 EXPORT_SYMBOL(input_flush_device);
554 
555 /**
556  * input_close_device - close input device
557  * @handle: handle through which device is being accessed
558  *
559  * This function should be called by input handlers when they
560  * want to stop receive events from given input device.
561  */
562 void input_close_device(struct input_handle *handle)
563 {
564 	struct input_dev *dev = handle->dev;
565 
566 	mutex_lock(&dev->mutex);
567 
568 	__input_release_device(handle);
569 
570 	if (!--dev->users && dev->close)
571 		dev->close(dev);
572 
573 	if (!--handle->open) {
574 		/*
575 		 * synchronize_rcu() makes sure that input_pass_event()
576 		 * completed and that no more input events are delivered
577 		 * through this handle
578 		 */
579 		synchronize_rcu();
580 	}
581 
582 	mutex_unlock(&dev->mutex);
583 }
584 EXPORT_SYMBOL(input_close_device);
585 
586 /*
587  * Simulate keyup events for all keys that are marked as pressed.
588  * The function must be called with dev->event_lock held.
589  */
590 static void input_dev_release_keys(struct input_dev *dev)
591 {
592 	int code;
593 
594 	if (is_event_supported(EV_KEY, dev->evbit, EV_MAX)) {
595 		for (code = 0; code <= KEY_MAX; code++) {
596 			if (is_event_supported(code, dev->keybit, KEY_MAX) &&
597 			    __test_and_clear_bit(code, dev->key)) {
598 				input_pass_event(dev, EV_KEY, code, 0);
599 			}
600 		}
601 		input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
602 	}
603 }
604 
605 /*
606  * Prepare device for unregistering
607  */
608 static void input_disconnect_device(struct input_dev *dev)
609 {
610 	struct input_handle *handle;
611 
612 	/*
613 	 * Mark device as going away. Note that we take dev->mutex here
614 	 * not to protect access to dev->going_away but rather to ensure
615 	 * that there are no threads in the middle of input_open_device()
616 	 */
617 	mutex_lock(&dev->mutex);
618 	dev->going_away = true;
619 	mutex_unlock(&dev->mutex);
620 
621 	spin_lock_irq(&dev->event_lock);
622 
623 	/*
624 	 * Simulate keyup events for all pressed keys so that handlers
625 	 * are not left with "stuck" keys. The driver may continue
626 	 * generate events even after we done here but they will not
627 	 * reach any handlers.
628 	 */
629 	input_dev_release_keys(dev);
630 
631 	list_for_each_entry(handle, &dev->h_list, d_node)
632 		handle->open = 0;
633 
634 	spin_unlock_irq(&dev->event_lock);
635 }
636 
637 static int input_fetch_keycode(struct input_dev *dev, int scancode)
638 {
639 	switch (dev->keycodesize) {
640 		case 1:
641 			return ((u8 *)dev->keycode)[scancode];
642 
643 		case 2:
644 			return ((u16 *)dev->keycode)[scancode];
645 
646 		default:
647 			return ((u32 *)dev->keycode)[scancode];
648 	}
649 }
650 
651 static int input_default_getkeycode(struct input_dev *dev,
652 				    unsigned int scancode,
653 				    unsigned int *keycode)
654 {
655 	if (!dev->keycodesize)
656 		return -EINVAL;
657 
658 	if (scancode >= dev->keycodemax)
659 		return -EINVAL;
660 
661 	*keycode = input_fetch_keycode(dev, scancode);
662 
663 	return 0;
664 }
665 
666 static int input_default_setkeycode(struct input_dev *dev,
667 				    unsigned int scancode,
668 				    unsigned int keycode)
669 {
670 	int old_keycode;
671 	int i;
672 
673 	if (scancode >= dev->keycodemax)
674 		return -EINVAL;
675 
676 	if (!dev->keycodesize)
677 		return -EINVAL;
678 
679 	if (dev->keycodesize < sizeof(keycode) && (keycode >> (dev->keycodesize * 8)))
680 		return -EINVAL;
681 
682 	switch (dev->keycodesize) {
683 		case 1: {
684 			u8 *k = (u8 *)dev->keycode;
685 			old_keycode = k[scancode];
686 			k[scancode] = keycode;
687 			break;
688 		}
689 		case 2: {
690 			u16 *k = (u16 *)dev->keycode;
691 			old_keycode = k[scancode];
692 			k[scancode] = keycode;
693 			break;
694 		}
695 		default: {
696 			u32 *k = (u32 *)dev->keycode;
697 			old_keycode = k[scancode];
698 			k[scancode] = keycode;
699 			break;
700 		}
701 	}
702 
703 	__clear_bit(old_keycode, dev->keybit);
704 	__set_bit(keycode, dev->keybit);
705 
706 	for (i = 0; i < dev->keycodemax; i++) {
707 		if (input_fetch_keycode(dev, i) == old_keycode) {
708 			__set_bit(old_keycode, dev->keybit);
709 			break; /* Setting the bit twice is useless, so break */
710 		}
711 	}
712 
713 	return 0;
714 }
715 
716 /**
717  * input_get_keycode - retrieve keycode currently mapped to a given scancode
718  * @dev: input device which keymap is being queried
719  * @scancode: scancode (or its equivalent for device in question) for which
720  *	keycode is needed
721  * @keycode: result
722  *
723  * This function should be called by anyone interested in retrieving current
724  * keymap. Presently keyboard and evdev handlers use it.
725  */
726 int input_get_keycode(struct input_dev *dev,
727 		      unsigned int scancode, unsigned int *keycode)
728 {
729 	unsigned long flags;
730 	int retval;
731 
732 	spin_lock_irqsave(&dev->event_lock, flags);
733 	retval = dev->getkeycode(dev, scancode, keycode);
734 	spin_unlock_irqrestore(&dev->event_lock, flags);
735 
736 	return retval;
737 }
738 EXPORT_SYMBOL(input_get_keycode);
739 
740 /**
741  * input_get_keycode - assign new keycode to a given scancode
742  * @dev: input device which keymap is being updated
743  * @scancode: scancode (or its equivalent for device in question)
744  * @keycode: new keycode to be assigned to the scancode
745  *
746  * This function should be called by anyone needing to update current
747  * keymap. Presently keyboard and evdev handlers use it.
748  */
749 int input_set_keycode(struct input_dev *dev,
750 		      unsigned int scancode, unsigned int keycode)
751 {
752 	unsigned long flags;
753 	unsigned int old_keycode;
754 	int retval;
755 
756 	if (keycode > KEY_MAX)
757 		return -EINVAL;
758 
759 	spin_lock_irqsave(&dev->event_lock, flags);
760 
761 	retval = dev->getkeycode(dev, scancode, &old_keycode);
762 	if (retval)
763 		goto out;
764 
765 	retval = dev->setkeycode(dev, scancode, keycode);
766 	if (retval)
767 		goto out;
768 
769 	/* Make sure KEY_RESERVED did not get enabled. */
770 	__clear_bit(KEY_RESERVED, dev->keybit);
771 
772 	/*
773 	 * Simulate keyup event if keycode is not present
774 	 * in the keymap anymore
775 	 */
776 	if (test_bit(EV_KEY, dev->evbit) &&
777 	    !is_event_supported(old_keycode, dev->keybit, KEY_MAX) &&
778 	    __test_and_clear_bit(old_keycode, dev->key)) {
779 
780 		input_pass_event(dev, EV_KEY, old_keycode, 0);
781 		if (dev->sync)
782 			input_pass_event(dev, EV_SYN, SYN_REPORT, 1);
783 	}
784 
785  out:
786 	spin_unlock_irqrestore(&dev->event_lock, flags);
787 
788 	return retval;
789 }
790 EXPORT_SYMBOL(input_set_keycode);
791 
792 #define MATCH_BIT(bit, max) \
793 		for (i = 0; i < BITS_TO_LONGS(max); i++) \
794 			if ((id->bit[i] & dev->bit[i]) != id->bit[i]) \
795 				break; \
796 		if (i != BITS_TO_LONGS(max)) \
797 			continue;
798 
799 static const struct input_device_id *input_match_device(struct input_handler *handler,
800 							struct input_dev *dev)
801 {
802 	const struct input_device_id *id;
803 	int i;
804 
805 	for (id = handler->id_table; id->flags || id->driver_info; id++) {
806 
807 		if (id->flags & INPUT_DEVICE_ID_MATCH_BUS)
808 			if (id->bustype != dev->id.bustype)
809 				continue;
810 
811 		if (id->flags & INPUT_DEVICE_ID_MATCH_VENDOR)
812 			if (id->vendor != dev->id.vendor)
813 				continue;
814 
815 		if (id->flags & INPUT_DEVICE_ID_MATCH_PRODUCT)
816 			if (id->product != dev->id.product)
817 				continue;
818 
819 		if (id->flags & INPUT_DEVICE_ID_MATCH_VERSION)
820 			if (id->version != dev->id.version)
821 				continue;
822 
823 		MATCH_BIT(evbit,  EV_MAX);
824 		MATCH_BIT(keybit, KEY_MAX);
825 		MATCH_BIT(relbit, REL_MAX);
826 		MATCH_BIT(absbit, ABS_MAX);
827 		MATCH_BIT(mscbit, MSC_MAX);
828 		MATCH_BIT(ledbit, LED_MAX);
829 		MATCH_BIT(sndbit, SND_MAX);
830 		MATCH_BIT(ffbit,  FF_MAX);
831 		MATCH_BIT(swbit,  SW_MAX);
832 
833 		if (!handler->match || handler->match(handler, dev))
834 			return id;
835 	}
836 
837 	return NULL;
838 }
839 
840 static int input_attach_handler(struct input_dev *dev, struct input_handler *handler)
841 {
842 	const struct input_device_id *id;
843 	int error;
844 
845 	id = input_match_device(handler, dev);
846 	if (!id)
847 		return -ENODEV;
848 
849 	error = handler->connect(handler, dev, id);
850 	if (error && error != -ENODEV)
851 		printk(KERN_ERR
852 			"input: failed to attach handler %s to device %s, "
853 			"error: %d\n",
854 			handler->name, kobject_name(&dev->dev.kobj), error);
855 
856 	return error;
857 }
858 
859 #ifdef CONFIG_COMPAT
860 
861 static int input_bits_to_string(char *buf, int buf_size,
862 				unsigned long bits, bool skip_empty)
863 {
864 	int len = 0;
865 
866 	if (INPUT_COMPAT_TEST) {
867 		u32 dword = bits >> 32;
868 		if (dword || !skip_empty)
869 			len += snprintf(buf, buf_size, "%x ", dword);
870 
871 		dword = bits & 0xffffffffUL;
872 		if (dword || !skip_empty || len)
873 			len += snprintf(buf + len, max(buf_size - len, 0),
874 					"%x", dword);
875 	} else {
876 		if (bits || !skip_empty)
877 			len += snprintf(buf, buf_size, "%lx", bits);
878 	}
879 
880 	return len;
881 }
882 
883 #else /* !CONFIG_COMPAT */
884 
885 static int input_bits_to_string(char *buf, int buf_size,
886 				unsigned long bits, bool skip_empty)
887 {
888 	return bits || !skip_empty ?
889 		snprintf(buf, buf_size, "%lx", bits) : 0;
890 }
891 
892 #endif
893 
894 #ifdef CONFIG_PROC_FS
895 
896 static struct proc_dir_entry *proc_bus_input_dir;
897 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait);
898 static int input_devices_state;
899 
900 static inline void input_wakeup_procfs_readers(void)
901 {
902 	input_devices_state++;
903 	wake_up(&input_devices_poll_wait);
904 }
905 
906 static unsigned int input_proc_devices_poll(struct file *file, poll_table *wait)
907 {
908 	poll_wait(file, &input_devices_poll_wait, wait);
909 	if (file->f_version != input_devices_state) {
910 		file->f_version = input_devices_state;
911 		return POLLIN | POLLRDNORM;
912 	}
913 
914 	return 0;
915 }
916 
917 union input_seq_state {
918 	struct {
919 		unsigned short pos;
920 		bool mutex_acquired;
921 	};
922 	void *p;
923 };
924 
925 static void *input_devices_seq_start(struct seq_file *seq, loff_t *pos)
926 {
927 	union input_seq_state *state = (union input_seq_state *)&seq->private;
928 	int error;
929 
930 	/* We need to fit into seq->private pointer */
931 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
932 
933 	error = mutex_lock_interruptible(&input_mutex);
934 	if (error) {
935 		state->mutex_acquired = false;
936 		return ERR_PTR(error);
937 	}
938 
939 	state->mutex_acquired = true;
940 
941 	return seq_list_start(&input_dev_list, *pos);
942 }
943 
944 static void *input_devices_seq_next(struct seq_file *seq, void *v, loff_t *pos)
945 {
946 	return seq_list_next(v, &input_dev_list, pos);
947 }
948 
949 static void input_seq_stop(struct seq_file *seq, void *v)
950 {
951 	union input_seq_state *state = (union input_seq_state *)&seq->private;
952 
953 	if (state->mutex_acquired)
954 		mutex_unlock(&input_mutex);
955 }
956 
957 static void input_seq_print_bitmap(struct seq_file *seq, const char *name,
958 				   unsigned long *bitmap, int max)
959 {
960 	int i;
961 	bool skip_empty = true;
962 	char buf[18];
963 
964 	seq_printf(seq, "B: %s=", name);
965 
966 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
967 		if (input_bits_to_string(buf, sizeof(buf),
968 					 bitmap[i], skip_empty)) {
969 			skip_empty = false;
970 			seq_printf(seq, "%s%s", buf, i > 0 ? " " : "");
971 		}
972 	}
973 
974 	/*
975 	 * If no output was produced print a single 0.
976 	 */
977 	if (skip_empty)
978 		seq_puts(seq, "0");
979 
980 	seq_putc(seq, '\n');
981 }
982 
983 static int input_devices_seq_show(struct seq_file *seq, void *v)
984 {
985 	struct input_dev *dev = container_of(v, struct input_dev, node);
986 	const char *path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
987 	struct input_handle *handle;
988 
989 	seq_printf(seq, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
990 		   dev->id.bustype, dev->id.vendor, dev->id.product, dev->id.version);
991 
992 	seq_printf(seq, "N: Name=\"%s\"\n", dev->name ? dev->name : "");
993 	seq_printf(seq, "P: Phys=%s\n", dev->phys ? dev->phys : "");
994 	seq_printf(seq, "S: Sysfs=%s\n", path ? path : "");
995 	seq_printf(seq, "U: Uniq=%s\n", dev->uniq ? dev->uniq : "");
996 	seq_printf(seq, "H: Handlers=");
997 
998 	list_for_each_entry(handle, &dev->h_list, d_node)
999 		seq_printf(seq, "%s ", handle->name);
1000 	seq_putc(seq, '\n');
1001 
1002 	input_seq_print_bitmap(seq, "EV", dev->evbit, EV_MAX);
1003 	if (test_bit(EV_KEY, dev->evbit))
1004 		input_seq_print_bitmap(seq, "KEY", dev->keybit, KEY_MAX);
1005 	if (test_bit(EV_REL, dev->evbit))
1006 		input_seq_print_bitmap(seq, "REL", dev->relbit, REL_MAX);
1007 	if (test_bit(EV_ABS, dev->evbit))
1008 		input_seq_print_bitmap(seq, "ABS", dev->absbit, ABS_MAX);
1009 	if (test_bit(EV_MSC, dev->evbit))
1010 		input_seq_print_bitmap(seq, "MSC", dev->mscbit, MSC_MAX);
1011 	if (test_bit(EV_LED, dev->evbit))
1012 		input_seq_print_bitmap(seq, "LED", dev->ledbit, LED_MAX);
1013 	if (test_bit(EV_SND, dev->evbit))
1014 		input_seq_print_bitmap(seq, "SND", dev->sndbit, SND_MAX);
1015 	if (test_bit(EV_FF, dev->evbit))
1016 		input_seq_print_bitmap(seq, "FF", dev->ffbit, FF_MAX);
1017 	if (test_bit(EV_SW, dev->evbit))
1018 		input_seq_print_bitmap(seq, "SW", dev->swbit, SW_MAX);
1019 
1020 	seq_putc(seq, '\n');
1021 
1022 	kfree(path);
1023 	return 0;
1024 }
1025 
1026 static const struct seq_operations input_devices_seq_ops = {
1027 	.start	= input_devices_seq_start,
1028 	.next	= input_devices_seq_next,
1029 	.stop	= input_seq_stop,
1030 	.show	= input_devices_seq_show,
1031 };
1032 
1033 static int input_proc_devices_open(struct inode *inode, struct file *file)
1034 {
1035 	return seq_open(file, &input_devices_seq_ops);
1036 }
1037 
1038 static const struct file_operations input_devices_fileops = {
1039 	.owner		= THIS_MODULE,
1040 	.open		= input_proc_devices_open,
1041 	.poll		= input_proc_devices_poll,
1042 	.read		= seq_read,
1043 	.llseek		= seq_lseek,
1044 	.release	= seq_release,
1045 };
1046 
1047 static void *input_handlers_seq_start(struct seq_file *seq, loff_t *pos)
1048 {
1049 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1050 	int error;
1051 
1052 	/* We need to fit into seq->private pointer */
1053 	BUILD_BUG_ON(sizeof(union input_seq_state) != sizeof(seq->private));
1054 
1055 	error = mutex_lock_interruptible(&input_mutex);
1056 	if (error) {
1057 		state->mutex_acquired = false;
1058 		return ERR_PTR(error);
1059 	}
1060 
1061 	state->mutex_acquired = true;
1062 	state->pos = *pos;
1063 
1064 	return seq_list_start(&input_handler_list, *pos);
1065 }
1066 
1067 static void *input_handlers_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1068 {
1069 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1070 
1071 	state->pos = *pos + 1;
1072 	return seq_list_next(v, &input_handler_list, pos);
1073 }
1074 
1075 static int input_handlers_seq_show(struct seq_file *seq, void *v)
1076 {
1077 	struct input_handler *handler = container_of(v, struct input_handler, node);
1078 	union input_seq_state *state = (union input_seq_state *)&seq->private;
1079 
1080 	seq_printf(seq, "N: Number=%u Name=%s", state->pos, handler->name);
1081 	if (handler->filter)
1082 		seq_puts(seq, " (filter)");
1083 	if (handler->fops)
1084 		seq_printf(seq, " Minor=%d", handler->minor);
1085 	seq_putc(seq, '\n');
1086 
1087 	return 0;
1088 }
1089 
1090 static const struct seq_operations input_handlers_seq_ops = {
1091 	.start	= input_handlers_seq_start,
1092 	.next	= input_handlers_seq_next,
1093 	.stop	= input_seq_stop,
1094 	.show	= input_handlers_seq_show,
1095 };
1096 
1097 static int input_proc_handlers_open(struct inode *inode, struct file *file)
1098 {
1099 	return seq_open(file, &input_handlers_seq_ops);
1100 }
1101 
1102 static const struct file_operations input_handlers_fileops = {
1103 	.owner		= THIS_MODULE,
1104 	.open		= input_proc_handlers_open,
1105 	.read		= seq_read,
1106 	.llseek		= seq_lseek,
1107 	.release	= seq_release,
1108 };
1109 
1110 static int __init input_proc_init(void)
1111 {
1112 	struct proc_dir_entry *entry;
1113 
1114 	proc_bus_input_dir = proc_mkdir("bus/input", NULL);
1115 	if (!proc_bus_input_dir)
1116 		return -ENOMEM;
1117 
1118 	entry = proc_create("devices", 0, proc_bus_input_dir,
1119 			    &input_devices_fileops);
1120 	if (!entry)
1121 		goto fail1;
1122 
1123 	entry = proc_create("handlers", 0, proc_bus_input_dir,
1124 			    &input_handlers_fileops);
1125 	if (!entry)
1126 		goto fail2;
1127 
1128 	return 0;
1129 
1130  fail2:	remove_proc_entry("devices", proc_bus_input_dir);
1131  fail1: remove_proc_entry("bus/input", NULL);
1132 	return -ENOMEM;
1133 }
1134 
1135 static void input_proc_exit(void)
1136 {
1137 	remove_proc_entry("devices", proc_bus_input_dir);
1138 	remove_proc_entry("handlers", proc_bus_input_dir);
1139 	remove_proc_entry("bus/input", NULL);
1140 }
1141 
1142 #else /* !CONFIG_PROC_FS */
1143 static inline void input_wakeup_procfs_readers(void) { }
1144 static inline int input_proc_init(void) { return 0; }
1145 static inline void input_proc_exit(void) { }
1146 #endif
1147 
1148 #define INPUT_DEV_STRING_ATTR_SHOW(name)				\
1149 static ssize_t input_dev_show_##name(struct device *dev,		\
1150 				     struct device_attribute *attr,	\
1151 				     char *buf)				\
1152 {									\
1153 	struct input_dev *input_dev = to_input_dev(dev);		\
1154 									\
1155 	return scnprintf(buf, PAGE_SIZE, "%s\n",			\
1156 			 input_dev->name ? input_dev->name : "");	\
1157 }									\
1158 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1159 
1160 INPUT_DEV_STRING_ATTR_SHOW(name);
1161 INPUT_DEV_STRING_ATTR_SHOW(phys);
1162 INPUT_DEV_STRING_ATTR_SHOW(uniq);
1163 
1164 static int input_print_modalias_bits(char *buf, int size,
1165 				     char name, unsigned long *bm,
1166 				     unsigned int min_bit, unsigned int max_bit)
1167 {
1168 	int len = 0, i;
1169 
1170 	len += snprintf(buf, max(size, 0), "%c", name);
1171 	for (i = min_bit; i < max_bit; i++)
1172 		if (bm[BIT_WORD(i)] & BIT_MASK(i))
1173 			len += snprintf(buf + len, max(size - len, 0), "%X,", i);
1174 	return len;
1175 }
1176 
1177 static int input_print_modalias(char *buf, int size, struct input_dev *id,
1178 				int add_cr)
1179 {
1180 	int len;
1181 
1182 	len = snprintf(buf, max(size, 0),
1183 		       "input:b%04Xv%04Xp%04Xe%04X-",
1184 		       id->id.bustype, id->id.vendor,
1185 		       id->id.product, id->id.version);
1186 
1187 	len += input_print_modalias_bits(buf + len, size - len,
1188 				'e', id->evbit, 0, EV_MAX);
1189 	len += input_print_modalias_bits(buf + len, size - len,
1190 				'k', id->keybit, KEY_MIN_INTERESTING, KEY_MAX);
1191 	len += input_print_modalias_bits(buf + len, size - len,
1192 				'r', id->relbit, 0, REL_MAX);
1193 	len += input_print_modalias_bits(buf + len, size - len,
1194 				'a', id->absbit, 0, ABS_MAX);
1195 	len += input_print_modalias_bits(buf + len, size - len,
1196 				'm', id->mscbit, 0, MSC_MAX);
1197 	len += input_print_modalias_bits(buf + len, size - len,
1198 				'l', id->ledbit, 0, LED_MAX);
1199 	len += input_print_modalias_bits(buf + len, size - len,
1200 				's', id->sndbit, 0, SND_MAX);
1201 	len += input_print_modalias_bits(buf + len, size - len,
1202 				'f', id->ffbit, 0, FF_MAX);
1203 	len += input_print_modalias_bits(buf + len, size - len,
1204 				'w', id->swbit, 0, SW_MAX);
1205 
1206 	if (add_cr)
1207 		len += snprintf(buf + len, max(size - len, 0), "\n");
1208 
1209 	return len;
1210 }
1211 
1212 static ssize_t input_dev_show_modalias(struct device *dev,
1213 				       struct device_attribute *attr,
1214 				       char *buf)
1215 {
1216 	struct input_dev *id = to_input_dev(dev);
1217 	ssize_t len;
1218 
1219 	len = input_print_modalias(buf, PAGE_SIZE, id, 1);
1220 
1221 	return min_t(int, len, PAGE_SIZE);
1222 }
1223 static DEVICE_ATTR(modalias, S_IRUGO, input_dev_show_modalias, NULL);
1224 
1225 static struct attribute *input_dev_attrs[] = {
1226 	&dev_attr_name.attr,
1227 	&dev_attr_phys.attr,
1228 	&dev_attr_uniq.attr,
1229 	&dev_attr_modalias.attr,
1230 	NULL
1231 };
1232 
1233 static struct attribute_group input_dev_attr_group = {
1234 	.attrs	= input_dev_attrs,
1235 };
1236 
1237 #define INPUT_DEV_ID_ATTR(name)						\
1238 static ssize_t input_dev_show_id_##name(struct device *dev,		\
1239 					struct device_attribute *attr,	\
1240 					char *buf)			\
1241 {									\
1242 	struct input_dev *input_dev = to_input_dev(dev);		\
1243 	return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name);	\
1244 }									\
1245 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1246 
1247 INPUT_DEV_ID_ATTR(bustype);
1248 INPUT_DEV_ID_ATTR(vendor);
1249 INPUT_DEV_ID_ATTR(product);
1250 INPUT_DEV_ID_ATTR(version);
1251 
1252 static struct attribute *input_dev_id_attrs[] = {
1253 	&dev_attr_bustype.attr,
1254 	&dev_attr_vendor.attr,
1255 	&dev_attr_product.attr,
1256 	&dev_attr_version.attr,
1257 	NULL
1258 };
1259 
1260 static struct attribute_group input_dev_id_attr_group = {
1261 	.name	= "id",
1262 	.attrs	= input_dev_id_attrs,
1263 };
1264 
1265 static int input_print_bitmap(char *buf, int buf_size, unsigned long *bitmap,
1266 			      int max, int add_cr)
1267 {
1268 	int i;
1269 	int len = 0;
1270 	bool skip_empty = true;
1271 
1272 	for (i = BITS_TO_LONGS(max) - 1; i >= 0; i--) {
1273 		len += input_bits_to_string(buf + len, max(buf_size - len, 0),
1274 					    bitmap[i], skip_empty);
1275 		if (len) {
1276 			skip_empty = false;
1277 			if (i > 0)
1278 				len += snprintf(buf + len, max(buf_size - len, 0), " ");
1279 		}
1280 	}
1281 
1282 	/*
1283 	 * If no output was produced print a single 0.
1284 	 */
1285 	if (len == 0)
1286 		len = snprintf(buf, buf_size, "%d", 0);
1287 
1288 	if (add_cr)
1289 		len += snprintf(buf + len, max(buf_size - len, 0), "\n");
1290 
1291 	return len;
1292 }
1293 
1294 #define INPUT_DEV_CAP_ATTR(ev, bm)					\
1295 static ssize_t input_dev_show_cap_##bm(struct device *dev,		\
1296 				       struct device_attribute *attr,	\
1297 				       char *buf)			\
1298 {									\
1299 	struct input_dev *input_dev = to_input_dev(dev);		\
1300 	int len = input_print_bitmap(buf, PAGE_SIZE,			\
1301 				     input_dev->bm##bit, ev##_MAX,	\
1302 				     true);				\
1303 	return min_t(int, len, PAGE_SIZE);				\
1304 }									\
1305 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1306 
1307 INPUT_DEV_CAP_ATTR(EV, ev);
1308 INPUT_DEV_CAP_ATTR(KEY, key);
1309 INPUT_DEV_CAP_ATTR(REL, rel);
1310 INPUT_DEV_CAP_ATTR(ABS, abs);
1311 INPUT_DEV_CAP_ATTR(MSC, msc);
1312 INPUT_DEV_CAP_ATTR(LED, led);
1313 INPUT_DEV_CAP_ATTR(SND, snd);
1314 INPUT_DEV_CAP_ATTR(FF, ff);
1315 INPUT_DEV_CAP_ATTR(SW, sw);
1316 
1317 static struct attribute *input_dev_caps_attrs[] = {
1318 	&dev_attr_ev.attr,
1319 	&dev_attr_key.attr,
1320 	&dev_attr_rel.attr,
1321 	&dev_attr_abs.attr,
1322 	&dev_attr_msc.attr,
1323 	&dev_attr_led.attr,
1324 	&dev_attr_snd.attr,
1325 	&dev_attr_ff.attr,
1326 	&dev_attr_sw.attr,
1327 	NULL
1328 };
1329 
1330 static struct attribute_group input_dev_caps_attr_group = {
1331 	.name	= "capabilities",
1332 	.attrs	= input_dev_caps_attrs,
1333 };
1334 
1335 static const struct attribute_group *input_dev_attr_groups[] = {
1336 	&input_dev_attr_group,
1337 	&input_dev_id_attr_group,
1338 	&input_dev_caps_attr_group,
1339 	NULL
1340 };
1341 
1342 static void input_dev_release(struct device *device)
1343 {
1344 	struct input_dev *dev = to_input_dev(device);
1345 
1346 	input_ff_destroy(dev);
1347 	input_mt_destroy_slots(dev);
1348 	kfree(dev->absinfo);
1349 	kfree(dev);
1350 
1351 	module_put(THIS_MODULE);
1352 }
1353 
1354 /*
1355  * Input uevent interface - loading event handlers based on
1356  * device bitfields.
1357  */
1358 static int input_add_uevent_bm_var(struct kobj_uevent_env *env,
1359 				   const char *name, unsigned long *bitmap, int max)
1360 {
1361 	int len;
1362 
1363 	if (add_uevent_var(env, "%s=", name))
1364 		return -ENOMEM;
1365 
1366 	len = input_print_bitmap(&env->buf[env->buflen - 1],
1367 				 sizeof(env->buf) - env->buflen,
1368 				 bitmap, max, false);
1369 	if (len >= (sizeof(env->buf) - env->buflen))
1370 		return -ENOMEM;
1371 
1372 	env->buflen += len;
1373 	return 0;
1374 }
1375 
1376 static int input_add_uevent_modalias_var(struct kobj_uevent_env *env,
1377 					 struct input_dev *dev)
1378 {
1379 	int len;
1380 
1381 	if (add_uevent_var(env, "MODALIAS="))
1382 		return -ENOMEM;
1383 
1384 	len = input_print_modalias(&env->buf[env->buflen - 1],
1385 				   sizeof(env->buf) - env->buflen,
1386 				   dev, 0);
1387 	if (len >= (sizeof(env->buf) - env->buflen))
1388 		return -ENOMEM;
1389 
1390 	env->buflen += len;
1391 	return 0;
1392 }
1393 
1394 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...)				\
1395 	do {								\
1396 		int err = add_uevent_var(env, fmt, val);		\
1397 		if (err)						\
1398 			return err;					\
1399 	} while (0)
1400 
1401 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max)				\
1402 	do {								\
1403 		int err = input_add_uevent_bm_var(env, name, bm, max);	\
1404 		if (err)						\
1405 			return err;					\
1406 	} while (0)
1407 
1408 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev)				\
1409 	do {								\
1410 		int err = input_add_uevent_modalias_var(env, dev);	\
1411 		if (err)						\
1412 			return err;					\
1413 	} while (0)
1414 
1415 static int input_dev_uevent(struct device *device, struct kobj_uevent_env *env)
1416 {
1417 	struct input_dev *dev = to_input_dev(device);
1418 
1419 	INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1420 				dev->id.bustype, dev->id.vendor,
1421 				dev->id.product, dev->id.version);
1422 	if (dev->name)
1423 		INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev->name);
1424 	if (dev->phys)
1425 		INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev->phys);
1426 	if (dev->uniq)
1427 		INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev->uniq);
1428 
1429 	INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev->evbit, EV_MAX);
1430 	if (test_bit(EV_KEY, dev->evbit))
1431 		INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev->keybit, KEY_MAX);
1432 	if (test_bit(EV_REL, dev->evbit))
1433 		INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev->relbit, REL_MAX);
1434 	if (test_bit(EV_ABS, dev->evbit))
1435 		INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev->absbit, ABS_MAX);
1436 	if (test_bit(EV_MSC, dev->evbit))
1437 		INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev->mscbit, MSC_MAX);
1438 	if (test_bit(EV_LED, dev->evbit))
1439 		INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev->ledbit, LED_MAX);
1440 	if (test_bit(EV_SND, dev->evbit))
1441 		INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev->sndbit, SND_MAX);
1442 	if (test_bit(EV_FF, dev->evbit))
1443 		INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev->ffbit, FF_MAX);
1444 	if (test_bit(EV_SW, dev->evbit))
1445 		INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev->swbit, SW_MAX);
1446 
1447 	INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev);
1448 
1449 	return 0;
1450 }
1451 
1452 #define INPUT_DO_TOGGLE(dev, type, bits, on)				\
1453 	do {								\
1454 		int i;							\
1455 		bool active;						\
1456 									\
1457 		if (!test_bit(EV_##type, dev->evbit))			\
1458 			break;						\
1459 									\
1460 		for (i = 0; i < type##_MAX; i++) {			\
1461 			if (!test_bit(i, dev->bits##bit))		\
1462 				continue;				\
1463 									\
1464 			active = test_bit(i, dev->bits);		\
1465 			if (!active && !on)				\
1466 				continue;				\
1467 									\
1468 			dev->event(dev, EV_##type, i, on ? active : 0);	\
1469 		}							\
1470 	} while (0)
1471 
1472 #ifdef CONFIG_PM
1473 static void input_dev_reset(struct input_dev *dev, bool activate)
1474 {
1475 	if (!dev->event)
1476 		return;
1477 
1478 	INPUT_DO_TOGGLE(dev, LED, led, activate);
1479 	INPUT_DO_TOGGLE(dev, SND, snd, activate);
1480 
1481 	if (activate && test_bit(EV_REP, dev->evbit)) {
1482 		dev->event(dev, EV_REP, REP_PERIOD, dev->rep[REP_PERIOD]);
1483 		dev->event(dev, EV_REP, REP_DELAY, dev->rep[REP_DELAY]);
1484 	}
1485 }
1486 
1487 static int input_dev_suspend(struct device *dev)
1488 {
1489 	struct input_dev *input_dev = to_input_dev(dev);
1490 
1491 	mutex_lock(&input_dev->mutex);
1492 	input_dev_reset(input_dev, false);
1493 	mutex_unlock(&input_dev->mutex);
1494 
1495 	return 0;
1496 }
1497 
1498 static int input_dev_resume(struct device *dev)
1499 {
1500 	struct input_dev *input_dev = to_input_dev(dev);
1501 
1502 	mutex_lock(&input_dev->mutex);
1503 	input_dev_reset(input_dev, true);
1504 
1505 	/*
1506 	 * Keys that have been pressed at suspend time are unlikely
1507 	 * to be still pressed when we resume.
1508 	 */
1509 	spin_lock_irq(&input_dev->event_lock);
1510 	input_dev_release_keys(input_dev);
1511 	spin_unlock_irq(&input_dev->event_lock);
1512 
1513 	mutex_unlock(&input_dev->mutex);
1514 
1515 	return 0;
1516 }
1517 
1518 static const struct dev_pm_ops input_dev_pm_ops = {
1519 	.suspend	= input_dev_suspend,
1520 	.resume		= input_dev_resume,
1521 	.poweroff	= input_dev_suspend,
1522 	.restore	= input_dev_resume,
1523 };
1524 #endif /* CONFIG_PM */
1525 
1526 static struct device_type input_dev_type = {
1527 	.groups		= input_dev_attr_groups,
1528 	.release	= input_dev_release,
1529 	.uevent		= input_dev_uevent,
1530 #ifdef CONFIG_PM
1531 	.pm		= &input_dev_pm_ops,
1532 #endif
1533 };
1534 
1535 static char *input_devnode(struct device *dev, mode_t *mode)
1536 {
1537 	return kasprintf(GFP_KERNEL, "input/%s", dev_name(dev));
1538 }
1539 
1540 struct class input_class = {
1541 	.name		= "input",
1542 	.devnode	= input_devnode,
1543 };
1544 EXPORT_SYMBOL_GPL(input_class);
1545 
1546 /**
1547  * input_allocate_device - allocate memory for new input device
1548  *
1549  * Returns prepared struct input_dev or NULL.
1550  *
1551  * NOTE: Use input_free_device() to free devices that have not been
1552  * registered; input_unregister_device() should be used for already
1553  * registered devices.
1554  */
1555 struct input_dev *input_allocate_device(void)
1556 {
1557 	struct input_dev *dev;
1558 
1559 	dev = kzalloc(sizeof(struct input_dev), GFP_KERNEL);
1560 	if (dev) {
1561 		dev->dev.type = &input_dev_type;
1562 		dev->dev.class = &input_class;
1563 		device_initialize(&dev->dev);
1564 		mutex_init(&dev->mutex);
1565 		spin_lock_init(&dev->event_lock);
1566 		INIT_LIST_HEAD(&dev->h_list);
1567 		INIT_LIST_HEAD(&dev->node);
1568 
1569 		__module_get(THIS_MODULE);
1570 	}
1571 
1572 	return dev;
1573 }
1574 EXPORT_SYMBOL(input_allocate_device);
1575 
1576 /**
1577  * input_free_device - free memory occupied by input_dev structure
1578  * @dev: input device to free
1579  *
1580  * This function should only be used if input_register_device()
1581  * was not called yet or if it failed. Once device was registered
1582  * use input_unregister_device() and memory will be freed once last
1583  * reference to the device is dropped.
1584  *
1585  * Device should be allocated by input_allocate_device().
1586  *
1587  * NOTE: If there are references to the input device then memory
1588  * will not be freed until last reference is dropped.
1589  */
1590 void input_free_device(struct input_dev *dev)
1591 {
1592 	if (dev)
1593 		input_put_device(dev);
1594 }
1595 EXPORT_SYMBOL(input_free_device);
1596 
1597 /**
1598  * input_mt_create_slots() - create MT input slots
1599  * @dev: input device supporting MT events and finger tracking
1600  * @num_slots: number of slots used by the device
1601  *
1602  * This function allocates all necessary memory for MT slot handling in the
1603  * input device, and adds ABS_MT_SLOT to the device capabilities. All slots
1604  * are initially marked as unused iby setting ABS_MT_TRACKING_ID to -1.
1605  */
1606 int input_mt_create_slots(struct input_dev *dev, unsigned int num_slots)
1607 {
1608 	int i;
1609 
1610 	if (!num_slots)
1611 		return 0;
1612 
1613 	dev->mt = kcalloc(num_slots, sizeof(struct input_mt_slot), GFP_KERNEL);
1614 	if (!dev->mt)
1615 		return -ENOMEM;
1616 
1617 	dev->mtsize = num_slots;
1618 	input_set_abs_params(dev, ABS_MT_SLOT, 0, num_slots - 1, 0, 0);
1619 
1620 	/* Mark slots as 'unused' */
1621 	for (i = 0; i < num_slots; i++)
1622 		dev->mt[i].abs[ABS_MT_TRACKING_ID - ABS_MT_FIRST] = -1;
1623 
1624 	return 0;
1625 }
1626 EXPORT_SYMBOL(input_mt_create_slots);
1627 
1628 /**
1629  * input_mt_destroy_slots() - frees the MT slots of the input device
1630  * @dev: input device with allocated MT slots
1631  *
1632  * This function is only needed in error path as the input core will
1633  * automatically free the MT slots when the device is destroyed.
1634  */
1635 void input_mt_destroy_slots(struct input_dev *dev)
1636 {
1637 	kfree(dev->mt);
1638 	dev->mt = NULL;
1639 	dev->mtsize = 0;
1640 }
1641 EXPORT_SYMBOL(input_mt_destroy_slots);
1642 
1643 /**
1644  * input_set_capability - mark device as capable of a certain event
1645  * @dev: device that is capable of emitting or accepting event
1646  * @type: type of the event (EV_KEY, EV_REL, etc...)
1647  * @code: event code
1648  *
1649  * In addition to setting up corresponding bit in appropriate capability
1650  * bitmap the function also adjusts dev->evbit.
1651  */
1652 void input_set_capability(struct input_dev *dev, unsigned int type, unsigned int code)
1653 {
1654 	switch (type) {
1655 	case EV_KEY:
1656 		__set_bit(code, dev->keybit);
1657 		break;
1658 
1659 	case EV_REL:
1660 		__set_bit(code, dev->relbit);
1661 		break;
1662 
1663 	case EV_ABS:
1664 		__set_bit(code, dev->absbit);
1665 		break;
1666 
1667 	case EV_MSC:
1668 		__set_bit(code, dev->mscbit);
1669 		break;
1670 
1671 	case EV_SW:
1672 		__set_bit(code, dev->swbit);
1673 		break;
1674 
1675 	case EV_LED:
1676 		__set_bit(code, dev->ledbit);
1677 		break;
1678 
1679 	case EV_SND:
1680 		__set_bit(code, dev->sndbit);
1681 		break;
1682 
1683 	case EV_FF:
1684 		__set_bit(code, dev->ffbit);
1685 		break;
1686 
1687 	case EV_PWR:
1688 		/* do nothing */
1689 		break;
1690 
1691 	default:
1692 		printk(KERN_ERR
1693 			"input_set_capability: unknown type %u (code %u)\n",
1694 			type, code);
1695 		dump_stack();
1696 		return;
1697 	}
1698 
1699 	__set_bit(type, dev->evbit);
1700 }
1701 EXPORT_SYMBOL(input_set_capability);
1702 
1703 #define INPUT_CLEANSE_BITMASK(dev, type, bits)				\
1704 	do {								\
1705 		if (!test_bit(EV_##type, dev->evbit))			\
1706 			memset(dev->bits##bit, 0,			\
1707 				sizeof(dev->bits##bit));		\
1708 	} while (0)
1709 
1710 static void input_cleanse_bitmasks(struct input_dev *dev)
1711 {
1712 	INPUT_CLEANSE_BITMASK(dev, KEY, key);
1713 	INPUT_CLEANSE_BITMASK(dev, REL, rel);
1714 	INPUT_CLEANSE_BITMASK(dev, ABS, abs);
1715 	INPUT_CLEANSE_BITMASK(dev, MSC, msc);
1716 	INPUT_CLEANSE_BITMASK(dev, LED, led);
1717 	INPUT_CLEANSE_BITMASK(dev, SND, snd);
1718 	INPUT_CLEANSE_BITMASK(dev, FF, ff);
1719 	INPUT_CLEANSE_BITMASK(dev, SW, sw);
1720 }
1721 
1722 /**
1723  * input_register_device - register device with input core
1724  * @dev: device to be registered
1725  *
1726  * This function registers device with input core. The device must be
1727  * allocated with input_allocate_device() and all it's capabilities
1728  * set up before registering.
1729  * If function fails the device must be freed with input_free_device().
1730  * Once device has been successfully registered it can be unregistered
1731  * with input_unregister_device(); input_free_device() should not be
1732  * called in this case.
1733  */
1734 int input_register_device(struct input_dev *dev)
1735 {
1736 	static atomic_t input_no = ATOMIC_INIT(0);
1737 	struct input_handler *handler;
1738 	const char *path;
1739 	int error;
1740 
1741 	/* Every input device generates EV_SYN/SYN_REPORT events. */
1742 	__set_bit(EV_SYN, dev->evbit);
1743 
1744 	/* KEY_RESERVED is not supposed to be transmitted to userspace. */
1745 	__clear_bit(KEY_RESERVED, dev->keybit);
1746 
1747 	/* Make sure that bitmasks not mentioned in dev->evbit are clean. */
1748 	input_cleanse_bitmasks(dev);
1749 
1750 	/*
1751 	 * If delay and period are pre-set by the driver, then autorepeating
1752 	 * is handled by the driver itself and we don't do it in input.c.
1753 	 */
1754 	init_timer(&dev->timer);
1755 	if (!dev->rep[REP_DELAY] && !dev->rep[REP_PERIOD]) {
1756 		dev->timer.data = (long) dev;
1757 		dev->timer.function = input_repeat_key;
1758 		dev->rep[REP_DELAY] = 250;
1759 		dev->rep[REP_PERIOD] = 33;
1760 	}
1761 
1762 	if (!dev->getkeycode)
1763 		dev->getkeycode = input_default_getkeycode;
1764 
1765 	if (!dev->setkeycode)
1766 		dev->setkeycode = input_default_setkeycode;
1767 
1768 	dev_set_name(&dev->dev, "input%ld",
1769 		     (unsigned long) atomic_inc_return(&input_no) - 1);
1770 
1771 	error = device_add(&dev->dev);
1772 	if (error)
1773 		return error;
1774 
1775 	path = kobject_get_path(&dev->dev.kobj, GFP_KERNEL);
1776 	printk(KERN_INFO "input: %s as %s\n",
1777 		dev->name ? dev->name : "Unspecified device", path ? path : "N/A");
1778 	kfree(path);
1779 
1780 	error = mutex_lock_interruptible(&input_mutex);
1781 	if (error) {
1782 		device_del(&dev->dev);
1783 		return error;
1784 	}
1785 
1786 	list_add_tail(&dev->node, &input_dev_list);
1787 
1788 	list_for_each_entry(handler, &input_handler_list, node)
1789 		input_attach_handler(dev, handler);
1790 
1791 	input_wakeup_procfs_readers();
1792 
1793 	mutex_unlock(&input_mutex);
1794 
1795 	return 0;
1796 }
1797 EXPORT_SYMBOL(input_register_device);
1798 
1799 /**
1800  * input_unregister_device - unregister previously registered device
1801  * @dev: device to be unregistered
1802  *
1803  * This function unregisters an input device. Once device is unregistered
1804  * the caller should not try to access it as it may get freed at any moment.
1805  */
1806 void input_unregister_device(struct input_dev *dev)
1807 {
1808 	struct input_handle *handle, *next;
1809 
1810 	input_disconnect_device(dev);
1811 
1812 	mutex_lock(&input_mutex);
1813 
1814 	list_for_each_entry_safe(handle, next, &dev->h_list, d_node)
1815 		handle->handler->disconnect(handle);
1816 	WARN_ON(!list_empty(&dev->h_list));
1817 
1818 	del_timer_sync(&dev->timer);
1819 	list_del_init(&dev->node);
1820 
1821 	input_wakeup_procfs_readers();
1822 
1823 	mutex_unlock(&input_mutex);
1824 
1825 	device_unregister(&dev->dev);
1826 }
1827 EXPORT_SYMBOL(input_unregister_device);
1828 
1829 /**
1830  * input_register_handler - register a new input handler
1831  * @handler: handler to be registered
1832  *
1833  * This function registers a new input handler (interface) for input
1834  * devices in the system and attaches it to all input devices that
1835  * are compatible with the handler.
1836  */
1837 int input_register_handler(struct input_handler *handler)
1838 {
1839 	struct input_dev *dev;
1840 	int retval;
1841 
1842 	retval = mutex_lock_interruptible(&input_mutex);
1843 	if (retval)
1844 		return retval;
1845 
1846 	INIT_LIST_HEAD(&handler->h_list);
1847 
1848 	if (handler->fops != NULL) {
1849 		if (input_table[handler->minor >> 5]) {
1850 			retval = -EBUSY;
1851 			goto out;
1852 		}
1853 		input_table[handler->minor >> 5] = handler;
1854 	}
1855 
1856 	list_add_tail(&handler->node, &input_handler_list);
1857 
1858 	list_for_each_entry(dev, &input_dev_list, node)
1859 		input_attach_handler(dev, handler);
1860 
1861 	input_wakeup_procfs_readers();
1862 
1863  out:
1864 	mutex_unlock(&input_mutex);
1865 	return retval;
1866 }
1867 EXPORT_SYMBOL(input_register_handler);
1868 
1869 /**
1870  * input_unregister_handler - unregisters an input handler
1871  * @handler: handler to be unregistered
1872  *
1873  * This function disconnects a handler from its input devices and
1874  * removes it from lists of known handlers.
1875  */
1876 void input_unregister_handler(struct input_handler *handler)
1877 {
1878 	struct input_handle *handle, *next;
1879 
1880 	mutex_lock(&input_mutex);
1881 
1882 	list_for_each_entry_safe(handle, next, &handler->h_list, h_node)
1883 		handler->disconnect(handle);
1884 	WARN_ON(!list_empty(&handler->h_list));
1885 
1886 	list_del_init(&handler->node);
1887 
1888 	if (handler->fops != NULL)
1889 		input_table[handler->minor >> 5] = NULL;
1890 
1891 	input_wakeup_procfs_readers();
1892 
1893 	mutex_unlock(&input_mutex);
1894 }
1895 EXPORT_SYMBOL(input_unregister_handler);
1896 
1897 /**
1898  * input_handler_for_each_handle - handle iterator
1899  * @handler: input handler to iterate
1900  * @data: data for the callback
1901  * @fn: function to be called for each handle
1902  *
1903  * Iterate over @bus's list of devices, and call @fn for each, passing
1904  * it @data and stop when @fn returns a non-zero value. The function is
1905  * using RCU to traverse the list and therefore may be usind in atonic
1906  * contexts. The @fn callback is invoked from RCU critical section and
1907  * thus must not sleep.
1908  */
1909 int input_handler_for_each_handle(struct input_handler *handler, void *data,
1910 				  int (*fn)(struct input_handle *, void *))
1911 {
1912 	struct input_handle *handle;
1913 	int retval = 0;
1914 
1915 	rcu_read_lock();
1916 
1917 	list_for_each_entry_rcu(handle, &handler->h_list, h_node) {
1918 		retval = fn(handle, data);
1919 		if (retval)
1920 			break;
1921 	}
1922 
1923 	rcu_read_unlock();
1924 
1925 	return retval;
1926 }
1927 EXPORT_SYMBOL(input_handler_for_each_handle);
1928 
1929 /**
1930  * input_register_handle - register a new input handle
1931  * @handle: handle to register
1932  *
1933  * This function puts a new input handle onto device's
1934  * and handler's lists so that events can flow through
1935  * it once it is opened using input_open_device().
1936  *
1937  * This function is supposed to be called from handler's
1938  * connect() method.
1939  */
1940 int input_register_handle(struct input_handle *handle)
1941 {
1942 	struct input_handler *handler = handle->handler;
1943 	struct input_dev *dev = handle->dev;
1944 	int error;
1945 
1946 	/*
1947 	 * We take dev->mutex here to prevent race with
1948 	 * input_release_device().
1949 	 */
1950 	error = mutex_lock_interruptible(&dev->mutex);
1951 	if (error)
1952 		return error;
1953 
1954 	/*
1955 	 * Filters go to the head of the list, normal handlers
1956 	 * to the tail.
1957 	 */
1958 	if (handler->filter)
1959 		list_add_rcu(&handle->d_node, &dev->h_list);
1960 	else
1961 		list_add_tail_rcu(&handle->d_node, &dev->h_list);
1962 
1963 	mutex_unlock(&dev->mutex);
1964 
1965 	/*
1966 	 * Since we are supposed to be called from ->connect()
1967 	 * which is mutually exclusive with ->disconnect()
1968 	 * we can't be racing with input_unregister_handle()
1969 	 * and so separate lock is not needed here.
1970 	 */
1971 	list_add_tail_rcu(&handle->h_node, &handler->h_list);
1972 
1973 	if (handler->start)
1974 		handler->start(handle);
1975 
1976 	return 0;
1977 }
1978 EXPORT_SYMBOL(input_register_handle);
1979 
1980 /**
1981  * input_unregister_handle - unregister an input handle
1982  * @handle: handle to unregister
1983  *
1984  * This function removes input handle from device's
1985  * and handler's lists.
1986  *
1987  * This function is supposed to be called from handler's
1988  * disconnect() method.
1989  */
1990 void input_unregister_handle(struct input_handle *handle)
1991 {
1992 	struct input_dev *dev = handle->dev;
1993 
1994 	list_del_rcu(&handle->h_node);
1995 
1996 	/*
1997 	 * Take dev->mutex to prevent race with input_release_device().
1998 	 */
1999 	mutex_lock(&dev->mutex);
2000 	list_del_rcu(&handle->d_node);
2001 	mutex_unlock(&dev->mutex);
2002 
2003 	synchronize_rcu();
2004 }
2005 EXPORT_SYMBOL(input_unregister_handle);
2006 
2007 static int input_open_file(struct inode *inode, struct file *file)
2008 {
2009 	struct input_handler *handler;
2010 	const struct file_operations *old_fops, *new_fops = NULL;
2011 	int err;
2012 
2013 	err = mutex_lock_interruptible(&input_mutex);
2014 	if (err)
2015 		return err;
2016 
2017 	/* No load-on-demand here? */
2018 	handler = input_table[iminor(inode) >> 5];
2019 	if (handler)
2020 		new_fops = fops_get(handler->fops);
2021 
2022 	mutex_unlock(&input_mutex);
2023 
2024 	/*
2025 	 * That's _really_ odd. Usually NULL ->open means "nothing special",
2026 	 * not "no device". Oh, well...
2027 	 */
2028 	if (!new_fops || !new_fops->open) {
2029 		fops_put(new_fops);
2030 		err = -ENODEV;
2031 		goto out;
2032 	}
2033 
2034 	old_fops = file->f_op;
2035 	file->f_op = new_fops;
2036 
2037 	err = new_fops->open(inode, file);
2038 	if (err) {
2039 		fops_put(file->f_op);
2040 		file->f_op = fops_get(old_fops);
2041 	}
2042 	fops_put(old_fops);
2043 out:
2044 	return err;
2045 }
2046 
2047 static const struct file_operations input_fops = {
2048 	.owner = THIS_MODULE,
2049 	.open = input_open_file,
2050 };
2051 
2052 static int __init input_init(void)
2053 {
2054 	int err;
2055 
2056 	err = class_register(&input_class);
2057 	if (err) {
2058 		printk(KERN_ERR "input: unable to register input_dev class\n");
2059 		return err;
2060 	}
2061 
2062 	err = input_proc_init();
2063 	if (err)
2064 		goto fail1;
2065 
2066 	err = register_chrdev(INPUT_MAJOR, "input", &input_fops);
2067 	if (err) {
2068 		printk(KERN_ERR "input: unable to register char major %d", INPUT_MAJOR);
2069 		goto fail2;
2070 	}
2071 
2072 	return 0;
2073 
2074  fail2:	input_proc_exit();
2075  fail1:	class_unregister(&input_class);
2076 	return err;
2077 }
2078 
2079 static void __exit input_exit(void)
2080 {
2081 	input_proc_exit();
2082 	unregister_chrdev(INPUT_MAJOR, "input");
2083 	class_unregister(&input_class);
2084 }
2085 
2086 subsys_initcall(input_init);
2087 module_exit(input_exit);
2088