xref: /linux/drivers/infiniband/core/cache.c (revision 3bdab16c55f57a24245c97d707241dd9b48d1a91)
1 /*
2  * Copyright (c) 2004 Topspin Communications.  All rights reserved.
3  * Copyright (c) 2005 Intel Corporation. All rights reserved.
4  * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
5  * Copyright (c) 2005 Voltaire, Inc. All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/module.h>
37 #include <linux/errno.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/netdevice.h>
41 #include <net/addrconf.h>
42 
43 #include <rdma/ib_cache.h>
44 
45 #include "core_priv.h"
46 
47 struct ib_pkey_cache {
48 	int             table_len;
49 	u16             table[0];
50 };
51 
52 struct ib_update_work {
53 	struct work_struct work;
54 	struct ib_device  *device;
55 	u8                 port_num;
56 	bool		   enforce_security;
57 };
58 
59 union ib_gid zgid;
60 EXPORT_SYMBOL(zgid);
61 
62 enum gid_attr_find_mask {
63 	GID_ATTR_FIND_MASK_GID          = 1UL << 0,
64 	GID_ATTR_FIND_MASK_NETDEV	= 1UL << 1,
65 	GID_ATTR_FIND_MASK_DEFAULT	= 1UL << 2,
66 	GID_ATTR_FIND_MASK_GID_TYPE	= 1UL << 3,
67 };
68 
69 enum gid_table_entry_state {
70 	GID_TABLE_ENTRY_INVALID		= 1,
71 	GID_TABLE_ENTRY_VALID		= 2,
72 	/*
73 	 * Indicates that entry is pending to be removed, there may
74 	 * be active users of this GID entry.
75 	 * When last user of the GID entry releases reference to it,
76 	 * GID entry is detached from the table.
77 	 */
78 	GID_TABLE_ENTRY_PENDING_DEL	= 3,
79 };
80 
81 struct roce_gid_ndev_storage {
82 	struct rcu_head rcu_head;
83 	struct net_device *ndev;
84 };
85 
86 struct ib_gid_table_entry {
87 	struct kref			kref;
88 	struct work_struct		del_work;
89 	struct ib_gid_attr		attr;
90 	void				*context;
91 	/* Store the ndev pointer to release reference later on in
92 	 * call_rcu context because by that time gid_table_entry
93 	 * and attr might be already freed. So keep a copy of it.
94 	 * ndev_storage is freed by rcu callback.
95 	 */
96 	struct roce_gid_ndev_storage	*ndev_storage;
97 	enum gid_table_entry_state	state;
98 };
99 
100 struct ib_gid_table {
101 	int				sz;
102 	/* In RoCE, adding a GID to the table requires:
103 	 * (a) Find if this GID is already exists.
104 	 * (b) Find a free space.
105 	 * (c) Write the new GID
106 	 *
107 	 * Delete requires different set of operations:
108 	 * (a) Find the GID
109 	 * (b) Delete it.
110 	 *
111 	 **/
112 	/* Any writer to data_vec must hold this lock and the write side of
113 	 * rwlock. Readers must hold only rwlock. All writers must be in a
114 	 * sleepable context.
115 	 */
116 	struct mutex			lock;
117 	/* rwlock protects data_vec[ix]->state and entry pointer.
118 	 */
119 	rwlock_t			rwlock;
120 	struct ib_gid_table_entry	**data_vec;
121 	/* bit field, each bit indicates the index of default GID */
122 	u32				default_gid_indices;
123 };
124 
125 static void dispatch_gid_change_event(struct ib_device *ib_dev, u8 port)
126 {
127 	struct ib_event event;
128 
129 	event.device		= ib_dev;
130 	event.element.port_num	= port;
131 	event.event		= IB_EVENT_GID_CHANGE;
132 
133 	ib_dispatch_event(&event);
134 }
135 
136 static const char * const gid_type_str[] = {
137 	[IB_GID_TYPE_IB]	= "IB/RoCE v1",
138 	[IB_GID_TYPE_ROCE_UDP_ENCAP]	= "RoCE v2",
139 };
140 
141 const char *ib_cache_gid_type_str(enum ib_gid_type gid_type)
142 {
143 	if (gid_type < ARRAY_SIZE(gid_type_str) && gid_type_str[gid_type])
144 		return gid_type_str[gid_type];
145 
146 	return "Invalid GID type";
147 }
148 EXPORT_SYMBOL(ib_cache_gid_type_str);
149 
150 /** rdma_is_zero_gid - Check if given GID is zero or not.
151  * @gid:	GID to check
152  * Returns true if given GID is zero, returns false otherwise.
153  */
154 bool rdma_is_zero_gid(const union ib_gid *gid)
155 {
156 	return !memcmp(gid, &zgid, sizeof(*gid));
157 }
158 EXPORT_SYMBOL(rdma_is_zero_gid);
159 
160 /** is_gid_index_default - Check if a given index belongs to
161  * reserved default GIDs or not.
162  * @table:	GID table pointer
163  * @index:	Index to check in GID table
164  * Returns true if index is one of the reserved default GID index otherwise
165  * returns false.
166  */
167 static bool is_gid_index_default(const struct ib_gid_table *table,
168 				 unsigned int index)
169 {
170 	return index < 32 && (BIT(index) & table->default_gid_indices);
171 }
172 
173 int ib_cache_gid_parse_type_str(const char *buf)
174 {
175 	unsigned int i;
176 	size_t len;
177 	int err = -EINVAL;
178 
179 	len = strlen(buf);
180 	if (len == 0)
181 		return -EINVAL;
182 
183 	if (buf[len - 1] == '\n')
184 		len--;
185 
186 	for (i = 0; i < ARRAY_SIZE(gid_type_str); ++i)
187 		if (gid_type_str[i] && !strncmp(buf, gid_type_str[i], len) &&
188 		    len == strlen(gid_type_str[i])) {
189 			err = i;
190 			break;
191 		}
192 
193 	return err;
194 }
195 EXPORT_SYMBOL(ib_cache_gid_parse_type_str);
196 
197 static struct ib_gid_table *rdma_gid_table(struct ib_device *device, u8 port)
198 {
199 	return device->port_data[port].cache.gid;
200 }
201 
202 static bool is_gid_entry_free(const struct ib_gid_table_entry *entry)
203 {
204 	return !entry;
205 }
206 
207 static bool is_gid_entry_valid(const struct ib_gid_table_entry *entry)
208 {
209 	return entry && entry->state == GID_TABLE_ENTRY_VALID;
210 }
211 
212 static void schedule_free_gid(struct kref *kref)
213 {
214 	struct ib_gid_table_entry *entry =
215 			container_of(kref, struct ib_gid_table_entry, kref);
216 
217 	queue_work(ib_wq, &entry->del_work);
218 }
219 
220 static void put_gid_ndev(struct rcu_head *head)
221 {
222 	struct roce_gid_ndev_storage *storage =
223 		container_of(head, struct roce_gid_ndev_storage, rcu_head);
224 
225 	WARN_ON(!storage->ndev);
226 	/* At this point its safe to release netdev reference,
227 	 * as all callers working on gid_attr->ndev are done
228 	 * using this netdev.
229 	 */
230 	dev_put(storage->ndev);
231 	kfree(storage);
232 }
233 
234 static void free_gid_entry_locked(struct ib_gid_table_entry *entry)
235 {
236 	struct ib_device *device = entry->attr.device;
237 	u8 port_num = entry->attr.port_num;
238 	struct ib_gid_table *table = rdma_gid_table(device, port_num);
239 
240 	dev_dbg(&device->dev, "%s port=%d index=%d gid %pI6\n", __func__,
241 		port_num, entry->attr.index, entry->attr.gid.raw);
242 
243 	write_lock_irq(&table->rwlock);
244 
245 	/*
246 	 * The only way to avoid overwriting NULL in table is
247 	 * by comparing if it is same entry in table or not!
248 	 * If new entry in table is added by the time we free here,
249 	 * don't overwrite the table entry.
250 	 */
251 	if (entry == table->data_vec[entry->attr.index])
252 		table->data_vec[entry->attr.index] = NULL;
253 	/* Now this index is ready to be allocated */
254 	write_unlock_irq(&table->rwlock);
255 
256 	if (entry->ndev_storage)
257 		call_rcu(&entry->ndev_storage->rcu_head, put_gid_ndev);
258 	kfree(entry);
259 }
260 
261 static void free_gid_entry(struct kref *kref)
262 {
263 	struct ib_gid_table_entry *entry =
264 			container_of(kref, struct ib_gid_table_entry, kref);
265 
266 	free_gid_entry_locked(entry);
267 }
268 
269 /**
270  * free_gid_work - Release reference to the GID entry
271  * @work: Work structure to refer to GID entry which needs to be
272  * deleted.
273  *
274  * free_gid_work() frees the entry from the HCA's hardware table
275  * if provider supports it. It releases reference to netdevice.
276  */
277 static void free_gid_work(struct work_struct *work)
278 {
279 	struct ib_gid_table_entry *entry =
280 		container_of(work, struct ib_gid_table_entry, del_work);
281 	struct ib_device *device = entry->attr.device;
282 	u8 port_num = entry->attr.port_num;
283 	struct ib_gid_table *table = rdma_gid_table(device, port_num);
284 
285 	mutex_lock(&table->lock);
286 	free_gid_entry_locked(entry);
287 	mutex_unlock(&table->lock);
288 }
289 
290 static struct ib_gid_table_entry *
291 alloc_gid_entry(const struct ib_gid_attr *attr)
292 {
293 	struct ib_gid_table_entry *entry;
294 	struct net_device *ndev;
295 
296 	entry = kzalloc(sizeof(*entry), GFP_KERNEL);
297 	if (!entry)
298 		return NULL;
299 
300 	ndev = rcu_dereference_protected(attr->ndev, 1);
301 	if (ndev) {
302 		entry->ndev_storage = kzalloc(sizeof(*entry->ndev_storage),
303 					      GFP_KERNEL);
304 		if (!entry->ndev_storage) {
305 			kfree(entry);
306 			return NULL;
307 		}
308 		dev_hold(ndev);
309 		entry->ndev_storage->ndev = ndev;
310 	}
311 	kref_init(&entry->kref);
312 	memcpy(&entry->attr, attr, sizeof(*attr));
313 	INIT_WORK(&entry->del_work, free_gid_work);
314 	entry->state = GID_TABLE_ENTRY_INVALID;
315 	return entry;
316 }
317 
318 static void store_gid_entry(struct ib_gid_table *table,
319 			    struct ib_gid_table_entry *entry)
320 {
321 	entry->state = GID_TABLE_ENTRY_VALID;
322 
323 	dev_dbg(&entry->attr.device->dev, "%s port=%d index=%d gid %pI6\n",
324 		__func__, entry->attr.port_num, entry->attr.index,
325 		entry->attr.gid.raw);
326 
327 	lockdep_assert_held(&table->lock);
328 	write_lock_irq(&table->rwlock);
329 	table->data_vec[entry->attr.index] = entry;
330 	write_unlock_irq(&table->rwlock);
331 }
332 
333 static void get_gid_entry(struct ib_gid_table_entry *entry)
334 {
335 	kref_get(&entry->kref);
336 }
337 
338 static void put_gid_entry(struct ib_gid_table_entry *entry)
339 {
340 	kref_put(&entry->kref, schedule_free_gid);
341 }
342 
343 static void put_gid_entry_locked(struct ib_gid_table_entry *entry)
344 {
345 	kref_put(&entry->kref, free_gid_entry);
346 }
347 
348 static int add_roce_gid(struct ib_gid_table_entry *entry)
349 {
350 	const struct ib_gid_attr *attr = &entry->attr;
351 	int ret;
352 
353 	if (!attr->ndev) {
354 		dev_err(&attr->device->dev, "%s NULL netdev port=%d index=%d\n",
355 			__func__, attr->port_num, attr->index);
356 		return -EINVAL;
357 	}
358 	if (rdma_cap_roce_gid_table(attr->device, attr->port_num)) {
359 		ret = attr->device->ops.add_gid(attr, &entry->context);
360 		if (ret) {
361 			dev_err(&attr->device->dev,
362 				"%s GID add failed port=%d index=%d\n",
363 				__func__, attr->port_num, attr->index);
364 			return ret;
365 		}
366 	}
367 	return 0;
368 }
369 
370 /**
371  * del_gid - Delete GID table entry
372  *
373  * @ib_dev:	IB device whose GID entry to be deleted
374  * @port:	Port number of the IB device
375  * @table:	GID table of the IB device for a port
376  * @ix:		GID entry index to delete
377  *
378  */
379 static void del_gid(struct ib_device *ib_dev, u8 port,
380 		    struct ib_gid_table *table, int ix)
381 {
382 	struct roce_gid_ndev_storage *ndev_storage;
383 	struct ib_gid_table_entry *entry;
384 
385 	lockdep_assert_held(&table->lock);
386 
387 	dev_dbg(&ib_dev->dev, "%s port=%d index=%d gid %pI6\n", __func__, port,
388 		ix, table->data_vec[ix]->attr.gid.raw);
389 
390 	write_lock_irq(&table->rwlock);
391 	entry = table->data_vec[ix];
392 	entry->state = GID_TABLE_ENTRY_PENDING_DEL;
393 	/*
394 	 * For non RoCE protocol, GID entry slot is ready to use.
395 	 */
396 	if (!rdma_protocol_roce(ib_dev, port))
397 		table->data_vec[ix] = NULL;
398 	write_unlock_irq(&table->rwlock);
399 
400 	ndev_storage = entry->ndev_storage;
401 	if (ndev_storage) {
402 		entry->ndev_storage = NULL;
403 		rcu_assign_pointer(entry->attr.ndev, NULL);
404 		call_rcu(&ndev_storage->rcu_head, put_gid_ndev);
405 	}
406 
407 	if (rdma_cap_roce_gid_table(ib_dev, port))
408 		ib_dev->ops.del_gid(&entry->attr, &entry->context);
409 
410 	put_gid_entry_locked(entry);
411 }
412 
413 /**
414  * add_modify_gid - Add or modify GID table entry
415  *
416  * @table:	GID table in which GID to be added or modified
417  * @attr:	Attributes of the GID
418  *
419  * Returns 0 on success or appropriate error code. It accepts zero
420  * GID addition for non RoCE ports for HCA's who report them as valid
421  * GID. However such zero GIDs are not added to the cache.
422  */
423 static int add_modify_gid(struct ib_gid_table *table,
424 			  const struct ib_gid_attr *attr)
425 {
426 	struct ib_gid_table_entry *entry;
427 	int ret = 0;
428 
429 	/*
430 	 * Invalidate any old entry in the table to make it safe to write to
431 	 * this index.
432 	 */
433 	if (is_gid_entry_valid(table->data_vec[attr->index]))
434 		del_gid(attr->device, attr->port_num, table, attr->index);
435 
436 	/*
437 	 * Some HCA's report multiple GID entries with only one valid GID, and
438 	 * leave other unused entries as the zero GID. Convert zero GIDs to
439 	 * empty table entries instead of storing them.
440 	 */
441 	if (rdma_is_zero_gid(&attr->gid))
442 		return 0;
443 
444 	entry = alloc_gid_entry(attr);
445 	if (!entry)
446 		return -ENOMEM;
447 
448 	if (rdma_protocol_roce(attr->device, attr->port_num)) {
449 		ret = add_roce_gid(entry);
450 		if (ret)
451 			goto done;
452 	}
453 
454 	store_gid_entry(table, entry);
455 	return 0;
456 
457 done:
458 	put_gid_entry(entry);
459 	return ret;
460 }
461 
462 /* rwlock should be read locked, or lock should be held */
463 static int find_gid(struct ib_gid_table *table, const union ib_gid *gid,
464 		    const struct ib_gid_attr *val, bool default_gid,
465 		    unsigned long mask, int *pempty)
466 {
467 	int i = 0;
468 	int found = -1;
469 	int empty = pempty ? -1 : 0;
470 
471 	while (i < table->sz && (found < 0 || empty < 0)) {
472 		struct ib_gid_table_entry *data = table->data_vec[i];
473 		struct ib_gid_attr *attr;
474 		int curr_index = i;
475 
476 		i++;
477 
478 		/* find_gid() is used during GID addition where it is expected
479 		 * to return a free entry slot which is not duplicate.
480 		 * Free entry slot is requested and returned if pempty is set,
481 		 * so lookup free slot only if requested.
482 		 */
483 		if (pempty && empty < 0) {
484 			if (is_gid_entry_free(data) &&
485 			    default_gid ==
486 				is_gid_index_default(table, curr_index)) {
487 				/*
488 				 * Found an invalid (free) entry; allocate it.
489 				 * If default GID is requested, then our
490 				 * found slot must be one of the DEFAULT
491 				 * reserved slots or we fail.
492 				 * This ensures that only DEFAULT reserved
493 				 * slots are used for default property GIDs.
494 				 */
495 				empty = curr_index;
496 			}
497 		}
498 
499 		/*
500 		 * Additionally find_gid() is used to find valid entry during
501 		 * lookup operation; so ignore the entries which are marked as
502 		 * pending for removal and the entries which are marked as
503 		 * invalid.
504 		 */
505 		if (!is_gid_entry_valid(data))
506 			continue;
507 
508 		if (found >= 0)
509 			continue;
510 
511 		attr = &data->attr;
512 		if (mask & GID_ATTR_FIND_MASK_GID_TYPE &&
513 		    attr->gid_type != val->gid_type)
514 			continue;
515 
516 		if (mask & GID_ATTR_FIND_MASK_GID &&
517 		    memcmp(gid, &data->attr.gid, sizeof(*gid)))
518 			continue;
519 
520 		if (mask & GID_ATTR_FIND_MASK_NETDEV &&
521 		    attr->ndev != val->ndev)
522 			continue;
523 
524 		if (mask & GID_ATTR_FIND_MASK_DEFAULT &&
525 		    is_gid_index_default(table, curr_index) != default_gid)
526 			continue;
527 
528 		found = curr_index;
529 	}
530 
531 	if (pempty)
532 		*pempty = empty;
533 
534 	return found;
535 }
536 
537 static void make_default_gid(struct  net_device *dev, union ib_gid *gid)
538 {
539 	gid->global.subnet_prefix = cpu_to_be64(0xfe80000000000000LL);
540 	addrconf_ifid_eui48(&gid->raw[8], dev);
541 }
542 
543 static int __ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
544 			      union ib_gid *gid, struct ib_gid_attr *attr,
545 			      unsigned long mask, bool default_gid)
546 {
547 	struct ib_gid_table *table;
548 	int ret = 0;
549 	int empty;
550 	int ix;
551 
552 	/* Do not allow adding zero GID in support of
553 	 * IB spec version 1.3 section 4.1.1 point (6) and
554 	 * section 12.7.10 and section 12.7.20
555 	 */
556 	if (rdma_is_zero_gid(gid))
557 		return -EINVAL;
558 
559 	table = rdma_gid_table(ib_dev, port);
560 
561 	mutex_lock(&table->lock);
562 
563 	ix = find_gid(table, gid, attr, default_gid, mask, &empty);
564 	if (ix >= 0)
565 		goto out_unlock;
566 
567 	if (empty < 0) {
568 		ret = -ENOSPC;
569 		goto out_unlock;
570 	}
571 	attr->device = ib_dev;
572 	attr->index = empty;
573 	attr->port_num = port;
574 	attr->gid = *gid;
575 	ret = add_modify_gid(table, attr);
576 	if (!ret)
577 		dispatch_gid_change_event(ib_dev, port);
578 
579 out_unlock:
580 	mutex_unlock(&table->lock);
581 	if (ret)
582 		pr_warn("%s: unable to add gid %pI6 error=%d\n",
583 			__func__, gid->raw, ret);
584 	return ret;
585 }
586 
587 int ib_cache_gid_add(struct ib_device *ib_dev, u8 port,
588 		     union ib_gid *gid, struct ib_gid_attr *attr)
589 {
590 	unsigned long mask = GID_ATTR_FIND_MASK_GID |
591 			     GID_ATTR_FIND_MASK_GID_TYPE |
592 			     GID_ATTR_FIND_MASK_NETDEV;
593 
594 	return __ib_cache_gid_add(ib_dev, port, gid, attr, mask, false);
595 }
596 
597 static int
598 _ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
599 		  union ib_gid *gid, struct ib_gid_attr *attr,
600 		  unsigned long mask, bool default_gid)
601 {
602 	struct ib_gid_table *table;
603 	int ret = 0;
604 	int ix;
605 
606 	table = rdma_gid_table(ib_dev, port);
607 
608 	mutex_lock(&table->lock);
609 
610 	ix = find_gid(table, gid, attr, default_gid, mask, NULL);
611 	if (ix < 0) {
612 		ret = -EINVAL;
613 		goto out_unlock;
614 	}
615 
616 	del_gid(ib_dev, port, table, ix);
617 	dispatch_gid_change_event(ib_dev, port);
618 
619 out_unlock:
620 	mutex_unlock(&table->lock);
621 	if (ret)
622 		pr_debug("%s: can't delete gid %pI6 error=%d\n",
623 			 __func__, gid->raw, ret);
624 	return ret;
625 }
626 
627 int ib_cache_gid_del(struct ib_device *ib_dev, u8 port,
628 		     union ib_gid *gid, struct ib_gid_attr *attr)
629 {
630 	unsigned long mask = GID_ATTR_FIND_MASK_GID	  |
631 			     GID_ATTR_FIND_MASK_GID_TYPE |
632 			     GID_ATTR_FIND_MASK_DEFAULT  |
633 			     GID_ATTR_FIND_MASK_NETDEV;
634 
635 	return _ib_cache_gid_del(ib_dev, port, gid, attr, mask, false);
636 }
637 
638 int ib_cache_gid_del_all_netdev_gids(struct ib_device *ib_dev, u8 port,
639 				     struct net_device *ndev)
640 {
641 	struct ib_gid_table *table;
642 	int ix;
643 	bool deleted = false;
644 
645 	table = rdma_gid_table(ib_dev, port);
646 
647 	mutex_lock(&table->lock);
648 
649 	for (ix = 0; ix < table->sz; ix++) {
650 		if (is_gid_entry_valid(table->data_vec[ix]) &&
651 		    table->data_vec[ix]->attr.ndev == ndev) {
652 			del_gid(ib_dev, port, table, ix);
653 			deleted = true;
654 		}
655 	}
656 
657 	mutex_unlock(&table->lock);
658 
659 	if (deleted)
660 		dispatch_gid_change_event(ib_dev, port);
661 
662 	return 0;
663 }
664 
665 /**
666  * rdma_find_gid_by_port - Returns the GID entry attributes when it finds
667  * a valid GID entry for given search parameters. It searches for the specified
668  * GID value in the local software cache.
669  * @device: The device to query.
670  * @gid: The GID value to search for.
671  * @gid_type: The GID type to search for.
672  * @port_num: The port number of the device where the GID value should be
673  *   searched.
674  * @ndev: In RoCE, the net device of the device. NULL means ignore.
675  *
676  * Returns sgid attributes if the GID is found with valid reference or
677  * returns ERR_PTR for the error.
678  * The caller must invoke rdma_put_gid_attr() to release the reference.
679  */
680 const struct ib_gid_attr *
681 rdma_find_gid_by_port(struct ib_device *ib_dev,
682 		      const union ib_gid *gid,
683 		      enum ib_gid_type gid_type,
684 		      u8 port, struct net_device *ndev)
685 {
686 	int local_index;
687 	struct ib_gid_table *table;
688 	unsigned long mask = GID_ATTR_FIND_MASK_GID |
689 			     GID_ATTR_FIND_MASK_GID_TYPE;
690 	struct ib_gid_attr val = {.ndev = ndev, .gid_type = gid_type};
691 	const struct ib_gid_attr *attr;
692 	unsigned long flags;
693 
694 	if (!rdma_is_port_valid(ib_dev, port))
695 		return ERR_PTR(-ENOENT);
696 
697 	table = rdma_gid_table(ib_dev, port);
698 
699 	if (ndev)
700 		mask |= GID_ATTR_FIND_MASK_NETDEV;
701 
702 	read_lock_irqsave(&table->rwlock, flags);
703 	local_index = find_gid(table, gid, &val, false, mask, NULL);
704 	if (local_index >= 0) {
705 		get_gid_entry(table->data_vec[local_index]);
706 		attr = &table->data_vec[local_index]->attr;
707 		read_unlock_irqrestore(&table->rwlock, flags);
708 		return attr;
709 	}
710 
711 	read_unlock_irqrestore(&table->rwlock, flags);
712 	return ERR_PTR(-ENOENT);
713 }
714 EXPORT_SYMBOL(rdma_find_gid_by_port);
715 
716 /**
717  * rdma_find_gid_by_filter - Returns the GID table attribute where a
718  * specified GID value occurs
719  * @device: The device to query.
720  * @gid: The GID value to search for.
721  * @port: The port number of the device where the GID value could be
722  *   searched.
723  * @filter: The filter function is executed on any matching GID in the table.
724  *   If the filter function returns true, the corresponding index is returned,
725  *   otherwise, we continue searching the GID table. It's guaranteed that
726  *   while filter is executed, ndev field is valid and the structure won't
727  *   change. filter is executed in an atomic context. filter must not be NULL.
728  *
729  * rdma_find_gid_by_filter() searches for the specified GID value
730  * of which the filter function returns true in the port's GID table.
731  *
732  */
733 const struct ib_gid_attr *rdma_find_gid_by_filter(
734 	struct ib_device *ib_dev, const union ib_gid *gid, u8 port,
735 	bool (*filter)(const union ib_gid *gid, const struct ib_gid_attr *,
736 		       void *),
737 	void *context)
738 {
739 	const struct ib_gid_attr *res = ERR_PTR(-ENOENT);
740 	struct ib_gid_table *table;
741 	unsigned long flags;
742 	unsigned int i;
743 
744 	if (!rdma_is_port_valid(ib_dev, port))
745 		return ERR_PTR(-EINVAL);
746 
747 	table = rdma_gid_table(ib_dev, port);
748 
749 	read_lock_irqsave(&table->rwlock, flags);
750 	for (i = 0; i < table->sz; i++) {
751 		struct ib_gid_table_entry *entry = table->data_vec[i];
752 
753 		if (!is_gid_entry_valid(entry))
754 			continue;
755 
756 		if (memcmp(gid, &entry->attr.gid, sizeof(*gid)))
757 			continue;
758 
759 		if (filter(gid, &entry->attr, context)) {
760 			get_gid_entry(entry);
761 			res = &entry->attr;
762 			break;
763 		}
764 	}
765 	read_unlock_irqrestore(&table->rwlock, flags);
766 	return res;
767 }
768 
769 static struct ib_gid_table *alloc_gid_table(int sz)
770 {
771 	struct ib_gid_table *table = kzalloc(sizeof(*table), GFP_KERNEL);
772 
773 	if (!table)
774 		return NULL;
775 
776 	table->data_vec = kcalloc(sz, sizeof(*table->data_vec), GFP_KERNEL);
777 	if (!table->data_vec)
778 		goto err_free_table;
779 
780 	mutex_init(&table->lock);
781 
782 	table->sz = sz;
783 	rwlock_init(&table->rwlock);
784 	return table;
785 
786 err_free_table:
787 	kfree(table);
788 	return NULL;
789 }
790 
791 static void release_gid_table(struct ib_device *device,
792 			      struct ib_gid_table *table)
793 {
794 	bool leak = false;
795 	int i;
796 
797 	if (!table)
798 		return;
799 
800 	for (i = 0; i < table->sz; i++) {
801 		if (is_gid_entry_free(table->data_vec[i]))
802 			continue;
803 		if (kref_read(&table->data_vec[i]->kref) > 1) {
804 			dev_err(&device->dev,
805 				"GID entry ref leak for index %d ref=%d\n", i,
806 				kref_read(&table->data_vec[i]->kref));
807 			leak = true;
808 		}
809 	}
810 	if (leak)
811 		return;
812 
813 	kfree(table->data_vec);
814 	kfree(table);
815 }
816 
817 static void cleanup_gid_table_port(struct ib_device *ib_dev, u8 port,
818 				   struct ib_gid_table *table)
819 {
820 	int i;
821 	bool deleted = false;
822 
823 	if (!table)
824 		return;
825 
826 	mutex_lock(&table->lock);
827 	for (i = 0; i < table->sz; ++i) {
828 		if (is_gid_entry_valid(table->data_vec[i])) {
829 			del_gid(ib_dev, port, table, i);
830 			deleted = true;
831 		}
832 	}
833 	mutex_unlock(&table->lock);
834 
835 	if (deleted)
836 		dispatch_gid_change_event(ib_dev, port);
837 }
838 
839 void ib_cache_gid_set_default_gid(struct ib_device *ib_dev, u8 port,
840 				  struct net_device *ndev,
841 				  unsigned long gid_type_mask,
842 				  enum ib_cache_gid_default_mode mode)
843 {
844 	union ib_gid gid = { };
845 	struct ib_gid_attr gid_attr;
846 	unsigned int gid_type;
847 	unsigned long mask;
848 
849 	mask = GID_ATTR_FIND_MASK_GID_TYPE |
850 	       GID_ATTR_FIND_MASK_DEFAULT |
851 	       GID_ATTR_FIND_MASK_NETDEV;
852 	memset(&gid_attr, 0, sizeof(gid_attr));
853 	gid_attr.ndev = ndev;
854 
855 	for (gid_type = 0; gid_type < IB_GID_TYPE_SIZE; ++gid_type) {
856 		if (1UL << gid_type & ~gid_type_mask)
857 			continue;
858 
859 		gid_attr.gid_type = gid_type;
860 
861 		if (mode == IB_CACHE_GID_DEFAULT_MODE_SET) {
862 			make_default_gid(ndev, &gid);
863 			__ib_cache_gid_add(ib_dev, port, &gid,
864 					   &gid_attr, mask, true);
865 		} else if (mode == IB_CACHE_GID_DEFAULT_MODE_DELETE) {
866 			_ib_cache_gid_del(ib_dev, port, &gid,
867 					  &gid_attr, mask, true);
868 		}
869 	}
870 }
871 
872 static void gid_table_reserve_default(struct ib_device *ib_dev, u8 port,
873 				      struct ib_gid_table *table)
874 {
875 	unsigned int i;
876 	unsigned long roce_gid_type_mask;
877 	unsigned int num_default_gids;
878 
879 	roce_gid_type_mask = roce_gid_type_mask_support(ib_dev, port);
880 	num_default_gids = hweight_long(roce_gid_type_mask);
881 	/* Reserve starting indices for default GIDs */
882 	for (i = 0; i < num_default_gids && i < table->sz; i++)
883 		table->default_gid_indices |= BIT(i);
884 }
885 
886 
887 static void gid_table_release_one(struct ib_device *ib_dev)
888 {
889 	unsigned int p;
890 
891 	rdma_for_each_port (ib_dev, p) {
892 		release_gid_table(ib_dev, ib_dev->port_data[p].cache.gid);
893 		ib_dev->port_data[p].cache.gid = NULL;
894 	}
895 }
896 
897 static int _gid_table_setup_one(struct ib_device *ib_dev)
898 {
899 	struct ib_gid_table *table;
900 	unsigned int rdma_port;
901 
902 	rdma_for_each_port (ib_dev, rdma_port) {
903 		table = alloc_gid_table(
904 			ib_dev->port_data[rdma_port].immutable.gid_tbl_len);
905 		if (!table)
906 			goto rollback_table_setup;
907 
908 		gid_table_reserve_default(ib_dev, rdma_port, table);
909 		ib_dev->port_data[rdma_port].cache.gid = table;
910 	}
911 	return 0;
912 
913 rollback_table_setup:
914 	gid_table_release_one(ib_dev);
915 	return -ENOMEM;
916 }
917 
918 static void gid_table_cleanup_one(struct ib_device *ib_dev)
919 {
920 	unsigned int p;
921 
922 	rdma_for_each_port (ib_dev, p)
923 		cleanup_gid_table_port(ib_dev, p,
924 				       ib_dev->port_data[p].cache.gid);
925 }
926 
927 static int gid_table_setup_one(struct ib_device *ib_dev)
928 {
929 	int err;
930 
931 	err = _gid_table_setup_one(ib_dev);
932 
933 	if (err)
934 		return err;
935 
936 	rdma_roce_rescan_device(ib_dev);
937 
938 	return err;
939 }
940 
941 /**
942  * rdma_query_gid - Read the GID content from the GID software cache
943  * @device:		Device to query the GID
944  * @port_num:		Port number of the device
945  * @index:		Index of the GID table entry to read
946  * @gid:		Pointer to GID where to store the entry's GID
947  *
948  * rdma_query_gid() only reads the GID entry content for requested device,
949  * port and index. It reads for IB, RoCE and iWarp link layers.  It doesn't
950  * hold any reference to the GID table entry in the HCA or software cache.
951  *
952  * Returns 0 on success or appropriate error code.
953  *
954  */
955 int rdma_query_gid(struct ib_device *device, u8 port_num,
956 		   int index, union ib_gid *gid)
957 {
958 	struct ib_gid_table *table;
959 	unsigned long flags;
960 	int res = -EINVAL;
961 
962 	if (!rdma_is_port_valid(device, port_num))
963 		return -EINVAL;
964 
965 	table = rdma_gid_table(device, port_num);
966 	read_lock_irqsave(&table->rwlock, flags);
967 
968 	if (index < 0 || index >= table->sz ||
969 	    !is_gid_entry_valid(table->data_vec[index]))
970 		goto done;
971 
972 	memcpy(gid, &table->data_vec[index]->attr.gid, sizeof(*gid));
973 	res = 0;
974 
975 done:
976 	read_unlock_irqrestore(&table->rwlock, flags);
977 	return res;
978 }
979 EXPORT_SYMBOL(rdma_query_gid);
980 
981 /**
982  * rdma_find_gid - Returns SGID attributes if the matching GID is found.
983  * @device: The device to query.
984  * @gid: The GID value to search for.
985  * @gid_type: The GID type to search for.
986  * @ndev: In RoCE, the net device of the device. NULL means ignore.
987  *
988  * rdma_find_gid() searches for the specified GID value in the software cache.
989  *
990  * Returns GID attributes if a valid GID is found or returns ERR_PTR for the
991  * error. The caller must invoke rdma_put_gid_attr() to release the reference.
992  *
993  */
994 const struct ib_gid_attr *rdma_find_gid(struct ib_device *device,
995 					const union ib_gid *gid,
996 					enum ib_gid_type gid_type,
997 					struct net_device *ndev)
998 {
999 	unsigned long mask = GID_ATTR_FIND_MASK_GID |
1000 			     GID_ATTR_FIND_MASK_GID_TYPE;
1001 	struct ib_gid_attr gid_attr_val = {.ndev = ndev, .gid_type = gid_type};
1002 	unsigned int p;
1003 
1004 	if (ndev)
1005 		mask |= GID_ATTR_FIND_MASK_NETDEV;
1006 
1007 	rdma_for_each_port(device, p) {
1008 		struct ib_gid_table *table;
1009 		unsigned long flags;
1010 		int index;
1011 
1012 		table = device->port_data[p].cache.gid;
1013 		read_lock_irqsave(&table->rwlock, flags);
1014 		index = find_gid(table, gid, &gid_attr_val, false, mask, NULL);
1015 		if (index >= 0) {
1016 			const struct ib_gid_attr *attr;
1017 
1018 			get_gid_entry(table->data_vec[index]);
1019 			attr = &table->data_vec[index]->attr;
1020 			read_unlock_irqrestore(&table->rwlock, flags);
1021 			return attr;
1022 		}
1023 		read_unlock_irqrestore(&table->rwlock, flags);
1024 	}
1025 
1026 	return ERR_PTR(-ENOENT);
1027 }
1028 EXPORT_SYMBOL(rdma_find_gid);
1029 
1030 int ib_get_cached_pkey(struct ib_device *device,
1031 		       u8                port_num,
1032 		       int               index,
1033 		       u16              *pkey)
1034 {
1035 	struct ib_pkey_cache *cache;
1036 	unsigned long flags;
1037 	int ret = 0;
1038 
1039 	if (!rdma_is_port_valid(device, port_num))
1040 		return -EINVAL;
1041 
1042 	read_lock_irqsave(&device->cache.lock, flags);
1043 
1044 	cache = device->port_data[port_num].cache.pkey;
1045 
1046 	if (index < 0 || index >= cache->table_len)
1047 		ret = -EINVAL;
1048 	else
1049 		*pkey = cache->table[index];
1050 
1051 	read_unlock_irqrestore(&device->cache.lock, flags);
1052 
1053 	return ret;
1054 }
1055 EXPORT_SYMBOL(ib_get_cached_pkey);
1056 
1057 int ib_get_cached_subnet_prefix(struct ib_device *device,
1058 				u8                port_num,
1059 				u64              *sn_pfx)
1060 {
1061 	unsigned long flags;
1062 
1063 	if (!rdma_is_port_valid(device, port_num))
1064 		return -EINVAL;
1065 
1066 	read_lock_irqsave(&device->cache.lock, flags);
1067 	*sn_pfx = device->port_data[port_num].cache.subnet_prefix;
1068 	read_unlock_irqrestore(&device->cache.lock, flags);
1069 
1070 	return 0;
1071 }
1072 EXPORT_SYMBOL(ib_get_cached_subnet_prefix);
1073 
1074 int ib_find_cached_pkey(struct ib_device *device,
1075 			u8                port_num,
1076 			u16               pkey,
1077 			u16              *index)
1078 {
1079 	struct ib_pkey_cache *cache;
1080 	unsigned long flags;
1081 	int i;
1082 	int ret = -ENOENT;
1083 	int partial_ix = -1;
1084 
1085 	if (!rdma_is_port_valid(device, port_num))
1086 		return -EINVAL;
1087 
1088 	read_lock_irqsave(&device->cache.lock, flags);
1089 
1090 	cache = device->port_data[port_num].cache.pkey;
1091 
1092 	*index = -1;
1093 
1094 	for (i = 0; i < cache->table_len; ++i)
1095 		if ((cache->table[i] & 0x7fff) == (pkey & 0x7fff)) {
1096 			if (cache->table[i] & 0x8000) {
1097 				*index = i;
1098 				ret = 0;
1099 				break;
1100 			} else
1101 				partial_ix = i;
1102 		}
1103 
1104 	if (ret && partial_ix >= 0) {
1105 		*index = partial_ix;
1106 		ret = 0;
1107 	}
1108 
1109 	read_unlock_irqrestore(&device->cache.lock, flags);
1110 
1111 	return ret;
1112 }
1113 EXPORT_SYMBOL(ib_find_cached_pkey);
1114 
1115 int ib_find_exact_cached_pkey(struct ib_device *device,
1116 			      u8                port_num,
1117 			      u16               pkey,
1118 			      u16              *index)
1119 {
1120 	struct ib_pkey_cache *cache;
1121 	unsigned long flags;
1122 	int i;
1123 	int ret = -ENOENT;
1124 
1125 	if (!rdma_is_port_valid(device, port_num))
1126 		return -EINVAL;
1127 
1128 	read_lock_irqsave(&device->cache.lock, flags);
1129 
1130 	cache = device->port_data[port_num].cache.pkey;
1131 
1132 	*index = -1;
1133 
1134 	for (i = 0; i < cache->table_len; ++i)
1135 		if (cache->table[i] == pkey) {
1136 			*index = i;
1137 			ret = 0;
1138 			break;
1139 		}
1140 
1141 	read_unlock_irqrestore(&device->cache.lock, flags);
1142 
1143 	return ret;
1144 }
1145 EXPORT_SYMBOL(ib_find_exact_cached_pkey);
1146 
1147 int ib_get_cached_lmc(struct ib_device *device,
1148 		      u8                port_num,
1149 		      u8                *lmc)
1150 {
1151 	unsigned long flags;
1152 	int ret = 0;
1153 
1154 	if (!rdma_is_port_valid(device, port_num))
1155 		return -EINVAL;
1156 
1157 	read_lock_irqsave(&device->cache.lock, flags);
1158 	*lmc = device->port_data[port_num].cache.lmc;
1159 	read_unlock_irqrestore(&device->cache.lock, flags);
1160 
1161 	return ret;
1162 }
1163 EXPORT_SYMBOL(ib_get_cached_lmc);
1164 
1165 int ib_get_cached_port_state(struct ib_device   *device,
1166 			     u8                  port_num,
1167 			     enum ib_port_state *port_state)
1168 {
1169 	unsigned long flags;
1170 	int ret = 0;
1171 
1172 	if (!rdma_is_port_valid(device, port_num))
1173 		return -EINVAL;
1174 
1175 	read_lock_irqsave(&device->cache.lock, flags);
1176 	*port_state = device->port_data[port_num].cache.port_state;
1177 	read_unlock_irqrestore(&device->cache.lock, flags);
1178 
1179 	return ret;
1180 }
1181 EXPORT_SYMBOL(ib_get_cached_port_state);
1182 
1183 /**
1184  * rdma_get_gid_attr - Returns GID attributes for a port of a device
1185  * at a requested gid_index, if a valid GID entry exists.
1186  * @device:		The device to query.
1187  * @port_num:		The port number on the device where the GID value
1188  *			is to be queried.
1189  * @index:		Index of the GID table entry whose attributes are to
1190  *                      be queried.
1191  *
1192  * rdma_get_gid_attr() acquires reference count of gid attributes from the
1193  * cached GID table. Caller must invoke rdma_put_gid_attr() to release
1194  * reference to gid attribute regardless of link layer.
1195  *
1196  * Returns pointer to valid gid attribute or ERR_PTR for the appropriate error
1197  * code.
1198  */
1199 const struct ib_gid_attr *
1200 rdma_get_gid_attr(struct ib_device *device, u8 port_num, int index)
1201 {
1202 	const struct ib_gid_attr *attr = ERR_PTR(-EINVAL);
1203 	struct ib_gid_table *table;
1204 	unsigned long flags;
1205 
1206 	if (!rdma_is_port_valid(device, port_num))
1207 		return ERR_PTR(-EINVAL);
1208 
1209 	table = rdma_gid_table(device, port_num);
1210 	if (index < 0 || index >= table->sz)
1211 		return ERR_PTR(-EINVAL);
1212 
1213 	read_lock_irqsave(&table->rwlock, flags);
1214 	if (!is_gid_entry_valid(table->data_vec[index]))
1215 		goto done;
1216 
1217 	get_gid_entry(table->data_vec[index]);
1218 	attr = &table->data_vec[index]->attr;
1219 done:
1220 	read_unlock_irqrestore(&table->rwlock, flags);
1221 	return attr;
1222 }
1223 EXPORT_SYMBOL(rdma_get_gid_attr);
1224 
1225 /**
1226  * rdma_put_gid_attr - Release reference to the GID attribute
1227  * @attr:		Pointer to the GID attribute whose reference
1228  *			needs to be released.
1229  *
1230  * rdma_put_gid_attr() must be used to release reference whose
1231  * reference is acquired using rdma_get_gid_attr() or any APIs
1232  * which returns a pointer to the ib_gid_attr regardless of link layer
1233  * of IB or RoCE.
1234  *
1235  */
1236 void rdma_put_gid_attr(const struct ib_gid_attr *attr)
1237 {
1238 	struct ib_gid_table_entry *entry =
1239 		container_of(attr, struct ib_gid_table_entry, attr);
1240 
1241 	put_gid_entry(entry);
1242 }
1243 EXPORT_SYMBOL(rdma_put_gid_attr);
1244 
1245 /**
1246  * rdma_hold_gid_attr - Get reference to existing GID attribute
1247  *
1248  * @attr:		Pointer to the GID attribute whose reference
1249  *			needs to be taken.
1250  *
1251  * Increase the reference count to a GID attribute to keep it from being
1252  * freed. Callers are required to already be holding a reference to attribute.
1253  *
1254  */
1255 void rdma_hold_gid_attr(const struct ib_gid_attr *attr)
1256 {
1257 	struct ib_gid_table_entry *entry =
1258 		container_of(attr, struct ib_gid_table_entry, attr);
1259 
1260 	get_gid_entry(entry);
1261 }
1262 EXPORT_SYMBOL(rdma_hold_gid_attr);
1263 
1264 /**
1265  * rdma_read_gid_attr_ndev_rcu - Read GID attribute netdevice
1266  * which must be in UP state.
1267  *
1268  * @attr:Pointer to the GID attribute
1269  *
1270  * Returns pointer to netdevice if the netdevice was attached to GID and
1271  * netdevice is in UP state. Caller must hold RCU lock as this API
1272  * reads the netdev flags which can change while netdevice migrates to
1273  * different net namespace. Returns ERR_PTR with error code otherwise.
1274  *
1275  */
1276 struct net_device *rdma_read_gid_attr_ndev_rcu(const struct ib_gid_attr *attr)
1277 {
1278 	struct ib_gid_table_entry *entry =
1279 			container_of(attr, struct ib_gid_table_entry, attr);
1280 	struct ib_device *device = entry->attr.device;
1281 	struct net_device *ndev = ERR_PTR(-ENODEV);
1282 	u8 port_num = entry->attr.port_num;
1283 	struct ib_gid_table *table;
1284 	unsigned long flags;
1285 	bool valid;
1286 
1287 	table = rdma_gid_table(device, port_num);
1288 
1289 	read_lock_irqsave(&table->rwlock, flags);
1290 	valid = is_gid_entry_valid(table->data_vec[attr->index]);
1291 	if (valid) {
1292 		ndev = rcu_dereference(attr->ndev);
1293 		if (!ndev ||
1294 		    (ndev && ((READ_ONCE(ndev->flags) & IFF_UP) == 0)))
1295 			ndev = ERR_PTR(-ENODEV);
1296 	}
1297 	read_unlock_irqrestore(&table->rwlock, flags);
1298 	return ndev;
1299 }
1300 EXPORT_SYMBOL(rdma_read_gid_attr_ndev_rcu);
1301 
1302 static int get_lower_dev_vlan(struct net_device *lower_dev, void *data)
1303 {
1304 	u16 *vlan_id = data;
1305 
1306 	if (is_vlan_dev(lower_dev))
1307 		*vlan_id = vlan_dev_vlan_id(lower_dev);
1308 
1309 	/* We are interested only in first level vlan device, so
1310 	 * always return 1 to stop iterating over next level devices.
1311 	 */
1312 	return 1;
1313 }
1314 
1315 /**
1316  * rdma_read_gid_l2_fields - Read the vlan ID and source MAC address
1317  *			     of a GID entry.
1318  *
1319  * @attr:	GID attribute pointer whose L2 fields to be read
1320  * @vlan_id:	Pointer to vlan id to fill up if the GID entry has
1321  *		vlan id. It is optional.
1322  * @smac:	Pointer to smac to fill up for a GID entry. It is optional.
1323  *
1324  * rdma_read_gid_l2_fields() returns 0 on success and returns vlan id
1325  * (if gid entry has vlan) and source MAC, or returns error.
1326  */
1327 int rdma_read_gid_l2_fields(const struct ib_gid_attr *attr,
1328 			    u16 *vlan_id, u8 *smac)
1329 {
1330 	struct net_device *ndev;
1331 
1332 	rcu_read_lock();
1333 	ndev = rcu_dereference(attr->ndev);
1334 	if (!ndev) {
1335 		rcu_read_unlock();
1336 		return -ENODEV;
1337 	}
1338 	if (smac)
1339 		ether_addr_copy(smac, ndev->dev_addr);
1340 	if (vlan_id) {
1341 		*vlan_id = 0xffff;
1342 		if (is_vlan_dev(ndev)) {
1343 			*vlan_id = vlan_dev_vlan_id(ndev);
1344 		} else {
1345 			/* If the netdev is upper device and if it's lower
1346 			 * device is vlan device, consider vlan id of the
1347 			 * the lower vlan device for this gid entry.
1348 			 */
1349 			netdev_walk_all_lower_dev_rcu(attr->ndev,
1350 					get_lower_dev_vlan, vlan_id);
1351 		}
1352 	}
1353 	rcu_read_unlock();
1354 	return 0;
1355 }
1356 EXPORT_SYMBOL(rdma_read_gid_l2_fields);
1357 
1358 static int config_non_roce_gid_cache(struct ib_device *device,
1359 				     u8 port, int gid_tbl_len)
1360 {
1361 	struct ib_gid_attr gid_attr = {};
1362 	struct ib_gid_table *table;
1363 	int ret = 0;
1364 	int i;
1365 
1366 	gid_attr.device = device;
1367 	gid_attr.port_num = port;
1368 	table = rdma_gid_table(device, port);
1369 
1370 	mutex_lock(&table->lock);
1371 	for (i = 0; i < gid_tbl_len; ++i) {
1372 		if (!device->ops.query_gid)
1373 			continue;
1374 		ret = device->ops.query_gid(device, port, i, &gid_attr.gid);
1375 		if (ret) {
1376 			dev_warn(&device->dev,
1377 				 "query_gid failed (%d) for index %d\n", ret,
1378 				 i);
1379 			goto err;
1380 		}
1381 		gid_attr.index = i;
1382 		add_modify_gid(table, &gid_attr);
1383 	}
1384 err:
1385 	mutex_unlock(&table->lock);
1386 	return ret;
1387 }
1388 
1389 static void ib_cache_update(struct ib_device *device,
1390 			    u8                port,
1391 			    bool	      enforce_security)
1392 {
1393 	struct ib_port_attr       *tprops = NULL;
1394 	struct ib_pkey_cache      *pkey_cache = NULL, *old_pkey_cache;
1395 	int                        i;
1396 	int                        ret;
1397 
1398 	if (!rdma_is_port_valid(device, port))
1399 		return;
1400 
1401 	tprops = kmalloc(sizeof *tprops, GFP_KERNEL);
1402 	if (!tprops)
1403 		return;
1404 
1405 	ret = ib_query_port(device, port, tprops);
1406 	if (ret) {
1407 		dev_warn(&device->dev, "ib_query_port failed (%d)\n", ret);
1408 		goto err;
1409 	}
1410 
1411 	if (!rdma_protocol_roce(device, port)) {
1412 		ret = config_non_roce_gid_cache(device, port,
1413 						tprops->gid_tbl_len);
1414 		if (ret)
1415 			goto err;
1416 	}
1417 
1418 	pkey_cache = kmalloc(struct_size(pkey_cache, table,
1419 					 tprops->pkey_tbl_len),
1420 			     GFP_KERNEL);
1421 	if (!pkey_cache)
1422 		goto err;
1423 
1424 	pkey_cache->table_len = tprops->pkey_tbl_len;
1425 
1426 	for (i = 0; i < pkey_cache->table_len; ++i) {
1427 		ret = ib_query_pkey(device, port, i, pkey_cache->table + i);
1428 		if (ret) {
1429 			dev_warn(&device->dev,
1430 				 "ib_query_pkey failed (%d) for index %d\n",
1431 				 ret, i);
1432 			goto err;
1433 		}
1434 	}
1435 
1436 	write_lock_irq(&device->cache.lock);
1437 
1438 	old_pkey_cache = device->port_data[port].cache.pkey;
1439 
1440 	device->port_data[port].cache.pkey = pkey_cache;
1441 	device->port_data[port].cache.lmc = tprops->lmc;
1442 	device->port_data[port].cache.port_state = tprops->state;
1443 
1444 	device->port_data[port].cache.subnet_prefix = tprops->subnet_prefix;
1445 	write_unlock_irq(&device->cache.lock);
1446 
1447 	if (enforce_security)
1448 		ib_security_cache_change(device,
1449 					 port,
1450 					 tprops->subnet_prefix);
1451 
1452 	kfree(old_pkey_cache);
1453 	kfree(tprops);
1454 	return;
1455 
1456 err:
1457 	kfree(pkey_cache);
1458 	kfree(tprops);
1459 }
1460 
1461 static void ib_cache_task(struct work_struct *_work)
1462 {
1463 	struct ib_update_work *work =
1464 		container_of(_work, struct ib_update_work, work);
1465 
1466 	ib_cache_update(work->device,
1467 			work->port_num,
1468 			work->enforce_security);
1469 	kfree(work);
1470 }
1471 
1472 static void ib_cache_event(struct ib_event_handler *handler,
1473 			   struct ib_event *event)
1474 {
1475 	struct ib_update_work *work;
1476 
1477 	if (event->event == IB_EVENT_PORT_ERR    ||
1478 	    event->event == IB_EVENT_PORT_ACTIVE ||
1479 	    event->event == IB_EVENT_LID_CHANGE  ||
1480 	    event->event == IB_EVENT_PKEY_CHANGE ||
1481 	    event->event == IB_EVENT_CLIENT_REREGISTER ||
1482 	    event->event == IB_EVENT_GID_CHANGE) {
1483 		work = kmalloc(sizeof *work, GFP_ATOMIC);
1484 		if (work) {
1485 			INIT_WORK(&work->work, ib_cache_task);
1486 			work->device   = event->device;
1487 			work->port_num = event->element.port_num;
1488 			if (event->event == IB_EVENT_PKEY_CHANGE ||
1489 			    event->event == IB_EVENT_GID_CHANGE)
1490 				work->enforce_security = true;
1491 			else
1492 				work->enforce_security = false;
1493 
1494 			queue_work(ib_wq, &work->work);
1495 		}
1496 	}
1497 }
1498 
1499 int ib_cache_setup_one(struct ib_device *device)
1500 {
1501 	unsigned int p;
1502 	int err;
1503 
1504 	rwlock_init(&device->cache.lock);
1505 
1506 	err = gid_table_setup_one(device);
1507 	if (err)
1508 		return err;
1509 
1510 	rdma_for_each_port (device, p)
1511 		ib_cache_update(device, p, true);
1512 
1513 	INIT_IB_EVENT_HANDLER(&device->cache.event_handler,
1514 			      device, ib_cache_event);
1515 	ib_register_event_handler(&device->cache.event_handler);
1516 	return 0;
1517 }
1518 
1519 void ib_cache_release_one(struct ib_device *device)
1520 {
1521 	unsigned int p;
1522 
1523 	/*
1524 	 * The release function frees all the cache elements.
1525 	 * This function should be called as part of freeing
1526 	 * all the device's resources when the cache could no
1527 	 * longer be accessed.
1528 	 */
1529 	rdma_for_each_port (device, p)
1530 		kfree(device->port_data[p].cache.pkey);
1531 
1532 	gid_table_release_one(device);
1533 }
1534 
1535 void ib_cache_cleanup_one(struct ib_device *device)
1536 {
1537 	/* The cleanup function unregisters the event handler,
1538 	 * waits for all in-progress workqueue elements and cleans
1539 	 * up the GID cache. This function should be called after
1540 	 * the device was removed from the devices list and all
1541 	 * clients were removed, so the cache exists but is
1542 	 * non-functional and shouldn't be updated anymore.
1543 	 */
1544 	ib_unregister_event_handler(&device->cache.event_handler);
1545 	flush_workqueue(ib_wq);
1546 	gid_table_cleanup_one(device);
1547 
1548 	/*
1549 	 * Flush the wq second time for any pending GID delete work.
1550 	 */
1551 	flush_workqueue(ib_wq);
1552 }
1553