xref: /linux/drivers/infiniband/core/addr.c (revision 3bdab16c55f57a24245c97d707241dd9b48d1a91)
1 /*
2  * Copyright (c) 2005 Voltaire Inc.  All rights reserved.
3  * Copyright (c) 2002-2005, Network Appliance, Inc. All rights reserved.
4  * Copyright (c) 1999-2005, Mellanox Technologies, Inc. All rights reserved.
5  * Copyright (c) 2005 Intel Corporation.  All rights reserved.
6  *
7  * This software is available to you under a choice of one of two
8  * licenses.  You may choose to be licensed under the terms of the GNU
9  * General Public License (GPL) Version 2, available from the file
10  * COPYING in the main directory of this source tree, or the
11  * OpenIB.org BSD license below:
12  *
13  *     Redistribution and use in source and binary forms, with or
14  *     without modification, are permitted provided that the following
15  *     conditions are met:
16  *
17  *      - Redistributions of source code must retain the above
18  *        copyright notice, this list of conditions and the following
19  *        disclaimer.
20  *
21  *      - Redistributions in binary form must reproduce the above
22  *        copyright notice, this list of conditions and the following
23  *        disclaimer in the documentation and/or other materials
24  *        provided with the distribution.
25  *
26  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
27  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
28  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
29  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
30  * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
31  * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
32  * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33  * SOFTWARE.
34  */
35 
36 #include <linux/mutex.h>
37 #include <linux/inetdevice.h>
38 #include <linux/slab.h>
39 #include <linux/workqueue.h>
40 #include <linux/module.h>
41 #include <net/arp.h>
42 #include <net/neighbour.h>
43 #include <net/route.h>
44 #include <net/netevent.h>
45 #include <net/ipv6_stubs.h>
46 #include <net/ip6_route.h>
47 #include <rdma/ib_addr.h>
48 #include <rdma/ib_cache.h>
49 #include <rdma/ib_sa.h>
50 #include <rdma/ib.h>
51 #include <rdma/rdma_netlink.h>
52 #include <net/netlink.h>
53 
54 #include "core_priv.h"
55 
56 struct addr_req {
57 	struct list_head list;
58 	struct sockaddr_storage src_addr;
59 	struct sockaddr_storage dst_addr;
60 	struct rdma_dev_addr *addr;
61 	void *context;
62 	void (*callback)(int status, struct sockaddr *src_addr,
63 			 struct rdma_dev_addr *addr, void *context);
64 	unsigned long timeout;
65 	struct delayed_work work;
66 	bool resolve_by_gid_attr;	/* Consider gid attr in resolve phase */
67 	int status;
68 	u32 seq;
69 };
70 
71 static atomic_t ib_nl_addr_request_seq = ATOMIC_INIT(0);
72 
73 static DEFINE_SPINLOCK(lock);
74 static LIST_HEAD(req_list);
75 static struct workqueue_struct *addr_wq;
76 
77 static const struct nla_policy ib_nl_addr_policy[LS_NLA_TYPE_MAX] = {
78 	[LS_NLA_TYPE_DGID] = {.type = NLA_BINARY,
79 		.len = sizeof(struct rdma_nla_ls_gid)},
80 };
81 
82 static inline bool ib_nl_is_good_ip_resp(const struct nlmsghdr *nlh)
83 {
84 	struct nlattr *tb[LS_NLA_TYPE_MAX] = {};
85 	int ret;
86 
87 	if (nlh->nlmsg_flags & RDMA_NL_LS_F_ERR)
88 		return false;
89 
90 	ret = nla_parse_deprecated(tb, LS_NLA_TYPE_MAX - 1, nlmsg_data(nlh),
91 				   nlmsg_len(nlh), ib_nl_addr_policy, NULL);
92 	if (ret)
93 		return false;
94 
95 	return true;
96 }
97 
98 static void ib_nl_process_good_ip_rsep(const struct nlmsghdr *nlh)
99 {
100 	const struct nlattr *head, *curr;
101 	union ib_gid gid;
102 	struct addr_req *req;
103 	int len, rem;
104 	int found = 0;
105 
106 	head = (const struct nlattr *)nlmsg_data(nlh);
107 	len = nlmsg_len(nlh);
108 
109 	nla_for_each_attr(curr, head, len, rem) {
110 		if (curr->nla_type == LS_NLA_TYPE_DGID)
111 			memcpy(&gid, nla_data(curr), nla_len(curr));
112 	}
113 
114 	spin_lock_bh(&lock);
115 	list_for_each_entry(req, &req_list, list) {
116 		if (nlh->nlmsg_seq != req->seq)
117 			continue;
118 		/* We set the DGID part, the rest was set earlier */
119 		rdma_addr_set_dgid(req->addr, &gid);
120 		req->status = 0;
121 		found = 1;
122 		break;
123 	}
124 	spin_unlock_bh(&lock);
125 
126 	if (!found)
127 		pr_info("Couldn't find request waiting for DGID: %pI6\n",
128 			&gid);
129 }
130 
131 int ib_nl_handle_ip_res_resp(struct sk_buff *skb,
132 			     struct nlmsghdr *nlh,
133 			     struct netlink_ext_ack *extack)
134 {
135 	if ((nlh->nlmsg_flags & NLM_F_REQUEST) ||
136 	    !(NETLINK_CB(skb).sk))
137 		return -EPERM;
138 
139 	if (ib_nl_is_good_ip_resp(nlh))
140 		ib_nl_process_good_ip_rsep(nlh);
141 
142 	return skb->len;
143 }
144 
145 static int ib_nl_ip_send_msg(struct rdma_dev_addr *dev_addr,
146 			     const void *daddr,
147 			     u32 seq, u16 family)
148 {
149 	struct sk_buff *skb = NULL;
150 	struct nlmsghdr *nlh;
151 	struct rdma_ls_ip_resolve_header *header;
152 	void *data;
153 	size_t size;
154 	int attrtype;
155 	int len;
156 
157 	if (family == AF_INET) {
158 		size = sizeof(struct in_addr);
159 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV4;
160 	} else {
161 		size = sizeof(struct in6_addr);
162 		attrtype = RDMA_NLA_F_MANDATORY | LS_NLA_TYPE_IPV6;
163 	}
164 
165 	len = nla_total_size(sizeof(size));
166 	len += NLMSG_ALIGN(sizeof(*header));
167 
168 	skb = nlmsg_new(len, GFP_KERNEL);
169 	if (!skb)
170 		return -ENOMEM;
171 
172 	data = ibnl_put_msg(skb, &nlh, seq, 0, RDMA_NL_LS,
173 			    RDMA_NL_LS_OP_IP_RESOLVE, NLM_F_REQUEST);
174 	if (!data) {
175 		nlmsg_free(skb);
176 		return -ENODATA;
177 	}
178 
179 	/* Construct the family header first */
180 	header = skb_put(skb, NLMSG_ALIGN(sizeof(*header)));
181 	header->ifindex = dev_addr->bound_dev_if;
182 	nla_put(skb, attrtype, size, daddr);
183 
184 	/* Repair the nlmsg header length */
185 	nlmsg_end(skb, nlh);
186 	rdma_nl_multicast(skb, RDMA_NL_GROUP_LS, GFP_KERNEL);
187 
188 	/* Make the request retry, so when we get the response from userspace
189 	 * we will have something.
190 	 */
191 	return -ENODATA;
192 }
193 
194 int rdma_addr_size(const struct sockaddr *addr)
195 {
196 	switch (addr->sa_family) {
197 	case AF_INET:
198 		return sizeof(struct sockaddr_in);
199 	case AF_INET6:
200 		return sizeof(struct sockaddr_in6);
201 	case AF_IB:
202 		return sizeof(struct sockaddr_ib);
203 	default:
204 		return 0;
205 	}
206 }
207 EXPORT_SYMBOL(rdma_addr_size);
208 
209 int rdma_addr_size_in6(struct sockaddr_in6 *addr)
210 {
211 	int ret = rdma_addr_size((struct sockaddr *) addr);
212 
213 	return ret <= sizeof(*addr) ? ret : 0;
214 }
215 EXPORT_SYMBOL(rdma_addr_size_in6);
216 
217 int rdma_addr_size_kss(struct __kernel_sockaddr_storage *addr)
218 {
219 	int ret = rdma_addr_size((struct sockaddr *) addr);
220 
221 	return ret <= sizeof(*addr) ? ret : 0;
222 }
223 EXPORT_SYMBOL(rdma_addr_size_kss);
224 
225 /**
226  * rdma_copy_src_l2_addr - Copy netdevice source addresses
227  * @dev_addr:	Destination address pointer where to copy the addresses
228  * @dev:	Netdevice whose source addresses to copy
229  *
230  * rdma_copy_src_l2_addr() copies source addresses from the specified netdevice.
231  * This includes unicast address, broadcast address, device type and
232  * interface index.
233  */
234 void rdma_copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
235 			   const struct net_device *dev)
236 {
237 	dev_addr->dev_type = dev->type;
238 	memcpy(dev_addr->src_dev_addr, dev->dev_addr, MAX_ADDR_LEN);
239 	memcpy(dev_addr->broadcast, dev->broadcast, MAX_ADDR_LEN);
240 	dev_addr->bound_dev_if = dev->ifindex;
241 }
242 EXPORT_SYMBOL(rdma_copy_src_l2_addr);
243 
244 static struct net_device *
245 rdma_find_ndev_for_src_ip_rcu(struct net *net, const struct sockaddr *src_in)
246 {
247 	struct net_device *dev = NULL;
248 	int ret = -EADDRNOTAVAIL;
249 
250 	switch (src_in->sa_family) {
251 	case AF_INET:
252 		dev = __ip_dev_find(net,
253 				    ((const struct sockaddr_in *)src_in)->sin_addr.s_addr,
254 				    false);
255 		if (dev)
256 			ret = 0;
257 		break;
258 #if IS_ENABLED(CONFIG_IPV6)
259 	case AF_INET6:
260 		for_each_netdev_rcu(net, dev) {
261 			if (ipv6_chk_addr(net,
262 					  &((const struct sockaddr_in6 *)src_in)->sin6_addr,
263 					  dev, 1)) {
264 				ret = 0;
265 				break;
266 			}
267 		}
268 		break;
269 #endif
270 	}
271 	return ret ? ERR_PTR(ret) : dev;
272 }
273 
274 int rdma_translate_ip(const struct sockaddr *addr,
275 		      struct rdma_dev_addr *dev_addr)
276 {
277 	struct net_device *dev;
278 
279 	if (dev_addr->bound_dev_if) {
280 		dev = dev_get_by_index(dev_addr->net, dev_addr->bound_dev_if);
281 		if (!dev)
282 			return -ENODEV;
283 		rdma_copy_src_l2_addr(dev_addr, dev);
284 		dev_put(dev);
285 		return 0;
286 	}
287 
288 	rcu_read_lock();
289 	dev = rdma_find_ndev_for_src_ip_rcu(dev_addr->net, addr);
290 	if (!IS_ERR(dev))
291 		rdma_copy_src_l2_addr(dev_addr, dev);
292 	rcu_read_unlock();
293 	return PTR_ERR_OR_ZERO(dev);
294 }
295 EXPORT_SYMBOL(rdma_translate_ip);
296 
297 static void set_timeout(struct addr_req *req, unsigned long time)
298 {
299 	unsigned long delay;
300 
301 	delay = time - jiffies;
302 	if ((long)delay < 0)
303 		delay = 0;
304 
305 	mod_delayed_work(addr_wq, &req->work, delay);
306 }
307 
308 static void queue_req(struct addr_req *req)
309 {
310 	spin_lock_bh(&lock);
311 	list_add_tail(&req->list, &req_list);
312 	set_timeout(req, req->timeout);
313 	spin_unlock_bh(&lock);
314 }
315 
316 static int ib_nl_fetch_ha(struct rdma_dev_addr *dev_addr,
317 			  const void *daddr, u32 seq, u16 family)
318 {
319 	if (!rdma_nl_chk_listeners(RDMA_NL_GROUP_LS))
320 		return -EADDRNOTAVAIL;
321 
322 	return ib_nl_ip_send_msg(dev_addr, daddr, seq, family);
323 }
324 
325 static int dst_fetch_ha(const struct dst_entry *dst,
326 			struct rdma_dev_addr *dev_addr,
327 			const void *daddr)
328 {
329 	struct neighbour *n;
330 	int ret = 0;
331 
332 	n = dst_neigh_lookup(dst, daddr);
333 	if (!n)
334 		return -ENODATA;
335 
336 	if (!(n->nud_state & NUD_VALID)) {
337 		neigh_event_send(n, NULL);
338 		ret = -ENODATA;
339 	} else {
340 		memcpy(dev_addr->dst_dev_addr, n->ha, MAX_ADDR_LEN);
341 	}
342 
343 	neigh_release(n);
344 
345 	return ret;
346 }
347 
348 static bool has_gateway(const struct dst_entry *dst, sa_family_t family)
349 {
350 	struct rtable *rt;
351 	struct rt6_info *rt6;
352 
353 	if (family == AF_INET) {
354 		rt = container_of(dst, struct rtable, dst);
355 		return rt->rt_gw_family == AF_INET;
356 	}
357 
358 	rt6 = container_of(dst, struct rt6_info, dst);
359 	return rt6->rt6i_flags & RTF_GATEWAY;
360 }
361 
362 static int fetch_ha(const struct dst_entry *dst, struct rdma_dev_addr *dev_addr,
363 		    const struct sockaddr *dst_in, u32 seq)
364 {
365 	const struct sockaddr_in *dst_in4 =
366 		(const struct sockaddr_in *)dst_in;
367 	const struct sockaddr_in6 *dst_in6 =
368 		(const struct sockaddr_in6 *)dst_in;
369 	const void *daddr = (dst_in->sa_family == AF_INET) ?
370 		(const void *)&dst_in4->sin_addr.s_addr :
371 		(const void *)&dst_in6->sin6_addr;
372 	sa_family_t family = dst_in->sa_family;
373 
374 	/* If we have a gateway in IB mode then it must be an IB network */
375 	if (has_gateway(dst, family) && dev_addr->network == RDMA_NETWORK_IB)
376 		return ib_nl_fetch_ha(dev_addr, daddr, seq, family);
377 	else
378 		return dst_fetch_ha(dst, dev_addr, daddr);
379 }
380 
381 static int addr4_resolve(struct sockaddr *src_sock,
382 			 const struct sockaddr *dst_sock,
383 			 struct rdma_dev_addr *addr,
384 			 struct rtable **prt)
385 {
386 	struct sockaddr_in *src_in = (struct sockaddr_in *)src_sock;
387 	const struct sockaddr_in *dst_in =
388 			(const struct sockaddr_in *)dst_sock;
389 
390 	__be32 src_ip = src_in->sin_addr.s_addr;
391 	__be32 dst_ip = dst_in->sin_addr.s_addr;
392 	struct rtable *rt;
393 	struct flowi4 fl4;
394 	int ret;
395 
396 	memset(&fl4, 0, sizeof(fl4));
397 	fl4.daddr = dst_ip;
398 	fl4.saddr = src_ip;
399 	fl4.flowi4_oif = addr->bound_dev_if;
400 	rt = ip_route_output_key(addr->net, &fl4);
401 	ret = PTR_ERR_OR_ZERO(rt);
402 	if (ret)
403 		return ret;
404 
405 	src_in->sin_addr.s_addr = fl4.saddr;
406 
407 	addr->hoplimit = ip4_dst_hoplimit(&rt->dst);
408 
409 	*prt = rt;
410 	return 0;
411 }
412 
413 #if IS_ENABLED(CONFIG_IPV6)
414 static int addr6_resolve(struct sockaddr *src_sock,
415 			 const struct sockaddr *dst_sock,
416 			 struct rdma_dev_addr *addr,
417 			 struct dst_entry **pdst)
418 {
419 	struct sockaddr_in6 *src_in = (struct sockaddr_in6 *)src_sock;
420 	const struct sockaddr_in6 *dst_in =
421 				(const struct sockaddr_in6 *)dst_sock;
422 	struct flowi6 fl6;
423 	struct dst_entry *dst;
424 	int ret;
425 
426 	memset(&fl6, 0, sizeof fl6);
427 	fl6.daddr = dst_in->sin6_addr;
428 	fl6.saddr = src_in->sin6_addr;
429 	fl6.flowi6_oif = addr->bound_dev_if;
430 
431 	ret = ipv6_stub->ipv6_dst_lookup(addr->net, NULL, &dst, &fl6);
432 	if (ret < 0)
433 		return ret;
434 
435 	if (ipv6_addr_any(&src_in->sin6_addr))
436 		src_in->sin6_addr = fl6.saddr;
437 
438 	addr->hoplimit = ip6_dst_hoplimit(dst);
439 
440 	*pdst = dst;
441 	return 0;
442 }
443 #else
444 static int addr6_resolve(struct sockaddr *src_sock,
445 			 const struct sockaddr *dst_sock,
446 			 struct rdma_dev_addr *addr,
447 			 struct dst_entry **pdst)
448 {
449 	return -EADDRNOTAVAIL;
450 }
451 #endif
452 
453 static int addr_resolve_neigh(const struct dst_entry *dst,
454 			      const struct sockaddr *dst_in,
455 			      struct rdma_dev_addr *addr,
456 			      unsigned int ndev_flags,
457 			      u32 seq)
458 {
459 	int ret = 0;
460 
461 	if (ndev_flags & IFF_LOOPBACK) {
462 		memcpy(addr->dst_dev_addr, addr->src_dev_addr, MAX_ADDR_LEN);
463 	} else {
464 		if (!(ndev_flags & IFF_NOARP)) {
465 			/* If the device doesn't do ARP internally */
466 			ret = fetch_ha(dst, addr, dst_in, seq);
467 		}
468 	}
469 	return ret;
470 }
471 
472 static int copy_src_l2_addr(struct rdma_dev_addr *dev_addr,
473 			    const struct sockaddr *dst_in,
474 			    const struct dst_entry *dst,
475 			    const struct net_device *ndev)
476 {
477 	int ret = 0;
478 
479 	if (dst->dev->flags & IFF_LOOPBACK)
480 		ret = rdma_translate_ip(dst_in, dev_addr);
481 	else
482 		rdma_copy_src_l2_addr(dev_addr, dst->dev);
483 
484 	/*
485 	 * If there's a gateway and type of device not ARPHRD_INFINIBAND,
486 	 * we're definitely in RoCE v2 (as RoCE v1 isn't routable) set the
487 	 * network type accordingly.
488 	 */
489 	if (has_gateway(dst, dst_in->sa_family) &&
490 	    ndev->type != ARPHRD_INFINIBAND)
491 		dev_addr->network = dst_in->sa_family == AF_INET ?
492 						RDMA_NETWORK_IPV4 :
493 						RDMA_NETWORK_IPV6;
494 	else
495 		dev_addr->network = RDMA_NETWORK_IB;
496 
497 	return ret;
498 }
499 
500 static int rdma_set_src_addr_rcu(struct rdma_dev_addr *dev_addr,
501 				 unsigned int *ndev_flags,
502 				 const struct sockaddr *dst_in,
503 				 const struct dst_entry *dst)
504 {
505 	struct net_device *ndev = READ_ONCE(dst->dev);
506 
507 	*ndev_flags = ndev->flags;
508 	/* A physical device must be the RDMA device to use */
509 	if (ndev->flags & IFF_LOOPBACK) {
510 		/*
511 		 * RDMA (IB/RoCE, iWarp) doesn't run on lo interface or
512 		 * loopback IP address. So if route is resolved to loopback
513 		 * interface, translate that to a real ndev based on non
514 		 * loopback IP address.
515 		 */
516 		ndev = rdma_find_ndev_for_src_ip_rcu(dev_net(ndev), dst_in);
517 		if (IS_ERR(ndev))
518 			return -ENODEV;
519 	}
520 
521 	return copy_src_l2_addr(dev_addr, dst_in, dst, ndev);
522 }
523 
524 static int set_addr_netns_by_gid_rcu(struct rdma_dev_addr *addr)
525 {
526 	struct net_device *ndev;
527 
528 	ndev = rdma_read_gid_attr_ndev_rcu(addr->sgid_attr);
529 	if (IS_ERR(ndev))
530 		return PTR_ERR(ndev);
531 
532 	/*
533 	 * Since we are holding the rcu, reading net and ifindex
534 	 * are safe without any additional reference; because
535 	 * change_net_namespace() in net/core/dev.c does rcu sync
536 	 * after it changes the state to IFF_DOWN and before
537 	 * updating netdev fields {net, ifindex}.
538 	 */
539 	addr->net = dev_net(ndev);
540 	addr->bound_dev_if = ndev->ifindex;
541 	return 0;
542 }
543 
544 static void rdma_addr_set_net_defaults(struct rdma_dev_addr *addr)
545 {
546 	addr->net = &init_net;
547 	addr->bound_dev_if = 0;
548 }
549 
550 static int addr_resolve(struct sockaddr *src_in,
551 			const struct sockaddr *dst_in,
552 			struct rdma_dev_addr *addr,
553 			bool resolve_neigh,
554 			bool resolve_by_gid_attr,
555 			u32 seq)
556 {
557 	struct dst_entry *dst = NULL;
558 	unsigned int ndev_flags = 0;
559 	struct rtable *rt = NULL;
560 	int ret;
561 
562 	if (!addr->net) {
563 		pr_warn_ratelimited("%s: missing namespace\n", __func__);
564 		return -EINVAL;
565 	}
566 
567 	rcu_read_lock();
568 	if (resolve_by_gid_attr) {
569 		if (!addr->sgid_attr) {
570 			rcu_read_unlock();
571 			pr_warn_ratelimited("%s: missing gid_attr\n", __func__);
572 			return -EINVAL;
573 		}
574 		/*
575 		 * If the request is for a specific gid attribute of the
576 		 * rdma_dev_addr, derive net from the netdevice of the
577 		 * GID attribute.
578 		 */
579 		ret = set_addr_netns_by_gid_rcu(addr);
580 		if (ret) {
581 			rcu_read_unlock();
582 			return ret;
583 		}
584 	}
585 	if (src_in->sa_family == AF_INET) {
586 		ret = addr4_resolve(src_in, dst_in, addr, &rt);
587 		dst = &rt->dst;
588 	} else {
589 		ret = addr6_resolve(src_in, dst_in, addr, &dst);
590 	}
591 	if (ret) {
592 		rcu_read_unlock();
593 		goto done;
594 	}
595 	ret = rdma_set_src_addr_rcu(addr, &ndev_flags, dst_in, dst);
596 	rcu_read_unlock();
597 
598 	/*
599 	 * Resolve neighbor destination address if requested and
600 	 * only if src addr translation didn't fail.
601 	 */
602 	if (!ret && resolve_neigh)
603 		ret = addr_resolve_neigh(dst, dst_in, addr, ndev_flags, seq);
604 
605 	if (src_in->sa_family == AF_INET)
606 		ip_rt_put(rt);
607 	else
608 		dst_release(dst);
609 done:
610 	/*
611 	 * Clear the addr net to go back to its original state, only if it was
612 	 * derived from GID attribute in this context.
613 	 */
614 	if (resolve_by_gid_attr)
615 		rdma_addr_set_net_defaults(addr);
616 	return ret;
617 }
618 
619 static void process_one_req(struct work_struct *_work)
620 {
621 	struct addr_req *req;
622 	struct sockaddr *src_in, *dst_in;
623 
624 	req = container_of(_work, struct addr_req, work.work);
625 
626 	if (req->status == -ENODATA) {
627 		src_in = (struct sockaddr *)&req->src_addr;
628 		dst_in = (struct sockaddr *)&req->dst_addr;
629 		req->status = addr_resolve(src_in, dst_in, req->addr,
630 					   true, req->resolve_by_gid_attr,
631 					   req->seq);
632 		if (req->status && time_after_eq(jiffies, req->timeout)) {
633 			req->status = -ETIMEDOUT;
634 		} else if (req->status == -ENODATA) {
635 			/* requeue the work for retrying again */
636 			spin_lock_bh(&lock);
637 			if (!list_empty(&req->list))
638 				set_timeout(req, req->timeout);
639 			spin_unlock_bh(&lock);
640 			return;
641 		}
642 	}
643 
644 	req->callback(req->status, (struct sockaddr *)&req->src_addr,
645 		req->addr, req->context);
646 	req->callback = NULL;
647 
648 	spin_lock_bh(&lock);
649 	if (!list_empty(&req->list)) {
650 		/*
651 		 * Although the work will normally have been canceled by the
652 		 * workqueue, it can still be requeued as long as it is on the
653 		 * req_list.
654 		 */
655 		cancel_delayed_work(&req->work);
656 		list_del_init(&req->list);
657 		kfree(req);
658 	}
659 	spin_unlock_bh(&lock);
660 }
661 
662 int rdma_resolve_ip(struct sockaddr *src_addr, const struct sockaddr *dst_addr,
663 		    struct rdma_dev_addr *addr, unsigned long timeout_ms,
664 		    void (*callback)(int status, struct sockaddr *src_addr,
665 				     struct rdma_dev_addr *addr, void *context),
666 		    bool resolve_by_gid_attr, void *context)
667 {
668 	struct sockaddr *src_in, *dst_in;
669 	struct addr_req *req;
670 	int ret = 0;
671 
672 	req = kzalloc(sizeof *req, GFP_KERNEL);
673 	if (!req)
674 		return -ENOMEM;
675 
676 	src_in = (struct sockaddr *) &req->src_addr;
677 	dst_in = (struct sockaddr *) &req->dst_addr;
678 
679 	if (src_addr) {
680 		if (src_addr->sa_family != dst_addr->sa_family) {
681 			ret = -EINVAL;
682 			goto err;
683 		}
684 
685 		memcpy(src_in, src_addr, rdma_addr_size(src_addr));
686 	} else {
687 		src_in->sa_family = dst_addr->sa_family;
688 	}
689 
690 	memcpy(dst_in, dst_addr, rdma_addr_size(dst_addr));
691 	req->addr = addr;
692 	req->callback = callback;
693 	req->context = context;
694 	req->resolve_by_gid_attr = resolve_by_gid_attr;
695 	INIT_DELAYED_WORK(&req->work, process_one_req);
696 	req->seq = (u32)atomic_inc_return(&ib_nl_addr_request_seq);
697 
698 	req->status = addr_resolve(src_in, dst_in, addr, true,
699 				   req->resolve_by_gid_attr, req->seq);
700 	switch (req->status) {
701 	case 0:
702 		req->timeout = jiffies;
703 		queue_req(req);
704 		break;
705 	case -ENODATA:
706 		req->timeout = msecs_to_jiffies(timeout_ms) + jiffies;
707 		queue_req(req);
708 		break;
709 	default:
710 		ret = req->status;
711 		goto err;
712 	}
713 	return ret;
714 err:
715 	kfree(req);
716 	return ret;
717 }
718 EXPORT_SYMBOL(rdma_resolve_ip);
719 
720 int roce_resolve_route_from_path(struct sa_path_rec *rec,
721 				 const struct ib_gid_attr *attr)
722 {
723 	union {
724 		struct sockaddr     _sockaddr;
725 		struct sockaddr_in  _sockaddr_in;
726 		struct sockaddr_in6 _sockaddr_in6;
727 	} sgid, dgid;
728 	struct rdma_dev_addr dev_addr = {};
729 	int ret;
730 
731 	if (rec->roce.route_resolved)
732 		return 0;
733 
734 	rdma_gid2ip((struct sockaddr *)&sgid, &rec->sgid);
735 	rdma_gid2ip((struct sockaddr *)&dgid, &rec->dgid);
736 
737 	if (sgid._sockaddr.sa_family != dgid._sockaddr.sa_family)
738 		return -EINVAL;
739 
740 	if (!attr || !attr->ndev)
741 		return -EINVAL;
742 
743 	dev_addr.net = &init_net;
744 	dev_addr.sgid_attr = attr;
745 
746 	ret = addr_resolve((struct sockaddr *)&sgid, (struct sockaddr *)&dgid,
747 			   &dev_addr, false, true, 0);
748 	if (ret)
749 		return ret;
750 
751 	if ((dev_addr.network == RDMA_NETWORK_IPV4 ||
752 	     dev_addr.network == RDMA_NETWORK_IPV6) &&
753 	    rec->rec_type != SA_PATH_REC_TYPE_ROCE_V2)
754 		return -EINVAL;
755 
756 	rec->roce.route_resolved = true;
757 	return 0;
758 }
759 
760 /**
761  * rdma_addr_cancel - Cancel resolve ip request
762  * @addr:	Pointer to address structure given previously
763  *		during rdma_resolve_ip().
764  * rdma_addr_cancel() is synchronous function which cancels any pending
765  * request if there is any.
766  */
767 void rdma_addr_cancel(struct rdma_dev_addr *addr)
768 {
769 	struct addr_req *req, *temp_req;
770 	struct addr_req *found = NULL;
771 
772 	spin_lock_bh(&lock);
773 	list_for_each_entry_safe(req, temp_req, &req_list, list) {
774 		if (req->addr == addr) {
775 			/*
776 			 * Removing from the list means we take ownership of
777 			 * the req
778 			 */
779 			list_del_init(&req->list);
780 			found = req;
781 			break;
782 		}
783 	}
784 	spin_unlock_bh(&lock);
785 
786 	if (!found)
787 		return;
788 
789 	/*
790 	 * sync canceling the work after removing it from the req_list
791 	 * guarentees no work is running and none will be started.
792 	 */
793 	cancel_delayed_work_sync(&found->work);
794 	kfree(found);
795 }
796 EXPORT_SYMBOL(rdma_addr_cancel);
797 
798 struct resolve_cb_context {
799 	struct completion comp;
800 	int status;
801 };
802 
803 static void resolve_cb(int status, struct sockaddr *src_addr,
804 	     struct rdma_dev_addr *addr, void *context)
805 {
806 	((struct resolve_cb_context *)context)->status = status;
807 	complete(&((struct resolve_cb_context *)context)->comp);
808 }
809 
810 int rdma_addr_find_l2_eth_by_grh(const union ib_gid *sgid,
811 				 const union ib_gid *dgid,
812 				 u8 *dmac, const struct ib_gid_attr *sgid_attr,
813 				 int *hoplimit)
814 {
815 	struct rdma_dev_addr dev_addr;
816 	struct resolve_cb_context ctx;
817 	union {
818 		struct sockaddr_in  _sockaddr_in;
819 		struct sockaddr_in6 _sockaddr_in6;
820 	} sgid_addr, dgid_addr;
821 	int ret;
822 
823 	rdma_gid2ip((struct sockaddr *)&sgid_addr, sgid);
824 	rdma_gid2ip((struct sockaddr *)&dgid_addr, dgid);
825 
826 	memset(&dev_addr, 0, sizeof(dev_addr));
827 	dev_addr.net = &init_net;
828 	dev_addr.sgid_attr = sgid_attr;
829 
830 	init_completion(&ctx.comp);
831 	ret = rdma_resolve_ip((struct sockaddr *)&sgid_addr,
832 			      (struct sockaddr *)&dgid_addr, &dev_addr, 1000,
833 			      resolve_cb, true, &ctx);
834 	if (ret)
835 		return ret;
836 
837 	wait_for_completion(&ctx.comp);
838 
839 	ret = ctx.status;
840 	if (ret)
841 		return ret;
842 
843 	memcpy(dmac, dev_addr.dst_dev_addr, ETH_ALEN);
844 	*hoplimit = dev_addr.hoplimit;
845 	return 0;
846 }
847 
848 static int netevent_callback(struct notifier_block *self, unsigned long event,
849 	void *ctx)
850 {
851 	struct addr_req *req;
852 
853 	if (event == NETEVENT_NEIGH_UPDATE) {
854 		struct neighbour *neigh = ctx;
855 
856 		if (neigh->nud_state & NUD_VALID) {
857 			spin_lock_bh(&lock);
858 			list_for_each_entry(req, &req_list, list)
859 				set_timeout(req, jiffies);
860 			spin_unlock_bh(&lock);
861 		}
862 	}
863 	return 0;
864 }
865 
866 static struct notifier_block nb = {
867 	.notifier_call = netevent_callback
868 };
869 
870 int addr_init(void)
871 {
872 	addr_wq = alloc_ordered_workqueue("ib_addr", 0);
873 	if (!addr_wq)
874 		return -ENOMEM;
875 
876 	register_netevent_notifier(&nb);
877 
878 	return 0;
879 }
880 
881 void addr_cleanup(void)
882 {
883 	unregister_netevent_notifier(&nb);
884 	destroy_workqueue(addr_wq);
885 	WARN_ON(!list_empty(&req_list));
886 }
887