xref: /linux/drivers/gpu/drm/vmwgfx/vmwgfx_fence.c (revision d2912cb15bdda8ba4a5dd73396ad62641af2f520)
1 // SPDX-License-Identifier: GPL-2.0 OR MIT
2 /**************************************************************************
3  *
4  * Copyright 2011-2014 VMware, Inc., Palo Alto, CA., USA
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the
8  * "Software"), to deal in the Software without restriction, including
9  * without limitation the rights to use, copy, modify, merge, publish,
10  * distribute, sub license, and/or sell copies of the Software, and to
11  * permit persons to whom the Software is furnished to do so, subject to
12  * the following conditions:
13  *
14  * The above copyright notice and this permission notice (including the
15  * next paragraph) shall be included in all copies or substantial portions
16  * of the Software.
17  *
18  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21  * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22  * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23  * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24  * USE OR OTHER DEALINGS IN THE SOFTWARE.
25  *
26  **************************************************************************/
27 
28 #include <drm/drmP.h>
29 #include "vmwgfx_drv.h"
30 
31 #define VMW_FENCE_WRAP (1 << 31)
32 
33 struct vmw_fence_manager {
34 	int num_fence_objects;
35 	struct vmw_private *dev_priv;
36 	spinlock_t lock;
37 	struct list_head fence_list;
38 	struct work_struct work;
39 	u32 user_fence_size;
40 	u32 fence_size;
41 	u32 event_fence_action_size;
42 	bool fifo_down;
43 	struct list_head cleanup_list;
44 	uint32_t pending_actions[VMW_ACTION_MAX];
45 	struct mutex goal_irq_mutex;
46 	bool goal_irq_on; /* Protected by @goal_irq_mutex */
47 	bool seqno_valid; /* Protected by @lock, and may not be set to true
48 			     without the @goal_irq_mutex held. */
49 	u64 ctx;
50 };
51 
52 struct vmw_user_fence {
53 	struct ttm_base_object base;
54 	struct vmw_fence_obj fence;
55 };
56 
57 /**
58  * struct vmw_event_fence_action - fence action that delivers a drm event.
59  *
60  * @e: A struct drm_pending_event that controls the event delivery.
61  * @action: A struct vmw_fence_action to hook up to a fence.
62  * @fence: A referenced pointer to the fence to keep it alive while @action
63  * hangs on it.
64  * @dev: Pointer to a struct drm_device so we can access the event stuff.
65  * @kref: Both @e and @action has destructors, so we need to refcount.
66  * @size: Size accounted for this object.
67  * @tv_sec: If non-null, the variable pointed to will be assigned
68  * current time tv_sec val when the fence signals.
69  * @tv_usec: Must be set if @tv_sec is set, and the variable pointed to will
70  * be assigned the current time tv_usec val when the fence signals.
71  */
72 struct vmw_event_fence_action {
73 	struct vmw_fence_action action;
74 
75 	struct drm_pending_event *event;
76 	struct vmw_fence_obj *fence;
77 	struct drm_device *dev;
78 
79 	uint32_t *tv_sec;
80 	uint32_t *tv_usec;
81 };
82 
83 static struct vmw_fence_manager *
84 fman_from_fence(struct vmw_fence_obj *fence)
85 {
86 	return container_of(fence->base.lock, struct vmw_fence_manager, lock);
87 }
88 
89 /**
90  * Note on fencing subsystem usage of irqs:
91  * Typically the vmw_fences_update function is called
92  *
93  * a) When a new fence seqno has been submitted by the fifo code.
94  * b) On-demand when we have waiters. Sleeping waiters will switch on the
95  * ANY_FENCE irq and call vmw_fences_update function each time an ANY_FENCE
96  * irq is received. When the last fence waiter is gone, that IRQ is masked
97  * away.
98  *
99  * In situations where there are no waiters and we don't submit any new fences,
100  * fence objects may not be signaled. This is perfectly OK, since there are
101  * no consumers of the signaled data, but that is NOT ok when there are fence
102  * actions attached to a fence. The fencing subsystem then makes use of the
103  * FENCE_GOAL irq and sets the fence goal seqno to that of the next fence
104  * which has an action attached, and each time vmw_fences_update is called,
105  * the subsystem makes sure the fence goal seqno is updated.
106  *
107  * The fence goal seqno irq is on as long as there are unsignaled fence
108  * objects with actions attached to them.
109  */
110 
111 static void vmw_fence_obj_destroy(struct dma_fence *f)
112 {
113 	struct vmw_fence_obj *fence =
114 		container_of(f, struct vmw_fence_obj, base);
115 
116 	struct vmw_fence_manager *fman = fman_from_fence(fence);
117 
118 	spin_lock(&fman->lock);
119 	list_del_init(&fence->head);
120 	--fman->num_fence_objects;
121 	spin_unlock(&fman->lock);
122 	fence->destroy(fence);
123 }
124 
125 static const char *vmw_fence_get_driver_name(struct dma_fence *f)
126 {
127 	return "vmwgfx";
128 }
129 
130 static const char *vmw_fence_get_timeline_name(struct dma_fence *f)
131 {
132 	return "svga";
133 }
134 
135 static bool vmw_fence_enable_signaling(struct dma_fence *f)
136 {
137 	struct vmw_fence_obj *fence =
138 		container_of(f, struct vmw_fence_obj, base);
139 
140 	struct vmw_fence_manager *fman = fman_from_fence(fence);
141 	struct vmw_private *dev_priv = fman->dev_priv;
142 
143 	u32 *fifo_mem = dev_priv->mmio_virt;
144 	u32 seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE);
145 	if (seqno - fence->base.seqno < VMW_FENCE_WRAP)
146 		return false;
147 
148 	vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC);
149 
150 	return true;
151 }
152 
153 struct vmwgfx_wait_cb {
154 	struct dma_fence_cb base;
155 	struct task_struct *task;
156 };
157 
158 static void
159 vmwgfx_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
160 {
161 	struct vmwgfx_wait_cb *wait =
162 		container_of(cb, struct vmwgfx_wait_cb, base);
163 
164 	wake_up_process(wait->task);
165 }
166 
167 static void __vmw_fences_update(struct vmw_fence_manager *fman);
168 
169 static long vmw_fence_wait(struct dma_fence *f, bool intr, signed long timeout)
170 {
171 	struct vmw_fence_obj *fence =
172 		container_of(f, struct vmw_fence_obj, base);
173 
174 	struct vmw_fence_manager *fman = fman_from_fence(fence);
175 	struct vmw_private *dev_priv = fman->dev_priv;
176 	struct vmwgfx_wait_cb cb;
177 	long ret = timeout;
178 
179 	if (likely(vmw_fence_obj_signaled(fence)))
180 		return timeout;
181 
182 	vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC);
183 	vmw_seqno_waiter_add(dev_priv);
184 
185 	spin_lock(f->lock);
186 
187 	if (intr && signal_pending(current)) {
188 		ret = -ERESTARTSYS;
189 		goto out;
190 	}
191 
192 	cb.base.func = vmwgfx_wait_cb;
193 	cb.task = current;
194 	list_add(&cb.base.node, &f->cb_list);
195 
196 	for (;;) {
197 		__vmw_fences_update(fman);
198 
199 		/*
200 		 * We can use the barrier free __set_current_state() since
201 		 * DMA_FENCE_FLAG_SIGNALED_BIT + wakeup is protected by the
202 		 * fence spinlock.
203 		 */
204 		if (intr)
205 			__set_current_state(TASK_INTERRUPTIBLE);
206 		else
207 			__set_current_state(TASK_UNINTERRUPTIBLE);
208 
209 		if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &f->flags)) {
210 			if (ret == 0 && timeout > 0)
211 				ret = 1;
212 			break;
213 		}
214 
215 		if (intr && signal_pending(current)) {
216 			ret = -ERESTARTSYS;
217 			break;
218 		}
219 
220 		if (ret == 0)
221 			break;
222 
223 		spin_unlock(f->lock);
224 
225 		ret = schedule_timeout(ret);
226 
227 		spin_lock(f->lock);
228 	}
229 	__set_current_state(TASK_RUNNING);
230 	if (!list_empty(&cb.base.node))
231 		list_del(&cb.base.node);
232 
233 out:
234 	spin_unlock(f->lock);
235 
236 	vmw_seqno_waiter_remove(dev_priv);
237 
238 	return ret;
239 }
240 
241 static const struct dma_fence_ops vmw_fence_ops = {
242 	.get_driver_name = vmw_fence_get_driver_name,
243 	.get_timeline_name = vmw_fence_get_timeline_name,
244 	.enable_signaling = vmw_fence_enable_signaling,
245 	.wait = vmw_fence_wait,
246 	.release = vmw_fence_obj_destroy,
247 };
248 
249 
250 /**
251  * Execute signal actions on fences recently signaled.
252  * This is done from a workqueue so we don't have to execute
253  * signal actions from atomic context.
254  */
255 
256 static void vmw_fence_work_func(struct work_struct *work)
257 {
258 	struct vmw_fence_manager *fman =
259 		container_of(work, struct vmw_fence_manager, work);
260 	struct list_head list;
261 	struct vmw_fence_action *action, *next_action;
262 	bool seqno_valid;
263 
264 	do {
265 		INIT_LIST_HEAD(&list);
266 		mutex_lock(&fman->goal_irq_mutex);
267 
268 		spin_lock(&fman->lock);
269 		list_splice_init(&fman->cleanup_list, &list);
270 		seqno_valid = fman->seqno_valid;
271 		spin_unlock(&fman->lock);
272 
273 		if (!seqno_valid && fman->goal_irq_on) {
274 			fman->goal_irq_on = false;
275 			vmw_goal_waiter_remove(fman->dev_priv);
276 		}
277 		mutex_unlock(&fman->goal_irq_mutex);
278 
279 		if (list_empty(&list))
280 			return;
281 
282 		/*
283 		 * At this point, only we should be able to manipulate the
284 		 * list heads of the actions we have on the private list.
285 		 * hence fman::lock not held.
286 		 */
287 
288 		list_for_each_entry_safe(action, next_action, &list, head) {
289 			list_del_init(&action->head);
290 			if (action->cleanup)
291 				action->cleanup(action);
292 		}
293 	} while (1);
294 }
295 
296 struct vmw_fence_manager *vmw_fence_manager_init(struct vmw_private *dev_priv)
297 {
298 	struct vmw_fence_manager *fman = kzalloc(sizeof(*fman), GFP_KERNEL);
299 
300 	if (unlikely(!fman))
301 		return NULL;
302 
303 	fman->dev_priv = dev_priv;
304 	spin_lock_init(&fman->lock);
305 	INIT_LIST_HEAD(&fman->fence_list);
306 	INIT_LIST_HEAD(&fman->cleanup_list);
307 	INIT_WORK(&fman->work, &vmw_fence_work_func);
308 	fman->fifo_down = true;
309 	fman->user_fence_size = ttm_round_pot(sizeof(struct vmw_user_fence)) +
310 		TTM_OBJ_EXTRA_SIZE;
311 	fman->fence_size = ttm_round_pot(sizeof(struct vmw_fence_obj));
312 	fman->event_fence_action_size =
313 		ttm_round_pot(sizeof(struct vmw_event_fence_action));
314 	mutex_init(&fman->goal_irq_mutex);
315 	fman->ctx = dma_fence_context_alloc(1);
316 
317 	return fman;
318 }
319 
320 void vmw_fence_manager_takedown(struct vmw_fence_manager *fman)
321 {
322 	bool lists_empty;
323 
324 	(void) cancel_work_sync(&fman->work);
325 
326 	spin_lock(&fman->lock);
327 	lists_empty = list_empty(&fman->fence_list) &&
328 		list_empty(&fman->cleanup_list);
329 	spin_unlock(&fman->lock);
330 
331 	BUG_ON(!lists_empty);
332 	kfree(fman);
333 }
334 
335 static int vmw_fence_obj_init(struct vmw_fence_manager *fman,
336 			      struct vmw_fence_obj *fence, u32 seqno,
337 			      void (*destroy) (struct vmw_fence_obj *fence))
338 {
339 	int ret = 0;
340 
341 	dma_fence_init(&fence->base, &vmw_fence_ops, &fman->lock,
342 		       fman->ctx, seqno);
343 	INIT_LIST_HEAD(&fence->seq_passed_actions);
344 	fence->destroy = destroy;
345 
346 	spin_lock(&fman->lock);
347 	if (unlikely(fman->fifo_down)) {
348 		ret = -EBUSY;
349 		goto out_unlock;
350 	}
351 	list_add_tail(&fence->head, &fman->fence_list);
352 	++fman->num_fence_objects;
353 
354 out_unlock:
355 	spin_unlock(&fman->lock);
356 	return ret;
357 
358 }
359 
360 static void vmw_fences_perform_actions(struct vmw_fence_manager *fman,
361 				struct list_head *list)
362 {
363 	struct vmw_fence_action *action, *next_action;
364 
365 	list_for_each_entry_safe(action, next_action, list, head) {
366 		list_del_init(&action->head);
367 		fman->pending_actions[action->type]--;
368 		if (action->seq_passed != NULL)
369 			action->seq_passed(action);
370 
371 		/*
372 		 * Add the cleanup action to the cleanup list so that
373 		 * it will be performed by a worker task.
374 		 */
375 
376 		list_add_tail(&action->head, &fman->cleanup_list);
377 	}
378 }
379 
380 /**
381  * vmw_fence_goal_new_locked - Figure out a new device fence goal
382  * seqno if needed.
383  *
384  * @fman: Pointer to a fence manager.
385  * @passed_seqno: The seqno the device currently signals as passed.
386  *
387  * This function should be called with the fence manager lock held.
388  * It is typically called when we have a new passed_seqno, and
389  * we might need to update the fence goal. It checks to see whether
390  * the current fence goal has already passed, and, in that case,
391  * scans through all unsignaled fences to get the next fence object with an
392  * action attached, and sets the seqno of that fence as a new fence goal.
393  *
394  * returns true if the device goal seqno was updated. False otherwise.
395  */
396 static bool vmw_fence_goal_new_locked(struct vmw_fence_manager *fman,
397 				      u32 passed_seqno)
398 {
399 	u32 goal_seqno;
400 	u32 *fifo_mem;
401 	struct vmw_fence_obj *fence;
402 
403 	if (likely(!fman->seqno_valid))
404 		return false;
405 
406 	fifo_mem = fman->dev_priv->mmio_virt;
407 	goal_seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE_GOAL);
408 	if (likely(passed_seqno - goal_seqno >= VMW_FENCE_WRAP))
409 		return false;
410 
411 	fman->seqno_valid = false;
412 	list_for_each_entry(fence, &fman->fence_list, head) {
413 		if (!list_empty(&fence->seq_passed_actions)) {
414 			fman->seqno_valid = true;
415 			vmw_mmio_write(fence->base.seqno,
416 				       fifo_mem + SVGA_FIFO_FENCE_GOAL);
417 			break;
418 		}
419 	}
420 
421 	return true;
422 }
423 
424 
425 /**
426  * vmw_fence_goal_check_locked - Replace the device fence goal seqno if
427  * needed.
428  *
429  * @fence: Pointer to a struct vmw_fence_obj the seqno of which should be
430  * considered as a device fence goal.
431  *
432  * This function should be called with the fence manager lock held.
433  * It is typically called when an action has been attached to a fence to
434  * check whether the seqno of that fence should be used for a fence
435  * goal interrupt. This is typically needed if the current fence goal is
436  * invalid, or has a higher seqno than that of the current fence object.
437  *
438  * returns true if the device goal seqno was updated. False otherwise.
439  */
440 static bool vmw_fence_goal_check_locked(struct vmw_fence_obj *fence)
441 {
442 	struct vmw_fence_manager *fman = fman_from_fence(fence);
443 	u32 goal_seqno;
444 	u32 *fifo_mem;
445 
446 	if (dma_fence_is_signaled_locked(&fence->base))
447 		return false;
448 
449 	fifo_mem = fman->dev_priv->mmio_virt;
450 	goal_seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE_GOAL);
451 	if (likely(fman->seqno_valid &&
452 		   goal_seqno - fence->base.seqno < VMW_FENCE_WRAP))
453 		return false;
454 
455 	vmw_mmio_write(fence->base.seqno, fifo_mem + SVGA_FIFO_FENCE_GOAL);
456 	fman->seqno_valid = true;
457 
458 	return true;
459 }
460 
461 static void __vmw_fences_update(struct vmw_fence_manager *fman)
462 {
463 	struct vmw_fence_obj *fence, *next_fence;
464 	struct list_head action_list;
465 	bool needs_rerun;
466 	uint32_t seqno, new_seqno;
467 	u32 *fifo_mem = fman->dev_priv->mmio_virt;
468 
469 	seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE);
470 rerun:
471 	list_for_each_entry_safe(fence, next_fence, &fman->fence_list, head) {
472 		if (seqno - fence->base.seqno < VMW_FENCE_WRAP) {
473 			list_del_init(&fence->head);
474 			dma_fence_signal_locked(&fence->base);
475 			INIT_LIST_HEAD(&action_list);
476 			list_splice_init(&fence->seq_passed_actions,
477 					 &action_list);
478 			vmw_fences_perform_actions(fman, &action_list);
479 		} else
480 			break;
481 	}
482 
483 	/*
484 	 * Rerun if the fence goal seqno was updated, and the
485 	 * hardware might have raced with that update, so that
486 	 * we missed a fence_goal irq.
487 	 */
488 
489 	needs_rerun = vmw_fence_goal_new_locked(fman, seqno);
490 	if (unlikely(needs_rerun)) {
491 		new_seqno = vmw_mmio_read(fifo_mem + SVGA_FIFO_FENCE);
492 		if (new_seqno != seqno) {
493 			seqno = new_seqno;
494 			goto rerun;
495 		}
496 	}
497 
498 	if (!list_empty(&fman->cleanup_list))
499 		(void) schedule_work(&fman->work);
500 }
501 
502 void vmw_fences_update(struct vmw_fence_manager *fman)
503 {
504 	spin_lock(&fman->lock);
505 	__vmw_fences_update(fman);
506 	spin_unlock(&fman->lock);
507 }
508 
509 bool vmw_fence_obj_signaled(struct vmw_fence_obj *fence)
510 {
511 	struct vmw_fence_manager *fman = fman_from_fence(fence);
512 
513 	if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->base.flags))
514 		return 1;
515 
516 	vmw_fences_update(fman);
517 
518 	return dma_fence_is_signaled(&fence->base);
519 }
520 
521 int vmw_fence_obj_wait(struct vmw_fence_obj *fence, bool lazy,
522 		       bool interruptible, unsigned long timeout)
523 {
524 	long ret = dma_fence_wait_timeout(&fence->base, interruptible, timeout);
525 
526 	if (likely(ret > 0))
527 		return 0;
528 	else if (ret == 0)
529 		return -EBUSY;
530 	else
531 		return ret;
532 }
533 
534 void vmw_fence_obj_flush(struct vmw_fence_obj *fence)
535 {
536 	struct vmw_private *dev_priv = fman_from_fence(fence)->dev_priv;
537 
538 	vmw_fifo_ping_host(dev_priv, SVGA_SYNC_GENERIC);
539 }
540 
541 static void vmw_fence_destroy(struct vmw_fence_obj *fence)
542 {
543 	dma_fence_free(&fence->base);
544 }
545 
546 int vmw_fence_create(struct vmw_fence_manager *fman,
547 		     uint32_t seqno,
548 		     struct vmw_fence_obj **p_fence)
549 {
550 	struct vmw_fence_obj *fence;
551  	int ret;
552 
553 	fence = kzalloc(sizeof(*fence), GFP_KERNEL);
554 	if (unlikely(!fence))
555 		return -ENOMEM;
556 
557 	ret = vmw_fence_obj_init(fman, fence, seqno,
558 				 vmw_fence_destroy);
559 	if (unlikely(ret != 0))
560 		goto out_err_init;
561 
562 	*p_fence = fence;
563 	return 0;
564 
565 out_err_init:
566 	kfree(fence);
567 	return ret;
568 }
569 
570 
571 static void vmw_user_fence_destroy(struct vmw_fence_obj *fence)
572 {
573 	struct vmw_user_fence *ufence =
574 		container_of(fence, struct vmw_user_fence, fence);
575 	struct vmw_fence_manager *fman = fman_from_fence(fence);
576 
577 	ttm_base_object_kfree(ufence, base);
578 	/*
579 	 * Free kernel space accounting.
580 	 */
581 	ttm_mem_global_free(vmw_mem_glob(fman->dev_priv),
582 			    fman->user_fence_size);
583 }
584 
585 static void vmw_user_fence_base_release(struct ttm_base_object **p_base)
586 {
587 	struct ttm_base_object *base = *p_base;
588 	struct vmw_user_fence *ufence =
589 		container_of(base, struct vmw_user_fence, base);
590 	struct vmw_fence_obj *fence = &ufence->fence;
591 
592 	*p_base = NULL;
593 	vmw_fence_obj_unreference(&fence);
594 }
595 
596 int vmw_user_fence_create(struct drm_file *file_priv,
597 			  struct vmw_fence_manager *fman,
598 			  uint32_t seqno,
599 			  struct vmw_fence_obj **p_fence,
600 			  uint32_t *p_handle)
601 {
602 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
603 	struct vmw_user_fence *ufence;
604 	struct vmw_fence_obj *tmp;
605 	struct ttm_mem_global *mem_glob = vmw_mem_glob(fman->dev_priv);
606 	struct ttm_operation_ctx ctx = {
607 		.interruptible = false,
608 		.no_wait_gpu = false
609 	};
610 	int ret;
611 
612 	/*
613 	 * Kernel memory space accounting, since this object may
614 	 * be created by a user-space request.
615 	 */
616 
617 	ret = ttm_mem_global_alloc(mem_glob, fman->user_fence_size,
618 				   &ctx);
619 	if (unlikely(ret != 0))
620 		return ret;
621 
622 	ufence = kzalloc(sizeof(*ufence), GFP_KERNEL);
623 	if (unlikely(!ufence)) {
624 		ret = -ENOMEM;
625 		goto out_no_object;
626 	}
627 
628 	ret = vmw_fence_obj_init(fman, &ufence->fence, seqno,
629 				 vmw_user_fence_destroy);
630 	if (unlikely(ret != 0)) {
631 		kfree(ufence);
632 		goto out_no_object;
633 	}
634 
635 	/*
636 	 * The base object holds a reference which is freed in
637 	 * vmw_user_fence_base_release.
638 	 */
639 	tmp = vmw_fence_obj_reference(&ufence->fence);
640 	ret = ttm_base_object_init(tfile, &ufence->base, false,
641 				   VMW_RES_FENCE,
642 				   &vmw_user_fence_base_release, NULL);
643 
644 
645 	if (unlikely(ret != 0)) {
646 		/*
647 		 * Free the base object's reference
648 		 */
649 		vmw_fence_obj_unreference(&tmp);
650 		goto out_err;
651 	}
652 
653 	*p_fence = &ufence->fence;
654 	*p_handle = ufence->base.handle;
655 
656 	return 0;
657 out_err:
658 	tmp = &ufence->fence;
659 	vmw_fence_obj_unreference(&tmp);
660 out_no_object:
661 	ttm_mem_global_free(mem_glob, fman->user_fence_size);
662 	return ret;
663 }
664 
665 
666 /**
667  * vmw_wait_dma_fence - Wait for a dma fence
668  *
669  * @fman: pointer to a fence manager
670  * @fence: DMA fence to wait on
671  *
672  * This function handles the case when the fence is actually a fence
673  * array.  If that's the case, it'll wait on each of the child fence
674  */
675 int vmw_wait_dma_fence(struct vmw_fence_manager *fman,
676 		       struct dma_fence *fence)
677 {
678 	struct dma_fence_array *fence_array;
679 	int ret = 0;
680 	int i;
681 
682 
683 	if (dma_fence_is_signaled(fence))
684 		return 0;
685 
686 	if (!dma_fence_is_array(fence))
687 		return dma_fence_wait(fence, true);
688 
689 	/* From i915: Note that if the fence-array was created in
690 	 * signal-on-any mode, we should *not* decompose it into its individual
691 	 * fences. However, we don't currently store which mode the fence-array
692 	 * is operating in. Fortunately, the only user of signal-on-any is
693 	 * private to amdgpu and we should not see any incoming fence-array
694 	 * from sync-file being in signal-on-any mode.
695 	 */
696 
697 	fence_array = to_dma_fence_array(fence);
698 	for (i = 0; i < fence_array->num_fences; i++) {
699 		struct dma_fence *child = fence_array->fences[i];
700 
701 		ret = dma_fence_wait(child, true);
702 
703 		if (ret < 0)
704 			return ret;
705 	}
706 
707 	return 0;
708 }
709 
710 
711 /**
712  * vmw_fence_fifo_down - signal all unsignaled fence objects.
713  */
714 
715 void vmw_fence_fifo_down(struct vmw_fence_manager *fman)
716 {
717 	struct list_head action_list;
718 	int ret;
719 
720 	/*
721 	 * The list may be altered while we traverse it, so always
722 	 * restart when we've released the fman->lock.
723 	 */
724 
725 	spin_lock(&fman->lock);
726 	fman->fifo_down = true;
727 	while (!list_empty(&fman->fence_list)) {
728 		struct vmw_fence_obj *fence =
729 			list_entry(fman->fence_list.prev, struct vmw_fence_obj,
730 				   head);
731 		dma_fence_get(&fence->base);
732 		spin_unlock(&fman->lock);
733 
734 		ret = vmw_fence_obj_wait(fence, false, false,
735 					 VMW_FENCE_WAIT_TIMEOUT);
736 
737 		if (unlikely(ret != 0)) {
738 			list_del_init(&fence->head);
739 			dma_fence_signal(&fence->base);
740 			INIT_LIST_HEAD(&action_list);
741 			list_splice_init(&fence->seq_passed_actions,
742 					 &action_list);
743 			vmw_fences_perform_actions(fman, &action_list);
744 		}
745 
746 		BUG_ON(!list_empty(&fence->head));
747 		dma_fence_put(&fence->base);
748 		spin_lock(&fman->lock);
749 	}
750 	spin_unlock(&fman->lock);
751 }
752 
753 void vmw_fence_fifo_up(struct vmw_fence_manager *fman)
754 {
755 	spin_lock(&fman->lock);
756 	fman->fifo_down = false;
757 	spin_unlock(&fman->lock);
758 }
759 
760 
761 /**
762  * vmw_fence_obj_lookup - Look up a user-space fence object
763  *
764  * @tfile: A struct ttm_object_file identifying the caller.
765  * @handle: A handle identifying the fence object.
766  * @return: A struct vmw_user_fence base ttm object on success or
767  * an error pointer on failure.
768  *
769  * The fence object is looked up and type-checked. The caller needs
770  * to have opened the fence object first, but since that happens on
771  * creation and fence objects aren't shareable, that's not an
772  * issue currently.
773  */
774 static struct ttm_base_object *
775 vmw_fence_obj_lookup(struct ttm_object_file *tfile, u32 handle)
776 {
777 	struct ttm_base_object *base = ttm_base_object_lookup(tfile, handle);
778 
779 	if (!base) {
780 		pr_err("Invalid fence object handle 0x%08lx.\n",
781 		       (unsigned long)handle);
782 		return ERR_PTR(-EINVAL);
783 	}
784 
785 	if (base->refcount_release != vmw_user_fence_base_release) {
786 		pr_err("Invalid fence object handle 0x%08lx.\n",
787 		       (unsigned long)handle);
788 		ttm_base_object_unref(&base);
789 		return ERR_PTR(-EINVAL);
790 	}
791 
792 	return base;
793 }
794 
795 
796 int vmw_fence_obj_wait_ioctl(struct drm_device *dev, void *data,
797 			     struct drm_file *file_priv)
798 {
799 	struct drm_vmw_fence_wait_arg *arg =
800 	    (struct drm_vmw_fence_wait_arg *)data;
801 	unsigned long timeout;
802 	struct ttm_base_object *base;
803 	struct vmw_fence_obj *fence;
804 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
805 	int ret;
806 	uint64_t wait_timeout = ((uint64_t)arg->timeout_us * HZ);
807 
808 	/*
809 	 * 64-bit division not present on 32-bit systems, so do an
810 	 * approximation. (Divide by 1000000).
811 	 */
812 
813 	wait_timeout = (wait_timeout >> 20) + (wait_timeout >> 24) -
814 	  (wait_timeout >> 26);
815 
816 	if (!arg->cookie_valid) {
817 		arg->cookie_valid = 1;
818 		arg->kernel_cookie = jiffies + wait_timeout;
819 	}
820 
821 	base = vmw_fence_obj_lookup(tfile, arg->handle);
822 	if (IS_ERR(base))
823 		return PTR_ERR(base);
824 
825 	fence = &(container_of(base, struct vmw_user_fence, base)->fence);
826 
827 	timeout = jiffies;
828 	if (time_after_eq(timeout, (unsigned long)arg->kernel_cookie)) {
829 		ret = ((vmw_fence_obj_signaled(fence)) ?
830 		       0 : -EBUSY);
831 		goto out;
832 	}
833 
834 	timeout = (unsigned long)arg->kernel_cookie - timeout;
835 
836 	ret = vmw_fence_obj_wait(fence, arg->lazy, true, timeout);
837 
838 out:
839 	ttm_base_object_unref(&base);
840 
841 	/*
842 	 * Optionally unref the fence object.
843 	 */
844 
845 	if (ret == 0 && (arg->wait_options & DRM_VMW_WAIT_OPTION_UNREF))
846 		return ttm_ref_object_base_unref(tfile, arg->handle,
847 						 TTM_REF_USAGE);
848 	return ret;
849 }
850 
851 int vmw_fence_obj_signaled_ioctl(struct drm_device *dev, void *data,
852 				 struct drm_file *file_priv)
853 {
854 	struct drm_vmw_fence_signaled_arg *arg =
855 		(struct drm_vmw_fence_signaled_arg *) data;
856 	struct ttm_base_object *base;
857 	struct vmw_fence_obj *fence;
858 	struct vmw_fence_manager *fman;
859 	struct ttm_object_file *tfile = vmw_fpriv(file_priv)->tfile;
860 	struct vmw_private *dev_priv = vmw_priv(dev);
861 
862 	base = vmw_fence_obj_lookup(tfile, arg->handle);
863 	if (IS_ERR(base))
864 		return PTR_ERR(base);
865 
866 	fence = &(container_of(base, struct vmw_user_fence, base)->fence);
867 	fman = fman_from_fence(fence);
868 
869 	arg->signaled = vmw_fence_obj_signaled(fence);
870 
871 	arg->signaled_flags = arg->flags;
872 	spin_lock(&fman->lock);
873 	arg->passed_seqno = dev_priv->last_read_seqno;
874 	spin_unlock(&fman->lock);
875 
876 	ttm_base_object_unref(&base);
877 
878 	return 0;
879 }
880 
881 
882 int vmw_fence_obj_unref_ioctl(struct drm_device *dev, void *data,
883 			      struct drm_file *file_priv)
884 {
885 	struct drm_vmw_fence_arg *arg =
886 		(struct drm_vmw_fence_arg *) data;
887 
888 	return ttm_ref_object_base_unref(vmw_fpriv(file_priv)->tfile,
889 					 arg->handle,
890 					 TTM_REF_USAGE);
891 }
892 
893 /**
894  * vmw_event_fence_action_seq_passed
895  *
896  * @action: The struct vmw_fence_action embedded in a struct
897  * vmw_event_fence_action.
898  *
899  * This function is called when the seqno of the fence where @action is
900  * attached has passed. It queues the event on the submitter's event list.
901  * This function is always called from atomic context.
902  */
903 static void vmw_event_fence_action_seq_passed(struct vmw_fence_action *action)
904 {
905 	struct vmw_event_fence_action *eaction =
906 		container_of(action, struct vmw_event_fence_action, action);
907 	struct drm_device *dev = eaction->dev;
908 	struct drm_pending_event *event = eaction->event;
909 
910 	if (unlikely(event == NULL))
911 		return;
912 
913 	spin_lock_irq(&dev->event_lock);
914 
915 	if (likely(eaction->tv_sec != NULL)) {
916 		struct timespec64 ts;
917 
918 		ktime_get_ts64(&ts);
919 		/* monotonic time, so no y2038 overflow */
920 		*eaction->tv_sec = ts.tv_sec;
921 		*eaction->tv_usec = ts.tv_nsec / NSEC_PER_USEC;
922 	}
923 
924 	drm_send_event_locked(dev, eaction->event);
925 	eaction->event = NULL;
926 	spin_unlock_irq(&dev->event_lock);
927 }
928 
929 /**
930  * vmw_event_fence_action_cleanup
931  *
932  * @action: The struct vmw_fence_action embedded in a struct
933  * vmw_event_fence_action.
934  *
935  * This function is the struct vmw_fence_action destructor. It's typically
936  * called from a workqueue.
937  */
938 static void vmw_event_fence_action_cleanup(struct vmw_fence_action *action)
939 {
940 	struct vmw_event_fence_action *eaction =
941 		container_of(action, struct vmw_event_fence_action, action);
942 
943 	vmw_fence_obj_unreference(&eaction->fence);
944 	kfree(eaction);
945 }
946 
947 
948 /**
949  * vmw_fence_obj_add_action - Add an action to a fence object.
950  *
951  * @fence - The fence object.
952  * @action - The action to add.
953  *
954  * Note that the action callbacks may be executed before this function
955  * returns.
956  */
957 static void vmw_fence_obj_add_action(struct vmw_fence_obj *fence,
958 			      struct vmw_fence_action *action)
959 {
960 	struct vmw_fence_manager *fman = fman_from_fence(fence);
961 	bool run_update = false;
962 
963 	mutex_lock(&fman->goal_irq_mutex);
964 	spin_lock(&fman->lock);
965 
966 	fman->pending_actions[action->type]++;
967 	if (dma_fence_is_signaled_locked(&fence->base)) {
968 		struct list_head action_list;
969 
970 		INIT_LIST_HEAD(&action_list);
971 		list_add_tail(&action->head, &action_list);
972 		vmw_fences_perform_actions(fman, &action_list);
973 	} else {
974 		list_add_tail(&action->head, &fence->seq_passed_actions);
975 
976 		/*
977 		 * This function may set fman::seqno_valid, so it must
978 		 * be run with the goal_irq_mutex held.
979 		 */
980 		run_update = vmw_fence_goal_check_locked(fence);
981 	}
982 
983 	spin_unlock(&fman->lock);
984 
985 	if (run_update) {
986 		if (!fman->goal_irq_on) {
987 			fman->goal_irq_on = true;
988 			vmw_goal_waiter_add(fman->dev_priv);
989 		}
990 		vmw_fences_update(fman);
991 	}
992 	mutex_unlock(&fman->goal_irq_mutex);
993 
994 }
995 
996 /**
997  * vmw_event_fence_action_create - Post an event for sending when a fence
998  * object seqno has passed.
999  *
1000  * @file_priv: The file connection on which the event should be posted.
1001  * @fence: The fence object on which to post the event.
1002  * @event: Event to be posted. This event should've been alloced
1003  * using k[mz]alloc, and should've been completely initialized.
1004  * @interruptible: Interruptible waits if possible.
1005  *
1006  * As a side effect, the object pointed to by @event may have been
1007  * freed when this function returns. If this function returns with
1008  * an error code, the caller needs to free that object.
1009  */
1010 
1011 int vmw_event_fence_action_queue(struct drm_file *file_priv,
1012 				 struct vmw_fence_obj *fence,
1013 				 struct drm_pending_event *event,
1014 				 uint32_t *tv_sec,
1015 				 uint32_t *tv_usec,
1016 				 bool interruptible)
1017 {
1018 	struct vmw_event_fence_action *eaction;
1019 	struct vmw_fence_manager *fman = fman_from_fence(fence);
1020 
1021 	eaction = kzalloc(sizeof(*eaction), GFP_KERNEL);
1022 	if (unlikely(!eaction))
1023 		return -ENOMEM;
1024 
1025 	eaction->event = event;
1026 
1027 	eaction->action.seq_passed = vmw_event_fence_action_seq_passed;
1028 	eaction->action.cleanup = vmw_event_fence_action_cleanup;
1029 	eaction->action.type = VMW_ACTION_EVENT;
1030 
1031 	eaction->fence = vmw_fence_obj_reference(fence);
1032 	eaction->dev = fman->dev_priv->dev;
1033 	eaction->tv_sec = tv_sec;
1034 	eaction->tv_usec = tv_usec;
1035 
1036 	vmw_fence_obj_add_action(fence, &eaction->action);
1037 
1038 	return 0;
1039 }
1040 
1041 struct vmw_event_fence_pending {
1042 	struct drm_pending_event base;
1043 	struct drm_vmw_event_fence event;
1044 };
1045 
1046 static int vmw_event_fence_action_create(struct drm_file *file_priv,
1047 				  struct vmw_fence_obj *fence,
1048 				  uint32_t flags,
1049 				  uint64_t user_data,
1050 				  bool interruptible)
1051 {
1052 	struct vmw_event_fence_pending *event;
1053 	struct vmw_fence_manager *fman = fman_from_fence(fence);
1054 	struct drm_device *dev = fman->dev_priv->dev;
1055 	int ret;
1056 
1057 	event = kzalloc(sizeof(*event), GFP_KERNEL);
1058 	if (unlikely(!event)) {
1059 		DRM_ERROR("Failed to allocate an event.\n");
1060 		ret = -ENOMEM;
1061 		goto out_no_space;
1062 	}
1063 
1064 	event->event.base.type = DRM_VMW_EVENT_FENCE_SIGNALED;
1065 	event->event.base.length = sizeof(*event);
1066 	event->event.user_data = user_data;
1067 
1068 	ret = drm_event_reserve_init(dev, file_priv, &event->base, &event->event.base);
1069 
1070 	if (unlikely(ret != 0)) {
1071 		DRM_ERROR("Failed to allocate event space for this file.\n");
1072 		kfree(event);
1073 		goto out_no_space;
1074 	}
1075 
1076 	if (flags & DRM_VMW_FE_FLAG_REQ_TIME)
1077 		ret = vmw_event_fence_action_queue(file_priv, fence,
1078 						   &event->base,
1079 						   &event->event.tv_sec,
1080 						   &event->event.tv_usec,
1081 						   interruptible);
1082 	else
1083 		ret = vmw_event_fence_action_queue(file_priv, fence,
1084 						   &event->base,
1085 						   NULL,
1086 						   NULL,
1087 						   interruptible);
1088 	if (ret != 0)
1089 		goto out_no_queue;
1090 
1091 	return 0;
1092 
1093 out_no_queue:
1094 	drm_event_cancel_free(dev, &event->base);
1095 out_no_space:
1096 	return ret;
1097 }
1098 
1099 int vmw_fence_event_ioctl(struct drm_device *dev, void *data,
1100 			  struct drm_file *file_priv)
1101 {
1102 	struct vmw_private *dev_priv = vmw_priv(dev);
1103 	struct drm_vmw_fence_event_arg *arg =
1104 		(struct drm_vmw_fence_event_arg *) data;
1105 	struct vmw_fence_obj *fence = NULL;
1106 	struct vmw_fpriv *vmw_fp = vmw_fpriv(file_priv);
1107 	struct ttm_object_file *tfile = vmw_fp->tfile;
1108 	struct drm_vmw_fence_rep __user *user_fence_rep =
1109 		(struct drm_vmw_fence_rep __user *)(unsigned long)
1110 		arg->fence_rep;
1111 	uint32_t handle;
1112 	int ret;
1113 
1114 	/*
1115 	 * Look up an existing fence object,
1116 	 * and if user-space wants a new reference,
1117 	 * add one.
1118 	 */
1119 	if (arg->handle) {
1120 		struct ttm_base_object *base =
1121 			vmw_fence_obj_lookup(tfile, arg->handle);
1122 
1123 		if (IS_ERR(base))
1124 			return PTR_ERR(base);
1125 
1126 		fence = &(container_of(base, struct vmw_user_fence,
1127 				       base)->fence);
1128 		(void) vmw_fence_obj_reference(fence);
1129 
1130 		if (user_fence_rep != NULL) {
1131 			ret = ttm_ref_object_add(vmw_fp->tfile, base,
1132 						 TTM_REF_USAGE, NULL, false);
1133 			if (unlikely(ret != 0)) {
1134 				DRM_ERROR("Failed to reference a fence "
1135 					  "object.\n");
1136 				goto out_no_ref_obj;
1137 			}
1138 			handle = base->handle;
1139 		}
1140 		ttm_base_object_unref(&base);
1141 	}
1142 
1143 	/*
1144 	 * Create a new fence object.
1145 	 */
1146 	if (!fence) {
1147 		ret = vmw_execbuf_fence_commands(file_priv, dev_priv,
1148 						 &fence,
1149 						 (user_fence_rep) ?
1150 						 &handle : NULL);
1151 		if (unlikely(ret != 0)) {
1152 			DRM_ERROR("Fence event failed to create fence.\n");
1153 			return ret;
1154 		}
1155 	}
1156 
1157 	BUG_ON(fence == NULL);
1158 
1159 	ret = vmw_event_fence_action_create(file_priv, fence,
1160 					    arg->flags,
1161 					    arg->user_data,
1162 					    true);
1163 	if (unlikely(ret != 0)) {
1164 		if (ret != -ERESTARTSYS)
1165 			DRM_ERROR("Failed to attach event to fence.\n");
1166 		goto out_no_create;
1167 	}
1168 
1169 	vmw_execbuf_copy_fence_user(dev_priv, vmw_fp, 0, user_fence_rep, fence,
1170 				    handle, -1, NULL);
1171 	vmw_fence_obj_unreference(&fence);
1172 	return 0;
1173 out_no_create:
1174 	if (user_fence_rep != NULL)
1175 		ttm_ref_object_base_unref(tfile, handle, TTM_REF_USAGE);
1176 out_no_ref_obj:
1177 	vmw_fence_obj_unreference(&fence);
1178 	return ret;
1179 }
1180