xref: /linux/drivers/gpu/drm/msm/adreno/a5xx_gpu.c (revision 164666fa66669d437bdcc8d5f1744a2aee73be41)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* Copyright (c) 2016-2017 The Linux Foundation. All rights reserved.
3  */
4 
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/cpumask.h>
8 #include <linux/qcom_scm.h>
9 #include <linux/pm_opp.h>
10 #include <linux/nvmem-consumer.h>
11 #include <linux/slab.h>
12 #include "msm_gem.h"
13 #include "msm_mmu.h"
14 #include "a5xx_gpu.h"
15 
16 extern bool hang_debug;
17 static void a5xx_dump(struct msm_gpu *gpu);
18 
19 #define GPU_PAS_ID 13
20 
21 static void update_shadow_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
22 {
23 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
24 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
25 
26 	if (a5xx_gpu->has_whereami) {
27 		OUT_PKT7(ring, CP_WHERE_AM_I, 2);
28 		OUT_RING(ring, lower_32_bits(shadowptr(a5xx_gpu, ring)));
29 		OUT_RING(ring, upper_32_bits(shadowptr(a5xx_gpu, ring)));
30 	}
31 }
32 
33 void a5xx_flush(struct msm_gpu *gpu, struct msm_ringbuffer *ring,
34 		bool sync)
35 {
36 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
37 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
38 	uint32_t wptr;
39 	unsigned long flags;
40 
41 	/*
42 	 * Most flush operations need to issue a WHERE_AM_I opcode to sync up
43 	 * the rptr shadow
44 	 */
45 	if (sync)
46 		update_shadow_rptr(gpu, ring);
47 
48 	spin_lock_irqsave(&ring->preempt_lock, flags);
49 
50 	/* Copy the shadow to the actual register */
51 	ring->cur = ring->next;
52 
53 	/* Make sure to wrap wptr if we need to */
54 	wptr = get_wptr(ring);
55 
56 	spin_unlock_irqrestore(&ring->preempt_lock, flags);
57 
58 	/* Make sure everything is posted before making a decision */
59 	mb();
60 
61 	/* Update HW if this is the current ring and we are not in preempt */
62 	if (a5xx_gpu->cur_ring == ring && !a5xx_in_preempt(a5xx_gpu))
63 		gpu_write(gpu, REG_A5XX_CP_RB_WPTR, wptr);
64 }
65 
66 static void a5xx_submit_in_rb(struct msm_gpu *gpu, struct msm_gem_submit *submit)
67 {
68 	struct msm_ringbuffer *ring = submit->ring;
69 	struct msm_gem_object *obj;
70 	uint32_t *ptr, dwords;
71 	unsigned int i;
72 
73 	for (i = 0; i < submit->nr_cmds; i++) {
74 		switch (submit->cmd[i].type) {
75 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
76 			break;
77 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
78 			if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
79 				break;
80 			fallthrough;
81 		case MSM_SUBMIT_CMD_BUF:
82 			/* copy commands into RB: */
83 			obj = submit->bos[submit->cmd[i].idx].obj;
84 			dwords = submit->cmd[i].size;
85 
86 			ptr = msm_gem_get_vaddr(&obj->base);
87 
88 			/* _get_vaddr() shouldn't fail at this point,
89 			 * since we've already mapped it once in
90 			 * submit_reloc()
91 			 */
92 			if (WARN_ON(!ptr))
93 				return;
94 
95 			for (i = 0; i < dwords; i++) {
96 				/* normally the OUT_PKTn() would wait
97 				 * for space for the packet.  But since
98 				 * we just OUT_RING() the whole thing,
99 				 * need to call adreno_wait_ring()
100 				 * ourself:
101 				 */
102 				adreno_wait_ring(ring, 1);
103 				OUT_RING(ring, ptr[i]);
104 			}
105 
106 			msm_gem_put_vaddr(&obj->base);
107 
108 			break;
109 		}
110 	}
111 
112 	a5xx_flush(gpu, ring, true);
113 	a5xx_preempt_trigger(gpu);
114 
115 	/* we might not necessarily have a cmd from userspace to
116 	 * trigger an event to know that submit has completed, so
117 	 * do this manually:
118 	 */
119 	a5xx_idle(gpu, ring);
120 	ring->memptrs->fence = submit->seqno;
121 	msm_gpu_retire(gpu);
122 }
123 
124 static void a5xx_submit(struct msm_gpu *gpu, struct msm_gem_submit *submit)
125 {
126 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
127 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
128 	struct msm_ringbuffer *ring = submit->ring;
129 	unsigned int i, ibs = 0;
130 
131 	if (IS_ENABLED(CONFIG_DRM_MSM_GPU_SUDO) && submit->in_rb) {
132 		gpu->cur_ctx_seqno = 0;
133 		a5xx_submit_in_rb(gpu, submit);
134 		return;
135 	}
136 
137 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1);
138 	OUT_RING(ring, 0x02);
139 
140 	/* Turn off protected mode to write to special registers */
141 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
142 	OUT_RING(ring, 0);
143 
144 	/* Set the save preemption record for the ring/command */
145 	OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2);
146 	OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[submit->ring->id]));
147 	OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[submit->ring->id]));
148 
149 	/* Turn back on protected mode */
150 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
151 	OUT_RING(ring, 1);
152 
153 	/* Enable local preemption for finegrain preemption */
154 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1);
155 	OUT_RING(ring, 0x02);
156 
157 	/* Allow CP_CONTEXT_SWITCH_YIELD packets in the IB2 */
158 	OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
159 	OUT_RING(ring, 0x02);
160 
161 	/* Submit the commands */
162 	for (i = 0; i < submit->nr_cmds; i++) {
163 		switch (submit->cmd[i].type) {
164 		case MSM_SUBMIT_CMD_IB_TARGET_BUF:
165 			break;
166 		case MSM_SUBMIT_CMD_CTX_RESTORE_BUF:
167 			if (gpu->cur_ctx_seqno == submit->queue->ctx->seqno)
168 				break;
169 			fallthrough;
170 		case MSM_SUBMIT_CMD_BUF:
171 			OUT_PKT7(ring, CP_INDIRECT_BUFFER_PFE, 3);
172 			OUT_RING(ring, lower_32_bits(submit->cmd[i].iova));
173 			OUT_RING(ring, upper_32_bits(submit->cmd[i].iova));
174 			OUT_RING(ring, submit->cmd[i].size);
175 			ibs++;
176 			break;
177 		}
178 
179 		/*
180 		 * Periodically update shadow-wptr if needed, so that we
181 		 * can see partial progress of submits with large # of
182 		 * cmds.. otherwise we could needlessly stall waiting for
183 		 * ringbuffer state, simply due to looking at a shadow
184 		 * rptr value that has not been updated
185 		 */
186 		if ((ibs % 32) == 0)
187 			update_shadow_rptr(gpu, ring);
188 	}
189 
190 	/*
191 	 * Write the render mode to NULL (0) to indicate to the CP that the IBs
192 	 * are done rendering - otherwise a lucky preemption would start
193 	 * replaying from the last checkpoint
194 	 */
195 	OUT_PKT7(ring, CP_SET_RENDER_MODE, 5);
196 	OUT_RING(ring, 0);
197 	OUT_RING(ring, 0);
198 	OUT_RING(ring, 0);
199 	OUT_RING(ring, 0);
200 	OUT_RING(ring, 0);
201 
202 	/* Turn off IB level preemptions */
203 	OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
204 	OUT_RING(ring, 0x01);
205 
206 	/* Write the fence to the scratch register */
207 	OUT_PKT4(ring, REG_A5XX_CP_SCRATCH_REG(2), 1);
208 	OUT_RING(ring, submit->seqno);
209 
210 	/*
211 	 * Execute a CACHE_FLUSH_TS event. This will ensure that the
212 	 * timestamp is written to the memory and then triggers the interrupt
213 	 */
214 	OUT_PKT7(ring, CP_EVENT_WRITE, 4);
215 	OUT_RING(ring, CP_EVENT_WRITE_0_EVENT(CACHE_FLUSH_TS) |
216 		CP_EVENT_WRITE_0_IRQ);
217 	OUT_RING(ring, lower_32_bits(rbmemptr(ring, fence)));
218 	OUT_RING(ring, upper_32_bits(rbmemptr(ring, fence)));
219 	OUT_RING(ring, submit->seqno);
220 
221 	/* Yield the floor on command completion */
222 	OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4);
223 	/*
224 	 * If dword[2:1] are non zero, they specify an address for the CP to
225 	 * write the value of dword[3] to on preemption complete. Write 0 to
226 	 * skip the write
227 	 */
228 	OUT_RING(ring, 0x00);
229 	OUT_RING(ring, 0x00);
230 	/* Data value - not used if the address above is 0 */
231 	OUT_RING(ring, 0x01);
232 	/* Set bit 0 to trigger an interrupt on preempt complete */
233 	OUT_RING(ring, 0x01);
234 
235 	/* A WHERE_AM_I packet is not needed after a YIELD */
236 	a5xx_flush(gpu, ring, false);
237 
238 	/* Check to see if we need to start preemption */
239 	a5xx_preempt_trigger(gpu);
240 }
241 
242 static const struct adreno_five_hwcg_regs {
243 	u32 offset;
244 	u32 value;
245 } a5xx_hwcg[] = {
246 	{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
247 	{REG_A5XX_RBBM_CLOCK_CNTL_SP1, 0x02222222},
248 	{REG_A5XX_RBBM_CLOCK_CNTL_SP2, 0x02222222},
249 	{REG_A5XX_RBBM_CLOCK_CNTL_SP3, 0x02222222},
250 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
251 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP1, 0x02222220},
252 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP2, 0x02222220},
253 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP3, 0x02222220},
254 	{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
255 	{REG_A5XX_RBBM_CLOCK_HYST_SP1, 0x0000F3CF},
256 	{REG_A5XX_RBBM_CLOCK_HYST_SP2, 0x0000F3CF},
257 	{REG_A5XX_RBBM_CLOCK_HYST_SP3, 0x0000F3CF},
258 	{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
259 	{REG_A5XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
260 	{REG_A5XX_RBBM_CLOCK_DELAY_SP2, 0x00000080},
261 	{REG_A5XX_RBBM_CLOCK_DELAY_SP3, 0x00000080},
262 	{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
263 	{REG_A5XX_RBBM_CLOCK_CNTL_TP1, 0x22222222},
264 	{REG_A5XX_RBBM_CLOCK_CNTL_TP2, 0x22222222},
265 	{REG_A5XX_RBBM_CLOCK_CNTL_TP3, 0x22222222},
266 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
267 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
268 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP2, 0x22222222},
269 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP3, 0x22222222},
270 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
271 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP1, 0x00002222},
272 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP2, 0x00002222},
273 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP3, 0x00002222},
274 	{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
275 	{REG_A5XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
276 	{REG_A5XX_RBBM_CLOCK_HYST_TP2, 0x77777777},
277 	{REG_A5XX_RBBM_CLOCK_HYST_TP3, 0x77777777},
278 	{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
279 	{REG_A5XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
280 	{REG_A5XX_RBBM_CLOCK_HYST2_TP2, 0x77777777},
281 	{REG_A5XX_RBBM_CLOCK_HYST2_TP3, 0x77777777},
282 	{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
283 	{REG_A5XX_RBBM_CLOCK_HYST3_TP1, 0x00007777},
284 	{REG_A5XX_RBBM_CLOCK_HYST3_TP2, 0x00007777},
285 	{REG_A5XX_RBBM_CLOCK_HYST3_TP3, 0x00007777},
286 	{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
287 	{REG_A5XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
288 	{REG_A5XX_RBBM_CLOCK_DELAY_TP2, 0x11111111},
289 	{REG_A5XX_RBBM_CLOCK_DELAY_TP3, 0x11111111},
290 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
291 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
292 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP2, 0x11111111},
293 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP3, 0x11111111},
294 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
295 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP1, 0x00001111},
296 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP2, 0x00001111},
297 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP3, 0x00001111},
298 	{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
299 	{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
300 	{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
301 	{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
302 	{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00444444},
303 	{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
304 	{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
305 	{REG_A5XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
306 	{REG_A5XX_RBBM_CLOCK_CNTL_RB2, 0x22222222},
307 	{REG_A5XX_RBBM_CLOCK_CNTL_RB3, 0x22222222},
308 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
309 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB1, 0x00222222},
310 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB2, 0x00222222},
311 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB3, 0x00222222},
312 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
313 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU1, 0x00022220},
314 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU2, 0x00022220},
315 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU3, 0x00022220},
316 	{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
317 	{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
318 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
319 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU1, 0x04040404},
320 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU2, 0x04040404},
321 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU3, 0x04040404},
322 	{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
323 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
324 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_1, 0x00000002},
325 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_2, 0x00000002},
326 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_3, 0x00000002},
327 	{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
328 	{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
329 	{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
330 	{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
331 	{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
332 	{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
333 	{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
334 	{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
335 	{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
336 	{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
337 	{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222}
338 }, a50x_hwcg[] = {
339 	{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
340 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
341 	{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
342 	{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
343 	{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
344 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
345 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
346 	{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
347 	{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
348 	{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
349 	{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
350 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
351 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
352 	{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
353 	{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
354 	{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
355 	{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
356 	{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00FFFFF4},
357 	{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
358 	{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
359 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
360 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
361 	{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
362 	{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
363 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
364 	{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
365 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
366 	{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
367 	{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
368 	{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
369 	{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
370 	{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
371 	{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
372 	{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
373 	{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
374 	{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
375 	{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
376 	{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
377 }, a512_hwcg[] = {
378 	{REG_A5XX_RBBM_CLOCK_CNTL_SP0, 0x02222222},
379 	{REG_A5XX_RBBM_CLOCK_CNTL_SP1, 0x02222222},
380 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP0, 0x02222220},
381 	{REG_A5XX_RBBM_CLOCK_CNTL2_SP1, 0x02222220},
382 	{REG_A5XX_RBBM_CLOCK_HYST_SP0, 0x0000F3CF},
383 	{REG_A5XX_RBBM_CLOCK_HYST_SP1, 0x0000F3CF},
384 	{REG_A5XX_RBBM_CLOCK_DELAY_SP0, 0x00000080},
385 	{REG_A5XX_RBBM_CLOCK_DELAY_SP1, 0x00000080},
386 	{REG_A5XX_RBBM_CLOCK_CNTL_TP0, 0x22222222},
387 	{REG_A5XX_RBBM_CLOCK_CNTL_TP1, 0x22222222},
388 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP0, 0x22222222},
389 	{REG_A5XX_RBBM_CLOCK_CNTL2_TP1, 0x22222222},
390 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP0, 0x00002222},
391 	{REG_A5XX_RBBM_CLOCK_CNTL3_TP1, 0x00002222},
392 	{REG_A5XX_RBBM_CLOCK_HYST_TP0, 0x77777777},
393 	{REG_A5XX_RBBM_CLOCK_HYST_TP1, 0x77777777},
394 	{REG_A5XX_RBBM_CLOCK_HYST2_TP0, 0x77777777},
395 	{REG_A5XX_RBBM_CLOCK_HYST2_TP1, 0x77777777},
396 	{REG_A5XX_RBBM_CLOCK_HYST3_TP0, 0x00007777},
397 	{REG_A5XX_RBBM_CLOCK_HYST3_TP1, 0x00007777},
398 	{REG_A5XX_RBBM_CLOCK_DELAY_TP0, 0x11111111},
399 	{REG_A5XX_RBBM_CLOCK_DELAY_TP1, 0x11111111},
400 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP0, 0x11111111},
401 	{REG_A5XX_RBBM_CLOCK_DELAY2_TP1, 0x11111111},
402 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP0, 0x00001111},
403 	{REG_A5XX_RBBM_CLOCK_DELAY3_TP1, 0x00001111},
404 	{REG_A5XX_RBBM_CLOCK_CNTL_UCHE, 0x22222222},
405 	{REG_A5XX_RBBM_CLOCK_CNTL2_UCHE, 0x22222222},
406 	{REG_A5XX_RBBM_CLOCK_CNTL3_UCHE, 0x22222222},
407 	{REG_A5XX_RBBM_CLOCK_CNTL4_UCHE, 0x00222222},
408 	{REG_A5XX_RBBM_CLOCK_HYST_UCHE, 0x00444444},
409 	{REG_A5XX_RBBM_CLOCK_DELAY_UCHE, 0x00000002},
410 	{REG_A5XX_RBBM_CLOCK_CNTL_RB0, 0x22222222},
411 	{REG_A5XX_RBBM_CLOCK_CNTL_RB1, 0x22222222},
412 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB0, 0x00222222},
413 	{REG_A5XX_RBBM_CLOCK_CNTL2_RB1, 0x00222222},
414 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU0, 0x00022220},
415 	{REG_A5XX_RBBM_CLOCK_CNTL_CCU1, 0x00022220},
416 	{REG_A5XX_RBBM_CLOCK_CNTL_RAC, 0x05522222},
417 	{REG_A5XX_RBBM_CLOCK_CNTL2_RAC, 0x00505555},
418 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU0, 0x04040404},
419 	{REG_A5XX_RBBM_CLOCK_HYST_RB_CCU1, 0x04040404},
420 	{REG_A5XX_RBBM_CLOCK_HYST_RAC, 0x07444044},
421 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_0, 0x00000002},
422 	{REG_A5XX_RBBM_CLOCK_DELAY_RB_CCU_L1_1, 0x00000002},
423 	{REG_A5XX_RBBM_CLOCK_DELAY_RAC, 0x00010011},
424 	{REG_A5XX_RBBM_CLOCK_CNTL_TSE_RAS_RBBM, 0x04222222},
425 	{REG_A5XX_RBBM_CLOCK_MODE_GPC, 0x02222222},
426 	{REG_A5XX_RBBM_CLOCK_MODE_VFD, 0x00002222},
427 	{REG_A5XX_RBBM_CLOCK_HYST_TSE_RAS_RBBM, 0x00000000},
428 	{REG_A5XX_RBBM_CLOCK_HYST_GPC, 0x04104004},
429 	{REG_A5XX_RBBM_CLOCK_HYST_VFD, 0x00000000},
430 	{REG_A5XX_RBBM_CLOCK_DELAY_HLSQ, 0x00000000},
431 	{REG_A5XX_RBBM_CLOCK_DELAY_TSE_RAS_RBBM, 0x00004000},
432 	{REG_A5XX_RBBM_CLOCK_DELAY_GPC, 0x00000200},
433 	{REG_A5XX_RBBM_CLOCK_DELAY_VFD, 0x00002222},
434 };
435 
436 void a5xx_set_hwcg(struct msm_gpu *gpu, bool state)
437 {
438 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
439 	const struct adreno_five_hwcg_regs *regs;
440 	unsigned int i, sz;
441 
442 	if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu)) {
443 		regs = a50x_hwcg;
444 		sz = ARRAY_SIZE(a50x_hwcg);
445 	} else if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu)) {
446 		regs = a512_hwcg;
447 		sz = ARRAY_SIZE(a512_hwcg);
448 	} else {
449 		regs = a5xx_hwcg;
450 		sz = ARRAY_SIZE(a5xx_hwcg);
451 	}
452 
453 	for (i = 0; i < sz; i++)
454 		gpu_write(gpu, regs[i].offset,
455 			  state ? regs[i].value : 0);
456 
457 	if (adreno_is_a540(adreno_gpu)) {
458 		gpu_write(gpu, REG_A5XX_RBBM_CLOCK_DELAY_GPMU, state ? 0x00000770 : 0);
459 		gpu_write(gpu, REG_A5XX_RBBM_CLOCK_HYST_GPMU, state ? 0x00000004 : 0);
460 	}
461 
462 	gpu_write(gpu, REG_A5XX_RBBM_CLOCK_CNTL, state ? 0xAAA8AA00 : 0);
463 	gpu_write(gpu, REG_A5XX_RBBM_ISDB_CNT, state ? 0x182 : 0x180);
464 }
465 
466 static int a5xx_me_init(struct msm_gpu *gpu)
467 {
468 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
469 	struct msm_ringbuffer *ring = gpu->rb[0];
470 
471 	OUT_PKT7(ring, CP_ME_INIT, 8);
472 
473 	OUT_RING(ring, 0x0000002F);
474 
475 	/* Enable multiple hardware contexts */
476 	OUT_RING(ring, 0x00000003);
477 
478 	/* Enable error detection */
479 	OUT_RING(ring, 0x20000000);
480 
481 	/* Don't enable header dump */
482 	OUT_RING(ring, 0x00000000);
483 	OUT_RING(ring, 0x00000000);
484 
485 	/* Specify workarounds for various microcode issues */
486 	if (adreno_is_a506(adreno_gpu) || adreno_is_a530(adreno_gpu)) {
487 		/* Workaround for token end syncs
488 		 * Force a WFI after every direct-render 3D mode draw and every
489 		 * 2D mode 3 draw
490 		 */
491 		OUT_RING(ring, 0x0000000B);
492 	} else if (adreno_is_a510(adreno_gpu)) {
493 		/* Workaround for token and syncs */
494 		OUT_RING(ring, 0x00000001);
495 	} else {
496 		/* No workarounds enabled */
497 		OUT_RING(ring, 0x00000000);
498 	}
499 
500 	OUT_RING(ring, 0x00000000);
501 	OUT_RING(ring, 0x00000000);
502 
503 	a5xx_flush(gpu, ring, true);
504 	return a5xx_idle(gpu, ring) ? 0 : -EINVAL;
505 }
506 
507 static int a5xx_preempt_start(struct msm_gpu *gpu)
508 {
509 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
510 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
511 	struct msm_ringbuffer *ring = gpu->rb[0];
512 
513 	if (gpu->nr_rings == 1)
514 		return 0;
515 
516 	/* Turn off protected mode to write to special registers */
517 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
518 	OUT_RING(ring, 0);
519 
520 	/* Set the save preemption record for the ring/command */
521 	OUT_PKT4(ring, REG_A5XX_CP_CONTEXT_SWITCH_SAVE_ADDR_LO, 2);
522 	OUT_RING(ring, lower_32_bits(a5xx_gpu->preempt_iova[ring->id]));
523 	OUT_RING(ring, upper_32_bits(a5xx_gpu->preempt_iova[ring->id]));
524 
525 	/* Turn back on protected mode */
526 	OUT_PKT7(ring, CP_SET_PROTECTED_MODE, 1);
527 	OUT_RING(ring, 1);
528 
529 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_GLOBAL, 1);
530 	OUT_RING(ring, 0x00);
531 
532 	OUT_PKT7(ring, CP_PREEMPT_ENABLE_LOCAL, 1);
533 	OUT_RING(ring, 0x01);
534 
535 	OUT_PKT7(ring, CP_YIELD_ENABLE, 1);
536 	OUT_RING(ring, 0x01);
537 
538 	/* Yield the floor on command completion */
539 	OUT_PKT7(ring, CP_CONTEXT_SWITCH_YIELD, 4);
540 	OUT_RING(ring, 0x00);
541 	OUT_RING(ring, 0x00);
542 	OUT_RING(ring, 0x01);
543 	OUT_RING(ring, 0x01);
544 
545 	/* The WHERE_AMI_I packet is not needed after a YIELD is issued */
546 	a5xx_flush(gpu, ring, false);
547 
548 	return a5xx_idle(gpu, ring) ? 0 : -EINVAL;
549 }
550 
551 static void a5xx_ucode_check_version(struct a5xx_gpu *a5xx_gpu,
552 		struct drm_gem_object *obj)
553 {
554 	u32 *buf = msm_gem_get_vaddr(obj);
555 
556 	if (IS_ERR(buf))
557 		return;
558 
559 	/*
560 	 * If the lowest nibble is 0xa that is an indication that this microcode
561 	 * has been patched. The actual version is in dword [3] but we only care
562 	 * about the patchlevel which is the lowest nibble of dword [3]
563 	 */
564 	if (((buf[0] & 0xf) == 0xa) && (buf[2] & 0xf) >= 1)
565 		a5xx_gpu->has_whereami = true;
566 
567 	msm_gem_put_vaddr(obj);
568 }
569 
570 static int a5xx_ucode_init(struct msm_gpu *gpu)
571 {
572 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
573 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
574 	int ret;
575 
576 	if (!a5xx_gpu->pm4_bo) {
577 		a5xx_gpu->pm4_bo = adreno_fw_create_bo(gpu,
578 			adreno_gpu->fw[ADRENO_FW_PM4], &a5xx_gpu->pm4_iova);
579 
580 
581 		if (IS_ERR(a5xx_gpu->pm4_bo)) {
582 			ret = PTR_ERR(a5xx_gpu->pm4_bo);
583 			a5xx_gpu->pm4_bo = NULL;
584 			DRM_DEV_ERROR(gpu->dev->dev, "could not allocate PM4: %d\n",
585 				ret);
586 			return ret;
587 		}
588 
589 		msm_gem_object_set_name(a5xx_gpu->pm4_bo, "pm4fw");
590 	}
591 
592 	if (!a5xx_gpu->pfp_bo) {
593 		a5xx_gpu->pfp_bo = adreno_fw_create_bo(gpu,
594 			adreno_gpu->fw[ADRENO_FW_PFP], &a5xx_gpu->pfp_iova);
595 
596 		if (IS_ERR(a5xx_gpu->pfp_bo)) {
597 			ret = PTR_ERR(a5xx_gpu->pfp_bo);
598 			a5xx_gpu->pfp_bo = NULL;
599 			DRM_DEV_ERROR(gpu->dev->dev, "could not allocate PFP: %d\n",
600 				ret);
601 			return ret;
602 		}
603 
604 		msm_gem_object_set_name(a5xx_gpu->pfp_bo, "pfpfw");
605 		a5xx_ucode_check_version(a5xx_gpu, a5xx_gpu->pfp_bo);
606 	}
607 
608 	gpu_write64(gpu, REG_A5XX_CP_ME_INSTR_BASE_LO,
609 		REG_A5XX_CP_ME_INSTR_BASE_HI, a5xx_gpu->pm4_iova);
610 
611 	gpu_write64(gpu, REG_A5XX_CP_PFP_INSTR_BASE_LO,
612 		REG_A5XX_CP_PFP_INSTR_BASE_HI, a5xx_gpu->pfp_iova);
613 
614 	return 0;
615 }
616 
617 #define SCM_GPU_ZAP_SHADER_RESUME 0
618 
619 static int a5xx_zap_shader_resume(struct msm_gpu *gpu)
620 {
621 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
622 	int ret;
623 
624 	/*
625 	 * Adreno 506 have CPZ Retention feature and doesn't require
626 	 * to resume zap shader
627 	 */
628 	if (adreno_is_a506(adreno_gpu))
629 		return 0;
630 
631 	ret = qcom_scm_set_remote_state(SCM_GPU_ZAP_SHADER_RESUME, GPU_PAS_ID);
632 	if (ret)
633 		DRM_ERROR("%s: zap-shader resume failed: %d\n",
634 			gpu->name, ret);
635 
636 	return ret;
637 }
638 
639 static int a5xx_zap_shader_init(struct msm_gpu *gpu)
640 {
641 	static bool loaded;
642 	int ret;
643 
644 	/*
645 	 * If the zap shader is already loaded into memory we just need to kick
646 	 * the remote processor to reinitialize it
647 	 */
648 	if (loaded)
649 		return a5xx_zap_shader_resume(gpu);
650 
651 	ret = adreno_zap_shader_load(gpu, GPU_PAS_ID);
652 
653 	loaded = !ret;
654 	return ret;
655 }
656 
657 #define A5XX_INT_MASK (A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \
658 	  A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \
659 	  A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \
660 	  A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \
661 	  A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \
662 	  A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW | \
663 	  A5XX_RBBM_INT_0_MASK_CP_HW_ERROR | \
664 	  A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT | \
665 	  A5XX_RBBM_INT_0_MASK_CP_SW | \
666 	  A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS | \
667 	  A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS | \
668 	  A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP)
669 
670 static int a5xx_hw_init(struct msm_gpu *gpu)
671 {
672 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
673 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
674 	u32 regbit;
675 	int ret;
676 
677 	gpu_write(gpu, REG_A5XX_VBIF_ROUND_ROBIN_QOS_ARB, 0x00000003);
678 
679 	if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu) ||
680 	    adreno_is_a540(adreno_gpu))
681 		gpu_write(gpu, REG_A5XX_VBIF_GATE_OFF_WRREQ_EN, 0x00000009);
682 
683 	/* Make all blocks contribute to the GPU BUSY perf counter */
684 	gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_GPU_BUSY_MASKED, 0xFFFFFFFF);
685 
686 	/* Enable RBBM error reporting bits */
687 	gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL0, 0x00000001);
688 
689 	if (adreno_gpu->info->quirks & ADRENO_QUIRK_FAULT_DETECT_MASK) {
690 		/*
691 		 * Mask out the activity signals from RB1-3 to avoid false
692 		 * positives
693 		 */
694 
695 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL11,
696 			0xF0000000);
697 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL12,
698 			0xFFFFFFFF);
699 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL13,
700 			0xFFFFFFFF);
701 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL14,
702 			0xFFFFFFFF);
703 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL15,
704 			0xFFFFFFFF);
705 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL16,
706 			0xFFFFFFFF);
707 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL17,
708 			0xFFFFFFFF);
709 		gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_MASK_CNTL18,
710 			0xFFFFFFFF);
711 	}
712 
713 	/* Enable fault detection */
714 	gpu_write(gpu, REG_A5XX_RBBM_INTERFACE_HANG_INT_CNTL,
715 		(1 << 30) | 0xFFFF);
716 
717 	/* Turn on performance counters */
718 	gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_CNTL, 0x01);
719 
720 	/* Select CP0 to always count cycles */
721 	gpu_write(gpu, REG_A5XX_CP_PERFCTR_CP_SEL_0, PERF_CP_ALWAYS_COUNT);
722 
723 	/* Select RBBM0 to countable 6 to get the busy status for devfreq */
724 	gpu_write(gpu, REG_A5XX_RBBM_PERFCTR_RBBM_SEL_0, 6);
725 
726 	/* Increase VFD cache access so LRZ and other data gets evicted less */
727 	gpu_write(gpu, REG_A5XX_UCHE_CACHE_WAYS, 0x02);
728 
729 	/* Disable L2 bypass in the UCHE */
730 	gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_LO, 0xFFFF0000);
731 	gpu_write(gpu, REG_A5XX_UCHE_TRAP_BASE_HI, 0x0001FFFF);
732 	gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_LO, 0xFFFF0000);
733 	gpu_write(gpu, REG_A5XX_UCHE_WRITE_THRU_BASE_HI, 0x0001FFFF);
734 
735 	/* Set the GMEM VA range (0 to gpu->gmem) */
736 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_LO, 0x00100000);
737 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MIN_HI, 0x00000000);
738 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_LO,
739 		0x00100000 + adreno_gpu->gmem - 1);
740 	gpu_write(gpu, REG_A5XX_UCHE_GMEM_RANGE_MAX_HI, 0x00000000);
741 
742 	if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu) ||
743 	    adreno_is_a510(adreno_gpu)) {
744 		gpu_write(gpu, REG_A5XX_CP_MEQ_THRESHOLDS, 0x20);
745 		if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu))
746 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x400);
747 		else
748 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x20);
749 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_2, 0x40000030);
750 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_1, 0x20100D0A);
751 	} else {
752 		gpu_write(gpu, REG_A5XX_CP_MEQ_THRESHOLDS, 0x40);
753 		if (adreno_is_a530(adreno_gpu))
754 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x40);
755 		else
756 			gpu_write(gpu, REG_A5XX_CP_MERCIU_SIZE, 0x400);
757 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_2, 0x80000060);
758 		gpu_write(gpu, REG_A5XX_CP_ROQ_THRESHOLDS_1, 0x40201B16);
759 	}
760 
761 	if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu))
762 		gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL,
763 			  (0x100 << 11 | 0x100 << 22));
764 	else if (adreno_is_a509(adreno_gpu) || adreno_is_a510(adreno_gpu) ||
765 		 adreno_is_a512(adreno_gpu))
766 		gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL,
767 			  (0x200 << 11 | 0x200 << 22));
768 	else
769 		gpu_write(gpu, REG_A5XX_PC_DBG_ECO_CNTL,
770 			  (0x400 << 11 | 0x300 << 22));
771 
772 	if (adreno_gpu->info->quirks & ADRENO_QUIRK_TWO_PASS_USE_WFI)
773 		gpu_rmw(gpu, REG_A5XX_PC_DBG_ECO_CNTL, 0, (1 << 8));
774 
775 	/*
776 	 * Disable the RB sampler datapath DP2 clock gating optimization
777 	 * for 1-SP GPUs, as it is enabled by default.
778 	 */
779 	if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu) ||
780 	    adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu))
781 		gpu_rmw(gpu, REG_A5XX_RB_DBG_ECO_CNTL, 0, (1 << 9));
782 
783 	/* Disable UCHE global filter as SP can invalidate/flush independently */
784 	gpu_write(gpu, REG_A5XX_UCHE_MODE_CNTL, BIT(29));
785 
786 	/* Enable USE_RETENTION_FLOPS */
787 	gpu_write(gpu, REG_A5XX_CP_CHICKEN_DBG, 0x02000000);
788 
789 	/* Enable ME/PFP split notification */
790 	gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL1, 0xA6FFFFFF);
791 
792 	/*
793 	 *  In A5x, CCU can send context_done event of a particular context to
794 	 *  UCHE which ultimately reaches CP even when there is valid
795 	 *  transaction of that context inside CCU. This can let CP to program
796 	 *  config registers, which will make the "valid transaction" inside
797 	 *  CCU to be interpreted differently. This can cause gpu fault. This
798 	 *  bug is fixed in latest A510 revision. To enable this bug fix -
799 	 *  bit[11] of RB_DBG_ECO_CNTL need to be set to 0, default is 1
800 	 *  (disable). For older A510 version this bit is unused.
801 	 */
802 	if (adreno_is_a510(adreno_gpu))
803 		gpu_rmw(gpu, REG_A5XX_RB_DBG_ECO_CNTL, (1 << 11), 0);
804 
805 	/* Enable HWCG */
806 	a5xx_set_hwcg(gpu, true);
807 
808 	gpu_write(gpu, REG_A5XX_RBBM_AHB_CNTL2, 0x0000003F);
809 
810 	/* Set the highest bank bit */
811 	if (adreno_is_a540(adreno_gpu))
812 		regbit = 2;
813 	else
814 		regbit = 1;
815 
816 	gpu_write(gpu, REG_A5XX_TPL1_MODE_CNTL, regbit << 7);
817 	gpu_write(gpu, REG_A5XX_RB_MODE_CNTL, regbit << 1);
818 
819 	if (adreno_is_a509(adreno_gpu) || adreno_is_a512(adreno_gpu) ||
820 	    adreno_is_a540(adreno_gpu))
821 		gpu_write(gpu, REG_A5XX_UCHE_DBG_ECO_CNTL_2, regbit);
822 
823 	/* Disable All flat shading optimization (ALLFLATOPTDIS) */
824 	gpu_rmw(gpu, REG_A5XX_VPC_DBG_ECO_CNTL, 0, (1 << 10));
825 
826 	/* Protect registers from the CP */
827 	gpu_write(gpu, REG_A5XX_CP_PROTECT_CNTL, 0x00000007);
828 
829 	/* RBBM */
830 	gpu_write(gpu, REG_A5XX_CP_PROTECT(0), ADRENO_PROTECT_RW(0x04, 4));
831 	gpu_write(gpu, REG_A5XX_CP_PROTECT(1), ADRENO_PROTECT_RW(0x08, 8));
832 	gpu_write(gpu, REG_A5XX_CP_PROTECT(2), ADRENO_PROTECT_RW(0x10, 16));
833 	gpu_write(gpu, REG_A5XX_CP_PROTECT(3), ADRENO_PROTECT_RW(0x20, 32));
834 	gpu_write(gpu, REG_A5XX_CP_PROTECT(4), ADRENO_PROTECT_RW(0x40, 64));
835 	gpu_write(gpu, REG_A5XX_CP_PROTECT(5), ADRENO_PROTECT_RW(0x80, 64));
836 
837 	/* Content protect */
838 	gpu_write(gpu, REG_A5XX_CP_PROTECT(6),
839 		ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
840 			16));
841 	gpu_write(gpu, REG_A5XX_CP_PROTECT(7),
842 		ADRENO_PROTECT_RW(REG_A5XX_RBBM_SECVID_TRUST_CNTL, 2));
843 
844 	/* CP */
845 	gpu_write(gpu, REG_A5XX_CP_PROTECT(8), ADRENO_PROTECT_RW(0x800, 64));
846 	gpu_write(gpu, REG_A5XX_CP_PROTECT(9), ADRENO_PROTECT_RW(0x840, 8));
847 	gpu_write(gpu, REG_A5XX_CP_PROTECT(10), ADRENO_PROTECT_RW(0x880, 32));
848 	gpu_write(gpu, REG_A5XX_CP_PROTECT(11), ADRENO_PROTECT_RW(0xAA0, 1));
849 
850 	/* RB */
851 	gpu_write(gpu, REG_A5XX_CP_PROTECT(12), ADRENO_PROTECT_RW(0xCC0, 1));
852 	gpu_write(gpu, REG_A5XX_CP_PROTECT(13), ADRENO_PROTECT_RW(0xCF0, 2));
853 
854 	/* VPC */
855 	gpu_write(gpu, REG_A5XX_CP_PROTECT(14), ADRENO_PROTECT_RW(0xE68, 8));
856 	gpu_write(gpu, REG_A5XX_CP_PROTECT(15), ADRENO_PROTECT_RW(0xE70, 16));
857 
858 	/* UCHE */
859 	gpu_write(gpu, REG_A5XX_CP_PROTECT(16), ADRENO_PROTECT_RW(0xE80, 16));
860 
861 	/* SMMU */
862 	gpu_write(gpu, REG_A5XX_CP_PROTECT(17),
863 			ADRENO_PROTECT_RW(0x10000, 0x8000));
864 
865 	gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_CNTL, 0);
866 	/*
867 	 * Disable the trusted memory range - we don't actually supported secure
868 	 * memory rendering at this point in time and we don't want to block off
869 	 * part of the virtual memory space.
870 	 */
871 	gpu_write64(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_LO,
872 		REG_A5XX_RBBM_SECVID_TSB_TRUSTED_BASE_HI, 0x00000000);
873 	gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_TRUSTED_SIZE, 0x00000000);
874 
875 	/* Put the GPU into 64 bit by default */
876 	gpu_write(gpu, REG_A5XX_CP_ADDR_MODE_CNTL, 0x1);
877 	gpu_write(gpu, REG_A5XX_VSC_ADDR_MODE_CNTL, 0x1);
878 	gpu_write(gpu, REG_A5XX_GRAS_ADDR_MODE_CNTL, 0x1);
879 	gpu_write(gpu, REG_A5XX_RB_ADDR_MODE_CNTL, 0x1);
880 	gpu_write(gpu, REG_A5XX_PC_ADDR_MODE_CNTL, 0x1);
881 	gpu_write(gpu, REG_A5XX_HLSQ_ADDR_MODE_CNTL, 0x1);
882 	gpu_write(gpu, REG_A5XX_VFD_ADDR_MODE_CNTL, 0x1);
883 	gpu_write(gpu, REG_A5XX_VPC_ADDR_MODE_CNTL, 0x1);
884 	gpu_write(gpu, REG_A5XX_UCHE_ADDR_MODE_CNTL, 0x1);
885 	gpu_write(gpu, REG_A5XX_SP_ADDR_MODE_CNTL, 0x1);
886 	gpu_write(gpu, REG_A5XX_TPL1_ADDR_MODE_CNTL, 0x1);
887 	gpu_write(gpu, REG_A5XX_RBBM_SECVID_TSB_ADDR_MODE_CNTL, 0x1);
888 
889 	/*
890 	 * VPC corner case with local memory load kill leads to corrupt
891 	 * internal state. Normal Disable does not work for all a5x chips.
892 	 * So do the following setting to disable it.
893 	 */
894 	if (adreno_gpu->info->quirks & ADRENO_QUIRK_LMLOADKILL_DISABLE) {
895 		gpu_rmw(gpu, REG_A5XX_VPC_DBG_ECO_CNTL, 0, BIT(23));
896 		gpu_rmw(gpu, REG_A5XX_HLSQ_DBG_ECO_CNTL, BIT(18), 0);
897 	}
898 
899 	ret = adreno_hw_init(gpu);
900 	if (ret)
901 		return ret;
902 
903 	if (adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu))
904 		a5xx_gpmu_ucode_init(gpu);
905 
906 	ret = a5xx_ucode_init(gpu);
907 	if (ret)
908 		return ret;
909 
910 	/* Set the ringbuffer address */
911 	gpu_write64(gpu, REG_A5XX_CP_RB_BASE, REG_A5XX_CP_RB_BASE_HI,
912 		gpu->rb[0]->iova);
913 
914 	/*
915 	 * If the microcode supports the WHERE_AM_I opcode then we can use that
916 	 * in lieu of the RPTR shadow and enable preemption. Otherwise, we
917 	 * can't safely use the RPTR shadow or preemption. In either case, the
918 	 * RPTR shadow should be disabled in hardware.
919 	 */
920 	gpu_write(gpu, REG_A5XX_CP_RB_CNTL,
921 		MSM_GPU_RB_CNTL_DEFAULT | AXXX_CP_RB_CNTL_NO_UPDATE);
922 
923 	/* Create a privileged buffer for the RPTR shadow */
924 	if (a5xx_gpu->has_whereami) {
925 		if (!a5xx_gpu->shadow_bo) {
926 			a5xx_gpu->shadow = msm_gem_kernel_new(gpu->dev,
927 				sizeof(u32) * gpu->nr_rings,
928 				MSM_BO_WC | MSM_BO_MAP_PRIV,
929 				gpu->aspace, &a5xx_gpu->shadow_bo,
930 				&a5xx_gpu->shadow_iova);
931 
932 			if (IS_ERR(a5xx_gpu->shadow))
933 				return PTR_ERR(a5xx_gpu->shadow);
934 
935 			msm_gem_object_set_name(a5xx_gpu->shadow_bo, "shadow");
936 		}
937 
938 		gpu_write64(gpu, REG_A5XX_CP_RB_RPTR_ADDR,
939 			REG_A5XX_CP_RB_RPTR_ADDR_HI, shadowptr(a5xx_gpu, gpu->rb[0]));
940 	} else if (gpu->nr_rings > 1) {
941 		/* Disable preemption if WHERE_AM_I isn't available */
942 		a5xx_preempt_fini(gpu);
943 		gpu->nr_rings = 1;
944 	}
945 
946 	a5xx_preempt_hw_init(gpu);
947 
948 	/* Disable the interrupts through the initial bringup stage */
949 	gpu_write(gpu, REG_A5XX_RBBM_INT_0_MASK, A5XX_INT_MASK);
950 
951 	/* Clear ME_HALT to start the micro engine */
952 	gpu_write(gpu, REG_A5XX_CP_PFP_ME_CNTL, 0);
953 	ret = a5xx_me_init(gpu);
954 	if (ret)
955 		return ret;
956 
957 	ret = a5xx_power_init(gpu);
958 	if (ret)
959 		return ret;
960 
961 	/*
962 	 * Send a pipeline event stat to get misbehaving counters to start
963 	 * ticking correctly
964 	 */
965 	if (adreno_is_a530(adreno_gpu)) {
966 		OUT_PKT7(gpu->rb[0], CP_EVENT_WRITE, 1);
967 		OUT_RING(gpu->rb[0], CP_EVENT_WRITE_0_EVENT(STAT_EVENT));
968 
969 		a5xx_flush(gpu, gpu->rb[0], true);
970 		if (!a5xx_idle(gpu, gpu->rb[0]))
971 			return -EINVAL;
972 	}
973 
974 	/*
975 	 * If the chip that we are using does support loading one, then
976 	 * try to load a zap shader into the secure world. If successful
977 	 * we can use the CP to switch out of secure mode. If not then we
978 	 * have no resource but to try to switch ourselves out manually. If we
979 	 * guessed wrong then access to the RBBM_SECVID_TRUST_CNTL register will
980 	 * be blocked and a permissions violation will soon follow.
981 	 */
982 	ret = a5xx_zap_shader_init(gpu);
983 	if (!ret) {
984 		OUT_PKT7(gpu->rb[0], CP_SET_SECURE_MODE, 1);
985 		OUT_RING(gpu->rb[0], 0x00000000);
986 
987 		a5xx_flush(gpu, gpu->rb[0], true);
988 		if (!a5xx_idle(gpu, gpu->rb[0]))
989 			return -EINVAL;
990 	} else if (ret == -ENODEV) {
991 		/*
992 		 * This device does not use zap shader (but print a warning
993 		 * just in case someone got their dt wrong.. hopefully they
994 		 * have a debug UART to realize the error of their ways...
995 		 * if you mess this up you are about to crash horribly)
996 		 */
997 		dev_warn_once(gpu->dev->dev,
998 			"Zap shader not enabled - using SECVID_TRUST_CNTL instead\n");
999 		gpu_write(gpu, REG_A5XX_RBBM_SECVID_TRUST_CNTL, 0x0);
1000 	} else {
1001 		return ret;
1002 	}
1003 
1004 	/* Last step - yield the ringbuffer */
1005 	a5xx_preempt_start(gpu);
1006 
1007 	return 0;
1008 }
1009 
1010 static void a5xx_recover(struct msm_gpu *gpu)
1011 {
1012 	int i;
1013 
1014 	adreno_dump_info(gpu);
1015 
1016 	for (i = 0; i < 8; i++) {
1017 		printk("CP_SCRATCH_REG%d: %u\n", i,
1018 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(i)));
1019 	}
1020 
1021 	if (hang_debug)
1022 		a5xx_dump(gpu);
1023 
1024 	gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 1);
1025 	gpu_read(gpu, REG_A5XX_RBBM_SW_RESET_CMD);
1026 	gpu_write(gpu, REG_A5XX_RBBM_SW_RESET_CMD, 0);
1027 	adreno_recover(gpu);
1028 }
1029 
1030 static void a5xx_destroy(struct msm_gpu *gpu)
1031 {
1032 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1033 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1034 
1035 	DBG("%s", gpu->name);
1036 
1037 	a5xx_preempt_fini(gpu);
1038 
1039 	if (a5xx_gpu->pm4_bo) {
1040 		msm_gem_unpin_iova(a5xx_gpu->pm4_bo, gpu->aspace);
1041 		drm_gem_object_put(a5xx_gpu->pm4_bo);
1042 	}
1043 
1044 	if (a5xx_gpu->pfp_bo) {
1045 		msm_gem_unpin_iova(a5xx_gpu->pfp_bo, gpu->aspace);
1046 		drm_gem_object_put(a5xx_gpu->pfp_bo);
1047 	}
1048 
1049 	if (a5xx_gpu->gpmu_bo) {
1050 		msm_gem_unpin_iova(a5xx_gpu->gpmu_bo, gpu->aspace);
1051 		drm_gem_object_put(a5xx_gpu->gpmu_bo);
1052 	}
1053 
1054 	if (a5xx_gpu->shadow_bo) {
1055 		msm_gem_unpin_iova(a5xx_gpu->shadow_bo, gpu->aspace);
1056 		drm_gem_object_put(a5xx_gpu->shadow_bo);
1057 	}
1058 
1059 	adreno_gpu_cleanup(adreno_gpu);
1060 	kfree(a5xx_gpu);
1061 }
1062 
1063 static inline bool _a5xx_check_idle(struct msm_gpu *gpu)
1064 {
1065 	if (gpu_read(gpu, REG_A5XX_RBBM_STATUS) & ~A5XX_RBBM_STATUS_HI_BUSY)
1066 		return false;
1067 
1068 	/*
1069 	 * Nearly every abnormality ends up pausing the GPU and triggering a
1070 	 * fault so we can safely just watch for this one interrupt to fire
1071 	 */
1072 	return !(gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS) &
1073 		A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT);
1074 }
1075 
1076 bool a5xx_idle(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1077 {
1078 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1079 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1080 
1081 	if (ring != a5xx_gpu->cur_ring) {
1082 		WARN(1, "Tried to idle a non-current ringbuffer\n");
1083 		return false;
1084 	}
1085 
1086 	/* wait for CP to drain ringbuffer: */
1087 	if (!adreno_idle(gpu, ring))
1088 		return false;
1089 
1090 	if (spin_until(_a5xx_check_idle(gpu))) {
1091 		DRM_ERROR("%s: %ps: timeout waiting for GPU to idle: status %8.8X irq %8.8X rptr/wptr %d/%d\n",
1092 			gpu->name, __builtin_return_address(0),
1093 			gpu_read(gpu, REG_A5XX_RBBM_STATUS),
1094 			gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS),
1095 			gpu_read(gpu, REG_A5XX_CP_RB_RPTR),
1096 			gpu_read(gpu, REG_A5XX_CP_RB_WPTR));
1097 		return false;
1098 	}
1099 
1100 	return true;
1101 }
1102 
1103 static int a5xx_fault_handler(void *arg, unsigned long iova, int flags, void *data)
1104 {
1105 	struct msm_gpu *gpu = arg;
1106 	pr_warn_ratelimited("*** gpu fault: iova=%08lx, flags=%d (%u,%u,%u,%u)\n",
1107 			iova, flags,
1108 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(4)),
1109 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(5)),
1110 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(6)),
1111 			gpu_read(gpu, REG_A5XX_CP_SCRATCH_REG(7)));
1112 
1113 	return 0;
1114 }
1115 
1116 static void a5xx_cp_err_irq(struct msm_gpu *gpu)
1117 {
1118 	u32 status = gpu_read(gpu, REG_A5XX_CP_INTERRUPT_STATUS);
1119 
1120 	if (status & A5XX_CP_INT_CP_OPCODE_ERROR) {
1121 		u32 val;
1122 
1123 		gpu_write(gpu, REG_A5XX_CP_PFP_STAT_ADDR, 0);
1124 
1125 		/*
1126 		 * REG_A5XX_CP_PFP_STAT_DATA is indexed, and we want index 1 so
1127 		 * read it twice
1128 		 */
1129 
1130 		gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA);
1131 		val = gpu_read(gpu, REG_A5XX_CP_PFP_STAT_DATA);
1132 
1133 		dev_err_ratelimited(gpu->dev->dev, "CP | opcode error | possible opcode=0x%8.8X\n",
1134 			val);
1135 	}
1136 
1137 	if (status & A5XX_CP_INT_CP_HW_FAULT_ERROR)
1138 		dev_err_ratelimited(gpu->dev->dev, "CP | HW fault | status=0x%8.8X\n",
1139 			gpu_read(gpu, REG_A5XX_CP_HW_FAULT));
1140 
1141 	if (status & A5XX_CP_INT_CP_DMA_ERROR)
1142 		dev_err_ratelimited(gpu->dev->dev, "CP | DMA error\n");
1143 
1144 	if (status & A5XX_CP_INT_CP_REGISTER_PROTECTION_ERROR) {
1145 		u32 val = gpu_read(gpu, REG_A5XX_CP_PROTECT_STATUS);
1146 
1147 		dev_err_ratelimited(gpu->dev->dev,
1148 			"CP | protected mode error | %s | addr=0x%8.8X | status=0x%8.8X\n",
1149 			val & (1 << 24) ? "WRITE" : "READ",
1150 			(val & 0xFFFFF) >> 2, val);
1151 	}
1152 
1153 	if (status & A5XX_CP_INT_CP_AHB_ERROR) {
1154 		u32 status = gpu_read(gpu, REG_A5XX_CP_AHB_FAULT);
1155 		const char *access[16] = { "reserved", "reserved",
1156 			"timestamp lo", "timestamp hi", "pfp read", "pfp write",
1157 			"", "", "me read", "me write", "", "", "crashdump read",
1158 			"crashdump write" };
1159 
1160 		dev_err_ratelimited(gpu->dev->dev,
1161 			"CP | AHB error | addr=%X access=%s error=%d | status=0x%8.8X\n",
1162 			status & 0xFFFFF, access[(status >> 24) & 0xF],
1163 			(status & (1 << 31)), status);
1164 	}
1165 }
1166 
1167 static void a5xx_rbbm_err_irq(struct msm_gpu *gpu, u32 status)
1168 {
1169 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR) {
1170 		u32 val = gpu_read(gpu, REG_A5XX_RBBM_AHB_ERROR_STATUS);
1171 
1172 		dev_err_ratelimited(gpu->dev->dev,
1173 			"RBBM | AHB bus error | %s | addr=0x%X | ports=0x%X:0x%X\n",
1174 			val & (1 << 28) ? "WRITE" : "READ",
1175 			(val & 0xFFFFF) >> 2, (val >> 20) & 0x3,
1176 			(val >> 24) & 0xF);
1177 
1178 		/* Clear the error */
1179 		gpu_write(gpu, REG_A5XX_RBBM_AHB_CMD, (1 << 4));
1180 
1181 		/* Clear the interrupt */
1182 		gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD,
1183 			A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR);
1184 	}
1185 
1186 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT)
1187 		dev_err_ratelimited(gpu->dev->dev, "RBBM | AHB transfer timeout\n");
1188 
1189 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT)
1190 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ME master split | status=0x%X\n",
1191 			gpu_read(gpu, REG_A5XX_RBBM_AHB_ME_SPLIT_STATUS));
1192 
1193 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT)
1194 		dev_err_ratelimited(gpu->dev->dev, "RBBM | PFP master split | status=0x%X\n",
1195 			gpu_read(gpu, REG_A5XX_RBBM_AHB_PFP_SPLIT_STATUS));
1196 
1197 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT)
1198 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ETS master split | status=0x%X\n",
1199 			gpu_read(gpu, REG_A5XX_RBBM_AHB_ETS_SPLIT_STATUS));
1200 
1201 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW)
1202 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB ASYNC overflow\n");
1203 
1204 	if (status & A5XX_RBBM_INT_0_MASK_RBBM_ATB_BUS_OVERFLOW)
1205 		dev_err_ratelimited(gpu->dev->dev, "RBBM | ATB bus overflow\n");
1206 }
1207 
1208 static void a5xx_uche_err_irq(struct msm_gpu *gpu)
1209 {
1210 	uint64_t addr = (uint64_t) gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_HI);
1211 
1212 	addr |= gpu_read(gpu, REG_A5XX_UCHE_TRAP_LOG_LO);
1213 
1214 	dev_err_ratelimited(gpu->dev->dev, "UCHE | Out of bounds access | addr=0x%llX\n",
1215 		addr);
1216 }
1217 
1218 static void a5xx_gpmu_err_irq(struct msm_gpu *gpu)
1219 {
1220 	dev_err_ratelimited(gpu->dev->dev, "GPMU | voltage droop\n");
1221 }
1222 
1223 static void a5xx_fault_detect_irq(struct msm_gpu *gpu)
1224 {
1225 	struct drm_device *dev = gpu->dev;
1226 	struct msm_ringbuffer *ring = gpu->funcs->active_ring(gpu);
1227 
1228 	/*
1229 	 * If stalled on SMMU fault, we could trip the GPU's hang detection,
1230 	 * but the fault handler will trigger the devcore dump, and we want
1231 	 * to otherwise resume normally rather than killing the submit, so
1232 	 * just bail.
1233 	 */
1234 	if (gpu_read(gpu, REG_A5XX_RBBM_STATUS3) & BIT(24))
1235 		return;
1236 
1237 	DRM_DEV_ERROR(dev->dev, "gpu fault ring %d fence %x status %8.8X rb %4.4x/%4.4x ib1 %16.16llX/%4.4x ib2 %16.16llX/%4.4x\n",
1238 		ring ? ring->id : -1, ring ? ring->seqno : 0,
1239 		gpu_read(gpu, REG_A5XX_RBBM_STATUS),
1240 		gpu_read(gpu, REG_A5XX_CP_RB_RPTR),
1241 		gpu_read(gpu, REG_A5XX_CP_RB_WPTR),
1242 		gpu_read64(gpu, REG_A5XX_CP_IB1_BASE, REG_A5XX_CP_IB1_BASE_HI),
1243 		gpu_read(gpu, REG_A5XX_CP_IB1_BUFSZ),
1244 		gpu_read64(gpu, REG_A5XX_CP_IB2_BASE, REG_A5XX_CP_IB2_BASE_HI),
1245 		gpu_read(gpu, REG_A5XX_CP_IB2_BUFSZ));
1246 
1247 	/* Turn off the hangcheck timer to keep it from bothering us */
1248 	del_timer(&gpu->hangcheck_timer);
1249 
1250 	kthread_queue_work(gpu->worker, &gpu->recover_work);
1251 }
1252 
1253 #define RBBM_ERROR_MASK \
1254 	(A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR | \
1255 	A5XX_RBBM_INT_0_MASK_RBBM_TRANSFER_TIMEOUT | \
1256 	A5XX_RBBM_INT_0_MASK_RBBM_ME_MS_TIMEOUT | \
1257 	A5XX_RBBM_INT_0_MASK_RBBM_PFP_MS_TIMEOUT | \
1258 	A5XX_RBBM_INT_0_MASK_RBBM_ETS_MS_TIMEOUT | \
1259 	A5XX_RBBM_INT_0_MASK_RBBM_ATB_ASYNC_OVERFLOW)
1260 
1261 static irqreturn_t a5xx_irq(struct msm_gpu *gpu)
1262 {
1263 	struct msm_drm_private *priv = gpu->dev->dev_private;
1264 	u32 status = gpu_read(gpu, REG_A5XX_RBBM_INT_0_STATUS);
1265 
1266 	/*
1267 	 * Clear all the interrupts except RBBM_AHB_ERROR - if we clear it
1268 	 * before the source is cleared the interrupt will storm.
1269 	 */
1270 	gpu_write(gpu, REG_A5XX_RBBM_INT_CLEAR_CMD,
1271 		status & ~A5XX_RBBM_INT_0_MASK_RBBM_AHB_ERROR);
1272 
1273 	if (priv->disable_err_irq) {
1274 		status &= A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS |
1275 			  A5XX_RBBM_INT_0_MASK_CP_SW;
1276 	}
1277 
1278 	/* Pass status to a5xx_rbbm_err_irq because we've already cleared it */
1279 	if (status & RBBM_ERROR_MASK)
1280 		a5xx_rbbm_err_irq(gpu, status);
1281 
1282 	if (status & A5XX_RBBM_INT_0_MASK_CP_HW_ERROR)
1283 		a5xx_cp_err_irq(gpu);
1284 
1285 	if (status & A5XX_RBBM_INT_0_MASK_MISC_HANG_DETECT)
1286 		a5xx_fault_detect_irq(gpu);
1287 
1288 	if (status & A5XX_RBBM_INT_0_MASK_UCHE_OOB_ACCESS)
1289 		a5xx_uche_err_irq(gpu);
1290 
1291 	if (status & A5XX_RBBM_INT_0_MASK_GPMU_VOLTAGE_DROOP)
1292 		a5xx_gpmu_err_irq(gpu);
1293 
1294 	if (status & A5XX_RBBM_INT_0_MASK_CP_CACHE_FLUSH_TS) {
1295 		a5xx_preempt_trigger(gpu);
1296 		msm_gpu_retire(gpu);
1297 	}
1298 
1299 	if (status & A5XX_RBBM_INT_0_MASK_CP_SW)
1300 		a5xx_preempt_irq(gpu);
1301 
1302 	return IRQ_HANDLED;
1303 }
1304 
1305 static const u32 a5xx_registers[] = {
1306 	0x0000, 0x0002, 0x0004, 0x0020, 0x0022, 0x0026, 0x0029, 0x002B,
1307 	0x002E, 0x0035, 0x0038, 0x0042, 0x0044, 0x0044, 0x0047, 0x0095,
1308 	0x0097, 0x00BB, 0x03A0, 0x0464, 0x0469, 0x046F, 0x04D2, 0x04D3,
1309 	0x04E0, 0x0533, 0x0540, 0x0555, 0x0800, 0x081A, 0x081F, 0x0841,
1310 	0x0860, 0x0860, 0x0880, 0x08A0, 0x0B00, 0x0B12, 0x0B15, 0x0B28,
1311 	0x0B78, 0x0B7F, 0x0BB0, 0x0BBD, 0x0BC0, 0x0BC6, 0x0BD0, 0x0C53,
1312 	0x0C60, 0x0C61, 0x0C80, 0x0C82, 0x0C84, 0x0C85, 0x0C90, 0x0C98,
1313 	0x0CA0, 0x0CA0, 0x0CB0, 0x0CB2, 0x2180, 0x2185, 0x2580, 0x2585,
1314 	0x0CC1, 0x0CC1, 0x0CC4, 0x0CC7, 0x0CCC, 0x0CCC, 0x0CD0, 0x0CD8,
1315 	0x0CE0, 0x0CE5, 0x0CE8, 0x0CE8, 0x0CEC, 0x0CF1, 0x0CFB, 0x0D0E,
1316 	0x2100, 0x211E, 0x2140, 0x2145, 0x2500, 0x251E, 0x2540, 0x2545,
1317 	0x0D10, 0x0D17, 0x0D20, 0x0D23, 0x0D30, 0x0D30, 0x20C0, 0x20C0,
1318 	0x24C0, 0x24C0, 0x0E40, 0x0E43, 0x0E4A, 0x0E4A, 0x0E50, 0x0E57,
1319 	0x0E60, 0x0E7C, 0x0E80, 0x0E8E, 0x0E90, 0x0E96, 0x0EA0, 0x0EA8,
1320 	0x0EB0, 0x0EB2, 0xE140, 0xE147, 0xE150, 0xE187, 0xE1A0, 0xE1A9,
1321 	0xE1B0, 0xE1B6, 0xE1C0, 0xE1C7, 0xE1D0, 0xE1D1, 0xE200, 0xE201,
1322 	0xE210, 0xE21C, 0xE240, 0xE268, 0xE000, 0xE006, 0xE010, 0xE09A,
1323 	0xE0A0, 0xE0A4, 0xE0AA, 0xE0EB, 0xE100, 0xE105, 0xE380, 0xE38F,
1324 	0xE3B0, 0xE3B0, 0xE400, 0xE405, 0xE408, 0xE4E9, 0xE4F0, 0xE4F0,
1325 	0xE280, 0xE280, 0xE282, 0xE2A3, 0xE2A5, 0xE2C2, 0xE940, 0xE947,
1326 	0xE950, 0xE987, 0xE9A0, 0xE9A9, 0xE9B0, 0xE9B6, 0xE9C0, 0xE9C7,
1327 	0xE9D0, 0xE9D1, 0xEA00, 0xEA01, 0xEA10, 0xEA1C, 0xEA40, 0xEA68,
1328 	0xE800, 0xE806, 0xE810, 0xE89A, 0xE8A0, 0xE8A4, 0xE8AA, 0xE8EB,
1329 	0xE900, 0xE905, 0xEB80, 0xEB8F, 0xEBB0, 0xEBB0, 0xEC00, 0xEC05,
1330 	0xEC08, 0xECE9, 0xECF0, 0xECF0, 0xEA80, 0xEA80, 0xEA82, 0xEAA3,
1331 	0xEAA5, 0xEAC2, 0xA800, 0xA800, 0xA820, 0xA828, 0xA840, 0xA87D,
1332 	0XA880, 0xA88D, 0xA890, 0xA8A3, 0xA8D0, 0xA8D8, 0xA8E0, 0xA8F5,
1333 	0xAC60, 0xAC60, ~0,
1334 };
1335 
1336 static void a5xx_dump(struct msm_gpu *gpu)
1337 {
1338 	DRM_DEV_INFO(gpu->dev->dev, "status:   %08x\n",
1339 		gpu_read(gpu, REG_A5XX_RBBM_STATUS));
1340 	adreno_dump(gpu);
1341 }
1342 
1343 static int a5xx_pm_resume(struct msm_gpu *gpu)
1344 {
1345 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1346 	int ret;
1347 
1348 	/* Turn on the core power */
1349 	ret = msm_gpu_pm_resume(gpu);
1350 	if (ret)
1351 		return ret;
1352 
1353 	/* Adreno 506, 508, 509, 510, 512 needs manual RBBM sus/res control */
1354 	if (!(adreno_is_a530(adreno_gpu) || adreno_is_a540(adreno_gpu))) {
1355 		/* Halt the sp_input_clk at HM level */
1356 		gpu_write(gpu, REG_A5XX_RBBM_CLOCK_CNTL, 0x00000055);
1357 		a5xx_set_hwcg(gpu, true);
1358 		/* Turn on sp_input_clk at HM level */
1359 		gpu_rmw(gpu, REG_A5XX_RBBM_CLOCK_CNTL, 0xff, 0);
1360 		return 0;
1361 	}
1362 
1363 	/* Turn the RBCCU domain first to limit the chances of voltage droop */
1364 	gpu_write(gpu, REG_A5XX_GPMU_RBCCU_POWER_CNTL, 0x778000);
1365 
1366 	/* Wait 3 usecs before polling */
1367 	udelay(3);
1368 
1369 	ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS,
1370 		(1 << 20), (1 << 20));
1371 	if (ret) {
1372 		DRM_ERROR("%s: timeout waiting for RBCCU GDSC enable: %X\n",
1373 			gpu->name,
1374 			gpu_read(gpu, REG_A5XX_GPMU_RBCCU_PWR_CLK_STATUS));
1375 		return ret;
1376 	}
1377 
1378 	/* Turn on the SP domain */
1379 	gpu_write(gpu, REG_A5XX_GPMU_SP_POWER_CNTL, 0x778000);
1380 	ret = spin_usecs(gpu, 20, REG_A5XX_GPMU_SP_PWR_CLK_STATUS,
1381 		(1 << 20), (1 << 20));
1382 	if (ret)
1383 		DRM_ERROR("%s: timeout waiting for SP GDSC enable\n",
1384 			gpu->name);
1385 
1386 	return ret;
1387 }
1388 
1389 static int a5xx_pm_suspend(struct msm_gpu *gpu)
1390 {
1391 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1392 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1393 	u32 mask = 0xf;
1394 	int i, ret;
1395 
1396 	/* A506, A508, A510 have 3 XIN ports in VBIF */
1397 	if (adreno_is_a506(adreno_gpu) || adreno_is_a508(adreno_gpu) ||
1398 	    adreno_is_a510(adreno_gpu))
1399 		mask = 0x7;
1400 
1401 	/* Clear the VBIF pipe before shutting down */
1402 	gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, mask);
1403 	spin_until((gpu_read(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL1) &
1404 				mask) == mask);
1405 
1406 	gpu_write(gpu, REG_A5XX_VBIF_XIN_HALT_CTRL0, 0);
1407 
1408 	/*
1409 	 * Reset the VBIF before power collapse to avoid issue with FIFO
1410 	 * entries on Adreno A510 and A530 (the others will tend to lock up)
1411 	 */
1412 	if (adreno_is_a510(adreno_gpu) || adreno_is_a530(adreno_gpu)) {
1413 		gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x003C0000);
1414 		gpu_write(gpu, REG_A5XX_RBBM_BLOCK_SW_RESET_CMD, 0x00000000);
1415 	}
1416 
1417 	ret = msm_gpu_pm_suspend(gpu);
1418 	if (ret)
1419 		return ret;
1420 
1421 	if (a5xx_gpu->has_whereami)
1422 		for (i = 0; i < gpu->nr_rings; i++)
1423 			a5xx_gpu->shadow[i] = 0;
1424 
1425 	return 0;
1426 }
1427 
1428 static int a5xx_get_timestamp(struct msm_gpu *gpu, uint64_t *value)
1429 {
1430 	*value = gpu_read64(gpu, REG_A5XX_RBBM_ALWAYSON_COUNTER_LO,
1431 		REG_A5XX_RBBM_ALWAYSON_COUNTER_HI);
1432 
1433 	return 0;
1434 }
1435 
1436 struct a5xx_crashdumper {
1437 	void *ptr;
1438 	struct drm_gem_object *bo;
1439 	u64 iova;
1440 };
1441 
1442 struct a5xx_gpu_state {
1443 	struct msm_gpu_state base;
1444 	u32 *hlsqregs;
1445 };
1446 
1447 static int a5xx_crashdumper_init(struct msm_gpu *gpu,
1448 		struct a5xx_crashdumper *dumper)
1449 {
1450 	dumper->ptr = msm_gem_kernel_new(gpu->dev,
1451 		SZ_1M, MSM_BO_WC, gpu->aspace,
1452 		&dumper->bo, &dumper->iova);
1453 
1454 	if (!IS_ERR(dumper->ptr))
1455 		msm_gem_object_set_name(dumper->bo, "crashdump");
1456 
1457 	return PTR_ERR_OR_ZERO(dumper->ptr);
1458 }
1459 
1460 static int a5xx_crashdumper_run(struct msm_gpu *gpu,
1461 		struct a5xx_crashdumper *dumper)
1462 {
1463 	u32 val;
1464 
1465 	if (IS_ERR_OR_NULL(dumper->ptr))
1466 		return -EINVAL;
1467 
1468 	gpu_write64(gpu, REG_A5XX_CP_CRASH_SCRIPT_BASE_LO,
1469 		REG_A5XX_CP_CRASH_SCRIPT_BASE_HI, dumper->iova);
1470 
1471 	gpu_write(gpu, REG_A5XX_CP_CRASH_DUMP_CNTL, 1);
1472 
1473 	return gpu_poll_timeout(gpu, REG_A5XX_CP_CRASH_DUMP_CNTL, val,
1474 		val & 0x04, 100, 10000);
1475 }
1476 
1477 /*
1478  * These are a list of the registers that need to be read through the HLSQ
1479  * aperture through the crashdumper.  These are not nominally accessible from
1480  * the CPU on a secure platform.
1481  */
1482 static const struct {
1483 	u32 type;
1484 	u32 regoffset;
1485 	u32 count;
1486 } a5xx_hlsq_aperture_regs[] = {
1487 	{ 0x35, 0xe00, 0x32 },   /* HSLQ non-context */
1488 	{ 0x31, 0x2080, 0x1 },   /* HLSQ 2D context 0 */
1489 	{ 0x33, 0x2480, 0x1 },   /* HLSQ 2D context 1 */
1490 	{ 0x32, 0xe780, 0x62 },  /* HLSQ 3D context 0 */
1491 	{ 0x34, 0xef80, 0x62 },  /* HLSQ 3D context 1 */
1492 	{ 0x3f, 0x0ec0, 0x40 },  /* SP non-context */
1493 	{ 0x3d, 0x2040, 0x1 },   /* SP 2D context 0 */
1494 	{ 0x3b, 0x2440, 0x1 },   /* SP 2D context 1 */
1495 	{ 0x3e, 0xe580, 0x170 }, /* SP 3D context 0 */
1496 	{ 0x3c, 0xed80, 0x170 }, /* SP 3D context 1 */
1497 	{ 0x3a, 0x0f00, 0x1c },  /* TP non-context */
1498 	{ 0x38, 0x2000, 0xa },   /* TP 2D context 0 */
1499 	{ 0x36, 0x2400, 0xa },   /* TP 2D context 1 */
1500 	{ 0x39, 0xe700, 0x80 },  /* TP 3D context 0 */
1501 	{ 0x37, 0xef00, 0x80 },  /* TP 3D context 1 */
1502 };
1503 
1504 static void a5xx_gpu_state_get_hlsq_regs(struct msm_gpu *gpu,
1505 		struct a5xx_gpu_state *a5xx_state)
1506 {
1507 	struct a5xx_crashdumper dumper = { 0 };
1508 	u32 offset, count = 0;
1509 	u64 *ptr;
1510 	int i;
1511 
1512 	if (a5xx_crashdumper_init(gpu, &dumper))
1513 		return;
1514 
1515 	/* The script will be written at offset 0 */
1516 	ptr = dumper.ptr;
1517 
1518 	/* Start writing the data at offset 256k */
1519 	offset = dumper.iova + (256 * SZ_1K);
1520 
1521 	/* Count how many additional registers to get from the HLSQ aperture */
1522 	for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++)
1523 		count += a5xx_hlsq_aperture_regs[i].count;
1524 
1525 	a5xx_state->hlsqregs = kcalloc(count, sizeof(u32), GFP_KERNEL);
1526 	if (!a5xx_state->hlsqregs)
1527 		return;
1528 
1529 	/* Build the crashdump script */
1530 	for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) {
1531 		u32 type = a5xx_hlsq_aperture_regs[i].type;
1532 		u32 c = a5xx_hlsq_aperture_regs[i].count;
1533 
1534 		/* Write the register to select the desired bank */
1535 		*ptr++ = ((u64) type << 8);
1536 		*ptr++ = (((u64) REG_A5XX_HLSQ_DBG_READ_SEL) << 44) |
1537 			(1 << 21) | 1;
1538 
1539 		*ptr++ = offset;
1540 		*ptr++ = (((u64) REG_A5XX_HLSQ_DBG_AHB_READ_APERTURE) << 44)
1541 			| c;
1542 
1543 		offset += c * sizeof(u32);
1544 	}
1545 
1546 	/* Write two zeros to close off the script */
1547 	*ptr++ = 0;
1548 	*ptr++ = 0;
1549 
1550 	if (a5xx_crashdumper_run(gpu, &dumper)) {
1551 		kfree(a5xx_state->hlsqregs);
1552 		msm_gem_kernel_put(dumper.bo, gpu->aspace);
1553 		return;
1554 	}
1555 
1556 	/* Copy the data from the crashdumper to the state */
1557 	memcpy(a5xx_state->hlsqregs, dumper.ptr + (256 * SZ_1K),
1558 		count * sizeof(u32));
1559 
1560 	msm_gem_kernel_put(dumper.bo, gpu->aspace);
1561 }
1562 
1563 static struct msm_gpu_state *a5xx_gpu_state_get(struct msm_gpu *gpu)
1564 {
1565 	struct a5xx_gpu_state *a5xx_state = kzalloc(sizeof(*a5xx_state),
1566 			GFP_KERNEL);
1567 	bool stalled = !!(gpu_read(gpu, REG_A5XX_RBBM_STATUS3) & BIT(24));
1568 
1569 	if (!a5xx_state)
1570 		return ERR_PTR(-ENOMEM);
1571 
1572 	/* Temporarily disable hardware clock gating before reading the hw */
1573 	a5xx_set_hwcg(gpu, false);
1574 
1575 	/* First get the generic state from the adreno core */
1576 	adreno_gpu_state_get(gpu, &(a5xx_state->base));
1577 
1578 	a5xx_state->base.rbbm_status = gpu_read(gpu, REG_A5XX_RBBM_STATUS);
1579 
1580 	/*
1581 	 * Get the HLSQ regs with the help of the crashdumper, but only if
1582 	 * we are not stalled in an iommu fault (in which case the crashdumper
1583 	 * would not have access to memory)
1584 	 */
1585 	if (!stalled)
1586 		a5xx_gpu_state_get_hlsq_regs(gpu, a5xx_state);
1587 
1588 	a5xx_set_hwcg(gpu, true);
1589 
1590 	return &a5xx_state->base;
1591 }
1592 
1593 static void a5xx_gpu_state_destroy(struct kref *kref)
1594 {
1595 	struct msm_gpu_state *state = container_of(kref,
1596 		struct msm_gpu_state, ref);
1597 	struct a5xx_gpu_state *a5xx_state = container_of(state,
1598 		struct a5xx_gpu_state, base);
1599 
1600 	kfree(a5xx_state->hlsqregs);
1601 
1602 	adreno_gpu_state_destroy(state);
1603 	kfree(a5xx_state);
1604 }
1605 
1606 static int a5xx_gpu_state_put(struct msm_gpu_state *state)
1607 {
1608 	if (IS_ERR_OR_NULL(state))
1609 		return 1;
1610 
1611 	return kref_put(&state->ref, a5xx_gpu_state_destroy);
1612 }
1613 
1614 
1615 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
1616 static void a5xx_show(struct msm_gpu *gpu, struct msm_gpu_state *state,
1617 		      struct drm_printer *p)
1618 {
1619 	int i, j;
1620 	u32 pos = 0;
1621 	struct a5xx_gpu_state *a5xx_state = container_of(state,
1622 		struct a5xx_gpu_state, base);
1623 
1624 	if (IS_ERR_OR_NULL(state))
1625 		return;
1626 
1627 	adreno_show(gpu, state, p);
1628 
1629 	/* Dump the additional a5xx HLSQ registers */
1630 	if (!a5xx_state->hlsqregs)
1631 		return;
1632 
1633 	drm_printf(p, "registers-hlsq:\n");
1634 
1635 	for (i = 0; i < ARRAY_SIZE(a5xx_hlsq_aperture_regs); i++) {
1636 		u32 o = a5xx_hlsq_aperture_regs[i].regoffset;
1637 		u32 c = a5xx_hlsq_aperture_regs[i].count;
1638 
1639 		for (j = 0; j < c; j++, pos++, o++) {
1640 			/*
1641 			 * To keep the crashdump simple we pull the entire range
1642 			 * for each register type but not all of the registers
1643 			 * in the range are valid. Fortunately invalid registers
1644 			 * stick out like a sore thumb with a value of
1645 			 * 0xdeadbeef
1646 			 */
1647 			if (a5xx_state->hlsqregs[pos] == 0xdeadbeef)
1648 				continue;
1649 
1650 			drm_printf(p, "  - { offset: 0x%04x, value: 0x%08x }\n",
1651 				o << 2, a5xx_state->hlsqregs[pos]);
1652 		}
1653 	}
1654 }
1655 #endif
1656 
1657 static struct msm_ringbuffer *a5xx_active_ring(struct msm_gpu *gpu)
1658 {
1659 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1660 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1661 
1662 	return a5xx_gpu->cur_ring;
1663 }
1664 
1665 static unsigned long a5xx_gpu_busy(struct msm_gpu *gpu)
1666 {
1667 	u64 busy_cycles, busy_time;
1668 
1669 	/* Only read the gpu busy if the hardware is already active */
1670 	if (pm_runtime_get_if_in_use(&gpu->pdev->dev) == 0)
1671 		return 0;
1672 
1673 	busy_cycles = gpu_read64(gpu, REG_A5XX_RBBM_PERFCTR_RBBM_0_LO,
1674 			REG_A5XX_RBBM_PERFCTR_RBBM_0_HI);
1675 
1676 	busy_time = busy_cycles - gpu->devfreq.busy_cycles;
1677 	do_div(busy_time, clk_get_rate(gpu->core_clk) / 1000000);
1678 
1679 	gpu->devfreq.busy_cycles = busy_cycles;
1680 
1681 	pm_runtime_put(&gpu->pdev->dev);
1682 
1683 	if (WARN_ON(busy_time > ~0LU))
1684 		return ~0LU;
1685 
1686 	return (unsigned long)busy_time;
1687 }
1688 
1689 static uint32_t a5xx_get_rptr(struct msm_gpu *gpu, struct msm_ringbuffer *ring)
1690 {
1691 	struct adreno_gpu *adreno_gpu = to_adreno_gpu(gpu);
1692 	struct a5xx_gpu *a5xx_gpu = to_a5xx_gpu(adreno_gpu);
1693 
1694 	if (a5xx_gpu->has_whereami)
1695 		return a5xx_gpu->shadow[ring->id];
1696 
1697 	return ring->memptrs->rptr = gpu_read(gpu, REG_A5XX_CP_RB_RPTR);
1698 }
1699 
1700 static const struct adreno_gpu_funcs funcs = {
1701 	.base = {
1702 		.get_param = adreno_get_param,
1703 		.hw_init = a5xx_hw_init,
1704 		.pm_suspend = a5xx_pm_suspend,
1705 		.pm_resume = a5xx_pm_resume,
1706 		.recover = a5xx_recover,
1707 		.submit = a5xx_submit,
1708 		.active_ring = a5xx_active_ring,
1709 		.irq = a5xx_irq,
1710 		.destroy = a5xx_destroy,
1711 #if defined(CONFIG_DEBUG_FS) || defined(CONFIG_DEV_COREDUMP)
1712 		.show = a5xx_show,
1713 #endif
1714 #if defined(CONFIG_DEBUG_FS)
1715 		.debugfs_init = a5xx_debugfs_init,
1716 #endif
1717 		.gpu_busy = a5xx_gpu_busy,
1718 		.gpu_state_get = a5xx_gpu_state_get,
1719 		.gpu_state_put = a5xx_gpu_state_put,
1720 		.create_address_space = adreno_iommu_create_address_space,
1721 		.get_rptr = a5xx_get_rptr,
1722 	},
1723 	.get_timestamp = a5xx_get_timestamp,
1724 };
1725 
1726 static void check_speed_bin(struct device *dev)
1727 {
1728 	struct nvmem_cell *cell;
1729 	u32 val;
1730 
1731 	/*
1732 	 * If the OPP table specifies a opp-supported-hw property then we have
1733 	 * to set something with dev_pm_opp_set_supported_hw() or the table
1734 	 * doesn't get populated so pick an arbitrary value that should
1735 	 * ensure the default frequencies are selected but not conflict with any
1736 	 * actual bins
1737 	 */
1738 	val = 0x80;
1739 
1740 	cell = nvmem_cell_get(dev, "speed_bin");
1741 
1742 	if (!IS_ERR(cell)) {
1743 		void *buf = nvmem_cell_read(cell, NULL);
1744 
1745 		if (!IS_ERR(buf)) {
1746 			u8 bin = *((u8 *) buf);
1747 
1748 			val = (1 << bin);
1749 			kfree(buf);
1750 		}
1751 
1752 		nvmem_cell_put(cell);
1753 	}
1754 
1755 	devm_pm_opp_set_supported_hw(dev, &val, 1);
1756 }
1757 
1758 struct msm_gpu *a5xx_gpu_init(struct drm_device *dev)
1759 {
1760 	struct msm_drm_private *priv = dev->dev_private;
1761 	struct platform_device *pdev = priv->gpu_pdev;
1762 	struct a5xx_gpu *a5xx_gpu = NULL;
1763 	struct adreno_gpu *adreno_gpu;
1764 	struct msm_gpu *gpu;
1765 	int ret;
1766 
1767 	if (!pdev) {
1768 		DRM_DEV_ERROR(dev->dev, "No A5XX device is defined\n");
1769 		return ERR_PTR(-ENXIO);
1770 	}
1771 
1772 	a5xx_gpu = kzalloc(sizeof(*a5xx_gpu), GFP_KERNEL);
1773 	if (!a5xx_gpu)
1774 		return ERR_PTR(-ENOMEM);
1775 
1776 	adreno_gpu = &a5xx_gpu->base;
1777 	gpu = &adreno_gpu->base;
1778 
1779 	adreno_gpu->registers = a5xx_registers;
1780 
1781 	a5xx_gpu->lm_leakage = 0x4E001A;
1782 
1783 	check_speed_bin(&pdev->dev);
1784 
1785 	ret = adreno_gpu_init(dev, pdev, adreno_gpu, &funcs, 4);
1786 	if (ret) {
1787 		a5xx_destroy(&(a5xx_gpu->base.base));
1788 		return ERR_PTR(ret);
1789 	}
1790 
1791 	if (gpu->aspace)
1792 		msm_mmu_set_fault_handler(gpu->aspace->mmu, gpu, a5xx_fault_handler);
1793 
1794 	/* Set up the preemption specific bits and pieces for each ringbuffer */
1795 	a5xx_preempt_init(gpu);
1796 
1797 	return gpu;
1798 }
1799